Privacy and Data Protection in Smartphone Messengers

Markus Huber
St. Poelten University of
Applied Sciences
Austria
markus.huber@fhstp.ac.at

Christoph Rottermanner
St. Poelten University of

Applied Sciences)

. Austria pkieseberg@sba-
is121023@fhstp.ac.at research.org

Martin Schmiedecker Sebastian Schrittwieser
SBA Research Josef Ressel Center for

Austria Unified Threat Intelligence on

mschmiedecker Targeted Attacks, St. Poelten

Peter Kieseberg
SBA Research
Austria

@sba-research.org

ABSTRACT

Ever since the Snowden revelations regarding mass surveil-
lance, the role of privacy protection in commodity communi-
cation software has gained increasing awareness in the gen-
eral public. Still, during the last years many new messen-
gers were developed for Android, where often privacy was
not considered to be a key issue. Due to the widespread use
of these apps even in corporate environments this opens up
attack vectors that can result in advanced persistent threats.
In this paper we analyze the most prominent messenger apps
with respect to privacy concepts, focusing not only on the
transmission layer regarding the support of encrypted com-
munication, but also attacks targeting the communication
metadata, e.g. detecting the existence of communication be-
tween users, as well as providing an enumeration of all users
of a service. Furthermore, device theft and loss is a major
issue regarding the protection of user privacy. Thus, we also
analyzed, whether the messages are stored in a secure way
on the device itself, or if control over the physical device
allows access to the message data. In order to analyze the
possible usability of these messengers as means for targeted
surveillance of users by the provider (or an entity controlling
it), we also analyzed the rights and privileges the respective
apps need in order to be able to install and work. Here, ma-
jor differences could be detected, with several apps claiming
privileges that could not be explained with the normal mode
of operation, thus posing a serious risk for the privacy of the
respective user base.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscella-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

iiWAS2015, 11-13 December, 2015, Brussels, Belgium.

Copyright 2015 ACM 978-1-4503-3491-4/15/12 ...$15.00.

University of Applied
Sciences, Austria
sebastian.schrittwieser
@fhstp.ac.at

neous

General Terms
Mobile Security, Privacy, Messengers, APTs

1. INTRODUCTION & RELATED WORK

Nowadays a lot of people use messaging applications for
communication. Therefore, many new messengers were built
in the last years with the intention to replace traditional
SMS, still most of them are not built with security or pri-
vacy in mind. Previous work by Schrittwieser et al. |21] and
Mueller et al. [19] already describes various attack vectors
and common vulnerabilities against a number of popular
messengers. Cheng et al. [10] describe several privacy prob-
lems and how easy it was to map a phone number to a user,
only utilizing information derived from the messenger appli-
cation. Furthermore, with the detailed information which
is necessary for the registration of some messengers, much
sensitive private information was shared with the provider of
the application. Another paper from Frosch et al. [14] takes
a closer look at the security of the product “TextSecure” and
the used protocol. Related work from Unger et al. [24] de-
scribes the necessary security features for providing secure
messengers. Another work from Mahajan et al. [18] analyses
the masses of sensitive information which are processed by
messengers like WhatsApp and Viber.

Since Edward Snowden published secret papers from the
NSA which contained information about mass surveillance |16}
9], the demand for secure chats increased. Previous work
from Stirparo et al. [23] evaluated several other mobile ap-
plications with respect to the locally stored private infor-
mation, the privacy aspects and how much sensitive infor-
mation was transmitted to the provider, which is especially
relevant in a business environment. One requirement for a
secure chat is therefore to prevent intelligence services and
other third parties from efficient spying on the communica-
tion between users, as well as controlling that the provider
does not gather private information about the persons who
use these messengers. Another aspect lies in checking, how
much private information can be extracted from the peo-

ple which were added as friends and what requirements are
needed for adding new friends. This is especially important
in order to thwart attempts of using the messenger network
as means for reconnaissance or early stages of APTs (e.g.
phishing attacks).

Altogether, the following contributions are provided in
this paper:

e An analysis of the different privacy measures provided
by the respective messengers.

e Providing and analysing enumeration attacks for enu-
merating the user base of the respective messengers.

e Analysing the security of the underlying database en-
vironment with respect to privacy protection in case
of device loss and theft.

This work is structured as follows: In Section [2] we give
an overview on the targeted messenger applications and the
methodology while the results are presented in Section
regarding privacy aspects and required privileges, Section E|
regarding enumeration of the user base and Section [f]regard-
ing privacy preserving storage of messages on the device.
Section [f] concludes the paper.

2. METHODOLOGY

2.1 Selection Criteria for the Apps

The major decision criteria for the selection of messenger
apps was that the phone number is required for the registra-
tion of a new user and furthermore that the secret code was
transmitted via SMS (two-factor authentication). Another
criteria for the selection was that some of these applications
were already tested in other works in order to be able to
compare our results with the results from related work on
this topic. A third point was to check new messengers which
claimed to support end-to-end encryption, or to put an ex-
plicit focus on privacy protection.

2.2 Experimental Setup

The test device for all attacks was a Samsung Galaxy
Nexus with Cyanogenmod 11.1.3 (Android 4.2.2). Regard-
ing the required privileges, the newest versions of the apps
were downloaded directly from the Google Play Store. With
respect to test for user enumeration, we generated a test
phone book holding a selection of ten thousand valid en-
tries. In case of the "Line” messenger it was necessary to use
the Python library line El This library made it possible to
perform several brute-force attacks to enumerate users and
get further information on the used protocol. Also for the
messenger "Telegram” a command line tool EI was available,
which was also useful for the enumeration.

The analysis of the underlying database focussed on at-
tack vectors available through the database interface, i.e.
using the database as intended. No file-carving techniques
or analysis of internal database structures like shown in [15]
have been devised.

