Foundations of Cryptography 2021-22

Homework Set No. 1

Date Due: Nov 22nd 2021

0 . Consider the distribution where with probability $1 / 2$ the result is 0^{n} and with probability $1 / 2$ it is uniform over $\{0,1\}^{n}$. Compute the Shannon entropy of this distribution.

1. If a function $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ is one-to-one as well as a one-way function then it is a called a one-way permutation. Show that if $P=N P \cap C o-N P$ then there are no one-way permutations.

Recall that we showed that inverting (presumed) one-way functions is easy if $P=N P$.
2. If $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ is a one-way function, is f_{L} where $f_{L}(x)$ consists of the first half of the bits of $f(x)$ necessarily a one-way function?
3. Show how to use a square-root computing routine to factor, while preserving the probability of success.

Bonus question: suggest a way of using f that is one-way on its iterates to get a more compact one-time signature scheme, by using a larger alphabet. Recall that we saw a method that uses a public key with $2 n / \log k$ images. Think of a method that is closer to $n / \log k$ images.

