
W3C GRAPH DATA
WORKSHOP

4-6 March 2019, Berlin
Creating Bridges: RDF, Property Graph and SQL

Platinum Sponsors Gold Sponsors Silver Sponsors

Supporters

SQL AND GQL
Keith W. Hare, SC32 WG3, JCC Consulting, Inc.
Victor Lee, TigerGraph
Stefan Plantikow, Neo4j
Oskar van Rest, Oracle
Jan Michels, Oracle

22019-03-05 W3C Workshop on Web Standardization for Graph Data

Abstract
Since 2017 work has been proceeding on extending SQL with read-only
property graph extensions based on the pattern-matching paradigm of Cypher
and PGQL. SIGMOD 2017 saw the publication of the future-looking G-CORE
paper on fresh directions in PG querying, matched by implementation of
compositional queries and graph views in Cypher for Apache Spark. Since
spring 2018 the property graph world has been coalescing around the idea of a
single GQL language, drawing on all of these precedents, open to other inputs,
and closely coordinated with key aspects of SQL and its ecosystem.

In this session, designers and contributors to SQL, Cypher, GSQL and PGQL
will describe, discuss and doubtless differ on plans for the new international
standard GQL for property graph querying.

2019-03-05 W3C Workshop on Web Standardization for Graph Data 3

Introduction
• SQL – Keith Hare, Convenor, ISO/IEC JTC1 SC32 WG3 Database Languages

• A brief history
• SQL 2016
• SQL Technical Reports

• Property Graphs
• SQL/PGQ
• GQL

• GSQL – Victor Lee, TigerGraph
• PGQL – Oskar van Rest, Oracle
• Cypher – Stefan Plantikow, Neo4j
• Summary

42019-03-05 W3C Workshop on Web Standardization for Graph Data

Keith Hare
JCC Consulting, Inc.

ISO/IEC JTC1 SC32 WG3

2019-03-05 W3C Workshop on Web Standardization for Graph Data 5

What is SQL?
• SQL is a language for defining databases and manipulating the data in those

databases
• SQL Standard uses SQL as a name, not an acronym

• Might stand for SQL Query Language
• SQL queries are independent of how the data is actually stored – specify what

data you want, not how to get it
• Declarative query language

2019-03-05 6W3C Workshop on Web Standardization for Graph Data

SQL Standards – a brief history
• ISO/IEC 9075 Database Language SQL

• SQL-87 – Transactions, Create, Read, Update, Delete
• SQL-89 – Referential Integrity
• SQL-92 – Internationalization, etc.
• SQL:1999 – User Defined Types
• SQL:2003 – XML
• SQL:2008 – Expansions and corrections
• SQL:2011 – Temporal
• SQL:2016 – JSON, RPR, PTF, MDA (2019)

• 30 years of support and expansion of the standard

2019-03-05 7W3C Workshop on Web Standardization for Graph Data

SQL:2016 Major Features
• Row Pattern Recognition

• Regular Expressions across sequences of rows
• Support for Java Script Object Notation (JSON) objects

• Store, Query, and Retrieve JSON objects
• Polymorphic Table Functions

• parameters and function return value can be tables whose shape is not known until compile
time

• Additional analytics
• Trigonometric and Logarithm functions

• Multi-dimensional Arrays (2019)

2019-03-05 8W3C Workshop on Web Standardization for Graph Data

SQL:2016 Parts
Reference Document title

ISO/IEC 9075-1 Information technology -- Database languages -- SQL -- Part 1: Framework (SQL/Framework)

ISO/IEC 9075-2 Information technology -- Database languages -- SQL -- Part 2: Foundation (SQL/Foundation)

ISO/IEC 9075-3 Information technology -- Database languages -- SQL -- Part 3: Call-Level Interface (SQL/CLI)

ISO/IEC 9075-4 Information technology -- Database languages -- SQL -- Part 4: Persistent stored modules (SQL/PSM)

ISO/IEC 9075-9 Information technology -- Database languages -- SQL -- Part 9: Management of External Data (SQL/MED)

ISO/IEC 9075-10 Information technology -- Database languages -- SQL -- Part 10: Object language bindings (SQL/OLB)

ISO/IEC 9075-11 Information technology -- Database languages -- SQL -- Part 11: Information and definition schemas
(SQL/Schemata)

ISO/IEC 9075-13 Information technology -- Database languages -- SQL -- Part 13: SQL Routines and types using the Java
programming language (SQL/JRT)

