
SlowDroid: Turning a Smartphone into a Mobile
Attack Vector

Enrico Cambiaso∗, Gianluca Papaleo†, Maurizio Aiello‡

National Research Council, CNR-IEIIT,
via De Marini, 6,

16149 Genoa, Italy
Email: ∗enrico.cambiaso@ieiit.cnr.it, †gianluca.papaleo@ieiit.cnr.it, ‡maurizio.aiello@ieiit.cnr.it

Abstract—Nowadays, last generation of smartphones are
comparable to desktop computers in terms of computational
capabilities. Such characteristics can turn a smartphone into a
mobile attack vector. In this paper we analyze the use of mobile
devices to perpetrate cyber attacks. We present a mobile threat,
SlowDroid, running on Android operating system. Such menace
implements a Denial of Service attack and it is particularly
suitable to a mobile execution, since it makes use of low amounts
of computational and bandwidth resources. We present in detail
SlowDroid implementation and our choices in terms of design,
graphical user interface, and system architecture.

Keywords—android, mobile attack, cybersecurity, slow dos at-
tack, denial of service

I. INTRODUCTION

In the modern era, with the advent of Internet ready mobile
devices, a big slice of computing market shifted from personal
computers to smartphones and portable devices. Companies
like Google, Apple, and Microsoft are investing time and
resources on mobile development, continuously introducing
mobile oriented software and hardware with even more power-
ful capabilities. In this context, last generation smart devices
are equipped with high performance processors, large memory
drives, a suite of sensors, and different network connection
modules. Thanks to this evolution, mobile devices are now
able to perform almost every activity associated to desktop
computing, offering in addition functionalities such as portab-
ility and sensors-endowed hardware.

Historically, mobile devices always represented a target
for attackers, injecting malware, trojans, or viruses inside the
device, since phones are able to access sensitive user data. The
first attack against mobile phones arrived in 2000 as a worm
known as Timofonica, designed to send SMS text messages
to randomly generated numbers [1]. Later, with the advent
of the smartphone era, a wide range of attacks appeared.
Some examples are the CommWarrior worm for Symbian OS
[2] or the FakePlayer malware for Android [3]. Recently,
some kind of “physical” attacks like the smudge attack also
appeared, executed in order to detect unlock patterns analyzing
the smudges on touch screen surfaces [4].

Although mobile devices always represented a target for
attackers, they have rarely been used as an attack tool. In
this paper we focus on the adoption of mobile devices for
executing network based threats. We report as a test case the
SlowDroid attack [5] we have implemented on the Android
mobile platform. The attack implements a Denial of Service

(DoS) menace, executed to make a network service unavailable
for its legitimate users. While the first generation of DoS
attacks were based on a particular exploit or on flooding the
victim with a large amount of network traffic, novel threats,
known as Slow DoS Attacks (SDAs) [6], are particularly suit-
able to a mobile environment, since they require tiny amount of
network and computational resources. Moreover, since SDAs
are considered particularly dangerous, a mobile execution of
these menaces should represent an amplification of the threat,
as a portable and position varying threat execution may elude
detection methodologies.

The rest of the paper is structured as follows. Section II
reports the related work of current attack tools. Then, Section
III motivates the advantages of a mobile threats execution.
Section IV describes in detail the implementation of the Slow-
Droid tool, while Section V analyzes how the implemented
attack works. Finally, Section VI reports the conclusions of
the paper.

II. RELATED WORK

In this section we report the related work on the mobile
threats topic. We start covering Slow DoS Attacks, then ana-
lyzing attacks solutions accustomed to mobile environments.

A. Slow DoS Attacks

The Slow DoS Attack (SDA) phenomenon represents a
recent evolution of Denial of Service (DoS) attacks: such novel
threats emerged in the last few years and consolidated as a
dangerous menace on the Internet. Unlike the first generation
of DoS attacks, SDAs make use of extremely low amount
of bandwidth to make a listening service on the Internet
unreachable. In order to do that, they usually work at the
application layer of the ISO/OSI model, directly affecting the
listening daemon running on the targeted host.

