Extensible Markup Language (XML) 1.0 (Second Edition)

Extensible Markup Language (XML) 1.0 (Second
Edition)

W3C Recommendation 6 October 2000

This version:
[http://www.w3.0org/TR/2000/REC-xmI-20001006 (XHTML, XNIL, PHFE, XHTML review version
with color-coded revision indicators)
Latest version:
[http://www.w3.0rg/TR/REC-xnl
Previous versions:
[http:/fwww.w3.0rg/TR/2000/WD-xml-2e-20000414
[http://www.w3.0org/TR/1998/REC-xml-19980210
Editors:
Tim Bray, Textuality and Netscape <tbray@textuality.com>
Jean Paoli, Microsoft <jeanpa@microsoft.com>
C. M. Sperberg-McQueen, University of Illinois at Chicago and Text Encoding Initiative
<cmsmcq@uic.edu>
Eve Maler, Sun Microsystems, Inc. <eve.maler@east.sun.com> - Second Edition

[Copyright © 200§ W3J® (MIT] [NRIA] Keio), All Rights Reserved. W3[C Tiabiliky, trademplk, docunjent
usé, andl software Ticens]ng rules apply.

Abstract

The Extensible Markup Language (XML) is a subset of SGML that is completely described in this
document. Its goal is to enable generic SGML to be served, received, and processed on the Web in the
way that is now possible with HTML. XML has been designed for ease of implementation and for
interoperability with both SGML and HTML.

Status of this Document

This document has been reviewed by W3C Members and other interested parties and has been endorsed
by the Director as a W3C Recommendation. It is a stable document and may be used as reference material
or cited as a normative reference from another document. W3C's role in making the Recommendation is

to draw attention to the specification and to promote its widespread deployment. This enhances the
functionality and interoperability of the Web.

This document specifies a syntax created by subsetting an existing, widely used international text
processing standard (Standard Generalized Markup Language, ISO 8879:1986(E) as amended and
corrected) for use on the World Wide Web. It is a product of the W3C XML Activity, details of which can

http://www.w3.org/
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006.html
http://www.w3.org/TR/2000/REC-xml-20001006.xml
http://www.w3.org/TR/2000/REC-xml-20001006.pdf
http://www.w3.org/TR/2000/REC-xml-20001006-review.html
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/2000/WD-xml-2e-20000814
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720

Table of Contents

be found at http://www.w3.org/XML. The English version of this specification is the only normative
version. However, for translations of this document| see http://www.w3.org/XML/#trans. A list of current
W3C Recommendations and other technical documents can be f¢und at http://www.w3.org/TR.

This second edition isota new version of XML (first published 10 February 1998); it merely

incorporates the changes dictated by the first-edition errata (available at
[http:/iwvww.w3.0rg/XML/xmI-19980210-errata) as a convenience to readers. The errata list for thi$ second
edition is available at http://www.w3.org/XML/xml-V10-2e-erjata.

Please report errors in this document to xml-editor@wd3.org; ar¢hives are available.
Note:

C. M. Sperberg-McQueen’s affiliation has changed since the publication of the first edition. He is now at
the World Wide Web Consortium, and can be contacted at cmsmcq@w3.org.

Table of Contents

1[ntroductioh . . 3
1.1 Origin and Godls 4
1.4 Terminologly C 5

2|Documents. .)
2. Well-Formed XML Documegt 6
2.1 Charactefs. . : 7
2.4 Common Syntactic Constrﬂcts P -
2.4 Character Dataand Markup9
2 gComments. 10

Processing Instructigns. 10

2 ﬂm . e
2.4 Prolog and Document Tyge Declardtlon e

2. Standalone Document Declargtion 15
2.1 White Space Handllng. 16
2.11 End-of-Line Handling 17
2.14Language Identification 17
3|Ecal Structurds 18
]l Start-Tags, End-Tags, and Em@tﬁ Element |Tags T
Element Type Declaratigns e |
3.2. Element Contgnt 22
3.23Mixed Contgnt. 23

3.3 Attribute-List Declaratiops 24
3.3.fAtribute Typps 25

3.3.2 Attribute Defaults 28

3.3.3 Attribute-Value Normalizaton 29

3.4 1 10)
4|Physical Structures. . e Y24
4.1 Character and Entity Refereﬁces <

4 JEntity Declaratiops. 35

http://www.w3.org/XML/
http://www.w3.org/XML/#trans
http://www.w3.org/TR/
http://www.w3.org/XML/xml-V10-2e-errata
http://www.w3.org/XML/xml-V10-2e-errata
http://lists.w3.org/Archives/Public/xml-editor

1 Introduction

4.2.1 Internal Entites 35
423 External Entites 36
4.3 Parsed Entitles.03
4.3.1 The Text Declaration 37
4.3.2 Well-Formed Parsed Entfies 37
4.3.3 Character Encoding in Entities 38
4.4 XML Processor Treatment of Entities and Referbnces 39
44{NotRecognized 40
442%Includdd 40
4.4.3 Included If Validating 4
444 Forbidd¢n. 4
4.4.% Included In Liteffal 4
44§ Notify 42
44fBypasskd A2
4.4.8 Included as | . e 4
4, 5 Construction of Internal Entlty Replacement |I exI 42
4.d Predefined Entities. . e
4.1 Notation Declaratloh R
DocumentEntty 44
5Con ormange . . 4 v
5.1 Validating and Non- Val atln Proces ors 44
5.JUsing XML Processdrs. 45
6[Notatioh . 4
Appendices
AReferencds 47
A.1|Normative Referendes. 47
A.2[Other Referenc S /
B[Character Clas . P (e
C[XML and SGMI (Non Normatlve) o 53
D Expansion of Entty and Character Refereces (Non- Normawe) 53
EWWB (Non-Normative) 55
F|A_uodetect|on of Character Encodipgs (Non- Normatlve) 55
]J Detection Without External Encoding Information 56
Priorities in the Presence of External Encoding Inforﬁiatlon b8
G W3C XML Working Group (Non-Normative). b8
HW3C XML Core Group (Non-Normative) 59
[[Production Notgs (Non-Normative) 59

1 Introduction

Extensible Markup Language, abbreviated XML, describes a class of data objects called XML dpcuments
[p.6] and partially describes the behavior of computer programs which process them. XML is an
application profile or restricted form of SGML, the Standard Generalized Markup Lajguage [ISP 8879]

1.1 Origin and Goals

[p.49] . By construction, XML documents are conforming SGML documents.

XML documents are made up of storage units cflled ehtities [p.32] , which contain either parsed or
unparsed data. Parsed data is made [ip of chafacters [p.7], some of whjch form chalacter data [p.9] , and
some of which formh mark{ip [p.9] . Markup encodes a description of the document’s storage layout and
logical structure. XML provides a mechanism to impose constraints on the storage layout and logical
structure.

[Definition: A software module called a&GML processor is used to read XML documents and provide
access to their content and structure.] [Definition: It is assumed that an XML processor is doing its work
on behalf of another module, called #ygplication.] This specification describes the required behavior of
an XML processor in terms of how it must read XML data and the information it must provide to the
application.

1.1 Origin and Goals

XML was developed by an XML Working Group (originally known as the SGML Editorial Review

Board) formed under the auspices of the World Wide Web Consortium (W3C) in 1996. It was chaired by
Jon Bosak of Sun Microsystems with the active participation of an XML Special Interest Group
(previously known as the SGML Working Group) also organized by the W3C. The membership of the
XML Working Group is given in an appendix. Dan Connolly served as the WG’s contact with the W3C.

The design goals for XML are:
1. XML shall be straightforwardly usable over the Internet.
2. XML shall support a wide variety of applications.
3. XML shall be compatible with SGML.
4. It shall be easy to write programs which process XML documents.
5. The number of optional features in XML is to be kept to the absolute minimum, ideally zero.
6. XML documents should be human-legible and reasonably clear.
7. The XML design should be prepared quickly.
8. The design of XML shall be formal and concise.
9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.

This specification, together with associated standards (Unicode and ISO/IEC 10646 for characters,
Internet RFC 1766 for language identification tags, ISO 639 for language name codes, and ISO 3166 for
country name codes), provides all the information necessary to understand XML Version 1.0 and
construct computer programs to process it.

1.2 Terminology

This version of the XML specification may be distributed freely, as long as all text and legal notices
remain intact.

1.2 Terminology

The terminology used to describe XML documents is defined in the body of this specification. The terms
defined in the following list are used in building those definitions and in describing the actions of an XML
processor:

may

[Definition: Conforming documents and XML processors are permitted to but need not behave as
described.]

must

[Definition: Conforming documents and XML processors are required to behave as described;
otherwise they are in error.]

error

[Definition: A violation of the rules of this specification; results are undefined. Conforming software
may detect and report an error and may recover from it.]

fatal error

[Definition: An error which a conformirjg XML processor [p.4] must detect and report to the
application. After encountering a fatal error, the processor may continue processing the data to search
for further errors and may report such errors to the application. In order to support correction of
errors, the processor may make unprocessed data from the document (with intermingled character
data and markup) available to the application. Once a fatal error is detected, however, the processor
must not continue normal processing (i.e., it must not continue to pass character data and information
about the document’s logical structure to the application in the normal way).]

at user option

[Definition: Conforming software may or must (depending on the modal verb in the sentence) behave
as described; if it does, it must provide users a means to enable or disable the behavior described.]

validity constraint

[Definition: A rule which applies to gll valid [p.12] XML documents. Violations of validity
constraints are errors; they must, at user option, be reported by validating XML prgcessors [p.44] .]

well-formedness constraint

2 Documents

[Definition: A rule which applies to gl well-formgd [p.6] XML documents. Violations of
well-formedness constraints are fatal efrors [p.5] .]

match

[Definition: (Of strings or names:) Two strings or names being compared must be identical.
Characters with multiple possible representations in ISO/IEC 10646 (e.g. characters with both
precomposed and base+diacritic forms) match only if they have the same representation in both
strings. No case folding is performed. (Of strings and rules in the grammar:) A string matches a
grammatical production if it belongs to the language generated by that production. (Of content and
content models:) An element matches its declaration when it conforms in the fashion described in the
constrainfVC: Element Valid]|[p.18] .]

for compatibility

[Definition: Marks a sentence describing a feature of XML included solely to ensure that XML
remains compatible with SGML.]

for interoperability

[Definition: Marks a sentence describing a non-binding recommendation included to increase the
chances that XML documents can be processed by the existing installed base of SGML processors
which predate the WebSGML Adaptations Annex to ISO 8879.]

2 Documents

[Definition: A data object is aXML document if it is [p.6] , as defined in this specification.
A well-formed XML document may in addition pe valid [p.12] if it meets certain further constraints.]

Each XML document has both a logical and a physical structure. Physically, the document is composed of
units calleq entitigs [p.32] . An entity miay réfer [p.33] to other entities to cause their inclusion in the
document. A document begins in a "root| or document ¢ntity [p.44] . Logically, the document is

composed of declarations, elements, comments, character references, and processing instructions, all of
which are indicated in the document by explicit markup. The logical and physical structures must nest
properly, as described h3.2 Well-Formed Parsed Entitiegp.37] .

2.1 Well-Formed XML Documents

[Definition: A textual object is avell-formed XML document if:]
1. Taken as a whole, it matches the production lapeled dogument [p.7] .
2. It meets all the well-formedness constraints given in this specification.

3. Each of thp parsed entifies [p.32] which is referenced directly or indirectly within the document is
[p.6] .

2.2 Characters

Document

[1] document == [prolog [9.12] elemént [p.18] Misc [p.12][* _|

Matching th¢ documdnt [p.7] production implies that:
1. It contains one or mofe eleménts [p.18] .

2. [Definition: There is exactly one element, calledribe, or document element, no part of which
appears in thie_ contént [p.20] of any other element.] For all other elementg, if the ktart-tag [p.19] is in
the content of another element, [the endl-tag [p.20] is in the content of the same element. More simply
stated, the elements, delimited by start- and end-tags, nest properly within each other.

[Definition: As a consequence of this, for each non-root ele@énthe document, there is one other
elementP in the document such th@tis in the content dP, but is not in the content of any other element
that is in the content d1. P is referred to as thgarent of C, andC as achild of P.]

2.2 Characters

[Definition: A parsed entity contairtext, a sequence pf characlers [p.7] , which may represent markup or
character data.] [Definition: &haracter is an atomic unit of text as specified by ISO/IEC 10646

[1SO/IEC 10644] [p.47] (see algo [ISO/IEC 10646-2000] [p.47]). Legal characters are tab, carriage return,
line feed, and the legal characters of Unicode and ISO/IEC 10646. The versions of these standards cited in
[A.1 Normative Referencegp.47] were current at the time this document was prepared. New characters
may be added to these standards by amendments or new editions. Consequently, XML processors must
accept any character in the range specifiel for|Char [p.7] . The use of "compatibility characters", as
defined in section 6.8 pf [Unicode] [p.48] (see also D21 in section B.6 of [Unitode3] [p.48]), is

discouraged.]

Character Range

[2] Char = #x9 | #xA | #xD | [* any Unicode character,
[#x20-#xD7FF] | excluding the surrogate
[#XEO00-#XFFFD] | blocks, FFFE, and FFFF.
[#x10000-#x10FFFF] */

The mechanism for encoding character code points into bit patterns may vary from entity to entity. All
XML processors must accept the UTF-8 and UTF-16 encodings of 10646; the mechanisms for signaling
which of the two is in use, or for bringing other encodings into play, are discussed [at@r3in

[Character Encoding in Entitieg[p.38] .

2.3 Common Syntactic Constructs

2.3 Common Syntactic Constructs
This section defines some symbols used widely in the grammar.
[9 [p.8] (white space) consists of one or more space (#x20) characters, carriage returns, line feeds, or tabs.

White Space

[3] S u= (#x20 | #x9 | #xD | #xA)+

Characters are classified for convenience as letters, digits, or other characters. A letter consists of an
alphabetic or syllabic base character or an ideographic character. Full definitions of the specific characters
in each class are given[BCharacter Classep.49] .

[Definition: A Nameis a token beginning with a letter or one of a few punctuation characters, and
continuing with letters, digits, hyphens, underscores, colons, or full stops, together known as name
characters.] Names beginning with the strirg!', or any string which would matdl'X’|’x")

(M T'm’) CLI'TY) , are reserved for standardization in this or future versions of this
specification.

Note:

The Namespaces in XML Recommendajion [XML Naines] [p.49] assigns a meaning to names containing
colon characters. Therefore, authors should not use the colon in XML names except for namespace
purposes, but XML processors must accept the colon as a name character.

An [p.8] (name token) is any mixture of name characters.