ISO/IEC 9075-14 Information technology -- Database languages -- SQL -- Part 14: XML-Related Specifications (SQL/XML)

ISO/IEC 9075-15 Information technology -- Database languages -- SQL -- Part 15: Multi-dimensional Arrays (SQL/MDA) (2019)

2019-03-05 W3C Workshop on Web Standardization for Graph Data 9

SQL Technical Reports – 19075
• SQL Standards committees have accumulated a great deal of descriptive

material
• Useful information (non-normative) but does not belong in the actual standard.
• Started creating Technical Reports from this material

• First was published in 2011
• Total of seven are now published
• Eighth will be published soon

• Available from JTC1 Freely Available Standards page:
• http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
• Search for 19075
• Must agree to single use license

• The current list of Technical Reports is:

2019-03-05 10W3C Workshop on Web Standardization for Graph Data

http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

SQL Technical Reports
Reference Document title

Publication
Date

ISO/IEC TR 19075-1 Information technology -- Database languages -- SQL Technical Reports -- Part 1: XQuery Regular Expression
Support in SQL

2011-07-06

ISO/IEC TR 19075-2 Information technology -- Database languages -- SQL Technical Reports -- Part 2: SQL Support for Time-
Related Information

2015-07-01

ISO/IEC TR 19075-3 Information technology -- Database languages -- SQL Technical Reports -- Part 3: SQL Embedded in Programs
using the Java TM programming language

2015-07-01

ISO/IEC TR 19075-4 Information technology -- Database languages -- SQL Technical Reports -- Part 4: SQL with Routines and types
using the JavaTM programming language

2015-07-01

ISO/IEC TR 19075-5 Information technology -- Database languages -- SQL Technical Reports -- Part 5: Row Pattern Recognition in
SQL

2016-12-14

ISO/IEC TR 19075-6 Information technology -- Database languages -- SQL Technical Reports -- Part 6: SQL support for JSON 2017-03-29

ISO/IEC TR 19075-7 Information technology -- Database languages -- SQL Technical Reports - Part 7: SQL Support for Polymorphic
Table Functions

2017-03-29

ISO/IEC TR 19075-8 Information technology -- Database languages -- SQL Technical Reports -- Part 8: SQL Support for multi
dimensional arrays

2019

2019-03-05 11W3C Workshop on Web Standardization for Graph Data

What's next?
SC32 WG3 is adding support to the SQL standards in the following areas:
• Property Graph Queries in SQL
• Graph Query Language
• Streaming SQL
• Etc.

2019-03-05 W3C Workshop on Web Standardization for Graph Data 12

Property Graphs
• Nodes/Vertices
• Relationships/Edges

• 0..* Labels
• 0..* Key-Value Properties

• Intrinsic Identity

• Schema:
Each label defines
its allowed properties

2019-03-05 W3C Workshop on Web Standardization for Graph Data 13

Property Graph Pattern Matching

2019-03-05 W3C Workshop on Web Standardization for Graph Data 14

SELECT * FROM MyGraph GRAPH_TABLE (

MATCH (who:Person)-[:DROVE&SCRATCHED]->(car:Car),
(car)<-[:OWNS]-(partner:Person)

WHERE EXISTS (who)-[:MARRIED]-(partner)

COLUMNS (who.name AS driver, partner.name AS owner)
)

SQL, SQL/PGQ, and GQL

2019-03-05 W3C Workshop on Web Standardization for Graph Data 15

SQL GQLSQL/
PGQ

SQL and SQL/PGQ

2019-03-05 W3C Workshop on Web Standardization for Graph Data 16

SQL/Framework

SQL/Foundation

SQL/Schemata

SQL Project

Arrows indicate
dependencies

SQL/XML SQL/PSM
SQL/MDA

SQL/PGQ

SQL/MDASQL/PSM
SQL/XML

SQL and GQL Projects

2019-03-05 W3C Workshop on Web Standardization for Graph Data 17

SQL/Framework

SQL/Foundation

SQL/Schemata

SQL/PGQ

GQL Foundation

GQL Proper

SQL Project GQL Project

Thanks to Fred Zemke, Modified by WG3

Arrows indicate
dependencies

Read GQL

GQL Project Potential Structure
Three parts (at least)
• GQL Foundation (Groundwork, or some other name)

• Incorporate by reference useful parts of:
• SQL/Framework
• SQL/Foundation

• Read GQL (or some other name)
• Specify graph capabilities needed by both SQL/PGQ and GQL/Proper
• Graph Pattern Matching…

