

Objective FP7-ICT-2009-5-257448/D-5.2

Future Networks

Project 257448

“SAIL – Scalable and Adaptable Internet Solutions”

D-5.2
(D-D.1) Cloud Network
Architecture Description

Date of preparation: 2012-01-31 Revision: 2.0
Start date of Project: 10-08-01 Duration: 13-01-31
Project Coordinator: Thomas Edwall
 Ericsson AB

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

Document Properties

Document Number: D-D.1

Document Title:

Cloud Networking Architecture Description

Document Responsible: Paul Murray (HP)

Document Editor: Paul Murray (HP)

Authors:

Bob Melander (EAB) Hareesh Puthalath (EAB)
Azimeh Sefidcon (EAB) Victor Souza (EAB)
Volker Fusenig (Fraunhofer) Ayush Sharma (Fraunhofer)
Mickael Meulle (FT Orange) Dev Audsin (HP)
Paul Murray (HP) Suksant Sae Lor (HP)
Luis Vaquero (HP) Thomas Begin (INRIA)
Paulo Gonçalves (INRIA) Guilherme Koslovski (INRIA)
Shubhabrata Roy (INRIA) Wajdi Louati (IT)
Marouen Mechtri (IT) Houssem Medhioub (IT)
Djamal Zeghlache (IT) Markus Hidell (KTH)
Rolf Stadler (KTH) Peter Sjodin (KTH)
Daniel Turull (KTH) Fetahi Wuhib (KTH)
Pascale Vicat-Blanc (Lyatiss) Juliano Araujo (NEC)
Dominique Dudkowski (NEC) Jorge Carapinha (PTIN)
Marcio Melo (PTIN) Joao Soares (PTIN)
Romeu Monteiro (PTIN) Daniel Gillblad (SICS)
Rebecca Steinert (SICS) Björn Bjurling (SICS)
Björn Levin (SICS) Avi Miron (Technion)
Pedro Aranda (TID) Ibrahim Menem (TID)
Matthias Keller (UPB)

Target Dissemination Level: PU

Status of the Document: Final

Version: 2.0

Production Properties:

Reviewers: Bengt Ahlgren (SICS), Hannu Flinck (NSN)

Document History:

Revision Date Issued by Description

1.0 2011-07-31 Paul Murray Final version
2.0 2012-01-31 Paul Murray Addendum

Disclaimer:
This document has been produced in the context of the SAIL Project. The research leading to these results has
received funding from the European Community’s Seventh Framework Programme (FP7/2010–2013) under grant
agreement n◦ 257448.
All information in this document is provided “as is” and no guarantee or warranty is given that the information
is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.
For the avoidance of all doubts, the European Commission has no liability in respect of this document, which is
merely representing the authors view.

SAIL Public i

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

Abstract:
This document describes the first complete version of the Cloud Networking architecture pro-
posed by SAIL WPD. The concept of cloud networking is introduced in a multi-administrative
domain scenario, where network and data centre domains exist and must interact through de-
fined interfaces to provide a service to cloud customers. Cloud networking builds upon two main
concepts. The first is integration of the networking resources onto existing data centre based
cloud infrastructures. The network resource is represented by defined flash network slices which
are dynamic elastic network connections. The second concept is the deployment of computing
and storage resources distributed in the network to allow for better end-user experience and
lower the dependency on network capacity. The architecture introduces administrative domains,
interfaces, logical functions, and a description of inter-domain interactions to provide complete
end-to-end services. Management algorithms for user goal translation, fault and resource man-
agement are presented, including early results from experimentation and simulations. Security
goals are outlined along with a description of proposed approach to security goals and policy
based access control. This architecture will be further refined and modified according to results
from implementation of a prototype and experimentation.

Keywords:

cloud computing, cloud networking, network virtualisation, infrastructure as a service, cross-domain vir-
tual infrastructure, resource management, cloud network security

ii Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

Contents

List of Figures v

List of Tables ix

List of Acronyms x

1 Introduction 1
1.1 Architectural Constraints . 1
1.2 Business Justification . 2
1.3 Document Outline . 3

2 High Level Architecture 5
2.1 Three Layer Model . 5

2.1.1 Resources . 5
2.1.2 Single-Domain Infrastructure . 6
2.1.3 Cross-Domain Infrastructure . 7

2.2 Flash Network Slice . 7
2.3 Roles . 8
2.4 Interfaces . 10

2.4.1 Resource Administration . 10
2.4.2 Distributed Control Plane . 12
2.4.3 Infrastructure Service . 12

2.5 Service Request Management . 13

3 Data Model 15
3.1 Data Model Principles . 15

3.1.1 Delegation . 15
3.1.2 Model Transformation . 15

3.2 Basic Model Concept . 18
3.2.1 A Possible Embodiment of the Data Model 19
3.2.2 Unique Universal Naming in a Distributed Cloud 19

3.3 Network Model . 21
3.3.1 Single Router (Node) Abstraction . 22
3.3.2 Goal Translation and Data Model Refinement Synchronisation 23

4 Control Interactions 27
4.1 Principles of Infrastructure Control . 27
4.2 Control Interactions . 27

4.2.1 Delegation Based Control . 28
4.2.2 Distributed Coordination . 28
4.2.3 Reference Resolution . 29

4.3 Interface Design . 29
4.3.1 Delegation Interaction . 30

SAIL Public iii

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

4.3.2 Distributed Coordination . 31

4.4 Interface Standardisation . 32

4.5 Conclusion and further steps . 36

5 Cloud Network Management 37
5.1 Management Concepts . 37

5.2 Management Architecture . 38

5.2.1 Goal Translation Function . 39

5.2.2 Fault Management Function . 40

5.2.3 Resource Management Function . 41

5.2.4 Management Function Interfaces . 42

5.2.5 Management Processes . 42

5.2.6 Information Exchange and Workflows . 44

5.3 Initial Approaches . 46

5.3.1 Goal Translation and Monitoring of High-Level Objectives 46

5.3.2 High-Level Specification . 47

5.3.3 Fault Detection in Virtualised Systems . 48

5.3.4 Scalable Resource Allocation under Management Objectives 49

5.3.5 Distributed Oblivious Load Balancing in Cloud Computing 50

5.3.6 Live Migration of Services in the Cloud . 51

5.3.7 Predicting and Modeling Virtual Infrastructures 52

5.3.8 Resource Discovery, Embedding and Reconfiguration in CloNe 53

5.4 Conclusion and Further Steps for Management . 54

6 Network View 55
6.1 Mapping to Virtual Private Networks . 55

6.1.1 Introduction . 55

6.1.2 VPNs providing access to Clouds . 56

6.1.3 Challenges to use VPNs in a Cloud environment 57

6.1.4 A new VPN abstraction . 58

6.2 Mapping to Flow-Based Networks . 59

6.2.1 OpenFlow Background . 60

6.2.2 Intermediate Virtualisation Controller . 61

6.2.3 Dedicated Controllers . 63

6.3 Mapping to Virtual Networks . 64

6.3.1 Background . 64

6.3.2 Implementation . 65

6.4 Network View Summary . 65

7 Security Architecture 69
7.1 Security Analysis and Requirements . 69

7.1.1 Security Goals . 69

7.1.2 Attacker Model . 70

7.1.3 Resulting Security Challenges . 70

7.2 Security Methodology . 71

7.2.1 Obtaining Security Goals . 72

7.2.2 Security Goal Translation . 73

7.2.3 Auditing Mechanism . 74

7.3 Security Parameters . 74

7.4 Roles and Responsibilities . 74

iv Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

7.4.1 Administrator . 75
7.4.2 Infrastructure Service User . 75

7.5 Relation to Technical Architecture . 76
7.6 Security Goal Translation Example . 77
7.7 Access Control Policy . 79
7.8 Conclusion and Further Steps for Security . 79

8 Relation to Use Cases 81
8.1 Video on Demand Use Case . 81
8.2 Enterprise Use Case . 82

9 Related Work 85

10 Conclusions and Future Work 91
10.1 Future Work . 91

A Management Algorithm Results 93
A.1 Goal Translation and Monitoring of High-Level Objectives 93
A.2 Fault Detection in Virtualised Systems . 94
A.3 Predicting and Modelling Virtual Infrastructures: initial results 95
A.4 Mapping of Virtual Networks with Cloud Resources 97

B Addendum: Clarifications Since Version 1.0 99
B.1 Flash Network Slice . 100

B.1.1 Conceptual Perspective . 101
B.1.2 Specification Perspective . 102

B.2 Information Flow . 103
B.2.1 Combined SAIL Scenario . 103
B.2.2 User-Provider Interaction - Infrastructure Service 104
B.2.3 Inter-Provider Coordination - Distributed Control Plane 104

Bibliography 107

SAIL Public v

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

vi Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

List of Figures

2.1 Three Layer Model . 5

2.2 Roles in a Simple Arrangement . 8

2.3 Roles in a Hierarchical Arrangement . 9

2.4 Roles in a Peering Arrangement . 10

2.5 Interfaces . 11

3.1 A Possible Approach for Information Hiding and Goal Translation. 17

3.2 A Simple Data Model. 18

3.3 Example of Elements Considered in a Virtual Infrastructure + Virtual Topology
Description Data Model. Taken from http://vxdlforum.org 20

3.4 Two Possible Approaches for Distributed and Uncoordinated Naming. 21

3.5 Single Router (Node) View of the Network of a Domain. 23

3.6 VXDL example of goal description. 25

4.1 Two Aspects of Control Interaction Across Infrastructure Services 28

4.2 Control interactions across domains . 30

4.3 Hierarchical control interactions . 31

4.4 Peer control interactions . 32

4.5 OCCI Protocol and API placement in a provider’s architecture from [19] 33

4.6 UML diagram of the OCCI Core and Infrastructure 33

4.7 OCNI - An OCCI extension for cloud networking . 34

4.8 CloNe proposal for an OCNI extension of the OCCI framework 35

5.1 Conceptual overview of the management functions and the functional blocks. 39

5.2 Example of management interfaces. 42

5.3 Overview of processes for management of flash network slices. 43

5.4 Principal communication between management functions. 45

6.1 Basic VPN types: CPE-based vs. Network-based . 56

6.2 Cloudbursting scenario . 58

6.3 Resource migration scenario . 59

6.4 FNS mapping to OpenFlow . 60

6.5 Slicing using FlowVisor . 62

6.6 OpenFlow view . 63

6.7 Network Virtualisation technology overview within 4WARD [30] 66

7.1 Security mechanisms . 72

7.2 Security goal translation . 73

7.3 Three layer model goals . 76

7.4 Delegation of security goals . 76

7.5 Hierarchical arrangement of goal translation . 78

8.1 Video on Demand Use Case . 81

SAIL Public vii

http://vxdlforum.org

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

8.2 Video on Demand Use with an example of the evolution of aggregate viewers for five
different videos introduced in the server at the same time 83

8.3 Enterprise Use Case . 84

A.1 Average overhead for an increasing number of nodes, with theoretical path lengths
calculated from the entire graph (T1) and as a sum of individual layers (T2). 95

A.2 Average overhead for an increasing number of layers. 95
A.3 An example of the evolution of viewers with changing value of β (Popularity) for one

video. 96
A.4 An example of the evolution of viewers with changing value of β (Popularity) for the

aggregate of five different videos. 97
A.5 Acceptance rate (number of accepted requests / number of total requests) varying the

number of physical subtract nodes. 98
A.6 Acceptance rate (number of accepted requests / number of total requests) varying the

number of requests per time unit. 98

B.1 Virtual infrastructure spanning two administrative domains 101
B.2 User view of virtual infrastructure . 101
B.3 Combined SAIL Scenario - Increasing Demand . 103
B.4 VXDL data model for NetInf initial deployment . 104

viii Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

List of Tables

6.1 Comparison of different network technologies. 67

B.1 Mapping of Cloud Networking (CloNe) Concepts to OCNI and VXDL 102

SAIL Public ix

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

x Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

List of Acronyms

4WARD Architecture and Design for the Future Internet

API Application Programming Interface

BGP Border Gateway Protocol

CDMI Cloud Data Management Interface

CloNe Cloud Networking

DCP Distributed Control Plane

DKP Distributed Knowledge Plane

DoS Denial of Service

ECC Elliptic Curve Cryptography

ETSI European Telecommunications Standards Institute

FNS Flash Network Slice

IaaS Infrastructure as a Service

IP Internet Protocol

ISP Internet Service Provider

MOM Message Oriented Middleware

MPLS Multiprotocol Label Switching

NetInf Network of Information

NIC Network Interface Card

OCCI Open Cloud Computing Interface

OCNI Open Cloud Networking Interface

OConS Open Connectivity Services

OGF Open Grid Forum

PCI DSS Payment Card Industry Data Security Standard

PKI Public Key Infrastructure

QoE Quality of Experience

QoS Quality of Service

SAIL Public xi

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

REST Representational State Transfer

S3 Simple Storage Service

SAIL Scalable Adaptive Internet Layering System

SDLC Software Development Life Cycle

SLA Service Level Agreement

SNIA Storage Networking Industry Association

SOA Service Oriented Architecture

URI Universal Resource Identifier

UUID Universally Unique Identifier

VLAN Virtual Local Area Network

VM Virtual Machine

VoD Video on Demand

VPN Virtual Private Network

VXDL Virtual private eXecution infrastructure Description Language

xii Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

1 Introduction

Cloud computing is set to form the bedrock of a fundamental change in the way enterprise IT
and consumer services are implemented and delivered. Already cloud computing providers are
offering infrastructure-as-a-service, implementing virtualised compute, storage and network as an
environment in which to deploy and run applications and services; and new enterprise IT and
consumer services implemented in these environments are appearing every day. Paid for according
to use, such environments afford service providers the ability to scale far beyond the limits of
investment justified by fluctuating and uncertain demand and without impacting user quality of
experience.

Today Infrastructure as a Service (IaaS) is an immature and proprietary technology largely
focused on data centre provision of compute and storage facilities. The networking aspect of infras-
tructure as a service and the lack of of network support beyond the data centre are a limiting factor
preventing applications and communication services that are sensitive to network characteristics
from adopting this approach. The related infrastructure service interfaces need to be standardised
in order to facilitate wide and smooth deployment and to provide a consistent access by users to
any cloud provider.

The subject of this document is an architecture for CloNe. The aim of CloNe is to complete
the cloud computing picture by addressing the networking aspect. We introduce the concept of a
flash network slice, a network resource that can be provisioned and dimensioned on a time scale
comparable to existing compute and storage resources. Flash network slices can be used to construct
and connect virtual infrastructures spanning providers, creating environments in which to deploy,
scale and distribute services across data centres, throughout networks, to end users across the globe.

1.1 Architectural Constraints

The CloNe architecture is grounded in a few basic constraints derived from the nature of networking
and the current trend in cloud computing. These are described as follows:

• Can be realised on currently deployed network technologies – in recognition that it
is not viable to take a revolutionary approach to changing the way existing deployed networks
operate we wish to derive an architecture that can be used in existing deployments.

• Can be realised on network technologies that are expected in the future – we expect
our architecture to encompass new networking technologies that more effectively support
dynamic configuration of virtual network resources and to provide a migration path to the
adoption of such technologies.

• Compatible with current approaches to cloud computing – IaaS offerings already
have emerging standards for management of computing and storage resources. To embrace
infrastructure as a service as a way to provision a combined networking and computing
infrastructure we need to cooperate with these existing components.

• Can be realised across multiple administrative domains – we expect network providers
to interoperate with each other and with privately owned infrastructures and end users, such

SAIL Public 1

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

that CloNe infrastructures can be constructed from virtual resources realised in different
administrative domains, with technological and operational independence.

1.2 Business Justification

The deployment of infrastructure and applications in a cloud is today largely motivated by cost
reduction. Cloud computing features on demand provisioning of resources without upfront commit-
ments; elastic reconfiguration of those resources and pay-per-use business model. Any applications
that show a high degree of demand fluctuation will likely yield lower cost when deployed in a cloud,
since provisioning is not done for peak demand. Cloud computing can significantly reduce capi-
tal expenditure, leaving customer only with the costs of operating the IT infrastructure of their
businesses.

Cloud networking proposes the deployment of in network servers (cloud servers) in order to
improve end-user experience. In that scenario, servers can be placed close to end-users allowing
for lower latency and packet loss ratio avoiding congested links when accessing that server. These
servers should be placed in multiple places throughout the network. The number of servers in
each one of these of points of presence will be much smaller than a traditional data centre cloud;
however, they will be serving a much smaller part of the users as well. Applications that demand
interactivity will benefit of such deployment. We can this type of deployment a distributed cloud.

This scenario does not substitute the need for traditional data centre deployed clouds, where
massive amounts of servers can be provisioned. The business case of such a distributed cloud
leverages upon the enhanced end-user experience for applications where the data centres may be
too far away. It is envisioned that a pay-per-use model could be used as well. Pricing may be
differentiated though.

The second important aspect is the provisioning of elastic networking connectivity. A possible
business model for the elastic networking is a pure extension of the cloud computing business model.
Cost reduction will happen since customer will be able to adapt the network service according to
the application demand. During low usage periods (e.g., evenings) the customer should be able to
dimension its service accordingly and pay only for the needed network capacity.

Moreover, cloud networking goes beyond the above to propose new business cases where different
providers cooperate to deploy a given application. The cooperation is made on the basis of mutual
deployment of different parts of the customer services. An infrastructure provider may not be able
to fully satisfy a user request. It may, however, satisfy part of it and delegate the deployment of the
rest to another infrastructure provider. The user does not need to be aware of that, as long as all of
its requirements are satisfied. Those requirements may be related to legal aspects, e.g., deployment
of application under a certain jurisdiction, or to security level associated to data storage, amongst
others.

The concept of delegation has important implications on the business case of the whole solution.
First of all, a business to business interface amongst infrastructure providers needs to be estab-
lished. Infrastructure providers should be able to automatically negotiate and charge each other
for provided services. Second, it allows the user to deploy its applications across many providers
through one business relationship. Essentially, cloud customers can continue to use their existing
business relationships and benefit from the cross provider infrastructure deployment enabled by
cloud networking.

Delegation allows for CloNe providers to deploy fewer resources since each of them can rely on
remote resources to fulfil its peak demand. Different CloNe providers experience peak demand at
different times and delegations may mean a cost-saving opportunity. Clearly, each CloNe provider
will have to decide upon the amount of infrastructure to be deployed, considering cost, and the risk
of not having other providers to supply resources during periods of high demand.

2 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

Finally, delegation will enable the creation of a marketplace where infrastructure providers can
negotiate resources amongst each other. Infrastructure providers may decide to establish static
sharing agreements. Dynamic agreements will however foster competition and allow for a greater
degree of flexibility when deploying cloud services.

1.3 Document Outline

The approach of this document is to describe the architecture of an infrastructure service from a
high level of abstraction and then demonstrate how components of the architecture relate to real
technologies in order to validate that it conforms to the basic constraints described above.

The high level architecture is presented in Section 2, including a framework for characterising
virtual infrastructure, the flash network slice infrastructure resource, the roles involved in interac-
tion with an infrastructure service, interfaces relevant to an infrastructure service, and management
functions of an infrastructure service. The delegation concept is introduced in this section.

Section 3 describes the characteristics of a data model for virtual infrastructure including the
flash network slice.

Section 4 characterises the information flows of control aspects of the architecture and presents
an example design for an infrastructure service that supports control interaction across multiple
administrative domains.

Section 5 describes a framework of core management functions that compose an infrastructure
service and demonstrates how management algorithms can be implemented in that framework.

Section 6 focuses on realisation of the flash network slice resource in various technologies, from
those commonly deployed today to those that may be deployed in the future.

Section 7 describes a security architecture based on accreditation and compliance that can be
used in conjunction with the technical architecture.

Section 8 describes how the use cases described in [1] can be implemented in the CloNe archi-
tecture.

Section 9 relates our work to work carried out in other projects and Section 10 summaries the
current state of CloNe and identifies future work.

CloNe is one of three technical work packages of the Scalable Adaptive Internet Layering System
(SAIL) project; the others are Network of Information (NetInf) and Open Connectivity Services
(OConS). Each work package describes an architecture for its respective system and the relationship
among these is covered in [2].

The SAIL project addresses four themes across the work packages: security, management, inter-
provider issues, and prototyping. These themes are addressed throughout the CloNe architecture.
The security theme is addressed in the security architecture described in Section 7 and the au-
thentication interfaces outlined in the high level architecture in Section 2 and the control view in
Section 4. Management is addressed in the infrastructure service functions of the high level archi-
tecture and in Section 5. Inter-provider issues relate to the cross-domain aspects of the architecture
including control in Section 4 and reference resolution in Section 3. Prototyping activities are at
an early stage in CloNe and are beyond the scope of this document.

SAIL Public 3

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

4 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

2 High Level Architecture

The CloNe high level architecture consists of four parts: the three layer model; a set of roles; a set
of interfaces by which the roles interact; and a set of management functions in which these roles
participate. The three layer model is a framework for characterising virtual infrastructure relative
to three different view-points. The roles, interfaces and management functions are characterised
by reference to the three layer model. This section describes each of these parts. In addition the
Flash Network Slice (FNS), a new component of virtual infrastructures introduced by CloNe, is
defined in the context of the architecture.

2.1 Three Layer Model

Figure 2.1: Three Layer Model

Figure 2.1 is a visual representation of the view-points used to characterise the components of
the CloNe architecture. An administrative domain is a collection of physical or virtual equipment
that is under the management of an administrative authority. As Figure 2.1 shows, examples of
administrative domains in the context of CloNe are wide area networks and data centres. Virtual
infrastructure is within an administrative domains and a single infrastructure may span multiple
domains. Administrative domains are depicted at the bottom of Figure 2.1. The three layers above
the administrative domains represent three different views of virtual infrastructure. The three
layers include resource, single-domain infrastructure, and cross-domain infrastructure. Later we
describe the roles, interfaces and functions in relation to each of these views.

The way authority is segregated over administrative domains influences the management of
virtual infrastructure and the construction of the three layer model.

2.1.1 Resources

A virtual resource is an abstract representation of a component of a virtual infrastructure such as a
virtual machine or a volume on a block device. A virtual resource resides within the boundaries of
a single administrative domain. The resource layer includes compute resources, storage resources,
and network resources as virtual entities that are generally managed by different sub-systems.
Resources can be identified (or named), they have certain properties and status and may have links
to other resources.

SAIL Public 5

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

Properties, status and links are not the same. A property is externally determined (i.e. it is an
attribute set from the outside such as memory size for a virtual machine or address space for a
subnet), a status is internally determined (i.e. it reflects a condition of the virtual resource: a life
cycle stage, an error condition or an attribute derived from its circumstance), a link describes a
relationship to another virtual resource and is interpreted relative to the other resource.

It is relevant to notice that CloNe proposes resources to be at the bottom of both data centres
and operators networks. CloNe proposes computing and storage resources to be deployed in the
operators networks (e.g., wide area networks). Similar resources (e.g., a virtual machine) may have
a different property set depending on the administrative domain where they reside. For example,
the network location of a virtual machine is a property that is relevant in the wide area network
but not as much in the data centre. Regardless, from a management perspective, both are simply
resources.

A virtual resource can be created, managed and destroyed. These control actions are typically
performed by a subsystem such as the management interface on a virtual machine hypervisor or
a storage device manager such as a storage array control system. The act of creating a virtual
resource will typically consume some physical resource (e.g. disk space) or a logical resource (e.g.
an Internet Protocol (IP) address or bandwidth). Destroying a virtual resource will free these
physical or logical resources.

Virtual resources are often connected to other virtual resources: a virtual machine may be
connected to a virtual network or a storage device, establishing a relationship. The nature of
this relationship can determine if the virtual resource can be correctly established in its own right
or if it depends on the existence of the related virtual resource, its properties or its status. We
assume interaction between the control mechanisms of different virtual resources within a single
administrative domain where it is necessary to interpret the condition of a link. As an example a
virtual machine manager may have to interact with a storage device to connect a virtual machine
to a network attached volume. It may also communicate with a network management interface to
add a virtual machine to a virtual network.

A virtual resource can be managed by a single administrative domain, but may have links with
virtual resources in other administrative domains. This is particularly true of network connectivity
as it is the means of interacting beyond the boundary of one provider. We assume interaction
between control mechanisms of different resources in different administrative domains where it is
necessary to interpret the condition of a link or to establish a link.

2.1.2 Single-Domain Infrastructure

We consider a single-domain infrastructure to be a number of virtual resources managed collectively
within a single administrative domain. The links among these virtual resources determine the
topology of the infrastructure and constrain their combined management behaviour.

A single-domain infrastructure is managed by a single administrative authority that has manage-
ment rights over the underlying equipment and virtualisation technology. As a consequence, within
a single domain the administrative authority has full knowledge about the available resources and
virtualisation capabilities at any time. A single-domain infrastructure can be created, updated,
managed and destroyed.

At this layer the mapping between the single-domain infrastructure and the underlying equipment
can be determined. This mapping can take into account group allocation (all or nothing allocation
of a collection of virtual resources) and optimal placement (relative placement of virtual resources
or use of underlying infrastructure). For example a Virtual Machine (VM) could be placed in a
location with optimal network performance relative to a given end user.

Some technology selections can be made at this layer. A virtual machine could be executed on
a choice of different servers with different memory sizes or chip sets giving different performance

6 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

trade-offs; a disk volume could be placed on local storage or network attached storage; a network
link could be mapped to an isolated Virtual Private Network (VPN) tunnel or an open shared
network.

Optimal placement and technology selections will depend for the most part on private policies of
the administrative authority for the domain. However, the properties of the virtual resources and
their links and the properties of the virtual infrastructure as a collection will influence the choices,
in some cases dictating minimal requirements for the virtual infrastructure.

2.1.3 Cross-Domain Infrastructure

We consider a cross-domain infrastructure to be a number of virtual resources managed collectively
across multiple administrative domains. A cross-domain infrastructure can be partitioned into mul-
tiple single-domain infrastructures. A single-domain infrastructure may contain virtual resources
that have links with virtual resources in other single-domain infrastructures, thus connecting the
virtual infrastructures and determining the topology of the cross-domain infrastructure.

A cross-domain infrastructure is managed by multiple administrative authorities. In contrast to
a single-domain infrastructure, the state of underlying equipment and virtualisation capabilities are
likely not fully shared beyond domain boundaries. In this type of infrastructure, specific interfaces
via which resource virtualisation is negotiated are necessary. Via such interfaces, the authorities
of administrative domains may exchange limited information that they are willing to share about
their domain in order to facilitate the optimization of cross-domain virtualisation. A cross-domain
infrastructure can be created, updated, managed and destroyed.

Decomposing the requested virtual infrastructure into administrative domains can be performed
at this level based on the capabilities of the administrative domains and their interconnection.
Properties and links of the virtual resources and properties of the requested virtual infrastructure
as a collection will obviously influence the decomposition process.

2.2 Flash Network Slice

The FNS is a new resource that is introduced by CloNe. The purpose of a FNS is to more fully
address network capabilities in the IaaS paradigm according to CloNe requirements. A FNS has
the following properties:

• Network resource: it is a resource providing network communication capability.

• Links: it can be attached to other resources by links, for example a VM may be attached to
a FNS or two FNSs may be attached to each other. A link may span administrative domains.

• Space of interconnected links: it implements message forwarding between links.

• Quality of service: it has quality of service properties associated with its communication
capability between links.

• Single administrative domain: it is constructed and managed within a single administra-
tive domain (this conforms to the definition of a resource given above).

• Set up time: it is established automatically and in a time frame comparable with existing
virtual infrastructure resources such as VMs.

The FNS provides a communication capability between resources that are linked to it. Where two
FNSs are linked to each other they provide a communication capability that spans the two slices.
As links between FNSs are allowed to span domains, this provides a communication capability that
is fundamental to the establishment of infrastructures across domains.

SAIL Public 7

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

2.3 Roles

The use cases that guide the definition of the CloNe architecture are described in [1]. Here we
define the common set of roles that are representative of those found in the use cases:

• Administrator has administrative authority over underlying virtual or physical equipment
(the administrative domain) used to implement resources. The administrator uses manage-
ment systems to configure and manage resources within the administrative domain.

• Infrastructure Service User accesses an infrastructure service in order to obtain, examine,
modify and destroy resources.

• Infrastructure Service Provider offers an infrastructure service that may be used by an
infrastructure service user to obtain, examine, modify and destroy resources.

The roles are acted out by various organisations involved in specific use cases. Typically the
use cases involve data centre operators, network operators or agents reselling access to virtual
resources to implement an infrastructure service. Use cases involve a user that obtains access to
the infrastructure provided by the infrastructure service: such as an enterprise, an application
service provider or a communication service provider. Although most scenarios involve a user of
the application or communication service created within a virtual infrastructure, these types of user
do not interact with an infrastructure service in that capacity. Roles may be added to represent
these actors in specific use cases, and other actors as required, but they do not form part of the
common set we describe in the high level architecture.

Figure 2.2: Roles in a Simple Arrangement

Figure 2.2 depicts a simple arrangement of infrastructure services to demonstrate where these
roles fit in an infrastructure service. The infrastructure services in the figure have the administrator
role, meaning they have access to their own administrative domain and can manage individual
virtual resources directly. The administrator role performs management of individual resources,
placing it and the management systems it uses at the resource layer of the three layer model.
The infrastructure service in this figure also adopts the infrastructure service provider role to
offer service to an infrastructure service user. The service coordinates management of the virtual

8 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

resources within its own administrative domain, placing the infrastructure service provider and
its service at the single-domain infrastructure layer of the three layer model in this case. The
infrastructure service user at the top of the figure represents an organisation that makes use of
virtual infrastructure. The interaction between the user and provider represents delegation; the
provider is responsible for implementing and managing the virtual infrastructure on behalf of the
user.

Figure 2.3: Roles in a Hierarchical Arrangement

Figure 2.3 depicts a more complex arrangement including a delegation hierarchy among infras-
tructure services. In this case the topmost infrastructure service adopts both the provider and user
roles and is responsible for mapping the original user’s infrastructure requirements into parts that
are implemented by the lower providers. This coordination of resources across multiple infrastruc-
ture services is logically equivalent to a single instance of a service implementing the infrastructure
across domains (although the user may be aware of the final providers) and places the provider and
service in this case at the cross-domain infrastructure layer. This service instance creates a delega-
tion chain and it is the services with the administrator role that are responsible for implementing
and managing the virtual infrastructure on behalf of the original user; the intermediary services
track the delegation.

As is shown, the infrastructure services can be placed at either the single-domain or cross-domain
infrastructure layer. The implication of each is that different types of behaviour are implemented
depending on what roles they adopt. It is possible for an implementation of an infrastructure
service to have both the infrastructure service user and administrator roles, implying it can both
delegate and directly implement infrastructure, in which case it spans both layers. This can be
used to implement a peering arrangement as shown in Figure 2.4.

SAIL Public 9

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

Figure 2.4: Roles in a Peering Arrangement

2.4 Interfaces

Three interfaces are identified between the different roles of the architecture. They are the resource
administration interface, the distributed control plane and the infrastructure service interface. These
are depicted in Figure 2.5 and described below.

2.4.1 Resource Administration

The resource administration interfaces correspond to the management functions that are used
by the administrator role to create, manage and destroy virtual resources within an administrative
domain. In general these interfaces are the management interfaces of some virtualisation technology
such as the libvirt [3] virtual machine manager interface, a storage device controller or a network
administration interface.

Basically, these resource administration interfaces are implementation specific. They must pro-
vide information about the underlying infrastructure including the network topology and technolo-
gies used, so that the administrator can make a decision on how to manage the resources and
what information needs to be passed through these interfaces. Each interface (compute, storage or
network) therefore, takes specific configuration details from an administrator in order to configure
resources according to the infrastructure service user’s needs.

