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Abstract

A neural network method of handprint characrer recoguition is presented whicl consists
of an input network which is trained to make hinary decisions on character classes ie.. to
distinguish a 17 from a ~0"." and an output network which combines the signals from the
input networks into a digit recognition decision. For a ten digit OCR problem this results
in 45 binary decision machines (BDMs) in the input network. The output of these machines
are connected to an output structure which is trained separately to provide the character
recoguition decision. The neural network classifiers used in these input and output networks
were multi-layer perceptrons (MLP). radial basis function networks (RBF). aud probabilistic
neural networks (PNN). A simple majority vote rule was also tested in place of the output
network. The svstem was tested on OCR data consisings of 7.480 digit images for training
and 23.140 digit images for festing. K-L tranforms were used for eaclh BDM to transform
the input images into feature vectors, Similar accuracy was obtained from soveral different
combinations of neural network input and output structures. Minimum classification error
obtained was 2.5%. The best reject accuracy performance was obtained by combining a PNN
input structure with a RBF output structure. This combined network had an error rate of
0.7% with 10% rejection.

keywords: OCR. neural networks. pattern recoguition. Ik-L transform. dynamic systyeins.

1 Introduction

In a previous study. the accuracies of statistical and neural network OCR wethods were
compared {1]. In this study. methods which used clustering to generate an initial state for
learning or statistical analysis such as RBF or Qudratic Minimumn Distance {QMD) had
consistently hetter performance than MLP based methods. Methods that were local and
used no learning. PNN and IKNN. had the best performance. This paper presents a clustering



method hased on the construction of hinary decision machines. BDALs. which allows MLP
based methods to become as accurate as the best method preseuted in the previous study.
Clustering has been presented as an essential component in many biologically based methods.
ART [2. 3. 4] clusters data using a leader clustering method [3] prior to learning. DYSTAL [6]
clusters data into patches during the learning process. cluster formation is a critical element
of the learning discussed jn [7. 8]. and FAUST [9] uses clustering of data to selectively control
the learning process. In MLP based character recoguition. the weight sharing methods which
have been used [10. 11. 12, 13] provide a niethod that effectively clusters the input feature
space. In neighbor based methods. the local intrinisic dimensionality [14] has been recognized
as a critical factor in the pattern recoguition capabilities of these metlods.

In this paper we present an alternate method for clustering the feature data for QCR
whicl is more readily adapted to vector hased feature sets than weight sharing is and whick
can give high accuracy classification with ouly a simple winner take all voting method as
a1 outpout process. When a more complex combination of input and output networks is
used the error reject performance of BDAL based OCR is cowparable to the best systems
presented at the First Census QOCR Systems Conference [15] and the improved PNXN system
in the NIST form based OCR system [16]. A simple analysis of the speed of the various
methods shows that the rmu time in a serial computers for PNN BDA recognition increases
by a factor of nine since each prototype is used nine times and that the cost of MLP and
RBF methods is typically increased by a facror of about 22 since Lalf as many features are
required for 45 machines. In a paralle] system with 45 processors all operations could he
carried out in parallel in all methods so the smaller size of the BDM networks would result
in a 2-5 times speed up in recoguition.

In [1] and [15] many different OCR systeins were presented which achieved 5% error rates
and several were presented which has 2%-3% error rates. By reducing the problem to a series
of BDMs we show that several different neural network methods can achieve 3% error rates.
These systems also can exhibit error reject beliavior comparable to the best presented in
[15]. Analysis of the digit by digit performance with respect to feature set size and network
type will show that much of this improvement is associated with local rank reduetion in the
feature set.

The next section of the paper the network structures of the input and output networks are
described as are the specific classifiers. In section 3 the training and testing data is described.
In section 4 the classification accuracy. digit recoguition accuracy. and reject accuracy of the
systewn are described. In section 5 the results of the experiments are discussed and conclusions
are drawi.

2 Network Structures

2.1 K-L Network Input

The Karhunen Loéve expaunsion of digit images is used as reduced dimensionality optimally
compact representation for the BDALs. The use of suell features in OCR has heen deseribed
in. for example [17] [18] [1). The handwritten binary characters are size and orienation
normalized and represented as the £1 elements of a vector by sowe consistent ordering of
the square image. The mean vector of P such images is subtracted from each and an ensemble
matrix. U is formed with these P vectors as its columuns, The symmetric covariance matrix.
R. gives the mean of of all the interpixel correlations.



R = jljUUT (1)

The covariance matrix R las eigenvectors as the columns of ¥ defined as:

RY =¥A (2)

where the only non zero elements of A are the eigenvalues ou its diagonal. The eigenvectors
are the directions of maximumn variance in the image space and form a complete ortlionormal
basis. They are the principal axes of a hyperellipse in that space. The eigenvalues define
the statistical “length™ of these axes: thus the first column of ¥ corresponding to the largest
eigenvalue is the major axis. The cigeusolution of the covariance matrix provides an ordered
variance expausion of the image ensemble. The latter eigenvectors. describing very little
variance in the images. are discarded thus affording reduced dimensionality.

The Karhunen Loeve transforms. V. are just the projection of the zero mean images onto
the principal axes:

V=u0'U (3)

2.2 Input and Output Networks

The Network is divided into two sections, the Input Network and the Qutput Network. The
Input Network consists of 15 BDMs using two digit pairs for each classifier. Each BDM is
trained on two digits which are distinct for that BDM. Each class of digits is used for the
training of 9 machines in combination with the other nine digits with no combination heing
repeated. The training and testing of the Input Network was done wsing 8 to 32 K-L features
in increments of 4 features. The decision machines are made using the AILP. the type 1 RBF.
type 2 RBF. and the PNN. We use two different kinds on MLPs. MLP1 uses a distinet target
value for each digit class. The topology for the MLDP?2 classifier has heen modified to eliminate
the second target value in the output. leaving only one target value. The modification causes
the output of the MLP2 BDM to have only one resulting signal. This is used to select one
of the training digit pairs. The RBF1 and RBF2 classifiers use 2 cluster for cach class in
the Input Network. The results of the Iuput Network are normalized for MLP and RBF
classifiers. The PNXN classifier results are the logarithms of absolute signals.

The Output Network uses the results from the Input Network and couverts the results
using a voting rule or one of several different types of networks. The network types used in
the Qutput Network are PNN. MLP. RBF1 and RBF2. The 24 feature PNN BDAMs Qutput
Network for RBF1 were tested over 1 to 6 starting RBF values, and the rest of the Qutput
Networks RBF1s and all the RBF2s were tested over 3 to G starting clusters.
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Figure 1: Diagram of the Relation of Input Network and Ourput Network



Figure 1 shows the basic form of the BDM Network. The dashed line is the division
between the Input Network and the Outpnt Network. The output signals of the Input
Network are combined in a set order and become the input signals to the Qutput Network.
In the Output Network, the hidden layer is used in the MLP and the two RBF types. but
not in the PNN network.