• GQL/Proper
• Graph capabilities not needed by SQL/PGQ

2019-03-05 W3C Workshop on Web Standardization for Graph Data 18

What is the input for SQL/PGQ and GQL
• Currently under discussion in various committees

• ANSI INCITS DM32.2 (Databases) Property Graph Ad Hoc
• Chaired by Jan Michels, Oracle
• Participants from

• Vendors
• Consultants
• LDBC Graph QL Task Force

• Real work happening here
• ANSI INCITS DM32.2 (Databases)
• ISO/IEC JTC1 SC32 WG3 – Database Languages

• Current Graph Query efforts

2019-03-05 W3C Workshop on Web Standardization for Graph Data 19

GQL Lineage

2019-03-05 W3C Workshop on Web Standardization for Graph Data 20

Source: Petra Selmer

Input from Participants
• ANSI INCITS DM32.2 (Databases) Property Graph Ad Hoc
• Chaired by Jan Michels, Oracle
• Participants from

• Vendors
• Consultants
• LDBC Graph QL Task Force

• Vendors Include
• TigerGraph
• SAP
• Oracle
• Neo4j
• IBM

2019-03-05 W3C Workshop on Web Standardization for Graph Data 21

Victor Lee
TigerGraph

2019-03-05 W3C Workshop on Web Standardization for Graph Data 22

Property Graph Language
for High Performance

Victor Lee, TigerGraph

© 2019 TigerGraph. All Rights Reserved

Origins of GSQL

Design a property graph database for tomorrow's big data and
analytics
● Real-time transactions (OLTP) and complex analytics (OLAP)
● Billion- to Trillion- scale graphs

Design Principles
● Native graph - efficient storage and graph traversal
● Parallel processing - speed
● Distributed - scale
● ACID - transactional
● graph "query" language makes it easy to use such a database

24

© 2019 TigerGraph. All Rights Reserved

GSQL Design Features

25

Schema-Based

Optimizes storage
efficiency and query
speed. Supports data-
independent app/query
development.

Built-in High
Performance Parallelism

Achieves fast results
while being easy to code

SQL-Like

Familiar to 1 million
users

Conventional
Control Flow (FOR,
WHILE, IF/ELSE)
Makes it easy to
implement conventional
algorithms

Procedural Queries

Parameterized queries
are flexible and can be
used to build more
complex queries

Transactional Graph
Updates
HTAP - Hybrid
Transactional / Analytical
Processing with real-time
data updates

© 2019 TigerGraph. All Rights Reserved

Schema-less vs. Schema-first

26

● Schema-less: For each access,
○ Machine needs to determine whether a given

vertex has the label of interest, has the
properties of interest, etc.

● Schema-first:
○ Machine can read/write property values faster

because it already knows which properties exist
and where to find them in memory.

Entity1

PropA: val

PropC: val

PropD: val

Entity2

PropC: val

PropE: val

Entity1 Entity2

PropA val

PropB

PropC val val

PropD val

PropE val

© 2019 TigerGraph. All Rights Reserved

Proposals for GQL - Graph Model

● Schema-first Option
○ Vertex types and edge types have a defined property schema

○ Vertex instances and edge instances adhere to the schema

○ Option to explicitly name the reverse version of a directed edge

○ Labels can correspond to a type name or be just a tag

CREATE VERTEX Person (ssn int PRIMARY_KEY, firstName string, lastName string, bday date)

CREATE DIRECTED EDGE traveledTo(FROM p Person, TO loc Location, mode string, arrival date)

WITH REVERSE_EDGE wasVisitedBy

27

© 2019 TigerGraph. All Rights Reserved

Graphs

• A graph is a collection of vertex types and edge types (including all
instances of the named types):

CREATE GRAPH Travel (Person, Location, TraveledTo, Transportation, TraveledBy)

• Can have multiple graphs, possibly overlooking/sharing data.
• Each graph is a domain for access control, e.g.,

GRANT ROLE admin ON GRAPH Travel TO Victor

28

© 2019 TigerGraph. All Rights Reserved

Labels

● A label is associated with a set of zero or properties.
○ Each vertex type name or edge type name is a label, e.g., Person, Location
○ Can create labels with no properties ⇒ tags

● Labels are applied at the instance level.