If we consider this category of attacks, the first attack is
the Shrew one, designed to send an attack burst to the victim,
giving the illusion of a high congestion on the network link
[7]. Maciá-Fernández et al. [8] propose instead the Low-Rate
DoS attack against Application Servers (LoRDAS), able to
cause a DoS by executing attack bursts concentrated to specific
instants.

Other attacks aren’t related to research works, but instead
they have been published on the Internet and obtained popular-
ity thanks to the high impact offered. Among these attacks, one



of the most known SDA is Slowloris, implemented by Robert
“RSnake” Hansen [9]. This attack targets the HTTP protocol
by establishing a large amount of pending requests with the
victim [10].

The Apache Range Header attack, which should no longer
be considered a menace [11], has been published on the
Internet as a script by a user known as “KingCope” [12]. The
attack exploits the byte-range parameter of the HTTP protocol
and makes use of it to force the web server to replicate in
memory a requested resource.

Instead, in 2012 Sergey Shekyan released
slowhttptest [13], a tool able to accomplish a set
of known SDAs. Together with the tool, his team introduces
the Slow Read attack [14], able to slow down the responses
of a web server through the sending of legitimate requests.

The SlowDroid attack proposed in this paper works sim-
ilar to Slowloris. Nevertheless, our tool requires a minimum
amount of bandwidth and computational resources, and it is
therefore more suitable on a mobile environment. Moreover,
unlike Slowloris, which is bounded to the HTTP protocol,
the proposed menace can affect different protocols, since sent
payload is not compliant to a specific protocol. Nevertheless,
as payload can be customized by users, it is possible to send
specific well-formed messages targeting particular protocols.

B. Mobile Attack Tools

If we consider network attacks, in [15] an exhaustive
taxonomy of desktop based threats has been provided. Nev-
ertheless, to the best of our knowledge, a mobile attacks
execution has not been deeply analyzed yet. Indeed, until a
few years ago, mobile phones have never been considered
as attack vectors, but only a target for attackers: due to the
limited software, hardware, and network resources, they were
not used to perpetrate attacks. Recently, with the advent of
smartphones and last generation mobile operating systems,
such as Android, iOS or Windows Phone, designed to easily
develop apps running on such environments, attacking tools
started to move to the mobile world. We will now only consider
Android operating system, that represents the most common
mobile system on the market [16]. Moreover, Android OS has
always attracted the hacking community, due to the assisted
apps installation process, which does not require a third party
approval, to the ease of obtaining administrator priviledges on
the devices, and to the open source nature of the operating
system.

Mobile attacking tools cover various kinds of malicious
activities: WiFiKill [17] has been designed to exploit a shared
wireless network, disabling Internet connection on specific
devices connected to the same network.

Instead, DroidSheep [18] is an application for session
hijacking: indeed, it allows to retrieve session cookies from
devices on the same network, thus providing users the ability to
use retrieved cookies, thus impersonating the victim. Another
similar attack that intercepts web session profiles is Faceniff
[19].

Unlike the proposed SlowDroid attack, the mobile threats
mentioned until now require administrator priviledges on the

device running them. This rooted device requirement repres-
ents an important limit, since most of the devices are not
rooted.

If we consider instead mobile Denial of Service attacks,
various applications [20], [21], [22], [23] are based on the
Low Orbit Ion Cannon (LOIC) [24] desktop tool, an attacking
software known for being adopted by the Anonymous hackt-
ivist group. Although the implementations differ one from the
other, they all act by flooding the victim with a high amount
of packets, thus requiring large amounts of bandwidth and
computational resources. Therefore, they are not suitable on
a mobile environment with limited capabilities.