The following are examples of parameters and functions that could be present in these interfaces.

Compute Resource Interface

This interface provides technical capabilities similar to well-known interfaces like libvirt. At the
same time it could be augmented with the ability to provide more advanced capabilities than pure
virtual machine control (e.g. load balancing through virtual machine migration and distribution
of compute tasks onto various machines). This interface provides access and ability to invoke a
number of essential functions in handling resources such as:

• Creation/Deletion/Start/Suspend/Stop of VMs

10 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

Figure 2.5: Interfaces

• Compute service query and configuration to set performance target and express desired com-
pute service characteristics

• Selection of Software such as OS and execution environment

Storage Resource Interface

The storage service interface can very much rely on standards such as Cloud Data Management
Interface (CDMI) and possibly on the de facto standard Amazon Simple Storage Service (S3)
to provide access to virtual storage spaces as well as physical storage. Compatibility with such
standard is essential as they are widely adopted in the cloud community. Additional needs emerge
when network providers also provide storage within the network nodes such as caching and even
storage of files, documents or multimedia files or data. These two types of interfaces need to blend
and interoperate.

Network Resource Interface

Compute and Storage can be allocated and managed as cloud resources via well-defined web inter-
faces and Application Programming Interfaces (APIs) such as those mentioned above. These kinds
of interfaces and APIs are cloud computing and storage specific. What is missing today are the
cloud networking interfaces and APIs that CloNe intends to add or introduce.

The objective is to define these missing interfaces and APIs so cloud networking can be achieved
like traditional network configuration for Network Interface Cards (NICs), Virtual Local Area
Networks (VLANs), OpenFlow, OpenvSwitch, Dynamic VPNs. This interface will highly depend
on the capabilities of the underlying network and existing network management systems. It is
expected that one should be able to configure parameters like bandwidth and jitter. Mobility
may be supported, as well as fault monitoring, and redundancy. One could also set triggers for
monitoring of SLA parameters.

SAIL Public 11

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

The availability of specialised cloud networking interfaces and APIs will facilitate deployment,
configuration, management and supervision of networks as an integrated part of private and hybrid
cloud establishments.

2.4.2 Distributed Control Plane

The Distributed Control Plane (DCP) describes a category of protocols, interfaces and control
operations that enable two or more infrastructure service providers to interact and exchange cross-
administrative domain information. A more precise definition of the protocols and interfaces that
constitute the DCP is the subject of future work. Here we give an informal description of some
interactions that are expected to occur between providers.

• Reference resolution: the process of converting an abstract representation of remote in-
formation to the actual information. As an example, if a network link is to be established,
information about the remote end of the link may be required. That information may be
represented by an abstract reference that can be resolved through the DCP to obtain the
actual information. Reference resolution is described in more detail in Section 3.

• Notification: asynchronous information exchange, including publish-subscribe and asyn-
chronous callback protocols. This type of information exchange is used to decouple the
request for information from the response and is useful for distributed coordination. As an
example, the establishment of a network link across domains may require cooperation between
two providers that are operating asynchronously. One may request information from the other
before the other is ready to supply the information. The notification service provides a means
to transfer the information when it is available. As another example the information may
rarely occur and is a trigger for processing (as opposed to being requested by processing).
This is the case for fault-notification.

• Distributed information sharing: a distributed information service may provide a global
view of infrastructure status information. The view may be maintained through a distributed
protocol across providers allowing inspected by the providers.

The DCP operates at the cross-domain infrastructure layer and is generally concerned with
distributed coordination and global information access. Communication between domains on DCP
does not need to be synchronous. The specific protocols and interfaces used may depend on the
specific relationship between domains and technology used. However, generic protocols may be
employed to implement common coordination and communication services.

2.4.3 Infrastructure Service

The infrastructure service is a fundamental part of the CloNe architecture. The infrastructure
service is the set of interfaces that enable the creation, monitoring and management of virtual in-
frastructures provided by the infrastructure service provider role and accessed by the infrastructure
service user role.

We assume that user requests to the infrastructure service will be performed using a high level
description language. Those requests need to be broken down into low level actions inside the control
plane for allocation of underlying resources within different domains. A high level description of the
user requirements should yield a simpler way for the user to utilise resources that may be largely
distributed. A good example of that is the location of the resources being utilised. The client
interface should make it easy for the user to utilise highly distributed servers without having to
bother about their specific topological location.

12 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

The objective is to allow the user to specify high level goals in the form of system service level
agreements that will be automatically broken down into low level control actions. This language
should define service goals that cross the boundaries between different cloud providers. It should
also address functional and non-functional requirements of the users which may be constraints that
end-user business processes may impose for example on process migration. The translation of the
description language into control actions has to work in a distributed setting under the uncertainty
that other parts of the cloud only partly fulfil their contracts.

For configuration and monitoring of services, cloud network management functions provide the
functionality required to manage the cloud’s virtual resources and should also facilitate manage-
ment of legacy networks. The functions can be viewed as higher-layer management entities that
address cloud network specific requirements, utilizing available legacy management capabilities
when necessary. For efficient and distributed cross-communication and information exchange be-
tween management functions, collaboration is enabled through two interfaces - a controller interface
and a collaboration interface (see Section 5.2).

The infrastructure service requires the use of well-defined security modules, in order to satisfy
its security requirements, provided through user/operator/legal requirements, i.e., authentication,
auditing, confidentiality, integrity and assurance, besides others. The security goal translation
handles the realisation of security requirements on the underlying resources, with the help of ex-
ternal modules, for example an auditing module and an access control policy module. This shall
be covered in the Section 7.2.

2.5 Service Request Management

The cloud network management consists of three high-level management functions: goal transla-
tion (GT), transforming business, technical and security goals into resource configuration objec-
tives; fault management (FM), providing status updates of monitored resources, measurements and
models, as well as detecting faults, anomalies, and changes in performance; and resource manage-
ment (RM), responsible for provisioning, allocation, reconfiguration, optimisation of resources and
performance. Approaches and algorithms implementing management functionality are described
in Section 5.

The management functions operate within infrastructure service providers and contribute in
managing the administrative domain. Functional blocks within a management function implement
a certain functionality using a set of management algorithms. The management algorithms need to
be efficient with respect to their overhead, scalable with respect to the number of managed entities
and adaptive as well as robust to all types of changes in the managed cloud. In order to achieve these
properties, the algorithms operate in a decentralised manner, ensuring scalability, efficiency and
reliability for the size of clouds envisioned. Decentralised collaboration between the management
functions allows for administration, configuration and monitoring of individual FNSs as well as
the cloud network. Through the DCP and management function interfaces (see section 2.4), the
management functions exchange information for decentralised, adaptive and efficient management
in both single-domains and cross-domains.

SAIL Public 13

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

14 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

3 Data Model

CloNe adopts a model-based approach to describing and managing virtual infrastructure. The data
model view describes the representation of virtual infrastructure and the format for its exchange
among system components. A consistent representation is particularly important in this architec-
ture as different system components are likely to be implemented by different parties, so a common
understanding of the model and the data format used in exchange between system components is
critical.

3.1 Data Model Principles

This section introduces how the description of the application, as provided by the user, is dealt
with across the CloNe architecture and what are the governing principles that rule this process.
The architecture herein proposed is heavily dependent on a delegation process by which different
actors perform tasks that have been delegated to them by other actors in possession of a less
accurate knowledge or lacking some required information to perform the task at hand. Obviously,
the roles played by these actors can be combined so that a single individual/institution can play
them as needed.

3.1.1 Delegation

Information describing a virtual infrastructure is passed between an infrastructure service user and
an infrastructure service provider through the infrastructure service interface. The user describes
the desired virtual infrastructure to the provider and the provider reports on its status to the user.
Such descriptive information may be in an abstract form with the provider taking responsibility
for determining implementation detail that is hidden from the user. This information exchange
represents the act of delegation described in more detail in Section 4.

The presence of a common data model (semantically rich enough for expressing the required
goals) and a common mechanism for labelling the entities in the model (so that information can be
fed backwards once a delegated operation has been materialized) enables this information exchange.

An infrastructure service can choose to repeat the delegation process, possibly across multiple
other providers, until the required infrastructure is implemented within administrative domains.
This repeated delegation presents a combination of model transformation and information hiding
requirements for the data model that are inherent in the delegation approach.

3.1.2 Model Transformation

Once the user specifies a set of elements to be deployed and how they are connected, the infrastruc-
ture service provider labels each element with a unique name. The infrastructure service provider
has some information that remains unknown for the user (e.g. underlying infrastructure details or
topology of the virtual infrastructure, i.e. administrative domains and contract terms with each of
these ones).

SAIL Public 15

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

3.1.2.1 Abstraction Layers

This abstraction makes life for users easier, they delegate complex tasks to experts who can also ben-
efit from economies of scale in their individual contracts with other infrastructure service providers
(if they themselves delegate) or iron vendors (if they also play the role of administrators). For
instance, infrastructure service providers will not provide complete visibility into the nature of the
underlying physical infrastructure, its virtualisation, or other service implementation details. It will
only make a selected set of service capabilities known to the user. We refer to this as information
hiding.

On the other hand, users may not really care about the low level implementation and may
specify their requests either in the form of a high level description (bubbles and links model) for
their services to run, or may specify a more complex scenario in which they want to be in control of
the whole networking topology connecting the VMs comprising their service in the cloud (possibly
across federated data centres).

3.1.2.2 Model Refinement

This need for abstraction and hiding the underlying complexity to users is done at every level of
the proposed architecture. Thus, the data model is a live element that evolves from a very general
and vague description (users with little knowledge on the complexity underneath) to a detailed low
level description of the components that are needed and their configuration.

The data model, thus, becomes the vehicle conveying the information that needs to be exported
at every level (the goals for deploying users’ requests and the monitoring data fed back to them)
and the one that needs to be refined or incorporated (matching in Figure 3.1) in the light of the
newly available information when a lower level (in the chain of delegations) actor receives the data
model. For instance, let us assume that an administrative domain has been delegated to deploy
a VM from an independent infrastructure service provider. The infrastructure service provider
lacks any knowledge on the network topology of the administrative domain or the specifics of racks,
hypervisors, etc. At a higher level, an infrastructure service provider that delegates may hide details
about the infrastructure service providers it uses (looking just as another normal infrastructure
service provider to the user). These details contain, for instance, information such as price for
deploying a VM, price per stored MB and QoS (e.g. time for a packet to traverse the diameter of
the network). This process of resource management (matching high level goals specified by a user
into something that can be materialized in the light of the, now, available information the user was
lacking) and goal refinement (when the request is delegated to other providers of a domain, the
goals need to be changed so that they reflect the available information) is essential in taking the
user’s request to a concrete ground.

Infrastructure service providers may decide to deploy all their requests on a given domain as long
as this complies with the users’ goals.

3.1.2.3 Model Splitting

Figure 3.1 illustrates a case in which a network is required to span two domains that share a
border in the form of connected edge nodes. These nodes need to be configured to interconnect the
virtual networks in each domain. As is shown in Figure 3.1, the infrastructure service providers
receive models of the network resources that they will implement in their respective domains. It is
possible that the configuration details for the edge nodes cannot be completed without information
from the neighbouring domain. For example, they may need to exchange ports, IP address or tags
depending on the nature of the connection. They may also need to agree which edge nodes to use.
It is likely that this is information that they will not be willing to share with anyone other than
their neighbouring domain. This implies the information will be obtained by interaction between

16 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

Figure 3.1: A Possible Approach for Information Hiding and Goal Translation.

the lower service providers or in a protocol between the edge nodes - not by interaction with the
higher service provider. It also implies that a model will contain information that relates to entities
outside the model - such as the neighbouring service provider, a name to identify information held
by the neighbouring service provider, or an abstract reference.

3.1.2.4 Dynamic Reference Resolution

Model refinement and splitting has a direct implication over the way things are referenced in the
data model. For instance, when a user specifies she desires a VM in the UK and another one in
France, she is (likely) indirectly generating a split of her request across multiple administrative
domains. When her request is split and refined, the VM in the UK is referring to a VM in France
whose final name (e.g. its host name) would only be known at deployment time.

The distributed naming expressed at the last paragraph of the section above (further detailed
below in Section 3.2.2) is a way to keep these pointers consistent (a reference points to a unique
resource or resource attribute). Once a VM has been allocated, its hostname becomes known and,
therefore, the reference can be resolved by back propagating the reference to the required entities
in the system (even the user if needed).

Generally speaking a reference will take the form of a protocol+container+resource. A universally
accepted example is the Universal Resource Identifier (URI):

http://www.sail-project.eu/resources/vms/vm1/hostname/vm1.sail-project.eu.

SAIL Public 17

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

Also, the naming scheme under development in SAIL’s NetInf work package is being considered for
this crucial task.

This simple example is revealing the need for aligning naming and reference resolution so that
once a reference is dynamically resolved, it gets delivered back to the interested parties (e.g. VM
in the UK gets to know the host name for the VM in the UK). Of course, these are more related
to implementation matters than to an architectural definition, but they are issues worth pointing
out when tackling the design of the system sketched by this architectural document.

3.2 Basic Model Concept

The architectural model should have a formalised representation of the previous description on how
the elements in the model will be dealt with. Thus, a first step towards a valid data model is to
have a clear view of the entities in the system and how they are related to each other. The main
two elements in the system are, therefore, the resources that need to be deployed or configured at
each level and the relationships, links among them.

The basic abstractions included in these data models are the network, the compute and the
storage resources (children of the resource class).These elements are, in turn, related to each other
by the relationships illustrated in Figure 3.2.

Figure 3.2: A Simple Data Model.

There are various data models and related APIs trying to make their way in the standardisation
process of different organisations. Open Cloud Computing Interface (OCCI) is one such standard
to-be that is implemented by OpenNebula [4, 5]. OpenStack’s network API is another example,

18 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

but in this case the product of an open source development process. OpenStack’s network API
and OpenNebula’s OCCI both use a simplistic network scenario, using a single network or VLAN
networking without routing or bridging (two networks cannot be directly linked/bridged together;
a compute resource is needed for them to be bridged). More recent proposals (including future
design proposals for OpenStack) start to analyse more sophisticated data models to go beyond
some of the limitations present in currently available specifications and APIs [6, 7].

However, all employ network types that are used to represent a network element in the context
of a (logical) data centre. This is well enough if the focus of the model is end-user oriented (as
in providing a descriptive language such as Virtual private eXecution infrastructure Description
Language (VXDL)[6] to allow users to describe their need for specific constraints, rather than
expressing the way their need will be instantiated on an actual network of resources). An operator-
oriented model might require to deal with the peculiarities of the data centre to network operator
or network operator to network operator borders beyond Border Gateway Protocol (BGP) and
the like. There is not a means to deal with both, users and operators (data centre and network)
peculiarities at same time.

In the following section we will show how more sophisticated mechanisms are needed in order to
achieve a fully functional federation of heterogeneous infrastructures (not just data centres). This
federation should be capable of preserving infrastructure operational independence (e.g. techno-
logical heterogeneity and hidden management mechanisms), while coping with highly abstract user
requests to meet a series of application performance, quality of service, cost, etc. goals.

3.2.1 A Possible Embodiment of the Data Model

The first ingredient for understanding how the data model is going to be treated and refined in
SAIL is having a high level view of the resources involved in the application. The reader is advised
this is just an introductory data model that will be further refined in later sections. A detailed
specification of the data model is beyond the purpose of this architectural document. The two major
components of this model are the Resources (mainly network, compute and storage resources) and
the Relationships among them, also referred to as links in some available data models for describing
virtual infrastructures (e.g. OVF’s, OCCI’s) and topologies (e.g. NDL’s), or both such as VXDL’s.
Figure 3.3 shows these two major elements and how the rest of the elements in the description
are organized around them. For instance, VXDL’s and OCCI’s data models are totally compatible
in the sense that network, compute and storage (the main entities in OCCI’s) can be considered
as children of the VXDL’s resource. OCCI’s links are directly translatable into VXDL links and,
therefore, both model seem to be highly compatible. More detailed research on the appropriateness
of any of the available languages is beyond the scope of this document.

The point here is that all the available models can be viewed as a graph of connected resources
whose attributes and completeness is going to be refined in the delegation chain described above.
The model is the portrayer of user’s goals.

3.2.2 Unique Universal Naming in a Distributed Cloud

Being able to delegate a request and let other providers materialize it implies two major things:
there is a trust chain across providers; and this trust is maintained even though providers intendedly
hide the complexities of their operation (see below) to the users of the services they expose. While
the former is highly static and typically done on the basis of written and formal negotiation with
different providers, the latter is highly dynamic and needs to be resolved at runtime.

Resolving this naming of entities across federated clouds was easily solved in previous approaches
by having a central naming entity (e.g. [8]). A site identifier was followed by the user account and
the specific name the user wanted to expose for that given requests. That was the root name for

SAIL Public 19

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

Figure 3.3: Example of Elements Considered in a Virtual Infrastructure + Virtual Topology De-
scription Data Model. Taken from http://vxdlforum.org

a request. After that, the name of a given resource could be obtained by appending new branches
of the tree as needed (e.g. vms/vm1/cpus/cpu1/ etc.). However, the delegation model herein
proposed conveys the federation of resources across non-coordinated domains and service providers
and no single entry point for end user requests. Moreover, the presence of virtual infrastructure
service providers and the fact that a given virtual infrastructure provider can be, in turn, relying
on another virtual infrastructure provider makes naming a bit trickier.

The three most straightforward approaches to distributed naming are, arguably, encapsulation
or mapping (see Figure 3.4 for details):

• Encapsulation implies appending length-fixed identifiers and directing the request to the
appropriate entity (which is supposed to be capable of understanding and handling it).

• Mapping involves letting service user specify their own names while mapping them locally
to unique internal names. This can be done by every player involved in the trust/delegation
chain.

• Universally Unique Identifier (UUID) for naming mechanisms. This does not guarantee col-
lisions will not take place, but given the nature of UUIDs their probability of occurrence is
kept reasonably low.

20 Public SAIL

http://vxdlforum.org

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

Figure 3.4: Two Possible Approaches for Distributed and Uncoordinated Naming.

3.3 Network Model

Data centres have experienced a shift towards exposing their capabilities as a service (i.e., IaaS
cloud computing). This has boosted innovation by reducing costs of ownership and management,
creating new business models where a party can lease out slices of servers on demand and pay
essentially for what they use (pay-as-you-go), etc. SAIL aims at making the same come true for
networking, where many applications would greatly benefit from in-network functionality beyond
the basic connectivity which is offered by most Internet Service Providers (ISPs) as of today.

For instance, in BGP a single route must be chosen at each router, which forces the ISP to
announce the same route to every customer. Customers have different needs and different ways to
express these: e.g. low latency path vs. forbidden countries in the route. Today’s networks do not
allow for different routes by giving the customer control over route selection (even in the simplest
coarse-grained selection, such as ”high bandwidth. For instance, real time applications (e.g. online
games) can greatly benefit from more efficient distribution or on-path processing, which currently
fall beyond the scope of most ISPs offer.

A lot of attention has been paid to dynamic device network configuration management based on
templates [9, 10, 11] and exemplified in BGP configuration or realizing network-wide inter-domain
routing policies. Also, a handful of other tools aiming at analyzing the correctness of current
network configurations have been reported [12, 13]. Router vendors have also proposed their own
network automation frameworks. A major limitation of these automation frameworks is that they
remain device-centric and are mostly used to handle local management.

Overlay networks constitute a workaround for these limitations enabling custom functionality
with minimal intrusiveness in the network. Multiple virtual networks can coexist on a shared

SAIL Public 21

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

physical substrate through the use of virtualisation. This vision has been partially realized by
many undergoing research and pre-production attempts leveraging on virtualisation technologies
for a more efficient usage of the underlying resources (e.g. virtual routers, shared NICs in the
hypervisors, etc.) [14, 15, 16]. However, most of the prior state of the art has focused on a model
in which the network consisted on a series of virtual routers connected via virtual links or basic
connectivity [16]. This approach has been deemed to be analogous to the IaaS world, in which
the underlying physical resources are split (sliced) so that the operational and cost efficiency are
both increased by means of multi tenancy. It misses, however, the on-demand, dynamic, SLA-
based and abstracted nature underlying cloud services. After all, one may argue that managing
a virtual network is similar to managing a physical network and this falls away from the cloud
philosophy: users are supposed to enforce traffic engineering to optimally use their available virtual
link bandwidth, ”the customer must be able to cope with failure (e.g., by providing redundancy)“
[17, 16]. As mentioned by Keller et al., this conveys inconveniences for both, the application and
the infrastructure provider.

3.3.1 Single Router (Node) Abstraction

In order to cope with the limitations of fully virtualised networks specification by application
providers while avoiding falling into an over simplistic model basic connectivity functions (as offered
by most ISPs today), new data models are required that enable more abstract requests to be
expressed by users (e.g. application providers), while still being capable of refining it for more
detailed (virtual) network infrastructures are required. The model we use to represent a FNS, the
virtual resource we use to provide networking, is based on the single router abstraction.

In a first step, user may care about the quality of service parameters for connecting two VMs or
storage resources in different network locations (possibly located across several network operators).
Most advanced application providers may also deal with specific policies and how packets are
handled. The ability to customize path selection within a single domain is another of the advantages
of the single router abstraction. In the delegation approach outlined in the previous section, this
delegation implies that a given domain may need to pass some of these policies down to the
underlying domains and make sure that the aggregation of paths in several domains still comply
with the user’s specified requirements. In Figure 3.5 one can observe how this delegation approach
works in the single domain abstraction. Domain 1 is deploying several VMs in several other domains
(since it does not have any actual resources of its own). Domain 1 users see the whole network as a
single router to which their VMs can be linked. Domain 1 is hiding the underlying complexity and
the information provided by the underlying domains with regards to their neighbours. Domain 1
makes the decision to split the request and deploy the VMs in two different domains. Based on the
information exported by domain 2 and 3 about their connectivity (e.g. Domain 1: can connect to
domain 2 via Multiprotocol Label Switching (MPLS) or via L3 VPNs at endpoints A, and B with
different UUIDs), Domain 1 informs the underlying domains about their need to talk and negotiate
in order to get the chosen link (e.g. MPLS connection) ready. Please note that a single switch
abstraction is also applicable here, depending on the connectivity level requested by the end user
(L2, L3, flowcontrols). This is why we will refer to the single node abstraction as a general case of
the single router abstraction introduced by this example.

In this scenario, the concept of the endpoint becomes prominent (represented with the darker
blue cylinders in Figure 3.5). And endpoint is nothing else than the concept of a router interface
taken to a higher abstraction level. It can be just another resource of the cloud (a VM or physical
router) that needs to be properly configured (like, for instance, Ciscos’ routers via its IOS com-
mands per interface and protocol). The data model to be used needs to deal with the abstraction
of the endpoint (single router interface) and its configuration protocols. Obviously, the specific
configuration may be hidden from the user domain and some type of negotiation may take place

22 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

between two neighbouring endpoints so as to agree in some parameters (for instance, the transmis-
sion rate). Roughly, the idea is to introduce a new network-wide software layer that exposes one
or more logical forwarding elements

Figure 3.5: Single Router (Node) View of the Network of a Domain.

This darker blue cylinders (endpoint or ports of our single router) are the key elements that
need to be defined and integrated at a later design stage in order to guarantee that users deploying
services in the federated cloud get the network features that are truly relevant for their applications’
proper performance. At an architectural level, the endpoints will include two major interfaces:

• External Domain (client) Interface: it exposes endpoint configuration or negotiation capabil-
ities as a service for external users. For example, a client domain may decide to connect two
neighbouring domains by using any available endpoint in that inter-domain junction.

• Internal Domain (provider) Interface: the domain receives the external (client) domain re-
quests and maps it to a series of internal operations and actuations on a series of devices
that bring the required elements up to work. For instance, an L3 VPN with some Quality of
Service (QoS) guarantees is to be established with a remote endpoint indicated in the request.

While the specifics of the internal domain interface are operator-dependent, the external interface
should be built following a bottom up approach. In other words, getting data from the available
technologies implemented at these junctions (and across operators) so as to build a common set of
abstract operations and data types to be used ubiquitously, granting that a request can be placed no
matter the actual technologies and policies implemented by final (the one that does no delegation
at all and owns the infrastructure) domain.

3.3.2 Goal Translation and Data Model Refinement Synchronisation

The level of specification and the details about the data model vary according to the level of
our architecture. The information and the data model vision of a user requesting a service are
different from those explored by the infrastructure provider. A high level description is refined and
formatted with information coming from management framework. For exemplifying the expression
of user’s requests and the goal translation considering our data model, we selected a scenario were
one is requesting a traditional IaaS, informing some elasticity configuration as well as the network
requirements. At a very high level the goals expressed by the user could look something like the
following:

• 10 VMs and connect them to my two enterprise sites, Madrid and London. VMs: 2 vCPU,
4GB RAM, 120GB HDD, Linux OS, Internet connection, located in Germany.

• I want to be able to scale up to 50 VMs (i.e. the minimum I want is 10, and I can go to a
maximum of 50 - SLA).

SAIL Public 23

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

• Connection between data centre and enterprise sites: maximum end to end delay of 100 ms.
“I don’t want my connection to pass through Belgium”.

Using parts of our possible embodiment for the data model (see Section 3.2.1), this request would
look something like presented in Figure 3.6 (shortened for the sake of brevity). This does not mean
that this is the final expression of the data model, just a very illustrative example.

This model is in line with the high level description in Sections 3.1.1 - 3.2 with regards to how
the data model should look like. Also, the presence of “access points” here can be understood by
making the analogy with the ports in the single router abstraction we mentioned above. A VM in
an external data centre (Germany) is linked to one of the ports in our facilities “single router” (the
access link).

We can also clearly observe how the data model reflects the goals at this level of the architecture.
However, in the refinement process, the management functions explained in Section 5 also need to
be refined and re-expressed accordingly to the increased level of detail and the dynamic references
being resolved as such requests get mapped into the actual infrastructure. At the end of the day,
when a VM gets to an IaaS cloud provider, the provider itself needs to trace certain goals (e.g.
minimize data centre energy consumption by keeping physical machine utilization up to 80 % and
no less than 65 %, then switch equipment off. Of course, these goals imply different knowledge
(e.g. specific placement algorithms, data centre topology information, etc.) and details that need
to be mapped into the data model.

24 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

<?xml ver s i on=” 1 .0 ” encoding=”UTF−8”?>
<de s c r i p t i on xmlns=”http ://www. vxdlforum . org /vxdl ” xmlns : x s i=”http ://www.w3 . org /2001/

XMLSchema− i n s t ance ” x s i : schemaLocation=”http ://www. vxdlforum . org /vxdl VXDL. xsd ”>
<v i r t u a l I n f r a s t r u c t u r e id=”Goal t r a n s l a t i o n . Example” owner=”SAIL pro j e c t ”>

<vArray id=”10VMs” c a r d i n a l i t y=”10”>
<vNode id=”VM”>

<l o ca t i on>germany . eu</l o ca t i on>
<cpu>

<cores>
<simple>2</simple>

</cores>
<frequency>

<i n t e rva l >
<min>2.0</min>

</ in t e rva l >
<unit>GHz</unit>

</frequency>
</cpu>
<memory>

<simple>4</simple>
<unit>GB</unit>

</memory>
<storage>

<i n t e rva l >
<min>120</min>

</ in t e rva l >
<unit>GB</unit>

</storage>
</vNode>

</vArray>
<vAccessPoint id=”Madrid”>

<externalRegion>Internet </externalRegion>
<l o ca t i on>madrid . spa in . eu</l o ca t i on>
<ip sec ></ipsec>

</vAccessPoint>
<vLink id=”VMs to Madrid”>

<bandwidth>
<forward>

<i n t e rva l >
<min>1</min>
<max>10</max>

</ in t e rva l >
<unit>Mbps</unit>

</forward>
<reverse>

<i n t e rva l >
<min>1</min>
<max>10</max>

</ in t e rva l >
<unit>Mbps</unit>

</reverse>
</bandwidth>
<l a tency>

<i n t e rva l >
<max>100</max>

</ in t e rva l >
<unit>ms</unit>

<l a tency>
<source >10VMs</source>
<des t ina t i on>Madrid</de s t ina t i on>

</vLink>
</v i r t u a l I n f r a s t r u c t u r e >

</de s c r ip t i on>

Figure 3.6: VXDL example of goal description.

SAIL Public 25

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

26 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

4 Control Interactions

In this section we consider control interactions across infrastructure services. The arrangement of
control in the CloNe architecture is based on a number of principles, the need for delegation and
the need for distributed coordination across administrative domains.

4.1 Principles of Infrastructure Control

Here we detail the requirements of the general model for development of the control plane.

• Limited information disclosure: each Infrastructure Service Provider will be unwilling to
expose details of its service, physical topology or traffic matrices. Hence, the Infrastructure
Service Provider should be able to undertake cross-domain resource provisioning without
detailed knowledge of underlying administrative domains.

• Rapid resource provisioning: the user should be able to provision resources across multiple
domains at time scales comparable to existing compute resource provisioning in single domain
IaaS offerings.

• To scale with the number of Infrastructure Service Providers: it should be possible
for the Infrastructure Service Provider to utilize services from many Infrastructure Service
Providers without major impact on the performance of the service.

• To scale with the number of user requests: it is important to give guarantees or bounds
for searching processes and sending of requests and messages.

• Autonomy of an Infrastructure Service Provider: the Infrastructure Service Provider
should be able to accept or deny any request from an infrastructure service user. Local
policies can be applied locally if so desired.

• Filtering: a domain may apply whatever filtering policy it chooses to limit external interac-
tion with its own domain, including cross-domain control interaction (similarly to the existing
BGP).

A key design goal is to make the control infrastructure independent of the heterogeneous underly-
ing networking technologies by defining and specifying interfaces and communications middleware
with the appropriate level of abstraction.

4.2 Control Interactions

Infrastructure control can be broken down into two broad aspects in the CloNe architecture:
delegation-based control and distributed coordination. The first of these refers to requests invoked by
the infrastructure service user that result in actions performed against the user’s virtual resources.
These cascade down through the delegation hierarchy of infrastructure services according to the
management functions of the services. The second refers to interaction among administrators in the
distributed control plane to share or negotiate configuration information. The aspects are shown in
Figure 4.1. The two aspects are related in that requests in delegation-based control may result in

SAIL Public 27

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

actions that require distributed coordination. The counterparts in a distributed coordination are
identified by information in the data model passed through the infrastructure service interfaces in
the form of references.

Figure 4.1: Two Aspects of Control Interaction Across Infrastructure Services

4.2.1 Delegation Based Control

Delegation is concerned with the devolution of management responsibility. It is a two-way re-
lationship in which the infrastructure service user hands over management responsibility for an
infrastructure (including its creation) to the infrastructure service provider, and conversely the
infrastructure service provider reports on the status of that infrastructure to the infrastructure ser-
vice user. The provider is free to chose how to implement the infrastructure and its management,
including by further delegation to other infrastructure service providers, but is not compelled to
inform the user of how this is done.

As management responsibility is passed down a hierarchy or across peers a delegation chain is
established that is itself always hierarchical in structure, with control flowing down the hierarchy
and reporting flowing up. The higher levels of the hierarchy have a more global view, but it is more
abstract with less detail of implementation. At the bottom of the hierarchy are the infrastructure
services with their own administrative domains that directly control the resources used to implement
the service. These have complete knowledge of the resources under their control, but do not have
a global view of the infrastructure.