● When a vertex or edge instance is created, it is given one or more
labels ⇒ sets the instance's property schema

29

© 2019 TigerGraph. All Rights Reserved

Proposals for GQL - Query Language

1. Basic Goals
a. Multi-hop paths for pattern matching
b. Composable can return a graph or a "table"

2. Features for Analytics
a. Complex data types list, set, bag(multiset), map, heap
b. Accumulators for parallelizable computation
c. Control flow Looping, Conditional branching
d. CRUD, Turing complete Insert, Update, Delete (SQL-like)
e. Procedural Each query can be compiled into a

parameterized procedure

30

© 2019 TigerGraph. All Rights Reserved

Multi-hop Paths, SELECT Statement

SELECT l2

FROM Person:self -(TraveledTo>:t1)- Location:l1 -(<TraveledTo:t2)- Person:p

-(TraveledTo>:t3)- Location:l2

WHERE self.ssn == mySSN AND p.ssn != self.ssn

AND l2.name != l1.name

31

Person

Location

Person

Location

© 2019 TigerGraph. All Rights Reserved

Accumulators
Special types of variables that accumulate information about the graph
during traversal.pecial types of variables that accumulate information about
the graph during traversal.

32

Global Accumulators:
• Stored in globally, visible to all.

• All vertices and edges have access.

e.x. Accum @A;

4

@@B

2,1,1

15
@A

1,4,10

10

4

1

2

1
1

e.x. SumAccum @@B;

@A

@A

@A

@A

Local Accumulators:
• Each selected vertex has its own

accumulator.
• Local means per vertex. Each vertex does its

own processing and considers what it can
see/read/write.

© 2019 TigerGraph. All Rights Reserved

Accumulators

There are a whole list of accumulators that are supported in GSQL language. They follow the same
rules for value assigning and accessing. However each of them has their unique way of
aggregating values.

33

Old Value:
[2]

New Value:
[2,1,3,5]

1, 3, 3, 5

1 3 5

SetAccum<int>

Old Value:
[2]

New Value:
[2,1,5,3,3]

1, 5, 3, 3

1 3

ListAccum<int>

Old Value:
[1->1]

New Value:
1->6
5->2

1->2
1->3
5->2

1->2 1->3

MapAccum<int,SumAccum<int>>

Old Value:
[userD,150]
New Value:
[userC,300,
UserD,150,
userA,100]

userC,300
userA,100

(“userA”, 100)

HeapAccum<Tuple>

5 5->23 3 (“userC”, 300)

Maintains a collection of
unique elements.

Maintains a sequential
collection of elements.

Maintains a collection of
(key -> value) pairs.

Maintains a sorted collection of
tuples and enforces a

maximum number of tuples in
the collection

© 2019 TigerGraph. All Rights Reserved

ACCUM Clause
What is the age distribution of friends that were registered in 2018?

34

CREATE QUERY GetFriends(vertex<User> inputUser) FOR GRAPH Social {

MapAccum<uint, uint> @@ageMap;
Start = {inputUser};
Friends = SELECT t FROM Start:s-(IsFriend:e)-:t

WHERE e.connectDt BETWEEN to_datetime(“2018-01-01”)

AND to_datetime(“2019-01-01”)

ACCUM @@ageMap += (t.age/10->1);
PRINT @@ageMap;

}

Input
User

UserA

UserB

UserC

Start FriendsIsFriend

s

s

s

t
25e

2018-05-11
e

2018-08-01
e

2019-01-22

t
28
t

35
@@ageMap

(2->1)

(2->1)

(3->1)

(2->1)
(2->1)
(3->1)

UserD

s
e

2018-02-22 t
31

WHERE

ACCUM

AGGREGATE

(2->2)
(3->1)

Select the matching
edges
Local compute + send
messages
Aggregate the
messages to
accumulator●Only the edges satisfy WHERE do logics in

ACCUM

●In ACCUM, vertices do not see each other's
updates b/c updates aren't processed until the
AGGREGATE step.

●The AGGREGATE phase is done
automatically after ACCUM. After that, the
updated accumulator value can be accessed

● += means sending message to accumulator

● ACCUM has access to s, e and t

© 2019 TigerGraph. All Rights Reserved

ACCUM Clause
Output the average age of friends of friends

35

CREATE QUERY GetFriends(vertex<User> inputUser) FOR

GRAPH Social {

AvgAccum @avgAge;

Start = {inputUser};

Friends1Hop = SELECT t FROM Start:s-(IsFriend:e)-:t;

Friends2Hop = SELECT t

FROM Friends1Hop:s-(IsFriend:e)-:t

ACCUM t.@avgAge += s.age;

print Friends2Hop;

}

Input
User

UserA

UserB

UserC

Start Friends1Hop

UserD

UserE

UserF

UserG

Friends2Ho
p @avgAg

e

@avgAg
e

@avgAg
e

18,23,33

23,33

46

age:18

age:23

age:33

age:46

ACCUM AGGREGATE
Send the messages
to target nodes

Aggregate the
messages to
accumulator

52.00

22.50

46.00
● Update of local accumulator cannot be seen during ACCUM phase

● The messages will be aggregated during AGGREGATE phase based
on accumulator type.