Instead, the (unofficial) Slowloris mobile app [25] repres-
ents a Slow DoS Attack implemented in a mobile enviroment.
Nevertheless, the amount of bandwidth needed to execute
an attack is particularly high compared to the SlowDroid
requirements.

The SlowDroid attack presented in this paper should
therefore be considered an innovative tool, since it has been
designed to particularly fit on a mobile environment.

III. MOBILE DEPLOYMENT ADVANTAGES

As we have described above, we have implemented Slow-
Droid as a mobile application running on Android operating
systems for smartphones and tablets [5]. The choice of such
operating system is driven by the fact that currently it’s one of
the most used operating systems of the world [16]. Moreover,
Android apps can be written in Java, a multi-platform pro-
gramming language, thus offering the ability to reuse the same
components for both mobile and desktop applications. On the
other side, this attack is particularly effective if executed from
mobile devices, due to the reduced attack network bandwidth
and computational requirements.

From the attacker point of view, a mobile deployment of an
attack tool is preferrable for many reasons. In the following,
we briefly describe these key points.

Mobility: One first important reason is based on mobility:
mobile devices was born for telecommunications and they are
carried out by people for the entire day. Because of this,
a mobile attack application offers the ability to execute an
offensive operation from a wide range of places. Moreover,
since such devices often provide various connection methods,
such as Wi-Fi, 3G, LTE, or Bluetooth, the attack is usually
conveyed through one of these channels.

For instance, we could think of a user being at the res-
taurant and exploiting the public Wi-Fi connection to execute
an attack, without being noticed by the other customers of the
restaurant.

Attack Hiding: Another key point directly related to the
mobily feature is the attack hiding. Indeed, adopting an ap-
proach similar to the previous one, we could point out that
the attack is not interrupted if the attacker is moving from a
(i.e. 3G, 4G, Wi-Fi, etc. . . ) cell to another one. In particular,
in case the attacker makes use of horizontal/vertical handover
[26], attack detection and mitigation are hampered, since it’s
more difficult to detect the continously varying source of the
attack or a moving perpetrator.



For instance, we could imagine an adversary executing an
attack while cycling. In this case, the attacker would easily pass
unobserved while the attack would continue its operations.

IV. SLOWDROID IMPLEMENTATION

In this section we describe the implementation of the
SlowDroid tool. In particular, a certain amount of connections
is opened with the victim, trying to seize all the service
queue on the targeted host, thus trying to reach a DoS, and
maintaining it during the time, until the attack is running. We
have deployed the attack for Android operating system for
mobile devices, releasing the tool both on the web and the
Google Play Store as an Android application [5].

We will now describe in detail our implementation.

A. User Inputs

The application has been designed to require less inform-
ation possible to the attacker, therefore an attack execution
does not require mastering the topic. However, since payload
requests may be customized, an attacker is still able to execute
a custom and advanced attack, exploiting the targeted server.

1) Basic Settings: Following basic information are needed
to address the attack to a specific target:

• Server IP Address (String) identifies the IP address or
the domain name of the server to be targeted/tested;

• Port (int) identifies the listening port of the server;
• Connections (int) identifies the number of connection to

establish and maintain active with the server during the
attack execution;

• Wait Timeout (int) identifies the timeout used during the
data sending phase, in seconds.

2) Advanced Settings: The SlowDroid app allows users to
set up an advanced attack, by customizing the requests payload
sent to the targeted server. In particular, following advanced
settings can be provided:

• Request Generation (enum) identifies how request pay-
load is generated. Three possible values are provided:
◦ Default: in this case requests are composed by a

sequence of spaces;
◦ Random: in this case each character composing a re-

quest is randomly chosen, accordingly to the following
regular expression:
[0-9a-zA-Z\-_ .,;:?/=*]

◦ Custom: in this case requests payload respects the
custom request format specified in the next setting.

• Custom Request Format (String) identifies the custom
request to send as payload for the established connec-
tions1.

3) Additional Settings: It is provided an additional setting:

• Test Max Duration (int) identifies the duration of the
attack, in seconds: after such time passing the attack
would automatically be interrupted.