Delegation based control is exercised through the infrastructure service interface. The act of
delegation forms a trust relationship that is the basis of devolved responsibility, so a key feature
of the infrastructure service interface is the capability for mutual authentication between user and
provider.

4.2.2 Distributed Coordination

Distributed coordination is concerned with operations that involve multiple agents. In particular
we consider operations that require coordination across multiple administrative domains at the
bottom of a delegation hierarchy.

One obvious way to achieve distributed coordination is to involve a common control point to
coordinate the actions; we observe that two administrative domains will always have a common

28 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

infrastructure service user above them in the delegation hierarchy. However, if the lower infras-
tructure services are unwilling to communicate implementation details up the delegation chain,
they may not be able to involve that common control point. More generally, once management
responsibility has been delegated, it is no longer the responsibility of the delegating party to be in-
volved in the management. So the delegation hierarchy can not be exploited to achieve distributed
coordination.

In general we can assume that administrative domains will have to share necessary information to
establish connections with their immediate neighbours, and so there will be some sideways sharing
of information. We can assume that distributed coordination will follow a peer-wise communication
pattern, using limited information sharing, outside the scope of the delegation hierarchy. This form
of distributed coordination will occur through the distributed control plane.

In order to interact across the distributed control plane two peer infrastructure services will
need to prove that they have the delegated authority to participate in management of a given
infrastructure or resource, and they will have to identify themselves as the neighbour with which
information can be shared. The first of these is inherited through the delegation hierarchy, the
second is a peer-wise agreement between administrative domains.

4.2.3 Reference Resolution

An infrastructure service user may decompose its users’ infrastructure models into multiple parts
that will be delegated to different providers. These models may contain related information, such as
shared configuration parameters or connected resources. Some shared information that is available
at the point of delegation can simply be included in multiple models, but in some cases one provider
will need information the is not known until another provider has further elaborated its part of the
infrastructure.

This situation is dealt with by adding references to one model at the point of delegation that
identify information held by the other providers. Resolving these references after delegation allows
the information to be obtained from the target providers.

These references may identify the wrong provider or information in the event that the target
provider transforms its model and repeats the delegation. In this case a new provider further
down the delegation chain is the real source of the required information. This suggests a chained
resolution process in which the target identified by a reference can redirect resolution to information
held by other providers.

Care has to be taken with this process as it may inadvertently reveal information that providers
would prefer to keep hidden. If a recursive approach is taken in which the delegating provider
acts as an intermediary, the response may need to be obscured so that it can not be interpreted
by the intermediary. If an iterative approach is taken, in which a delegating provider supplies
a new reference identifying the delegatee, the provider will reveal the delegation hierarchy. If
the resolution process involves an independent resolution mechanism, such as a publish subscribe
service, these concerns may apply to the service itself.

In general the reference resolution process will need to follow indirection that results from dele-
gation, but providers should be able to implement their own policies regarding information hiding.
A provider may wish to ensure that certain information is only exposed to selected peers.

4.3 Interface Design

The control interactions among interfaces of the CloNe architecture provide for a set of functions
(outlined in Section 2.5 and described in more detail in Section 5) that are responsible for the
allocation and control of distributed computing and networking resources both within and across

SAIL Public 29

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

administrative domains. The form of these interfaces and the style of interaction across them should
support the principles of infrastructure control described above over resources that are distributed
and may be under the control of different administrative entities.

4.3.1 Delegation Interaction

The system design supports both peering and hierarchical arrangements of infrastructure service
providers described in Section 2.3. In a peering arrangement each infrastructure service provider
should establish resource sharing agreements with adjacent providers (not between domains that
are more than one hop away). A distributed service is created by interaction across these peer-wise
relationships.

In a hierarchical arrangement one infrastructure service provider composes a distributed infras-
tructure service based on resources provided by multiple infrastructure service providers. The one
provider acts as a user of these providers and interacts with each independently. This infrastructure
service provider does not need to own any of the infrastructure used to implement the service.

Even though communications providers prefer to offer services that reflect the current loosely
coupled Internet structure (which speaks in favour of a peering model), the nature of the control
interactions is likely to be influenced as much by business relationships as by technology. The
hierarchical model allows for the creation of a new business entity which can compose services
and choose different sources of infrastructure according to different metrics (e.g. price, reliability,
security). Moreover, any existing infrastructure service provider (e.g., network provider, cloud
providers) can implement that functionality.

Delegation through the infrastructure service interface is a synchronous act in which the user
passes responsibility for management to the provider and typically later retracts that responsibility.
Invocation of management actions in response to adopting responsibility may be asynchronous.
Delivery of status reporting information to the user may be synchronous in response to query or
asynchronous in the form of notifications.

Figure 4.2: Control interactions across domains

30 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

Figure 4.3: Hierarchical control interactions

4.3.2 Distributed Coordination

In addition to control interactions at the level of the cross-domain infrastructure service layer, there
may be interaction at the resource layer to establish and manage links between resources in different
administrative domains. These represent fulfilment of interconnection agreed at the higher layer.
Both the forms of coordination are achieved through the DCP to cooperatively use of resources
from several domains in response to requests received through the infrastructure service interface.
The scope of this management depends on the established service level agreements between the
domains since they determine the information shared and made available to the common control
plane.

A key design goal is to make the control infrastructure independent of the heterogeneous underly-
ing networking technologies by defining and specifying interfaces and communications middleware
with the appropriate level of abstraction. A possible solution based on the current state of the art
is to build the inter-domain interfaces as depicted in Figure 4.2 by relying on:

• Service Oriented Architecture (SOA) anchored interfaces, e.g. Representational State Trans-
fer (REST) interfaces, for commands and instantiation in the common and distributed control
part

• publish / subscribe mechanisms relying on a Message Oriented Middleware (MOM) for inter-
domain communications

The SOA anchored interfaces are similar to the infrastructure service interface defined in Section
2.4.3 in terms of command and instantiation actions. The publish-subscribe mechanisms enable
topology discovery across and within domains with information disclosed according to security
and service agreements between domains. During this operation, information is hidden or dis-
closed securely and selectively depending on established Service Level Agreements (SLAs) between
providers. The publish-subscribe system is typically designed to also control information disclosure

SAIL Public 31

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

Figure 4.4: Peer control interactions

and advertisements and embeds a discovery and notification framework to facilitate inter-domain
cooperation, interactions and information exchange, including reference resolution.

Interaction through the DCP is to achieve cooperation between two independent agents. Using
a MOM decouples the interaction in time and space and provides the agents with the freedom to
operate independently and implement their functions as they chose.

Both hierarchical and peering approaches can be adopted to design the DCP for inter-domain
coordination and management. These two possible configurations for the DCP and its interactions
with the domain specific controllers are depicted in Figure 4.3 and Figure 4.4 for the hierarchical
and peering solutions respectively.

In the hierarchical solution, a common controller acts as a root for the system and handles
all communications between the different domains and is the unique service access point for the
service interface. In the peering approach, the DCP relies on the peer to peer paradigms where all
controllers are logical peers that cooperate to achieve joint and cooperative management across the
domains. The user can access the service interface provided by any participating domain.

4.4 Interface Standardisation

The infrastructure service interface and the DCP interfaces and protocols are points of interoper-
ability between providers. In some cases these may be relatively ad hoc or proprietary, such as
integration interfaces agreed between neighbouring administrative domains, in others they need to
be generally defined and are therefore candidates for standardisation. The infrastructure service
interface used to delegate infrastructure management to providers is one such candidate.

The infrastructure service interface is based on web technologies like REST since full support is
readily available from key working groups and forums such as Open Grid Forum (OGF) OCCI-
WG and Storage Networking Industry Association (SNIA) CDMI. This interface needs to be
compatible with the cloud computing technologies and communities and it has to use the right
level of abstraction to simplify interactions with applications and users on the user API side. In

32 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

parallel, the interface needs to be useful for any lower level or domain specific technology via
the lower level API. Several significant IaaS implementations implement the OCCI interface or
are currently developing the interface, including OpenNebula [5] and OpenStack [18]. Most cloud
resource and service tool and manager implementations today are compatible compatible with
OCCI.

Figure 4.5: OCCI Protocol and API placement in a provider’s architecture from [19]

OCCI is a boundary protocol and API that acts as a service front-end to a provider’s internal
management framework. Figure 4.5 shows OCCI’s place in a provider’s architecture. Service
consumers can be both end-users and other system instances. OCCI is suitable for both cases. The
key feature of OCCI is that it can be used as a management API for all kinds of resources while
at the same time maintaining a high level of interoperability. For this reason it provides a possible
starting point for CloNe to define an infrastructure service interface.

In the following we describe how OCCI can be extended to incorporate the CloNe capabilities.
We call the extension Open Cloud Networking Interface (OCNI).

Figure 4.6: UML diagram of the OCCI Core and Infrastructure

OCCI describes cloud resources and services through an OCCI core specification supplemented

SAIL Public 33

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

by an OCCI infrastructure specification that views everything as a resource. The notion of resource
in OCCI has a very broad meaning and describes a concrete resource that represents real world
resources such as virtual machines, jobs in a job submission system, users, networks and even
services (including applications, middleware services, network services, networking and connectivity
services, etc.). The structure of the OCCI specification is depicted in Figure 4.6. The Mixin element
allows the inclusion or integration of components from other domains or realms not originally
included in the OCCI specification scope or coverage space. Despite this Mixin feature, it is
essential to extend the framework to include cloud networking in the specification to move the
clouds beyond cloud computing.

Figure 4.7: OCNI - An OCCI extension for cloud networking

The OCCI Core specification is enough to describe any cloud computing constituent or component
in terms of attributes and characteristics but falls short of describing connectivity between these
components. The OCNI extension depicted in Figure 4.7 is meant to fill this gap. OCNI is composed
of two elements. The first and main one is a cloud networking centric extension to the OCCI core.
This extension is in the same layer as the OCCI infrastructure extension which is compute centric.
The second element consists of a number of specialized network Mixin that can be used in the
OCCI Infrastructure extension as shown in Figure 4.7. Examples of such Mixins, most relevant to
CloNe are for example VPN and OpenFlow network interface Mixins.

OCNI specifies an abstract data model taking into account expected and desired CloNe services
to fill the existing gap in cloud computing by introducing cloud networking services. The ultimate
goal is to merge networks and clouds to achieve convergence of cloud computing and operator
networks and services. The details are depicted in Figure 4.8.

The OCNI extension adheres to and uses the OCCI original approach by adopting the same
modelling framework but specialises the specification to the cloud networking domain by adding
classes that relate to the CloNe networking resources and their relationships. These classes repre-
sent abstract concepts that can be used to encapsulate common networking concepts such as the
FNS, including the data models presented in Section 3, or technology specific such as the virtual
networking technologies presented later in Section 6. As such, model transformation during the
delegation process, as described in Section 3, can be used to refine an abstract model to a more
specific model while continuing to use the same interface for delegation.

The components of the data model in Figure 4.8 comprise those related to the OCCI specifi-
cation and to the OCNI extension. These elements are described in terms of roles, functions and
relationships for the reader’s convenience and for broader comprehension of the data model. The
OCCI Core and OCCI Infrastructure are repeated for reference as they are readily available and
described in greater depth in [19] and [20]. The elements introduced though the OCNI extension
use the same concepts as OCCI and are consequently compliant and compatible with the original

34 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

Figure 4.8: CloNe proposal for an OCNI extension of the OCCI framework

OCCI specification. This will enable natural integration OCNI and cloud networking concepts and
facilitate the dynamic composition of FNSs to support the cloud community in setting on demand
virtual and dedicated private and hybrid clouds. The components of the data model in Figure 4.8
are itemised below.

OCCI Core [19]

• Category: The Category type is the basis of the type identification mechanism used by the
OCCI classification system.

• Kind: The kind type, together with the Mixin type, defines the classification system of the
OCCI Core Model. The Kind type represents the type identification mechanism for all Entity
types present in the model.

• Mixin: The Mixin type complements the Kind type in defining the OCCI Core Model type
classification system. The Mixin type represents an extension mechanism, which allows new
resource capabilities to be added to resource instances both at creation-time and/or run-time.

• Entity: The Entity type is an abstract type of the Resource type and the Link type.

• Action: The Action type is an abstract type. Each sub-type of Action defines an invocable
operation applicable to an Entity sub-type instance or a collection thereof.

• Resource: The resource type inherits Entity and describes a concrete resource that can be
inspired and manipulated. A resource is suitable to represent real world resources, e.g. virtual
machines, networks, services, etc. through specialisation

SAIL Public 35

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

• Link: An instance of the Link type defines a base association between two Resource instances.
A Link instance indicates that one Resource instance is connected to another.

OCCI infrastructure [20]
Resource:

• Compute: Information processing resources.

• Network: Interconnection resource and represents a L2 networking resource. This is compli-
mented by the IPNetwork Mixin.

• Storage: Information recording resources.

Link:

• NetworkInterface: connects a Compute instance to a Network instance. This complimented
by an IPNetworkInterface Mixin.

• StorageLink: connects a Compute instance to a Storage instance.

OCNI
Resource:

• FlashNetworkSlice: a resource that provides a network service.

• CloNeNode: a networking resource of the Flash Network Slice.

• CloNeLink: a network link of the Flash Network Slice.

Link:

• FlashNetworkSliceInterface: connects a FlashNetworkSlice instance to a Resource instance.

• CloNeNetworkInterface: connects a CloNeNode instance to a CloNeLink instance.

• CloNeComputeLink: connects a CloNeNode instance to a Compute instance.

• CloNeStorageLink: connects a CloNeNode instance to a Storage instance.

4.5 Conclusion and further steps

We have described delegation through the infrastructure service interface and distributed coordina-
tion through the DCP interfaces and protocols. The infrastructure service interface is a clear point
of interoperability between infrastructure service users and providers that warrants standardisation
and we have described a possible approach to structure an appropriate standard. The interface
itself and the data model passed over the interface can be separated to some extent by using an
abstract representation in the interface, but a tighter alignment and agreement on data models is
far more beneficial than the interface alone. Standardisation of this interface through data model
and interface specification is currently being proposed by CloNe to European Telecommunications
Standards Institute (ETSI).

The DCP includes a variety of interfaces and protocols as it encompasses technology specific
interaction between administrative domains (such as BGP) and higher level management coordina-
tion between infrastructure services (such as resource life cycle coordination through management
functions), some of which are public standards, some are proprietary. We have identified MOM and
REST as suitable generic technologies to be supported in the DCP. As the management functions
develop we will continue to re-examine the DCP to identify any future areas for standardisation.

36 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

5 Cloud Network Management

The CloNe management architecture is based on three management functions - goal translation,
fault management and resource management. These management functions are in general focused
on challenges concerning scalability, efficiency, manageability, adaptability and reliability, in order
to cope with e.g. increasing network complexity, equipment heterogeneity, and fast reconfiguration
in cloud networking. We will here give an overview of the initial management architecture. In
Section 5.1 we present the management concepts. Section 5.2 presents the management architec-
ture, the distributed management functions and relevant interfaces. In the Sections 5.2.5 and 5.2.6,
we present general management processes and collaboration workflows between the management
functions, followed by an overview of the initial approaches addressing cloud network management
concepts in Section 5.3.

5.1 Management Concepts

As efficient and flexible usage of resources are some of the most important driving forces for the
adoption of cloud networking solutions, management solutions should be designed to be highly
efficient, scalable, adaptive and autonomous. The cloud network management should provide func-
tionality for efficient and effective management of computational, storage and network resources,
facilitate management of legacy networks, and utilise legacy management capabilities where needed.
In order to be practically deployed, reliability and controllability must be ensured to a very high de-
gree in all cloud networking solutions. Flexibility, reliability, and resilience can be achieved through
decentralised, collaborative management solutions that to a high degree autonomously adapt to the
dynamic conditions in the cloud network.

For the overall management of FNSs, we identify and present three important management
concepts: goal translation, fault management, and resource management, which cover the most
critical aspects of cloud network management, such as transformation of high-level objectives to low-
level resource configuration objectives, security goals (further described in Section 7), configuration,
monitoring, flexible resource allocation, and efficient optimisation.

Goal translation (GT) is needed for expressing high-level objectives in terms of low-level resource
parameters for the configuration of FNSs, and facilitates dynamic optimisation and reconfiguration
of the service infrastructure. Management via goals enables users with different backgrounds and
agendas to request and manage services, without the need to deal with low-level aspects of compo-
sition and configuration of services. Competing service providers can delegate control of the service
to its users without the need for disclosing the service infrastructure or business sensitive informa-
tion. For robust self-management capabilities of cloud network management functions, uncertainty
can be encoded into the goals taking into account the volatile service infrastructure environment.

Fault management (FM) is critical in providing resilience to faults and performance degradations,
and to ensure reliability in cloud network services. Fast, accurate detection and reconfiguration
is thus essential for maintaining service, connectivity and QoS. Fault management solutions need
to be both reactive and proactive to network failures, for fast identification of the root cause and
fault handling - preferably before the problem causes a noticeable degradation of the service or
a violation to a high-level objective. Scalable and autonomous fault management solutions are
necessary, to handle both growing network complexity and volatile network environments. Quick

SAIL Public 37

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

adaptation to changes in the network is crucial, and collaborative detection and localisation of faults
and disturbances must be efficient to reduce communication overhead. It is therefore required that
fault management solutions to a large extent operate in a decentralised manner.

The resource management (RM) concept is dynamic localisation and allocation of necessary re-
sources in an efficient and timely manner. Scalable and efficient resource scheduling mechanisms
enable fast location and prioritisation of available resources at a given time, ensuring short reaction
times for FNS creation and adaptation in order to minimise disruptions in FNS operations. Mech-
anisms for quick adaptation for equipment joining and leaving the pool of resources are essential
for effective and dynamic allocation of resources. In large systems that may span multiple domains
controlled by individual stakeholders exposing more or less limited capabilities and resource in-
formation, a homogeneous abstraction layer is required to abstract over potential heterogeneities
for flexible FNS management. The unpredictability that follows from complex and dynamic net-
work environments must be taken into account in order to avoid e.g., resource starvation. As
asynchronous and concurrent creation of many FNSs prohibits the use of commonly used resource-
blocking protocols, it is essential to design efficient algorithms that obtain a consistent snapshot
of the resource situation while avoiding excessive temporary reservation of resources. To ensure
that the resource allocation is optimised at all times, efficient live migration mechanisms operating
seamlessly from the application and user are also necessary.

The combination of goal translation, autonomous fault management, and efficient resource man-
agement, has the potential to provide the foundation for a highly efficient management plane, in
which resources are easily configured, managed, and monitored for malfunction.

5.2 Management Architecture

Conceptually, the management functions can be instantiated in any virtual instance or level of
an infrastructure service provider, addressing management in both single- and cross-domain cases,
given that the infrastructure service provider implements it according to its specific management
purposes and with respect to the available infrastructure. Figure 5.1 provides an overview of the
management functions described below (without specifying single- or cross-domain).

Management algorithms applied in a single-domain can not in all cases be directly used for cross-
domain management purposes. For example, resource management and fault management require
different types of information for management of resources and faults in the cross-domain case,
compared to the single-domain. Moreover, the operation of the management functions may be
restricted in cross-domain services, depending on the nature of the information the participating
(single-domain) infrastructure providers are willing to expose, as reflected in the current commercial
agreements between the domain owners. Limitations may be technical (e.g. varying network
virtualisation technologies), administrative (e.g. operator limits knowledge it is willing to share with
other domains), or legal (e.g. country-specific encryption limitations). A homogeneous abstraction
layer, the Distributed Knowledge Plane (DKP) (Figure 5.1), is therefore required to abstract over
potential heterogeneities for flexible FNS management.

The DKP is a generic term that represents the concept of distributed information retrieval and
information maintenance of distributed resources, and allows for information transparency over the
heterogeneous equipment on which the management functions operate. The DKP can relate to
databases or functions for retrieving information about resources (e.g., for resource management),
or relate to the common form in which heterogeneous information should be presented (e.g. for
fault management collecting information from similar systems or legacy networks).

38 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

!"#$%"&'$()*+(#,'%-(*./0/1(2(0$! !"#$%3*4/'5$*./0/1(2(0$!

+(#,'%-(#!

"#$%&'(#!
)*$(%+#',!

"#$%&'(#!
-..%(/0%1!

2%1*3%'*14!

5/&.3!)#3#(0%1!/16!
7#'8%'9/1(#!-1/.,$*$!"#$%&'(#!

-6/:3/0%1!;!
<:09*=/0%1!

"#>&#3!

!"#$%"&'$()*6,/5*7%/0#5/8,0!

?*4@A.#+#.!4%/.$!

<:09*=/0%1!

B%CA.#+#.!4%/.$!

2%1*3%'*14!

!"#$%"&'$()*90,:5()1(*;5/0(!

!"#$%3*90,:
5()1(*;5/0(!

Figure 5.1: Conceptual overview of the management functions and the functional blocks.

5.2.1 Goal Translation Function

The GT function has three responsibilities. The first is to decide whether to accept a service
request. The second is to translate the service request into lower level objectives with which the
resources can be configured. The third is to monitor the fulfilment of high- and low-level objectives.

A goal is a set of constraints on one or several performance parameters of a resource, including
both QoS and measurements of the status, properties, and connections of the resource. A goal is in
this sense a high-level abstraction of a configuration of a resource. Note that goals need not only to
be based on user requests, but can also be objectives received from other infrastructure providers. A
performance parameter is defined in terms the parameters of a resource exposed by the RM function.
Constraints on a performance parameter are called high-level objectives, whereas constraints on
the set of parameters constituting a performance parameter are called low-level objectives. Goal
translation is the selection of a set of low-level objectives for resource configuration, aimed at
delivering a service performing optimally in accordance with a high-level objective. Note that a
goal also can contain constraints on the exposed resource parameters directly, as e.g. in the case
of an IaaS request, where a request could be in the form of a desired configuration of a VM.

The GT function correspondingly consists of four functional blocks: high-level objective, opti-
misation, monitoring, and low-level objectives. The high-level block is responsible for receiving
and processing high-level objectives from the infrastructure service interface. The optimisation
block is responsible for finding possible solutions offered by the resource management into low-level
objectives that matches the high-level objectives. The monitoring block ensures fulfilment of the
low-level objectives. The low-level block constitutes the translated objectives disseminated to the
resource management. The GT function blocks require input from external sources according to:

• High-level objective block: a high-level objective describing the requirements on the requested
service in terms of constraints on performance parameters.

• Monitoring block: performance parameter monitoring data from fault management for mon-
itoring the fulfilment of the low-level objectives.

• Optimisation block: from RM a set of possible provisioning solutions for the low-level objec-
tives. This is used for the selection of resources to be used in the delivered service.

The output from the GT function is provided by the low-level block and the monitoring block:

SAIL Public 39

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

• Low-level block: low-level objectives used both as configuration instructions and as requests
for solutions in the RM function, and identification of the selected provisioning solution.

• Monitoring block: goal fulfilment information based on the existence of a solution for the
high-level objective (to be sent to relevant recipients such as infrastructure service users,
management functions etc).

Goal translation for security purposes is described in further detail in Section 7.2. It is based on
the same structure as the overall goal translation as described above, and focuses on generating the
security specific configurations of underlying resources for facilitating secure resource management.
It accepts a security control goal (also termed as a security objective) from the owner/issuer of
the goal at a higher level in the control plane hierarchy, and translates it into sub-goals (which are
further propagated to the lower levels in the control hierarchy), or parameters which need to be
further constrained with respect to specific resources.

5.2.2 Fault Management Function

The responsibility of the FM function is to monitor the behaviour of resources and report dis-
turbances to goal translation, resource management, security mechanisms, infrastructure service
users, or infrastructure service providers in collaboration. The FM function provides measurements,
performance models, as well as disturbance information, such as detected faults, anomalies, and
changes in the observed behaviour of monitored resources. In the single domain, the FM func-
tion performs measurements of specific resources through the resource administration interfaces
(Section 2.4). In the case of infrastructure service providers that span over several domains, a
higher-level FM function can be instantiated but with a different implementation that addresses
cross-domain management (Section 5.2.6). The FM function offers localisation and root cause
analysis of detected disturbances caused by configuration changes, faults and anomalies, within
and across virtual layers. Preventive actions and compensation for faults are done in collaboration
with the RM function.

The FM function contains a Fault Detection and Performance Analysis (FDPA) block implement-
ing necessary algorithms, and a monitoring block performing measurements on certain resources
or groups of resources on request by the FDPA. The FDPA block is responsible for analysing and
modelling observed resource behaviour, and can also monitor certain parameters on request from
other management functions, infrastructure service users or providers in collaboration. Distributed
information exchange between existing fault monitoring systems is facilitated through the DKP, ad-
dressing heterogeneity in information exposure between infrastructure providers (Figure 5.1). The
DKP can here be regarded as a high-level abstraction of information, facilitating FM information
exchange between providers that already have similar fault monitoring systems.

Upon a new service request, the FDPA block provides the RM and GT functions with monitoring
and fault information for single or multiple resources. The FM function coordinates the monitoring
of resources using distributed algorithms capable of adapting algorithm performance and behaviour
to varying conditions in the cloud network or in a certain service. Fault monitoring algorithms are
coordinated within the FM function to efficiently operate both within services and across service
overlays. Based on alarm filtering and alarm correlation over shared resources, the FM localises
detected faults and changes to a service or a resource in the cloud network. Probabilistic modelling
and anomaly detection enables early detection of malfunctioning equipment and resources, which
allows for taking preventive fault handling actions in collaboration with other management func-
tions. Localised faults are reported to the resource management to trigger adaptation of relevant
resources in order to fulfil a service and its high-level objectives. The FDPA block needs as input:

• Topology information - for organising and triggering FM algorithms of certain resources.

40 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

• Type of fault management algorithms - to specify the degree of monitoring and fault handling,
and configuration inputs for selected fault management algorithms.

• Measurement responses from monitored resources,.

As output, the FDPA provides the following:

• Measurements and probabilistic models of observed resource behaviour and performance.

• Reports of disturbances, changes and degradations.

• Triggering of re-optimisation in the RM function for fault handling purposes.

5.2.3 Resource Management Function

The RM function manages provisioning, configuration and availability of storage, network and
computation resources. It manages and keeps track of the properties of existing resources within
its management scope. In single domains, resources are controlled through the resource adminis-
tration interfaces (Section 2.4). Resource management in cross-domain cases requires a different
implementation than management in single domains (Section 5.2.6). The RM function provides
identification of a number of possible solutions with respect to a low-level objective. This is an
iterative process, responding to a sequence of requests, each with its parameters, based on feedback
from available resources, status reports from the FM function of monitored resources available for
allocation, as well as goal fulfilment requests from the GT function. A solution to a low-level ob-
jective could include different alternatives (e.g. different price or performance). Further, the RM
function provides clustering of multiple resources of multiple types (such that they are together al-
located and de-allocated to a service request), resource assignment and de-allocation, optimisation
of resource allocation (due to varying conditions in the the cloud), as well as balancing of traffic
and workload among resources in order to fulfil a low-level objective.

The RM function consists of three functional blocks; resource discovery (RD), resource allocation
(RA) and resource adaptation-optimisation (RAO). The RD block provides information about the
existing physical and virtual topologies and characteristics of the resources. The RA block allocates
and configures virtual resources related to a specific service request, taking the physical location of
the resources into account. Given a request based on a number of possible criteria from both cloud
and network (e.g. CPU, RAM and HDD for the cloud; latency and bandwidth for the network),
the RA retrieves information from the RD to compute possible solutions that can be used as input
to the GT function. Finally, the RAO re-optimises and adapts the use of resources either on a
periodic basis or triggered by the fault management, to account for varying conditions in the cloud
or network. The RM function needs as input:

• RD block: available resources, equipment and their properties, such as ID, entity information,
handicap etc.

• RA block: low-level objectives for configuration of equipment; available resources; topology;
fault and disturbance information; and performance measurements.

• RAO block: disturbance and degradation information about the equipment, information
about resource usage and performance measurements.

The RM function provides as output:

• RD block: provides resource availability on request.

SAIL Public 41

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

• RA block: possible solutions for optimised provisioning for goal translation, specification of
resources to monitor and configurations to fault management, parameter settings for config-
uration of resources and equipment included in the accepted provisioning solution.

• RAO block: provides reconfiguration solutions to be allocated by the RA block, triggered by
e.g. fault management.

5.2.4 Management Function Interfaces

Collaboration with other management functions and other parts of the architecture is enabled
through the controller and collaboration interfaces introduced in Section 2.4.3. An overview of
the interfaces (without specifying single- or cross-domain) is shown in Figure 5.2. These are the
minimum interfaces currently identified for collaboration between management functions, and re-
quire further development. Typically, the kind of information available through these interfaces are
objectives, topologies, resource properties, configurations, and performance measurements. Infor-
mation exchange between management functions in different domains can be performed through
the DCP (Section 4). Through the controller interface, management services and algorithms are
created, configured and destroyed. The controller interface also provides information about the
state of management through an API. The collaboration interface publishes continuous informa-
tion to relevant recipients, such as updates about resource states, reports of potential faults etc.
Relevant recipients are other management functions, entities or users subscribing to these services.
The information is either published through a separate database function, or the management
functions themselves manage subscribing recipients. Data can also be extracted on demand using
API functions. Note that the communication between management functions has no direct relation
to the DKP, as it is inherent to a management function only for keeping track of the status of
heterogeneous equipment.

!"#$%
&'()*+(,

!"#$%
&'()*+(,

-+(."'/0*+(1,
02"+/3$4#,)+($/+2,50$0,

6$0$'7,/89+/$71,
'950$87,

-+($/+228/,3($8/&0)8, -+220:+/0*+(,3($8/&0)8,

;(&/07$/')$'/8,78/<3)8,9/+<358/,

Figure 5.2: Example of management interfaces.

5.2.5 Management Processes

Figure 5.3 depicts a more detailed structure of the management architecture’s key processes. The
figure shows a conceptual view and does not specify whether processes are distributed or centralised.
In a typical system, all information and processes are distributed across different domains (see e.g.
Figure 2.3, 2.4). Process interactions and information exchanges are facilitated by appropriate
algorithms that communicate via the collaboration and controller interfaces (Figure 5.2).

The GT function operates in three processes - the service request process; the goal monitoring
process; and the re-optimisation process. In the service request process, infrastructure service
user requests (given through the infrastructure service interface, Section 2.4) are processed into

42 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

08/07/2011

background process (asynchronous)

refinement indication

resource discovery

updated refined goals

res. (un)reservation/
(de)allocation

resource
adaptation

and optimization
(asynchronous)

optimization criteria
- resource balancing
- domain preferences
- etc.

WPx/Slide 1

high-level goals

low-level goals
(in “resource
language”)

optimization

Distributed Goal Management

monitoring

goal translation and monitoring

foreground process (synchronous)

resource discovery

refined goals

adapt-
slice

refined low-level goals

resource reservation/
allocation

create-
slice collaboration IF

resource
adaptation

and optimization
(synchronous)

control IF

optimization criteria
- # iterations
- % improvement
- Δt completion
- etc.

adapt-
slice

destroy-slice

domains

distributed capability model

- slice handle
- refined
goals

- reserved
resources

distributed knowledge plane

domains

distributed allocation model

distributed slice repository

refined
goals

distributed resource management

slice creation:
SLICE-HANDLE

create-slice(Set goal-set);
slice adaptation:
void adapt-slice(

SLICE-HANDLE handle,
Set goal-set);

slice destruction:
void destroy-slice(

SLICE-HANDLE handle);

basic interface of the
distributed resource
management component

distributed fault
management

fault detection
and performance

analysis

monitoring

fault report expressed
in low-level resources

Figure 5.3: Overview of processes for management of flash network slices.

high-level objectives and used as input to the high-level objective block of the GT function. High-
level objectives are translated into low-level objectives to which the RM supplies a number of
possible solutions and the FM provides performance information on requested parameters. Through
optimisation a set of feasible solutions is selected and offered to the requester. Upon acceptance,
the resource is deployed and monitored according to the low-level objectives. The goal monitoring
process ensures that low-level objectives are fulfilled based on the current conditions in the deployed
FNS. If the FM or RM functions are unable to locally compensate for disturbances in the resource
layer, or if the infrastructure service user makes a change in an already accepted goal, the monitoring
process checks if any of the low-level objectives are violated, whereby the re-optimisation process
of the high-level objective is triggered. If the high-level objective cannot be re-optimised and no
alternative solution can be provided by the RM function, the monitoring block will notify the
infrastructure service user about the failure to fulfil the high-level objective. The infrastructure
service user can then choose to issue a new service request.