Names and Tokens

[4] NameChar [Cetter Tpl49] | Digit [p.62["]l - |
' 7|’ | CombinihgChar [p.52] [Extender 1]

[p.53]
[5] Name n= ([etter[p}49]|'_"| ") (NameChar [p.8][]
)*

[6] Names = [p.8] (S [4.8] Name [p.8)1
[7] Nmtoken n= (NameChar]lp.8])+
(9] Nmtokens = [Nmtoken][p.8] (S [p.B] Nmtoker [p.8])* |

Literal data is any quoted string not containing the quotation mark used as a delimiter for that string.
Literals are used for specifying the content of internal entjties (EntityMalue [p.9]), the values of attributes

[p.9]), and external identifieds (SystemLitgral [p.9]). Note that a Systeml.iteral [p.9] can be

parsed without scanning for markup.

2.4 Character Data and Markup

Literals
[9] EntityValue = "™ (["%&"] | PERefgrence [p.33] | |
[Reference Tp.33])*
| " (["%&'] | PERefergnce [p.33] | |
[Reference [ph.33])* ™"
[10] AttValue = " ([*<&"] | Refererlce [p.33)* "
| " ("<& | Reference o381 ™
[11] SystemlLiteral = C" YL CT VT
[12] PubidLiteral == "™ pupidChar [p.9] * "™ | ™"
(PUBIGChar [3.91 - ™)* ™"
[13] PubidChar = #x20 | #xD | #xA | [a-zA-Z0-9]
| [0+,./:=2;,"#@$_%]
Note:

Although the EntityValue [p.9] production allows the definition of an entity consisting of a single explicit
<in the literal (e.g.<!'ENTITY mylt "<">), it is strongly advised to avoid this practice since any
reference to that entity will cause a well-formedness error.

2.4 Character Data and Markup

[p.7] consists of intermingl¢d character Hata [p.9] and markup. [Definiiarkup takes the form

of[start-tags [p.19][, end-tdgs [p.20], empty-element tags [d.20] , entity reférences[[p.33], dharacter
[referencds [p.32], commehts [p.1p], CDATA segtion [p.11] delim[ters, document type declprations [p.12]

,[processing instructiohs [p.10] , XML declaratipns [p.12] , text declargtions [p.37] , and any white space
that is at the top level of the document entity (that is, outside the document element and not inside any
other markup).]

[Definition: All text that is not markup constitutes ttiearacter data of the document.]

The ampersand character (&) and the left angle bracket (<) may appear in their litei@fowhen

used as markup delimiters, or withih a comrhent [p.10], a processing insiruction [p.1p], or a CDATA
[p.11] . If they are needed elsewhere, they miist be dscaped [p.43] usifig either numerid character
[referencds [p.32] or the string&dmp;" and '< " respectively. The right angle bracket (>) may be
represented using the stringdt; ", and musi, for compatiblility [p.6] , be escaped usigt;' " or a

character reference when it appears in the stiipg ™ in content, when that string is not marking the end

of a|CDATA section [p.11] .

In the content of elements, character data is any string of characters which does not contain the
start-delimiter of any markup. In a CDATA section, character data is any string of characters not including
the CDATA-section-close delimiter]]> ".

2.5 Comments

To allow attribute values to contain both single and double quotes, the apostrophe or single-quote
character () may be represented &agos; ", and the double-quote character (") &guot; "

Character Data

[14] CharData = [N<&]* - ([N<&]* 11> [<&]Y)

2.5 Comments

[Definition: Commentsmay appear anywhere in a document outside pther njarkup [p.9] ; in addition,

they may appear within the document type declaration at places allowed by the grammar. They are not
part of the document[s character dlata [p.9] ; an XML processor may, but need not, make it possible for an
application to retrieve the text of commenpts. For compatibility [p.6] , the sting(tdouble-hyphen)

must not occur within comments.] Parameter entity references are not recognized within comments.

Comments

[15] Comment = '<l--" ((Char[p.713-) | (- (Char [p.7]]
)

An example of a comment:

<!I-- declarations for <head> & <body> -->

Note that the grammar does not allow a comment endingHin . The following example isot
well-formed.

<l-- B+, B, or B--->

2.6 Processing Instructions
[Definition: Processing instructiong(Pls) allow documents to contain instructions for applications.]

Processing Instructions
(6] Pl w= <2 PIfargetp.aD) (S [p.8] (Rar [p.7]* -]
(Ehar p.7] * '?>' Char [p. TP 2>

[p.8] - (X" | x) (M| 'm) (L' |

[17] PlTarget

10

2.7 CDATA Sections

Pls are not part of the documerjt’s charactef data [p.9] , but must be passed through to the application. The
Pl begins with a targdt (PITaret [p.10]) used to identify the application to which the instruction is

directed. The target namedML', "xml ", and so on are reserved for standardization in this or future

versions of this specification. The XML Notajon [p.43] mechanism may be used for formal declaration of

Pl targets. Parameter entity references are not recognized within processing instructions.

2.7 CDATA Sections

[Definition: CDATA sectionsmay occur anywhere character data may occur; they are used to escape
blocks of text containing characters which would otherwise be recognized as markup. CDATA sections
begin with the string<L![CDATA[" and end with the string]> "]

CDATA Sections

[18] CDSect = [CDStart[p.11] CDath[p.11] CDEnd [d.11]]

[19] CDStart n= <I[CDATA[

[20] CData == (€harJp.7] * - (Char [p[7] *]]> Char [p.7] []
)

[21] CDENnd = >

Within a CDATA section, only the CDEpd [p.11] string is recognized as markup, so that left angle
brackets and ampersands may occur in their literal form; they need not (and cannot) be escaped using
"&It; " and '&". CDATA sections cannot nest.

An example of a CDATA section, in whickdreeting> " and '</greeting> " are recognized as

[character daa [p.9] , riot markup [p.9] :

<I[CDATA[<greeting>Hello, world!</greeting>]]>

2.8 Prolog and Document Type Declaration

[Definition: XML documents should begin with &ML declaration which specifies the version of XML

being used.] For example, the following is a complete XML docurhent, well-fbrmed [p.6] hut npt valid
[p.12] :

<?xml version="1.0"?> <greeting>Hello, world!</greeting>

and so is this:

<greeting>Hello, world!</greeting>

11

2.8 Prolog and Document Type Declaration

The version number!0 " should be used to indicate conformance to this version of this specification; it
is an error for a document to use the valli® ™ if it does not conform to this version of this

specification. It is the intent of the XML working group to give later versions of this specification
numbers other tharl’0 ", but this intent does not indicate a commitment to produce any future versions
of XML, nor if any are produced, to use any particular numbering scheme. Since future versions are not
ruled out, this construct is provided as a means to allow the possibility of automatic version recognition,
should it become necessary. Processors may signal an error if they receive documents labeled with
versions they do not support.

The function of the markup in an XML document is to describe its storage and logical structure and to
associate attribute-value pairs with its logical structures. XML provides a mechanism, the docunjent type
[p.12] , to define constraints on the logical structure and to support the use of predefined
storage units. [Definition: An XML documentyvsilid if it has an associated document type declaration

and if the document complies with the constraints expressed in it.]

The document type declaration must appear before thE first element [p.18] in the document.

Prolog
[22] prolog = XMLDecl][p.12] ? Misc[[p.12] *
(foctypedecl [p.}13] Misc [p[12] *?
[23] XMLDecl n= '<?xml’ Ve[sioninfo [p.12]|EncodingDecl

[p.38] ? SDIbecl [p.1b)] ? S [p.8] ? [3>

[S [p.8] 'version’ Eq [p.12[(1"
VersionNum fp.12] " | ™ VersionNunf]

[p.12] ™) Valvd

[24] Versioninfo

[25] Eq m= [Q[p.8]?2'=" S [p.8][2
[26] VersionNum = ([a-zA-Z0-9_.:] | =)+
[27] Misc = [p.10] | PI [p[IO) | S [p-8] [

[Definition: The XML document type declarationcontains or points {0 markup declaratjons [p.12] that
provide a grammar for a class of documents. This grammar is known as a document type definition, or
DTD. The document type declaration can point to an external subset (a specia[kind of external entity
[p-36]) containing markup declarations, or can contain the markup declarations directly in an internal
subset, or can do both. The DTD for a document consists of both subsets taken together.]

[Definition: A markup declaration is ar| element type declaration [p.21] [an attribute-list declgration

[p.24] , ar] entity declaratipn [p.35] , of a notation declarption [p.43] .] These declarations may be
contained in whole or in part witHin parameter enlfities [p.32] , as described in the well-formedness and

validity constraints below. For further information, BeBhysical Structure$[p.32] .

12

2.8 Prolog and Document Type Declaration

Document Type Definition

[28] doctypedecl = '<IDOCTYPE’ S[[p.8] Nam¢ | [VC: Root
[p.8] (S [1)-8] ExterndllD | [Element Type]
[p-36])? S [p8] ? (T [p.13]

(markupdecl [p}13] |
DeclSep Ip.13])* T'S []
[p.8] 7)? >

[WEC: Externa

[Subsef] [p.14]
[**/

[28a] DeclSep = [PEReference [p.33] | S i [WFC: PE
[p-8]
Declarations]
[p.14]

1**

[elementdecl [p]21] |
[AttlistDecl [p.24] | [Declaration/PE
EntityDecl [p.B5] | Nesting] [p.14]
[NotationDecl [p.}j4] | P []

[p.10] | Comiment [p.1p]

[29] markupdecl

[WEC: PEs ih
[[Internal Subse]
[p.14]

Note that it is possible to construct a well-formed document contaifing a doctypedecl [p.13] that neither
points to an external subset nor contains an internal subset.

The markup declarations may be made up in whole or in part[of the replacenjent text [p.42] of phrameter
[p.32] . The productions later in this specification for individual nontermiinals (elementdecl [p.21] ,
AttlistDec] [p.24] , and so on) describe the declaratifter all the parameter entities have bfen incljided
[p.40] .

Parameter entity references are recognized anywhere in the DTD (internal and external subsets and
external parameter entities), except in literals, processing instructions, comments, and the contents of
ignored conditional sections (48l Conditional Sectiondp.30]). They are also recognized in entity
value literals. The use of parameter entities in the internal subset is restricted as described below.

Validity constraint: Root Element Type

13

2.8 Prolog and Document Type Declaration

The[Namk [p.8] in the document type declaration must match the element typg of the roo} element [p.7] .

Validity constraint: Proper Declaration/PE Nesting

Parameter-entity replacement {ext [p.42] must be properly nested with markup declarations. That is to say,
if either the first character or the last character of a markup declafation (markupdecl [p.13] above) is
contained in the replacement text for a parameter-entity reference [p.33] , both must be contained in the
same replacement text.

Well-formedness constraint: PEs in Internal Subset

In the internal DTD subségt, parameter-entity refergnces [p.33] can occur only where markup declarations
can occur, not within markup declarations. (This does not apply to references that occur in external
parameter entities or to the external subset.)

Well-formedness constraint: External Subset
The external subset, if any, must match the productidn for ext$ubset [p.14] .
Well-formedness constraint: PE Between Declarations

The replacement text of a parameter entity referenck in a DgclSep [p.13] must match the production
[extSubsetDet [p.14] .

Like the internal subset, the external subset and any external parameter entities referdnced inja DeclSep
[p.13] must consist of a series of complete markup declarations of the types allowed by the non-terminal
symbol[markupdell [p.13] , interspersed with white spafe or parameter-entity references [p.33] .
However, portions of the contents of the external subset or of these external parameter entities may
conditionally be ignored by using the conditional se¢tion [p.30] construct; this is not allowed in the
internal subset.

External Subset

[30] extSubset [TextDecl [p.37] ? extSulbysetDecl

[p.14]

(markupdecl [p.[L3] | I*
[conditionalSect [p.31] | DeclSep [| */
[p.13])*

[31] extSubsetDecl

The external subset and external parameter entities also differ from the internal subset in that in them,
[parameter-entity referenges [p.33] are permittétin markup declarations, not onetweermarkup
declarations.

An example of an XML document with a document type declaration:

<?xml version="1.0"?> <IDOCTYPE greeting SYSTEM "hello.dtd"> <greeting>Hello, world!</greeting>

14

2.9 Standalone Document Declaration

The|system identifier [p.36h¢llo.dtd " gives the address (a URI reference) of a DTD for the
document.

The declarations can also be given locally, as in this example:

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE greeting [
<IELEMENT greeting (#PCDATA)>
1>
<greeting>Hello, world!</greeting>

If both the external and internal subsets are used, the internal subset is considered to occur before the
external subset. This has the effect that entity and attribute-list declarations in the internal subset take
precedence over those in the external subset.

2.9 Standalone Document Declaration

Markup declarations can affect the content of the document, as passed from an XML grocessor [p.4] to an
application; examples are attribute defaults and entity declarations. The standalone document declaration,
which may appear as a component of the XML declaration, signals whether or not there are such
declarations which appear external to[{the document|entity [p.44] or in parameter entities. [Definition: An
external markup declaration is defined as a markup declaration occurring in the external subset or in a
parameter entity (external or internal, the latter being included because non-validating processors are not
required to read them).]

Standalone Document Declaration

[32] SDDecl = [9]p.8] 'standalone’ Eq [p.12]] [VC: Standalore
(" (Cyes’| 'no’) ™) |
(" (yes'|'no’) ™)) [p.16]

In a standalone document declaration, the value "yes" indicates that therg¢ are no external markup

[p.15] which affect the information passed from the XML processor to the application. The
value "no" indicates that there are or may be such external markup declarations. Note that the standalone
document declaration only denotes the presence of extdakations the presence, in a document, of
references to externahtities when those entities are internally declared, does not change its standalone
status.

If there are no external markup declarations, the standalone document declaration has no meaning. If there
are external markup declarations but there is no standalone document declaration, the value "no" is
assumed.

Any XML document for whichstandalone="no" holds can be converted algorithmically to a
standalone document, which may be desirable for some network delivery applications.

15

2.10 White Space Handling

Validity constraint: Standalone Document Declaration

The standalone document declaration must have the value "no" if any external markup declarations
contain declarations of:

e attributes witl} defa]lt [p.28] values, if elements to which these attributes apply appear in the
document without specifications of values for these attributes, or

e entities (other thammp, It , gt , apos, quot), if feferencds [p.33] to those entities appear in the
document, or

e attributes with values subjectfb@rmalization[p.29] , where the attribute appears in the document
with a value which will change as a result of normalization, or

e element types with element confent [p.22] , if white space occurs directly within any instance of
those types.

An example XML declaration with a standalone document declaration:

<?xml version="1.0" standalone="yes’'?>

2.10 White Space Handling

In editing XML documents, it is often convenient to use "white space" (spaces, tabs, and blank lines) to
set apart the markup for greater readability. Such white space is typically not intended for inclusion in the
delivered version of the document. On the other hand, "significant” white space that should be preserved
in the delivered version is common, for example in poetry and source code.