1In case the Request Generation field is not configured to Custom, the
Custom Request Format parameter is ignored.

In particular, since SlowDroid has not been designed with
the purpose of maliciously attacking a service, we have limited
the attack operations as much as possible. Indeed, the concept
behind the Test Max Duration setting is that an attack can’t be
executed indefinitely, but it is sooner or later interrupted: the
SlowDroid app is in fact configured to execute an attack for at
most 3600 seconds. Behind the same concept there is the fact
that the attack is automatically interrupted in case the device’s
screen is turned off, or in case the application losts the focus.

B. Graphical User Interface

In order to maintain compatibility with different versions of
the Android operating system, the main Activity class imple-
ments PreferenceActivity , an Activity class provided
in the Android development framework to manage user pref-
erences. Such class allows developers to define the prefer-
ences structure, automatically generating the user interface.
Therefore, the choice to adopt this library allows us to reuse
already implemented and consolidated software components,
integrating them in our app. For the same compatibility reason,
along with system integration, we have integrated a menu
which can be opened by users through the physical menu
button on their devices, or by clicking on the menu button
at the top-right corner of the app.

The menu allows users to execute a SlowDroid test/attack
with current settings, or to obtain information developers
information. Both the cases are treated similarly: in both the
cases a Dialog object is opened. A dialog is a small window
that does not fill the screen and is normally used for modal
events.

We will now focus on the Dialog showing attack informa-
tion, depicted in Figure 1. As shown in figure, users can stop
the test/attack at any time.

Relatively to the number of connections established with
the server, we show a percentage over the connections number
specified by the user as a graphical odometer, through two
different ImageView elements. Such percentage, along with
the exact number of established connections, is updated every
second. In order to enhance user experience, the odometer
is updated by creating a RotateAnimation object, which
gives users a more realistic impression.

C. SlowDroid and SlowDroid Library

In order to make the attack reusable, mostly on a desktop
environment, we have implemented two different projects:
the first one is a Java attack library designed to instantiate
a new attack and execute it, while the second project, the
SlowDroid application, makes use of the attack library and im-
plements a mobile Android application. Indeed, since Android
applications can import Java libraries, this splitting choice
provides reusability of the attack library on different projects,
maintaining compatibility with the Android application. For
instance, the library may be (even stealthly) included in
different (mobile or not) projects, designing a new executable
application from scretch, building a more exhaustive test tool,
or extending/enhancing the attack itself.



Figure 1. SlowDroid Attack Dialog

V. ATTACK DESCRIPTION

The SlowDroid attack implements a variant of the SlowReq
threat [27]. SlowDroid exploits a vulnerability on most server
applications implementations, which usually limit the number
of simultaneous connections to an extremely low value, in
order to decrease the number of requests simultaneously man-
aged by the server. SlowDroid implements a Slow DoS Attack
that, unlike flooding DoS attacks, which aim to overwhelm
the network of the victim host, directly affects the application
layer of the victim, opening more request than the one the
server is able to accept. In this way, due to the daemon limit
relative to simultaneous connections, less attack bandwidth is
requested. Therefore, due to the reduced available resources,
the attack is particularly suitable to the mobile environment.

We will now describe in detail how attacks belonging to

the same category of SlowDroid work.

A. Long Requests DoS Attacks

SlowDroid attack is a Slow DoS Attacks belonging to the
category of Long Requests DoS attacks [6]. These threats work
by sending a large amount of slow (and endless) requests to
the server, saturating its buffer resources while waiting for the
completion of the requests.

For completeness, we have noticed that while other attacks
such as flooding based ones may compromise adjacent neigh-
bors while tracking the route, this is not so immediate on Long
Requests DoS attacks, since the target the application layer,
which is not crucial for network nodes such as routers [28].