"http://carpedm20.github.io/, Accessed: 2015-05-15
Zhttps://github.com/vysheng/tg, Accessed: 2015-05-15

2.3 Selected Messenger Applications

In this section we give a brief description of the selected
messenger applications. Some have existed for several years,
while others were built because of the NSA scandal. All se-
lected applications provide more or less the same function-
ality.

2.3.1 WhatsApp

This messenger is the most popular one in the Android
environment. It is free for one year and available for mul-
tiple platforms. A current download statistic from Google
Play store showed that the application has been installed
between 1.000.000.000 and 5.000.000.000 times (status from
22.04.2015). The main features provided by this messen-
ger are sending messages to other people, creation of group
chats and sharing media like pictures and videos. Further-
more, there is no need to add contacts to this application,
because the application looks up for registered WhatsApp
users in the address book.

2.3.2 Line

Another popular messenger is Line from Japan. In 2014 it
had around 600 million users and analysts expect that it will
reach 700 million users in 2015 [13]. The download statis-
tic from Google Play store shows, that this messenger has
been installed between 100.000.000 and 500.000.000 times
(status from 22.04.2015). This application has the ability
to send messages, perform audio/video calls and share the
current GPS-coordinates. It can be used on smartphones,
tablets and personal computers. Like WhatsApp it is possi-
ble to create group chats or chats with a single person. Since
v4.5.3 of the Android application, the support for end-to-end
encryption was added including the ability to destroy mes-
sages after a specified time [22].

2.3.3 WeChat

Like Line, this messenger also supports messaging, au-
dio/video calls, large group chats, as well as sharing of media
files and the current GPS position. Furthermore, this appli-
cation provides the feature to communicate just by shak-
ing ones phone. After this, contacts which also shake their
phone at the same time, are listed in the application. The
current download count from the Google Play store shows,
that this messenger has been installed between 100.000.000
and 500.000.000 times (status from 22.04.2015).

2.3.4 Telegram

This new messenger was developed after the revelations
by Edward Snowden in order to provide the ability to com-
municate securely. With this messenger, group chats and
communication with a single person are possible, as well
as file sharing. The secure chat provides a self-destruction
timer which deletes all messages older than a defined age.
However, this secret chat is not available for groups at the
moment. For the encryption [4] of the communication be-
tween the server and the client, a custom developed encryp-
tion algorithm is in use.

Current numbers from the Google Play store show that
this messenger has been installed between 50.000.000 and
100.000.000 times (status from 22.04.2015).

http://carpedm20.github.io/
https://github.com/vysheng/tg

2.3.5 TextSecure

This messenger advertises with the usage of strong encryp-
tion while being easy to use for non-experts and as reliable
as making normal phone calls or sending normal text mes-
sages. Every message, group chats as well as private chats,
is encrypted using end-to-end encryption. Furthermore, the
provider has no access to metadata for group chats like group
members, group title or the group avatar icon [5|. In Version
2.7.0, the support for SMS and MMS |[6] encryption ended
due to security flaws of SMS/MMS and other problems with
the key exchange. Current numbers from the Google Play
store show that this messenger has been installed between
500.000 and 1.000.000 times (status from 22.04.2015) [5].

3. REQUIRED PRIVILEGES AND PRIVACY
ASPECTS

Since Edward Snowden published papers about the NSA-
surveillance, awareness regarding privacy increased. This
section describes the different problems and implemented
privacy features for the selected messengers. This includes
checking, which data is shared with the providers of the
respective messengers and whether it is possible to define,
which person can see private information about a user. An-
other part of this research is to determine, if the applications
only use the permissions from the phone when the user is
using a feature of the messenger where these permissions are
necessary. Finally, this section also covers a review on the
privacy relevant permissions needed in order to install the
selected messengers.

3.1 Line

The installation of this messenger requires several permis-
sions providing the application with access to a large amount
of information on the user of the phone. However, it was dis-
covered that the application only requests these permissions,
if the user utilized functions which require them. The fol-
lowing list shows the main permissions, which are required
to install Line, solely listing the permissions that could leak
private information about the user:

Device & App history: Retrieve running apps.

Identity: Find accounts on the device.

Contacts: Read your contacts.

Location: Approximate location (network-based), Pre-

cise location (GPS and network-based), Access extra

location provider commands.

e SMS: Receive text messages (SMS).

e Phone: Directly call phone numbers, Read call log.

e Photos/Media/Files: Read the contents of your
USB storage, Modify or delete the contents of your
USB storage.

e Camera: Take pictures and videos.

e Microphone: Record audio.

e Device ID & Call information: Read phone status

and identity.

With this large amount of permissions, it would be easy
to use this application for tracking and spying on the user.
But as already mentioned, it could not be discovered that
the application accessed permissions while the user did not
use a feature which required this. Still, for exact information
about the usage of the permissions, it would be necessary to
track these for a long time.

During the user enumeration (see Section , the re-
quested user received a message, asking whether the user
should be blocked or added. If the target pressed add, it
was possible for the attacker to see the posts of the victim.
Furthermore, when blocking the request, it was still possible
to see the photo and the current status message. Thereby
it is often easy to collect a photo of the specified user only
requiring the user ID, QR-Code ID or the phone number of
the person.

A feature of this messenger is the option to decline the up-
load of the personal phone book during the authentication.
Also after that phase it is possible to configure, whether the
application should upload contacts or not. Another feature
of Lines is the so-called private chat. This version of the
chat offers end-to-end encryption for transmitting personal
information. Still, this feature is not available for group
chats and it is necessary to explicitly activate the private
chat, thus allowing the provider to see all communication in
group and non-private chats.

Another feature provided by the Line messenger is the
possibility to identify a user solely using a user ID. Thus,
no phone number must be shared with contacts or maybe
even unknown people, allowing to hide this (sometimes per-
sonal) information. Another privacy related feature is that
only the user token is transmitted in a message and no con-
tact information can be retrieved from the message content,
again preventing the publishing of the user’s phone number
(especially considering using the user ID as means for setting
up communication).