© 2019 TigerGraph. All Rights Reserved

Other Analytics Features

For use cases for
● complex data types (list, set, map, heap, user-defined tuple)
● control flow
● query-calling-query

See TigerGraph user documentation "GSQL Demo Examples"
https://docs.tigergraph.com/dev/gsql-examples

For TigerGraph's GSQL graph algorithm library, see
https://docs.tigergraph.com/graph-algorithm-library

36

https://docs.tigergraph.com/dev/gsql-examples
https://docs.tigergraph.com/graph-algorithm-library

Oskar van Rest
Oracle

2019-03-05 W3C Workshop on Web Standardization for Graph Data 37

Why Property Graphs with SQL?
• Users are using both SQL data and Property Graph data

• Application development is easier, better, quicker, faster if only one interface

2019-03-05 W3C Workshop on Web Standardization for Graph Data 38

SQL extensions for Property Graphs (PGs)
• Goal: define extensions to query property graphs

• Agree on one (or possibly more) representation of PGs in SQL
• Most obvious, in tables
• Maybe later, some “native” storage format

• Agree on the way to query PGs in SQL
• Query PGs “natively” (use the power of pattern matching)
• Represent result as a table (unleash the power of SQL on the result)
• Maybe later DML operations on a property graph directly, and graph (view) construction

• Targeted for the next version of SQL (~2020/21)

2019-03-05 W3C Workshop on Web Standardization for Graph Data 39

2019-03-05 W3C Workshop on Web Standardization for Graph Data 40

Property Graph Definition (DDL) – Example
• Example:

CREATE PROPERTY GRAPH myGraph

VERTEX TABLES (Person, Message)
EDGE TABLES (

Created SOURCE Person DESTINATION Message,

Commented SOURCE Person DESTINATION Message)

• Existing tables (or views): Person, Message, Created, Commented
• We infer keys & connections from primary/foreign keys of underlying tables

• PK-FK determines connection between vertices via edges (e.g., person -[created]-> message)
• All columns of each table are exposed as properties of the corresponding vertex/edge

(tables)

Create a PG w/ two vertex
tables and two edge tables.

DDL – Example (cont.)
Example for optional clauses:

CREATE PROPERTY GRAPH myGraph
VERTEX TABLES (

People KEY (id)
LABEL Person
PROPERTIES (emailAddress AS email),

Messages KEY (id)
LABEL Message
PROPERTIES (created AS creationDate, content))

EDGE TABLES (
CreatedMessage KEY (id)

SOURCE KEY (creator) REFERENCES People
DESTINATION KEY (message) REFERENCES Messages
LABEL Created NO PROPERTIES,

CommentedOnMessage KEY (id)
SOURCE KEY (commenter) REFERENCES People
DESTINATION KEY (message) REFERENCES Messages
LABEL Commented NO PROPERTIES)

2019-03-05 W3C Workshop on Web Standardization for Graph Data 41

Same PG as before –
but fine-grained control over
labels, properties, etc.

2019-03-05 W3C Workshop on Web Standardization for Graph Data 42

Postfix operator applied
to graph, returns table

Querying PGs – Example

SELECT GT.creationDate, GT.content
FROM myGraph GRAPH_TABLE (
MATCH
(Creator IS Person WHERE Creator.email = :email1)

-[IS Created]->
(M IS Message)

<-[IS Commented]-
(Commenter IS Person WHERE Commenter.email = :email2)

WHERE ALL_DIFFERENT (Creator, Commenter)
ONE ROW PER MATCH
COLUMNS (

M.creationDate,
M.content)

) AS GT

Get the creationDate and content of
the messages created by one
person ("email1") and commented
on by another person ("email2").

Vertex pattern enclosed
in ()

Edge pattern enclosed in -[]->

COLUMNS defines the shape
of the output table. Properties
projected out of the MATCH.