1) Slowloris: For instance, the Slowloris attack [10] ex-
ploits the HTTP protocol and it works by establishing a certain
amount of connections with the victim and sending for each
connection the content reported in Code 1.

1 GET / HTTP /1.1\ r\n
2 Host: www.target.com\r\n
3 User Agent: Mozilla /4.0 [...]\ r\n
4 Content-Length: 42\r\n

Code 1. The First Partial Content of a Slowloris Request

In this case the server would wait for the final \r\n characters
identifying the end of the request. Nevertheless, a Long
Request DoS attack would never send such characters, thus
forcing the server to an endless wait. Moreover, since a server
side connection close occurs in case no characters are sent
during a certain time period, such menaces make use of a
Wait Timeout to periodically send a low amount of data,
thus preventing a connection closure. In particular, Slowloris
typically and repeatedly sends the additional HTTP parameter
reported in Code 2.

1 x a :b\r\n

Code 2. The Partial Content of a Slowloris Request

2) SlowDroid: SlowDroid attack works similarly to other
Long Requests DoS attacks such as Slowloris. Nevertheless, in
this case at any period a single character is sent to the server.
By default, a single space is always sent, but in general each
non-newline character may be good. Just like other similar
menaces, this behavior leads the server to a DoS.

Moreover, in this case a minimum amount of bandwidth is
used, thus making the attack particularly suitable to a mobile
environment, where resources are limited and expensive.

Additionally, since unlike attacks such as Slowloris payload
content is not bounded to a specific protocol, SlowDroid is able
to affect other protocols as well (i.e. SMTP, FTP, etc. . . ).

B. SlowDroid Effects on a Server

Analyzing the attack effects on the server, it often occurs
that in the moments immediately following the beginning of
the attack all available slots of the server are occupied by
the attacker. Therefore, in this case each new connections
experiences a Denial of Service. This fact is confirmed in



Figure 2, which reports the number of connections established
with an Apache2 web server without any protection module
active during a 600 seconds attack execution.

Figure 2. SlowDroid Effects on an Apache2 Web Server

It is possible to analyze that after about 4 seconds all
the connections are seized by the attacker. In this case, no
additional connections can be established (with the listening
daemon) by legitimate clients, thus resulting in a Denial of
Service experienced by the server. Therefore, any additional
(legitimate or not) connection wouldn’t be able to communic-
ate with the listening daemon. Indeed, although it’s possible
to connect to the server, connection is not passed to the
application layer, thus to the server, until a connection slot
is freed on the server. Since this never happens, due to the
attacker’s behavior, the server would be under a DoS attack
for the whole attack duration.

Nevertheless, after the launch of a SlowDroid attack, some
active connections may already be established with the server,
from other (legitimate) clients. These clients would be per-
fectly able to communicate with the server through the already
established connections, until they are closed. At this point,
since the attack aims to seize all the available connections on
the server, the attacker would probably seize those connections
as they become available.

Our SlowDroid implementation tries indeed to detect a
connection close as it happens, re-establishing the connection
with the server as soon as possible. Actually, there could be
a race condition on these connections between the attacker
and other legitimate clients. In practice, sooner or later the
attacker would obtain the connections, since it aggressively
and continuously tries to connect to the victim.

C. Attack Functioning

The SlowDroid attack opens a certain amount of connec-
tions against the victim. This connections number is usually
greater than the maximum number of simultaneous connec-
tions the server can manage. In this way, by seizing all the
available positions, a Denial of Service is potentially reached.

Moreover, in order to prevent server side connection clos-
ures, SlowDroid keeps them alive by periodically sending data.
In particular, unlike other slow DoS threats, SlowDroid sends
a single byte character at any period.

We have designed the attack to execute three different
program flows/threads for connections management:

• connect flow: it takes care of connections establishing,
without sending any data to the server;

• maintain flow: it maintains the connections with the server
alive, by slowly sending data to the victim through the
established channels, preventing server side connection
closures;

• control flow: it identifies connections that have been
closed by the server.