An[XML processdr [p.4] must always pass all characters in a document that are not markup through to the
application. A validating XML procesgor [p.44] must also inform the application which of these characters
constitute white space appearing in element cdntent [p.22] .

A specia[atiribufle [p.19] nameainl:space may be attached to an element to signal an intention that in
that element, white space should be preserved by applications. In valid documents, this attribute, like any
other, must b declared [p.24] if it is used. When declared, it must be giveh as an enumetlated type [p.26]
whose values are one or both of "default" and "preserve". For example:

<IATTLIST poem xml:space (default|preserve) 'preserve’>

<lew o>
<IATTLIST pre xml:space (preserve) #FIXED ’preserve’>

The value "default" signals that applications’ default white-space processing modes are acceptable for this
element; the value "preserve" indicates the intent that applications preserve all the white space. This
declared intent is considered to apply to all elements within the content of the element where it is
specified, unless overriden with another instance oxithlespace attribute.

16

2.11 End-of-Line Handling

The[root elemept [p.7] of any document is considered to have signaled no intentions as regards application
space handling, unless it provides a value for this attribute or the attribute is declared with a default value.

2.11 End-of-Line Handling

XML parsed entitigs [p.32] are often stored in computer files which, for editing convenience, are
organized into lines. These lines are typically separated by some combination of the characters
carriage-return (#xD) and line-feed (#xA).

To simplify the tasks ¢f applicatidns [p.4] , the characters passed to an applicatioh by the XML processor
[p.4] must be as if the XML processor normalized all line breaks in external parsed entities (including the
document entity) on input, before parsing, by translating both the two-character sequence #xD #xA and
any #xD that is not followed by #xA to a single #xA character.

2.12 Language Identification

In document processing, it is often useful to identify the natural or formal language in which the content is
written. A specig] attribufe [p.19] namgthl:lang may be inserted in documents to specify the

language used in the contents and attribute values of any element in an XML document. In valid
documents, this attribute, like any other, mugt be de¢lared [p.24] if it is used. The values of the attribute
are language identifiers as defined by [IETE RFC 1766] [p.#@ps for the Identification of Languages

or its successor on the IETF Standards Track.

Note:

[IETF RFC 1764] [p.47] tags are constructed from two-letter language codes as defined by [|SO 639]
[p.49] , from two-letter country codes as defined by [ISO 3166] [p.49] , or from language identifiers
registered with the Internet Assigned Numbers Authprity [[ANA-LANGCODES] [p.48] . It is expected

that the successor|to [TETF RFC 1766] [p.47] will introduce three-letter language codes for languages not
presently covered By [ISO 639] [p.49] .

(Productions 33 through 38 have been removed.)

For example:

<p xml:lang="en">The quick brown fox jumps over the lazy dog.</p>
<p xml:lang="en-GB">What colour is it?</p>
<p xml:lang="en-US">What color is it?</p>
<sp who="Faust" desc="leise’ xml:lang="de">
<I>Habe nun, ach! Philosophie,</I>
<I>Juristerei, und Medizin</I>
<I>und leider auch Theologie</I>
<I>durchaus studiert mit heilem Bemih’'n.</I>
</sp>

The intent declared witkml:lang is considered to apply to all attributes and content of the element
where it is specified, unless overridden with an instansentfang on another element within that
content.

17

3 Logical Structures

A simple declaration foxml:lang might take the form

xml:lang NMTOKEN #IMPLIED

but specific default values may also be given, if appropriate. In a collection of French poems for English
students, with glosses and notes in Englishxthelang attribute might be declared this way:

<IATTLIST poem xml:lang NMTOKEN ’fr'>
<IATTLIST gloss xml:lang NMTOKEN ’'en’>
<IATTLIST note xml:lang NMTOKEN ’en’>

3 Logical Structures

[Definition: Each) XML document [p.6] contains one or melements the boundaries of which are either
delimited by[start-tags [p.19] ahd end-fags [p.20] , of, for dmpty [p.20] elementd, by an empty-el¢ment tag
[p.20] . Each element has a type, identified by name, sometimes called its "generic identifier" (Gl), and
may have a set of attribute specifications.] Each attribute specificatio has]a name [p.{9] afjd a value
[p.19].

Element
[39] element n= [EmptyElemTag [p.20]
| §Tag [p.19] contgnt] [WFC: Element Typ¢
[p.20] EThg [pp0] Match] [p.18]
[VC: Element Valid]
[p.18]

This specification does not constrain the semantics, use, or (beyond syntax) names of the element types
and attributes, except that names beginning with a matétxtpx’)('M’|'m’)(CL’|'T"))
are reserved for standardization in this or future versions of this specification.

Well-formedness constraint: Element Type Match
The[Namk [p.8] in an element’s end-tag must match the element type in the start-tag.

Validity constraint: Element Valid

An element is valid if there is a declaration matcling elemetdec! [p.21] whére the Name [p.8] matches
the element type, and one of the following holds:

1. The declaration matchEMPTY and the element has o content [p.20] .

18

3.1 Start-Tags, End-Tags, and Empty-Element Tags

2. The declaration matcHes children [p.22] and the sequefce of child elements [p.7] belongs to the
language generated by the regular expression in the content model, with optional white space
(characters matching the nonterminkl S [p.8]) between the start-tag and the first child element,
between child elements, or between the last child element and the end-tag. Note that a CDATA
section containing only white space does not match the nontefthinal S [p.8] , and hence cannot appear
in these positions.

3. The declaration matcHes Miked [p.23] and the content consfsts of charadter data [p.9] &nd child
[p.7] whose types match names in the content model.

4. The declaration match@fNY, and the types of apy child elemgnts [p.7] have been declared.

3.1 Start-Tags, End-Tags, and Empty-Element Tags

[Definition: The beginning of every non-empty XML element is marked &pg-tag.]

Start-tag
[40] STag n= <’ Name[p.8] (S [p.8[] [WEC: Unique Atil
[Attribute [p.19])* S [] [p.19]
[p.8] ? >
[41] Attribute == [Namé [p.8] Eq[[pJL2] [VC: Attribute Value]
[AttValue Td.9] [p.19]

[WEC: No External
[Entity References]

[p.20]
TW N

[Attribute Values]
[p.20]

The[Namg [p.8] in the start- and end-tags gives the elentgpés[Definition: Thed Namie [p.8[-AttValje
[p.9] pairs are referred to as thtribute specifications of the element], [Definition: with tHe Nafne [p.8]
in each pair referred to as thtribute name] and [Definition: the content of tfhe AttValue [p.9] (the text
between thé or" delimiters) as thattribute value.]Note that the order of attribute specifications in a
start-tag or empty-element tag is not significant.

Well-formedness constraint: Unique Att Spec
No attribute name may appear more than once in the same start-tag or empty-element tag.
Validity constraint: Attribute Value Type

The attribute must have been declared; the value must be of the type declared for it. (For attribute types,
seq3.3 Attribute-List Declarations| [p.24] .)

19

3.1 Start-Tags, End-Tags, and Empty-Element Tags

Well-formedness constraint: No External Entity References
Attribute values cannot contain direct or indirect entity references to external entities.

Well-formedness constraint: No< in Attribute Values

The|replacement text [p.42] of any entity referred to directly or indirectly in an attribute value must not
contain a<.

An example of a start-tag:

<termdef id="dt-dog" term="dog">

[Definition: The end of every element that begins with a start-tag must be markee ihg-tay
containing a name that echoes the element’s type as given in the start-tag:]

End-tag
[42] ETag »= ’</'Name]p}8] S [p.8[? >

An example of an end-tag:

</termdef>

[Definition: The[text [p.7] between the start-tag and end-tag is called the elecwitst]

Content of Elements

[43] content = CharData [|p.10] ? ((element [p.18] | | I*
[Reference [p.33] | CDSedt [p.11] |P] */
[p.10] | Conment [p.10]) CharDatd [p.10] |

?2)*

[Definition: An element with no content is said todrapty.] The representation of an empty element is
either a start-tag immediately followed by an end-tag, or an empty-element tag. [Definition: An
empty-element tagtakes a special form:]

Tags for Empty Elements

[44] EmptyElemTag == < Ngme[p.8] (S [p.8[] [WFC: Uniqud
[Attribute [p.19])* S [p.8] [] [Att Spec] [p.19]

? 1/>1

20

3.2 Element Type Declarations

Empty-element tags may be used for any element which has no content, whether or not it is declared using
the keywordEMPTY . [For interoperability [p.6] , the empty-element tag should be used, and should only
be used, for elements which are declared EMPTY.

Examples of empty elements:

<IMG align="left"
src="http://www.w3.org/lcons/WWW/w3c_home" />

</br>

3.2 Element Type Declarations
The[element [p.18] structure of fan XML docunjent [p.6] may], for validation [p.12] purposes, be

constrained using element type and attribute-list declarations. An element type declaration constrains the

element’q conteht [p.20] .

Element type declarations often constrain which element types can appear ag| children [p.7] of the element.
At user option, an XML processor may issue a warning when a declaration mentions an element type for
which no declaration is provided, but this is not an error.

[Definition: An element type declarationtakes the form:]

Element Type Declaration

[45] elementdecl = '<IELEMENT’ S[[$.8] Nam¢ | [VC: Uniqug
[p.8] S [pl8] contenftspec | [Element Typé
[p.21] S [plB] 2 >’ [Declaratior] [p.21]
[46] contentspec = 'EMPTY’ | 'ANY’ | Mixed[|

[p.23] | children [p.22 |

where th¢ Nanje [p.8] gives the element type being declared.
Validity constraint: Unique Element Type Declaration
No element type may be declared more than once.

Examples of element type declarations:

<IELEMENT br EMPTY>

<IELEMENT p (#PCDATA|emph)* >
<IELEMENT %name.para; %content.para; >
<IELEMENT container ANY>

21

3.2 Element Type Declarations

3.2.1 Element Content

[Definition: An elemer@e [p.19] hadement contentwhen elements of that type must contain only

[p.7] elements (no character data), optionally separated by white space (characters matching the
nonterminal B [p.8]).][Definition: In this case, the constraint includesnéent mode| a simple grammar
governing the allowed types of the child elements and the order in which they are allowed to appear.] The
grammar is built on content particlgs](cp [p.22] s), which consist of names, choice lists of content
particles, or sequence lists of content particles:

Element-content Models

[47] children = (€hoice [d.22] | seq [p.42])]
(2™ +)?
[48] cp := (Namé [p.8] | choide [p.22]
[sea]lp.22]) (2" | *'|
)2
[49] choice = '(S[bl8] ? cp [p.281 (S O I**
[p-8] 2" S [p.8] P cp []
[p-22])+ S [p[E] 7Y
[**l
[Group/PE Nesting]
[p.23]
[50] seq = ' S [pl8] ? cp [p.221 (S] [* %]

[p.8]17" S [p.8][Fcp]
[p.22])* S [p-B] 2y

[VC: Propef
[Group/PE Nesting]

[p.23]

where each Nane [p.8] is the type of an element which may appefar a$ a child [p.7] . Any content particle
in a choice list may appear in the element cohtent [p.22] at the location where the choice list appears in the
grammar; content particles occurring in a sequence list must each appegr in the elemegnt content [p.22] in
the order given in the list. The optional character following a name or list governs whether the element or
the content particles in the list may occur one or meyezero or more*(), or zero or one time#®J. The

absence of such an operator means that the element or content particle must appear exactly once. This
syntax and meaning are identical to those used in the productions in this specification.

The content of an element matches a content model if and only if it is possible to trace out a path through
the content model, obeying the sequence, choice, and repetition operators and matching each element in
the content against an element type in the content npodel. For comphtibility [p.6] , it is an error if an
element in the document can match more than one occurrence of an element type in the content model.

22

3.2 Element Type Declarations

For more information, sge Deterministic Content Modelg[p.55] .

Validity constraint: Proper Group/PE Nesting

Parameter-entity replacement {ext [p.42] must be properly nested with parenthesized groups. That is to

say, if either of the opening or closing parenthese$ in a ¢hoice [p.2P] , seq [p[22], ¢r Mixed [p.23]
construct is contained in the replacement text for a_parametet entity [p.33] , both must be contained in the

same replacement text.

[For interoperability [p.6] , if a parameter-entity reference appeais in alchoice [p.32] , seq [d:22] , br Mixed
[p.23] construct, its replacement text should contain at least one non-blank character, and neither the first
nor last non-blank character of the replacement text should be a conhemton.

Examples of element-content models:

<IELEMENT spec (front, body, back?)>
<IELEMENT div1 (head, (p | list | note)*, div2*)>
<IELEMENT dictionary-body (%div.mix; | %dict.mix;)*>

3.2.2 Mixed Content

[Definition: An elemenf tyde [p.19] hamixed contentwhen elements of that type may contain character
data, optionally interspersed wfith child [p.7] elements.] In this case, the types of the child elements may
be constrained, but not their order or their number of occurrences:

Mixed-content Declaration

[51] Mixed = (" S [pl8] 2 '#PCDATA’ (S [p.8] []

2| S [d.8] ? Name [d.8])* B []

[p.8] 7)"

|’ S [p[8] ? #PCDATA' S i

[p.8]?°) [Group/PE Nesting]
[p.23]
[VC: No Duplicatg
[p.23]

where th¢ Nanje [p.8] s give the types of elements that may appear as children. The ¥KBZRAT A
derives historically from the term "parsed character data."

Validity constraint: No Duplicate Types

The same name must not appear more than once in a single mixed-content declaration.

23

3.3 Attribute-List Declarations

Examples of mixed content declarations:

<IELEMENT p (#PCDATA|a]ul|bjijlem)*>
<IELEMENT p (#PCDATA | %font; | %phrase; | %ospecial; | %form;)* >
<IELEMENT b (#PCDATA)>

3.3 Attribute-List Declarations

[p.19] are used to associate name-value pair§ with elédments [p.18] . Attribute specifications
may appear only within start-tdgs [p.19] &nd empty-elemerjt tags [p.20] ; thus, the productions used to
recognize them appearfl Start-Tags, End-Tags, and Empty-Element Tagfp.19] . Attribute-list
declarations may be used:

® To define the set of attributes pertaining to a given element type.

® To establish type constraints for these attributes.

® To providg default valugs [p.28] for attributes.

[Definition: Attribute-list declarations specify the name, data type, and default value (if any) of each
attribute associated with a given element type:]

Attribute-list Declaration

[52] AttlistDecl

'<IATTLIST’ S [h.B] Name [p8[AttDef [|
[p.24]* S [p[E] ? >’

[53] AttDef m= [§[p.8] Nafe p}8] S [p.8][AttType [p[25]]
[[p.8] DeflaultDecl [p.28]]

The[NamE [p.8] in thig_AttlistDdcl [p.24] rule is the type of an element. At user option, an XML processor
may issue a warning if attributes are declared for an element type not itself declared, but this is not an

error. Thg Nanje [p.8] in the AttDef [p.24] rule is the name of the attribute.

