Foundations of Cryptography - Problem Set 1
 Solution of Question 1

Question 1.

In what complexity class does the problem of inverting one-way permutation reside? Recall that we showed that the problem of inverting one-way functions is in NP.

Answer 1.

In class we proved that if $\mathrm{P}=\mathrm{NP}$ then there are no one-way functions. By following the exact same proof, we refine the above statement by proving that if $\mathrm{P}=\mathrm{NP} \cap$ coNP then there are no one-way permutations.

Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, define the language

$$
L_{f}=\left\{\left(y, b_{1}, \ldots, b_{k}\right) \mid \exists x \in\{0,1\}^{n} \text { s.t. } f(x)=y \text { and }\left(b_{1}, \ldots, b_{k}\right) \text { is a prefix of } x\right\} .
$$

We observed in class that for any polynomial time computable function f, the language L_{f} is an NP language. We further observed that any polynomial time algorithm for deciding membership in L_{f} can be used as a subroutine to always invert f on any input in polynomial time (by finding a preimage bit by bit). Thus, if $\mathrm{P}=\mathrm{NP}$ then there are no one-way functions.

Now, in the case that the function f is a polynomial time computable permutation, the language L_{f} is also a coNP language. This can be seen, as a witness for the non-membership of $\left(y, b_{1}, \ldots, b_{k}\right)$ is the unique x such that $f(x)=y$ (and $\left(b_{1}, \ldots, b_{k}\right)$ is not its prefix).

Therefore, for any polynomial time computable permutation f, the language L_{f} is in $\mathrm{NP} \cap$ coNP, and as before, any polynomial time algorithm for deciding membership in L_{f} can be used as a subroutine to always invert f on any input in polynomial time. Thus, if $\mathrm{P}=\mathrm{NP} \cap$ coNP then there are no one-way permutations.