When adding a new contact it is possible to see all the
posts of this user, the only thing required is an acceptance
of the so-called friendship. Most of the users which were
added during the enumeration experiment (see , will-
ingly accepted the new contact, hence it was possible to see
the posts of these users. Lacking the willingness to challenge
friend requests is a major problem which cannot be solved
on a technical basis, but relates to a lack of awareness re-
garding privacy issues in the broader public. This especially
holds true since Line allows the user to define groups, where
posts are only exposed to members (i.e. contacts) belonging
to the respective group.

Following we analyze data that is leaked during the nor-
mal operation of the messenger app:

During the authentication process, one of the first pro-
tocol steps with the server is the HT'TP request shown in
Listing [T}

Listing 1: Request during the verification process for the
messenger Line

GET /API/androidevent.php?oursecret=
line10042014jo&udid=
adxid9bc46bkeplkibimt&androidID=&
macAddress=&type=&store ApplD=&
device_name=Galaxy%20Nexus&device_type=
android&os_version=4.2.2&country_code=
US&language=en&app_id=jp.naver.line.
android&fbattribution=null&event=
LINE_Waiting_For_SMS&data=&uagent=&
currency=&custom_data=&idfa=9¢361039 -9
b75—-47bb—9f52—-ea3a589d058e&isLAT=false

HTTP/1.1
Host: apps.ad—x.co.uk
Connection: Keep—Alive

HTTP/1.1 200 OK

Server: nginx/1.0.15

Date: Mon, 30 Mar 2015 18:09:53 GMT
Content—Type: text/html
Transfer—Encoding: chunked
Connection: keep—alive
X—Powered—By: PHP/5.3.3

17
<Success>true </Success>d
0

"contacts”: |
"hr /5JNIZd7AgnQ”
"1LKSRf60EHMS&tA”
"BprFLzDEJZnJyw”
74+k6SXegmvimCQJw” |
”Lroio4 /R1J6H9g”
7 4Hq67sQhRDOCQQ”
"t7gsZUtUIL912w” |
7ezbuEOBDpET8yQ”
"R8SwrCsuRrlcfA” |

The major privacy related issue in this message is that the
exact version of the used phone is transmitted to the server,

which seems unnecessary for the authentication process, whereas

this information can help to identify the device in question
for further tracking. In addition, the verification process
also contains information about the used phone, as outlined
by Listing

Listing 2: Sensitive information within request during the
verification

Nevertheless, the provider gains no knowledge on the user’s
plaintext contacts, however, a crucial error with respect to
privacy is the fact that the phone number of the destination
is stored in plaintext within every message (see the example
in Listing [4] for privacy reasons the last digits of the phone
number were changed).

Listing 4: Sensitive information within every message

.................. x...Q.t.K..P.."|.R—"ZF . .k
.z

n. H[...—_H?....... y...L,.y...n]E..U....N5
..... O#......B..4_....{.1a..|.G.q!...$
.. UU".k.Z("N.ZW\/ 8.Fz

AL

Ul #. >F.2.0X..d. ... /2..1G..F4AMU.H
/g UQ. @y ..

startVerification (\AT...
+43676XXXXXXX.
d02247b8d34b694f80d7d6fbff648395 ...
Galaxy,_Nexus.
Android _OS..4.2.2.. Galaxy_Nexuse..

https://52.1.186.37/v1/messages/+43650
XXXXXXX

]

7destination”: ”443650XXXXXXX” ,
"messages”: |

{

[
{

"body”: [..],

7destinationDeviceld”: 1,

"destinationRegistrationld”:
8217,

"type”: 3

}
])

"relay”: null,
“timestamp”: 1429638343114

<

[

NOT_SPECIFIED.@...23203(.en_US.

3.2 Textsecure

One of the aims of TextSecure lies in trying not to save
any metadata of the users. The telephone numbers of the
contacts are uploaded hashed, as mentioned in Section [£.2]
The problem with this solution is that the range of combi-
nations is very small. Furthermore, this allows generating
all possible hashes and comparing them with the uploaded
hashed contacts of a user. As the developer of TextSecure
already mentioned, there is no practicable solution available
to hash the contacts securely. Several concepts are already
in development, but unusable for a large amount of users [1].

Listingshows how the telephone numbers look like when
they were uploaded to the server. A drawback regarding
privacy is the fact that the user does not have the option to
decline the upload of the phone book in TextSecure, hence,
all the contacts from the local phone book are uploaded.

Listing 3: Uploading hashed contacts for the TextSecure
messenger

The same behavior could be determined when receiving
new messages: The data structure even possesses a data
field, which contains the phone number of the source in
plaintext (Listing . This means that while the provider
does not have access to the actual messages, he is able to
locate all communication paths via this metadata, thus al-
lowing to generate a detailed overview on when and with
whom users communicated.

Listing 5: Sensitive information within every message

’ https://54.172.208.191/vl/directory/tokens

https://52.1.136.37/v1/messages/
[--]
{
"messages”: |
{
"message”: "MwohBR81613tB+
AhuO1zdTUqhJTB_ <...>",
77relay77: 77777
?source”: "443650XXXXXXX" |
?sourceDevice”: 1,
"timestamp”: 1431696170231,
77type77: 1

|}

|

Furthermore, the authentication token (see Listing @) for
the TextSecure contains the telephone number of the current
user.

Listing 6: Encoded authentication token of the messenger
TextSecure

Authorization: Basic
KzQzNjYOWFhYWFhYWDpMZXJjbTBLRFZ TS0tk
ZKkICNGZIRXcrbnU=

That results in the decoded string shown in Listing m

Listing 7: Decoded authentication token of the messenger
TextSecure

+436642356829: Lercm0KDVSKKdAfIB4fHEw-+nu

Another feature regarding privacy that is provided by
TextSecure is that all messages of the group, as well as pri-
vate chats are encrypted by default. The provider cannot
intercept any messages of the communication between the
users, even one of the documents leaked by Edward Snow-
den indicates that at that time even the NSA was not ca-
pable to decrypt OTR [2] communication, which is partly
used in the TextSecure protocol. Furthermore, related work
from Frosch et al. [14] confirms that currently the protocol
is secure against known attacks and that the found vulner-
abilities were fixed by the developers.