When more than orje AttlistDécl [p.24] is provided for a given element type, the contents of all those
provided are merged. When more than one definition is provided for the same attribute of a given element
type, the first declaration is binding and later declarations are igpored. For interopgrability, [p.6] writers of
DTDs may choose to provide at most one attribute-list declaration for a given element type, at most one
attribute definition for a given attribute name in an attribute-list declaration, and at least one attribute
definition in each attribute-list declaration. For interoperability, an XML processor may at user option
issue a warning when more than one attribute-list declaration is provided for a given element type, or
more than one attribute definition is provided for a given attribute, but this is not an error.

24

3.3 Attribute-List Declarations

3.3.1 Attribute Types

XML attribute types are of three kinds: a string type, a set of tokenized types, and enumerated types. The
string type may take any literal string as a value; the tokenized types have varying lexical and semantic
constraints. The validity constraints noted in the grammar are applied after the attribute value has been
normalized as described|33 Attribute-List Declarations|[p.24] .

Attribute Types

[54] AttType

[StringType [p} 25] |
[TokenizedType [Q.25] |
[EnumeratedType [p.27]

[55] StringType n= 'CDATA’
D’ [VC:TD]|[p.25]

VC: One ID
[p.26]

[VC: ID
[p.26]

| IDREF’ [VC IDREF
[p.26]

p.2
| 'IDREFS’ [VC: IDREF
p.2

[56] TokenizedType

6
[p.26]

| 'ENTITY” [VC: Entity |
[p-26]

| 'ENTITIES’ [VC: Entity
[p-26]

| 'NMTOKEN'
[p.26]

| 'NMTOKENS’
[p.26]

Validity constraint: 1D

Values of typdD must match thEe Narhe [p.8] production. A name must not appear more than once in an
XML document as a value of this type; i.e., ID values must uniquely identify the elements which bear
them.

25

3.3 Attribute-List Declarations

Validity constraint: One ID per Element Type

No element type may have more than one ID attribute specified.
Validity constraint: ID Attribute Default

An ID attribute must have a declared defaultidfiPLIED or #REQUIRED.
Validity constraint: IDREF

Values of typdDREF must match the Narhe [p.8] production, and values of §REFS must match
[p.8] ; eadh Naine [p.8] must match the value of an ID attribute on some element in the XML
document; i.eDREF values must match the value of some ID attribute.

Validity constraint: Entity Name

Values of typeENTITY must match the Narhe [p.8] production, values of &N&ITIES must match
[p.8] ; eadh Naine [p.8] must match the name[of an unparsed entity [p.32] declafed i the DTD
[p.12] .

Validity constraint: Name Token

Values of typeNMTOKEN must match the Nmtokpn [p.8] production; values of typTOKENS
must match Nmtokehs [p.8] .

[Definition: Enumerated attributes can take one of a list of values provided in the declaration]. There
are two kinds of enumerated types:

Enumerated Attribute Types

26

3.3 Attribute-List Declarations

[57] EnumeratedType

[NotationType [p]27] |
[Enumeration [d.27]

[58] NotationType := 'NOTATION S[[p.8]'(S [] [VC_Notation]
[p.8] ? Narhe [p.B] (S O [p.27]
[p-8] 7S [p.8][7]
[p.8])* S [p.B]?
1)!

[VC: Onég
[Notation Pdr
[Efement Typd]
[p.27]

[VC: No Notation
Element] [p.27]

[59] Enumeration = '(S [pl8] ? Nmtokgn | [VC:]
P8l (SR8 2 'S [0 [Enumeratior]]
[p-8] ? Nmfoken [p.8])* [p-27]
Sip.812")y

A NOTATION attribute identifies p_notatipn [p.43] , declared in the DTD with associated system and/or
public identifiers, to be used in interpreting the element to which the attribute is attached.

Validity constraint: Notation Attributes

Values of this type must match one of[timatior}[p.43] names included in the declaration; all notation
names in the declaration must be declared.

Validity constraint: One Notation Per Element Type
No element type may have more than BI@TATION attribute specified.

Validity constraint: No Notation on Empty Element

|[For compatibility [p.6] , an attribute of tydOTATION must not be declared on an element declared
EMPTY .

Validity constraint: Enumeration

Values of this type must match one of[the Nmtpken [p.8] tokens in the declaration.

[For interoperability, [p.6] the sarhe Nmtoken [p.8] should not occur more than once in the enumerated
attribute types of a single element type.

27

3.3 Attribute-List Declarations

3.3.2 Attribute Defaults

Anlattribute declaration [p.24] provides information on whether the attribute’s presence is required, and if
not, how an XML processor should react if a declared attribute is absent in a document.

Attribute Defaults

[60] DefaultDecl = '#REQUIRED’

| '#IMPLIED’

| ((#FIXED’ S)? [VC: Required Attributd]

[AttValue [.9]) [p.28]
[VC: Attribute Default]
[Legal] [p.28]
[WEC: No < in Attribute]
Values] [p.20]
[VC: Fixed Attribute]
[p-28]

In an attribute declaratio#REQUIRED means that the attribute must always be providddPLIED

that no default value is provided. [Definition: If the declaration is ne#fREEQUIRED nor#IMPLIED ,

then thd AttValu [p.9] value contains the declatethult value; the#FIXED keyword states that the
attribute must always have the default value. If a default value is declared, when an XML processor
encounters an omitted attribute, it is to behave as though the attribute were present with the declared
default value.]

Validity constraint: Required Attribute

If the default declaration is the keywdd*®EQUIRED, then the attribute must be specified for all
elements of the type in the attribute-list declaration.

Validity constraint: Attribute Default Legal
The declared default value must meet the lexical constraints of the declared attribute type.
Validity constraint: Fixed Attribute Default

If an attribute has a default value declared withtlREXED keyword, instances of that attribute must
match the default value.

Examples of attribute-list declarations:

28

3.3 Attribute-List Declarations

<IATTLIST termdef

id ID #REQUIRED

name CDATA #IMPLIED>
<IATTLIST list

type (bullets|ordered|glossary) "ordered">
<IATTLIST form

method CDATA #FIXED "POST">

3.3.3 Attribute-Value Normalization

Before the value of an attribute is passed to the application or checked for validity, the XML processor
must normalize the attribute value by applying the algorithm below, or by using some other method such
that the value passed to the application is the same as that produced by the algorithm.

1. All line breaks must have been normalized on input to #xA as descr[Béd iknd-of-Line]
[p.17], so the rest of this algorithm operates on text normalized in this way.

2. Begin with a normalized value consisting of the empty string.

3. For each character, entity reference, or character reference in the unnormalized attribute value,
beginning with the first and continuing to the last, do the following:

® For a character reference, append the referenced character to the normalized value.

® [or an entity reference, recursively apply step 3 of this algorithm to the replacement text of the
entity.

® [or a white space character (#x20, #xD, #xA, #x9), append a space character (#x20) to the
normalized value.

® [or another character, append the character to the normalized value.

If the attribute type is not CDATA, then the XML processor must further process the normalized attribute
value by discarding any leading and trailing space (#x20) characters, and by replacing sequences of space
(#x20) characters by a single space (#x20) character.

Note that if the unnormalized attribute value contains a character reference to a white space character
other than space (#x20), the normalized value contains the referenced character itself (#xD, #xA or #x9).
This contrasts with the case where the unnormalized value contains a white space character (not a
reference), which is replaced with a space character (#x20) in the normalized value and also contrasts with
the case where the unnormalized value contains an entity reference whose replacement text contains a
white space character; being recursively processed, the white space character is replaced with a space
character (#x20) in the normalized value.

All attributes for which no declaration has been read should be treated by a non-validating processor as if
declaredCDATA.

29

3.4 Conditional Sections

Following are examples of attribute normalization. Given the following declarations:

<IENTITY d "">
<IENTITY a "
">
<IENTITY da "
">

the attribute specifications in the left column below would be normalized to the character sequences of the
middle column if the attribute is declaredlMTOKENS and to those of the right columnsaifs
declaredCDATA.

Attribute specification a is NMTOKENS ais CDATA
a="
Xyz #Xx20 #x20 Xy z

xyz"

#x20 #x20 A #x20
a="&d;&d;A&a;&a;B&da; A #x20 B #5900 B #x20 #x20
a= #XD #xD A #xA #xA #XD #xD A #xA #xA B
"&i#txd;  A

 B
" B #xD #xA #xD #xD

Note that the last example is invalid (but well-formed) i§ declared to be of tydéMTOKENS.

3.4 Conditional Sections

[Definition: Conditional sectionsare portions of the document type declaration external $ubset [p.12]
which are included in, or excluded from, the logical structure of the DTD based on the keyword which
governs them.]

Conditional Section

30

3.4 Conditional Sections

[61] conditionalSect = [IncludeSect [p.B1] |
ignoreSect [p]31]
[62] includeSect = '<I[' S? INCLUDE’ S? **
T extiSubsetDecl |
[p.14] 1>
[VC: Propel
Conditiond
[Section/PE
Nesting] [p.31]
[63] ignoreSect = <I' S? 'IGNORE’ S? 1**
T ignjpreSectContents |
[p.31] *T>’
[VC: Prope}
Conditional
Section/PE
Nesting] [p.31]
[64] ignoreSectContents n= [lgnore Tp.31] (<!l
ignoreSectContents |
[p.31] > Ignore[]
[p.31])"
[65] Ignore = [Char]p.7]*- (Char []
[p.7]* (<[|
11>) Chaf p.7]*)

Validity constraint: Proper Conditional Section/PE Nesting

non

If any of the <!I[", "[", or "]]> " of a conditional section is contained in the replacement text for a
parameter-entity reference, all of them must be contained in the same replacement text.

Like the internal and external DTD subsets, a conditional section may contain one or more complete
declarations, comments, processing instructions, or nested conditional sections, intermingled with white
space.

If the keyword of the conditional sectionISCLUDE , then the contents of the conditional section are
part of the DTD. If the keyword of the conditional sectiolGBIORE, then the contents of the
conditional section are not logically part of the DTD. If a conditional section with a keyword of
INCLUDE occurs within a larger conditional section with a keywortGMORE, both the outer and the
inner conditional sections are ignored. The contents of an ignored conditional section are parsed by
ignoring all characters after thp™following the keyword, except conditional section stast§ ™ and
ends []> ", until the matching conditional section end is found. Parameter entity references are not
recognized in this process.

m

31

4 Physical Structures

If the keyword of the conditional section is a parameter-entity reference, the parameter entity must be
replaced by its content before the processor decides whether to include or ignore the conditional section.

An example:

<IENTITY % draft INCLUDE’ >
<IENTITY % final IGNORE’ >

<![%draft;[

<IELEMENT book (comments*, title, body, supplements?)>
1>

<![%final;[

<IELEMENT book (title, body, supplements?)>

1>

4 Physical Structures

[Definition: An XML document may consist of one or many storage units. These arearglitesh, they

all havecontentand are all (except for the document ehtity [p.44] and the external DTD|subset [p.12])
identified by entityname] Each XML document has one entity called[the document Entity [p.44] , which
serves as the starting point for the XML procgssor [p.4] and may contain the whole document.

Entities may be either parsed or unparsed. [Definitiopassed entity’s contents are referred to as its
[replacement tekt [p.42] ; tHis téxt [p.7] is considered an integral part of the document.]

[Definition: An unparsed entity is a resource whose contents may or may npt be text [p.7] , and if text,
may be other than XML. Each unparsed entity has an assdciated hotation [p.43] , identified by name.
Beyond a requirement that an XML processor make the identifiers for the entity and notation available to
the application, XML places no constraints on the contents of unparsed entities.]

Parsed entities are invoked by name using entity references; unparsed entities by name, given in the value
of ENTITY orENTITIES attributes.

[Definition: General entitiesare entities for use within the document content. In this specification,

general entities are sometimes referred to with the unqualifiecetgitpwhen this leads to no

ambiguity.] [Definition:Parameter entitiesare parsed entities for use within the DTD.] These two types

of entities use different forms of reference and are recognized in different contexts. Furthermore, they
occupy different namespaces; a parameter entity and a general entity with the same name are two distinct
entities.

4.1 Character and Entity References

[Definition: A character referencerefers to a specific character in the ISO/IEC 10646 character set, for
example one not directly accessible from available input devices.]

32

4.1 Character and Entity References

Character Reference

(66] CharRef = ‘&4 [0-9]+ 77

| '&#x’ [0-9a-fA-F]+ [WEC: Legal Charactdr]
"y [p-33]

Well-formedness constraint: Legal Character
Characters referred to using character references must match the produfor Char [p.7] .

If the character reference begins wi#x", the digits and letters up to the terminatjngrovide a
hexadecimal representation of the character’s code point in ISO/IEC 10646. If it begins juéi#iithé
digits up to the terminating provide a decimal representation of the character’s code point.

[Definition: An entity referencerefers to the content of a named entity.] [Definition: References to parsed
general entities use ampersa&ldnd semicolon; () as delimiters.] [DefinitionParameter-entity
referencesuse percent-sigif and semicolon; () as delimiters.]

Entity Reference

[67] Reference = EntityRef [p.33] |
[CharRef]p.33]

[68] EntityRef = '& Ndme [p.8] "7 [WFC: Entity]
‘Declare§| [p.33]
[VC: Entity Declared]
[p.34]
[WEC: Parsed Entity]
[p.34]
[WEC: No Recursion]
[p.34]

[69] PEReference = "%’ Name [p.8] "}’ [[VC: Entity Declared]
[p-34]
[WEC: No Recursion]
[p.34]

[WEC:In DTD] [p-34]

Well-formedness constraint: Entity Declared

33

4.1 Character and Entity References

In a document without any DTD, a document with only an internal DTD subset which contains no
parameter entity references, or a document vgitAridalone="yes’ ", for an entity reference that

does not occur within the external subset or a parameter entlty, thé Name [p.8] given in the entity
reference muh [p.6] that inj@mtity declaratiof{p.35] that does not occur within the external
subset or a parameter entity, except that well-formed documents need not declare any of the following
entities:amp, It , gt , apos, quot . The declaration of a general entity must precede any reference to it
which appears in a default value in an attribute-list declaration.

Note that if entities are declared in the external subset or in external parameter entities, a non-validating
processor imot obligated t{{p.41] read and process their declarations; for such documents, the rule that
an entity must be declared is a well-formedness constraint ¢gihndalone="ye$[p.15] .