2.3 Classifiers
Four different types of classifiers, MILP. RBF1. RBF2. and PNX. were used in the experiment.

2.3.1 Multi-Layer Perceptron

This classifier is also known as a feedforward neural net. We have used an MLP with three
layers (counting the inputs as a layer). It will be convenient to define the following notation:

N = qumber of nodes in it layer (i = 0.1.2). N =, ¥ = [
fley = 1/(14 ¢™") = sigmoid function

bf“ = Dias of i'M node of &M layer (k = 1.2)

u*ff) = weight connecting it? node of A1 laver to j™ node of

(k=1 layer (A =1,2:1< i< N1 < j < Nik=1))

The discriminant functions are then of the form

At AN
Dix)=f bf‘)'] + Z U‘,(-j)f b.(,” + Z ”:(r';r)‘r"
J=1 k=1

For the training of the weights of this network. a reasonable procedure is to use an
optimization algoritlun to minimize the mean-squared-error over the training set hetween
the discriminant values actnally produced and “target discriminant values™ consisting of the
appropriate strings of 1's and 0's as defined by the actual classes of the training examples.
For example. if a training feature vector is of class 2. theu its target vector of discriminant
values is set to (0. 1). It is more feasible to minimize this kind of an “error function™ than to
attempt to directly minimize the number of incorrectly classified training examples. since the
latter number will take on ouly relatively few values aund is a discontinuous “step function™.
The error function is modified by the addition of a scalar “regularization™ term [19]. Tlis
equals a tunable constant. A. multiplied by the mean square weight. W This term preveuts
large weights which are associated with overtraining i.e. the overfitting of the weights to the
training data. This has been shown to increase the generalization ability of the network [20].

Networks of the MLP type are the most commonly used “neural nets” in use today.
and they are usually trained using a “backpropagation™ algorithm [21]. A “scaled conjugate
gradient™ training mothod [22. 23, 24, 20] has been used in our research instead of the
ubiquitous backpropagation method. training speed gaius of an order of magnitude being
fypical.

2.3.2 Radial Basis Functions

Neural nets of the RBF type get their name from the fact that they are built from radi-
ally syvmmetric Ganssian fuietions of the inputs. Actunally. the RBF nets discussed Lere use



Gaussian functions that are more geueral than radially symetric functions: their constant
potential surfaces are ellipsoids whose axes arve parallel to the coordinate axes, whereas radi-
ally symmetric Gaussian functions have spherical constant potential surfaces. However. the
name RBF has become customary for any neural net that uses Gaussian functions in its first
laver.

We have experimented with RBF networks of two types. which will he denoted RBF1
and RBF2. The following notation will be convenient:

N0 = pumber of nodes in ith layer (i = 0.1.2)

W = center vector of J hidden node {1 < j < X)) (¢ e Ry = (vg") ..... (',(;”)T

ol = width vector of j'" hidden node (1 < j < XY (glWe R") = ((ri"') ..... alyt

bg“ = Dbias to the j! node of the k" layer
flr)y = 1/(1+ ™) = sigmoid function

wy, = weight connecting " purput node to j'" hidden node (1 <7< NE2h1 < j < XU

Eacl hidden node computes a radial basis function. For RBF1. these functions are unhi-
ased exponentials
0, (x) = exp (-—r""'(x.cm.am)) ;

and for RBF2, thpy are of the biased Higmoidal form
oj(x) = f (_,)31} B rz(x_c(j)_gul)) ,

For cither type of RBF. the /M discrindnant function is the followine fanction of the radial
Y1 123

basis functions:
A

Dix)=f bfz) + Z iy, (x)

=1

Tle centers ¢l widths o), Lidden-node bias weights b;l) (RBE2 ouly). output-node

hias weiglits F)Ez). and output-node weights w;, may be collectively thought of as the trainable
“weights™ of the RBF network. They are trained initially using the cluster wmeans (from a ~X-
means” algorithm applied to the prototype set) as the center vectors ¢l), The width vectors
o), are set to a single tunable positive value. More soplisticated methods of determining
RBF parameters may be fonud in [25] [26]. The output layer weights are set such that each
output node is connected with a positive weight to hidden nodes of its class (that is. hidden
nodes whose initial center vectors are means of clusters from its elass). aud counected with a
negative weight to hidden nodes of other classes. Trainiug proceeds by optimization identical
to that described for the MLP.

2.3.3 Probabilistic Neural Net

This classifier is proposed in a recent paper by Specht [27]. Each training example becomes
the center of a kernel function which takes its maximum at the example and recedes grad-
nally as one moves away from the example in feature space. An unknown x is classified by
computing. for each class i. the sum of the values of the class-7 kernels at x. multiplving



these munbers by compensatory factors involving the estimated a priori probabilities. and
picking the class whose resulting discriminant value is highest. Many forins are possible for
the kernel functions: we have obtained our best results using radially symmetric Gaussian
kernels. The resulting discriminant functions are of the form

.Y
I LUR 1 ()
Dx)= A—L_EQP (—ﬁd (x.xJ ) .

where o i a scalar “smoothing parameter” that may be optimized by trial and error.

3 Test and Training Data

The classifiers described in this paper were trained and tested using feature vectors derived
from the digit images of NIST Special Database 3 [28]. This database consists of binary 128
by 128 pixel raster images segmented from the sample forms of 2100 writers publishied on CD
as [29]. Other results on segmentation and recognition of this database have been reported
[30]. The relative difficulties of the NIST OCR databases have been discussed in [31]. For
this study samples are drawn randomly from the first 250 writers to vield a training set of
7480 digits with a priori class probabilities all equal to 0.1. Eveun for digits, depending on
the application. certain classes may be more prevalent: in baunking tasks. for example. =07
is more common. The test set is similarly coustructed from the second 250 writers vielding
23140 samples. The unages are size normalized by pixel deletion. stroke width bounded by
binary erosion and dilation. and consistent orientation is effected by shearing rows by an
amount determined by the leftmost and rightmost pixels in the first and last rows defining
a vertical line. The resulting image is 32 pixels high aud its width is less than or equal to
its height. Covariauce matrices are produced for cach of the rraining sets and the first 32
cigenvectors are used. The Karhunen-Loeve (IK-L) transform is performed to extract the
principle features for 8 to 32 features for the training sets in four feature increments [32].
The training and testing data are identical to the data used in [1].

4 Results

4.1 K-L Feature Extraction

One of the advantages of applying the K-L transform to the BDM data set in that insight
into problew difficilty can be obtained directly from the KNN classification accuracy for
cach BDM as shown in table 1 and by ploting the first two K-L features of some typical
problems. The problems chosen were separation of “07 aud “17. separation of »¢” and ~8"
and separation of =3 and 8", The ~0-1" problem is a visually simple canonical casy prphleimn
[33]. the =6-8" problems is the one which involves the easy ("6") and hard (*87) digits on
the next subsections. and the *3-8" problem is one that can be difficult on the test data set
even for humans.

Examination of table 1 shows that when optimal feature direction is uses. one K-L feature.
even the hard problem can be solved with 10.6% error and the erros of the two casy problems
are les than 5%. This demonstrates that very simple low dimensional methods can produce
results comparable to those found on the global problem in [1. 15] by complex networks.

