
MATROSKA file format

Matroska File Format
(under construction!)

Alexander Noé

alex@alexander-noe.com

Last change: January 11, 2009

Contents

1 Introduction 4

2 EBML - basics 6

2.1 Unsigned Integer Values of Variable Length (”vint“) 6

2.2 EBML elements . 7

2.3 Signed Integer Values of Variable Length (svint) 7

2.4 Data Types . 8

3 MATROSKA files - Top-Level elements 9

3.1 EBML . 9

3.2 Segment . 9

4 EBML - The EBML file header 10

5 Level 1 - Elements inside Segments 12

5.1 Overview . 12

5.2 SegmentInfo . 13

5.3 SeekHead . 16

5.4 Tracks . 18

5.5 Cluster . 27

5.6 Cues . 29

5.7 Chapters - Editions and ChapterAtoms 31

5.8 Attachments . 35

5.9 Tags . 36

1

MATROSKA file format

6 MATROSKA block Layout and Lacing 39

6.1 Basic layout of a Block . 39

6.2 Lacing . 40

7 Overhead of MATROSKA files 41

7.1 Overhead of BLOCKGROUPS . 41

7.2 Overhead of CLUSTERs . 46

7.3 Overhead caused by Cues . 47

8 Links 48

List of Tables

1 EBML . 10

2 Segment . 12

3 SegmentInfo . 14

4 SeekHead . 16

5 Seek . 16

6 Tracks . 18

7 TrackEntry . 18

8 Video . 21

9 Audio . 22

10 ContentEncodings . 23

11 ContentEncoding . 23

12 ContentCompression . 24

16 Cluster . 27

17 BlockGroup . 28

18 Cues . 29

19 CuePoint . 30

20 CueTrackPositions . 30

21 Chapters . 31

22 EditionEntry . 31

23 ChapterAtom . 32

2

MATROSKA file format

24 ChapterTracks . 34

25 ChapterDisplay . 34

26 Attachments . 35

27 AttachedFile . 35

28 Tags . 36

29 Tag . 37

30 Targets . 37

31 SimpleTag . 38

3

MATROSKA file format

1 Introduction

This document is intended to be used by developers who want to implement sup-
port for the MATROSKA file format in their applications, but who want to build this
support from scratch rather than using existing implementations, or people who
just want to understand the MATROSKA file format in detail. Thus, the file format
itself is described, the usage of existing libraries isn’t.

This document does not replace the official documentation1. It is less condensed,
but not necessarily complete. Especially, in the case that MATROSKA supports Dig-
ital Restrictions Management one day, I will expressively not document that part.
Also, typos in element IDs are never impossible.

When speaking about element occurence, elements can be mandatory or not, ele-
ments may be present several times inside a parent element or not etc. Occurence
restrictions will be indicated using expressions like = 1 or ≥ 1 etc. Those re-
strictions will exclude cases which do not technically render a file unusable or
ambigous, but which are unreasonable, like a file with no SEGMENTUID, see sec-
tion 5.2. The same way it would be weird (but not make a file unusable) to have a
CHAPTERS element (which is supposed to describes chapters) which is empty. An
element that must occur at least once is a reasonable file is called “mandatory”.
When an element is really mandatory, i.e the file or a part of it is useless when it’s
missing, it will be labeled as ≥ 1 (!) or = 1 (!). An example would be the codec ID
of a track, without which a track cannot be decoded at all.

The official Matroska specification pages use the following interpretation of “manda-
tory” and “default”: When an element has a default value that is used if the ele-
ment itself is not present, the value cannot be missing, thus the element is inher-
ently mandatory. This interpretation of “mandatory” being weird, this document
considers an element mandatory when it must be physically present in the file.
Also, default values can only be valid values. Consequently, a mandatory element
cannot have a default value because if it had one, it couldn’t be mandatory any-
more.

In this document, element names are always printed like THIS, element values are
printed like $THIS, as in “if $THISFLAG=1, ...”.