Validity constraint: Entity Declared

In a document with an external subset or external parameter entitiestaitdadlone="no’ " the
[p.8] given in the entity reference njust match [p.6] that[emtity declaratiolip.35] . For
interoperability, valid documents should declare the entigg It , gt , apos, quot, in the

form specified in |4.6 Predefined Entities |[p.43] . The declaration of a
parameter entity must precede any reference to it. Similarly, the

declaration of a general entity must precede any attribute-list

declaration containing a default value with a direct or indirect

reference to that general entity.

Well-formedness constraint: Parsed Entity

An entity reference must not contain the name of an unparsed entity | |
[p.32] . Unparsed entities may be referred to only in attribute values [[
[p.19] declared to be of type ENTITY or ENTITIES .

Well-formedness constraint: No Recursion

A parsed entity must not contain a recursive reference to itself,
either directly or indirectly.

Well-formedness constraint: In DTD
Parameter-entity references may only appear in the DTD [p.12] . []

Examples of character and entity references:

Type <key>less-than</key> (<) to save options.
This document was prepared on &docdate; and
is classified &security-level;.

Example of a parameter-entity reference:

34

4.2 Entity Declarations

<l-- declare the parameter entity "ISOLat2"... -->
<IENTITY % ISOLat2
SYSTEM "http://www.xml.com/iso/isolat2-xml.entities" >
<l-- ... now reference it. -->
%ISOLat2;

4.2 Entity Declarations
[Definition: Entities are declared thus:]

Entity Declaration

[70] EntityDecl [GEDecl|[p-35] | PEDECT[p.35]]

[71] GEDecl n= <IENTITY’ S [pBB] Name 8] [
[EntityDef [p]35] S [p.8][3 >’
[72] PEDecl = '<IENTITY’ S [p.B] "%’ S [p.8] Nane [p.8] § | [

[p.8] PEDef [pB5] S [p.8] £]>

EntityValue [p.p] | (Externallp [p.36]]
NDataDecl [p.36] ?)

[EntityValue [p.P] | External

[73] EntityDef

[74] PEDef

The[Namg [p.8] identifies the entity in [an_entity referénce [p.33] or, in the case of an unparsed entity, in
the value of aENTITY or ENTITIES attribute. If the same entity is declared more than once, the first
declaration encountered is binding; at user option, an XML processor may issue a warning if entities are
declared multiple times.

4.2.1 Internal Entities

[Definition: If the entity definition is ap EntityVallie [p.9] , the defined entity is callethmnal entity .
There is no separate physical storage object, and the content of the entity is given in the declaration.] Note
that some processing of entity and character references|in the literal entity value [p.42] may be required to

produce the correft replacementtext [p.42] [&BeConstruction of Internal Entity Replacement Text
[p.42] .

An internal entity is f parsed entity [p.32] .

Example of an internal entity declaration:

<IENTITY Pub-Status "This is a pre-release of the
specification.">

35

4.2 Entity Declarations

4.2.2 External Entities

[Definition: If the entity is not internal, it is axternal entity, declared as follows:]

External Entity Declaration

'SYSTEM' §p.8]
[SystemLiteral [p.9]

| 'PUBLIC’ S [1.8]

PubidLiteral [p.9] S [p.8] []
SystemLiteral [p.9]

[S[p.8] 'NDATA' S [p.§]IName | | [VC: Notation]
[0.8] [p.36]

[75] ExternallD

[76] NDataDecl

If the[NDataDedl [p.36] is present, this is a gerleral unparsed| entity [p.32] ; otherwise it is a parsed entity.

Validity constraint: Notation Declared

The[Namg [p.8] must match the declared name of a ndtation [p.43] .

[Definition: The[SystemLiterhl [p.9] is called the entitgisstem identifier. It is a URI reference (as

defined if[IETF RFC 239p] [p.48] , updated[by [IETF RFC 2J32] [p.48]), meant to be dereferenced to
obtain input for the XML processor to construct the entity’s replacement text.] It is an error for a fragment
identifier (beginning with & character) to be part of a system identifier. Unless otherwise provided by
information outside the scope of this specification (e.g. a special XML element type defined by a
particular DTD, or a processing instruction defined by a particular application specification), relative
URIs are relative to the location of the resource within which the entity declaration occurs. A URI might
thus be relative to the document entity [p.44] , to the entity containing the external DTI) subset [p.12], or
to some othdr external parameter eftity [p.36] .

URI references require encoding and escaping of certain characters. The disallowed characters include all
non-ASCII characters, plus the excluded characters listed in Sectior{ 2.4 of [IETF RFIC 2396] [p.48] ,
except for the number sigh)(and percent sigri characters and the square bracket characters

re-allowed il [IETE REC 273P] [p.48] . Disallowed characters must be escaped as follows:

1. Each disallowed character is converted to UTF-8 [IETF RFC 2279] [p.48] as one or more bytes.

2. Any octets corresponding to a disallowed character are escaped with the URI escaping mechanism
(that is, converted t8#H, where HH is the hexadecimal notation of the byte value).

3. The original character is replaced by the resulting character sequence.

[Definition: In addition to a system identifier, an external identifier may inclysgbéic identifier.] An

XML processor attempting to retrieve the entity’s content may use the public identifier to try to generate
an alternative URI reference. If the processor is unable to do so, it must use the URI reference specified in
the system literal. Before a match is attempted, all strings of white space in the public identifier must be

36

4.3 Parsed Entities

normalized to single space characters (#x20), and leading and trailing white space must be removed.

Examples of external entity declarations:

<IENTITY open-hatch
SYSTEM "http://www.textuality.com/boilerplate/OpenHatch.xml">
<IENTITY open-hatch
PUBLIC "-/[Textuality//TEXT Standard open-hatch boilerplate//EN"
"http://www.textuality.com/boilerplate/OpenHatch.xml">
<IENTITY hatch-pic
SYSTEM "../grafix/OpenHatch.gif"
NDATA gif >

4.3 Parsed Entities

4.3.1 The Text Declaration
External parsed entities should each begin widxadeclaration.

Text Declaration

[77] TextDecl = '<?xml’ Vefsioninfo [p.12]|? EncodingDgcl
[p.38] S [pl8] ? '?>

The text declaration must be provided literally, not by reference to a parsed entity. No text declaration
may appear at any position other than the beginning of an external parsed entity. The text declaration in an
external parsed entity is not considered part ¢f its replacemgnt text [p.42] .

4.3.2 Well-Formed Parsed Entities

The document entity is well-formed if it matches the production labeled doqument [p.7] . An external
general parsed entity is well-formed if it matches the production labeled extParsedEnt [p.37] . All external
parameter entities are well-formed by definition.

Well-Formed External Parsed Entity

[78] extParsedEnt = [TextDecl[p.37] ? conterit [p.20] |

An internal general parsed entity is well-formed if its replacement text matches the production labeled
[content [p.20] . All internal parameter entities are well-formed by definition.

A consequence of well-formedness in entities is that the logical and physical structures in an XML

document are properly nested;[no star}-tag [p.[[9], enid-tag [p.20], empty-€leinent tag [p.20]], element
[p.18] ,[commeit [p.10], processing instrudtion [p.J0], character reférence [p.§2], or entity rkference

[p.33] can begin in one entity and end in another.

37

4.3 Parsed Entities

4.3.3 Character Encoding in Entities

Each external parsed entity in an XML document may use a different encoding for its characters. All
XML processors must be able to read entities in both the UTF-8 and UTF-16 encodings. The terms
"UTF-8" and "UTF-16" in this specification do not apply to character encodings with any other labels,
even if the encodings or labels are very similar to UTF-8 or UTF-16.

Entities encoded in UTF-16 must begin with the Byte Order Mark described by Anngx F of [I$3O/IEC
10646] [p.47] , Annex H ¢f [ISO/IEC 10646-20p0] [p.47] , section 2[4 of [Uni¢ode] [p.48] , and section
2.7 of [Unicode3] [p.48] (the ZERO WIDTH NO-BREAK SPACE character, #xFEFF). This is an
encoding signature, not part of either the markup or the character data of the XML document. XML
processors must be able to use this character to differentiate between UTF-8 and UTF-16 encoded
documents.

Although an XML processor is required to read only entities in the UTF-8 and UTF-16 encodings, it is
recognized that other encodings are used around the world, and it may be desired for XML processors to
read entities that use them. In the absence of external character encoding information (such as MIME
headers), parsed entities which are stored in an encoding other than UTF-8 or UTF-16 must begin with a
text declaration (s¢€.3.1 The Text Declaratiof{p.37]) containing an encoding declaration:

Encoding Declaration

[80] EncodingDecl [§ [p.8] 'encoding’ Eq]

[p.12] (" EncName [p.38]

™ | " EncNafiie [p.381)
")
[81] EncName = [A-Za-z] ([A-Za-z0-9._] | /* Encoding name
-)* contains only
Latin characters
*/

In thel document entity [p.44] , the encoding declaration is part pf the XML declaration [p.11] . The
[p.38] is the name of the encoding used.

In an encoding declaration, the valuesl'F-8", "UTF-16 ", "ISO-10646-UCS-2 ", and

"ISO-10646-UCS-4 " should be used for the various encodings and transformations of Unicode /
ISO/IEC 10646, the value$S0-8859-1 ", "ISO-8859-2 ", ... "ISO-8859- n" (wheren is the part

number) should be used for the parts of ISO 8859, and the vé@@<2022-JP ", "Shift_JIS ", and
"EUC-JP" should be used for the various encoded forms of JIS X-0208-1997. It is recommended that
character encodings registered ¢harses) with the Internet Assigned Numbers Authority
[TANA-CHARSETS]| [p.47] , other than those just listed, be referred to using their registered names; other
encodings should use names starting with an "x-" prefix. XML processors should match character
encoding names in a case-insensitive way and should either interpret an IANA-registered name as the
encoding registered at IANA for that name or treat it as unknown (processors are, of course, not required
to support all IANA-registered encodings).

38

4.4 XML Processor Treatment of Entities and References

In the absence of information provided by an external transport protocol (e.g. HTTP or MIME), it is an
[p.5] for an entity including an encoding declaration to be presented to the XML processor in an
encoding other than that named in the declaration, or for an entity which begins with neither a Byte Order
Mark nor an encoding declaration to use an encoding other than UTF-8. Note that since ASCII is a subset
of UTF-8, ordinary ASCII entities do not strictly need an encoding declaration.

It is a fatal error for p TextDgcl [p.37] to occur other than at the beginning of an external entity.

It is a[fatal errdr [p.5] when an XML processor encounters an entity with an encoding that it is unable to
process. It is a fatal error if an XML entity is determined (via default, encoding declaration, or
higher-level protocol) to be in a certain encoding but contains octet sequences that are not legal in that
encoding. It is also a fatal error if an XML entity contains no encoding declaration and its content is not
legal UTF-8 or UTF-16.

Examples of text declarations containing encoding declarations:

<?xml encoding="UTF-8'?>
<?xml encoding="EUC-JP’?>

4.4 XML Processor Treatment of Entities and References

The table below summarizes the contexts in which character references, entity references, and invocations
of unparsed entities might appear and the required behaviof of an XML prpcessor [p.4] in each case. The
labels in the leftmost column describe the recognition context:

Reference in Content

as a reference anywhere after[the staft-tag [p.19] and befdre the end-tag [p.20] of an element;
corresponds to the nontermipal conftent [p.20] .

Reference in Attribute Value

as a reference within either the value of an attributd in a sthrt-tag [p.19] , or a default value in an
[attribute declaratign [p.24] ; corresponds to the nonter alue [p.9] .

Occurs as Attribute Value

as d Namre [p.8] , not a reference, appearing either as the value of an attribute which has been
declared as typeENTITY , or as one of the space-separated tokens in the value of an attribute which
has been declared as typNTITIES .

Reference in Entity Value

as a reference within a parameter or internal entity’s literal entity|value [p.42] in the entity’s

declaration; corresponds to the nonterninal Entity\falue [p.9] .

39

4.4 XML Processor Treatment of Entities and References

Reference in DTD

as a reference within either the internal or external subsets|of the DTD [p.12] , but outside of an

[p.9] [p.9][_PP! [p.10],_CommEnt [p.1p], SystemLiteral [.9] , Pubidliteral
[p.9] , or the contents of an ignored conditional sectionf§se€onditional Sectiongp.30]).

Entity Type
Internal External Character
Parameter General Parsed General Unparsed
Reference in Not| Tncluded
recognizef
Content [p.40] [p.41] [p.40]
[p.40] [p.41]
. Not - - -
Reference in : [Included inf [Forbidden [Forbiddem Included
Attribute Value [p.41] [p.41] [p.41] [p.40]
Occurs as . |[Forbidden [Forbidden recze
Attribute Value [0.40] [p.41] [p.41] [p.42] [0.40]
Reference in [Included inf [Bypassed [Bypasseld [Forbiddem Includeg
EntityValue [p.41] [p.42] [p.42] [p.41] [p.40]
Reference in [Included a$ |[Forbidden [Forbidden [Forbiddem [Forbiddem
DTD [PH[p.42] [p.41] [p.41] [p.41] [p.41]

4.4.1 Not Recognized

Outside the DTD, théocharacter has no special significance; thus, what would be parameter entity
references in the DTD are not recognized as marKup in cbntent [p.20] . Similarly, the names of unparsed
entities are not recognized except when they appear in the value of an appropriately declared attribute.

4.4.2 Included

[Definition: An entity isincluded when itd replacement tgxt [p.42] is retrieved and processed, in place of
the reference itself, as though it were part of the document at the location the reference was recognized.]
The replacement text may contain data [p.9] and (except for parametel entities) markup
[p.9] , which must be recognized in the usual way. (The stAdg&T; " expands toAT&T; " and

the remaining ampersand is not recognized as an entity-reference delimiter.) A character reference is
included when the indicated character is processed in place of the reference itself.

40

4.4 XML Processor Treatment of Entities and References

4.4.3 Included If Validating

When an XML processor recognizes a reference to a parsed entity, in validate [p.12] the
document, the processor must include [p.40] its replacement text. If the entity is external, and the
processor is not attempting to validate the XML document, the progessor may [p.5] , but need not, include
the entity’s replacement text. If a non-validating processor does not include the replacement text, it must
inform the application that it recognized, but did not read, the entity.

This rule is based on the recognition that the automatic inclusion provided by the SGML and XML entity
mechanism, primarily designed to support modularity in authoring, is not necessarily appropriate for other
applications, in particular document browsing. Browsers, for example, when encountering an external
parsed entity reference, might choose to provide a visual indication of the entity’s presence and retrieve it
for display only on demand.

4.4.4 Forbidden
The following are forbidden, and constit[ite fhtal [p.5] errors:

e the appearance of a reference tp an unparsed|entity [p.32] .

e the appearance of any character or general-entity reference in the DTD except Within an Ertity\Value
[p.9] or[AttValue [p.9] .