Querying PGs – Example (cont.)
SELECT L.Here, GT.GasID, L.There, GT.TotalCost, GT.Eno, GT.Vid GT.Eid
FROM List AS L LEFT OUTER JOIN MyGraph GRAPH_TABLE (

MATCH CHEAPEST (
(H IS Place WHERE H.ID = L.Here)

(-[R1 IS Route COST R1.Traveltime]->)*
(G IS Place WHERE G.HasGas = 1)

(-[R2 IS Route COST R2.Traveltime]->)*
(T IS Place WHERE T.ID = L.There))

ONE ROW PER STEP (V, E)
COLUMNS (H.ID AS HID, G.ID AS GasID, T.ID AS TID, TOTAL_COST() AS totalCost,

ELEMENT_NUMBER (V) AS Eno, V.ID AS Vid, E.ID AS Eid)
) AS GT ON (GT.HID = L.Here AND GT.TID = L.There)
ORDER BY L.Here, L.There, Eno

2019-03-05 W3C Workshop on Web Standardization for Graph Data 43

Given a table with a list of pairs
of places called Here and There,
for each row in the list, find the
cheapest path from Here (H) to
There (T), with a stop at a gas
station (G) along the way.

Status Update on PGQL
• What is PGQL (Property Graph Query Language)?

• Query language for PGs with SQL-like syntax
• Implemented in Oracle Spatial and Graph, Oracle Big Data Spatial and Graph, Oracle Labs’

Parallel Graph AnalytiX (PGX)
• Open-sourced Apache-licensed parser (https://github.com/oracle/pgql-lang)

• Not a standard, but trying to keep closely in sync. with standards
• Same query structure as SQL (SELECT, FROM, WHERE, GROUP BY, ORDER BY, etc.)
• Same functions and expressions as SQL (EXISTS, NOT EXISTS, CASE, CAST, EXTRACT, etc.)
• Roughly same graph pattern matching capabilities as SQL/PGQ

2019-03-05 W3C Workshop on Web Standardization for Graph Data 44

SELECT n.name, m.name,
SUM(e.distance) AS path_distance

FROM g MATCH SHORTEST ((n:Place) –[e]->* (m:Place))
WHERE n.name = 'San Francisco' AND m.name = 'Amsterdam'

ORDER BY path_distance

Example PGQL query:

https://github.com/oracle/pgql-lang

Status Update on PGQL (cont.)
• Version 1.2 of PGQL was just released

• New graph features:
• SHORTEST path
• TOP k SHORTEST path
• Group variables and aggregations over them
• Undirected edges (and matching of)

• New SQL features:
• Scalar subqueries
• ABS, CEIL/CEILING, FLOOR and ROUND math

functions
• ARRAY_AGG aggregation
• EXTRACT function for extracting the

year/month/day/hour/minute/second/timezone_hour/
timezone_minute from datetime values

• CASE statement
• IN and NOT IN predicates

2019-03-05 W3C Workshop on Web Standardization for Graph Data 45

http://pgql-lang.org/spec/1.2/

http://pgql-lang.org/spec/1.2/

PGQL – Example
Find 7 shortest paths from Account
10039 back to account 10039,
following only “transaction” edges,
and select:
• The length of the path
• The sum of the amounts along

the path
• The amounts along the path as

an array of values

2019-03-05 W3C Workshop on Web Standardization for Graph Data 46

SELECT COUNT(e) AS num_hops,
SUM(e.amount) AS total_amount,
ARRAY_AGG(e.amount) AS amounts_along_path

FROM financial_transactions MATCH TOP 7 SHORTEST (
(a:Account) -[e:transaction]->* (b:Account))

WHERE a.number = 10039 AND a = b
ORDER BY num_hops, total_amount

+--+
| num_hops | total_amount | amounts_along_path |
+--+
0	<null>	<null>
4	22399.8	[1000.0, 1500.3, 9999.5, 9900.0]
4	23900.2	[1000.0, 3000.7, 9999.5, 9900.0]
8	44799.6	[1000.0, 1500.3, 9999.5, 9900.0, 1000.0, 1500.3, 9999.5, 9900.0]
8	46300.0	[1000.0, 1500.3, 9999.5, 9900.0, 1000.0, 3000.7, 9999.5, 9900.0]
8	46300.0	[1000.0, 3000.7, 9999.5, 9900.0, 1000.0, 1500.3, 9999.5, 9900.0]
8	47800.4	[1000.0, 3000.7, 9999.5, 9900.0, 1000.0, 3000.7, 9999.5, 9900.0]
+--+

PGQL – Example (cont.)
Select for each person in the graph:
• The name
• The sum of incoming transactions
• The sum of outgoing transactions
• The number of persons transacted with
• The number of companies transacted with

