
Algorithmic Game Theory - handout5

Uriel Feige, Robert Krauthgamer, Moni Naor

3 December 2008

The library should now have a new copy of the Algorithmic Game Theory book, which will be
put on the reserve shelf.

The hint in question 1 in handout 2 was misleading. This will be taken into account in the
grading.

Reminder: Please remember to register to the fourth Israeli Seminar on Computational Game
Theory if you want to attend it. See:

http://pluto.huji.ac.il/~mfeldman/cgt4_2008.html

Homework. (Please keep the answers to the following questions short and easy to read.)
1) Consider the following three player game. Player A has strategies a1 and a2, player B has

strategies b1 and b2, and player C has strategies c1 and c2. The payoffs are described below. The
name of a player appearing in a strategy profile means that the player gets a payoff of 1. Otherwise
the payoff is 0. For example, on profile (a1,b2,c2) players A and B each gets a payoff of 1 and player
C gets a payoff of 0.

b1 b2 b1 b2
|----------|----------| |----------|----------|

a1 | | B | a1 | C | A; B |
|----------|----------| |----------|----------|

a2 | A | A; C | a2 | B; C | |
|----------|----------| |----------|----------|

c1 c2

Equivalently, the payoff for each player can be described as follows: if a player plays his first
strategy he gets a payoff of 1 iff the two other players play their second strategy. If a player plays
his second strategy, he gets a payoff of 1 iff the player preceding him (in the cyclic order A-B-C-A)
plays his first strategy.

Find all Nash equilibria of this game, and prove that no other Nash equilibrium exists. (For the
proof, you may need to solve a system of algebraic equations that expresses the conditions for a
profile of strategies being a Nash equilibrium.)

2) Recall that problems in PPAD are problems whose input includes an implicit description of a
directed graph with at most exponentially many nodes. There is a polynomial time algorithm that
given the name of a node figures out from the implicit description the edges incident with the node.
Every node has at most one incoming edge and at most one outgoing edge. One is given a source
node (has no incoming edge), and the goal is to find any sink node (has no outgoing edge). The
matching-sink problem is more specific and requires one to output the sink node that lies on the
end of the path of the given source node. Prove that matching-sink is NP-hard. (Hint: related to
exhaustive search.) Remark: matching-sink is in fact PSPACE-complete.