If you have any questions concerning this document, if you have comments, addi-
tions, if you have found an error, or if you want to contact me for whatever reason,

1http://www.matroska.org/technical/specs/index.html

4

http://www.matroska.org/technical/specs/index.html

MATROSKA file format

please send me an e-mail (include ’matroska’ in the topic!). You can contact me in
german, english or french, whatever you prefer. Just don’t ask me if you can ask
something or if I could document some Digital Restrictions Management.

This document is powered by LaTeX, so changing the order of certain tables or the
style of those tables etc. is, with certain limits, possible within a few seconds.

Screenshots of real life file structures are used to illustrate the file structure. All of
them have been made using the EBML Tree Viewer in AVI-Mux GUI.

5

MATROSKA file format

2 EBML - basics

EBML files use integers of variable size. This way, the file format doesn’t waste
space with storing 32 or even 64 bit integers in placed where they might sometimes
occur. The way the size is coded is inspired by the UTF-8 encoding format.

2.1 Unsigned Integer Values of Variable Length (”vint“)

The length of an integer is equivalent to length = 1 + [number_of_leading_zero_bits].
All integers use big endian. You could use more than 7 leading zeros, then the first
byte would be 0x00, however, this would only be needed if integers longer than
56 bits are required. This is forbidden in MATROSKA files.

Example: 3A 41 FE:

The first byte 3A (0011 1010) has 2 leading zeros, resulting in a total length of 3
bytes. The first ‘1’ in the byte (0011 1010) is just needed to finish the sequence of
leading zeros and can’t be used to store the value either. Thus, it is reset to obtain
the value this byte sequence represents. The result is then 0X1A41FE. As you can
see, you lose one bit per byte to know how long a number is, and you can use 7
bits per byte to store the integer’s value itself.

Of course, the value 0x1A41FE could also be written as 10 1A 41 FE or 08 00 1A
41 FE (do the decoding on a piece of paper if it’s not clear), however, when writing
EBML files, the shortest possible encoding should be used to avoid wasting space,
which is the very point of this coding scheme.

Unknown Length

All bits after the leading zeros being set to one, such as FF or 7F FF, indicates an
unknown length. Muxers shall avoid writing unknown length values whenever
possible. The only exception is the last Level 0 element of a file. If encoding a
number as described above results in such a sequence, it must be encoded again
with a greater destination length. Example: When encoding 16383 as described
above, the result is 7F FF. In 7F FF, all bits after the leading zero are set, which
would indicate an unknown length. That means, the length is increased to 3, and
the number is encoded again to 20 3F FF.

Note

It is possible to use a lookup table to determine the total length from the first byte.

6

MATROSKA file format

The Matroska file format does not allow integer lengths greater than 8, meaning
that the number of leading zeros is not higher than 7 and that the total length can
always be retrieved from the first byte.

2.2 EBML elements

One piece of information is stored the following way:

typedef struct {

vint ID // EBML-ID

vint size // size of element

char[size] data // data

} EBML_ELEMENT;

The length of ID shall be called s_ID, the length of size shall be called s_size.
Elements that contain other EBML Elements are called EBML Master elements.

Generally, the order of EBML elements inside a parent element is not fixed. In
some cases, a certain order is recommended, but it is never mandatory. Especially,
no element order should be assumed inside small parent elements.

2.3 Signed Integer Values of Variable Length (svint)

Signed integers have the following value: Read the integer as Unsigned Integer
and then subtract

vsint_subtr[length-1]

where

__int64 vsint_subtr [] =

{ 0x3F, 0x1FFF, 0x0FFFFF, 0x07FFFFFF,

0x03FFFFFFFF, 0x01FFFFFFFFFF,

0x00FFFFFFFFFFFF, 0x007FFFFFFFFFFFFF };

7

MATROSKA file format

2.4 Data Types

Whereas vints are used in the header section of EBML elements, the data types
describes in this section occur in the data section.

2.4.1 Signed and Unsigned Integers (int and uint)

Integers, signed as well as unsigned, are stored in big endian byte order, with
leading 0x00 (in case of positive values) and 0xFF (in case of negative values)
being cut off (example for int: -257 is 0xFE 0xFF). An int/uint may not be larger
than 8 bytes.