Also the circumstance that the application only requires
a few permissions to work properly is beneficial with respect
to privacy. The following list shows the main permissions,
which are required to install TextSecure, solely listing the
permissions that could leak private information about the
user:

e Identity: Read your own contact card, Modify your
own contact card, Find accounts on the device.

e Contacts: Read your contacts, Modify your contacts.

e SMS: Read your text messages (SMS or MMS), Edit
your text messages (SMS or MMS).

e Phone: Read call log.

e Photos/Media/Files: Modify or delete the contents
of your USB storage, Read the contents of your USB
storage.

e Device ID & call information: Read phone status
and identity.

e Other: Full network access.

Overall, TextSecure only requires 24 permissions to work
properly. As the list shows, there is no way to track the
user via GPS, neither the messenger requires the privilege
to enable the microphone to listen. Furthermore, it is no
problem to use another application on the phone to record
some music, take a picture with the camera and send this
media file via TextSecure to the other users.

To guarantee, that the chat partner is really the person
that he/she claims to be, it is possible to compare a finger-
print of the key, which is used to encrypt the messages. To
perform this, meeting the other user in person and scanning
the generated QR-code of the key is necessary. If the key of
the chat partner changes, the user receives a message that
the key changed and whether the user wants to accept the

new key. Therefore, an attacker cannot easily intercept the
communication and provide a fake key, which is then ac-
cepted by the application without confirmation of the user.

Another feature is that the user can define, whether it is
possible to make a screenshot of the on-screen conversation.
This feature does not prevent the chat partner from mak-
ing screenshots, but it prevents that another application on
the phone can make a screenshot. Furthermore, TextSecure
provides a feature to set a password that encrypts the lo-
cal messages and the encryption keys used. Thus, all the
sensitive local data can be protected and even if the phone
is stolen, the private messages should remain safe (see[5.1)).
Furthermore, the user can define a validity period for the
password, i.e. the application "forgets” the password after
a certain time forcing the user to reenter it. This is an ad-
ditional protection mechanisms in case the phone is lost or
stolen.

3.3 WhatsApp

For the WhatsApp messenger, it is not possible to decline
the upload of all the contacts from the phone book, hence,
the server retrieves information on all contacts from ones
personal environment. Another problem is related to the
feature controlling who can see the last time a user was
online [25]. In the settings there is an option that allows
to define that nobody can see what the last read message
was, nor when the user read a specific message. Therefore,
no one should see when the user was online for the last
time. The problem with this setting is that everybody can
see the current online status of a user. This means that
tracking of the online status is still possible when this is
performed continuously every second. For this tracking the
tool WhatsSpwaas developed. Using this tool it is possible
to track the online activity of every WhatsApp user around
the world by continuous monitoring of the current online
status. Furthermore, the user has no capability to change
that setting, thus currently possessing no countermeasure
against this form of tracking. As part of this work, the
tool WhatsSpy was installed on a Raspberry Pi and twelve
users were monitored, to check for the detail of information
that can be gathered during the surveillance. Using this
information it is possible to e.g. determine the time a user
wakes up in the morning, thus allowing detailed analysis
of user behaviour. Hence, the information can be used to
generate a timeline for the user, Figure [I] gives an overview
on the reconstruction detail.

For some users, we were able to reconstruct daily rou-
tines using this type of information, e.g. it could be deter-
mined when they go to work and come home. Moreover,
with this tool it is possible to determine, whether users are
using the same group chats and therefore check, which users
may be connected. Within just one week of surveillance it
was possible to gather enough information about the daily
routine of some users and this information could be more
detailed when enriched with other external information to-
gether with a longer surveillance period. Unfortunately, ev-
erybody around the world has access to this information and
the user has no option to change that.

On a side note, additional information is leaked through
the profile pictures of the users and their status messages,

Shttps://gitlab.maikel.pro/maikeldus/WhatsSpy-
Public/wikis/home, Accessed: 2015-05-27

https://gitlab.maikel.pro/maikeldus/WhatsSpy-Public/wikis/home
https://gitlab.maikel.pro/maikeldus/WhatsSpy-Public/wikis/home

 May
12:00 16:.00
Onlirfe Online Online Online Online
09:4188 11:27:40 12:49:43 14:08:15 16:3254
09:4283 11:38:01 12:50:06 14:09:08 16:33:32
Online] Online Online Online
09:32: 1§ 11:18:13 12:45:23 14.02:22
09:33:1 11:27:22 12:45:35 14:02:26
2 Online} Online Online Onlin|
o 10:31:4 115950 13:12:24 14:32
E 10:32:13 12:00:11 13:12:25 143348
T dhline Online Online E
O | 1902:25 11:68:10 13:12:03 S
1§02:29 11:58:19 13:12:11 O
=
Online Online O
11.49:09 13.08:25 oF
114932 B2 O
@D
~
nline Online
10701 13:08:00
n08:12 13:.08:11

Tue 5 May

20:00 00:00
Online Online Online
18:27:16 210102 23:47:39
18:27:32 21:01:09 23:48:21
Online Online Online
18:20:27 20:24:13 005136
18:20:37 20:24:42 00 52:28
Online
00:53:22
00:53:29
Q
o]
P
o]
o
0]
o

Figure 1: Timeline from WhatsSpy of a single user

which in many cases contain private information. Here,
WhatsApp provides the feature allowing the user to define
which other users can see the current status message and the
profile photo. In opposite to the settings for the online activ-
ity, these features are working as intended. A problem with
that setting is that the default is set to full public access.
During testing WhatsSpy, only one of the twelve monitored
users changed this default setting.

