K ¢

®

<A NVvIDIA

EXPLICIT SYNCHRONIZATION

Lauri Peltonen

XDC, 8 October, 2014

WHAT IS EXPLICIT SYNCHRONIZATION?

® Fence is an abstract primitive that marks completion of an operation
® Implicit synchronization

® Fences are attached to buffers

® Kernel manages fences automatically based on buffer read/write access

® Currently used by DRM (dma-buf fences)
® Explicit synchronization

® Fences are passed around independently

® Kernel takes and emits fences to/from user space when submitting work

® Currently used on Android (sync fence fd's)

SANVIDIA.

ADVANTAGES

® Improved performance of bindless graphics APls
® Better alignment with user space graphics APls
® Allow parallel processing of user space suballocations

® Fits in nicely with explicit buffer handoffs

SANVIDIA.

BINDLESS GRAPHICS PERF IMPROVEMENTS

® Bindless graphics and Compute APIs allow building very large working
sets that any given command buffer can reference

® References can be by runtime-generated virtual address rather than slots or
enums

® These working sets can be shared across multiple contexts or
command queues

® Implicit sync may force serialization in these cases

® Locking and updating fences for every active buffer is costly

® Working set sizes can be thousands of buffers

SANVIDIA.

ALIGNS WITH USERSPACE GRAPHICS APIS

® Developers are demanding explicit control of the driver behavior and
hardware whenever possible

® Current Generation OpenGL is defined in terms of explicit
synchronization

® EGLSync, GLSync

®* “Hidden” ordering dependencies and stalls because of implicit sync
are at odds with these design philosophies

SANVIDIA.

USER SPACE SUBALLOCATION

® User space drivers and applications use suballocation for
performance reasons

® By definition, kernel has no visibility into this process

® Operations on separate portions of a buffer should be allowed to
proceed in parallel

® Even if they reside in one kernel-visible buffer

SANVIDIA.

EXPLICIT INTEROP HANDOFFS

® Modern processors have many specialized engines
® Video processing
® 3D/2D graphics
® CPU cores

® Each of these may have its own caches, memory compression engines, or
other specialized memory access quirks

® When buffers are shared between them, engine-specific state transitions
may be needed

® May be costly operations. May be difficult to perform just-in-time.
® Simplest solution is for user space to request them explicitly

® Might as well do explicit synchronization in the same code path

SANVIDIA.

Channe

[1

Channe

[2

Channe

IMPLICIT SYNC EXAMPLE

(3

IMPLICIT SYNC EXAMPLE

Channel 1 Channel 2 Channel 3

‘ nouveau pushbuf kick(pushl, chanl);

for (each buffer in working set)
acquire ww mutex

for (each buffer in working set)
program wait fence cmd

submit work

for (each buffer in working set) {

1 store fence

release ww mutex

nouveau pushbuf kick(
struct nouveau pushbuf *push,
struct nouveau object *chan)

SANVIDIA.

IMPLICIT SYNC EXAMPLE

Channel 1 Channel 2 Channel 3
nouveau pushbuf kick(pushl, chanl);
// push2 has no dependencies, but kernel enforces a wait
< nouveau pushbuf kick(push2Z, chan2);
waiting (1
1
2 nouveau pushbuf kick(
struct nouveau pushbuf *push,
struct nouveau object *chan)
SANVIDIA.

IMPLICIT SYNC EXAMPLE

Channel 1 Channel 2 Channel 3
nouveau pushbuf kick(pushl, chanl);
// push2 has no dependencies, but kernel enforces a wait
nouveau pushbuf kick(push2Z, chan2);
waiting (1 // push2 depends on pushl only, but user space cannot
// express that to kernel

<—— nouveau pushbuf kick(push3, chan3);

waiting (2

) nouveau pushbuf kick(
struct nouveau pushbuf *push,
struct nouveau object *chan)

<ANVIDIA.