=T



There is also substantial difference in error rates for the easy aud hard problems for any
number of features. The easy problems. »0-1" and “6-87. start with 4% error and fall to
0.4% error. The hard “3-8” problem starts at 10.6% erroe and never falls helow 1.44% error.
All three ploblem have reached their optimim performance using 32 features well helow most
of the optimum feature levels in [1].

Examination of figure 2 shows that most of the “0” and *17 points are clearly separated
but their are some near neighbor points of the opposite class. The data in table 1 shows that
these points are usually separated. if they cau be separated. using 5 features. Examination
of figure 3 shows that most of the "6” aud “8" poiuts are clearly separated and their are
few near neighbor points of the opposite class. The data in table 1 shows that these points
are wel separated wsing 2 features. The simplification of this problem using two features
shows why it is an easy problem at low dimension but table 1 also shows that at 5 features
it is intermediate in difficulty between *0-1" and =3-8". Examination of figure 3 shows that
most of the *3" and “8” points are not separated: their are many ncar neighbor points of
the opposite class, The data in table 1 shows that these points are never separated as well
as thiey are for easier probles.

These results show that the K-L transform reduces the difficult OCR problem to a rela-
tively simple BDAI problem so long as the BDMs are only asked to classify characters of the
optimal class. We will show that the global problems is still difficult when each machine is
required to classifly digits from other classes.

| Feature ] “0-17 I “G-8" T ~3-8” |
429 | 4.58 ] 10.60 |
2 401 | 135 | 9.09
3 142 | 1.31 | 9.05
4 0.97 | 1.21 | 5.89

—

5 047 | 1.03 | 5.66 |
G 043 | 0.99 | 477
T 047 [ 054 | 3.73
8 0.34 | 0.3¢ | 3.43

10 043 [ 047 | 2.57
12 0.47 | 043 | 2.09
16 0.43 | 0.43 | 1.90
24 041 | 0.36 | 1.46
32 0.38 | 0.30 | 1.44
40 0.36 | 0.41 | 1.49
48 0.38 | 0.38 | 1.44 |

Table 1: Error in separating the test digits for several BDM machine using KNN as the feature
set size was increased.

4.2 Input Network Training

The MLP1. MLP2. PNN. RBF1 and RBF2 classifiers were used to train 45 BDAL Input
Networks., The trajuing of the each of the networkd has been done on 8. 12, 16. 20. 28.
and 32 IK-L features. The output signals of each network becomes the input signals for the



Output Network. The individual training set for each digit is run on all 45 BDMs in order
to create the training feature set for the Quitput Network. The output signals are combined
in a set order to produce the feature set for tlhe input to the Output Network.

4.3 Output Network Training

The voting rnle for the MLPI Binary Decision Machines cousists of a winner takes all ap-
proach. If the resulting signal is greater than 0.5 then the first class of the BDM receives
the vote, If the resulting signal is less than 0.5 then the second class of the BDA receives
the vote, If the resulting signal is equal to 0.5 the the BDAL is rejected. The votes for each
pattern are tallied and the class with the greatest nuwber of votes is the winner. In the case
of a tice, the pattern is rejected. With this rule. no class is able to receive more than 9 votes.
The maximum possible of 9 votes is the result of each class being one of the base set for only
9 of tlie BDMs. This condition holds true for all the voting rules.

The voting rule for the MLP2. PNN, RBF1 and RBF?2 classifiers cousists of the greatest
signal for the BDM winning the machine’s vote for its class. The vote is tallied for each
pattern and tlhe class with the greatest number of votes wins. Any pattern which has a tie
vote is rejected.

The JMLP1. MLP2. PNN. RBF1 and RBF2 Qutput Networks were trained using the
Input Network output siguals frow the training set as inputs.

4.4 Full Input - Voting Output

The Table 2. shows the results of each of the classifiers over 8. 12, 16. 20. 24. 28 and 32
features, It sliows the percent error and the percent rejected due to ties. The table shows that
the PNN BDMs lave both the lowest percent error and percent reject when the classifving
is done with the voting rules. The table also shows a shight decrease in the percent error for
the PNN BDAIs as the munber of features increase with the lowest error at 32 features.

1 ~Number of features
| Classifier | 8 | 12 ] 16 | 2@:@__:@
MLP1-ERR [3.9[3.2]3.0[2.9]3.0]28]3.2]
MLPI-REJ [1.6 [1.1]3.0{09]|1.0[0.9 | 1.0 !
MLP2-ERR [3.9[3.2]32[26[29]29][29]
MLP2-REJ [1.6[1.0[0.9]0.9]09 09 0.9]
PNXN-ERR [3.7[30[28[27[27[26] 26|
PXN-REJ [0.4]03[02]01[01]01]01]
RBF1-ERR | G.8 | 6.3 [6.1]35.9]58]58]06.4]
RBFI-REJ | 1.5 1.5 [1.5]1.6 1.6 1.6 1.5
RBF2-ERR [ 6.4 [52[50][51[4.7]4.6] 34|
RBF2-REJ | 1.4 1.5 [15]1.6|1.7 |16 16|
Table 2:

Voting Rule Error and Reject Percentages for Classifiers and Nwmber
of Features. Reject Percentages based ou the number of tied votes.



4.5 Full Input - Full Output

Table 3 shows the percent error for each class of digits for the PNXN based BDMs. The
combined output signals of the Input Network are presented to the PNXN. MLP, RBF1. aund
RBF2 networks for 8. 12 16. 20. 24. 28 and 32 features used in the Input Network. The
MLT network used 48 lhidden nodes. As seen in Table 3. the 8 feature input network was
unable to train using the RBF2. The RBF1 and RBF2 reported in Table 3 are from the
cluster pattern which had the least percent error. Generally in Table 3. class =8 lLas the
highest error rate. and class 6" has the lowest error rate. The bold face entrys in the table
indicate the combination of features and networks in the output network which had the
lowest error for that digit. For the0" class this is an output PNN netwotk using 32 features
for the tmpur network. For the "8" class this is a PNXN network using 16 features for the
input network., The wide range of feature sizes and optimal output networks shows that the
optimal decision critera for classification and the optimal input feature dimension vary with
the type of character being classified for PNN BDAls.

Table 4 shows the percent error for each class of digits for the MLP?2 hased BDMs. As
with the PNN BDAls. MLP2 BDAs generally achieve the best error rate for class ~67 and
the worst error rate for class 8", As in the previous table the bold face entrys in the table
indicate the combination of features and networks in the output network which lLad the
lowest error for that digit. For the*0" class this is an output RBF1 netwotk using 20 features
for the input network. For the =87 class this is a RBF2 network using 20 features for the
imput network. Unlike the PNX case the 20 feature case contains most of the optimal output
networks and RBF output networks have the highest digit by digit accuracy.