As related work [8] states, WhatsApp tries to implement
the end-to-end encryption protocol from TextSecure. Still,
a recently posted article 8] shows that this feature is not
usable for all WhatsApp users and that nobody can con-
firm, whether they are actually using the new end-to-end
encrypted chat. Furthermore, the messenger does not pro-
vide a secure chat like the messengers Line, Telegram and
TextSecure. Therefore, the users do not have the assurance
that the provider cannot monitor and analyse all traffic. The
following list shows the main permissions, which are required
to install and operate WhatsApp, solely listing permissions
that could leak private information about the user:

e Identity: Add or remove accounts, Find accounts on
the device, Read your own contact card.

e Contacts: Modify your contacts, Read your contacts.

e Location: Approximate location (network-based), Pre-
cise location (GPS and network-based).

e Photos/Media/Files: Read the contents of your
USB storage, Modify or delete the contents of your
USB storage.

e Camera: Take pictures and videos.

e Microphone: Record audio.

e Device ID & call information: Read phone status
and identity.

e Other: Read sync statistics, Pair with Bluetooth de-
vices, Change your audio settings, Modify system set-
tings, Use accounts on the device, Full network access,
Read Google service configuration.

Many of these permissions can be abused by the provider,
in order to monitor sensitive and private information about
the user. Overall, this application needs thirty-five permis-
sions to work correctly.

3.4 Telegram

Like the messenger Line, Telegram offers a secret chat.
This kind of chat is end-to-end encrypted and cannot be
read by the provider. It also provides a mechanism for per-
fect forward secret [3]. If the user has sent more than one
hundred messages or has used the key for longer than one
week, a new key is generated and all the old messages cannot
be decrypted anymore. Even with the new key, it is not pos-
sible to reconstruct any old keys, disallowing the possibility
to reconstruct old messages. However, the messenger keeps
a local unencrypted copy of old messages, which completely
thwarts any attempt at providing forward secrecy in the
case of stolen or lost devices. Another feature of the secret
chat is a self destruction timer quite similar to TextSecure.
Furthermore, it is possibility to see whenever a user took a
screenshot of the on-screen conversation, still, currently the
secret chat is not set as default mode of operation and needs
to be initiated explicitly by the user. Currently, it is also
not available for group chats.

Similar to WhatsApp, Telegram also provides the feature
to change the visibility of the online status without intro-
ducing the same problems. Thus, it is not possible to see
when the user was online for the last time and if the user
is currently online. Another feature is the ability to set a
password for the application as user, requiring to unlock the
messenger to read new messages. In case the password is
lost, all secret chats are lost and the application needs to be
reinstalled. The application also provides an account self-
destruct feature, deleting all chats and information on the
user after a preset period of inactivity.

The following list shows the main permissions, which are
required for Telegram, solely listing permissions that could
leak private information on the user:

e Identity: Add or remove accounts, Find accounts on
the device, Read your own contact card.

e Contacts: Modify your contacts, Read your contacts.

e Location: Approximate location (network-based), Pre-
cise location (GPS and network-based).

e Photos/Media/Files: Modify or delete the contents
of your USB storage.

e Camera: Take pictures and videos.

e Microphone: Record audio.

e Device ID & call information: Read phone status
and identity.

e Other: Create accounts and set passwords, Read Google

service configuration, Draw over other apps.

Like TextSecure, this messenger also needs only few per-
missions to work properly, still requiring permissions like
camera, microphone or GPS that could be abused for user
tracking.

3.5 WeChat

The WeChat messenger is quite similar to Line and thus
provides similar features regarding privacy protection. One
setting controls, whether a user can be found by the phone
number and if friendship requests are accepted automati-
cally. Hence, the user has the choice to prevent being found
by other users. This feature is also available for the WeChat-
ID, but not for the QR~code (see Section . Furthermore
it is possible to define whether the phone book should be
uploaded to the server and the user has to explicitly confirm
this during the upload procedure.

Another privacy related feature is that the users can de-
fine, if they want to share the posted messages (so called Mo-
ments). Furthermore, it is possible to make the Moments
public or only available for friends of the user. WeChat
does not provide a secure chat, therefore all communication
is unencrypted and can be monitored by the provider. Fur-
thermore, the provider of the messenger is allowed to track
a great amount of information while the user is using the
voice feature |7]: This information includes name, telephone
number, email address, credit card details, profile biography
and profile picture, which has given rise to suspicions of gov-
ernmental monitoring of persons [12].

As the list of permissions below shows, this application
could be easily used to monitor the users and gather private
information about them. Only the most critical permissions
for gathering private information about the users are listed.
Furthermore, the provider is able to use these permissions
to track the current location, take pictures from the places
and use the microphone to record sounds within range of the
phone. However, is was not possible to detect any misuse of
these permissions during our analysis

e Identity: Add or remove accounts, Find accounts on
the device, Read your own contact card.

e Contacts: Modify your contacts, Read your contacts.

e Location: Approximate location (network-based), Pre-
cise location (GPS and network-based).

e Photos/Media/Files: Read the contents of your
USB storage, Modify or delete the contents of your
USB storage.

e Camera: Take pictures and videos.

e Microphone: Record audio.

e Device ID & call information: Read phone status
and identity.

e Other: Download files without notification, Read sync
settings, Create accounts and set passwords, Modify
system settings, Measure app storage space, Access
Bluetooth settings, Pair with Bluetooth devices, Change
your audio settings, Draw over other apps, Use ac-
counts on the device, Full network access.