Channe

[1

Channe

[2

Channe

EXPLICIT SYNC EXAMPLE

(3

EXPLICIT SYNC EXAMPLE

Channel 1 Channel 2 Channel 3
int fencel = -1;
B nouveau pushbuf kick fence (pushl, chanl, -1, &fencel);
// now fencel == (1

nouveau pushbuf kick fence (
struct nouveau pushbuf *push,
struct nouveau object *chan,
int waitFenceFd,
int *emitFenceFd)

SANVIDIA.

Channel 1

Channel 2

A

EXPLICIT SYNC EXAMPLE

Channel 3

int fencel = -1;
nouveau pushbuf kick fence (pushl, chanl, -1, &fencel);
// now fencel == (1

int fence?2 = -1;

nouveau pushbuf kick fence (pushZ, chan2, -1, &fence2);

// now fence2 == (2

nouveau pushbuf kick fence (
struct nouveau pushbuf *push,
struct nouveau object *chan,
int waitFenceFd,
int *emitFenceFd)

SANVIDIA.

Channel 1

Channel 2

EXPLICIT SYNC EXAMPLE

Channel 3

4—

waiting (1

int fencel = -1;
nouveau pushbuf kick fence (pushl, chanl, -1, &fencel);
// now fencel == (1

int fence?2 = -1;
nouveau pushbuf kick fence (pushZ, chan2, -1, &fence2);
// now fence2 == (2

// the last operation depends on (1 only
nouveau pushbuf kick fence (push3, chan3, fencel, NULL);

nouveau pushbuf kick fence (
struct nouveau pushbuf *push,
struct nouveau object *chan,
int waitFenceFd,
int *emitFenceFd)

SANVIDIA.

Channel 1

Channel 2

waiting

EXPLICIT SYNC EXAMPLE

Channel 3

1 +(2

int fencel = -1;
nouveau pushbuf kick fence (pushl, chanl, -1, &fencel);
// now fencel == (1

int fence?2 = -1;
nouveau pushbuf kick fence (pushZ, chan2, -1, &fence2);
// now fence2 == (2

// the last operation depends on 1 and (2
int merged = sync merge (fencel, fence2);
nouveau pushbuf kick fence (push3, chan3, merged, NULL);

nouveau pushbuf kick fence (
struct nouveau pushbuf *push,
struct nouveau object *chan,
int waitFenceFd,
int *emitFenceFd)

SANVIDIA.

RESIDENCY AND PINNING

> When we need to swap out or unmap a buffer, we need to wait until
it is no longer accessed by hw

> This is not the perf-critical case, so we can be conservative in order
to optimize the critical path. For example, on Nouveau:

» Store one fence to channel vm at each submit
> Use that fence when evicting or unmapping buffers

> No need to lock / update fences to every buffer individually at submit?

> All this is driver specific logic, not common DRM

SANVIDIA.

PATH FROM IMPLICIT SYNC -> EXPLICIT SYNC

® No need to disrupt existing model
® |f a particular device is happy with implicit sync, it can keep using it
® Allow kernel and user space drivers that prefer explicit to opt-in:

® Allow user space to handle intra-driver synchronization explicitly

® Allow user space to associate synchronization primitives with buffers for
backwards compatibility with current APIs and drivers

® Move towards tracking working sets rather than individual buffers for object
lifetime/work completion/paging purposes

SANVIDIA.

THANKS!

» drivers/staging/android/sync.c

> [RFC] Explicit synchronization for Nouveau (+ RFC patches)

> dri-devel®@lists.freedesktop.org, nouveau®@lists.freedesktop.org

» Let’s discuss more over lunch/dinner!

SANVIDIA.

BACKUP

DEADLOCKS?

> Circular dependencies can be avoided, if fences are only generated
in kernel when work is submitted

> This guarantees that user space cannot ask kernel to wait for a fence whose
work will be submitted later

> Deadlocks can be avoided, if additionally all submitted work
completes in finite time

> This assumption might fail for implicit fences also

> Timeout mechanisms

<ANVIDIA.

EXPLICIT SYNC VS. ANDROID SYNC FD’S

> Could also be a process local handle?

> But should support conversion to and from Android sync fd’s

SANVIDIA.