Table 5 shows the percent error for eacl class of digits for the MLP2 based BDMs. As
with the PNN BDMs. MLP2 BDMs generally achieve the best error rate for class “6” and
the worst error rate for class “87, When using the MLP2 Input Networks and a PNN Qutput
Network the error rate for class =87 appears to at least double. As in the previous table the
bold face entrys in the table indicate the combination of features and networks in the output
network which had the lowest error for that digit. For the~0" class this is an output MLP
netwotk using 20 features for the input network. For the ~8" class this is a MLP network
using 28 features for the input network. Like the MLP1 case the 20 feature case contains
moxst of the optimal outpur networks hut MLP output networks have the highest digit by
digit accuracy.

10
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Figure 2: The separation of “0" and “1" testing data using the first two K-L features from 0"
and 17 training data. 2314 examples of each digit are shown.
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Figure 3: The separation of "67 and *87 testing data using the first two K-L features from *G”
and “8" training data. 2314 examples of each digit are shown.

12



20

15

-10 }

-2Uu

-1k

Figure 4: The separation of =37 and "8 testing data nsing the first two K-L features from 3

and 8" training data. 2314 examples of each digit are shown.
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PNX BINARY DECISION MACHINES OUTPUT NETWORK

DIGIT __(].. | "1-. T- __2.. ! __3.. ‘ __4.- ‘_'.).. l "6“ 1 _.,‘_.- [ __8-- | __9..
8 FEATURES IN INPUT NETWORK
MLP | 7.1 ] £1 | 74 | 145233 55 80 7.7 [ 80 [13.0
PNN 1.5 14 | 361 46 28 | 4.0 1.0 2.8 7.1 4.6
RBFL | 09 | 1.7 ] 75| 42| 24| 241 21 22| 92 | 23
RBF2 | 1T
12 FEATURES IN INPUT NETWORKL
MLP 43 ] 13 41 ] 2.2 ] 28] 327 2071 21 g ] =
PNN 1.6 | 14| 30 48] 28] 69 ] 121 25 | 6.91 3.9
RBF1 | 1.5 | 20 38| 30 [ 34| 3571 071 221027 3.4
RBF?2 1.2 1.8 4.1 25 @ 3.8 1.4 0.9 22 | 11.7 | 3.5
16 FEATURES IN INPUT NETWORK
MLP | 20 ] 1.0 40 ] 227 42 ] 291 25 ] 28 [ 94 [ 4.4
PNN | 15[ 15 ] 34| 43| 33 [ 37 ] 1.1 ] 48| 7.0 | 393
RBFL | 15[ 1.6 | 42 | 31| 33| 387] 07 [ 26| 85 | 38
RBF2 | 1.8 | 21| 40 ] 27 [ 28] 44 05] 22| 69 | 41
"~ 20 FEATURES IN INPUT NETWORK
MLP 25 13 51 5.0 40| 2971 26 1.0 95 | 11.0
PNN 14| 13| 40| 42 [ 321 38 11| 24| 7.4 [ 38
RBF1 | 14 [ 31| 50 | 25| 31| 39| 05| 1.6 | 89 | 43
RBF2 | 15| 18| 42| 28| 291 391 05 ] 22| 104 | 43
24 FEATURES IN INPUT XETWORK
MLP | 28 ] 22 ] 78 1 32 [ 28 36 0.7 1.6 | 97 | 54
PNN | 1.2 1.4 | 48| 42| 33| 39| 12 ] 24| 82 | 356
RBF1 1.3 25 | 40 [ 29 2.3 4.0 0.6 1.5 7.7 5.2
RBF2 [ 13 | 18] 36| 28| 33| 33| 05 ] 20 ] 10.7 | 41
28 FEATURES IN INPUT NETWORK
MLP | 1.9] 12 ] 52 [ 60 ] 27 ] 2.2 18] 22 ] 87 | 7.1
PNN | 11| 16| 64 | 49 | 35| 43| 14 [ 23] 90 | 3.9
RBF1 | 17| 16| 24| 35| 1.8 | 35| 05| 1.7 | 83 | 6.3
RBF2 | 13| 21| 29 [ 2871 290 | 35| 07 [ 21| 128 | 44
32 FEATURES IN INPUT NETWORE
MLP 28 | 1.2 ] 43 73] 25 2.2 1.0 | 18 [ 115 7.5
PNN | 0.1 | 16| 75 | 52| 38 | 54| 1.7 25 [ 101 | 41
RBF1 | 15 | 1.6 | 31 ] 44 | 33| 28| 06 20 | 84 | 4.1
RBF2 [ 1.3 [ 22| 30| 25 207 31 ] 06 ] 15 | 125 5.0
Table 3:

Tle error rates for each digit using the PNN BDAMIs,
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MLP1 BINARY DECISION MACHINES OUTPUT NETWORKS
DIGIT | "0" [ 1" [ 2 [ =" [+ [ 5" [ "6 | "7 | & | O
8§ FEATURES IN INPUT NETWORK
MLP | 40| 28 [ 65 [ 49 27 51 7] 1.9 ] 27 [ 93 | 5.1
PNN | 86 | 3.6 | 26.3 | 95 | 2&1] 195 | 12 | 7.6 | 341 | 7.1
RBF1 | 21 [ 26! 68 | 54| 35| 521 22| 30 [ 92| 5.1
RBF2 | 21 | 28 | 6.6 | 5.4 | 34 [ 50 [ 20 [ 30 [ 93] 5.1
~ 12 FEATURES IN INPUT NETWORK
MLP | 18] 22 49 [ 38 [ 24 [ 43| 151 25 ] 81 ] 5.1
PNN [ 103 ] 50 [ 202 ] 69162 128 09 | 6.9 | 29.1 | 65
RBF1 | 39| 42| 48] 30| 32| 45| 16| 24 | =1 [ 5.0
RBF2 | 1.6 | 23| 49 [ 40 ¢ 31| 44| 15| 26 | 82 | 48
16 FEATURES IN INPUT NETWORK
MLP | 16 | 21 ] 47 ] 3.4 22 ] 22| 1.7 22 [ 7.3 [ 5.1
PNN [ 120 | 5.0 {200 | 6.0 | 95 | 123 | 1.3 | 47 | 26.7 | 7.7
RBF1 | 14 | 20 | 47 | 35 | 241 43 | 1.6 | 25 | 33 | 17
RBF2 | 15| 22| 49 [ 35| 24| 45| 14| 2371 73] 5.1
20 FEATURES IN INPUT NETWORK
MLD 16 1.9 41 ] 36] 1.9 37 ] 167 217 72 [ a.2
PNN [ 102 | 83 | 246 | 64 [ 221 [ 136 | 04 | 98 | 27.1 | 8.0
RBF1 | 1.2 20 [ 43| 35| 24 | 38 14| 20| 7.3 | 15
RBF2 | 1.6 | 1.9 42| 37 | 24| 39| 17 [ 227 7.0 46
] 24 FEATURESIN INPUT NETWORK
MLP | 153 ] 227 40 3.6 [ 23] 46 ] 1.3 ] 28] 7.3 | 4.1
PNN [ 105 72 (256 ] 7.0 | 20.1 | 165 | 0.4 | 83 | 30.7 | S.4
"RBF1 | 1.6 | 23| 4.0 | 38| 22| 48[ 1.0 | 25| 72 | 14
RBF2 | 15 | 22| 41| 38 [ 20| 45| 15| 26 [ 74 | 44
W 28 FEATURES IN INPUT NETWORK
| MLP | 13 [ 22 42 ] 37 [ 21| 38 13 [ 23] 7.7 | 43
| PXN | 102 7.3 | 280 7.5 (1900 [ 134 | 0.4 | 88 | 31.0 | 8.6
RBF1 | 12| 23| 41 ] 37| 23| 39| 1.3 | 23 | 4 | 13
RBF2 | 13 [ 22| 40 | 36 [ 23] 40 [ 14 [ 23 [ 777 [ 43
| ) 32 FEATURES IN INPUT NETWORK
MIP | 16 ] 23| 47 42 35| 47 ] 14| 23] 81 49
PNXN | 82| 73 [ 277 | 78 [ 192 [155] 05| 89 | 27.0 | 7.5
RBF1 | 1.6 | 24| 50 ] 40| 25| 43| 12 | 24| 85 | 16
RBF2 | 1.6 [ 25 | 54 | 39 [ 25 | 46 | 1.1 | 23| 87 | 46
Table 4