4. USER ENUMERATION

Most of the applications upload the phone book of the
users to a server in order to check which of the contacts are
also registered for the respective application. As an attacker,
it could be interesting to generate a list of all users currently
subscribed to a given messenger, e.g. in order to launch im-
personation attacks [21]. Furthermore, in many cases it is
possible to extract additional information on the users like
availability, status messages, pictures and other metadata
that can be used in order to launch phishing attacks. Having
access to the phone book of a person is also a very powerful
starting point for analyzing the social network of said user
during the reconnaissance phase of an targeted attack. This
enumeration attack is typically carried out by uploading all
possible telephone numbers from a certain number range
(e.g. a country or a region) using a valid account and check
for numbers known by the service [19]. In order to check for
this vulnerability, we generated a test phone book holding a
selection of ten thousand valid entries. Furthermore, it was
checked, whether the messenger throws error messages or
aborts the communication during the synchronization pro-
cess. For the messengers Line, Telegram and Textsecure, it
was possible to develop short scripts to efficiently enumerate
large amounts of users.

4.1 Line

For the messenger Line, three methods for the enumera-
tion of users exist: (i) Upload of phone numbers, (ii) upload
of User IDs and (iii) the scanning of special QR-codes.

Due to the unknown protocol structure, it was not possi-
ble to create an automatic tool to upload the phone num-
bers directly to the server, instead we used the synchroniza-
tion process: The phone numbers were added to the contact
storage and on start-up, the messenger synchronized all the
contacts from this storage with the messenger server. This
synchronization process has no limit regarding the number
of contacts.

Another way to enumerate the users lies in brute forcing
the user ID with a Python libraryEl Within approximately
two hours it was possible to enumerate around three thou-
sand valid accounts. Again, no limitation exists, allowing
to enumerate all users, which have the user ID feature acti-
vated.

The last method for the enumeration used the QR-code
feature. These codes contain HTTP-links and use a ten char-
acter long ID containing only letters (upper and lower case),

as well as numbers to identify a user, e.g.: http://line.me/ti/p/SQXhW

During the enumeration, the connections time out after
the first thousand requests, still, it is possible to simply re-
connect. Furthermore, a distributed approach using several
clients could be implemented.

4.2 TextSecure

For the TextSecure application, it is possible to save a
large amount of contacts directly in the local phone stor-
age. Based on these contact details, all telephone numbers
are uploaded to the server, in order to check if these num-
bers are registered TextSecure users. This procedure can
also be automated with a script with the only additional re-

“http://carpedm20.github.io/, Accessed: 2015-05-15

http://carpedm20.github.io/

quirement that the numbers need to be hashed before they
are uploaded to the server. Listing [§ illustrates how this is
performed.

Listing 8: Hashing of the phone number for TextSecure

import hashlib
import base64

phone_number = "+436501234567"’

digest = hashlib.shal () # load function to
hash with shal

digest .update (phone_number. encode ())
number to hash

hashed = digest.digest () # Hash the number

hashed = base64.b64encode (hashed) #
Perform base6j encoding

print (hashed [0:14].decode()) # Use the
first 14 characters of the result

Set

For validation, this generated information is uploaded to
the server using the structure provided in Listing [0}

Listing 9: Structure of the uploaded phone numbers

"contacts”: |
"ywIiWjOGL6QbAQ” ,
?qPQWViTIen+0gA”

With this information it is possible to perform an auto-
mated enumeration, however, there can be instances where a
slightly different algorithm is used for generating the hashes:
Sometimes the last character of the hash is not calculated
correctly, compared to the results of the Android applica-
tion. Hence, all possible last characters were inserted into
the structure as a workaround.

Another way to enumerate the users of TextSecure is to
check, whether there is a public key available for the re-
quested user ID. This key is required for further communi-
cation with the specific user and therefore publicly available.
It was possible to enumerate around six hundred users from
Austria within two days using this technique. The problem
is that currently not many users are registered for this mes-
senger and therefore many possible user IDs are not active.

4.3 WhatsApp

A similar approach works for WhatsApp: The generated
phone book is directly added to the contacts, all these entries
are uploaded to the WhatsApp server to check if the contacts
exist and the answer is returned to the local device. There
is no limitation, which allows to enumerate a large amount
of users within a short period. Figure [2|shows a part of the
results given by the enumeration. For privacy reasons the
faces of the users were censored.

4.4 Telegram

The same vulnerability also exists for the messenger Tele-
gram. With an open source command line tool for Linux, it
is possible to enumerate a large number of accounts. Still, it
was not possible to use the same procedure as for the other

aTa

@ WhatsApp

CALLS CHATS CONTACTS

Test3109600 Max CEL
ere! | am using WhatsApp

Test3133783 Max CEL
Ich @ meine Familie
m

=
1l

Test3154418 Max CEL
It's rain a taco

’_ Test3134975 Max CEL

Test31 68652 Max CEL

Test3238693 Max CEL

Figure 2: Enumerated users by their phone number with
WhatsApp messenger

messengers: [t seems that the messenger does not check all
the contacts, whether they are using the Telegram messen-
ger at once. This could be a kind of limitation, in order to
prevent enumeration attacks, still using the command line
tool and a Python script, it was very easy to enumerate
available users. This circumstance suggests that the check
against this kind of attacks is implemented on the client side.
However, it could not be confirmed, that the messenger ap-
plication actually enforces a limitation, because a custom
protocol [4] is used for the communication, which was not
analysed in the course of this work.

4.5 WeChat

As for the other messengers, the flaw of user enumeration
could also be determined for the application WeChat. Like
the messenger Line, the same methods for adding friends are
available.

Again, it is possible to enumerate users by uploading a
large amount of random phone numbers, combined with the
feature to search a contact by its user ID. The feature to
add a new contact via the user ID also allows a wildcard
search, which makes it possible to find a large amount of
contacts by using one character in the search box. It is
also very easy to define a word list, however, for an au-
tomated attack, it would be necessary to reverse engineer
the used protocol in order to determine the correct struc-
ture for the enumeration. Unlike the two other methods,
the QR-Code search was not practically for a fast enumer-
ation of the user base, because the range of possible QR-
Codes includes all letters, numbers, as well as special char-
acters. Furthermore, the string used for user identification
in the QR-Code possesses a length of twenty characters,
e.g. http : //weizin.qq.com/r/m6t6Y szEiZH2rY gB9 —
6J. While enumeration is still possible with this method, it
would be very time consuming.