2019-03-05 W3C Workshop on Web Standardization for Graph Data 47

SELECT p.name AS name,
(SELECT SUM(t.amount) MATCH (a) <-[t:transaction]- (:Account)) AS sum_incoming,
(SELECT SUM(t.amount) MATCH (a) -[t:transaction]-> (:Account)) AS sum_outgoing,
(SELECT COUNT(DISTINCT p2) MATCH (a) -[t:transaction]- (:Account) <-[:ownerOf]- (p2:Person)

WHERE p2 <> p) AS num_persons_transacted_with,
(SELECT COUNT(DISTINCT c) MATCH (a) -[t:transaction]- (:Account) <-[:ownerOf]- (c:Company)

) AS num_companies_transacted_with
MATCH (p:Person) -[:ownerOf]-> (a:Account)

ORDER BY sum_outgoing + sum_incoming DESC
+---+
| name | sum_incoming | sum_outgoing | num_persons_transacted_with | num_companies_transacted_with |
+---+
Liam	9999.5	9900.0	1	1
Camille	9900.0	1000.0	2	0
Nikita	1000.0	4501.0	1	1
+---+

Stefan Plantikow
Neo4j

2019-03-05 W3C Workshop on Web Standardization for Graph Data 48

Declarative Property Graph Querying
• For Neo4j, it started with Cypher in 2011

MATCH (a:Person)-[:KNOWS]-(b:Person),
(a)-[:ATTENDS]->(c:Conf)<-[:ATTENDS]-(b)

RETURN a.name, b.name, count(c)

• Since then:
• New languages (openCypher, PGQL, G-Core, SQL/PGQ, GSQL)
• New features (RPQs, DML, Views, Indices, Graph construction)
• Many implementations

2019-03-05 W3C Workshop on Web Standardization for Graph Data 49

Graphs are a Top 10 Data and Analytics Trend for 2019. The application of graph processing and graph
DBMSs will grow at 100 percent annually through 2022 to continuously. (Gartner)

From Cypher, PGQL, GSQL, SQL/PGQ to GQL

2019-03-05 W3C Workshop on Web Standardization for Graph Data 50

All aligned with basic data types, infrastructure, and expressions of the SQL database

Support for basic tabular manipulation (projection, sorting, grouping etc)

http://tiny.cc/gql-scope-and-features

http://tiny.cc/gql-scope-and-features

Query Composition

2019-03-05 W3C Workshop on Web Standardization for Graph Data 51

• Use the output of one query as input to another to enable abstraction and views
• Both for queries with tabular output and graph output
• Support for nested queries and procedures, too
• Simple linear composition of tabular output of one query as input to another

(Lateral Join)

Query Composition Operators
• Graph in => Graph out

• Gradually build up the right graph

• Aggregate nodes and edges
• Transform properties
• Derive graph structure

• Match – (Construct – Match)* - Select?
• Graph operators: Union, Intersect etc.

2019-03-05 W3C Workshop on Web Standardization for Graph Data 52

Graph Construction

2019-03-05 W3C Workshop on Web Standardization for Graph Data 53

Graph Construction with Grouping

2019-03-05 W3C Workshop on Web Standardization for Graph Data 54

Projected graphs

2019-03-05 W3C Workshop on Web Standardization for Graph Data 55

• Sharing existing elements in the projected graph
• Deriving new elements in the projected graph
• Shared edges always point to the same (shared) endpoints in the projected graph

Views

2019-03-05 W3C Workshop on Web Standardization for Graph Data 56

• Graph elements are shared between graphs and views
• Graph elements are "owned" by their base graph or introducing views
• Sharing graph must form a DAG

Example Query
QUERY same_city_friends($year: INT) {
FROM social_network

MATCH (a)-[e1:LIVED_IN]->(c:City)<-[e2:LIVED_ID]-(b)-[:KNOWS]-(a)

WHERE a <> b AND e1.year = $year AND e2.year = $year

CONSTRUCT
MERGE (a), (b)
INSERT (a)<-[:SAME_CITY_FRIEND]->(b)

RETURN GRAPH
}

FROM same_city_friends(1978)

MATCH SHORTEST SIMPLE PATH p=(a) (()-[:SAME_CITY_FRIEND]-())* (b)

RETURN size(p), count(p) GROUP BY size(p)

