
PHYS 211 Lecture 26 - Torque-free rotation - body-fixed axes 26 - 1

© 2001 by David Boal, Simon Fraser University.  All rights reserved; further copying or resale is strictly prohibited.

Lecture 26 - Torque-free rotation - body-fixed axes

Text:Fowles and Cassiday, Chap. 9
Demo: gyroscope, tennis racket, old CD

We now want to consider how the angular momentum L and the angular velocity 
behave when they are observed in a rotating coordinate system.  We  simplify matters
for our first foray into this problem by considering a system not subject to an ongoing
external torque.  Consider, the motion of a spinning disk, like a gyroscope, whose
angular velocity and angular momentum are perpendicular to the plane of the disk:

apply impulse to edge

If we hit the disk on its side, generating a torque about the plane, then the plane of the
disk will oscillate, as will the corresponding angular velocity vector  (gyroscope
demo):

This axis is
no longer 

angular momentum L is constant,
but  rotates

After the rotating disk receives the impulse, it still has a component of  perpendicular
to the plane of the disk.  But the disk rocks back and forth as well, meaning that there is
an oscillating component of  around the 1 and 2 body-fixed axes of the disk.  That is,
a rocking motion around the 1-axis corresponds to a non-vanishing 1, such that the
vector describing  may have several non-zero components ( 1, 2, 3).

In this lecture, we describe the behavior of  as seen by a rotating observer, which is
not difficult to do mathematically, but is not what we see in the lab.  In the following two
lectures (27/28), we determine the motion according to a lab-based observer.  Finally,
we treat the gyroscope problem in detail in lecture 29.

Allowed motion of 

Since we are considering only torque-free rotation, then according to a "stationary"
observer, L is fixed in direction.  But a frame rotating with respect to the stationary
observer would observe L change direction, although the magnitude of L would not
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change.  That is, according to a rotating observer,

L 2 = constant L changes.

The constant magnitude of the angular momentum implies that
Lx

2 + Ly
2 + Lz

2 = constant
--> I 1
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2

2
2 + I 3

2
3

2 = constant (1)

In other words, the constancy of L 2 is not enough to specify a value for : Eq. 1 is that
of an ellipsoid in -space.

Under torque-free conditions, the rotational kinetic energy is also a constant, or
K =  •L/2 = constant

--> I 1 1
2 + I 2 2

2 + I 3 3
2 = constant (2)

where the constants in Eqs. (1) and (2) are obviously not equal.  Eq. (2) is also that of
an ellipsoid, just like Eq. (1).  Now,  must simultaneously satisfy Eqs. (1) and (2),
although the solution is not necessarily unique; rather, the solution is the intersection
of two ellispoids:

2

1

solutions

In some situations, the ellispoids may touch at a single point, giving a unique solution
for .  This arises if the inital motion corresponds to either the largest or smallest
principal moment of inertia, in which case the body rotates steadily about the principal
axis in question.  Otherwise,  precesses along the intersection locus of the two
ellipsoids (demo: tennis racket motion about principal axes).

In lecture 25 we introduced a set of Euler's equations relating the torque exerted on an
object to its angular velocity.  Let's apply these equations to the situation in which
there is a single axis of continuous symmetry (chosen as the 3-axis) with two
equivalent axes perpendicular to it (the 1 and 2 axes).
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Let the moments of inertia about the principal axes be
I s = I 3

I ⊥ = I 1 = I 2.

For torque-free rotation, i = 0 in Euler's equations, leaving
I ⊥ (d 1 / dt) + 2 3(I s - I ⊥) = 0 (3)
I ⊥ (d 2 / dt) + 3 1( I ⊥ - I s) = 0 (4)
I s (d 3 / dt) = 0. (5)

Eq. (5) can be integrated immediately, telling us that 3 is independent of time

3 = constant.

To make life somewhat simpler, we define a new constant  in terms of the constant
value of 3:

 ≡ 3(I s - I ⊥)/I ⊥ (6)

Then, Eqs. (3) and (4) can be rewritten as
d 1 / dt + 2 = 0 (7a)
d 2 / dt - 1 = 0. (7b)

These two equations are coupled, but are straightforward to solve.  Just differentiate
Eq. (7a) with respect to time, then substitute (7a) for d 2 / dt into the result.  That is, the
derivative of (7a) gives

d 2
1 / dt 2 = - (d 2 / dt )

which becomes, from (7b)
d 2

1 / dt 2 = -  2
1 (8)

Now, Eq. (8) is just the expression for simple harmonic motion, so that 1 has the
solution

1(t) = o cos t. (9)

A similar treatment for 2 shows that it too must obey simple harmonic motion.  To find
the correct amplitude and phase, we substitute Eq. (9) into (7b) to obtain

2(t) = o sin t.

Clearly, the projection of  in the 1,2 plane is just a circle of radius o and angular
frequency  (where o

2 + 3
2 =  2).  In other words, seen in the rotating frame, 

precesses about the 3-axis with an angular frequency :
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o

I⊥ / (Is - I⊥)

If we let  be the angle between the 3-axis and , then from the definition of Eq. (6):

3 =  cos  = I ⊥  / (I s - I ⊥).

Hence,
 =  cos  [(I s /I ⊥) - 1], (10)

which gives the angular frequency of precession  in terms of the moments of inertia
and the angle  between the symmetry axis and the rotational axis.

Examples

1.  Rotation of a thin disk (demo: rotating CD).

For a thin disk, such as a frisbee or a china plate, the perpendicular axis theorem can
be used to relate the moments of inertia:

I s = I 1 + I 2 = 2I ⊥. (11)
Thus, Eq. (10) reads

 =  cos  .
Consider the behaviour of  and o at  = 0 (⊥ to plane) and  = π/2 ( in plane).

2.  Rotation of the Earth

The Earth is slightly flattened (oblate) so that it has inequivalent symmetry axes.
Further, the rotational axis is very slightly off the North Pole, with an angle

 = 0.2 arc seconds.

To appreciate just how small this angle is, we convert to radians
3600 arc seconds = 1 degree = π / 180 radians

--> 1 arc second = π / (180 x 3600) = 1 / 206265 radians

Then  = 0.2 / 206265 = 9.7 x 10-7 radians.

For small angles, cos  = 1 -  2/2, so that for our purposes here, cos  = 1.
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Now,  the measured oblateness of the Earth corresponds to I s /I ⊥ = 1.00327, so that
 =  cos  [(I s /I ⊥) - 1]

=  • 1 • (1.00327 - 1)
= 0.00327 .

Since the angular frequency of the Earth is  = 2π/day, then
 = 0.00327 • 2π / day

    = 0.0205 / day.

Put another way, the period T of rotation is
T = 2π/  = 2π / (0.00327 • 2π)  days

or
T = 306 days.

(This is the rotational period of the  -axis as measured by an observer on the Earth).