The error rates for each digit using the MLIP1 BDALs,




MLP2 BINARY DECISION MACHINES OUTPUT NETWORK
DIGIT | ~0" [ 17 _]_2 IR E RS
S FEATURES IN INPUT NETWORL
MLP | 50 | 30| 7.0 47 29 43 1.7 ] 2771 92 ] 47
PNN | 29[ 21104 67 26| 601 153 | 25 | 184 | 6.6
RBF1 | 20 | 31 | 7.0 | 54 35| 52| 20| 30| 91| 51
RBF2 [ 20.| 29| 67 33 [ 331 49| 10 [ 3.0] 94 [ 51
| 12 FEATURES IN INPUT NETWORK
MLP [ 18] 25 [ 45 ] 39 28| 41 ] 1611 22 ] 79[ 4.9
PNN | 30| 23] 73] 49| 26| 43| 1.0 ] 28 | 175 | 5.9
RBF1 | 18| 22| 41| 36| 30| 44 ] 16 ] 26 | 80 [ 5.2
"RBF2 | 18 | 22 | 47 | 36 | 28| 431 161 26 | 82 | 5.1
i 16 FEATTRES IN INPUT NETWORK
MLP | 15 20 47 39 26 [ 437 15 ] 23] &1 [ 48
PNN | 25| 22| 83| 50| 1.9 5.0 09 23] 165 6.1
RBF1 | 1.6 | 23 | 44 38| 25 ] 39| 16| 25| 821 5.0
RBF2 | 14 | 22| 46| 39| 23] 40| 15| 25 | 82 | 49
[ 30 FEATURES IN INPUT NETWORK
MLP | 03] 19 35 35 227 37 11| 1.9 | 81 | 4.1
CPNN [ 12| 23] 790 47 24| 47 [ 0.8] 1.8 165 [ 6.6
RBF1 | 01| 1.8 32 | 37| 23| 38| 12| 21 ] 80 [ 46
RBF2 | 01 | 19 ] 81 ] 36| 25 | 37 [ 12 21 [ 82 [ 45
| 21 FEATURES IN INPUT NETWORK

MLP | 15 | 24 42 36 23] 41 [ 14 [ 21| 73] 46
PNXN | 25 20| 82 44| 17| 52| 1.0 ] 26 [ 169 | 6.0
RBF1 | 1.6 | 22| 41| 38| 21 [ 41| 12| 23] 6.1 | 44
RBF2 | 16 | 28 [ 42| 35 23] 30 [ 12 [ 22 76 [ 43
] - 28 FEATURES IN INPUT NETWORK

MLP | 14| 25 ] 44 [ 357 22 38 ] 13 [ 23] 7.1 [ 46
PNXNX | 28 | 20| 81| 46 18] 47| 11| 23 [ 162 7.0
RBF1 | 13| 20| 43 ] 35 23| 38 [ 1371 22| 78] 44
RBF2 | 13| 26 | 39| 35| 23| 38 [ 12 ] 22| 74 [ 45
B 32 FEATURES IN INPUT NETWORK

MLP | 1.2 ] 23 [ 40 39 ] 24 [ 41 [ 09 ] 20 7.7 ] 43
PNN | 25| 20| 791 51 20| 46| 09 227 156 6.0
RBF1 | 1.2 ] 22| 40| 38 ] 221 43 ] 1.0 ] 22| 7.6 | 44
CRBF2 | 15 ] 22| 42 ] 37 ] 22 ] 43 [ 10 ] 22 7.7 ] 44

Table 5:

The error rates for each digit using the MLP2 BDAls.
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RBF1 BINARY DECISION M-\CHI\ES OUTPUT NETWORKS
DIGIT [ "0° [ -1" [ 2" [ 3" [~ [ " [ 6" [~ [ 8 [ 9
S FEATURES IN INPUT \ETW()RI{
ALP 23] 43 45 3.0 43 ] 21 ] 28 80 | 5.4
PNN 36 | 135 | 62 ] 97 ] 96 1 21| 3.6 | 269 | 10.4
RBF1 1.9 | 54 | 47 36| 42 23] 28] 98 | 64
RBF2 | 27 | 48] 44 35 45 ] 19] 25 ] 0271 6.0
12 FE ATURES IN INPUT NETWORK
MLP | 20 [ 21 ] 46 [ 45 [ 34 [ 41 ] 14 [ 25 91 5.3
PNN | 3.0 38 131 57 100] 961 221 5512751 9.8
RBF1 | 2.5 | 24 | 48 | 48| 34 | 4471 28| 28 1101 | 5.8
RBF2 | 25 [ 25| 42| 3.9 ] 33 [ +2 | 24 [ 24 89 [ 59
""""" 16 FEATURES IX INPUT NETWORK
AMLP 1] 19 46 ] 44 27 371 18] 2097 89 5.0
PNXN 28 3511297 539 ] 88 | 98] 22 ] 48 [ 278 | 89
RBF1 | .
RBF2 T
20 FEATURES IN INPUT NETWORK
MLP [ 2.0 22 0 42 ] 44 ] 26 38 1.4 32 84 ] 5.0
PNN 27| 34134 ] 58| 95| 85| 24| 54 [ 276 80
RBF1 | 27| 25| 53 | 46 | 34 | 41 | 21 26 | 9.7 | 5.6
RBF2 | 23 | 24| 52| 45| 30 41| 21| 29| 88 [ 5.0
24 FEATURES IN INPUT NETWORK
MLP [ 21 ] 22| 44 ] 501 3.0 34] 15[ 30 87 5.r
PNN | 28 33 [ 133 ] 56| 79| 9.1 ] 22| 54 | 283 | 8.2
RBF1 | 26 | 22| 51 491 297 45 [ 19| 32 ] 101 [ 5.9
RBF2 | 21 [ 22 [ 47 | 47 [ 25 | 43 [ 21 [ 29| 92| 53
28 FEATURES IN INPUT NETWORK
MLP | 20| 20 [ 48 | 49 28] 41 [ 1.7 ] 337 847 5.2
PNXN | 28 | 34 1331 60| 80 | 96| 2.2 | 351 | 284 | 8.1
RBF1 S
RBF2 | | | | | [
32 FEATURES IN INPUT NETWORK
ALP 227 19 ] 44| 48 257 10 22 37| 87 [ 4.4
PNN | 34 32 139] 67 ] 95| 821 31| 5.1 | 336]| 8.6
RBF1 o
RBF2
Table 6:
The error rates for each digit using the RBF1 BDAIs
with 8, 12, 16. 20. 24. 28, aud 32 features in the Input Network,