S. ATTACKING THE LOCAL DATABASE

In this section we provide an analysis on another attack
vector that is usually neglected, but offers huge possibili-
ties for leaking private data. It must be noted that as a
prerequisite, access to the local device working directory, as
well as to the SD card is a prerequisite, hence this attack is

number registered relay
B +43660=mm 1
4 +43650==

supports_sms timestamp
0 1431681170252
1/1431681170252)

Figure 3: Contact information from the unencrypted contact
database of TextSecure

especially interesting in the case of device loss or theft.

5.1 TextSecure

TextSecure uses a user-defined password to encrypt the
messages stored in the database. Still, information like con-
tacts and message timestamps are stored unencrypted as
shown in Figure |3 This poses a serious problem, as an at-
tacker can still determine the contact information, even in
case of intact encryption (see below).

For the message encryption a so called master secret is
used. This master secret is stored on the device itself, pro-
tected by a user defined password. Thus, if the user set no
password, the master secret is stored unencrypted and all
the messages in the database can be decrypted.

5.2 WhatsApp

The WhatsApp database is stored in plaintext in the di-
rectory of the application and only a backup, which is stored
on the SD card, is encrypted using AES. Furthermore, the
encryption of this backup encounters the same problems
as in the TextSecure case: To decrypt this crypt8 backup
database, only the key from the home directory of the ap-
plication is required. Following we describe, how to decrypt
the backup database of the WhatsApp messenger:

Listing[I0] extracts the key and the IV, which are required
for the AES decryption, from the key file.

Listing 10: Extraction of the key and the IV

k=$ (hexdump —e ’2/1_"%02x”’ key | cut —b

253-316)
iv=$ (hexdump —e ’2/1_"%02x”’ key | cut —b
221-252)

To strip the 67 byte header from the encrypted database,
Listing [11| was used.

Listing 11: Stripping of the header

1420679910-42 13|
1431164220-1 13|
14311644417 0|
1431164441-8 0
14311644419 0|
1431164441-10 0
1431164441-11 0|
14311642203 13|
14311642204 13|

p.net
0@gus
0@gus
o@g.us
0@gus
o@gus
0@gus
0@gus
0@g.us

ok)
Hshsbsbs

0]

0
ofashsis
0|Hshsbs
0[Bsbsbs
0]
0
q
0]

Hello world

This is a test

Features overall
Hello world

~|=|elelelolo|=|e

Figure 4: Messages from the decrypted WhatsApp database

5.3 Line & Telegram

Line and Telegram both do not encrypt the messages
stored on the device. For Line the unencrypted database can
be found in directory /data/data/jp.naver.line. android/-
databases. Also the messages from the private chat are
stored unencrypted. Figure [5| shows a short part of the
loaded database from the smartphone.

chat_id from_mid content
u4485c8202c27: u4485c8292c273b72fdfBeec82d676e87 Hello world
44850829227} Gluten

created_time delivered time status
1431435112839 0
1431435627458| 1431435626866 3]

Figure 5: Messages from the unencrypted Line database

Something similar holds true for Telegram, here the path
for the database is /data/data/org.telegram.messenger/files
/cache.db.

54 WeChat

The messenger WeChat stores all information in an encrypted
database. However, only with the knowledge on the sys-
tem settings of the messenger, the IMEI and the encrypted
database, it is possible to retrieve the decryption key and
thus to decrypt the database. The system settings contain
a unique identifier, the so called UIN, which is generated by
the messenger. The function to generate the decryption key
KEY is defined as KEY = MD5(IMEI+UIN)[0: 7] [11].
Thereby, the possible characters range only from a to f and
0 to 9, furthermore only seven characters are used for K EY
(see the function definition). Hence it is trivial to brute force
the correct combination and get access to the database.

Figure[6] shows some messages from a decrypted database.
It contains the sender of each message, the corresponding
timestamp, the message itself and further information.

imer createTime talker content imgPz
1430403335000 wxid_khgxxx3tzsse21 I've accepted your friend request. Now let's
1430455151000 wxid_hjtusvtxpjut22 To translate a message into system's langua

dd if=msgstore.db.crypt8 of=msgstore.db.
crypt8.nohdr ibs=67 skip=1

The last step shown in Listing[T2]is to decrypt the database
with the key, the IV and the encrypted database in the cor-
rect format derived from the steps before.

Listing 12: Decryption of the database

openssl enc —aes—256—cbc —d —nosalt —
bufsize 16384 —in msgstore.db.crypt8.
nohdr —-K $k —iv $iv | gunzip > msgstore
.db

Figure@shows a snippet from a decrypted database. The
sent message, the sender, the recipient, the timestamp of the
message and some additional information can be seen there.

1430455151001 |wxid_hjtugvtxpjut22 (R
1430671459000|weixin Welcome back! Feel free to tell me if you ha|
1430672090000\ wxid_nbzm2uocSuejx22 Blub

Figure 6: Messages from the decrypted database

The usage of this short key and the circumstance that the
key can be generated without any problem thwarts the whole
purpose of the encryption since everybody having access to
the necessary files, is able to decrypt the database.

6. CONCLUSION

The focus of this work lay on the analysis of popular mes-
sengers with respect to providing user privacy. In Section
we focused on the privacy features that were provided by the
messenger apps themselves, including the privileges required

for installing and operating the respective messengers. Sec-
tion [focussed on attacks against the network metadata,
i.e. on the question, whether it was possible to enumerate
the user base of a messenger, thus retrieving valuable insight
on the messenger user network. This is especially important
in case of targeted attacks, e.g. for impersonation of users
or for attacks on the authentication mechanisms as devised
in [20]. Finally, the topic of device theft brings a new, often
neglected, attack vector into the analysis: The protection of
user privacy against attackers in the physical possession of
the device itself. Here we focused on the internal databases
storing the messages.