® a reference to an external entity in an attribute value.

4.4.5 Included in Literal

When arf entity referenkce [p.33] appears in an attribute value, or a parameter entity reference appears in a
literal entity value, its replacement text [p.42] is processed in place of the reference itself as though it were
part of the document at the location the reference was recognized, except that a single or double quote
character in the replacement text is always treated as a normal data character and will not terminate the
literal. For example, this is well-formed:

<l-- -->
<IENTITY % YN "™Yes" >
<IENTITY WhatHeSaid "He said %YN;" >

while this is not:

<IENTITY EndAttr "27™" >
<element attribute="a-&EndAttr;>

41

4.5 Construction of Internal Entity Replacement Text

4.4.6 Notify

When the name of gn unparsed ehtity [p.32] appears as a token in the value of an attribute of declared type
ENTITY orENTITIES, a validating processor must inform the application df the system [p.36] and

[p.36] (if any) identifiers for both the entity and its associated ndtation [p.43] .
4.4.7 Bypassed

When a general entity reference appears ip the EntityValue [p.9] in an entity declaration, it is bypassed
and left as is.

4.4.8 Included as PE

Just as with external parsed entities, parameter entities need pmtyuoed It validatinffp.41] . When a
parameter-entity reference is recognized in the DTD and includfd, its replacenfent text [p.42] is enlarged
by the attachment of one leading and one following space (#x20) character; the intent is to constrain the
replacement text of parameter entities to contain an integral number of grammatical tokens in the DTD.
This behavior does not apply to parameter entity references within entity values; these are described in
[4.4.5 Included in Literal [p.41] .

4.5 Construction of Internal Entity Replacement Text

In discussing the treatment of internal entities, it is useful to distinguish two forms of the entity’s value.
[Definition: Theliteral entity value is the quoted string actually present in the entity declaration,
corresponding to the non-termihal EntityValue [p.9] .] [Definition: Téy@acement textis the content of
the entity, after replacement of character references and parameter-entity references.]

The literal entity value as given in an internal entity declaration (Entityyalue [p.9]) may contain
character, parameter-entity, and general-entity references. Such references must be contained entirely
within the literal entity value. The actual replacement text tat is indluded [p.40] as described above must
contain theeplacement texaf any parameter entities referred to, and must contain the character referred
to, in place of any character references in the literal entity value; however, general-entity references must
be left as-is, unexpanded. For example, given the following declarations:

<IENTITY % pub "Éditions Gallimard" >
<IENTITY rights "All rights reserved" >
<IENTITY book "La Peste: Albert Camus,
© 1947 %pub;. &rights;" >

then the replacement text for the entibpdk " is:

La Peste: Albert Camus,
© 1947 Editions Gallimard. &rights:

42

4.6 Predefined Entities

The general-entity referencé&rights; " would be expanded should the referen&bdok; " appear in
the document’s content or an attribute value.

These simple rules may have complex interactions; for a detailed discussion of a difficult exarfjle, see
[Expansion of Entity and Character Referencd$p.53] .

4.6 Predefined Entities

[Definition: Entity and character references can both be usesctpethe left angle bracket, ampersand,
and other delimiters. A set of general entite®, It , gt , apos, quot) is specified for this purpose.
Numeric character references may also be used; they are expanded immediately when recognized and
must be treated as character data, so the numeric character refefgi®@es' 'and '& " may be

used to escape and& when they occur in character data.]

All XML processors must recognize these entities whether they are declared or not. For interoperability
[p.6] , valid XML documents should declare these entities, like any others, before using them. If the
entitieslt orampare declared, they must be declared as internal entities whose replacement text is a
character reference to the respective character (less-than sign or ampersand) being escaped; the double
escaping is required for these entities so that references to them produce a well-formed result. If the
entitiesgt , apos, orquot are declared, they must be declared as internal entities whose replacement
text is the single character being escaped (or a character reference to that character; the double escaping
here is unnecessary but harmless). For example:

<IENTITY It "&#60;">
<IENTITY gt ">">
<IENTITY amp "&#38;">
<IENTITY apos "'">
<IENTITY quot """>

4.7 Notation Declarations

[Definition: Notations identify by name the format pf unparsed entities [p.36] , the format of elements
which bear a notation attribute, or the application to whfch a processing ins{ruction [p.10] is addressed.]

[Definition: Notation declarationsprovide a name for the notation, for use in entity and attribute-list
declarations and in attribute specifications, and an external identifier for the notation which may allow an
XML processor or its client application to locate a helper application capable of processing data in the
given notation.]

Notation Declarations

43

5 Conformance

[82] NotationDecl = '<INOTATION’ S [d.8] Namq [VC:Uniqud
[p.8] S [p]8] (ExterndlID [Notation]|
[p.36] | PublicID [p.44]) S [0 Name][p.44]
[p.8]? ">

[83] PubliclD = 'PUBLIC’ S[d.8]

|PubidLiteral [p.9]

Validity constraint: Unique Notation Name
Only one notation declaration can declare a diven Name [p.8] .

XML processors must provide applications with the name and external identifier(s) of any notation
declared and referred to in an attribute value, attribute definition, or entity declaration. They may
additionally resolve the external identifier into the system identifier [p.36] , file name, or other

information needed to allow the application to call a processor for data in the notation described. (It is not
an error, however, for XML documents to declare and refer to notations for which notation-specific
applications are not available on the system where the XML processor or application is running.)

4.8 Document Entity
[Definition: Thedocument entity serves as the root of the entity tree and a starting-point for an] XML
[processdr [p.4] .] This specification does not specify how the document entity is to be located by an XML

processor; unlike other entities, the document entity has no hame and might well appear on a processor
input stream without any identification at all.

5 Conformance

5.1 Validating and Non-Validating Processors

Conforming XML processors [p.4] fall into two classes: validating and non-validating.

Validating and non-validating processors alike must report violations of this specification’s
well-formedness constraints in the content of the document]entity [p.44] and arfy other parséd entities
[p.32] that they read.

[Definition: Validating processorsmust, at user option, report violations of the constraints expressed by
the declarations in tie DTD [p.12] , and failures to fulfill the validity constraints given in this
specification.] To accomplish this, validating XML processors must read and process the entire DTD and
all external parsed entities referenced in the document.

Non-validating processors are required to check only the document entity [p.44] , including the entire
internal DTD subset, for well-formedness. [Definition: While they are not required to check the document
for validity, they are required forocessall the declarations they read in the internal DTD subset and in

any parameter entity that they read, up to the first reference to a parameter entity thahtitegaih

that is to say, they must use the information in those declaratioesitmliz¢[p.29] attribute values,

[includé [p.40] the replacement text of internal entities, and sugglgult attribute valugfp.28] .] Except

44

6 Notation

whenstandalone="yes" , they must nqt procgss [p.44] entity declarations [p.35] or attribute-list
declarations [p.24] encountered after a reference to a parameter entity that is not read, since the entity may
have contained overriding declarations.

5.2 Using XML Processors

The behavior of a validating XML processor is highly predictable; it must read every piece of a document
and report all well-formedness and validity violations. Less is required of a non-validating processor; it
need not read any part of the document other than the document entity. This has two effects that may be
important to users of XML processors:

e Certain well-formedness errors, specifically those that require reading external entities, may not be
detected by a non-validating processor. Examples include the constraints [Entitie@eclaredi
[p-33] ,[Parsed Entity{p.34] , andNo Recursidip.34] , as well as some of the cases described as

[p.41] in[d.4 XML Processor Treatment of Entities and Referenciip.39] .

® The information passed from the processor to the application may vary, depending on whether the
processor reads parameter and external entities. For example, a non-validating processor may not
normalizg[p.29] attribute value[p.40] the replacement text of internal entities, or supply
default attribute valu¢fp.28] , where doing so depends on having read declarations in external or
parameter entities.

For maximum reliability in interoperating between different XML processors, applications which use
non-validating processors should not rely on any behaviors not required of such processors. Applications
which require facilities such as the use of default attributes or internal entities which are declared in
external entities should use validating XML processors.

6 Notation

The formal grammar of XML is given in this specification using a simple Extended Backus-Naur Form
(EBNF) notation. Each rule in the grammar defines one symbol, in the form

symbol ::= expression

Symbols are written with an initial capital letter if they are the start symbol of a regular language,
otherwise with an initial lower case letter. Literal strings are quoted.

Within the expression on the right-hand side of a rule, the following expressions are used to match strings
of one or more characters:

#xN

whereN is a hexadecimal integer, the expression matches the character in ISO/IEC 10646 whose
canonical (UCS-4) code value, when interpreted as an unsigned binary number, has the value
indicated. The number of leading zeros in#Rdl form is insignificant; the number of leading zeros

in the corresponding code value is governed by the character encoding in use and is not significant

45

6 Notation

for XML.
[a-zA-Z] , [#XN-#xN]

matches anly Char [p.7] with a value in the range(s) indicated (inclusive).
[abc] , [#XN#XN#XN]

matches anfy Char [p.7] with a value among the characters enumerated. Enumerations and ranges can
be mixed in one set of brackets.

[fa-z] , [MEXN-#XN]
matches anly Char [p.7] with a valoetsidethe range indicated.
[fabc] |, [MEXN#XN#XN]

matches anfy CHar [p.7] with a value not among the characters given. Enumerations and ranges of
forbidden values can be mixed in one set of brackets.

"string”

matches a literal strirfg matching [p.6] that given inside the double quotes.
'string’

matches a literal strirjg matchjng [p.6] that given inside the single quotes.

These symbols may be combined to match more complex patterns as followsAwhdErepresent
simple expressions:

(expression)

expression s treated as a unit and may be combined as described in this list.
A?

matchesA or nothing; optionah.
AB

matchedA followed byB. This operator has higher precedence than alternationAtBYsC D is
identical to(A B) | (C D)

A|B

matchesA or B but not both.

46

A References

A-B
matches any string that matchebut does not matdB.
A+

matches one or more occurrencegd@oncatenation has higher precedence than alternatiomthus
| B+ isidentical to/A+) | (B+)

A*

matches zero or more occurrences.o€oncatenation has higher precedence than alternation; thus
A* | B* s identical taA*) | (B*)

Other notations used in the productions are:
[* .. %

comment.
[wfc: ...]

well-formedness constraint; this identifies by name a constrajnt on well-formed [p.6] documents
associated with a production.

[ve: ...]

validity constraint; this identifies by name a constraint on Jalid [p.12] documents associated with a
production.

A References

A.1 Normative References

IANA-CHARSETS
(Internet Assigned Numbers Authorit@fficial Names for Character Seisd. Keld Simonsen et al.
Sedq ftp://ftp.1sl.edu/in-notes/iana/assignments/charactel-sets.
IETF RFC 1766
IETF (Internet Engineering Task ForcRFC 1766: Tags for the Identification of Languaged. H.
Alvestrand. 1995. (S¢e http://www.ietf.org/rfc/rfc1766.txt.)
ISO/IEC 10646
ISO (International Organization for Standardizatid8O/IEC 10646-1993 (E). Information
technology -- Universal Multiple-Octet Coded Character Set (UCS) -- Part 1: Architecture and Basic
Multilingual Plane.[Geneva]: International Organization for Standardization, 1993 (plus
amendments AM 1 through AM 7).
ISO/IEC 10646-2000
ISO (International Organization for Standardizatid8)0/IEC 10646-1:2000. Information
technology -- Universal Multiple-Octet Coded Character Set (UCS) -- Part 1: Architecture and Basic

47

ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets
http://www.ietf.org/rfc/rfc1766.txt

A.2 Other References

Multilingual Plane.[Geneva]: International Organization for Standardization, 2000.

Unicode
The Unicode ConsortiunThe Unicode Standard, Version 2Reading, Mass.: Addison-Wesley
Developers Press, 1996.

Unicode3
The Unicode ConsortiunThe Unicode Standard, Version 3Reading, Mass.: Addison-Wesley
Developers Press, 2000. ISBN 0-201-61633-5.

A.2 Other References

Aho/Uliman
Aho, Alfred V., Ravi Sethi, and Jeffrey D. UllmaDompilers: Principles, Techniques, and Tools
Reading: Addison-Wesley, 1986, rpt. corr. 1988.

Berners-Lee et al.
Berners-Lee, T., R. Fielding, and L. Masintdniform Resource Identifiers (URI): Generic Syntax
and Semanticsl997. (Work in progress; see updates to RFC1738.)

Briggemann-Klein
Briggemann-Klein, Anne. Formal Models in Document Processing. Habilitationsschrift. Faculty of
Mathematics at the University of Freiburg, 1993. (See
[ftp://ftp.informatik.uni-freiburg.de/documents/papers/brueggem/habil.ps.)

Briggemann-Klein and Wood
Briiggemann-Klein, Anne, and Derick Wodkterministic Regular Languagéedniversitét
Freiburg, Institut fir Informatik, Bericht 38, Oktober 1991. Extended abstract in A. Finkel, M.
Jantzen, Hrsg., STACS 1992, S. 173-184. Springer-Verlag, Berlin 1992. Lecture Notes in Computer
Science 577. Full version titlgdne-Unambiguous Regular Languagesnformation and
Computation 140 (2): 229-253, February 1998.

Clark
James Clark. Comparison of SGML and XML. gee http://mww.w3.0rg/TR/NOTE-sgml-xml-941215.

IANA-LANGCODES
(Internet Assigned Numbers AuthoritiRegistry of Language Tagsd. Keld Simonsen et al. (See
[http://www.isi.edu/in-notes/iana/assignments/languages/.)

IETF RFC2141
IETF (Internet Engineering Task ForcBFC 2141: URN Syntard. R. Moats. 1997. (See
[http:/lwww.ietf.org/rfc/rfc2141.txt.)

IETF RFC 2279
IETF (Internet Engineering Task ForcB¥FC 2279: UTF-8, a transformation format of ISO 10646
ed. F. Yergeau, 1998. (Jee http://www.ietf.org/rfc/rfc2279.txt.)

IETF RFC 2376
IETF (Internet Engineering Task ForcB¥FC 2376: XML Media Typesd. E. Whitehead, M.
Murata. 1998. (Sge http://www.ietf.org/rfc/rfc2378.txt.)

IETF RFC 2396
IETF (Internet Engineering Task ForcB¥FC 2396: Uniform Resource Identifiers (URI): Generic
Syntax T. Berners-Lee, R. Fielding, L. Masinter. 1998. (See http://www.letf.org/rfc/rfc2396.txt.)

IETF RFC 2732
IETF (Internet Engineering Task ForcB¥C 2732: Format for Literal IPv6 Addresses in URIRs
Hinden, B. Carpenter, L. Masinter. 1999. (See http://www.ietf.org/rfc/rfc27B32.txt.)