DIGIT[ 0" | -I" [ [ [+ [ 5[ [T
8 FEATURES IN INPUT NEWTWOL
AILP 21 31 51 39 48] 441 201 39 99 56
PNXN | 30 ] 27| 127 63 ] 95| 82 20 | 5.0 | 264 | 9.6
RBF1 | 25| 23| 59| 52| 35| 43 | 25| 34 | 11.1 | 6.2
RBF2 | 23| 26 | 52 [ 44 | 34| 42 ] 25| 40 [ 113 | 53
' 12 FEATURES IN INPUT NETWORK
MLP | 19 | 2 52 | 46| 29 | 41 ] 20 ] 28] 1537 5.2
PXN | 31| 23| 20 54| 66| 88 | 18| 3.7] 2.8 87
RBF1 | = ==
RBF2 [ 25 | 27| 45| 46| 33 | 44| 27 26| 70 55
16 FEATURES IN INPUT NETWORK
MLP | 1.8 21| 50 | 43 ] 26 ; 43 ] 20 32 787 5.1
PNN [ 27 22 1090] 53] 61 78| 1.9 [ 31 [230] 7.2
RBF1
RBF?2 Il | |
20 FEATURES IN INPUT NETWORK
MLP 1.9 25 50 4.0 3.0 47 190 33 87 ] 5.3
PNN | 28| 1.9 | 123 49| 61 | 7.8 | 19| 35220 7.7
RBF1
RBF2 |
24 FEATURES IN INPUT NETWORL
MLP | 19 [ 28 [ 46 [ 42 2.2 41 [ 22 ] 30 ] 81 [ 5.0
PNN [ 26| 20| 124 45| 68 | 66 | 1.8 | 43 [ 238 68
RDF1 i
RBF2 B i |
| | 28 FEATURES IN INPUT NETWORK
CMLP | 20 ] 23] 571 44| 23] 44 ] 19[ 27 83 [ 5.2
PNN | 261 20| 124] 49| 65 ] 79| 19| 3.7 [ 228 6.1
RBF1 ! |
| RBF2 | = ]
32 FEATURES IN INPUT NETWORK
MLP T 23] 56 3.8 27 36 32 41 [ 12.4] 4.6
PNN | 25 20 [ 116 48| 54 | 7.6 | 1.9 ] 3.7 [ 166 | 6.2
RBF1
RBF2 |
Table T:

The error rates for cach digit using the RBEF2 BDAIs
with 8. 12, 16. 20. 24, 28, and 32 features in the Input Nerwork.
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Table 6 shows the percent error for cach class of digits for the RBF1 based BDAs. As
with the PNN BDAls, MLP2 BDMs generally achieve the best error rate for class “6” and
tlie worst error rate for class “87. As in the previous table the bold face entries in the table
indicate the combination of features and input networks which. in the output network. had
the lowest error for that digit. For the*0” class this is an output MLP unetwotk using 20
features for the input network, For the 87 class this is a MLP network using 12 features
for the input network. Unlike the MLP cases the number of features changes from digit to
digit for the optimal ontput networks. MLP output networks have the highest digit by digir
aceuracy.

Table 7 shows the percent error for cach class of digits for the RBF2 based BDALs. As
with the other BDALs. RBF2 BDAIs generally achieve the best error rate for class 6" aund
the worst error rate for class 87, As in the previous table the bold face entrys in the table
indicate the combination of features and networks in the ontput network which had the lowest
error for that digit. For the"0" class this is an output MLP netwotk using 16 features for
the input network. For the “87 class this is a MLP network using 16 features for the input
network. Unike the MLP1 case several different feature set sizes contains most of the optimal
output networks., MLP output networks hiave the highest digit by digit accuracy.

PNN Binary Decision AMaclines

Number of features |

]

Classificr [ 8 [ 12 [16 [ 20 [ 24 [ 28 ] 32 ]
VOTE [ 3.7] 34[ 28] 27] 27] 26 2.6
MLP [ 85] 32] 36 45| 4.9 3.9 42
PNX [ 34]32[32[33[34] 38] 43

RBF1
3 clusters | 4.9 3.7 3.5 3.3 3.5 L 32 33
4 clusters | 53| 3.6 3.4 33| 34 34| 33
5clusters | 45| 3.6 34| 3.3 3.5 3.3 3.2
G clusters t 41| 34| 33| 3.3 33| 3.1 | 3.2

RBF2 |
3 clnsters 38 38| 43| 38| 39| 3.9
4 clusters J.7| 38 3.7 3.6 34| 3.5
5 clusters 36| 34| 35| 3.7 35| 36
6 clusters 36| 33 34 34 35| 34 ‘

Table 8:
Percent Error for PNN BDJs for the Voting Rule. MLP. PNXN. RBF1. aud
RBEF2. Output Networks using different nmnbers of features from 8 ¢} 32,

Table § contains the global percent error rates for the PNN BDAMs. The table shows
that using the voting rule for PNN that the best error rate is 2.57% for a 32 featnre Input
Network. This should be comparable with the best PNN aceuracy achived in [1] of 2.5%
with 40 features. For the neural networks. the best error rate of 3.09% was achieved by the
28 feature Input Network RBF1 using 90 input nodes. 60 hidden nodes. 10 output nodes.
Botlh these results are shown in bold face in the rable. The neural network output network
result is important because. as discussed in the next section. both VOTE and PNN output
networks provide poor reject aceuracy results.
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Table 9 contains the global percent error rates for the MLP1 BDAIs. This the modified
MLP network of 45 BDMs using only 1 target value. The combined output signals of the
Input Network are presented to the PNN. MLP. RBF1. and RBEF2 networks over the 8 to
32 range of features used in the Input Network. The combined feature set has 45 nodes.
The Qutput Network MLP has 45 input nodes. 32 hidden nodes. aud 10 output nodes. The
lowest error rate for a neural network of 3.29% was for the MLP with a 20 feature Input
Network and a six cluster per class RBEF1 network. Again both thoese results are shown in
bold face in the table 9.