The FM operates in four processes - a monitoring process; a fault isolation process; a root cause
analysis process; and a fault handling process. The distributed monitoring process is triggered
as soon as the RM process has allocated and configured a set of resources for an FNS. The FM
algorithms are configured for the set of resources specified by the RM together with algorithm
configurations. The configurations can be part of the high-level and low-level objectives. The FM
algorithms operate continuously on the monitored equipment in each FNS in an ongoing distributed
and asynchronous process, running on the virtual resources. In this process, overall performance
measurements are executed and modelled, used for autonomous adaptation of FM algorithmic
behaviour [21], and for early detection of performance degradations. The fault isolation process is
triggered when a failure or performance degradation is detected for a virtual resource within an
FNS. The fault is localised in a distributed and collaborative manner within the FNS. The root
cause analysis process is triggered when a fault has been localised. As the true root cause can
originate from some other part of the cloud, the root cause analysis process correlates events from
FNSs running on shared resources for the purpose of analysing the order of events and isolating

SAIL Public 43

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

the true origin of the fault. The fault handling process is triggered when the root cause has been
determined. In collaboration with the RM function (through the collaboration interface), actions
to resolve the problem are taken.

The RM is split into a foreground and a background process, using information stored in the
DKP. The purpose of the foreground process is to promptly find a valid resource allocation for an
FNS defined by low-level objectives, handed to the distributed RM function. Discovery of candidate
resources is performed for FNS creation, and the output of the resource selection process is handed
to the resource reservation/allocation process, which in turn reserves the selected resources. In order
for the foreground process to perform its tasks, optimisation criteria are needed to parametrise the
resource selection process in terms of performance, such as a maximum number of iterations, a
certain percentage of improvement over a first solution, a maximum time interval during which the
synchronous foreground process must complete, or a combination of these parameters. The criteria
can be modified through the control interface.

From the DKP, static information from the distributed capability model is queried, describing in-
dividual domains in terms of their capabilities in providing resources to the FNS to be created. The
allocation model contains information about currently allocated resources in individual domains,
but does not specify to which FNSs individual resources are allocated. The allocation model is up-
dated by the resource reservation/allocation process when the resources for the FNS to be created
have been reserved. In the case where an FNS is adapted via the adapt-slice interface call (Fig-
ure 5.3), the distributed slice repository provides additional information about the existing FNS, its
handle, low-level objectives, and the resources reserved by that particular FNS. This information
is taken into account in the adaptation process and is required to potentially de-allocate some of
the resources while allocating some other resources during adaptation.

The purpose of the background process is to iterate through existing FNSs and attempt to
optimise the initially allocated resources to achieve a more optimal overall resource allocation.
The process operates asynchronously and performs autonomous FNS adaptation when the system
load allows it. Whenever the foreground process is adapting the resources of an existing FNS,
this is indicated to the background process via a refinement indication, to prevent the background
process from operation on the same FNS concurrently. The background process works similar to
the foreground process, but uses a different set of optimisation criteria (set via the control interface)
to influence its behaviour. For instance, resource balancing and domain preferences may be used to
control resource reallocation in a way that network and IT resource usage are balanced evenly across
different domains. Refined low-level objectives stored in the distributed FNS repository are updated
during an asynchronous resource selection process and resources are reallocated accordingly.

5.2.6 Information Exchange and Workflows

Service requests and constraints can be split and distributed between management functions in
infrastructure services, where each part is self-managed based on delegated objectives, coordinating
the virtual resources. The principal information exchange between the management functions
within an infrastructure service provider is shown in Figure 5.4, with emphasis on the single-domain.
Information exchange between domains is enabled through the available control interactions and
the DCP (Section 4). Note that only the main architectural components are shown in Figure 5.4
and not the detailed processes shown in Figure 5.3 that map to it. From this view we present
the workflows and information exchange between the management functions in three examples;
one service request and two reconfiguration scenarios. Finally, we also show a conceptual example
focusing on goal translation.

Initial request: (R)-(1)-(2)-(5)-(9)-(11)-(5)-(7)-(5)-(15)-(11): The GT processes the request
(R,1,2) and sends it to the RA (5). The RA computes a set of solutions based on the available
resources (9), possibly requesting input from (11), and hands the solutions to the GT (5). Perfor-

44 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

!"#$%&'()#*+%,)'-./.0)1)/$! !"#$%&'2.+3$'-./.0)1)/$!

()#*+%,)#!

"#!

"$! %&'()&*('+!

,#-$!"$.!

!"#$%&'4/*53)60)'73./)!

/012!/32!

/42! /052! /002!

/"2!

!"#$%&'8*.3'9%./#3.:*/!

6(+789:;:9!+&<9=!

.>?@(A<?&'!

B&C89:;:9!+&<9=!

%&'()&*('+!
/02! /D2!

/E2!/12!

/F2!/G2! /H2!

/0E2! /0G2! /0F2!

/0D2!

!"#$%&'4/*5
3)60)'73./)!

/0H2!

Figure 5.4: Principal communication between management functions.

mance measurements and models of observed behaviour are given by the FDPA (7), which will be
an additional input for the decision mechanism in the GT. If the request is accepted the resources
are allocated (5, 15) and the fault mechanisms are set up according to the allocated resources (11).

Reconfiguration for a detected disturbance: (12)-(8)-(10)-(15)-(11): A fault is detected,
which will trigger a reconfiguration in the system (12). The current solution will be optimised with
respect to available resources (8,10,15), followed by reconfiguration of the fault mechanisms (11).
In case no solution is found, this is reported to the GT function. The monitoring block in the GT
decides whether the disturbance is significant enough to violate the objective, generating a report
to the user and possibly offering creation of a new service.

Change in high-level objectives: (R)-(1)-(2)-(6)-(8)-(12)-(6)-(10)-(15)-(11): The infrastruc-
ture service user makes a change in the high-level objective, which is translated to low-level ob-
jectives (R,1,2) and used as input to the RAO (6). Solutions are requested using input from (8)
and (12), and are given as feedback to the low-level goals block (6) in the GT function. If the
current solution fulfils the new high-level objective the solution continues to be in use. Otherwise,
necessary equipment and fault management mechanisms are reconfigured in (10), (15) and (11).

In the cross-domain case, the principle of communication between the management functions is
similar to that of single-domains, but with different types of information and algorithms. The infor-
mation rather consists of high-level descriptions of available resources and their fault or availability
status. The GT function is the focal point of communication - it gradually splits the objectives
to relevant infrastructure service providers based on high-level information from the resource man-
agement and fault management, and disseminates it to the next lower level. Partial solutions
obtained from the single-domain level (as described above) are aggregated and disseminated up to
the topmost GT function in the hierarchy of infrastructure service providers. The acceptance of a
certain solution is disseminated down the hierarchy of management functions and is implemented
as described in the single-domain case above.

Goal translation example: Following the example goal expressed in Section 3.3.2, the high-
level goal “Give me 10 VMs and connect them to my two enterprise sites in Madrid and London”
is split into subgoals - here in terms of the request for 10 VMs, and as a request for the connection
from Madrid to London given a set of constraints. Subgoals can be pure resource requests (i.e.
low-level goals expressed as constraints on the parameters exposed by a resource API), or high-level
goals expressed as constraints on parameters for performance characteristics of services or resources
(see Sections 5.2.1, 5.3.1). A VM is a resource instantiated by the RM. The DCP receiving the
goal needs to check with its subordinate infrastructure providers to see whether 10 VMs can be

SAIL Public 45

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

supplied (and scaled up to 50 VMs) according to the configuration instructions of a VM.

Given a necessary topology description from RM and performance analysis data from FM, the
next step is to identify a candidate set C of FNS compositions X of resources that can provide
the connectivity between Madrid and London, taking the constraints “maximum end to end delay
of 100 ms” and “I dont want my connection to pass through Belgium” into account. For each
composition X in C, the aim is to determine the set W (X) of administrative domains that will be
in control of the participating resources in X. To do this, each administrative domain D in W (X)
will receive a subgoal to fulfil.

Now, if X is a composition in C that makes one intermediate hop via Nantes on the way from
Madrid to London, the combination W (X) of administrative domains W and the links L between
them could be written as WMadrid−L1−WNantes−L2−WLondon. Here, each element needs
to receive its own objective (or subgoal) for the fulfilment of G.

To obtain a solution, optimisation is performed with respect to the elements in W (X) and the
extracted set of feasible solutions, respectively. For this, each administrative domain in W (X) is
required to report to the GT the capacity, such as available bandwidth, delay, drop and the cost
of use with respect to the goal, based on information from RM and FM. The information can be
probabilistic or deterministic. Optimisation based on the supplied information associates each can-
didate X with a feasibility flag, a cost and a probability of success (in case probabilistic information
is available). The best feasible solution (or a set of solutions) is offered to the infrastructure service
user, and is deployed if accepted. In runtime, the subgoals in the administrative domains in W (X)
are monitored to ensure that the high-level objective is fulfilled.

5.3 Initial Approaches

Until now, we have presented high-level management concepts of goal translation, fault manage-
ment, and resource management. The following sections provide descriptions of initial approaches
aimed at addressing these management concepts and the challenges of cloud network management.

5.3.1 Goal Translation and Monitoring of High-Level Objectives

Goal translation is concerned with the configuration of resources based on a high-level objective
of a requested service. The high-level objectives consist of constraints on parameters expressing
QoS, Quality of Experience (QoE), or otherwise measurable characteristics of the service. Sets of
such constraints are called goals. The key issue is to find effective and sound translations of goals
into constraints on the parameters and methods exposed by the service and resource APIs. In
the hierarchical architecture, suggested for CloNe, the translation mechanism will propagate a goal
through several layers. The successive translation steps should end in configuration constraints,
which are passed to resource management for the configuration of cloud resources. Goal translation
will be performed by a set of algorithms, collectively called the GT function. The GT function will
be a part of the management API of an infrastructure service provider.

For goal translation, one of the main challenges concerns goal specification. On the one hand, the
goal specification language needs to be rich enough for a manager to be able to express a desired
behaviour of a service. On the other hand, the goal specification language needs to be restricted so
that only goals that can be interpreted and implemented by the underlying cloud resources may be
expressed. A complicating factor is that the service infrastructure may vary dynamically, not only
in topology and physical equipment, but also in respect of QoS due to concurrent use of network
nodes. In decentralised settings, there will thus be an inherent uncertainty about whether a goal
can be fulfilled.

46 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

5.3.1.1 Approach

As described above, a goal is a set of constraints on parameters used for describing the behaviour of,
or for configuring, a requested service. Depending on which resources are managed by a particular
infrastructure service provider, exactly which parameters that can be used for formulating goals
vary. If the parameters in a goal G (i.e., the parameters occurring in some constraint in G) are all
such that the resource management function can configure a requested service according to those
parameters, then the goal is said to be a low-level goal (or low-level objective). Correspondingly, we
call those parameters low-level parameters. A requested service can also be described in terms of
parameters that not necessarily can be used directly for configuring a resource, for example, band-
width or cost of a service. Goals containing constraints on such parameters (high-level parameters)
are called high-level goals (or high-level objectives). Goal translation aims at translating high-level
goals into low-level goals and by that enabling the configuration of resources based on high-level
goals. For the applicability of goal translation, it is important to restrict the parameters on which
high-level goals may be expressed according to the present resource availability.

The goal translation function will offer to fulfil a goal, or in other words offer a service, with
a probability. This probability reflects the inherent uncertainty of the cloud environment, where
the resources are used and allocated competitively in a decentralised fashion. In a market based
setting, we can assume that the same goal (or service request) may reach several infrastructure
service providers, and that the requester may choose among several offered services based on the
declared probability of fulfilling the goal. Such a decision may also be based on cost. A more
detailed description is provided in Appendix A.1 that gives an account for our approach to goal
translation and the restrictions on high-level goals.

5.3.2 High-Level Specification

Informing the desired goals (set of constraints, performance and configuration parameters) is an
essential step in FNS provision. As the goals are interpreted and propagated among different levels
of the management framework, a robust and efficient modelling language is highly required for
carrying the substantial information among different actors.

The FNS model comprises some information that can be parametrised during the goals defini-
tion. Located in the highest level of specification, a user can define initial goals that represent his
expectations in terms of QoS and QoE, such as:
(1)Reservation slot: the connectivity service is available during a given reservation slot. (2)Ac-
cess points: the data centres interconnected by an FNS can have different network protocols and
techniques. This information must be defined for each access point during the service requirement.
(3)Latency and bandwidth: both performance parameters can be defined between specific access
points or for the general FNS. (4)Location: motivated by several reasons (e.g., data dependency,
governmental laws, user location) some FNS components must be provisioned around a specific
location [22]. (5)Security: a user can configure the security goals and policies required for the FNS,
(e.g., data encryption method, limits of data moving and location, network encryption). (6)Moni-
toring: the information on FNS internal resources (performance and usage) must be available for
users during and after the execution slot. Configuring the metrics and rules for composing the
monitoring policies is highly required. With this information a user can refine its FNS composition
for adapting it to dynamic applications requirements. (7)Elasticity: an FNS can be dynamically
adapted for a new configuration during the execution time. Usually, this configuration can vary
based on the application behaviour (e.g., new workload, peak of usage, new users). A user should
specify the rules for defining the elasticity of FNSs.

SAIL Public 47

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

5.3.2.1 Approach

Our approach in the context of CloNe is that, a modelling language can be used for carrying
FNS goals through different levels (e.g., from users to CloNe, among infrastructure providers,
and between management framework modules). Consequently, a language for describing the FNS
composition must be abstract enough and more adaptive than conventional resource-description
languages and models. In addition, the model must carry substantial information related with the
service provisioning and configuration, such as protocols definition, routing and forwarding tables,
scheduling rules, and inbound/outbound rules (e.g., IPSec, NAT, load balancer).

For accomplishing the requirements of a high-level specification, we propose the integration of
the VXDL language [6] [23] with the CloNe management framework. VXDL allows the description
of a virtual infrastructure or a compute-and-communication resource graph, and it fulfils most the
requirements of FNS goals specifications. Some extensions are required for specifying the elasticity
aspects of FNSs, the monitoring expectations, and the required security configuration, and can be
simply added to the VXDL data model. This language proposes a simple and high-level grammar
to specify virtual infrastructures hiding hardware details, allowing for an efficient description of
virtual infrastructures; more specifically, the identification and parametrisation of virtual resources
and groups of resources (according to their functionalities), as well as the network topology (based
on the link-organisation concept), using the same grammar. VXDL also introduces the internal
virtual infrastructure timeline, which explores the elasticity of virtual infrastructures, enabling
application providers to specify the exact intervals where virtual resources must be activated [24].
An important feature of VXDL is that it proposes cross-layer parameters for all components. For
example, with the specification of location and exclusivity, users can directly transmit through
different levels enabling an interaction between the user and the management framework.

5.3.3 Fault Detection in Virtualised Systems

As networks and connected resources are virtualised to a larger degree, determining the root causes
of faults and disturbances at both network and service levels become increasingly complex. In cloud
networking, this is specifically challenging as the network environment is continuously changing,
with connecting and disconnecting equipment, and with dynamically configured FNSs. Detected
faults, disturbances and performance degradations that appear for a certain service, may have a
true root cause originating from virtual network resources in other parts of the cloud on which
the service depends. Such faults could for example be caused by configuration errors, resource
depletion or malfunctioning equipment. As virtual overlays depend on shared resources, a scalable
and efficient solution is a necessary part of the FM function to effectively pinpoint the true root
cause of a service failure detected in one virtual layer, that may be caused in some other, virtual or
physical, layer. Moreover, the process needs to be decentralised and autonomous, which introduces
further challenges such as information dissemination between layers and participating network
elements, timing, synchronisation, and correlation of detected events. Information exchange needed
for successful fault management across different infrastructure service providers using similar fault
detection systems is facilitated through the distributed knowledge plane (see Section 5.2.2). We
here present an initial approach implemented in the FM function of the management architecture,
for detection and localisation of faults in virtual and physical resources.

5.3.3.1 Approach

In the initial approach that we propose for detecting and localising the origin of faults in multi-tier
overlay networks [25], each layer performs decentralised fault detection and localisation [26, 27],
while keeping track of events in the network (for a limited time). These events include anomalies
detected in QoS parameters based on both local measurements and aggregates, detected faults, and

48 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

configuration changes. As a fault is detected in a higher virtual layer or FNS, events in the lower
virtual level that are relevant given the time frame and location of the detected fault are correlated.

It is assumed that each virtual layer performs distributed fault detection and fault localisa-
tion [26], operating in the FDPA block of the FM function. Faults in a virtual layer A, running on
top of level B, are localised down to a topology TAf , which could be e.g. a single node, link or a set
of virtualised resources. The topology constitutes resources affected by the fault, and is identified
through distributed collaborative fault localisation [26] between virtual or physical nodes.

The fact that a fault has been detected is disseminated to the underlying virtual layer along with
the topology TAf and the timestamps [tw, tf] (where tf > tw), corresponding to the time of the
detected fault tf and the time when everything was known to be functional tw, respectively. This
dissemination is performed locally on the virtualised node, as the underlying level knows how to
relay this information further.

As the underlying virtual layer knows what the topology TAf corresponds to in terms of its own

topology TBf , it searches the virtual resources for events that occurred between tw and tf . The
basic assumption is that a fault in a certain topology in a higher virtual level should manifest itself
as fault, anomaly, or configuration events inside the corresponding topology TBf in the lower level.

A set of correlated events EBf is found by searching all events originating or affecting topology

TBf within the time frame tw to tf . This set constitutes a reported “root cause” at virtual level B,
and is disseminated to the virtual level C below in the same manner as the original faults above.
In the Appendix A.2 we show the scalability of the event correlation protocol.

By studying larger number of event sets within a layer we can potentially find an ordering
(pseudo-causal graph) of the events. Over time, common event sets EBf can be clustered at virtual
layer B, where each cluster forms a typical error expression, for the purpose of e.g. further analysis
or faster determination of the root cause. Next step in our work is to further investigate how such
analysis can be done in a decentralised manner.

5.3.4 Scalable Resource Allocation under Management Objectives

In the context resource management at the infrastructure service provider layer (see Section 2.1), a
key problem is that of dynamically mapping the requests for virtual infrastructure to the available
physical resources in the cloud. Typically, requirements of service users are modelled as a set of
virtual machines and their associated storage and connectivity requirements. The responsibility of
resource management is, based on a set of management objectives of the cloud, to (1) allocate the
resources of the cloud to new service users and (2) to continually reconfigure the cloud in order
to adapt to changes (see Section 5.2.3). Possible management objectives for a cloud environment
include:

• To allocate resources fairly (or weighted fairly) among the service users. This may be suitable
for best-effort clouds.

• To minimise the energy consumption of the cloud. This may be suitable for a ‘green’ cloud.

The key challenge in engineering the resource management solution for the infrastructure service
provider is that of developing protocols for resource allocation and adaptation that are efficient,
produce resource allocations with sufficient quality and are scalable to a cloud composed of some
100,000’s physical machines providing services to a comparable number of users.

5.3.4.1 Approach

Our approach is based on the following two principles. First, as the resource allocation problems
are often NP-hard, it is not possible to provide optimal solutions for environments of reasonable

SAIL Public 49

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

sizes. As a result, we focus on engineering efficient heuristic solutions that approximate well the
optimal solution.

Second, the goals set out above for the resource management solution are difficult, if not impossi-
ble, to achieve using traditional, centralised management architectures. In centralised management
systems, the computational complexity of management tasks resides almost entirely in manage-
ment stations, as opposed to in elements of the managed system. Since the load on a management
station and the time needed to execute most management tasks increases (at least) linearly with
the system size, the overhead and the delay associated with such tasks can become prohibitively
large when the system reaches a certain size. To address the outlined problem of scalability, we
rely on the use of distributed and adaptive protocols for resource management. A key property of
such protocols is that each element only maintains partial knowledge of the networked system and
thus interacts only with a (small) subset of all elements in the system.

In our recent work for SAIL [28, 29], we focus on the problem of allocating CPU and memory
resources to applications under varying management objectives. For this problem, we proposed
efficient gossip-based heuristics that execute in an in-network management framework, similar to
that followed in the FP7 4WARD project[30]. The performance evaluation of the protocols showed
that they achieve the design goals outlined above. Specifically with respect to scalability, the
evaluation results show that the performance of the protocols does not change with increasing
system size, allowing for an efficient execution in a cloud consisting of more than 100,000 machines.

Our plan in SAIL is to extend this work in a number of ways. First, in addition to CPU and
memory resources, we will consider network and storage resources. Second, we will expand the
applicability of our solution to a wide range of application frameworks, such as web-applications,
MapReduce, etc. Third, we will study the applicability of our management approach to the dis-
tributed infrastructure service provider layer (see Section 2.1).

5.3.5 Distributed Oblivious Load Balancing in Cloud Computing

The problem of effectively managing distributed computational resources has been extensively
studied. Nowadays, it is receiving renewed attention due to the growing interest in large-scale data
centres, in particular in the context of Cloud Computing.

To cope with high loads, service providers construct data centres with tens of thousands of
servers [31]. Such data centres, which often provide a single service, may be located in different
places around the world. This is the case, for example, with the Google search services - at each
given point in time, there are several front-end servers active in various locations over the globe,
and an incoming user search request is directed to one of them.

The actual choice of the specific server to process a given request has a critical impact on the
overall performance of the service. A congested server not only introduces a service delay, as jobs are
waiting their turns in the queue, but also creates a networking bottleneck around it. This network
congestion further deteriorates the service, due to dropped packets. In scenarios, where the cloud
provides both networking and computational resources, such bottlenecks are quite painful, as they
negatively affect the performance of both types of resources.

The server to service-request assignment is a very difficult optimisation problem; there are mul-
tiple objectives and many parameters that should be considered. For example, the current load
of available servers, or current network latency. These parameters can be reported, estimated or
learned. Regardless of the exact optimisation criterion, any adaptive system that attempts to ad-
dress this problem incurs a significant amount of overhead and possible delays, just by collecting
the needed parameters from the various network locations.

50 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

5.3.5.1 Approach

The size of data centres, coupled with their distribution across the globe, call for fully distributed
load balancing techniques. Considering the volatility of such systems, the state information col-
lected for the optimisation problem must be frequently updated. We therefore would like to study
the performance of oblivious distributed load balancing systems.

An oblivious system (also termed static system) is a system that ignores the current state, and
does not use any dynamic input. Clearly, such oblivious load balancing solutions improves the
overall performance of the services and the data centres, while obviating the collection of state and
other information that are needed in legacy load balancing systems. Our approach complements the
algorithm described in Section 5.3.4, in which some state information that is dynamically changed is
taken into account. Despite this basic difference, both algorithms implement a distributed scheme,
and seems promising.

We plan to deploy a novel approach for addressing oblivious load sharing, utilising a two-priority
service discipline at the servers, and duplicating each job request into two copies, each with dif-
ferent priority. Both job requests are sent randomly to different sites. Once one of the replicas
is completed, the other job request is stopped. Our expectations are that at least at some cases,
where the high priority copy arrives at a highly loaded server, and the low priority copy ends up in
a lightly loaded server, the low-priority job may be completed first. Clearly, in such cases, the per-
formance of the service is improved. Since at each server high-priority jobs are always served before
any low-priority job, the performance of our system is always at least as good as the basic random
assignment technique and has the potential of offering considerably improved performance. Infor-
mally, one can think of the low-priority job scheme as an auxiliary mechanism that uses ”leftover”
capacity to increase the overall response time of the system.

Our load-balancing scheme is oblivious, but it is not overhead free; we need a signalling mecha-
nism for removing the redundant copies of completed jobs, and a (nonstandard) buffering mecha-
nism. We have to take into account this overhead, when quantifying the benefits of our system.

5.3.6 Live Migration of Services in the Cloud

Cloud computing platforms allow hosting of multiple services on a globally shared resource pool,
where resources are allocated to services on demand. Recent advances in the server virtualisation
technologies radically improve the flexibility and versatility of resource provisioning. This is done
through the ability to collocate several virtual machines on the same physical host, to dynamically
change virtual machine resource allotments, and to migrate virtual machines across physical servers.

Migration can equalise resource utilisation across different data pools, or shut-down the under-
utilised portions of the infrastructure to save operational costs related to power, by consolidating
the same number of virtual machines on a smaller number of physical hosts [32]. Migration can
also be an affective mean to control heat dissipation in passively-cooled data centres.

Live migration is also useful in several important management cases: Host evacuation due to
maintenance, where the corresponding virtual machines can be migrated to other locations; or
performance optimisation due to changes in the network conditions (e.g. avoiding a congested or
broken link, or for improved QoS parameters, such as lower packet delay or higher bandwidth).
Live migration of virtual machines is a useful management tool. However, without proper imple-
mentation, live migration overhead may cause the services to violate their SLAs.

It is clear from this analysis, that live migration is quite beneficial. The challenge is, however,
to facilitate such migration in a manner that is fully transparent to the service. If this objective
cannot be met, then service interruption during the migration should be minimised.

SAIL Public 51

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

5.3.6.1 Approach

The migration process basically consists of transferring the memory image of the service from the
source host to the destination host. In the off-line migration process, the source virtual machine is
suspended, the entire memory image is copied to the destination physical host, and then the copied
virtual machine is restarted on the destination host. With live migration, most of the migration
process takes place while the source virtual machine continues to run, and the service is alive; the
service is suspended for a short period of time before it is restarted on the destination host. Clearly,
live migration has an advantage of maintaining the service availability, with only a short period of
service downtime, which might be acceptable or recoverable at the service level.

One approach for live migration is the implementation of pre-copy process, in which memory
pages are iteratively copied from the source to the destination server, without stopping the execution
of the virtual machine [33]. The page copying process may take several iterations, during which
dirty pages are continuously transferred. At one point, the server is stopped until all the pages
are fully transferred to the destination, thus completing the copy phase. Subsequently, the virtual
machine can be resumed at the destination host. Post-copy migration is also possible, in which
the service is migrated before the memory pages are copied [34]. However, the migration of the
memory pages consumes computation resources, and thus may degrade the service performance.

Furthermore, if live migration is being performed in-band (i.e., the same network bandwidth is
being used by the migration process and by the service running in the virtual machine) then we
expect even more severe service degradation, due to the fact that the migration process consumes
some of the bandwidth used by users of the service.

There is a non-trivial trade-off between minimising the copy phase duration and maintaining an
acceptable quality of service during the copy phase. We plan to investigate, model, and optimise
the live migration process, in a quantitative study. We plan to start by evaluating the expected
degradation in service level due to bandwidth restrictions. We will first address a simple model, in
which the bandwidth used by the migration process is fixed throughout the entire pre-copy phase.
Once we gain better understanding of this simple model, we plan to develop an optimal migration
strategy for the general case, where the amount of bandwidth used by migration varies over time.

5.3.7 Predicting and Modeling Virtual Infrastructures

In most applications IT resource usage is a non-stationary quantity. Depending on the type of
application, the generated workload can be a highly varying process that makes it difficult to
find an acceptable trade-off between an expensive over-provisioning (for peak load) and a sub-
performing resource allocation that does not mobilise unused resources. A dynamic bandwidth
allocation approach in the context of network virtualisation can be a solution for this issue.

Using the elastic-video use-case as a proof of concept, we want to adaptively tune the provisioned
bandwidth to the current application’s workload.

Considering this scenario, we define the application workload as the number of simultaneous
downloads. We select a flexible model that realistically describes the user’s behaviour. An impor-
tant outcome of this model is a theoretical Markovian description of the instantaneous generated
workload. Thanks to this model, we expect to statistically quantify the occurrence, the amplitudes
and the duration of all possible states of the workload, and more specifically its large deviations
from the nominal phase. This mathematical model, along with a real-time monitoring of the sys-
tem, will serve as the main input to adaptively configure FNSs to guarantee the QoS and QoE of
users.

52 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

5.3.7.1 Approach

We propose three main approaches for achieving the challenges identified: an epidemical modelling
for workload generation, an extension of the VXDL to enable the modelling of elastic aspects of an
FNS, and the configuration and preparation of a testbed for validating the proposed approaches.

Epidemical modelling for workload generation: Information dissemination in a social system
(Gossip or Buzz) can be viewed as an epidemic spreading in a population network. We studied
relevant epidemic models and then drew analogy between epidemic outbreaks and user behaviour
patterns in a video on demand system. Spreading of an epidemic in a population can be categorised
into a few characteristics which is related to the infection under consideration. We elaborate on
this model in the Appendix A.3 section.

Modelling elastic aspects of FNS with VXDL: VXDL is a high-level language for modelling and
describing virtual infrastructures that defines attributes for coupling with virtual resources (e.g.,
links, routers, nodes, access points) and all complexity and diversity related with the definition
of these entities [6]. We aim to participate on the VXDLforum (http://www.vxdlforum.org) for
investigating the extension of VXDL for dynamic provisioning and elasticity support of FNS. An
extension of VXDL for describing elasticity should comprise the definition of triggers and rules
for each virtual resource and attribute. Triggers can define when, the moment in which an FNS
must be reconfigured. A trigger should be defined in terms of capacity, time, load variation, and
resource usage. When the trigger is activated a set of actions can be applied for reconfiguring the
FNS resources. As VXDL already enables the specification and modelling of virtual infrastructures
including the specification of their internal timelines, it is natural that this language can be extended
for incorporating the elastic aspects of FNS. The introduction of such specification can be validated
using the CloNe use cases, in particular the epidemic model and the workload generator.

Testbed: We would implement the above mentioned model in the Grid’5000 testbed to gen-
erate realistic and flexible workloads and then provide resources dynamically using probabilistic
provisioning tools. See https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home for a
detailed presentation of Grid5000. Some of the initial outcome of this model has been mentioned
in Appendix A.3.

5.3.8 Resource Discovery, Embedding and Reconfiguration in CloNe

Bringing together network and cloud computing resources raises several challenges, among which
are those related to resource management. It is fundamental to have an integrated view of the
existing physical and virtual topologies and characteristics of the resources, as well as the status
of all network elements and links. Moreover the provisioning and placement of virtual resources
must be done in the best way possible, taking into account the available resources at the time
of the request, based on a number of possible criteria from both cloud and network. Further,
reconfigurations may be needed either on a periodic basis, (to cater for possible side effects of
new virtual resources being instantiated and existing virtual resources being resized or released) or
triggered by an unexpected event (e.g. node or link failure).

5.3.8.1 Approach

To address the aforementioned challenges a set of mechanisms able to properly handle resources
will be developed. We assume the network operator to be the entity employing those mechanisms,
thus the amount of information on the network that the mechanisms can retrieve is quite high.