2019-03-05 W3C Workshop on Web Standardization for Graph Data 57

Schema & Graph Types
CREATE GRAPH TYPE Uni (
-- Abstract element types
University (),
Course (name: STRING!),
Person (birthday: DATE?, name: STRING!),
Student <: Person (birthday: DATE?, name: STRING!, student_id: INT!),
VISITS (term: STRING!),
STUDIES_AT (),

-- Allowed node and edge types in the graph

(Student),
(Course),

(University),

(Student)-[VISITS]->(Course),

(Student)-[STUDIES_AT]->(University)

)

2019-03-05 W3C Workshop on Web Standardization for Graph Data 58

Type System
• Base data types from SQL “abc”, 12.34

(with modifications, i.e. only Unicode)

• Support for nested data / documents { name: …, sizes: [1, 2] }

• Dynamic typing and optional static typing

• Graph types

2019-03-05 W3C Workshop on Web Standardization for Graph Data 59

Towards GQL
• More topics to come

Graph computation, Environment, Tabular features, DML, …

• Editing
How to share data types between SQL Foundation and GQL?

• Community engagement
gqlstandards.org => community call
openCypher => openGQL

2019-03-05 W3C Workshop on Web Standardization for Graph Data 60

GQL Scope and Features
A new and independent

Declarative,

Composable,

Compatible,

Modern,

Intuitive

Property Graph Query Language

2019-03-05 W3C Workshop on Web Standardization for Graph Data 61

http://tiny.cc/gql-scope-and-features

http://tiny.cc/gql-scope-and-features

Summary
• SQL Standards have a long history

• 30 years of experience integrating new technologies, including
• Row Pattern Recognition
• JSON
• Polymorphic Table Functions
• Additional analytics
• Multi Dimensional Arrays – SQL/MDA

• Property Graph queries in SQL
• New database language standard – Graph Query Language

622019-03-05 W3C Workshop on Web Standardization for Graph Data

Questions?

SELECT * FROM Graph
GRAPH_TABLE (

MATCH(who:AudienceMember)
–[has:Questions]
->(for:Speaker)

COLUMNS who.name AS audience,
who.question AS question,
for.name as speaker);

2019-03-05 W3C Workshop on Web Standardization for Graph Data 63

References
• ISO/IEC JTC1 SC32/WG3:ERF-037r1, “Relating GQL and SQL”, Fred Zemke,

September 26, 2018.
• ISO/IEC JTC1 SC32/WG3:ERF-034 “GRAPH_TABLE Proposal”, Fred Zemke,

September 14, 2018
• ISO/IEC JTC1 SC32/WG3:BNE-027r1 “Property Graph Data Model – The

Proposal”, Jan Michels, January 16, 2019
• GQL Standards Web site: https://www.gqlstandards.org/

2019-03-05 W3C Workshop on Web Standardization for Graph Data 64

https://www.gqlstandards.org/

	W3C Graph Data Workshop
	��SQL and GQL
	Abstract
	Introduction
	Slide Number 5
	What is SQL?
	SQL Standards – a brief history
	SQL:2016 Major Features
	SQL:2016 Parts
	SQL Technical Reports – 19075
	SQL Technical Reports
	What's next?
	Property Graphs
	Property Graph Pattern Matching
	SQL, SQL/PGQ, and GQL
	SQL and SQL/PGQ
	SQL and GQL Projects
	GQL Project Potential Structure
	What is the input for SQL/PGQ and GQL
	GQL Lineage
	Input from Participants
	Slide Number 22
	Property Graph Language for High Performance
	Origins of GSQL
	GSQL Design Features
	Schema-less vs. Schema-first
	Proposals for GQL - Graph Model
	Graphs
	Labels
	Proposals for GQL - Query Language
	Multi-hop Paths, SELECT Statement
	Accumulators
	Accumulators
	ACCUM Clause
	ACCUM Clause
	Other Analytics Features
	Slide Number 37
	Why Property Graphs with SQL?
	SQL extensions for Property Graphs (PGs)
	Property Graph Definition (DDL) – Example
	DDL – Example (cont.)
	Querying PGs – Example
	Querying PGs – Example (cont.)
	Status Update on PGQL
	Status Update on PGQL (cont.)
	 PGQL – Example
	PGQL – Example (cont.)
	Slide Number 48
	Declarative Property Graph Querying
	From Cypher, PGQL, GSQL, SQL/PGQ to GQL
	Query Composition
	Query Composition Operators
	Graph Construction
	Graph Construction with Grouping
	Projected graphs
	Views
	Example Query
	Schema & Graph Types
	Type System
	Towards GQL
	GQL Scope and Features
	Summary
	Questions?
	References

