
Foundations of Cryptography – Problem Set 1
Solution of Question 1

Question 1.
In what complexity class does the problem of inverting one-way permutation reside? Recall that we showed
that the problem of inverting one-way functions is in NP.

Answer 1.
In class we proved that if P = NP then there are no one-way functions. By following the exact same proof,
we refine the above statement by proving that if P = NP ∩ coNP then there are no one-way permutations.

Given a function f : {0, 1}n → {0, 1}m, define the language

L f =
{
(y, b1, . . . , bk) | ∃x ∈ {0, 1}n s.t. f (x) = y and (b1, . . . , bk) is a prefix of x

}
.

We observed in class that for any polynomial time computable function f , the language L f is an NP language.
We further observed that any polynomial time algorithm for deciding membership in L f can be used as a
subroutine to always invert f on any input in polynomial time (by finding a preimage bit by bit). Thus, if
P = NP then there are no one-way functions.

Now, in the case that the function f is a polynomial time computable permutation, the language L f is
also a coNP language. This can be seen, as a witness for the non-membership of (y, b1, . . . , bk) is the unique
x such that f (x) = y (and (b1, . . . , bk) is not its prefix).

Therefore, for any polynomial time computable permutation f , the language L f is in NP ∩ coNP, and as
before, any polynomial time algorithm for deciding membership in L f can be used as a subroutine to always
invert f on any input in polynomial time. Thus, if P = NP ∩ coNP then there are no one-way permutations.

1