SAIL Public 53

http://www.vxdlforum.org
https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

Resource Discovery (and Monitoring): Today the cloud, i.e. data centres, and the operators
network are two distinct domains which CloNe aims at integrating. However there are boundaries
that cannot be crossed as these domains will not be willing to share full information about their
domain. In our approach we assume to have access to network information such as topology and
physical resources as well as the ability to retrieve information on the virtual resources. On the data
centers side we do not expect to have such detailed information. We rather expect data centres to
provide sets of information (as today e.g. types of VMs it may host) that will allow the algorithms
to infer decisions. However, CloNe is not restricted to data centres as it also presupposes the
existence of servers scattered along the network. For such servers we expect to be able to retrieve
most of its information (e.g. location, physical characteristics, and current load). [35] presents a
network discovery algorithm which is being extended in order to also be able to retrieve information
about data centers and servers scattered in the network.

Resource Embedding: Virtualised network environments offer a much higher level of dynamicity
than traditional networks (e.g. deployment/removal of virtual networks, reallocation of virtual
resources, variable load and occupation of resources), which copes well with the cloud computing
paradigms. In this sense we are developing an algorithm for mapping CloNe requests based on
VNs. However virtualisation is not the only possible network solution as Section 6 highlights, thus
we intend to also develop an algorithm in which VPNs are the network service of CloNe. We
intend to develop a combined mechanism that will perform balanced decisions taking into account
requirements of both network (e.g. latency, bandwidth) and cloud resources (e.g. CPU, storage).
Appendix A.4 presents some preliminary work in this area.

Resource Reconfiguration: Due to the dynamics of mobile environments, requirements of users
and services, it may be required to reconfigure a request (e.g. user requirements, unexpected
situations, load balancing of the cloud or network, business policies). Depending on different
situations, actions can be taken at different levels: in the cloud resources, in the network resources,
or in both cloud and network resources. Mechanisms will be developed for: extending Cloud
resources to other data centres (or scattered servers) or moving cloud resources from one data
centre (or scattered servers) to another (using the defined mapping algorithms); creating new
network paths and reconfigure existing ones (need for more bandwidth, less latency, failure, load
balancing network resources). The algorithms will decide on (1) when to reconfigure and (2) how
to reconfigure the network and resources to optimise the previously mentioned parameters.

5.4 Conclusion and Further Steps for Management

The management architecture is aimed at addressing a number of challenges arising from the unifi-
cation of cloud computing and network virtualisation into cloud networking. The key components
of the architecture enable configuration and service requests in terms of higher-level of abstractions,
autonomous fault monitoring within individual and multiple virtual layers, and dynamic resource
provisioning, migration and optimization for efficient resource usage throughout the cloud. Al-
gorithms running within the architectural framework are focused on being scalable, decentralised
and autonomous solutions, allowing for efficient configuration, provisioning and monitoring. Fu-
ture work will include refinements of the management concepts and the architecture, algorithm
development, and proof-of-concepts in terms of simulations as well as prototyping efforts in some
of the cloud network management aspects. Algorithm development will to a large part be focused
on single-domain problems, whereas further detailing of the architecture for cross-domain purposes
will be part of the architecture development.

54 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

6 Network View

This section deals with the mapping of the CloNe architecture onto specific networking technologies.
In particular, the FNS represents an abstraction of the basic network resource in the CloNe archi-
tecture, and we consider how the FNS concept can be instantiated on different types of networks,
with focus on existing or near-term protocols and systems. The main features of an FNS that are
of particular importance here are efficient provisioning, traffic support, and ease of management.
Hence, we consider how different networking technologies could make it possible to quickly set up,
modify, and tear down FNSs; how a wide range of different traffic classes could be supported in
an efficient way; and how a simplified network view can be provided to the user, abstracting away
unnecessary details and providing a sufficiently rich set of operations in order for the user to control
the FNS according to his/her needs.

In this section, three main network types are considered: virtual private networks, flow-based
networks and fully virtualised networks. The scenario we choose to exemplify the use of CloNe
is equivalent to the Data-Centre interconnection use case presented by OConS. However, in this
document, we concentrate on the specifics of virtualisation and compare technologies with different
levels of maturity to implement the CloNe architecture as a whole, while the OConS approach
presented in [36] concentrates on the capabilities the Data Centre interconnection use case requires
to be implemented by the underlying communications infrastructure, which in their case happens
to be OpenFlow.

6.1 Mapping to Virtual Private Networks

6.1.1 Introduction

Cloud computing offers interesting advantages to enterprises: flexible consumption of resources,
minimization of IT investment, reduction of operational costs. However, the uptake of enterprise
cloud services and applications will not be possible before obstacles to fulfil enterprise-grade require-
ments, in terms of reliability, availability, performance and security are overcome. The fulfilment of
SLAs is absolutely essential for enterprises to consider migration of computing infrastructure and
applications to the cloud. Virtual Private Networks (VPNs) represent the main building block of
todays enterprise networks. This is not likely to change very significantly in the foreseeable future.
VPNs have gained a strong foothold in service providers networks and a reputation for robustness
and reliability amongst enterprises, including small to medium businesses. Whats more, VPNs
have been quite successful in alleviating the operational effort of running complex networks by
moving this burden to service providers and let enterprises focus on their core business. For these
reasons, it is clear that interoperability with VPNs will represent a crucial requirement for any
cloud solution to gain widespread acceptance in the enterprise market. The term VPN is usually
employed in two different contexts:

• Customer Premise Equipment Based VPNs (CPE-based VPNs): As the name implies, the
devices that are involved to set up the VPN are physically located on the customers facilities
(or, more precisely, at the tunnel end points), whereas the network plays a mere transport role.
From a routing perspective, this tunnel is viewed as a simple point-to-point link. Provisioning
and management of the VPN is up to the customer, typically by manual configuration of the

SAIL Public 55

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

tunnels between CPE. In practice, to minimize the customer operational effort, the network
service provider may be in charge of provisioning and managing the CPE. The tunnel between
CPE is implemented by means of encapsulation techniques such as IPsec.

• Network-based (a.k.a.provider-provisioned) VPNs: in this case, the service provider is in full
control of the VPN. All related configuration, operation and control procedures are provided
by the service providers network. Customer network is supported by tunnels, which are set
up between pairs of edge routers. In most cases, these tunnels are based on MPLS, taking
advantage of features such as label stacking to enable tunnel aggregation and scalability.
Usually, two basic VPN variants are considered, depending on the protocols on which the
VPN is based: L2VPN and L3VPN.

Figure 6.1 highlights the basic approach followed on the two VPN models. CPE-based VPNs are
supported by a full-mesh of tunnels between CPE (also called CE), whereas in Network-based
VPNs each CPE is connected to a single VPN edge router (PE). In the case of L3 VPNs, each PE
hosts as many VRFs (Virtual Routing Function) as VPNs to which it is directly connected. A VRF
can be seen as the equivalent of a VPN-specific routing table. Creating a new VPN or modifying
an existing VPN usually requires configuring or reconfiguring a specific VRF. In the case of L2
VPNs, PEs support multiple VSI (Virtual Switch Instances), which handle MAC addresses, and
essentially mimic the behaviour of a conventional layer 2 switch.

Figure 6.1: Basic VPN types: CPE-based vs. Network-based

6.1.2 VPNs providing access to Clouds

Several scenarios can be defined to access clouds. By default, the network provides a pure connec-
tivity service between end users and cloud resources: this corresponds to what we call transparent
access. Since the network service and the cloud service are unaware of each other, no meaning-
ful end-to-end SLA can be put in place; also, any security control, including access control and

56 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

information confidentiality, has to be enforced by the customer without any intervention of the
network in between. In many cases, especially in the consumer sector, this lack of reliability and
quality guarantees will probably not represent a major issue for customers. However for enterprises,
including small/medium businesses, this has been one of the main reasons for the reluctance to
embrace the cloud paradigm. The use of VPNs (both CPE-based VPNs and Network-based VPNs)
circumvents many of the problems posed by the transparent access to clouds.

Access through CPE-based VPN In this case, a CPE-based VPN, supported by a specific
tunnelling technology (e.g. IPsec, GRE) is used to interconnect the customer premises to the cloud
data centre. Similarly to the transparent access case, network and cloud services are separately
managed and controlled. However, two important differences are to be noted. Firstly, by using
a VPN tunnelling technology supporting encryption (e.g. IPsec), a minimum level of security in
terms of confidentiality and access control can be guaranteed. Secondly, because private addressing
can now be used in the cloud, those resources can be seen as an extension of the customer private
network. This means that migration of computational resources to the cloud becomes seamless. On
the flip side, this solution can do very little to guarantee end-to-end performance and reliability,
which in practice means that it will not be an option for many enterprises to adopt. On the
other hand, a solution based on the separate negotiation of SLAs for cloud and network resources,
although possible in theory, would be very difficult to accomplish in practice.

Access through Network-based VPN In this case, the Network-based VPN is able to provide
a robust, reliable and secure network path between the customer premises and the cloud resources.
It is important to note that a Network-based VPN becomes an integral part of the customer private
network, in the sense that the Network-based VPN control plane participates in the routing of the
private network. This represents a major advantage because a fully integrated reliable service
offer can be put together with Network-based VPNs, in such a way that any reconfiguration of
the customer network (including the provisioning of network resources required to accommodate
new cloud resources) is appropriately accommodated in the VPN offered by the service provider.
Examples will be provided in the following section.

6.1.3 Challenges to use VPNs in a Cloud environment

A number of issues have to be sorted out before the access of enterprises to cloud services can
be supported by VPNs. On the one hand, current commercial cloud platforms are ill prepared
to handle the requirements of enterprise customers [37]. Conversely, the dominant VPN models
were not conceived to deal with characteristics of the clouds. By definition, cloud resources may
be instantiated or reconfigured by the customer on a self-provisioning basis. This contrasts with
the traditional VPN provisioning approach, which typically follows a rigid workflow, based on
human intervention by the service provider. Elasticity of resources, on-demand reconfiguration,
resource mobility have never been requirements in VPN environments, as VPNs are expected to
be a relatively stable service offering, with relatively infrequent configuration changes (e.g. adding
new VPN sites, changing bandwidth capacity).

In this section two cases of dynamic cloud service instantiation are provided for illustrative
purposes. The first example, depicted on Figure 6.2, corresponds to the instantiation of new cloud
resources, (for example, as a result of a sudden increase of computing capacity needs that cannot
be fulfilled in the local data centre), usually known as cloud bursting. Assuming that no resources
had been previously provisioned to that customer by the cloud provider, the first step would be
the establishment of a subnet on which the new resources would be accommodated. This would
imply the creation of a new VRF in the corresponding edge router. Subsequently, the newly created
subnet would be announced to the remaining edge routers supporting the same VPN, which in turn
would forward this information to the local area networks in the enterprise sites.

The traffic admitted from the cloud provider into the network is controlled at the corresponding

SAIL Public 57

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

2

1 3

Figure 6.2: Cloudbursting scenario

ingress point (i.e. edge router). Thus, for any increase or decrease of this capacity, a corresponding
reconfiguration of the VPN edge router might be necessary. The second example corresponds to the
case where computational resources (including the corresponding subnet) are migrated from the
enterprise data centre to the infrastructure managed by the cloud provider. Again, a new subnet
would be provisioned (assuming that it had not been provisioned before), which would require the
setup of a new VRF in the respective edge router. The migration of the corresponding subnet
from the enterprise data centre to the cloud data centre would be announced to the remaining edge
routers, similarly to the first example (except that the removal of the subnet from the enterprise
data centre would also be announced). In the case of L2 VPNs, mobility of resources have somewhat
different implications because, contrary to L3 addresses, L2 addresses are typically not bound to
physical location.

6.1.4 A new VPN abstraction

Contrary to other forms of network virtualisation, VPNs do not enable a clear separation between
virtual resources and infrastructure. This means that the VPN resources cannot be easily controlled
and administered by any entity other than the VPN service provider itself. This also means
that from the customer perspective, a VPN is essentially a black box, of which only the access
points are visible to the customer. Any VPN-related protocol that runs inside the service provider
administrative domain is not visible to the customer.

The sections above have shown that cloud services, particularly the requirements posed by self-
provisioning and resource elasticity, bring new challenges to traditional VPN provisioning and
management mechanisms. Thus, a new VPN abstraction, which can provide the customer with
limited provisioning capabilities, is needed.

To some extent, the abstraction provided to the customer by a VPN is similar to a router, for

58 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

1

2

4

3

Figure 6.3: Resource migration scenario

L3 VPNs, or a switch, for L2 VPNs. Each customer network interface is attached to a specific
VPN access point and the VPN is viewed a single network piece of equipment (either a router or
a switch) distributed across a wide area network. However, in the traditional VPN model, the
customer has no possibility to directly interact with the network. Any kind of reconfiguration of
the VPN service has to be executed through the service provider.

The main challenge is the redefinition of the traditionally rigid boundaries between customer
and service provider, in such a way that a limited set of network functions can be controlled by the
customer, either directly, or as a result of a reconfiguration of computing resources.

The single-router abstraction, initially advocated in [16], sounds like a promising solution to
overcome these problems. Basically, a single-router abstraction would provide the means to define
a limited set of functions to be controlled by the customer (provisioning and reconfiguration of
cloud resources, definition of QoS and security policies, etc), whereas the VPN internals (e.g.
routing protocols) would still remain hidden from the customer view, in order to keep integrity of
the network resources and minimize security issues. In order to accommodate L2 VPN services,
in addition to L3 services, we propose to generalize the single-router abstraction to single-node
abstraction. It is clear that the practical materialization of this concept has a few limitations that
should be taken into account. One important difference of the VPN router/switch is that in the
access bandwidth may vary in small steps due to the cost of connectivity, whereas for physical on-
site routers/switches, symmetrical 1G on the router/switch is the norm, with possible alternatives
of 10/100M or 10G.

6.2 Mapping to Flow-Based Networks

This section explores how Flash Network Slice are instantiated, created and mapped to networks
relying on flow-based networking, with special focus on using OpenFlow technologies to dynamically

SAIL Public 59

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

deploy and adapt FNSs according to network conditions and user requirements.

Figure 6.4 depicts an example with two FNSs deployed over cloud platforms and an OpenFlow
substrate. Each slice is composed of virtual nodes, provided by cloud providers, and virtual paths
offered by network providers and supported by OpenFlow switches.

Figure 6.4: FNS mapping to OpenFlow

The FNS request is composed of a set of virtual nodes (i.e. cloud resources) interconnected via
a set of virtual links across a shared substrate network. The FNS resources are jointly allocated by
the cloud providers and network providers. The FNS request is split into smaller graphs according
to specified optimisation objectives and constraints. Each subgraph is mapped to the appropriate
cloud platforms. In Figure 6.4 this corresponds to the two data centres but in a more general case
the mapping can involve also the provider network resources and services. To establish the inter-
subgraph links between the involved clouds across the substrate network, OpenFlow technology is
used to map the FNS paths to the shared substrate network.

We consider two main approaches for mapping FNSs onto OpenFlow networks, which are further
outlined in Section 6.2.2 and 6.2.3 below:

1. Through intermediate virtualisation controllers, such as FlowVisor.

2. Through dedicated controllers specifically designed for control and management of FNSs.

6.2.1 OpenFlow Background

OpenFlow is an open standard that enables running experimental or new protocols in existing
production networks. It relies on a control and forwarding plane separation paradigm to enable
flow-level control and management of switches. The data path of an OpenFlow switch is composed
of a flow table with actions associated with each flow table entry. Users control flows by installing
appropriate actions in the switches. OpenFlow also provides an open protocol to allow an external
controller to communicate with the OpenFlow switches and control their flow tables. There are sev-
eral initiatives for developing OpenFlow controller software, including NOX1, Maestro2, Beacon3,
Trema4, and ONIX5.

OpenFlow has several characteristics that makes it an interesting candidate for CloNe:

1http://noxrepo.org
2http://code.google.com/p/maestro-platform/
3http://www.openflowhub.org
4https://github.com/trema
5https://www.usenix.org/events/osdi10/tech/full_papers/Koponen.pdf

60 Public SAIL

http://noxrepo.org
http://code.google.com/p/maestro-platform/
http://www.openflowhub.org
https://github.com/trema
https://www.usenix.org/events/osdi10/tech/full_papers/Koponen.pdf

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

• The simplified physical switching infrastructure, which facilitates hardware virtualisation.

• Potential for online modification, migration and backup of network controllers.

• The integration with existing technologies and the development of standalone technologies.

• More dynamic and flexible approach to a network resource than traditional technologies.

There are two main options for routing flows within an OpenFlow network:

1. Native OpenFlow forwarding: flow table entries are installed for the specific header fields
representing the traffic within the FNS. In this case the selected fields for the matching must
be unique in the entire network, which means that the controller needs to perform conflict
resolution to ensure FNS isolation.

2. Tunnelling: Tunnels are between the different ingress and egress points with one of the tunnel
technologies supported by OpenFlow, and the packets are encapsulated and decapsulated
accordingly. This will eliminate the need for conflict management, and will also reduce the
size of the flow tables in the switches. As of OpenFlow v1.1, there is support for two protocols
that provide this functionality: MPLS and QinQ VLAN.

Another consideration is how the paths are initialized and deleted. Currently, there are two ways
to instantiate paths relying on the OpenFlow rules:

• Permanent path deployment: OpenFlow rules are injected in the flow tables as permanent
entries. This approach potentially suffers from scalability limitations, since entries in the flow
table will never be removed and this caps the number of deployed flows to the maximum
possible number of entries.

• Online path deployment: OpenFlow rules are injected in the flow tables on demand, as
temporary entries. When a switch cannot find a flow table entry that matches an incoming
packet, the switch forwards the packet to the controller to dynamically compute the path
”online” and determine the appropriate policy to be applied and injected. These operations
increase the delay for flow setup, but could improve scalability when combined with a suitable
replacement policy for flow table entries.

6.2.2 Intermediate Virtualisation Controller

A possible approach for FNS creation is the use of an intermediate virtualisation controller, such as
FlowVisor, which acts as a transparent proxy server between the switches and the corresponding
controllers. FlowVisor slices an OpenFlow switch into several virtual switches, thereby making it
possible to control virtual OpenFlow switches from regular controllers, such as NOX. Figure 6.5
illustrates how we could use FlowVisor to create slices in the single router/switch abstraction using
Openflow Enabled Switches.

Let us consider three network slices, orange, green and blue; the FlowVisor node works as a
proxy between the OpenFlow enabled switches and the slice controllers (e.g. NOX controller) and
is responsible for slice creation and rule management. For each slice, there is a controller responsible
for control of the flows within that slice. Suppose that a host in the blue slice starts a new flow
and sends a packet through switch sw2; this should trigger a request to the appropriate controller
what to do with the packet (unless rules are permanently deployed for the flow by the controller),
so sw2 will connect to the FlowVisor node which in turn will direct it to controller 1, in the same
way controller1 will send a response to sw2. Hence, the FlowVisor node maintains the rules that

SAIL Public 61

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

Figure 6.5: Slicing using FlowVisor

define the network slices, manages the connection between slices and controllers, and guarantees
isolation between slices.

This model allows different slices to use different network models and routing paradigms: single
switch, single router, etc. On-demand creation and modification of FNS can be achieved by chang-
ing the FlowVisor configuration. For example, from the infrastructure provider point of view, it
would be achived by only changing the slice’s corresponding port in the FlowVisor, this can convert
it to a totally different slice in terms of functionality and topology. Convergence is guaranteed by
the lifetime of the rules installed in the OpenFlow switches. Changing the slice topology would
be more challenging because the infrastructure provider may have a pool of controllers ready to
connect to a specific slice with minimum reconfiguration, but will not have prebuilt slices for every
possible requested FNS, so an efficient mapping between FNS and the FlowVisor slices is needed.

All the controllers and a FlowVisor could be integrated into one server; this server will be
responsible of slice creation and flow management. The use of a centralized FlowVisor may have
many advantages but it also constitutes a single point of failure. This could be addressed through
redundancy techniques, such as a fully distributed FlowVisor design, or by holding the existing
flows in the switches while the backup server is up and fully synchronized.

62 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

6.2.3 Dedicated Controllers

A second approach is the use of a dedicated controller for FNSs (Figure 6.6), that is, a controller
implementing the FNS abstraction, and that supports dynamic creation, modification, and termi-
nation of Flash Network Slices.

OpenFlow
Controller

OpenFlow
Protocol

Figure 6.6: OpenFlow view

6.2.3.1 FNS Controller as a NOX Module

The NOX controller provides a programmatic interface to support advanced control and man-
agement functionality based on events, a name space, and a network view. It is implemented in
C++ and Python, and has a modular structure that allows users to add their own network control
software.

The NOX’s network view maintains the topology of the entire substrate network. To ensure slice
isolation to restrict the view and the scope of each slice, CloNe is:

• developing a new NOX module called ”FNS control module” responsible for establishing and
instantiating FNS paths;

• creating a flash network view (FNS view) derived from the global NOX’s network view to
maintain network topology and slice information.

Once the FNS nodes are mapped to the Cloud platforms (for Figure 6.4, the two data centers),
the Cloud providers send the node mapping information to the NOX controller. The FNS control
module in the NOX controller extracts the node identifiers (e.g. name or address) and determines
the set of OpenFlow switches directly connected to the virtual nodes. Relying on the network view,
the FNS control module computes the shortest paths between the virtual nodes while satisfying
the user specified link requirements. Next, the FNS control module determines the appropriate
OpenFlow policies and rules required to set up the computed paths.

To reduce the delay required to set up the FNS, the paths are precomputed based on the net-
work view and stored in a database located in the NOX controller called ”FNS view” database.
This database maintains information about the slice network topology and constraints. This so-
lution would be an extension of PCE [38] based inter-domain solutions. Likewise, inter-domain
communications between controllers would be a similar approach to the implementation of pce in
a (G)MPLS network [39].

SAIL Public 63

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

6.3 Mapping to Virtual Networks

In this section, we briefly describe how to materialise flash network slices using the network virtu-
alisation technology, as well as the deployment and management challenges using this technology.

6.3.1 Background

The merits of network virtualisation have been mainly promoted by research projects in the last
few years, particularly as a key enabler of new Internet approaches that could overcome the current
limitations caused by Internet ossification.

In general, network virtualisation involves the partitioning of a physical network infrastruc-
ture into a virtualised substrate (see Figure 6.7). The virtualised substrate consists of virtualised
resources–virtual links and virtual nodes—which are combined into virtual networks. The process
of mapping (or embedding) a virtual network is based on user requirements, which can be ex-
pressed in terms of capacity of virtual links and virtual nodes. A virtual network is created from
the substrate in such a way that the requirements are met.

Network Virtualisation enables all network resources, i.e., nodes and links, to be fully virtualised.
Through virtualisation, operators could easily deploy different network architectures and protocols,
using a single infrastructure. Just like data centre virtualisation, network virtualisation can po-
tentially enable flexibility and dynamism by decoupling networks from infrastructure. Making the
network infrastructure capable of matching the dynamism of the cloud would be an obvious ad-
vantage for service providers, in order to build seamless end-to-end elastic and agile cloud services.
The concept of network virtualisation is not new: as described before, network-based VPNs are
essentially separate networks sharing a common infrastructure and can also be seen as a mate-
rialization of this idea. However, VPNs cannot be decoupled from the underlying infrastructure
and should be seen more as a service, rather than a real network. Abundant examples of network
virtualisation are available already today in network operators infrastructure, either in the form of
link virtualisation or, to a lesser degree, in the form of network node virtualisation (examples of
high-end commercial equipment by major vendors supporting router virtualisation can be found).

An important advantage of network virtualisation compared to traditional VPN approaches is
the fact that, because virtual networks are fully separated from the infrastructure, resources can
be moved and reconfigured in a much more flexible way. This means that the issues described
above concerning migration of resources in VPN scenarios should be handled in a much more
straightforward way with fully virtualised networks.

Although very attractive from several standpoints, network virtualisation contains several chal-
lenges [40]. Virtualizing the network resources is one of them; ideally the user should have a
large degree of freedom when it comes to choosing routing and forwarding paradigms, and this is
currently not supported on existing commercial platforms. Research on efficient software virtual
routers that can compete with the current hardware routers is under way and promising results
have been attained [41, 42]. Other fundamental issues are related to management, monitoring
and embedding of virtual networks in the physical infrastructure. While some of these problems
have been widely addressed in literature, the requirements and constraints posed by commercial
operational environments have not been fully evaluated. So far, network virtualisation and real
time on-demand network provisioning have been successfully demonstrated in small-scale research
testbeds, but it is clear that there is still a way to go before the technology can be considered
mature enough for large-scale deployment.

64 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

6.3.2 Implementation

Node virtualisation and link virtualisation are the two basic building blocks of network virtualisa-
tion. Node virtualisation has been available in commercial hardware products, in the sense that
vendors enable their routers with the possibility to be partitioned into multiple virtual (or logi-
cal) routers that can be configured and managed independently. A virtual router/switch should
appear from all points of view (e.g. configuration, management, monitoring, troubleshooting) as a
dedicated physical counterpart. Equipment vendors have long supported limited forms of virtual-
isation to support L3/L2 VPNs, e.g. Virtual Routing and Forwarding (VRF), Virtual Switching
Instance (VSI), which can be seen as predecessors of full-blown network virtualisation. Currently,
several network vendors offer equipment models that support full virtualisation. The combination
of virtualisation with routing software (e.g. Linux-based XORP, Quagga routing suites), provides
a straightforward solution to set up virtual networks using commodity hardware. This has usually
been the approach taken to build network virtualisation testbeds for research purposes.

The other basic component of network virtualisation is link virtualisation, which typically can be
achieved through a wide range of alternatives, either based on layer 1 multiplexing, such as WDM,
TDM, CDMA, etc, or through data link layer virtualisation using Ethernet VLAN, ATM, Frame
Relay or MPLS.

In order to deploy and manage FNS using network virtualisation technologies, updated knowl-
edge of the utilization of network resources is required. This can be achieved by using discovery
algorithms that periodically or on a trigger basis inform the administrative domain about the state
of the physical and virtual resources, as described in [35].

Secondly, efficient embedding of the FNS on the physical network is needed, which can be achieved
by using heuristic greedy algorithms, as described in [43, 44, 45, 46, 47, 48] or through distributed
embedding algorithms, as proposed in [49].

Finally, each administrative domain needs to perform resource provisioning on the concerned
elements. In the Architecture and Design for the Future Internet (4WARD) project [30], scalable
and dynamic provisioning, as well as management of virtual networks have been addressed. The
signaling mechanisms and control interfaces defined in the 4WARD project for virtual networks can
be applied as well in FNSs. Figure 6.7 represents the 4WARD layered vision of network virtuali-
sation. The top layer represents the physical infrastructure. By virtualising the physical resources
and partitioning them into slices, the virtualised substrate can be built in the middle layer. The
bottom layer corresponds to the virtual networks which materialize each FNS. Full virtualisation
of the network resources, as depicted in Figure 6.7, enables two major features that can be explored
in a cloud networking scenario - the first is the integrated management and control of computa-
tional and network resources, which now become a single set of virtual resources; the second is the
possibility to clearly decouple flash network slices from the infrastructure, thus enabling the imple-
mentation of protocols at the FNS level that can be tailored according to the specific characteristics
of the cloud networking environment.

6.4 Network View Summary

Table 6.1 tries to summarize the three different network technologies according to their characteris-
tics. It does not intend to compare them, since the level of maturity and the scope of each of these
network technologies is quite different. However, it can help deciding a migration path as proposed
by CloNe, starting with existing virtual private networks and moving towards forward looking full
network virtualisation solutions like 4WARD.

SAIL Public 65

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

Management of Virtual Networks

Provisioning of Virtual Networks
(on-demand instantiation of virtual networks)

Virtualized

Substrate

Virtual

Network

Virtualization of Resources
(partitioning of physical infrastructure into “slices”)

Management of Network within Virtual Networks

Provisioning/Maintenance of Virtual Networks

Physical

Infrastructure

Physical

Infrastructure

Virtualized

Substrate

Virtual

Network

Virtualization of Resources
(partitioning of physical infrastructure into “slices”)

Figure 6.7: Network Virtualisation technology overview within 4WARD [30]

66 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

Table 6.1: Comparison of different network technologies.

Characteristics Virtual Private Net-
works

OpenFlow Virtual Networks

Technology Time +10 years (mature)
Deployed

4 years (new)
Experimental
Deployment and test
phase.

3 years (new)
Research phase
Prototyping

Availability Up and Running
Widely deployed in net-
work providers.
Commercial solutions
available, e.g., Cisco,
Juniper.

First steps at universi-
ties and vendors.

Future internet re-
search Projects, e.g.,
4WARD[30].

Scalability High
Some issues on the BGP
tables for large scale
operators[50].

Medium
Centralized
approach[51], i.e.,
controller.

Low
Limited number of vir-
tual nodes per physical
node.

Flexibility Low Medium
Separation of the con-
trol plane from the data
plane.
Different flow tables per
controller.

High
Dynamic provisioning
of virtual resources.
Migration of nodes and
links in real-time.

Programmability None
Black boxes

Medium
Only on the flows

High
Nodes and links can be
modified according to
the needs.

Provisioning Time Ranging from minutes
to hours
With automated provi-
sioning

Ranging from mili-
seconds to seconds
Time to setup the flows

Ranging from seconds
to minutes
Time to provisioning
the virtual nodes

Protocol Stack MAC and IP layer, i.e.,
L2/L3

Cross Layer Technology
Rules can be applied
from MAC layer to ap-
plication

Layer independent tech-
nology
Virtualisation tech-
niques can be applied
in all layers.
From the physical layer,
i.e. optical wavelength,
to the application layer.

Standards RFC 2341 - IP Based
VPNs
RFC 2547 - BGP/M-
PLS VPNs
Other RFCs on the se-
curity side [52]

OpenFlow de facto
standard [53]
Open Networking Foun-
dation [54]

Initial standardization
steps at:
VNRG IRTF [55]
FGFN ITU-T [56]

SAIL Public 67

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

68 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

7 Security Architecture

Cloud networking introduces new security challenges affecting availability, integrity, confidentiality,
authenticity, and privacy. In a first step we show the security goals for CloNe, relevant attackers,
and based on this identify relevant security challenges for CloNe (see Section 7.1). To address these
challenges we define a security architecture in Section 7.2, introduce security parameters (Section
7.3), show the roles and responsibilities in the architecture (Section 7.4), and show the relation
to the technical architecture (Section 7.5). In Section 7.6 we show an example for a security goal
translation. Further steps for the security work for CloNe is given in Section 7.8.

7.1 Security Analysis and Requirements

Before defining the security architecture we have to define the security requirements which are
based on a security analysis. The security analysis in this section consists of a definition of CloNe
relevant security goals and relevant attackers in CloNe. Basis of this analysis it the preliminary
architecture and use cases of CloNe. As a result of this security analysis we show security challenge
that are introduced by CloNe. How to address these security challenges is shown in the rest of this
chapter.

7.1.1 Security Goals

Availability Availability means, that a subject is not able to impact the ability of a system to
deliver services to its users in an unauthorised way. Availability is generally a quantitative metric
against measurable parameters (e.g. number of users serviced in parallel, network bandwidth,
response time). It has strong ties to (perceived) quality of service.

In the case of cloud networking this means that no user without administrative privileges on the
cloud networking infrastructure is able to impact the service of the other users.

Integrity Integrity means, that a subject is not able to alter secured data without authorisation;
one instantiation of this is that all modifications can be detected after the fact, for example using
electronic signature schemes.

For cloud networking integrity of data that is stored on the cloud networking infrastructure is
important. Also the integrity of communication with and inside the infrastructure elements has to
be realised, so that no man-in-the-middle attacker is able to alter data that is send to, from, or
inside the cloud networking infrastructure.