48

ftp://ftp.informatik.uni-freiburg.de/documents/papers/brueggem/habil.ps
http://www.w3.org/TR/NOTE-sgml-xml-971215
http://www.isi.edu/in-notes/iana/assignments/languages/
http://www.ietf.org/rfc/rfc2141.txt
http://www.ietf.org/rfc/rfc2279.txt
http://www.ietf.org/rfc/rfc2376.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2732.txt

B Character Classes

IETF RFC 2781
IETF (Internet Engineering Task ForcBFC 2781: UTF-16, an encoding of ISO 10646. P.
Hoffman, F. Yergeau. 2000. (See http://www.ietf.org/rfc/rfc2781.txt.)

ISO 639
(International Organization for Standardizatid®O 639:1988 (E). Code for the representation of
names of languagegseneva]: International Organization for Standardization, 1988.

ISO 3166
(International Organization for Standardizatid®O 3166-1:1997 (E). Codes for the representation
of names of countries and their subdivisions -- Part 1: Country déseva]: International
Organization for Standardization, 1997.

ISO 8879
ISO (International Organization for Standardizatid8)D 8879:1986(E). Information processing --
Text and Office Systems -- Standard Generalized Markup Language (S&igiigdition --
1986-10-15. [Geneva]: International Organization for Standardization, 1986.

ISO/IEC 10744
ISO (International Organization for Standardizatid8O/IEC 10744-1992 (E). Information
technology -- Hypermedia/Time-based Structuring Language (HyTiGexeva]: International
Organization for Standardization, 19€Xtended Facilities Annexgseneva]: International
Organization for Standardization, 1996.

WEBSGML
ISO (International Organization for Standardizatid8)D 8879:1986 TC2. Information technology --
Document Description and Processing Languaf@eneva]: International Organization for
Standardization, 1998. (See http://www.sgmlsource.com/8879rev/n0029.htm.)

XML Names
Tim Bray, Dave Hollander, and Andrew Layman, editblamespaces in XM extuality,
Hewlett-Packard, and Microsoft. World Wide Web Consortium, 1999. (See
[http:/iwww.w3.0rg/TR/REC-xml-names/.)

B Character Classes

Following the characteristics defined in the Unicode standard, characters are classed as base characters
(among others, these contain the alphabetic characters of the Latin alphabet), ideographic characters, and
combining characters (among others, this class contains most diacritics) Digits and extenders are also
distinguished.

Characters

[84] Letter == [BaseChar]p.50] | Ideogfaphic [0.51]]

49

http://www.ietf.org/rfc/rfc2781.txt
http://www.sgmlsource.com/8879rev/n0029.htm
http://www.w3.org/TR/REC-xml-names/

(85]

BaseChar

B Character Classes

[#x0041-#x005A] | [#x0061-#x007A]

| [#x00CO0-#x00D6] | [#x00D8-#x00F6]

| [#x00F8-#x00FF] | [#x0100-#x0131]

| [#x0134-#x013E] | [#x0141-#x0148]

| [#x014A-#x017E] | [#x0180-#x01C3]

| [#X01CD-#x01F0] | [#X01F4-#x01F5]

| [#x01FA-#x0217] | [#x0250-#x02A8]

| [#x02BB-#x02C1] | #x0386

| [#x0388-#x038A] | #x038C

| [#x038E-#x03A1] | [#x03A3-#x03CE]

| [#x03D0-#x03D6] | #x03DA | #x03DC
| #x03DE | #x03EOQ | [#x03E2-#x03F3]

| [#x0401-#x040C] | [#X040E-#X044F]

| [#x0451-#x045C] | [#X045E-#x0481]

| [#x0490-#x04C4] | [#x04C7-#x04C8]

| [#x04CB-#x04CC] | [#x04D0-#x04EB]
| [#x04EE-#x04F5] | [#x04F8-#x04F9]

| [#x0531-#x0556] | #x0559

| [#x0561-#x0586] | [#x05D0-#x05EA]

| [#x05F0-#x05F2] | [#x0621-#x063A]

| [#x0641-#x064A] | [#X0671-#x06B7]

| [#x06BA-#x06BE] | [#x06CO0-#x06CE]
| [#x06D0-#x06D3] | #x06D5

| [#x06E5-#X06E6] | [#x0905-#x0939]

| #x093D | [#x0958-#x0961]

| [#x0985-#x098C] | [#x098F-#x0990]

| [#x0993-#x09A8] | [#x09AA-#x09B0]

| #x09B2 | [#x09B6-#x09B9]

| [#x09DC-#x09DD] | [#x09DF-#x09E1]
| [#X09F0-#x09F1] | [#X0A05-#x0A0A]

| [#XOAOF-#x0A10] | [#x0A13-#x0A28]

| [#X0A2A-#x0A30] | [#x0A32-#x0A33]

| [#x0A35-#x0A36] | [#x0A38-#x0A39]

| [#x0A59-#x0A5C] | #x0A5E

| [#x0AT72-#x0A74] | [#x0A85-#x0A8B]

| #x0A8D | [#x0A8F-#x0A91]

| [#x0A93-#x0AA8] | [#x0AAA-#x0ABO]
| [#XOAB2-#x0AB3] | [#X0AB5-#x0AB9]
| #xOABD | #X0AEO | [#x0B05-#x0BOC]
| [#XOBOF-#x0B10] | [#x0B13-#x0B28]

| [#x0B2A-#x0B30] | [#x0B32-#x0B33]

| [#x0B36-#x0B39] | #x0B3D

| [#x0B5C-#x0B5D] | [#x0B5F-#x0B61]
| [#x0B85-#x0B8A] | [#x0B8E-#x0B90]
| [#x0B92-#x0B95] | [#x0B99-#x0B9A]

| #x0B9C | [#x0B9E-#x0B9F]

| [#XOBA3-#x0BA4] | [#XOBA8-#X0BAA]
| [#XOBAE-#x0BB5] | [#x0BB7-#x0BBY]
| [#x0CO5-#x0COC] | [#x0COE-#x0C10]
| [#X0C12-#x0C28] | [#X0C2A-#x0C33]
| [#x0C35-#x0C39] | [#x0C60-#x0C61]
| [#x0C85-#x0C8C] | [#x0C8E-#x0C90]
| [#x0C92-#x0CAS8] | [#XOCAA-#x0CB3]
| [#x0CB5-#x0CB9] | #x0CDE

50

(86]

Ideographic

B Character Classes

| [#X0CEO-#X0CE1] | [#x0D05-#x0D0C]
| [#XODOE-#x0D10] | [#x0D12-#x0D28]
| [#x0D2A-#x0D39] | [#x0D60-#x0D61]
| [#XOE01-#XOE2E] | #X0E30

| [#XOE32-#X0E33] | [#X0E40-#x0E45]

| [#XOE81-#X0E82] | #x0E84

| [#XOE87-#X0E88] | #XOE8A | #X0E8D
| [#XOE94-#X0E97] | [#XOE99-#X0E9F]
| [#XOEAL-#XOEA3] | #XOEA5 | #X0EA7
| [#XOEAA-#XOEAB] | [#XOEAD-#X0EAE]
| #XOEBO | [#XOEB2-#x0EB3] | #X0EBD
| [#XOECO-#XOECA4] | [#XOF40-#x0FA47]
| [#XOF49-#x0F69] | [#x10A0-#x10C5]

| [#x10D0-#x10F6] | #x1100

| [#x1102-#x1103] | [#x1105-#x1107]

| #x1109 | [#x110B-#x110C]

| [#x110E-#x1112] | #x113C | #x113E

| #x1140 | #x114C | #x114E | #x1150

| [#x1154-#x1155] | #x1159

| [#x115F-#x1161] | #x1163 | #x1165

| #x1167 | #x1169 | [#x116D-#x116E]

| [#x1172-#x1173] | #x1175 | #x119E

| #x11A8 | #x11AB | [#x11AE-#x11AF]
| [#x11B7-#x11B8] | #x11BA

| [#x11BC-#x11C2] | #x11EB | #x11F0
| #x11F9 | [#x1E00-#x1E9B]

| [#XLEAO-#x1EF9] | [#x1F00-#x1F15]
| [#x1F18-#x1F1D] | [#x1F20-#x1F45]

| [#x1F48-#x1F4D] | [#x1F50-#x1F57]

| #x1F59 | #x1F5B | #x1F5D

| [#x1F5F-#x1F7D] | [#x1F80-#x1FB4]
| [#x1FB6-#x1FBC] | #x1FBE

| [#x1LFC2-#x1FC4] | [#x1FC6-#x1FCC]
| [#x1FDO-#x1FD3] | [#x1FD6-#x1FDB]
| [#XLFEO-#X1FEC] | [#x1FF2-#x1FF4]
| [#X1FF6-#x1FFC] | #x2126

| [#x212A-#x212B] | #x212E

| [#x2180-#x2182] | [#x3041-#x3094]

| [#x30A1-#x30FA] | [#x3105-#x312C]

| [#xAC00-#xD7A3]

[#x4EQ0-#x9FAB] | #x3007
| [#x3021-#x3029]

51

(87]

(88]

CombiningChar

Digit

B Character Classes

[#x0300-#x0345] | [#x0360-#x0361]

| [#x0483-#x0486] | [#x0591-#x05A1]

| [#x05A3-#x05B9] | [#x05BB-#x05BD]
| #x05BF | [#x05C1-#x05C2] | #x05C4

| [#x064B-#x0652] | #x0670

| [#x06D6-#x06DC] | [#x06DD-#x06DF]
| [#X06EO0-#X06E4] | [#x06E7-#x06E8]

| [#X06EA-#x06ED] | [#x0901-#x0903]

| #x093C | [#x093E-#x094C] | #x094D

| [#x0951-#x0954] | [#x0962-#x0963]

| [#x0981-#x0983] | #x09BC | #x09BE

| #x09BF | [#x09CO0-#x09C4]

| [#x09C7-#x09C8] | [#x09CB-#x09CD]
| #x09D7 | [#x09E2-#x09E3] | #x0A02

| #x0A3C | #x0A3E | #x0A3F

| [#X0A40-#x0A42] | [#x0A47-#x0A48]

| [#X0A4B-#x0A4D] | [#X0A70-#X0A71]
| [#x0A81-#x0A83] | #X0ABC

| [#XOABE-#x0AC5] | [#X0ACT7-#x0AC9]
| [#XOACB-#x0ACD] | [#x0B01-#x0B03]
| #x0B3C | [#xOB3E-#x0B43]

| [#xOBA47-#x0B48] | [#x0B4B-#x0B4D]
| [#x0B56-#x0B57] | [#x0B82-#x0B83]

| [#xOBBE-#x0BC2] | [#x0BC6-#x0BC8]
| [#xOBCA-#x0BCD] | #x0BD7

| [#x0C01-#x0CO03] | [#x0C3E-#x0C44]
| [#x0C46-#x0C48] | [#X0C4A-#x0C4D]
| [#x0C55-#x0C56] | [#x0C82-#x0C83]
| [#XOCBE-#x0CC4] | [#x0CC6-#x0CC8]
| [#xXOCCA-#x0CCD] | [#x0CD5-#x0CD6]
| [#x0D02-#x0DO03] | [#x0D3E-#x0D43]
| [#x0D46-#x0D48] | [#x0D4A-#x0D4D]
| #x0D57 | #x0E31 | [#x0E34-#x0E3A]

| [#XOE47-#x0E4E] | #x0EB1

| [#XOEB4-#x0EB9] | [#XOEBB-#x0EBC]
| [#XOEC8-#X0ECD] | [#x0F18-#x0F19]
| #XOF35 | #x0F37 | #x0F39 | #x0F3E

| #XOF3F | [#X0OF71-#x0F84]

| [#xOF86-#x0F8B] | [#x0F90-#x0F95]

| #XOF97 | [#XOF99-#x0FAD]

| [#xOFB1-#x0FB7] | #x0FB9

| [#x20D0-#x20DC] | #x20E1

| [#x302A-#x302F] | #x3099 | #x309A

[#x0030-#x0039] | [#x0660-#x0669]

| [#x0BF0-#x06F9] | [#x0966-#X096F]

| [#X09E6-#X09EF] | [#X0AB6-#X0AG6F]
| [#XOAE6-#X0AEF] | [#X0B66-#X0B6F]
| [#XOBE7-#XOBEF] | [#X0C66-#X0C6F]
| [#XOCE6-#xOCEF] | [#x0D66-#x0D6F]
| [#XOE50-#X0E59] | [#XOEDO-#X0EDY]
| [#XOF20-#x0F29]

52

C XML and SGML (Non-Normative)

[89] Extender u= #x00B7 | #x02DO0 | #x02D1 | #x0387
| #x0640 | #X0E46 | #x0ECS6 | #x3005
| [#x3031-#x3035] | [#x309D-#x309E]
| [#x30FC-#x30FE]

The character classes defined here can be derived from the Unicode 2.0 character database as follows:
® Name start characters must have one of the categories LI, Lu, Lo, Lt, NI.

® Name characters other than Name-start characters must have one of the categories Mc, Me, Mn, Lm,
or Nd.

® Characters in the compatibility area (i.e. with character code greater than #xF900 and less than
#XFFFE) are not allowed in XML names.

e Characters which have a font or compatibility decomposition (i.e. those with a "compatibility
formatting tag" in field 5 of the database -- marked by field 5 beginning with a "<") are not allowed.

e The following characters are treated as name-start characters rather than name characters, because the
property file classifies them as Alphabetic: [#x02BB-#x02C1], #x0559, #X06E5, #x06E6.

® Characters #x20DD-#x20EO are excluded (in accordance with Unicode 2.0, section 5.14).

® Character #x00B7 is classified as an extender, because the property list so identifies it.

® Character #x0387 is added as a name character, because #x00B?7 is its canonical equivalent.
® Characters .’ and ’_’ are allowed as name-start characters.

® Characters -’ and ’." are allowed as name characters.

C XML and SGML (Non-Normative)

XML is designed to be a subset of SGML, in that every XML document should also be a conforming
SGML document. For a detailed comparison of the additional restrictions that XML places on documents

beyond those of SGML, sge [CIdrk] [p.48] .

D Expansion of Entity and Character References
(Non-Normative)

This appendix contains some examples illustrating the sequence of entity- and character-reference
recognition and expansion, as specified.ih XML Processor Treatment of Entities and References

[p.39].