Regarding future work, we plan on further investigating
into the topic of privacy protection in case of stolen or lost
devices. Especially the application of more advanced foren-
sic methods against the databases seems to be promising
future work. Furthermore, the use of QR-Codes for ex-
changing contact details could lead to new attack vectors
like outlined in [17].

Acknowledgements

This work has been supported by the Austrian Research
Promotion Agency under grant 846028 and COMET KI.
The financial support by the Austrian Federal Ministry of
Science, Research and Economy and the National Founda-
tion for Research, Technology and Development is gratefully
acknowledged.

7. REFERENCES

[1] The difficulty of private contact discovery
(https://whispersystems.org/blog/contact-discovery).
Accessed: 2015-04-26.

[2] Intercept with otr encrypted chat
(http://www.spiegel.de/media/media-35552.pdf).
Accessed: 2015-04-26.

[3] Perfect forward secret telegram messenger
(https://core.telegram.org/api/end-to-end#perfect-
forward-secrecy). Accessed:

2015-05-03.

[4] Telegram encryption
(https://core.telegram.org/mtproto). Accessed:
2015-04-22.

[6] Textsecure (https://whispersystems.org/blog/the-
new-textsecure/). Accessed:

2015-04-22.

[6] Textsecure saying goodbye to encrypted sms/mms
(https://whispersystems.org/blog/goodbye-encrypted-
sms/). Accessed:

2015-04-22.

[7] Wechat voice privacy policy
(http://voice.wechat.com/policy.html), 2013.
Accessed: 2015-05-04.

[8] Open whisper systems partners with whatsapp to
provide end-to-end encryption
(https://whispersystems.org/blog/whatsapp/), 2014.
Accessed: 2015-03-07.

[9] J. Bamford. The nsa is building the countrys biggest
spy center (watch what you say). Wired, March, 15,
2012.

[10] Y. Cheng, L. Ying, S. Jiao, P. Su, and D. Feng. Bind
your phone number with caution: automated user

(11]
(12]
(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

23]

[24]

(25]

profiling through address book matching on
smartphone. In Proceedings of the 8th ACM SIGSAC
symposium on Information, computer and
communications security, pages 335-340. ACM, 2013.
F. M. Darus. How to decrypt wechat enmicromsg.db
database?, 2014. Accessed: 2015-05-03.

N. Davison. Wechat: the chinese social media app that
has dissidents worried, 2012. Accessed: 2015-05-04.
B. Eun-ji. Actual users of the messenger line.
Accessed: 2015-03-07.

T. Frosch, C. Mainka, C. Bader, F. Bergsma,

J. Schwenk, and T. Holz. How secure is textsecure?
Cryptology ePrint Archive, Report 2014/904, 2014.
http://eprint.iacr.org/.

P. Frithwirt, P. Kieseberg, S. Schrittwieser, M. Huber,
and E. Weippl. Innodb database forensics:
reconstructing data manipulation queries from redo
logs. In Availability, Reliability and Security (ARES),
2012 Seventh International Conference on, pages
625-633. IEEE, 2012.

G. Greenwald and E. MacAskill. Nsa prism program
taps in to user data of apple, google and others. The
Guardian, 7(6):1-43, 2013.

P. Kieseberg, S. Schrittwieser, M. Leithner,

M. Mulazzani, E. Weippl, L. Munroe, and M. Sinha.
Malicious pixels using qr codes as attack vector. In
Trustworthy Ubiquitous Computing, pages 21-38.
Atlantis Press, 2012.

A. Mahajan, M. Dahiya, and H. Sanghvi. Forensic
analysis of instant messenger applications on android
devices. arXiw preprint arXiv:1304.4915, 2013.

R. Mueller, S. Schrittwieser, P. Fruehwirt,

P. Kieseberg, and E. Weippl. What’s new with
whatsapp & co.? revisiting the security of smartphone
messaging applications. In Proceedings of the 16th
International Conference on Information Integration
and Web-based Applications € Services, pages
142-151. ACM, 2014.

R. Mueller, S. Schrittwieser, P. Fruehwirt,

P. Kieseberg, E. Weippl, 1. Khalil, and I. Khalil.
Security and privacy of smartphone messaging
applications. International Journal of Pervasive
Computing and Communications, 11(2), 2015.

S. Schrittwieser, P. Frithwirt, P. Kieseberg,

M. Leithner, M. Mulazzani, M. Huber, and E. R.
Weippl. Guess who’s texting you? evaluating the
security of smartphone messaging applications. In
NDSS, 2012.

R. Sinha. Line app gets ’hidden chat’ feature for
encrypted, ephemeral messaging, 2014. Accessed:
2015-03-07.

P. Stirparo and I. Kounelis. The mobileak project:
Forensics methodology for mobile application privacy
assessment. In Internet Technology And Secured
Transactions, 2012 International Conference for,
pages 297-303. IEEE, 2012.

N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl,
I. Goldberg, and M. Smith. Sok: Secure messaging.
Security & Privacy Symposium, 2015.

M. Zweerink. Whatsapp privacy problem explained in
detail, 2015. Accessed: 2015-05-17.

http://eprint.iacr.org/

	Introduction & Related Work
	Methodology
	Selection Criteria for the Apps
	Experimental Setup
	Selected Messenger Applications
	WhatsApp
	Line
	WeChat
	Telegram
	TextSecure

	Required Privileges and Privacy Aspects
	Line
	Textsecure
	WhatsApp
	Telegram
	WeChat

	User Enumeration
	Line
	TextSecure
	WhatsApp
	Telegram
	WeChat

	Attacking the local Database
	TextSecure
	WhatsApp
	Line & Telegram
	WeChat

	Conclusion
	References