Confidentiality Confidentiality means, that no one is able to access data without authorisation.
This typically requires that users possess the right credentials, such as encryption keys. This
requires that the appropriate tools for managing these credentials (distributing, verifying and re-
voking) are included in the management infrastructure.

Similar to integrity this means confidentiality of both, the data stored inside the cloud networking
infrastructure, as well as the data that is contained in the communication.

SAIL Public 69

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

Authenticity Authenticity means, that one can proof that someone or something is the one/thing
that it claims to be.

Authenticity is needed for the cloud networking infrastructure so that a user can verify that he is
communicating with the correct infrastructure. Also users can authenticate their identity in order
to access the infrastructure.

Non-Repudiation Non-Repudiation means, that a subject who performed an action is not able
to disclaim it afterwards.

For cloud networking this is strongly related to traceability, i.e., to verify where your virtual in-
frastructure is located and if it is conform to the agreed policies. Non-Repudiation is also important
for accounting.

Privacy Privacy means, that a subject is able to decide which personal information it wants to
reveal. Anonymity, i.e., to hide the subject’s identity in a set of other identities (anonymity set),
and pseudonymity, i.e., the use of pseudonyms instead of real names, are ways to enforce privacy.

Privacy is always a trade-off between information that is necessarily needed to provide a service
and the user, who wants to provide as little as possible personal information. In cloud networking
first the needed information has to be identified and additionally it has to be ensured the legal
directives of the country where the physical infrastructure is located are followed as the virtual
infrastructure can pass legal borders.

7.1.2 Attacker Model

The following gives an overview on roles and capabilities that an attacker might have. This attacker
model will be used when designing the security architecture for CloNe networking.

The attacker model bases on an external attacker that tries to access resources on the cloud
infrastructure. To do this he can eavesdrop incoming and outgoing communication of the cloud
networking infrastructure and try to get access to the infrastructure itself, e.g., by using vulnera-
bilities of the system. For some scenarios, an internal attacker might also be of interest, e.g., an
employee of the cloud networking provider that accesses customers’ data. A similar attack might be
a supplier that introduces trapdoors in hard- or software in order to access data that is processed
on the infrastructure. Additionally, the attacker might be a legitimate user of the cloud networking
infrastructure and uses this access, e.g., to attack other users’ data.

External and internal attackers are also often used for analysing cloud computing. In the cloud
networking case legal aspects and legal intercepts have to be covered additionally. Due to the
fact that virtual components can move to arbitrary physical cloud networking infrastructures they
might pass legal borders. Besides the fact that legal intercepts are not classical attacks they might
violate security goals of the cloud networking customers. Therefore the physical location (legal
space) has to be considered when distributing virtual components.

7.1.3 Resulting Security Challenges

Information security The main challenge from information security side is that the customer
processes or stores data in the CloNe infrastructure. Data that is stored in the CloNe infrastructure
can be encrypted to ensure its confidentiality and integrity. In the case of processing data there
is no mechanism there that guarantees confidentiality and integrity. In this case the customer has
to trust the operator. In case of encrypted communication keys have to be exchanged between
the communicating parties. As the infrastructure might change dynamically also a dynamic key
distribution infrastructure is required.

70 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

With security policies a customer can define how its data should be handled. On the other
hand an operator defines security policies on which basis security functionality is integrated into
his CloNe infrastructure. The challenge is where to place policy decision and policy enforcement
point into the architecture so that the policies of the customer are followed. A special challenge is
how to detect and react on changes in CloNe operators security policies.

Virtualisation management The management of CloNe includes the access to physical infrastruc-
ture. How to implement this access and delegate the access if virtual infrastructure is moved in
CloNe is a challenge.

Isolation In CloNe the physical infrastructure for communication, storage, and processing is
shared by different customers. Besides the separation of communication and the separation done
by a Hypervisor the CloNe management has to take care of following SLAs of all customers.

Misuse protection In the same way as it happened already for pure cloud computing the CloNe
infrastructure can be misused, e.g., for spamming. Mechanisms for detecting such misuse must be
taken in place.

DoS protection The CloNe infrastructure must be resistant against Denial of Service (DoS) at-
tacks. Because of the dynamic, distributed, scalable, and flexible nature of CloNe these attacks
might have a higher impact compared to the same attacks on cloud computing. Mechanisms for
preventing and detecting DoS attacks should be introduced.

7.2 Security Methodology

Cloud network, whether operated by a single or multiple operators, requires quantifiable security
levels. This would ensure that all the actors (application providers, enterprises, business partners,
end-users, data centre operators, cloud site operators, and network operators) obtain a better view
of the current security grade of the network and are aided in managing their individual application
scenarios, business models, usage, storage, and migration policies besides recognizing plausible
operational and management risks.

The overall security requirements can be described using a set of parametrizable security goals
/ objectives. Each security goal must be characterized with respect to the underlying resource(s),
and is therefore used to constrain the security parameter(s) of resource(s). It is imperative to
start off with parametrizable goals, which can be finally mapped to configurations of underlying
resources. For our purpose, we propose to use the terms goals and objectives as synonyms.

From the user side: For each goal, we would have a set of security parameters, for example ge-
ographic location, integrated security through Software Development Life Cycle (SDLC) etc. These
security parameters may then be mapped on to resource constraints, which describe the resources
being constrained to specific values (or ranges), in order to satisfy the respective parameters.

From the operator side: For each security parameter (which has defined the resource con-
straints), the operator must select its security mechanism(s), which would be used to implement the
desired resource characteristics specified by the user. These mechanisms comprise of security ser-
vices which help fulfil the requirements of the individual parameters, i.e., the resource constraints.

Once the parameters are constrained to obtain configuration of resources, it would help execute
the security parameters, which would help fulfil the respective goals. These steps are performed
before virtual resources are moved to an operator side, i.e., before initially placing the virtual
resources in CloNe and when moving the virtual resources inside CloNe from one side to another.
This process is initiated from the DCP and handed over to the control plane of a single domain.

SAIL Public 71

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

Figure 7.1: Security mechanisms

The user’s access to all resources needs to be defined by access control policies (see Section 7.7).
Favourably, mechanisms for anonymised access to resources is supported by the access control.

The following Figure 7.1 elucidates the hierarchical structure between security goals, security
parameters and the resource constraints from both the CloNe user and operators side.

The security framework follows a modular approach to reuse the goals and their translations to
the underlying resources. The modules are realized as sub-goals, or security parameters which can
be translated into a group of resource constraints. For example, two separate goals, i.e., “Ensure
resources are Payment Card Industry Data Security Standard (PCI DSS) compliant” or “Ensure
that there is a minimum security level for the involved metrics” might be entirely different, but
share a large number of common parameters (sub-goals). Instead of translating the entire goal from
scratch, the security goal translation function will have the ability to reuse the modules that have
already been translated. Therefore, it would promote scalability and reduce overall complexity.
The following subsection describes how the security goals are obtained, both from the user and
generated on-the-fly to ease the overall goal translation process.

7.2.1 Obtaining Security Goals

Security goals must primarily be obtained from the customer through an SLA at the DCP. The
underlying resource set is dynamic throughout the lifecycle of a requested service, and hence ex-
tra care should be taken to keep the goals consistent, irrespective of the implementation of the
requested service and utilization of the underlying resources. Security is usually a non-negotiable
characteristic and the goals must not be reformulated unless explicitly specified by the tenant or
the administrator of the individual domains.

72 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

Figure 7.2: Security goal translation

However, it might be possible that the existing goals specified at a specific architecture layer,
might not map directly to the security parameters/sub-goals to be implemented at lower layer(s).
Therefore, it is imperative that the lower layers must have additional mechanisms to specify secu-
rity goals, specific for the resources at that certain layer. For example, if a security goal specified
at the distributed control plane doesn’t map directly to the security parameters/sub-goal to be im-
plemented at the cross-domain infrastructure layer, a mechanism should be realized to specify ad-
ditional security goals specific for the cross-domain layer to implement the desired parameters/sub-
goals.

Finally, monitoring procedures have to be put in place to obtain a feedback about the status of
the resources. These measurements, carried out at the VM or physical layers shall assist the security
goal translation function to release constraints to the resource management function. The resource
management function will then enforce the constraints on the resources. The feedback information
might also be useful for the user, who might want to reformulate the goals after receiving undesired
performance results.

7.2.2 Security Goal Translation

The security goal translation process includes receiving a set of inputs which need to be provided to
the overall goal translation function. The overall goal translation function translates the goal(s) in
order to generate security parameter(s). These security parameters are used to specify the security
characteristics (parameter constraints) of the underlying resources.

The inputs required by the security goal translation function for generating the overall parameter
constraints include, but are not limited to:

1. Service requests: The user shall specify the desired behaviour and properties of the requested
service through a well-defined user interface. Ideally the constraints described in the service
request must map fairly directly to the underlying resource set. Moreover, the tenant shall
have the option to modify their requests within the life-time of the agreement of the service
request.

2. Monitoring: The measurements carried out at different architecture layers provide a clear
picture of the overall functioning of the infrastructure components, and are essential to gauge
the status of the resources.

3. Topology: The goals can’t be translated to security services (and further to security parameter
constraints) unless the function is aware of the underlying network topology.

The goal translation function as shown in Figure 7.2 should be generic enough to be implemented
at any distinct layer, as goals may be specified at any layer, and not only at the DCP. Therefore, its
design should be implementable at both the single, as well as the cross-domain infrastructure layers.

SAIL Public 73

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

Moreover, as the security goal translation function requires input from different management func-
tions, it should have an overall generic interface and should use a widely accepted communication
mechanism. This would ensure communication between different parameters lying in the same, or
different administrative domains.

Finally, it would be safe to state that the security goal translation function is in actuality a subset
of the overall goal translation function, which is described in Section 5.2.1. It would be based on
the same structure as the overall goal translation function, and would be focusing on generating the
security specific configurations of underlying resources for facilitating secure resource management.

7.2.3 Auditing Mechanism

It is equally important to invoke auditing procedures that will check whether the parameter con-
straints are being fulfilled or not. The auditing mechanism shall work in a modular fashion, with
the respective modules being invoked at repeated intervals. Each module shall audit, assert and
assure specific sections of the infrastructure and will have its respective invoking frequency.

An auditing mechanism shall be chosen on the ease of integration into the existing security
framework and its ability to be platform and programming language agnostic.

7.3 Security Parameters

This section provides initial listing of the high-level security parameters that may be constrained,
in order to attain a quantifiable security level for a cloud network. The parameters are included
with only a high-level description and will be modified/explored as further progress and discussions
are carried out. The exact set of resources that will be characterized by each parameter is still
open and shall depend upon the overall architecture.

Ideally, the security parameters must be self-contained and work independently from each other,
unless they delegate responsibilities between themselves, or exchange information. This step is
imperative as it will guarantee that the overall security framework behaves in a modular fashion and
the non-functioning of one component, will not guarantee the failure of the surrounding components.

The modules of the framework must be easy to integrate with each other, to allow complete
flexibility and adaptability. These modules might then be easily modified or integrated as per
the SLA or requirements set in by the administrator. Some of the security parameters include
geographic location, security compliance framework, security levels of individual metrics, integrated
security through the SDLC and resource sharing policy of the cloud.

7.4 Roles and Responsibilities

There are three major, concrete roles discussed in Section 2 that have been identified within the
cloud networking architecture scenario. These are:

1. Administrator: It has administrative authority over underlying infrastructure (the adminis-
trative domain) used to implement resources. The administrator uses management systems
to configure and manage resources within the administrative domain.

2. Infrastructure Service User: The entity which accesses an infrastructure service in order to
obtain, examine, modify and destroy resources.

3. Infrastructure Service Provider: The entity which offers an infrastructure service that may
be used by an infrastructure service user to obtain, examine, modify and destroy resources.

74 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

7.4.1 Administrator

This section specifies the responsibilities of the administrator that are relevant for the security
aspects of cloud networking:

1. The administrator must ensure that the auditing mechanism has been invoked as per its
desired frequency.

2. The administrator shall display the current security status of the underlying resources (or an
overall security status) to the user. The user might want to learn about the security status
of a larger set of resources than regularly displayed, and this might be dependent upon the
information sharing policy of the administrator.

3. The administrator must ensure that all the security parameters are implemented as specified
by the SLA and any discrepancies must be reported to the user.

4. The user must be made aware of the different security policies which might be selected through
her SLA, and the performance-cost-security trade-offs for each: For example, a user might be
impressed with the reduced cost benefit of utilizing data centres in countries outside Europe,
but she must also be informed about the apparent reduction in overall security and increased
risks associated with the storage.

5. The administrator shall ensure smooth delegation and cooperation of different entities, while
implementing the security parameters in cases where the resources might not be in its direct
control.

6. The administrator shall ensure that the security parameters are mapped in the best possible
way on the diverse resource set. Therefore, the security parameters should be mapped on
any underlying technology (for example, OpenFlow or L2/L3 VPN) without any observable
difference in the security characteristics.

7.4.2 Infrastructure Service User

This section lists the primary responsibility of the Infrastructure Service user:

1. The Infrastructure Service user must be aware of the performance-cost-security trade-offs for
each possible security policy chosen by her. Once she signs the SLA, she is accepting the
risks associated with each option.

The Infrastructure Service User has the following rights:

1. Depending upon the information sharing policy of the individual administrators, the user has
the complete right to view the status and capabilities of the underlying resources.

2. The user is free to choose any security policy, unless it interferes with the federal policy of
the area (where either the resources or the administrator is situated - we might extend this to
cover the area in transit as well) or with the resource management policy of the administrative
authorities.

The responsibilities of the Infrastructure Service provider shall be covered in Section 7.5.

A detailed description of the different roles, and their interactions with the architecture, is covered
in Section 2

SAIL Public 75

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

Figure 7.3: Three layer model goals

Administrative DomainAdministrative DomainAdministrative Domain

Ethernet Ethernet

Infrastructure Service Provider Infrastructure Service Provider Infrastructure Service Provider

Infrastructure Service Provider

Delegate security goals
into sub-goals

Translate
sub-goals

Figure 7.4: Delegation of security goals

7.5 Relation to Technical Architecture

The security framework involves the security goal translation function as its backbone, which shall
accept service requests, monitoring results and topology information, and generate constraints on
parameters, which are characterized with respect to the underlying resources.

As is evident from Figure 7.3, the security goal translation function shall be used to specify
the parameter constraints at the architecture layers. Thus, the goals that have been specified at
the distributed control plane through the Infrastructure Service user SLAs will be translated into
concrete constraints, at the architecture layers. These constraints would then be realized by the
administrator. As covered earlier, all the goals might not map fairly directly to the parameter
constraints, and thus additional goals (or extensions on the security parameters) might be defined
at the individual architecture layers to formulate specifications that are relevant for constraining
the resources controlled at that layer.

The detail layer at which the parameter constraints will be defined and realized at each of the
architecture layers (cross-domain and single-domain) is still open and shall be explored during the
prototyping phase.

In Figure 7.4, a new role is introduced, termed as the “Infrastructure Service provider”. The
Infrastructure Service provider shall offer an infrastructure service that may be used by an in-
frastructure service user to obtain, examine, modify and destroy resources. The working of the

76 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

Infrastructure Service provider, both for the single-domain and the cross-domain infrastructure
scenario, has been explained in detail in Section 2, through the Figures 2.2 and 2.3. For the se-
curity goal translation, the Infrastructure Service provider will be responsible for translating the
goals into sub-goals and/or security parameters, which then need to be delegated, either directly
in the case of single-domain architecture, or indirectly through an additional Infrastructure Service
provider, in the case of a cross-domain architecture, to the respective administrators in control of
the actual resources.

These sub-goals/security parameters will then be translated into parameter constraints (with the
help of some additional goals/parameters defined to allow a seamless translation). These constraints
will then be applied on the respective resources by the resource management function.

Finally, the interfaces and communication mechanism between the individual administrators,
to allow information exchange and ease goal translation, shall be similar to the interfaces and
mechanisms described by the multi-domain infrastructure layer investigation team. It won’t make
sense to define new interfaces and communication mechanisms to allow information exchange, unless
it poses a security threat and violates the proposed security policy. This shall be explored further
in the prototyping stage as well.

7.6 Security Goal Translation Example

As covered in the description for the overall goal translation function, the function shall be agnostic
about the hierarchies of the control domains, and hence will behave in the same manner at any
layer of the service hierarchy. It will accept a security control goal (also termed as a security
objective) from the owner/issuer of the goal at a higher layer in the control plane hierarchy, and
shall translate it into sub-goals (which are further propagated to the lower layers in the control
hierarchy), or parameters which need to be further constrained with respect to specific resources.
The goal translation function shall accept inputs from the resource management function (for status
and capabilities of the resources) and the fault management or resource monitoring functions (for
the performance measurement of the resources). Figure 7.5 shows the hierarchical arrangement of
the goal translation functions for security goals.

The following is a high-level example of the security goal translation function’s working. The
workings already described as a part of the overall goal translation function shall not be repeated.

A security goal G for obtaining a connection between points A and B could comprise of the
following terms:

1. Ensure that the resources/administration authorities are placed only in the European eco-
nomic area.

2. Ensure that the encryption algorithm used to maintain confidentiality uses at least 2048 bit
keys (or 224 bits for Elliptic Curve Cryptography (ECC)).

3. The network operator(s) involved are running ISO 27005 (Information security risk manage-
ment) certified equipment.

The process of the security goal translation could then comprise of the following steps:

1. The goal translator must identify a set C of plausible FNS compositions that provide the
connectivity between points A and B.

2. The goal translation function then identifies the administrative domains for each composi-
tion X in the set C, and generates the connectivity-specific sub goals to be propagated to
each composition’s administrative domains. This procedure is described in detail during the
description of the overall goal translation function, and hence hasn’t been repeated.

SAIL Public 77

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

Figure 7.5: Hierarchical arrangement of goal translation

3. The security sub-goals will be simultaneously generated along with the general sub-goals, and
will require the interaction of additional modules for the fulfilment of the same.

4. The fulfilment of the specification that ‘resources/administration authorities are placed only
in the EEA’ can either be fulfilled by sub-goals that check the actual geographic location
of the resources/authorities through the use of a geo-positioning software, or sub-goals that
include the use of trusted platform modules in the hardware to maintain trust relations and
detect the geographic locations with a very high success rate.

5. The key length check involves a sub-goal which invokes a trusted piece of software code to
verify the actual key length (and its entropy during generation). The level of trust that need
to be maintained between the different resources and the administrative authorities/service
providers/users is currently hazy and need to be discussed further.

6. Similarly, the key length checks can also involve testing the Public Key Infrastructure (PKI)
for its efficacy and efficiency. This would involve a sub-goal to invoke an independent auditing
scheme to verify the working and security levels of the underlying PKI.

7. The ISO 27005 certification of the underlying resources has to be separately carried out by
an independent third-party accredited with carrying out certifications. For verifying that the
resources are indeed certified with ISO 27005, trusted mechanisms may be developed which
check whether the resources have the certification or not.

8. Finally, an access control policy model has to be integrated into the security goal translation
function’s primitives, such that it can translate the goals/sub-goals specified by the higher
control plane into valid access control rules to be enforced on the underlying resources.

78 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

7.7 Access Control Policy

Implementing a fine-grained access control policy successfully is the backbone of a large number
of security services. The model chosen to define the policy must not only define all the possible
access control rules that might be desired, but should also be easy to learn and understand, well
documented and easily implementable.

A major drawback of the discretionary access control model [57] is that addition of new subjects
(active entity), actions or objects (passive entity) results in a total update of the overall security
policy. The policy is defined as being composed of ternary expressions, whereby each expression
shall define the subject, its object and the possible actions permissible on them. On the other
hand, the role based access control model [58] introduces the concept of session and role hierarchy.
The major drawback to the model is that the role hierarchy doesn’t usually map directly to the
organization hierarchy, which increases the overall complexity of implementing the model in the
organization.

Therefore, a model needs to be chosen which would solve the above disadvantages and allows
context and organization specific rule formulation. For example, we might have a rule which is
only possible under a specific context, for example allow modification of the code repository by the
project lead, if technical member == project lead. Moreover, we require organization specific roles,
for example allow modification of the code repository by the organization, if technical member ==
organization. Finally, a model has to be chosen on the ease of mapping between the language used
to describe the overall security goals and the language used to model the access control policies
in the chosen model. Easy inter-language mapping should also be complemented by the ease of
mapping between the language of the security model and the underlying resources.

7.8 Conclusion and Further Steps for Security

The security chapter has covered an overview of the overall security methodology, how to obtain
and translate security goals using the security goal translation function and how it integrates with
the existing high-level of the architecture. A small description of security parameters has also been
included, along with the security specific roles and responsibilities of the involved entities.

Future steps would include the selection and placement of an auditing mechanism to ensure that
the security management function is behaving as per the specified guidelines and no discrepancies
slip under the radar. An auditing mechanism is extremely important for the security aspects of
the architecture, as many issues might not be detected by the fault management function.

Moreover, the access control policy is an indispensable part of managing the security of any
architecture. Therefore, the selection of a relevant access control policy model with the desirable
features covered above is of the utmost importance. Ideally, the model shall promote scalability
and complexity of the infrastructure, and should be easy to integrate with the heterogeneous
infrastructure utilized by cloud networking.

Furthermore, security functionality needs to be included into the architecture that allows to
isolate the FNS, e.g., to enforce security zones.

It is planned to integrate some of the security functionalities into the prototype, e.g., the access
control functionality.

SAIL Public 79

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

80 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

8 Relation to Use Cases

A number of use cases for cloud networking were reported in deliverable D.A.1 [1] with further
development for supporting business cases. These use cases describe the type of services the CloNe
architecture is expected to support.

The use cases are grouped under two broad scenarios: elastic video distribution, including live
video distribution, video on demand, video conferencing, and distributed gaming; and dynamic
enterprise, based around enterprise services deployed on cloud infrastructure including business goal
management, travelling worker support (remote auditing use case), virtual desktop, and external
collaboration (media production use case).

The use cases are used to guide the further development of the architecture. Here we take one
representative use case for each scenario, video on demand (from the elastic video distribution
scenario) and media production (from the dynamic enterprise scenario) to demonstrate two appli-
cations of the architecture. The first scenario emphasizes use of distributed, in-network processing
nodes, whereas the later emphasizes flexible connectivity and provisioning of network and cloud
resources.

8.1 Video on Demand Use Case

The video on demand service involves delivering video content to consumers on request. The service
is represented in the Figure 8.1.

Figure 8.1: Video on Demand Use Case

The consumers are represented by video clients connected to a network provider. The source
video content is managed and distributed from a central data centre by a service provider. There

SAIL Public 81

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

may be one or more network providers between the source data centre and the clients. The network
providers and data centre are infrastructure service providers in our architecture.

The scalability of the service and optimal use of the network is achieved by placing caching
and transcoding servers across the networks and managing connectivity between these servers, the
source data centre and the clients. As the demand for content changes, the clients change, and
distribution of clients change the optimal placement of cache/transcode servers and connectivity
will change. The CloNe architecture supports the use case by providing a means for the service
provider to dynamically distribute the cache/transcode servers across the network providers and
manage the network usage. The video service provider will interact with the CloNe system through
the Infrastructure Service Interface. It will describe the virtual infrastructure required to implement
the service in a high level language, relating the number and placement of servers to the number
and clustering of clients. It may describe the network connectivity among servers and to the clients
in terms of metrics such as closeness and bandwidth/latency requirements.

DCP will decompose the virtual infrastructure into fragments to be delivered to infrastructure
service providers who will map the fragments to their own infrastructure, placing and deploying
virtual resources according to their knowledge of their physical infrastructure. DCP may interpret
metrics such as closeness and bandwidth in terms of linkage among infrastructure service providers
whereas individual infrastructure service providers will interpret closeness and bandwidth in terms
of their physical network topology. Hence the high level requirements need not be phrased in
terms low level topology, respecting the network providers desire not to expose information about
their physical infrastructure. The infrastructure service providers will deploy the cache/transcode
servers using their internal compute resource interfaces and may assign storage using their internal
storage resource interfaces. Network connectivity will be established using the internal network
resource interfaces. Where network resources are required to connect across different infrastructure
service providers, DCP will provide information describing how this is to be achieved (i.e. provider
gateway/remote resource identification). This may involve interaction between network resource
management systems at the resource layer to establish resource connection.

We aim to address the resource management challenge from the perspective of Video on Demand
(VoD) use case. The VoD service involves delivering video content to consumers on request. We
aim to come up with statistical methods in order to gain insight on the potential future behaviour
of the system under consideration and increase its elasticity and flexibility at runtime. In order
to test the statistical methods we modelled and simulated user behaviours with an objective to
reproduce a realistic and versatile workload and the corresponding data set. Lack of good quality
video usage databases is also another factor that motivated us to artificially generate it. We adopt
epidemic models for this purpose. Figure 8.2 representing user behaviour (workload in terms of %
of viewers) in a typical case involving 5 different videos introduced in the server. However, this
model need to be investigated further to make it more realistic and hence more useful.

Our final objective is to embed the user behaviour generating model in the Grid 5000 test-bed
to generate actual video traces and user requests. With the input from this model in our algorithm
(statistical method) we would then have some perception about the probable behaviour of the
system, leading the service to be reactive to the change (sudden) in user behaviour.

8.2 Enterprise Use Case

Enterprises are traditionally a crucial sector for IT and network services, therefore this should
represent one of the most promising targets for cloud services in the future. Enterprise services
are characterized by strict requirements in terms of parameters such as reliability, availability,
performance and security. Lack of guarantees to fulfil these parameters has been perceived as a
major obstacle against the widespread adoption of cloud services by enterprises. Hopefully this

82 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

Figure 8.2: Video on Demand Use with an example of the evolution of aggregate viewers for five
different videos introduced in the server at the same time

limitation will be tackled in the next generation of cloud services. Cloud networking plays a crucial
role in this scenario. Cloud networking provides enterprises with the capability to add dynamic
flexible network provisioning to cloud computing and flexibly scale services to build on demand and
pay-per-use IT/IS solutions. With FNS capabilities, enterprises will be able to dynamically adapt
its IT/IS services to include new remote locations, added functionalities and new entities within its
boundaries in a swift and effortless manner, in accordance with the business requirements dynamics
[1].

The media production use case is a practical realization of the enterprise scenario. As described
in deliverable D-A.1, this use case involves a TV channel based in UK using cloud networking for
its IT services to extend its own production facilities for use by sub-contractors, which in this case
is a video animation company located in Japan. In order to achieve SLAs at minimum cost and
maximize resource efficiency, the cloud resources should be located near the sub-contractor premises,
in Japan. The CloNe architecture supports the use case by providing the means to dynamically
establish secure networking connectivity between the cloud site located in Japan, the animation
company and the channel production systems. The TV channel plays the service customer role and
the animation company acts as business partner. The TV channel is a customer of a local cloud
service provider, which, for reasons of resource use efficiency, delegates the provision of the service
to a cloud service provider located in Japan. Based on this use case, it is possible to highlight a
number of requirements to be accommodated by the architecture, in particular by DCP:

• Security: the cloud may hold highly confidential and proprietary enterprise information.
Among other things, this means that DCP should place constraints on which network re-
sources are eligible to be involved in a flash network slice. Section 6 provides information on
this particular topic.

• Isolation: the companies involved in the use case, should be fully isolated from each other,
apart from the specific resources to be shared. This implies that the network is able to
guarantee the isolation of resources, while at the same time enabling collaboration and sharing
environment among the involved partners. Network technologies widely used in enterprise
such as Network-based VPNs have a strong reputation for isolation among different private
networks sharing the same infrastructure. Newer technologies such as network virtualisation
can also offer good isolation properties.

SAIL Public 83

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

Figure 8.3: Enterprise Use Case

• Technology heterogeneity: the service is expected to involve network domains with very
heterogeneous characteristics. Therefore, the architecture is expected to decouple the service
from the specific characteristics of the underlying infrastructure, by providing an abstraction
layer through implementation of goal translation functions. In the CloNe architecture it is up
to the Infrastructure Provider to apply whatever mapping rules are appropriate taking into
account the specificities of the network technology and the service goals.

• Inter-Domain: as the use case shows, in many cases a flash network slice is likely to cross
multiple network domains, which raises several inter-domain networking issues. DCP should
be able to construct a coherent service based on network resources that belong to multiple
administrative domains run by independent providers. The solution depends on the specific
network technology.

• Dynamic provisioning and reconfiguration: the use case requires the provisioning of the ser-
vice on a fully on-demand automated basis. This requires the network establishment and
reconfigurations to be controlled by the user with minimal human intervention (ideally, no
intervention at all) from the involved service provider(s). In addition, live service migration
should be supported whenever necessary, while generating minimum service disruption. Dy-
namic network control is enabled by network virtualisation. For older network virtualisation
forms (e.g. VPNs) this represents a challenge, which has to tackled by the CloNe architecture.

• Enterprise-grade service robustness: as mentioned before, CloNe must provide enterprise-
grade reliability, availability, performance and security. This requires the utilization of net-
work technologies that comply with such requirements, which is the case with mature tech-
nologies such as L2/L3 VPNs. Newer technologies, like Openflow or full-blown network
virtualisation cannot offer as yet the same level of robustness, but the utilization of such
technologies in enterprise environments should not be ruled out.

84 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

9 Related Work

The distributed nature of a control plane for future networks along with the necessity of the real
time and more dynamic nature of the services has made the task of defining architecture very
challenging. There are several other projects going on at the moment and the following relevant
projects are highlighted as of interest.

1. ETICS (Economies and Technologies for Inter-carrier Services) [59] is an EU FP7 project,
that aims to create an interconnection between different network service providers keeping
quality of service in mind. ETICS is prototyping a control plane implementation as well as
assessing performance to demonstrate how their architecture might improve the services as
well reduce operating expenditure and complexity. This project is particularly interesting for
SAIL as it addresses the issue of multiple telecommunication operator interaction.

2. GEYSERS (Generalised Architecture for Dynamic Infrastructure Services) [60] is an EU
FP7 project that aims at defining an architecture for managing and controlling virtual in-
frastructure integrating network and IT resources. GEYSERS is designing a control plane
architecture for the optical networks by expanding existing standard solutions (GMPLS and
PCE). It aims to efficiently integrate (optical) network services and IT Services.

3. The Network Service Interface Working Group (NSI-WG) is also dealing with the on-demand
provisioning of ”end to end circuits” [61]. The Inter-Domain Controller Protocol (IDCP) that
they have implemented, is currently used for dynamic provisioning of network resources for
different vendors. A dedicated working group on the control plane itself (NMWG-CP) also
exists in NSI.

4. RESERVOIR was a EU FP7 funded project aimed at building a cloud federation of similar
(homogeneous) data centres connected via the best-effort Internet.

5. CloudAudit [62] provides a common interface and name space that allows cloud computing
providers to automate the Audit, Assertion, Assessment, and Assurance (A6) of their infras-
tructure (IaaS), platform (PaaS), and application (SaaS) environments and allow authorized
consumers of their services to do likewise via an open, extensible and secure interface and
methodology.

6. OrBAC [63] was developed inside the RNRT MP6 project (communication and information
system models and security policies of healthcare and social matters). The purpose of this
project is to define a conceptual and industrial framework to meet the needs of information
security and sensitive healthcare communications.

7. Cloud controls matrix (CCM) [64] is specifically designed to provide fundamental security
principles to guide cloud vendors and to assist prospective cloud customers in assessing the
overall security risk of a cloud provider.