The three flows share a common variable that includes all
active connections.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced the SlowDroid Denial of
Service testing tool. The tool implements an innovative attack
which makes use of a tiny amount of bandwidth. Because
of this, we have decided to develop SlowDroid on a mobile
environment to demonstrate that even a single smartphone
with limited capabilities is potentially able to lead a DoS on
a corporate server. Since the tool has been implemented to
be suited in a mobile operating system, we have also deeply
analyzed and described the advantages of a mobile attack
execution.

The published SlowDroid attack should be considered as
a testing tool for system administrators willing to test the
resilience of their servers to such attack. Although the tool
is able to lead a DoS on a server, it is particularly easy to
protect from a non-distributed menace such as SlowDroid [29].
Nevertheless, many servers on the Internet seems to be affected
and unprotected from SlowDroid.

In order to avoid malicious and dangerous activities, we
have deliberately reduced the functionalities of the published
SlowDroid app: in particular, an extended and more dangerous
version of the tool could have been published, in order to affect
more server by specifying additional attack paramteters and by
implementing a distributed menace. Nevertheless, our purpose
is not to deploy a cyberweapon, but to provide a testing tool
and to prove that today’s smartphones can be used as attack
vectors. Because of this, the SlowDroid code has also been
obfuscated, in order to hinder decompiling.

Further works on the topic may involve a porting of
SlowDroid on different systems. In particular, since the attack
has been implemented and is included in a separate Java
library, a Java implementation aimed to execute the attack on
different operating systems is facilitated.

It is also important to consider extensions needed from
compatibility needs: since SlowDroid is bounded to the An-
droid operating system, which is continuously evolving, future
Android versions may require amendments to maintain com-
patibility.

REFERENCES

[1] S. Coursen, “The future of mobile malware,” Network Security, vol.
2007, no. 8, pp. 7–11, 2007.

[2] S. Furnell, “Handheld hazards: The rise of malware on mobile devices,”
Computer Fraud & Security, vol. 2005, no. 5, pp. 4–8, 2005.

[3] Y. Zhou, X. Jiang, “Dissecting android malware: Characterization and
evolution,” Security and Privacy (SP), 2012 IEEE Symposium on, pp.
95–109, 2012.



[4] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, J. M. Smith, “Smudge
attacks on smartphone touch screens,” Proceedings of the 4th USENIX
conference on Offensive technologies, pp. 1–7, 2010.

[5] E. Cambiaso, G. Papaleo, M. Aiello, “SlowDroid Denial of Service
tool for Android - Available at http://software.netsec.ieiit.cnr.it/projects/
slowdroid/,” p. Pages, Date Accessed on April 23, 2013.

[6] E. Cambiaso, G. Papaleo, G. Chiola, M. Aiello, “Slow DoS attacks:
definition and categorisation,” International Journal of Trust Manage-
ment in Computing and Communications, vol. 1, no. 3, pp. 300–319,
2013.

[7] A. Kuzmanovic, E. W. Knightly, “Low-rate TCP-targeted denial of
service attacks: the shrew vs. the mice and elephants,” Proceedings of
the 2003 conference on Applications, technologies, architectures, and
protocols for computer communications, pp. 75–86, 2003.

[8] G. Macia-Fernandez, J. E. Diaz-Verdejo, P. Garcia-Teodoro, “Evaluation
of a low-rate DoS attack against iterative servers,” Computer Networks,
vol. 51, no. 4, pp. 1013–1030, 2007.

[9] Wikipedia, “Slowloris - Available at http://en.wikipedia.org/wiki/
Slowloris,” p. Pages, Date Accessed on April 23, 2014.

[10] ha.ckers, “Slowloris HTTP DoS - Available at http://ha.ckers.org/
slowloris/,” p. Pages, Date Accessed on April 23, 2014.