Table 10 coutains the percent error rates for the MLP2 BDAIs, This the unmodified
MLP network of 45 BDMs nsing 2 target values. The combined ontput signals of the Input
Network are presented to the PNN, MLP. RBF1. and RBF2 networks over the 8 to 32 range
of features used in the Input Network. As the PNN base BDAMs. the MLP Qutput Network
Lias 90 input nodes and 48 hidden nodes. Both RBFEs use the 90 input nodes and various
hidden nodes from 30 to 60. In the MLP2 BDM network the best error rate of 2.59% for the
voting rule using 20 feature Input Network. The RBF1 with 90 iuput nodes. 30 hidden nodes.
and 10 output nodes achieved error rates of 3.09%. Again both these results are sliown in
bold face in the table. All of these error rates are substantial improvements over the bhest
AMLP error rate in [1] of 4.3% with 52 features.

Table 11 contains the percent error rates for the RBF1 BDMs. The combined output
signals of the Input Network are presented to the PNN. MLP. RBF1. and RBF?2 networks
over thie 8 to 32 range of features used in the Input Network. As the PNN base BDMs. the
MLP Output Network has 90 input nodes and 48 hidden nodes. Both RBFs use the 90 input
nodes and various hidden nodes from 30 to 60. MLP achieved an error rate of 3.69% using
12 juput features. This error rate is a small improvements over the best RBF1 error rate in
[1) of 4.2% with 48 features.

Table 12 contains the percent error rates for the RBF2 BDMs. The combined output
signals of the Input Network are presented to the PNXN, MLP. RBF1. and RBF2 networks
over the 8 to 32 range of features used in the Input Network. As the PNN base BDMs.
the ALY Output Network has 90 input nodes and 48 hidden nodes. Both RBFs use the
90 input nodes and various hidden nodes from 30 to 60. The 90 input nodes, 48 hidden
nodes. 10 output nodes of the MLP achieved the best error rate of 3.02%. This error rate
has improvements over the best RBF2 error rate in [1] of 3.9% with 44 features,

4.6 Error-Rejection Rates

In addition to forced decision accuracy. The error reject characteristics of the varions combi-
nation of Input Network and Output networks were examined. The two most successful of
these were PNN Input Networks and MLP input networks. The RBE Input Networks pro-
duced ouly marginal improvements in forced decision accuracy and has less effective rejoct
accuracy performance. :

Figure 5 shows the perceut error versus the percent reject for the 24 feature PNN BDAM s,
The percent error for the PNN BDM voting rule is hased on the output signal size. A machine
is rejected if its signal is loss then a given threshold value. The pattern is rejected if all 45
BDAIs are rejected or if there is a tie. Each of the graphs show that the voting rule starts
with a lower error rate. hut the RBF1 aud RBF2 have a much better rejection rate over the
voting rule.



MPLI Binary Decision Machines

Nuumiber of features

Classifier | 8 [ 12 [ 16 [ 20 | 24 | 28 | 32
VOTE 39 32] 30] 2907 2971 2.8] 3.2
MLP 13 ] 37[35] 33| 341! 34| 3.7
PXN [ 141|115 99[13.1[13.5, 134131

RBF1 |
3 clusters | 46| 3.8 35| 3.3 | 34| 33| 3
4clusters | 42| 3.7 | 35| 33| 34 33| 3
Jclusters | 45| 3.7 | 3.5 33| 34| 33| 3.7
G clusters 351 3.3 35| 33| 3
RBF2 B
dclusters | 45| 3.8 3.5 3.3 3.4 33| 3
dclusters | 4.5 3.8 35| 33| 34| 33| 3
Doelusters | 45 [ 3.8 | 35| 33| 34| 3.3 | 4.7
3

G clusters 35| 3.3 3.4_ 3.3

Table 9:
Percent Error for MILP1 BDAIs for the Voting Rule. AILP. PNN. RBF1. and
RBF2. Qutput Networks using different numbers of features from 8 to 32.

APL2 Binary Decision Maclines
Nunher of features

Classifier | 8 [ 12 [ 16 | 20 } 24 | 28 | 32 |
VOTE 3.9 32| 32| 261 29 291 29 \
MLP +3[ 36 35| 3171 33| 33 33
PNXN 61| 32| 51| 49| 51| 50:11.9
RBF1

3 clusters | 4.5 3.8 3.6} 3.1 | 3.3 | 43| 3.3

4 clusters | 4.3 | 37| 3.6 33! 33| 33

5 clusters 3.6 3.2 ‘ 3.3 | 3.3

G clusters 3.6 3.3
RBF?2 ] -

3 clusters | 4.5 36| 3.6 3.1 | 3.3 33| 3.4

4 clusters | 4.5 | 3.7 3.3 33| 33| 34

5 clusters 3.5 3.3 33| 3.3

6 clusters 3.6 3.3

Table 10:
Percent Error for MILP2 BDMs for the Voting Rule. MLP. PNN. RBF1. and
zRBEF2. Output Networks using different nunbers of features from 8 to 32.
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R]}Ff];\l)g 1 Binary Decision Machines :7 |

Nuwmber of features

Classifier | 8 T 12 T 16 [ 20 [ 2+ | 28 [ 32
VOTE [ 68] 63 61] 59] 58] 58] 6.4
MIP [134] 8.7] 38[37[39]| 39| 3.9
PXN [287] 00| 87]| 88| 86 87| 06

RBF1

3 clusters | 146 | G.1 | 5.0 49| 6.0 49| 5.1
dclusters | 144 | L7 47 46| 46 43| 4.9
5 clusters | 142 | 45 | 45| 451 45| 4.3

G clusters | 14.0 | 4.4 131 43 |

RBF2
3clusters | 142 | 43 | 44| 44 ] 44| 45| 4.6
dclusters | 140 41 42 421 42| 41| 4.2
5clusters | 13.8( 4.0 | 41| 4.2} 4.0 4.0
6 clusters | 13.3 | 4.0 1.0 4.0 !

Table 11:
Percent Error for RBF1 BDMs for Voting Rule. MLP. RBF1. and RBF2.
Networks used different numbers of features from 8 to 32, Results show
percent error found when using different Output Networks.

RBF Type 2 Binary Decision Machines - 7[
Number of features !
Classifier 2 ] 12 | 16 [ 20 | 24 E 28 { 32 |
VOTE 641 32| 50 51| 47| 46| 34
MLP 45] 46| 381 40| 8.0 3.9 44
PXN 9.5 73| 70 70| 7.2 7.1 6.2
RBF1 | ]
3 clusters | 5.2 1 4.7 4610 45| 47| 46| 7.2
4 clusters | 4.9 ]
5 clusters | 4.7
G clusters | 4.7
RBF2
Jclusters | 4.7 45| 421 43| 4.2 43| 7
dclusters | 4.7 4.6 4.2{ 4.2 41| 42 ]
5 clusters | 4.5 | 4.4 | 4.1 \
G clusters | 4.6 | 4.1 4.1 ]
Table 12:

Percent Error for RBF2 BDAIs for Voting Rule MLP. PNXN. RBF1 and RBF2.
Networks used different numbers of features from 8 to 32. Results show
percent error found when using different Qutput Networks.

22
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24 Feature PNN BDAM Error vs Reject for different output networks.
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LOG PERCENT ERROR
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MLP * UNNORMALIZED PNN ~ RBF1 ~ RBF2 - VOTE +

Figure 6: 24 Feature NILP’1 BDMs Error vs Reject for different output networks.