ETICS defines an overall end-to-end SLA lifecycle taking into account of business criteria. This
research project depicts a seven layer end-to-end service-specific SLA lifecycle method namely cre-
ation, SLA and trust certificate publications, negotiation, validation, provisioning and invocation,

SAIL Public 85

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

monitoring and termination. In addition research on network capability requirements for impor-
tant network features such as inter-carrier/domain path computation, admission control for session
services, congestion notification, resilience and security are being conducted. In case of inter-carrier
network scenarios, as the ETICS architecture describes, the neighbouring service providers along
the data path have also to trigger admission control procedures for the resources on the correspond-
ing inter-carrier connections (for example point-to-point links or peering points) in order to assure
that the composed end-to-end service will get the desired network resources along the whole data
path. In order to carry out admission control in the context of e.g. session initiation or connectivity
setup, it would be necessary that the admission control process gets access to the SLA descriptions
and thus to the specified SLA parameters. ETICS is prototyping a control plane implementation as
well as assessing performance to demonstrate how their architecture might improve the services as
well reduce operating expenditure and complexity. ETICS provisions Quality of Experience (QoE)
for the end user by provisioning end-to-end admission and congestion control.

In spite of its advanced research in the area of inter-carrier services, ETICS does not consider
network provisioning of cloud data centre networks. This project is particularly interesting for
SAIL as it addresses the issue of multiple telecommunication operator interaction.

GEYSERS extends the Virtual Infrastructure concept to the optical layer. A VI is defined as
a collection of virtualised optical network and IT resources with coordinated management and
control processes. The fact of defining a VI over a set of virtual resources provides the possibility of
sharing the underlying physical infrastructure among different operators (virtual resource market
place), and granting them isolation. Dynamic VI provisioning mechanisms are integrated into the
infrastructure definition, producing the potentiality to modify the VI capabilities in order to align
them with the VI usage needs at any given instant.

Optical network is one of the key components, which consists of various optical devices such
as Optical Cross Connects (OXC), Reconfigurable Optical Add-Drop Multiplexers (ROADM) or
Optical Transport Network (OTN) resources. Optical resources are featured by the enormous band-
width of each wavelength, and in particular, the emerging flexible grids technology enables the more
efficient utilization of optical spectrum and flexible bandwidth allocation. IT resources comprise
another important category of managed objects in GEYSERS (remote visualization, computing
and storage). In order to build flexible VIs, these resources are abstracted and partitioned into
Virtual Resources (VRs), which are attached to the VI and exposed to the Virtual Infrastructure
Operator (VIO). Each VR contains a well-defined, isolated subset of capabilities of a given physical
device. Taking the example of an optical device, the VRs are built on its total amount of ports or
its wavelengths, and control switching exclusively between these allocated ports and wavelengths.

GEYSERS explore a disruptive approach for on-demand high capacity Net+IT environment
provisioning. GEYSERS extends the IaaS approach to the Network. GEYSERS model can be used
to solve Cloud Networking issues but is not focusing, as SAIL, on the specific networking issues of
current Clouds. These two projects are complementary as they explore the same paradigm (virtual
infrastructures) at different levels of the protocol stack and focus on different use cases.

RESERVOIR depicted a layered architecture that included three levels: service [8], virtual exe-
cution environment (data centre) [4] and resources (where the network bit belongs into [65]). The
service manager layer was kept unaware of the federation work to provide the illusion of virtu-
ally infinite resources underneath. The service manager was the sole entry point to the system,
in charge of uniquely naming and identifying the resources, enforcing service scalability and user-
level SLAs. After optimizing users’ requests for some performance and cost goals, it passed its
VM/Storage/data centre network request to data centre layer in charge of deploying it. When a
request to a data centre was locally irresolvable, it was forwarded to another federated data centre.
This federation level just implied a forwarding mechanism of deployment requests and monitoring
information across relay nodes in every data centre.

86 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

Since a service could contain VMs being deployed in separate data centres, some network level
federation was also required. This was done by including an overlay isolating user networks from
each other (in the data centre, overlay connecting data centre hypervisors) and connecting them
across data centres over the Internet by means of a gateway, a forwarder node that sent packets
from a data centre to the other across the Internet.

In spite of its advanced features, RESERVOIR did not consider that the network can host
compute and storage resources and how this fact can affect the performance of the application thus
deployed. Also, RESERVOIR did not contemplate the fact that connectivity is often not enough
for the needs of some applications (e.g. real time, low latency, big data and the like). The Quality
of Experience (QoE) for the end user is typically dependent on network parameters (e.g. latency),
which can only be achieved by exploring how to implement a tighter interaction at several points:

1. between the data centre and the network operators, right at the border with the network
operator to set a series of technologies for connectivity, select among the most convenient
one and let data centre and network edge nodes negotiate the best terms for establishing the
required connectivity with the needed QoS to enable real QoE.

2. between network operators themselves to ensure the required QoS terms that the best-effort
Internet has no means of guaranteeing (e.g. establishing a temporary peering agreement to
deliver traffic in a faster manner to another edge of that network in return for some fee.

Although, as stated in [65], cloud providers cannot be expected to coordinate their network
maintenance, network topologies, and more so with one another, adding dynamism in the way
data centres are communicated among each other is an essential requisite for many of today’s more
demanding and profitable applications (e.g Netflix is already consuming most of the bandwidth in
the U.S.). In this regard, SAIL can be considered as one of RESERVOIR’s heirs, dealing with the
integration (federation) of heterogeneous data centres across (even more) heterogeneous network
operators. These network operators can also host computational or storage resources and negotiate
the connectivity terms from the edges of two or more data centres to help achieving application’s
QoE needs.

The corresponding working group to NSI-WG in OGF have suggested a hierarchical approach
in terms of the label switching paths (LSP) for a MPLS-TP Control plane reference model [66].
These hierarchical LSPs or ”H-LSPs” as they call them provide scalability, facilitates operations
administration maintenance (OAM) and maintenance end point (MEP) within each provider as well
as across inter provider network to network interface. These MEPs collect network performance
information and also have some other functionality relevant to SAIL’s interest. Both ETICS and
GEYSER (and NSI-WG to some extent) deal with the optical networks which are an important basis
of the future Internet and thus relevant for SAIL. An issue for SAIL is which control architecture
to adopt: hierarchical or peering. As has been described in this document we have chosen to adopt
the hierarchical model as the primary approach, as peering can be implemented at a level within
this model. In terms of network services and infrastructure as a service framework the hierarchical
control plane provides more flexibility in terms of configuration, accessibility and availability and at
the same time this structure facilitates the separation of the functional aspects of converged services
(from service consumer to physical networking and IT infrastructure). This approach is also being
implemented in the GEYSER project and has been adopted in the HIPerNet [23] software for the
purpose. The context of mentioning the hierarchical approach as well as HIPerNet is important,
since they are proven answers to future Internet definition; but the choice between the peering and
hierarchical approach is still open to be debated.

The layered model adopted in the CloNe architecture is a common theme in several of these
projects. Some, such as GEYSERS, include higher service levels and make network control a

SAIL Public 87

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

central layer of the architecture. CloNe takes a slightly different approach with the notion of
a virtual infrastructure composed of interconnected virtual resources of different types including
network, compute, and storage, as the central theme, hinting towards a different decomposition
and delegation of control of infrastructure across administrative domains. A feature of CloNe is the
development of a new network resource, the flash network slice, and its role within infrastructure
as a service. SAIL follows the experience of the 4WARD project [67] which developed architecture
for development of interoperable networks of differing technologies. As part of this work 4WARD
designed and implemented a layered approach to full network virtualisation. In SAIL CloNe takes a
fresh view with a focus on cloud computing and providing a virtual network resource type for use in
this context. Flash network slices will be used within virtual infrastructures and to connect virtual
infrastructures to each other and to end users. CloNe will focus on rapid programmatic control
(create, manage and destroy) of flash network slices as a component of a virtual infrastructure
driven by high level description.

The concept of in-network management introduced in 4WARD will to a large extent constitute
the foundation on which CloNe management processes will be further developed for addressing the
aforementioned challenges in the cloud. The cloud network management will follow the principles
of decentralized operation, addressing the challenges of scalability, adaptability, control, reliability
and resource usage efficiency. Whereas only basic concepts of business goal management were
provided in 4WARD, goal translation will in SAIL further address the challenges of simplified
controllability and interoperability for expressing and controlling business goals and high-level
objectives. Adaptive fault management will in SAIL be focused on fault detection and handling
based on the concepts of in-network management, but will address problems both in individual
virtual layers and across several layers, enabling effective and preventive fault management of
resources in the cloud. Tools and approaches for resource management will be further extended and
developed in SAIL, supporting self-management processes, scalability, adaptivity and controllability
in the cloud while enabling efficient usage of resources in the cloud.

CloudAudit (codename: A6) provides a common interface and name space that allows cloud
computing providers to automate the Audit, Assertion, Assessment, and Assurance (A6) of their
infrastructure (IaaS), platform (PaaS), and application (SaaS) environments and allows authorized
consumers of their services to do likewise via an open, extensible and secure interface and method-
ology. The benefits to the Cloud Service Provider are to enable the automation of typically one-off
labour-intensive, repetitive and costly auditing, assurance and compliance functions and provide a
controlled set of interfaces to allow for assessments by consumers of their services. The benefits
to the “consumer” of the Cloud services or their duly-authorized representatives are to provide a
consistent and standardized interface to the information produced by the service provider.

CloudAudit integration shall provide technology agnostic representative schema and data struc-
tures mapped to existing compliance, security and assurance frameworks, which can be integrated
into the security framework planned for CloNe architecture.

OrBAC provides a well defined access control policy model, which can be integrated into the
security framework for CloNe, and shall enable fine-grained access control of the resources. The
OrBAC API has been created to help software developers introduce security mechanisms into their
software. This API implements the OrBAC model, which is used to specify security policies and also
implements the AdOrBAC model [68], which is used to manage the administration of the security
policies. The MotOrBAC tool [69] has been developed using this API to edit and manage OrBAC
security policies. OrBAC has only been realized on homogeneous systems (such as firewalls) or at
the software level. Current work will include the implementation of the OrBAC formalism on the
underlying heterogeneous hardware environment.

The CSA (Cloud Security Alliance) CCM (Cloud Controls Matrix) provides a controls framework
that gives detailed understanding of security concepts and principles that are aligned to the Cloud

88 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

Security Alliance guidance in 13 domains. The foundations of the Cloud Security Alliance Controls
Matrix rest on its customized relationship to other industry-accepted security standards, regula-
tions, and controls frameworks such as the ISO 27001/27002, ISACA COBIT, PCI, and NIST,
and will augment or provide internal control direction for SAS 70 attestations provided by cloud
providers. This controls framework will serve as the backbone for evaluating the security levels of
the CloNe architecture.

SAIL Public 89

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

90 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

10 Conclusions and Future Work

The architecture presented in this document is under continuing development using an iterative
approach. The main focus of the first year of the CloNe work package has been to gain an under-
standing of cloud networking. The basis of this understanding is the concept of a network resource
called the flash network slice and how it relates to the cloud computing infrastructure as a service
paradigm. Additionally we have explored delegation as a means to organise management of virtual
infrastructure in multiple administrative domains. This approach is suitable for use within a single
organisation, such as a network operator or a data centre operator, as a means to organise internal
management systems, or across organisational boundaries as a means to support virtual infrastruc-
ture management across providers. Delegation will allow for an ecosystem of cloud providers to
utilize each other’s resources while satisfying the requirements of the cloud customer.

The cloud networking architecture proposed in this document goes beyond the state of the art
in the area of infrastructure service cloud. The flash network slices provide an abstraction of a
network service that fits the model of cloud computing and that addresses one of the missing parts
of existing cloud services. The flash network slices provide dynamic connectivity services with
the level of performance and reliability expected by enterprise applications to be deployed in the
cloud. The proposed architecture allows users to specify measurable performance goals associated
to resources allocated in the infrastructure. Yet another new concept proposed by cloud networking
is the deployment of computing and storage resources within network. These resources will allow
a finer level of distribution of service than the one provided by existing data centres.

10.1 Future Work

We expect to further refine the CloNe architecture as a result of lessons learned from the devel-
opment of the prototype. Moreover, additions to the architecture will be made to cover for extra
aspects that were identified during the first 12 months of the project. Those include the need for
user authentication solution across cloud providers; provisioning of scalable inter-provider flash net-
work slices; a model for delegation across business boundaries or subcontracting; and inter-provider
resource management.

The proof-of-concept prototype based on the architecture presented in this document is currently
under development. The key aspects of the architecture will be demonstrated in the prototype,
namely: cross-administrative allocation of resources; dynamic scaling of flash network slices; alloca-
tion of computing resources in a distributed cloud; amongst others. An experimental infrastructure
is being built that spans Ericsson’s site in Sweden, HP’s site in UK, and Institute Telecom’s site
in France. This experimental infrastructure will include real cloud infrastructures implemented at
the three sites, connected by an emulated L3VPN network. These will be extended with imple-
mentations of the flash network slices and management systems to implement a distributed cloud
networking infrastructure service supporting multiple applications. Example applications based on
the CloNe use cases will be implemented to test the implementation. The use-cases chosen for
implementation were the elastic video distribution and media production.

We also expect to further explore the relationship between CloNe and the other technical work
packages of SAIL: NetInf and OConS. NetInf is constructing object addressable networks as a
service overlay network. CloNe has the potential to support spontaneous deployment and optimi-

SAIL Public 91

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

sation of NetInf server nodes, managing the connectivity among nodes, and supporting dynamic
geographical placement and reconfiguration decisions. OConS is developing highly adaptive network
connectivity services supporting multipath and multipoint connections. While CloNe implements
flash network slices based on OpenFlow, VPNs or virtualised networks, multipath services proposed
by OConS could as well be used in OConS enabled networks.

92 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

A Management Algorithm Results

A.1 Goal Translation and Monitoring of High-Level Objectives

The rest of this subsection gives an account for our approach to goal translation and the restrictions
on high-level goals. Let ISP be an infrastructure service provider that manages several resources
r1, . . . , rmr . Assume for simplicity that they are of the same type and that they expose identical
low-level parameters π1, . . . , πmπ used for configuring the resource. For each i = 1, . . . ,mr and
j = 1, . . . ,mπ, we associate to the parameter πj a family of distributions ∆i,j(x), where x ranges
over the values of πj , obtained from monitoring of measured characteristics of the resource ri. Note
that πj is not required to be an actual configurable parameter of the resource: it suffices that the
resource manager can configure the resource on the basis of the value of πj .

Assume that ISP offers a service1 S with service parameters s1, . . . , sms . Note that the service
parameters can be both high and low-level parameters. We say that a goal for S is a set of
constraints on the service parameters s1, . . . , sms . It is up to ISP to specify exactly which parameters
should be included among the service parameters s1, . . . , sms for S. This decision depends on
several factors, some of which we call market, abstraction, and measurement factors. The market
and abstraction factors decide which parameters the infrastructure service provider would like to
include in the goal specification language, while the measurement factor restricts which parameters
that may be used in specifying goals.

The market factor reflects the (estimated, measured, or otherwise perceived) customer require-
ments on the service S. If for example S is a connectivity service, then the service parameters
may (most likely) include parameters for the specification of the endpoints of the connection, start
and end times for the connection, and possibly for the locations of the nodes over which the con-
nection is routed. The abstraction factor reflects characterisations of services that cannot be (or
are not conveniently) controlled directly on resource level. This includes QoS parameters such as
bandwidth, jitter, drop rate, and delay. It may further include security specifications and fault
management instructions. For example, one may want to specify that a service respects some
privacy policies.

The measurement factor determines whether the infrastructure service provider can translate a
goal expressed on a service performance parameter. In order to be able to translate a goal on a ser-
vice parameter sk, we need a function g that tells how the performance parameters πi,1, . . . , πi,mπ ,
where i corresponds to the resource ri with i = 1, . . . ,mr, should be set for maximising the proba-
bility of obtaining the specified constraint on sk. One approach to defining this function is based
on monitoring and measurements of the parameters πi,1, . . . , πi,mπ , i = 1, . . . ,mr, and sk. The idea
is to find a functional dependence f of sk on πi,1, . . . , πi,mπ , and to define the function g in terms
of the inverse of f . (Note that the inverse of f may not exist as a function, though, in which case
g becomes indeterministic.) Based on these measurements, it is in some cases possible to obtain
the function g from (a subset of) the set of distributions over the values of sk into the set of values
of πi,1, . . . , πi,mπ , i = 1, . . . ,mr so that, for some distribution D(sk), if the resource is configured
according to πi,1, . . . , πi,mπ , then sk will take values in accordance with D(sk). The possibility of
finding such a (partial) function depends on the relation between the parameters πi,1, . . . , πi,mπ and
sk (i.e., the function f). If there is a linear dependence, then it will be relatively easy to find the

1In general, an infrastructure service provider could offer more than one service.

SAIL Public 93

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

function g. Most likely, the relation will not be simple, and we may have to use techniques from
machine learning to learn or estimate the function f relating πi,1, . . . , πi,mπ to sk, i = 1, . . . ,mr.
Whenever the function g can be defined (for some distribution D over sk), we say that a goal
expressed in terms of the parameter sk, can be be translated by the goal translation function and
that sk is an admissible high-level parameter. The set of goals that may be expressed for a partic-
ular infrastructure service provider will be restricted to the goals containing only constraints over
admissible parameters.

We shall now give a sketch of goal translation. Assume that ISP, the infrastructure service
provider as specified above, is requested by an actor A to fulfil the goal G = {D(sk)}, where D(sk)
is a distribution over the values of the service parameter sk for the offered service S. The distribution
is a constraint on sk. (In general a goal will consist of constraints on several service parameters).
We assume for this exposition that the service S requires exactly one of the managed resources,
and thus that there is no need to decompose the goal into several subgoals. The translation of G
proceeds in several steps.

The current status of the resources is first retrieved in terms of what values vi = (vi,1, . . . , vi,mπ)
of the parameters πi = (πi,1, . . . , πi,mπ) the resource ri can offer, i = 1, . . . ,mr. In general, the
values in vi may be scalar, intervals, or probability distributions. For each i = 1, . . . ,mr, based on
vi and the gathered statistics via the measurements of πi and sk, we can obtain a distributions δi,k
over the values of sk measured with respect to resource ri with parameter settings according to vi.

For each i = 1, . . . ,mr, the distribution δi,k is compared with the objective D(sk) for sk, to
see how well δi,k matches D(sk). The measure of match between δi,k and D(sk) is obtained via a
statistical measure which is left out in this exposition (see [70]). Through an optimisation criterion,
the goal translation function selects the resource rj for which δj,k is considered to be the best match
toD(sk). In order to find configuration objectives for the resource rj , we make a second optimisation
among the values of πj,` induced by vj,`, ` = 1, . . . ,mπ for finding the values oj = (oj,1, . . . , oj,mπ)
that maximise the probability of rj obtaining the distribution δj,k over sk.

Based on the selection of rj the goal translation function can then offer a service implemented
by rj to the requester A with the promise to fulfil the goal G with a certain probability p. The
probability p reflects the discrepancy of match between δj,k and D(sk); the likelihood of δj,k given
oj ; potential uncertainties in the retrieved resource status information vj ; as well as, in applicable
cases, the probability of oj,` being drawn from the distribution vj,`, ` = 1, . . . ,mπ. If the offered
service is accepted by the requester, then the resource management receives oj,1, . . . , oj,mπ as its
configuration objectives for resource rj .

While the service S, implemented using rj , is running, the parameters πj,` are continuously
monitored via the associated distributions ∆j,`(oj,`), ` = 1, . . . ,mπ. If the monitored values start
to deviate from the distributions ∆j,`(oj,`), and if the resource and fault management functions are
unable to correct the behaviour locally, then the goal translation function will redo the translation
process attempting to find other solutions (possibly involving replacing the resource). If the goal
translation cannot find a replacement solution, then it will report to the requester A that the
goal cannot be met according the agreed performance characteristics. From that point either a
re-negotiation may take place, or the requester may decide to use an alternative infrastructure
service provider for its services.

A.2 Fault Detection in Virtualised Systems

As an example, we have tested the scalability of the spatio-temporal event correlation proto-
col [25] for an increasing network size in both the number of layers and the number of nodes,
using synthetically generated topologies. The topologies were generated using the the Erdös-Rényi
method [71]. For an increasing number of virtual nodes N , a series of experiments was performed

94 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

for N = {500, . . . , 5000} and a fixed number of layers L = 3. For an increasing number of layers L,
the series of experiments was performed for L = {3, . . . , 18} and a fixed number of nodes N = 3000.
For each layer n the number of nodes Nn decreased by a fraction of 0.7.

0 1000 2000 3000 4000 50002

3

4

5

6

7

Nodes

A
ve

ra
ge

 o
ve

rh
ea

d

Simulation T1 T2

Figure A.1: Average overhead for an increasing number of nodes, with theoretical path lengths
calculated from the entire graph (T1) and as a sum of individual layers (T2).

We observe that the overhead changes in accordance with the theoretical average path length
between any pair of nodes (Figure A.1), which for an ER graph is known to be proportional to

lrand ∝ ln(N)
ln(pN) , where N is the number of nodes and p the connection probability [71]. We here

compare the simulation results with two aspects of the theoretical path length, based on calculations
from the whole graph and as a sum of individual layers. As the theoretical average path length does
not take into account multiple layers, the theoretical lines have been shifted to simplify comparison
(based on minimising the sum of differences towards zero for each theoretical line and the data
points).

0 5 10 15 200

5

10

15

Layers

A
ve

ra
ge

 o
ve

rh
ea

d

Figure A.2: Average overhead for an increasing number of layers.

In Figure A.2, we see that the overhead increases with the number of layers. Naturally, the
overhead is increased as the payload have to travel a greater distance to the root cause layer when
the number of layers is large. Since we in this case generated graphs with fewer nodes for each
layer, the overhead eventually levels out as the proportion of small layers grows.

A.3 Predicting and Modelling Virtual Infrastructures: initial results

Information dissemination in a social system (Gossip or Buzz) can be viewed as an epidemic spread-
ing in a population network. We studied relevant epidemic models and then drew analogy between
epidemic outbreaks and user behaviour patterns in a video on demand system. Spreading of an
epidemic in a population can be categorised into a few characteristics which is related to the infec-
tion under consideration. We elaborate on this model in this Appendix section. We consider two

SAIL Public 95

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

main parameters, which are β (rate of contamination) and γ (rate of recovery) [72].

In this model there can be two events that change the state variables Ns, Ni, Nr [73].

Event 1 One extra infection (Ns decreases) with rate β.Ns.(Ni +Nr)/N

Event 2 One extra infection (Nr increases) with rate γ.Ni

This epidemic model can be adopted to represent the way information spreads among the users in
a video on demand system. For a Video on Demand (VoD) system, susceptible S means potential
viewers of a video, while contagious C refers to people who already watched (or are currently
watching) the video and who can spread the information about it. However, in order to get the
number of current viewers of a video, which directly defines the workload on the system, we divide
the contagious compartment into two subsets. One, that we note I, contains the current NI(t)
viewers of a video, and the complementary set called R, comprises the NR(t) persons who already
watched the video. Ns, Ni and Nr are functions of time. β is the transmission rate at which
information spreads from the current or past viewers to the potential viewers. Finally, to complete
our model, we consider that the watch time of a video is exponentially distributed with mean γ−1.
In our model Ns+Ni+Nr = N (fixed). This workload generator represents a Markov chain [74].

Figures A.3 and A.4 detail some preliminary results that we obtained from our model. We ran
Matlab simulations for single video and multiple videos with β changing from 1 to 1.5 to 2 and γ =
0.25. The first figure simulates a scenario for a single video with threshold effect that includes the
importance of video popularity in the dynamics of the model. We see that the rate of change of
current viewers gets higher after it crosses a defined threshold (we consider the first threshold to be
one fourth and the second one to be one half of the total population without losing generality, we
are investigating different possibilities of defining the threshold in order to make it more realistic).
The second figure simulates a scenario for five different videos, that have been introduced at the
same time in the server and have the same values of β and γ. This scenario is more realistic,
because in a video on demand system users have freedom of choosing different videos (one at a
time). We see that most of the time (except video 3 and video 4) different videos reach their
maxima at different times. It is a general case of video on demand system where it is not surprising
that one video becomes more popular than the others and after everybody has watched it, another
video gets its turn and drives the system. Thus the process continues.

Figure A.3: An example of the evolution of viewers with changing value of β (Popularity) for one
video.

96 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

Figure A.4: An example of the evolution of viewers with changing value of β (Popularity) for the
aggregate of five different videos.

A.4 Mapping of Virtual Networks with Cloud Resources

Here is presented some preliminary work on an algorithm for mapping cloud networking requests
(where network resources are mapped into VNs) based on node stress and link bandwidth. In a first
step, a pre-selection of possible physical hosts will be done, taking into account the user’s access
point (i.e. the geographical place where the user will access the service), the network conditions
and service network requirements. The mechanism will determine the possible solutions, i.e., one
or several physical hosts able to allocate the cloud resources which, at the same time, can have a
network path (between the physical host and the user’s access point) able to fulfil the required QoS
to access the host.

[48] focuses on the problem of virtual network resources embedding, taking into account the
heterogeneity of the physical network. For this problem, it is proposed an efficient heuristic that
solves the resource allocation problem. The proposed algorithm is inspired by the concepts of node
and link stress, defined in [43]. We are extending this algorithm by integrating the mapping of
network resources (routers and links) along with the placement of cloud resources in the network.
Two algorithms, which differ in the server stress formula, are presented and a comparative analysis
between both is done. Note that these formulas are applied to individual servers scattered through
the network and not to data centres. The mapping of the request is done by combining the
methodology used in [48] with the present server stress formulas. For the moment the algorithm
does not take latency into account, but as a fundamental parameter in the future the algorithm
will consider it.

Ss =
NumberofActiveV Ms

(N.CPU − Load) + σ

FreeRAM

FreeRAM −ReqRAM + σ

FreeHDD

FreeHDD −ReqHDD + σ
(A.1)

Ss =
NumberofActiveV Ms

FreeRAM(N.CPU − Load)FreeHDD + σ
(A.2)

Formula A.1 considers the amount of RAM and HDD associated to the VM that we want to
map. Thus, in this situation the stress of the server will depend on the VM that is trying to be
mapped, while in Formula A.2 that is not taken into account.

In the simulations both physical substrate and VNs had 20% of the nodes as servers (rounded
to the higher integer) and the remaining 80% as routing nodes. Each scenario was done for 12
runs, each with 500 time units. The same subtract and VN requests were used for the study of
both algorithms, with a VN request tax of λ = 2 VNs per time unit, with an average duration of

SAIL Public 97

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

10 15 20 25 30 35 40 45 50 55 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N - number of substrate nodes

n
u
m

b
e
r

o
f

a
c
c
e
p
te

d
 V

N
 r

e
q
u
e
s
ts

 /
 n

u
m

b
e
r

o
f

to
ta

l
V

N
 r

e
q
u
e
s
ts

Acceptance ratio

Server stress formula 1

Server stress formula 2

Figure A.5: Acceptance rate (number of accepted requests / number of total requests) varying the number
of physical subtract nodes.

0 1 2 3 4 5 6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lambda - number of VN requests per time unit

n
u
m

b
e
r

o
f

a
c
c
e
p
te

d
 V

N
 r

e
q
u
e
s
ts

 /
 n

u
m

b
e
r

o
f

to
ta

l
V

N
 r

e
q
u
e
s
ts

Acceptance ratio

Server stress formula 1

Server stress formula 2

Figure A.6: Acceptance rate (number of accepted requests / number of total requests) varying the number
of requests per time unit.

1/µ = 20 time units (Poisson arrivals and exponentially distributed duration). The virtual servers’
characteristics are based in the Amazons offerings. The results presented have a 90% confidence
interval.

From Figures A.5 and A.6 it is possible to observe that Formula A.1 presents significantly better
results than Formula A.2 especially when the number of subtract nodes increases. This leads us
to conclude that it is better to perform the mapping considering the characteristics of the virtual
servers along with those from the physical ones. The difference is not very sharp since the algorithms
only differ in the server’s stress formula and are the same for the routing nodes stress formula. It
is noted that the acceptance rate rises as the number of substrate nodes increases since there is
more capacity and more nodes where the mapping can be done. This increase is sharper when the
number of substrate nodes is lower since in these conditions the acceptance rate is limited by low
number of nodes of the substrate. As for the acceptance rate behaviour according to the variation
of the number of requests per time unit it naturally decreases as the number of requests increases.
Even though in this situation it is possible to see a slightly better performance from Formula A.1.

98 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

B Addendum: Clarifications Since Version 1.0

This addendum addresses the following four questions, raised in the SAIL project review conducted
in November 2011, concerning version 1.0 of this document.

1) CloNe must be more specific about the model(s) it plans to develop and prototype
in the framework of its participation to SAIL as well as the services that it will make
available to NetInf, OConS and applications. Indeed, neither Figure 2.2. ”Roles in a
Simple Arrangement” nor Figure 2.3. ”Roles in a Hierarchical Arrangement” provide
the required clarifications apart from introducing the ”delegation” concept.

The principle virtual infrastructure concept CloNe plans to develop and prototype is the Flash
Network Slice (FNS). A clarification of this concept is described in Section B.1 below. Addi-
tionally, CloNe defines three levels of interface described in Section 2.4: the infrastructure service
interface, the DCP, and the administration interface. CloNe is also implementing the management
components described in Chapter 5, some of which are reported in Appendix A.

The point regarding roles in simple, hierarchy, and peering relationships in Section 2.3 (Figures
2.2, 2.3, and 2.4) is only that delegation can be used in all cases. For simplicity, our initial prototype
implemented a strict hierarchy (the users always contact a single provider acting as a broker) and
we are now building out a peering arrangement (users may choose any provider and delegation
spreads out from there). We do not promote any approach above any other.

Section 5.1 in D-A.2 [2] provides high level description of interaction of NetInf and OConS with
CloNe. In Section B.2.1 of this addendum we provide a more elaborated version of the interaction
of NetInf and CloNe. CloNe can benefit from the features of OConS, such as providing the best
connectivity between two points that already have been identified by CloNe per user request, by
using it as an underlying network technology.

2) The scope of CloNe with respect to conventional networking (e.g. MPLS) as well
as novel (e.g. OpenFlow) infrastructures must be clearly specified. In that respect, a
roadmap would be useful as well as an exploitation plan of the results.

FNS is a generic virtual network abstraction that allows the creation of virtual networks and
connecting different virtual networks as part of a virtual infrastructure (described in Section 2.2
and clarified in Section B.1 below). As such CloNe does not put any specific requirements on the
underlying network infrastructure and intends to abstract the underlying network technology to
the end user through a consistent interface.

FNS can be realized within a single provider or across multiple providers. When extending an
FNS over a Wide Area Network using today’s technology, the abstraction is implemented on top of
existing solutions such as VPNs. As the most commonly deployed and used networking technology
for creating VPNs, MPLS is being used in our prototype. Simultaneously, the FNS abstraction is
also being implemented using novel networking techniques like OpenFlow. Currently this is done
only from the perspective of virtual networks within a data centre, as the technology is not mature
enough for WANs, but further research is being conducted to evaluate the suitability of OpenFlow
in WANs. CloNe ensures that an FNS realized across different providers, each utilizing different
network techniques, can interwork (as described in Section B.2.3 below).

SAIL Public 99

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

3) Services provided to the other components of SAIL, namely NetInf and OConS must
be clearly specified as well as the direct applications level interface pictured in Figure
5.1, if any.