[11] SpiderLabs-Anterior, “Mitigation of Apache Range Header DoS Attack
- SpiderLabs Anterior - Available at http://blog.spiderlabs.com/2011/
08/mitigation-of-apache-range-header-dos-attack.html,” p. Pages, Date
Accessed on April 23, 2014.

[12] S. Alam, “Apache released patch for ApacheKiller.pl Range
Byte Flaw - Available at http://www.hackersgarage.com/
apache-released-patch-for-apachekiller-pl-range-byte-flaw.html,”
p. Pages, Date Accessed on April 23, 2014.

[13] Google-Code, “slowhttptest - Application Layer DoS attack simulator
- Available at https://code.google.com/p/slowhttptest/,” p. Pages, Date
Accessed on April 23, 2014.

[14] S. Shekyan, “Are you ready for slow reading? - Available at https:
//community.qualys.com/blogs/securitylabs/2012/01/05/slow-read,” p.
Pages, Date 2012.

[15] N. Hoque, M. H. Bhuyan, R. Baishya, D. Bhattacharyya, J. Kalita,
“Network attacks: Taxonomy, tools and systems,” Journal of Network
and Computer Applications, 2013.

[16] H. McCracken, “Whos Winning, iOS or Android? All the Numbers,
All in One Place - Available at http://techland.time.com/2013/04/16/
ios-vs-android/,” p. Pages, Date Accessed on April 23, 2014.

[17] xda-developers, “WifiKill - disable internet for network hoggers - Avail-
able at http://forum.xda-developers.com/showthread.php?t=1282900,”
p. Pages, Date Accessed on April 23, 2014.

[18] “DroidSheep [ROOT] - Available at http://droidsheep.de/?page id=
263,” p. Pages, Date Accessed on April 23, 2014.

[19] “FaceNiff - Facebook (and other services) Session Hijacker for Android
- Available at http://faceniff.ponury.net,” p. Pages, Date Accessed on
April 23, 2014.

[20] Google-Play, “LOIC - Low Orbit Ion Cannon - Available at https://play.
google.com/store/apps/details?id=genius.mohammad.loic,” p. Pages,
Date Accessed on April 23, 2014.

[21] ——, “Loic - Available at https://play.google.com/store/apps/details?id=
l.o.i.c,” p. Pages, Date Accessed on April 23, 2014.

[22] ——, “PlexeDOS - LOIC - Available at https://play.google.com/store/
apps/details?id=genius.plexe.loic,” p. Pages, Date Accessed on April 23,
2014.

[23] ——, “LOIC - Low Orbit Ion Cannon - Available at https://play.
google.com/store/apps/details?id=genius.mustafa.loic,” p. Pages, Date
Accessed on April 23, 2014.

[24] Wikipedia, “Low Orbit Ion Cannon - Available at http://en.wikipedia.
org/wiki/Low Orbit Ion Cannon,” p. Pages, Date Accessed on April
23, 2014.

[25] Google-Play, “Slowloris - Available at https://play.google.com/store/
apps/details?id=com.kanuusan.slowloris,” p. Pages, Date Accessed on
April 23, 2014.

[26] Wikipedia, “Vertical handover - Available at http://en.wikipedia.org/
wiki/Vertical handover,” p. Pages, Date Accessed on April 23, 2014.

[27] M. Aiello, G. Papaleo, E. Cambiaso, “SlowReq: A Weapon
for Cyberwarfare Operations. Characteristics, Limits, Performance,
Remediations,” International Joint Conference SOCO’13-CISIS’13-
ICEUTE’13, pp. 537–546, 2013.

[28] Y. Shang, W. Luo, S. Xu, “L-hop percolation on networks with arbitrary
degree distributions and its applications,” Physical Review E, vol. 84,
no. 3, p. 031113, 2011.

[29] E. Cambiaso, G. Papaleo, M. Aiello, “SlowDroid Mitigation - Avail-
able at http://security.ge.cnr.it/?q=slowdroidmitigation,” p. Pages, Date
Accessed on April 23, 2013.