If the DTD contains the declaration

53

D Expansion of Entity and Character References (Non-Normative)

<IENTITY example "<p>An ampersand (&#38;) may be escaped
numerically (&#38;#38;) or with a general entity
(&amp;).</p>" >

then the XML processor will recognize the character references when it parses the entity declaration, and
resolve them before storing the following string as the value of the eexigyriple "

<p>An ampersand (&) may be escaped
numerically (&#38;) or with a general entity
(&amp;).</p>

A reference in the document t&éxample; " will cause the text to be reparsed, at which time the start-
and end-tags of the element will be recognized and the three references will be recognized and
expanded, resulting in@element with the following content (all data, no delimiters or markup):

An ampersand (&) may be escaped
numerically (&) or with a general entity
(&).

A more complex example will illustrate the rules and their effects fully. In the following example, the line
numbers are solely for reference.

1 <?xml version="1.0"?>

2 <IDOCTYPE test [

3 <IELEMENT test (#PCDATA) >

4 <IENTITY % xx '%2z;'>

5 <IENTITY % zz '<!'ENTITY tricky "error-prone" >’ >
6 %XX;

71>

8 <test>This sample shows a &tricky; method.</test>

This produces the following:

® in line 4, the reference to character 37 is expanded immediately, and the parametedxenisty "
stored in the symbol table with the val®Z2z; ". Since the replacement text is not rescanned, the

reference to parameter entigz™ is not recognized. (And it would be an error if it were, sirez
is not yet declared.)

® in line 5, the character referen< " is expanded immediately and the parameter erzity fs
stored with the replacement textENTITY tricky "error-prone" > ", which is a
well-formed entity declaration.

® inline 6, the reference taxX " is recognized, and the replacement textaf"'(namely %zz; ") is
parsed. The reference tez" is recognized in its turn, and its replacement tesdENTITY
tricky "error-prone" > ") is parsed. The general entityitky " has now been declared,
with the replacement texefror-prone "

54

E Deterministic Content Models (Non-Normative)

® in line 8, the reference to the general entiticky " is recognized, and it is expanded, so the full
content of theest element is the self-describing (and ungrammatical) sfring sample shows a
error-prone method.

E Deterministic Content Models (Non-Normative)

As noted i3.2.1 Element Conterj{p.22] , it is required that content models in element type declarations
be deterministic. This requirement Is for compatifility [p.6] with SGML (which calls deterministic content
models "unambiguous"); XML processors built using SGML systems may flag non-deterministic content
models as errors.

For example, the content modéb, c) | (b, d)) is non-deterministic, because given an intial
the XML processor cannot know whibhin the model is being matched without looking ahead to see
which element follows thb. In this case, the two referencedtoan be collapsed into a single reference,
making the model rea, (c | d)) . An initial b now clearly matches only a single name in the
content model. The processor doesn’t need to look ahead to see what follows; eitievould be
accepted.

More formally: a finite state automaton may be constructed from the content model using the standard
algorithms, e.g. algorithm 3.5 in section 3.9 of Aho, Sethi, and U[lman JAho/Ullman] [p.48] . In many

such algorithms, a follow set is constructed for each position in the regular expression (i.e., each leaf node
in the syntax tree for the regular expression); if any position has a follow set in which more than one
following position is labeled with the same element type name, then the content model is in error and may
be reported as an error.

Algorithms exist which allow many but not all non-deterministic content models to be reduced
automatically to equivalent deterministic models; see Briiggemann-Kleir] 1991 [Bruggemanh-Klein]
[p.48] .

F Autodetection of Character Encodings (Non-Normative)

The XML encoding declaration functions as an internal label on each entity, indicating which character
encoding is in use. Before an XML processor can read the internal label, however, it apparently has to
know what character encoding is in use--which is what the internal label is trying to indicate. In the
general case, this is a hopeless situation. It is not entirely hopeless in XML, however, because XML limits
the general case in two ways: each implementation is assumed to support only a finite set of character
encodings, and the XML encoding declaration is restricted in position and content in order to make it
feasible to autodetect the character encoding in use in each entity in normal cases. Also, in many cases
other sources of information are available in addition to the XML data stream itself. Two cases may be
distinguished, depending on whether the XML entity is presented to the processor without, or with, any
accompanying (external) information. We consider the first case first.

55

F.1 Detection Without External Encoding Information

F.1 Detection Without External Encoding Information

Because each XML entity not accompanied by external encoding information and not in UTF-8 or
UTF-16 encodingnustbegin with an XML encoding declaration, in which the first characters must be
'<?xml’, any conforming processor can detect, after two to four octets of input, which of the following
cases apply. In reading this list, it may help to know that in UCS-4, '#x8000003C " and '?’ is
"#x0000003F ", and the Byte Order Mark required of UTF-16 data stream&IiSEFF". The notation
##is used to denote any byte value except that two conseg#étivaannot be both 00.

With a Byte Order Mark:

00 00 FE FF UCS-4, big-endian machine (1234 order)

FF FE 00 00 UCS-4, little-endian machine (4321 ordgr)

00 00 FF FE UCS-4, unusual octet order (2143)

FE FF 00 00 UCS-4, unusual octet order (3412)

FE FF ## ## UTF-16, big-endian

FF FE ## ## | UTF-16, little-endian

EF BB BF UTF-8

Without a Byte Order Mark:

56

F.1 Detection Without External Encoding Information

00 00 00 3C

UCS-4 or other encoding with a 32-bit code unit and ASCII characters encoded|as
3C 000000 ASCII values, in respectively big-endian (1234), little-endian (4321) and two untyisual

00 00 3C 00 byte orders (2143 and 3412). The encoding declaration must be read to determjne
which of UCS-4 or other supported 32-bit encodings applies.

00 3C 00 00

UTF-16BE or big-endian ISO-10646-UCS-2 or other encoding with a 16-bit codg unit
00 3C 00 3F in big-endian order and ASCII characters encoded as ASCII values (the encoding
declaration must be read to determine which)

UTF-16LE or little-endian 1SO-10646-UCS-2 or other encoding with a 16-bit code
3C 00 3F 00 unit in little-endian order and ASCII characters encoded as ASCII values (the
encoding declaration must be read to determine which)

UTF-8, ISO 646, ASCII, some part of ISO 8859, Shift-JIS, EUC, or any other 7-pit,

8-bit, or mixed-width encoding which ensures that the characters of ASCII have|their
3C 3F 78 6D | normal positions, width, and values; the actual encoding declaration must be repd to
detect which of these applies, but since all of these encodings use the same bit|patterns
for the relevant ASCII characters, the encoding declaration itself may be read reliably

EBCDIC (in some flavor; the full encoding declaration must be read to tell which

4C 6F A7 94 .
code page is in use)
UTF-8 without an encoding declaration, or else the data stream is mislabeled (lacking
Other a required encoding declaration), corrupt, fragmentary, or enclosed in a wrappgr of
some kind
Note:

In cases above which do not require reading the encoding declaration to determine the encoding, section
4.3.3 still requires that the encoding declaration, if present, be read and that the encoding name be checked
to match the actual encoding of the entity. Also, it is possible that new character encodings will be

invented that will make it necessary to use the encoding declaration to determine the encoding, in cases
where this is not required at present.

This level of autodetection is enough to read the XML encoding declaration and parse the
character-encoding identifier, which is still necessary to distinguish the individual members of each family
of encodings (e.g. to tell UTF-8 from 8859, and the parts of 8859 from each other, or to distinguish the
specific EBCDIC code page in use, and so on).

Because the contents of the encoding declaration are restricted to characters from the ASCII repertoire
(however encoded), a processor can reliably read the entire encoding declaration as soon as it has detected
which family of encodings is in use. Since in practice, all widely used character encodings fall into one of
the categories above, the XML encoding declaration allows reasonably reliable in-band labeling of
character encodings, even when external sources of information at the operating-system or
transport-protocol level are unreliable. Character encodings such as UTF-7 that make overloaded usage of
ASCll-valued bytes may fail to be reliably detected.

57

G W3C XML Working Group (Non-Normative)

Once the processor has detected the character encoding in use, it can act appropriately, whether by
invoking a separate input routine for each case, or by calling the proper conversion function on each
character of input.

Like any self-labeling system, the XML encoding declaration will not work if any software changes the
entity’s character set or encoding without updating the encoding declaration. Implementors of
character-encoding routines should be careful to ensure the accuracy of the internal and external
information used to label the entity.

F.2 Priorities in the Presence of External Encoding Information

The second possible case occurs when the XML entity is accompanied by encoding information, as in
some file systems and some network protocols. When multiple sources of information are available, their
relative priority and the preferred method of handling conflict should be specified as part of the
higher-level protocol used to deliver XML. In particular, please refer to [IETF RFC|2376] [p.48] or its
successor, which defines ttext/xml andapplication/xml MIME types and provides some

useful guidance. In the interests of interoperability, however, the following rule is recommended.

e [f an XML entity is in a file, the Byte-Order Mark and encoding declaration are used (if present) to
determine the character encoding.

G W3C XML Working Group (Non-Normative)

This specification was prepared and approved for publication by the W3C XML Working Group (WG).
WG approval of this specification does not necessarily imply that all WG members voted for its approval.
The current and former members of the XML WG are:

Jon Bosak, Sur(hair)

James ClarkTechnical Leayl

Tim Bray, Textuality and Netscap®¥NIL Co-edito)

Jean Paoli, Microsoft{ML Co-edito)

C. M. Sperberg-McQueen, U. of [IKML Co-edito)

Dan Connolly, W3C\W3C Liaisoi

Paula Angerstein, Texcel

Steve DeRose, INSO

Dave Hollander, HP

Eliot Kimber, ISOGEN

Eve Maler, ArborText

Tom Magliery, NCSA

Murray Maloney, SoftQuad, Grif SA, Muzmo and Veo Systems
MURATA Makoto (FAMILY Given), Fuji Xerox Information Systems
Joel Nava, Adobe

Conleth O'Connell, Vignette

Peter Sharpe, SoftQuad

John Tigue, DataChannel

58

H W3C XML Core Group (Non-Normative)

H W3C XML Core Group (Non-Normative)

The second edition of this specification was prepared by the W3C XML Core Working Group (WG). The
members of the WG at the time of publication of this edition were:

Paula Angerstein, Vignette

Daniel Austin, Ask Jeeves

Tim Boland

Allen Brown, Microsoft

Dan Connolly, W3C $taff Contadt

John Cowan, Reuters Limited

John Evdemon, XMLSolutions Corporation
Paul Grosso, ArbortexC-Chair)

Arnaud Le Hors, IBM Co-Chair)

Eve Maler, Sun MicrosystemSécond Edition EditQr
Jonathan Marsh, Microsoft

MURATA Makoto (FAMILY Given), IBM
Mark Needleman, Data Research Associates
David Orchard, Jamcracker

Lew Shannon, NCR

Richard Tobin, University of Edinburgh
Daniel Veillard, W3C

Dan Vint, Lexica

Norman Walsh, Sun Microsystems

Francois Yergeau, Alis Technologigsrfata List Editol)
Kongyi Zhou, Oracle

| Production Notes (Non-Normative)

This Second Edition was encoded in[the XMLspec PTD (whicl has documehtation available). The
HTML versions were produced with a combination offthe xmispé€.xsl, diffsgec.x$l, and REC-xnjl-2e.xsl
XSLT stylesheets. The PDF version was produced with the himl2ps facility and a distiller program.

59

http://www.w3.org/XML/1998/06/xmlspec-v21.dtd
http://www.w3.org/XML/1998/06/xmlspec-report-v21.htm
http://www.w3.org/XML/1998/06/xmlspec.xsl
http://www.w3.org/XML/1998/06/diffspec.xsl
http://www.w3.org/XML/1998/06/REC-xml-2e.xsl
http://www.tdb.uu.se/~jan/html2ps.html

	Extensible Markup Language †XML‡ 1.0 †Second Edition‡
	W3C Recommendation 6 October 2000
	Abstract
	Status of this Document
	Table of Contents
	Appendices

	1 Introduction
	1.1 Origin and Goals
	1.2 Terminology

	2 Documents
	2.1 Well-Formed XML Documents
	
	Document

	2.2 Characters
	
	Character Range

	2.3 Common Syntactic Constructs
	
	White Space
	Names and Tokens
	Literals

	2.4 Character Data and Markup
	
	Character Data

	2.5 Comments
	
	Comments

	2.6 Processing Instructions
	
	Processing Instructions

	2.7 CDATA Sections
	
	CDATA Sections

	2.8 Prolog and Document Type Declaration
	
	Prolog
	Document Type Definition
	External Subset

	2.9 Standalone Document Declaration
	
	Standalone Document Declaration

	2.10 White Space Handling
	2.11 End-of-Line Handling
	2.12 Language Identification

	3 Logical Structures
	
	
	Element

	3.1 Start-Tags, End-Tags, and Empty-Element Tags
	
	Start-tag
	End-tag
	Content of Elements
	Tags for Empty Elements

	3.2 Element Type Declarations
	
	Element Type Declaration

	3.2.1 Element Content
	Element-content Models

	3.2.2 Mixed Content
	Mixed-content Declaration

	3.3 Attribute-List Declarations
	
	Attribute-list Declaration

	3.3.1 Attribute Types
	Attribute Types
	Enumerated Attribute Types

	3.3.2 Attribute Defaults
	Attribute Defaults

	3.3.3 Attribute-Value Normalization

	3.4 Conditional Sections
	
	Conditional Section

	4 Physical Structures
	4.1 Character and Entity References
	
	Character Reference
	Entity Reference

	4.2 Entity Declarations
	
	Entity Declaration

	4.2.1 Internal Entities
	4.2.2 External Entities
	External Entity Declaration

	4.3 Parsed Entities
	4.3.1 The Text Declaration
	Text Declaration

	4.3.2 Well-Formed Parsed Entities
	Well-Formed External Parsed Entity

	4.3.3 Character Encoding in Entities
	Encoding Declaration

	4.4 XML Processor Treatment of Entities and References
	4.4.1 Not Recognized
	4.4.2 Included
	4.4.3 Included If Validating
	4.4.4 Forbidden
	4.4.5 Included in Literal
	4.4.6 Notify
	4.4.7 Bypassed
	4.4.8 Included as PE

	4.5 Construction of Internal Entity Replacement Text
	4.6 Predefined Entities
	4.7 Notation Declarations
	
	Notation Declarations

	4.8 Document Entity

	5 Conformance
	5.1 Validating and Non-Validating Processors
	5.2 Using XML Processors

	6 Notation
	A References
	A.1 Normative References
	A.2 Other References

	B Character Classes
	
	
	Characters

	C XML and SGML †Non-Normative‡
	D Expansion of Entity and Character References †Non-Normative‡
	E Deterministic Content Models †Non-Normative‡
	F Autodetection of Character Encodings †Non-Normative‡
	F.1 Detection Without External Encoding Information
	F.2 Priorities in the Presence of External Encoding Information

	G W3C XML Working Group †Non-Normative‡
	H W3C XML Core Group †Non-Normative‡
	I Production Notes †Non-Normative‡