Section 5.1 in D-A.2 [2] provides high level description of interaction of NetInf and OCons with
CloNe. In Section B.2.1 of this addendum we provide a more elaborated version of the interaction
of NetInf and CloNe. CloNe can benefit from the features of OCons, such as providing the best
connectivity between two points that already have been identified by CloNe per user request, by
using it as an underlying network technology.

4) The other four cross work packages themes, namely security, management, inter-
provider issues, and prototyping, must be summarized in a clear and concise manner.

Following the cross SAIL themes guidance and recommendation, Chapter 5 describes network
management functionalities that are divided in three main areas of goal translation, fault manage-
ment and resource management. In this chapter, management architecture is presented to include
not only the necessary functions above but also the distributed management functions and rele-
vant interfaces. Following security theme recommendations, Chapter 7 describes specific security
challenges of CloNe, which lead to introducing security parameters, roles and responsibilities and
relation to the main architecture. Inter-provider theme specific to CloNe is described in more detail
in SectionB.1.1 below. The prototyping theme across SAIL has provided a framework for identi-
fying and implementing different components of architecture which at this stage was concluded in
an internal SAIL demonstration and will be documented in detail in deliverable D.D.2.

B.1 Flash Network Slice

The Flash Network Slice (FNS) is a concept of a virtual network that:

• is configured in the time scales of existing cloud resources such as virtual machines;

• includes interconnection across administrative domains;

• is augmented with objectives, or goals, that constrain its implementation.

It is an extension to the typical IaaS concept of a virtual network that does not express inter-
connection and assumes uniform network performance. We include these concepts in our virtual
infrastructure data model used to communicate with service providers.

The definition of a resource in the three layer model in Section 2.1 and a FNS in Section 2.2 defines
a FNS to be an entity that exists entirely within the boundary of a single administrative domain,
that can be linked to FNS in other domains. An example of this arrangement is depicted in Figure
B.1. The rational behind this definition is that the two FNS are managed by different administrators
and implement their data transmission behaviour using technology local to their respective domains,
so they are considered to be two entities. The link indicates that data transmission is extended
between the two FNS using a technology shared by the domains.

These definitions are implicitly derived from the viewpoint of the administrator role. They are
not necessarily consistent with how a provider would project the virtual infrastructure to the user
through the infrastructure service or how a user would like to specify a virtual network. The user
deals exclusively with IaaS concepts and is not aware of administrators or administrative domains.
Accordingly, we need to re-formulate the definition of a FNS from the viewpoint of the user role.

100 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

Admin DomainAdmin Domain

FNSFNSFNSFNS

LinkLink

Figure B.1: Virtual infrastructure spanning two administrative domains

Clarification of View Points

In fact the main difference in the user view is that a FNS is associated with an infrastructure service
provider, instead of an administrator (administrative domain), because a user delegates implemen-
tation of a FNS to a provider. The provider is permitted to further delegate the infrastructure
(adopting the user role) to other providers and to partition it across providers. The fact that two
linked FNS have the same logical behaviour from the user’s viewpoint as a single FNS is exploited
here to perform the partitioning. A single FNS requested by a user may be transformed into two
linked FNS by the provider. The provider may elect to hide this from the user and project the two
as a single FNS through the infrastructure service interface. So, the user’s FNS may span multiple
administrative domains.

B.1.1 Conceptual Perspective

In the following we capture our FNS concept in the form of UML. Figure B.2 is a UML class
diagram representing a virtual infrastructure.

Resource

-AddressingScheme
-Addresses

FNS
Compute Storage

-PeerReference
-PeerProvider

Attach

0..* 1

NetworkInterface

0..1 0..*

1

1 0..*

1

-OwnerIdentity

Infrastructure

1 *

StorageInterface

0..1 0..* 1 0..*

-ProviderIdentity

Infrastructure Service Provider

1 1

Figure B.2: User view of virtual infrastructure

An FNS is the representation of a virtual network at a level of abstraction useful to the user.
Two or more FNS can be interconnected to create a larger virtual network. These concepts are
included in our virtual infrastructure as shown in the Figure B.2. A FNS is a resource associated

SAIL Public 101

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

with an infrastructure service provider. Network interfaces can be attached to an FNS to connect
compute resources to it. The interconnection of FNS is represented by attach points Attach.

Inter-Provider Support in Flash Network Slices

Virtual networks are typically represented in IaaS as a single resource. The introduction of at-
tach points is intended to support cross-provider operation in two ways. Firstly, it represents the
interconnection of virtual networks across providers. Secondly, it allows a view of the virtual in-
frastructure that is restricted to a single provider, supporting information hiding. A single provider
does not need to be aware of all the infrastructure owned by a particular user, it only needs to know
its part. The PeerReference attribute of the attach point is sufficient information for the provider
to negotiate and establish a connection to a peer provider. We elaborate on this process in section
B.2.3 below.

B.1.2 Specification Perspective

VXDL and OCNI represent two emerging standards in the cloud networking space that we are
actively evolving as part of CloNe. Both are capable of modelling the FNS concept.

VXDL has high-level representation of both the virtual infrastructure resources and the con-
straints attached to them. Originally targeted at network description, it now includes complete
infrastructure description. It can be used to describe goals, objectives and time lines, suitable as
input for driving the inference of concrete infrastructure configurations.

OCNI is an extension to OCCI, an existing cloud interface standard. In contrast to VXDL, its
origins lie in cloud computing and the OCNI extension represents an improvement in its treatment
of virtual networks. It can be implemented directly on several existing infrastructure managers,
including OpenNebula and OpenStack, making it suitable for describing the concrete infrastructure
configurations.

These standards overlap in application but also demonstrate different strengths. Table B.1 shows
a mapping between our infrastructure concepts and classes in the VXDL and OCNI data models.
We use both in our prototyping: VXDL for high level, goal based, descriptions that are interpreted
and translated to OCNI for concrete input to infrastructure managers.

Table B.1: Mapping of CloNe Concepts to OCNI and VXDL

Concept Perspective OCNI VXDL

Resource Resource vResource

Compute Compute vNode

Storage Storage vStorage

FNS FNS vRouter, vLink

StorageInterface StorageLink implied by containment
of vStorage in vNode

NetworkInterface FNSComputeLink vLink

Attach FNSInterface vAccessPoint

Infrastructure A specialized mixin virtualInfrastructure

Infrastructure Service Provider A specialised mixin not modelled directly

102 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

B.2 Information Flow

In the following we demonstrate how an infrastructure service user interacts with the infrastructure
service and how the components of the CloNe architecture interact to fulfil the user’s service
requirements. For this purpose we base our use case on the combined SAIL scenario from [75].

B.2.1 Combined SAIL Scenario

The combined SAIL scenario is based on an Internet video distribution service provided by a
company called VideoLive. Alice is an end user who publishes videos through the service. She has
a number of followers, other end users who subscribe to her videos. Alice’s videos are proving very
popular and the number of followers she has is increasing.

VideoLive implements its service using NetInf nodes deployed in CloNe virtual infrastructure.
The CloNe virtual infrastructure service is provided by the same network operators that provide
Internet access to the end users. The service is programmed to automatically adjust the deployment
of NetInf nodes to accommodate user demand by interacting with the CloNe infrastructure service
directly. Communication among NetInf nodes is over a private, managed network (an FNS), but
access to end users is provided over the open Internet.

We examine the use case in which the service responds to increasing demand from users served
by an operator that does not currently host a NetInf node. The use case is depicted in Figure B.3.

NetInf
Router

NetInf
Router

(a)(a)

Cross domain
traffic

Cross domain
traffic

CreateCreate

AliceAlice

Alice’s OperatorAlice’s Operator Another OperatorAnother Operator

VideoVideo

AliceAlice

Alice’s OperatorAlice’s Operator Another OperatorAnother Operator

VideoVideo

Infrastructure Service

RequestRequest

NetInf
Router

NetInf
Router

NetInf
Router

NetInf
RouterAliceAlice

Alice’s OperatorAlice’s Operator Another OperatorAnother Operator

VideoVideo

Infrastructure Service

NetInf
Router

NetInf
Router

(b)(b) (c)(c)

“followers”“followers” “followers”“followers” “followers”“followers” “followers”“followers” “followers”“followers” “followers”“followers”

Private NetworkPrivate Network

CreateCreate

Figure B.3: Combined SAIL Scenario - Increasing Demand

Increasing Demand Use Case

Figure B.3(a) depicts the initial state of our use case. A NetInf node has already been deployed
by VideoLive in Alice’s Operator and is providing the video distribution service. Some of Alice’s
followers are located within Alice’s Operator, experience normal quality of service, and induce
normal workload on NetInf. Some other followers are located in Another Operator, experience
comparatively poor quality of service due to their access latency and bandwidth, and induce a high
level of cross domain traffic.

Figure B.3(b) depicts the response from the service to this initial situation. The NetInf node
issues a request to the infrastructure service implemented by Alice’s Operator to add another NetInf
node “close” to the followers in the remote domain. Alice’s Operator determines that this implies
the node should be deployed in Another Operator. It calculates the infrastructure that should be
deployed locally and the infrastructure that should be requested from Another Operator, such that
the new node is created and integrated into the NetInf private network.

SAIL Public 103

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

Figure B.3(c) depicts the final state in which NetInf has migrated the remote users over to their
local NetInf node, thus improving their quality of service and reducing the cross-domain traffic.

For this use case we should be clear that the infrastructure service user role is enacted by a
node of the NetInf service itself as it has been programmed to interact automatically with the
infrastructure service provider. The end user is a client of the NetInf video distribution service
and plays no part in the infrastructure service.

In this use case, the owner of the NetInf service and the owner of the virtual infrastructure it runs
in are both VideoLive. In fact, the infrastructure service is only interested in the infrastructure
service user and uses the ownerIdentity to authorise the infrastructure service user. In general,
what runs in the virtual infrastructure, and who owns it, is irrelevant to the infrastructure service.

The infrastructure service interface is used to delegate provision of virtual infrastructure and to
report on infrastructure. The operators implementing virtual infrastructure services interact with
each other through the infrastructure service interface, as described in Chapter 4. The DCP is used
to exchange information required to set-up cross provider connections and to perform distributed
coordination. We can provide more detail on these interactions in the following sections.

B.2.2 User-Provider Interaction - Infrastructure Service

In the initial state, Alice’s Operator already hosts a virtual infrastructure that has been deployed
by VideoLive. The infrastructure service user is able to inspect the deployed infrastructure and
request additions or deletions through operations of the infrastructure service interface. The VXDL
description for this initial infrastructure is shown in Figure B.4. The vRouter “NetInf Private” in
the description represents the private network that is implemented as a FNS. “Internet” is a
network that is assumed to exist a priori.

<!−−−−−− NetInf Router Template −−−−−−>
<vNode>

<region>Alice ’ s Operator<\region>
<storage>

<image> f i l e :/// owners/VideoLive / n e t i n f . img<\image>
</storage>

</vNode>

<vLink>
<id>NetInf Router to Internet </id>
<source>NetInf Router</source>
<des t ina t i on>Internet </de s t ina t i on>

</vLink>

<vLink>
<id>NetInf Router to NetInf Private <\id>

<source>NetInf Router</source>
<des t ina t i on>NetInf Private </de s t ina t i on>

<\vLink>
<!−−−−−− end o f NetInf Router template −−−−−−>

<vRouter>
<id>NetInf Private <\id>

<\vRouter>

Figure B.4: VXDL data model for NetInf initial deployment

To deploy the new NetInf node the user adds the specification of an additional compute resource,
this time constrained to the region: “Another Operator”. As a result Alice’s Operator decomposes
the infrastructure and delegates the new compute resource and an extension of the “NetInf Private”
FNS to Another Operator.

B.2.3 Inter-Provider Coordination - Distributed Control Plane

The DCP is a category of protocols and interfaces used for distributed coordination among infras-
tructure service providers. In Section 2.4.2 interactions related to reference resolution, notification

104 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

and distributed information sharing are described. In Chapter 5 the notion of a Distributed Knowl-
edge Plane (DKP) is introduced as a function of the DCP.

We can more clearly identify the DCP interactions between neighbouring providers that are used
in link set-up. These correspond to the first part of the “create” step in Figure B.3(b).

Reference Resolution

Reference resolution is described in Sections 3.1.2.4 and 4.2.3. A reference is used in a data model
as a pointer to data held elsewhere, typically by another provider. Reference resolution is the
mechanism used to obtain the concrete information and is a DCP function.

Link Negotiation

FNS link negotiation is a DCP function that establishes cross-domain links between FNS. This
interaction can be applied once the provider has concrete information about the far end of the link
and is used to establish details that can only be determined in agreement with the peer provider.
These interactions are protocol dependent, but we have implemented a representative example in
the CloNe prototype test bed. In this example a network operator implements FNS as MPLS-based
VPNs between data centres. The data centres implement FNS internally using different network
virtualisation technologies, including OpenFlow and Diverter [76]. Link negotiation is used between
the providers to establish VLANs between their edge nodes to bridge the networks.

SAIL Public 105

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

Bibliography

[1] Tapio Levä, Joao Gonçalves, Ricardo Jorge Ferreira, and Johan Myrberger. D-2.1 (D-A.1)
Description of project wide scenarios and use cases. Technical report, FP7-ICT-2009-5-257448-
SAIL/D.A.1 Deliverable, Feb 2011.

[2] Benoit Tremblay et. al. D-2.2 (D-A.2) Draft Architecture Guidelines and Principles. Technical
report, FP7-ICT-2009-5-257448-SAIL/D.A.2 Deliverable, July 2011.

[3] libvirt, the virtualization api. http://libvirt.org.

[4] Borja Sotomayor, Ruben S. Montero, Ignacio M. Llorente, and Ian Foster. Virtual infrastruc-
ture management in private and hybrid clouds. IEEE Internet Computing, 13:14–22, 2009.

[5] Opennebula. http://www.opennebula.org/.

[6] Guilherme Koslovski, Pascale Vicat-Blanc Primet, and Andrea Schwertner Charão. VXDL:
Virtual Resources and Interconnection Networks Description Language. In The Second In-
ternational Conference on Networks for Grid Applications (GridNets 2008), Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.
Springer Berlin Heidelberg, Oct. 2008.

[7] H. Medhioub, I. Houidi, W. Louati, and D. Zeghlache. Design, implementation and evaluation
of virtual resource description and clustering framework. In Advanced Information Networking
and Applications (AINA), 2011 IEEE International Conference on, pages 83 –89, march 2011.

[8] Luis Rodero-Merino, Luis M. Vaquero, Victor Gil, Fermı́n Galán, Javier Fontán, Rubén S.
Montero, and Ignacio M. Llorente. From infrastructure delivery to service management in
clouds. Future Gener. Comput. Syst., 26:1226–1240, October 2010.

[9] J. Gottlieb, A. Greenberg, J. Rexford, and J. Wang. Automated provisioning of bgp customers.
Network, IEEE, 17(6):44 – 55, nov.-dec. 2003.

[10] Xu Chen, Z. Morley Mao, and Jacobus Van der Merwe. Pacman: a platform for automated
and controlled network operations and configuration management. In Proceedings of the 5th
international conference on Emerging networking experiments and technologies, CoNEXT ’09,
pages 277–288, New York, NY, USA, 2009. ACM.

[11] William Enck, Thomas Moyer, Patrick McDaniel, Subhabrata Sen, Panagiotis Sebos, Sylke
Spoerel, Albert Greenberg, Yu-Wei Eric Sung, Sanjay Rao, and William Aiello. Configuration
management at massive scale: system design and experience. IEEE J.Sel. A. Commun.,
27:323–335, April 2009.

[12] Don Caldwell, Anna Gilbert, Joel Gottlieb, Albert Greenberg, Gisli Hjalmtysson, and Jennifer
Rexford. The cutting edge of ip router configuration. SIGCOMM Comput. Commun. Rev.,
34:21–26, January 2004.

[13] Nick Feamster and Hari Balakrishnan. Detecting bgp configuration faults with static analysis.
In Proceedings of the 2nd conference on Symposium on Networked Systems Design & Imple-
mentation - Volume 2, NSDI’05, pages 43–56, Berkeley, CA, USA, 2005. USENIX Association.

SAIL Public 107

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

[14] Yi Wang, Eric Keller, Brian Biskeborn, Jacobus van der Merwe, and Jennifer Rexford. Virtual
routers on the move: live router migration as a network-management primitive. SIGCOMM
Comput. Commun. Rev., 38:231–242, August 2008.

[15] N.M. Mosharaf Kabir Chowdhury and Raouf Boutaba. A survey of network virtualization.
Comput. Netw., 54:862–876, April 2010.

[16] Eric Keller and Jennifer Rexford. The ”platform as a service” model for networking. In
Proceedings of the 2010 internet network management conference on Research on enterprise
networking, INM/WREN’10, pages 4–4, Berkeley, CA, USA, 2010. USENIX Association.

[17] Mart́ın Casado, Teemu Koponen, Rajiv Ramanathan, and Scott Shenker. Virtualizing the
network forwarding plane. In Proceedings of the Workshop on Programmable Routers for
Extensible Services of Tomorrow, PRESTO ’10, pages 8:1–8:6, New York, NY, USA, 2010.
ACM.

[18] Openstack cloud software. http://www.openstack.org/.

[19] Ralf Nyrn, Andy Edmonds, Alexander Papaspyrou, and Thijs Metsch. Open Cloud Computing
Interface – Core. GFD-P-R.183, April 2011.

[20] Thijs Metsch and Andy Edmonds. Open Cloud Computing Interface – Infrastructure. GFD-
P-R.184, April 2011.

[21] A.G. Prieto, D. Gillblad, R. Steinert, and A. Miron. Toward decentralized probabilistic man-
agement. Communications Magazine, IEEE, 49(7):80 –86, July 2011.

[22] Guilherme Koslovski, Sebastien Soudan, Paulo Gonçalves, and Pascale Vicat-Blanc. Locating
Virtual Infrastructures: Users and InP Perspectives. In 12th IEEE/IFIP International Sym-
posium on Integrated Network Management - Special Track on Management of Cloud Services
and Infrastructures (IM 2011 - STMCSI), Dublin, Ireland, May 2011. IEEE.

[23] Fabienne Anhalt, Guilherme Koslovski, and Pascale Vicat-Blanc Primet. Specifying and pro-
visioning Virtual Infrastructures with HIPerNET. ACM International Journal of Network
Management (IJNM) - special issue on Network Virtualization and its Management, 2010.

[24] Tram Truong Huu, Guilherme Koslovski, Fabienne Anhalt, Pascale Vicat-Blanc Primet, and
Johan Montagnat. Joint elastic cloud and virtual network framework for application perfor-
mance optimization and cost reduction. Journal of Grid Computing (JoGC), 2010.

[25] R. Steinert, S. Gestrelius, and D. Gillblad. A Distributed Spatio-Temporal Event Correlation
Protocol for Multi-Layer Virtual Networks. In GLOBECOM 2011 (to appear), 2011.

[26] R. Steinert and D. Gillblad. Towards Distributed and Adaptive Detection and Localisation
of Network Faults. In 2010 Sixth Advanced International Conference on Telecommunications,
pages 384–389. IEEE, 2010.

[27] R. Steinert and D. Gillblad. Long-Term Adaptation and Distributed Detection of Local Net-
work Changes. In IEEE Global Telecomm. Conf. GLOBECOM, pages 1–5, 2010.

[28] Rerngvit Yanggratoke, Fetahi Wuhib, and Rolf Stadler. Gossip-based resource allocation
for green computing in large clouds (long version). Technical Report TRITA-EE 2011:036,
KTH Royal Institute of Technology, https://eeweb01.ee.kth.se/upload/publications/

reports/2011/TRITA-EE_2011_036.pdf, April 2011.

108 Public SAIL

https://eeweb01.ee.kth.se/upload/publications/reports/2011/TRITA-EE_2011_036.pdf
https://eeweb01.ee.kth.se/upload/publications/reports/2011/TRITA-EE_2011_036.pdf

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

[29] F. Wuhib, R. Stadler, and M. Spreitzer. Gossip-based resource management for cloud envi-
ronments. In CNSM 2010, pages 1–8, October 2010.

[30] 4WARD Consortium. Virtualisation approach: Concept. Technical report, ICT-4WARD
project, Deliverable D3.1.1, Sep. 2009.

[31] M. Isard. Autopilot: automatic data center management. In SIGOPS Oper. Syst. Rev., vol.
41, no. 2, pages 60–67, 2007.

[32] A. Verma, P. Ahuja, and A. Neogi. pmapper: power and migration cost aware application
placement in virtualized systems. Middleware 2008, pages 243–264, 2008.

[33] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield.
Live migration of virtual machines. In Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation-Volume 2, pages 273–286. USENIX Association,
2005.

[34] M.R. Hines and K. Gopalan. Post-copy based live virtual machine migration using adap-
tive pre-paging and dynamic self-ballooning. In In Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environments, pages 51–60,
New York, NY, USA, 2009.

[35] J. Nogueira, M. Melo, J. Carapinha, and S. Sargento. A distributed approach for virtual
network discovery. In GLOBECOM Workshops (GC Wkshps), 2010 IEEE, pages 277–282,
2010.

[36] Lucian Luciu et. al. Deliverable D.C.1 - Architectural Concepts of Connectivity Services.
Technical report, FP7-ICT-2009-5-257448-SAIL/D.C.1 Deliverable, July 2011.

[37] Timothy Wood, Alexandre Gerber, K. K. Ramakrishnan, Prashant Shenoy, and Jacobus
Van der Merwe. The case for enterprise-ready virtual private clouds. In Proceedings of the
2009 conference on Hot topics in cloud computing, HotCloud’09, Berkeley, CA, USA, 2009.
USENIX Association.

[38] A. Farrel, J.P. Vasseur, and J. Ash. A path computation element (pce)-based architecture.
IETF RFC4655, August 2006.

[39] E. Oki, T. Takeda, JL. Le Roux, and A. Farrel. Framework for pce-based inter-layer mpls and
gmpls traffic engineering. IETF RFC5623, September 2009.

[40] N. Mosharaf K. Chowdhury and Raouf Boutaba. Network virtualization: State of the art and
research challenges. IEEE Communications Magazine, 47(7):20–26, July 2009.

[41] Norbert Egi, Adam Greenhalgh, Mark Handley, Mickael Hoerdt, Felipe Huici, Laurent Mathy,
and Panagiotis Papadimitriou. A platform for high performance and flexible virtual routers
on commodity hardware. SIGCOMM Comput. Commun. Rev., 40(1):127–128, 2010.

[42] M. Siraj Rathore, Markus Hidell, , and Peter Sjödin. Data plane optimization in open virtual
routers. In Proceedings of IFIP Networking 2011, Valencia, Spain, May 2011.

[43] Y. Zhu and M. Ammar. Algorithms for assigning substrate network resources to virtual
network components. In INFOCOM 2006. 25th IEEE International Conference on Computer
Communications. Proceedings, pages 1–12, 2006.

SAIL Public 109

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0 S A I L

[44] Jens Lischka and Holger Karl. A virtual network mapping algorithm based on subgraph
isomorphism detection. In VISA ’09: Proceedings of the 1st ACM workshop on Virtualized
infrastructure systems and architectures, pages 81–88, New York, NY, USA, 2009. ACM.

[45] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking virtual network embedding: Substrate
support for path splitting and migration. ACM SIGCOMM Computer Communication Review,
38(2):1729, 2008.

[46] N.M.M.K. Chowdhury, M.R. Rahman, and R. Boutaba. Virtual network embedding with
coordinated node and link mapping. In INFOCOM 2009, IEEE, pages 783–791, 2009.

[47] N. Farooq Butt, M. Chowdhury, and R. Boutaba. Topology-awareness and reoptimization
mechanism for virtual network embedding. NETWORKING 2010, pages 27–39, 2010.

[48] J. Nogueira, M. Melo, J. Carapinha, and S. Sargento. Virtual network mapping into heteroge-
neous substrate networks. In IEEE Symposium on Computers and Communications (ISCC)
2011, June 2011.

[49] I. Houidi, W. Louati, and D. Zeghlache. A distributed virtual network mapping algorithm. In
Communications, 2008. ICC ’08. IEEE International Conference on, pages 5634 –5640, 19-23
2008.

[50] Z.B. Houidi and M. Meulle. A new vpn routing approach for large scale networks. In Network
Protocols (ICNP), 2010 18th IEEE International Conference on, pages 124 –133, oct. 2010.

[51] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. Openflow: enabling innovation in campus networks. ACM SIGCOMM Com-
puter Communication Review, 38(2):69–74, 2008.

[52] Virtual private network consortium. http://www.vpnc.org/.

[53] Openflow switch specification - version 1.1.0. http://www.openflow.org/documents/openflow-
spec-v1.1.0.pdf, feb 2010.

[54] Open networking foundation. http://www.opennetworkingfoundation.org/.

[55] Virtual networks research group - irtf. http://http://irtf.org/vnrg/.

[56] Focus group on future network itu-t. http://www.itu.int/en/ITU-
T/focusgroups/fn/Pages/Default.aspx/.

[57] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in operating systems.
Commun. ACM, 19:461–471, August 1976.

[58] Serban I. Gavrila and John F. Barkley. Formal specification for role based access control
user/role and role/role relationship management. In Proceedings of the third ACM workshop
on Role-based access control, RBAC ’98, pages 81–90, New York, NY, USA, 1998. ACM.

[59] ETICS: Economics and Technologies for Inter-Carrier Services. https://www.ict-
etics.eu/overview.html.

[60] GEYSERS: Generalised Architecture for Dynamic Infrastructure Services.
http://www.geysers.eu/index.php/theproject/goals.

110 Public SAIL

S A I L

Document: FP7-ICT-2009-5-257448-SAIL/D-D.1
Date: January 31, 2012 Security: Public
Status: Final Version: 2.0

[61] Inter-Domain Controller (IDC) Protocol Specification, Open Grid Forum Network Service
Interface (NSI) Working Group. http://www.controlplane.net/idcp-v1.1-ogf/draft-gwdi-nsi-
idcp-2010-sep-01.pdf, September 2010.

[62] CloudAudit, June 2011. http://cloudaudit.org/.

[63] A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte, A. Miège,
C. Saurel, and G. Trouessin. Organization Based Access Control. In 4th IEEE International
Workshop on Policies for Distributed Systems and Networks (Policy’03), June 2003.

[64] CSA CCM Leadership Team. Cloud security alliance cloud controls matrix v1.1. Technical
report, Cloud Security Alliance, 2010.

[65] Benny Rochwerger, David Breitgand, Amir Epstein, David Hadas, Irit Loy, Kenneth Nagin,
Johan Tordsson, Carmelo Ragusa, Massimo Villari, Stuart Clayman, Eliezer Levy, Alessandro
Maraschini, Philippe Massonet, Henar Munoz, and Giovanni Toffetti. Reservoir - when one
cloud is not enough. Computer, 44:44–51, 2011.

[66] MPLS-TP Control Plane Framework, IETF Internal Draft. http://tools.ietf.org/html/draft-
ietf-ccamp-mpls-tp-cp-framework-05, January 2011.

[67] 4WARD. http://www.4ward-project.eu/index.php.

[68] Frédéric Cuppens and Alexandre Miège. Administration Model for Or-BAC. In Computer
Systems Science and Engineering (CSSE’04), volume 19, May 2004.

[69] Fredéric Cuppens, Nora Cuppens-Boulahia, and Céline Coma. MotOrBAC : un outil
d’administration et de simulation de politiques de sécurité. In Security in Network Archi-
tectures (SAR) and Security of Information Systems (SSI), First Joint Conference, June 6-9
2006.

[70] B. Bjurling, R. Steinert, and D. Gillblad. Translation of probabilistic qos in hierarchical and
decentralized settings. In The 13th APNOMS 2011 (to appear), 2011.

[71] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Rev.
Mod. Phys., 74(1):47–97, Jan 2002.

[72] Alain Barrat, Marc Barthelemy, and Alessandro Vespignani. Dynamical processes on complex
networks. Cambridge University Press, 2008.

[73] Linda J. Allen. An Introduction to Stochastic Processes with Biology Applications. Prentice
Hall, April 2003.

[74] E. Seneta. Markov and the birth of chain dependence theory. International Statistical Review,
64(3):255–263, 1996.

[75] SAIL: Annex I - Description of Work. Technical report, FP7-ICT-2009-5-257448-SAIL/Annex
I - Description of Work, July 2010.

[76] Aled Edwards, Anna Fischer, and Antonio Lain. Diverter: a new approach to networking
within virtualized infrastructures. In Proceedings of the 1st ACM workshop on Research on
enterprise networking, WREN ’09, pages 103–110, New York, NY, USA, 2009. ACM.

SAIL Public 111

	cover_page
	D-D.1v2.0 - final public.pdf
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Architectural Constraints
	Business Justification
	Document Outline

	High Level Architecture
	Three Layer Model
	Resources
	Single-Domain Infrastructure
	Cross-Domain Infrastructure

	Flash Network Slice
	Roles
	Interfaces
	Resource Administration
	Distributed Control Plane
	Infrastructure Service

	Service Request Management

	Data Model
	Data Model Principles
	Delegation
	Model Transformation

	Basic Model Concept
	A Possible Embodiment of the Data Model
	Unique Universal Naming in a Distributed Cloud

	Network Model
	Single Router (Node) Abstraction
	Goal Translation and Data Model Refinement Synchronisation

	Control Interactions
	Principles of Infrastructure Control
	Control Interactions
	Delegation Based Control
	Distributed Coordination
	Reference Resolution

	Interface Design
	Delegation Interaction
	Distributed Coordination

	Interface Standardisation
	Conclusion and further steps

	Cloud Network Management
	Management Concepts
	Management Architecture
	Goal Translation Function
	Fault Management Function
	Resource Management Function
	Management Function Interfaces
	Management Processes
	Information Exchange and Workflows

	Initial Approaches
	Goal Translation and Monitoring of High-Level Objectives
	High-Level Specification
	Fault Detection in Virtualised Systems
	Scalable Resource Allocation under Management Objectives
	Distributed Oblivious Load Balancing in Cloud Computing
	Live Migration of Services in the Cloud
	Predicting and Modeling Virtual Infrastructures
	Resource Discovery, Embedding and Reconfiguration in CloNe

	Conclusion and Further Steps for Management

	Network View
	Mapping to Virtual Private Networks
	Introduction
	VPNs providing access to Clouds
	Challenges to use VPNs in a Cloud environment
	A new VPN abstraction

	Mapping to Flow-Based Networks
	OpenFlow Background
	Intermediate Virtualisation Controller
	Dedicated Controllers

	Mapping to Virtual Networks
	Background
	Implementation

	Network View Summary

	Security Architecture
	Security Analysis and Requirements
	Security Goals
	Attacker Model
	Resulting Security Challenges

	Security Methodology
	Obtaining Security Goals
	Security Goal Translation
	Auditing Mechanism

	Security Parameters
	Roles and Responsibilities
	Administrator
	Infrastructure Service User

	Relation to Technical Architecture
	Security Goal Translation Example
	Access Control Policy
	Conclusion and Further Steps for Security

	Relation to Use Cases
	Video on Demand Use Case
	Enterprise Use Case

	Related Work
	Conclusions and Future Work
	Future Work

	Management Algorithm Results
	Goal Translation and Monitoring of High-Level Objectives
	Fault Detection in Virtualised Systems
	Predicting and Modelling Virtual Infrastructures: initial results
	Mapping of Virtual Networks with Cloud Resources

	Addendum: Clarifications Since Version 1.0
	Flash Network Slice
	Conceptual Perspective
	Specification Perspective

	Information Flow
	Combined SAIL Scenario
	User-Provider Interaction - Infrastructure Service
	Inter-Provider Coordination - Distributed Control Plane

	Bibliography