Figure G shows the log percent error versus the percent reject of the 24 fearure MLP1
BDAls. The percent error for the AILT’1 BDAIs voting rule is based on the outpur signal's
magnitude. A machine is rejected if its signal is less then a given threshold value. The pattern
is rejected if all 45 BDALs have heen rejected based ou the thireshold or if the resulting vote is
a tie. Thie curve for the AILP1 voting network is the result of hotl the number of machines
rejected per pattern and the nunber of tie votes which result.

Although the PNXN and voting rule based systems give good forced decision accuracy
the provide poor reject accuracy performance. The best combination of input and output
networks is one whiclh uses PNN BDAIs and a RBF1 output. This provides 3.09% forced
decision accuracy and 1% accuracy at about 8% rejection. For rejection rates between 1%
and 7% an all MLP based system will provide better reject accuracy since at 7% rejection
rate 1% accuracy is achieved.

5 Conclusions

The structure consists of three lavers of processing. the K-L feature processing. the input
network laver and the output network laver. As we demonsrrated in table 1 the K-L layer can
provide accuracy approching [1] on the binary digit problem. We also demonstated in table
2 that a simple voting mechanisimn can get good results using the ontputs of the second layer.
Tnfortunately. neither of these mechanisin provides satisfactory estimates of the coufidence
of its result so that the output layer is required to privide good reject accuracy performance.
This Ligh accaracy on forced decision coupled with poor reject performance was also observed
in [15].

It was also possible to improve the recoguition performance. over that obtained with the
same test and training sets in [1]. of both the MLP and RBF methods by the nse of BDMs.
The performance of the local methods. PNXNL is not improved by this process. The im-
provemeut in ALP performance is greater than the improvement in RBF performauce. This
clearly indicated that the methods improved in a way which is proportional to the amount
that they are converted form global to local mathods. RBF. as used liere. is preclustered and
is tlierefore partly local and partly global. RBF is improved but not as much as the MLP
networks are. MLPs are usually global but by converting thew to local methods, even when
it results in a smaller traing set as it does in this case. has made them perform as well as
local methods. This is an issue of intrinsic dimensionality of the type discussed in [14]. Local
dimensionality lhas long been recoguized as a critial factor in neighbor bhased methods and
we now conclude that it is egually important for nenral networks methods.

This intriusic variability of rank of the feature set is further seen in the distribution of
character by character errors seen with feature set size and output network type and in the
large difference in errors for the BDAIs associated with different digits. In tables 3-7 typical
errors for the ~6” class are 0.5% aund tvpical errors for the 8" class are 7.0% so that in this
sense the classification of 8 is 14 times harder than the classification of “67”. This variability
of classification accuracy by cliaracter type has also heen seen using an image hased method
[34. 9] where the number of memories needed to recognize digits is highly class dependent.
This is a clear indication that the features wsed to seleet a “67 are much more efficient than
the features used to select an =87

Another indication of the local rank effects in the problem structure for QCR is provided
by the clear division of Tables 3-7 into two groups distinguished by the amount of change
in feature set size for maximun accuracy for cach digit. Tables 3.6. and 7 for PNN. RBF1.
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and RBF2 networks show large changes in optimum feature set size and output network type
for different digits. Tables 4 and 3 for MLP1 and MLP2 networks show a global optimum
feature set size of 20 for most digit tvpes. This is less than half the optimum feature set size
for the global solution to this same problem given in {1]. The change in optimun feature
sot size and the sharp decrease in feature set size for BDAI networks demonstrates that the
global solution is raunk deficient and that clustering of the global problew into local problems
reduces the rank of the optimum feature set and therefore makes global optimization. used
for the MLP networks. more effective,

The need for global rank reduction is further supported by Boltzmann pruning studied
of large MLP networks. In [35. 36] it was shown that in these networks up to 80% of the
weiglits can be removed without affecting the network performance and that the remaining
weiglits typically have 9-11 bits of information content. As the weights are removed form
the network the removal of low variance weights connected to IL-L features associated with
smaller eigenvalues is strongly favored. Weight pruuing provides stroug evidence of rank
deficiency in the global problem and the relatively small nuiber of digits present in even
the pruned weights demonstrates that calenlations using these weight values may experience
significant problemns.

The networks that are trained using optimization methods [20. 24] are. during training.
dynamic systems subject to the same couvergence and stability problems wlich arve present
in other dynamiccal systems [37. 38. 39]. All of these methods of training nounlinear networks
are directly or indirectly dependent on the stability of the Jacobiam matrix of the local
linearization of the systemn. The equivalent linear problem is dependent on the rank of
the covariance matrix as is the computation of the K-L transform. If the nunmber of bits
used in the variables which formn this matrix is lower than is practical for the condition
mwnber of the matrix used in the training process the process will be hoth dynamically and
numerically nustable, This does not mean that all solutions found are useless but ouly that
some of these solutions are selected at random based on ronnding error not on input data.
In problems which are seriously rank deficient the training process is a Boltzinaun machine
wlere nemerical rounding error and input signal noise serve as the random number generator.
Clustering. using BDAMs or other wmethods. should be used to provide an effective method for
rank reduction and improve system stability.

In [1] and [15] many different OCR systems were presented which achieved 5% error rates
and several were presented whick has 2%-3% error rates. By reducing the problem to a
series of BDA we have shown that several different nenral network methods can achieve 3%
error rates on the relatively small training set used in [1]. These systemns also can exhibit
error reject behavior comparable to the best presented in [15]. Analysis of the digit by
digit performance with respect to feature set size and network type shows that much of this
improvement is associated with local rank reduction in the feature set.

These changes the way the problem of character recignition is stated. We now kuow
that the binary <decision process for two characters using learning data that consists of otler
characters from the binary set is relatively easy. The 3-8 data using K-Ls and KNN
can get Lin general get errors of 7.6%. So =3-8" is three times harder than *0-17 and
“8"s are 5 times harder than =17s The increasing difficulty is caused not by the primary
seraration of digits but by the ability of the BDMs to reject characters of other classes. This is
particulary important when an OCR system is coustructed since the most sucessful metliods
of segmentation depend of deliberate over segmentation and reconstruction [40]. The over
seguientation process generates nminerions partial and merged sections of digits which must



he rejected for OCTR to suceed.

Another way of considering the rejection problew is to consider the nmnber of iinages that
are near any 32 by 32 binary image in immage space. If character images should be recognized
after reversing m bits of an # bit image then eaclh character has n! — (n — m)! neighbors
which must he recoguized and (# — m)! derived images that should be rejected. Botl these
nuwmbers are very large compared to any projected OCR test or training set and indicate the
redundancy of even simple character images. The more redundant the image set the more
difficult the classification process is since many small variations in the image yield no useful
classification data. Larger and larger training set are more rather than less redundant since
they will contain more examples of common character typos.

Fromw these arguments we wounld expect weither larger feature sets nor larger training set
to eleminate the remaiming sources of OCR error. Larger feature set can ounly he effective
if the increase the rank of the feature set. Larger training set can ouly be effective if they
provide new protypes which are not redundant.
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