2.4.2 Float

A Float value is a 32 or 64 bit real number, as defined in IEEE. 80 Bit values have
been in the specification, but have been removed and should not be used. The
bytes are stored in big endian order.

2.4.3 Types of Strings

String refers to an ASCII string.
UTF-8 refers to a string that is encoded as UTF-8

8

MATROSKA file format

3 MATROSKA files - Top-Level elements

MATROSKA files only have two different top level elements:

3.1 EBML

This header describes the contents of an EBML file. There should be only one
EBML header in one file. Any further EBML headers do not render a file invalid,
but shall be ignored by any application reading the file. Files with more than one
EBML header could be created for instance if two or more files are appended by
using the copy /b command.

3.2 Segment

A SEGMENT contains multimedia data, as well as any header data necessary for re-
play. There can be several SEGMENTs in one MATROSKA file, but this is not encour-
aged to be done, as not many tools are able to handle multisegment MATROSKA

files correctly. If you want to replay multisegment MATROSKA files on Windows,
please use Haali Media splitter2

2http://haali.cs.msu.ru/mkv/

9

http://haali.cs.msu.ru/mkv/

MATROSKA file format

4 EBML - The EBML file header

The EBML top level element contains a description of the file type, such as EBML
version, file type name, file type version etc.

Obviously, this header being missing makes it necessary to guess the file type.

Table 1: The EBML element (Top-Level)
Element Description

uint, # ≤ 1
EBMLVERSION

ID: 42 86

def: 1

indicates the version of the EBML Writer that has been used
to create a file

uint, # ≤ 1
EBMLREADVERSION

ID: 42 F7

def: 1

indicates the minimum version an EBML parser needs to be
compliant with to be able to read the file

uint, # ≤ 1
EBMLMAXIDLENGTH

ID: 42 F2

def: 4

indicates the length of the longest EBML-ID the file contains.
In case of matroska, this value is 4. Any EBML-ID which is
longer than the value of this element shall be considered
invalid.

uint, # ≤ 1
EBMLMAXSIZELENGTH

ID: 42 F3

def: 8

indicates the maximum s_size value the file contains. Any
EBML element having an s_size value greater than EBML-
MaxSizeLength shouldl be considered invalid.

EBML continued on next page

10

MATROSKA file format

Element Description
string, # ≤ 1
DOCTYPE

ID: 42 82

def: matroska

describes the contents of the file. In the case of a MATROSKA

file, its value is 'matroska'

uint, # ≤ 1
DOCTYPEVERSION

ID: 42 87

def: 1

indicates the version of the $DOCTYPE writer used to create
the file

uint, # ≤ 1
DOCTYPEREADVERSION

ID: 42 85

def: 1

indicates the minimum version number a $DOCTYPE parser
must be compliant with to read the file.

Index→page 2 end of EBML

As you can see, in the case of Matroska files all child elements of the EBML el-
ement have a default value. Thus, an empty EBML element would technically
introduce a Matroska file (with file type version 1, maximum ID length 4, max-
imum size length 8 etc.) correctly. However, I don’t recommend to push the
specifications like this.

It is not recommended to use either IDs or size values greater than 8 bytes. While
it’s clear that 8 bytes are enough to represent any size of anything on any hard
disc, one might think about using IDs larger than 8 bytes. However, since the ID is
considered an integer, treating IDs larger than 8 bytes is difficult on current CPUs,
which are limited to 64 bit for simple integer operations.

11

MATROSKA file format

5 Level 1 - Elements inside Segments

5.1 Overview

Table 2: The SEGMENT element (Top-Level)
Element Description

Master, # = 1
SEGMENTINFO (→3)
ID: 15 49 A9 66

SEGMENTINFO contains general information about a seg-
ment, like an UID, a title etc. This information is not really
required for playback, but should be there (→ section 5.2).

Master, # ≥ 0
SEEKHEAD (→4)
ID: 11 4D 9B 74

A SEEKHEAD is an index of elements that are children of
SEGMENT. It can point to other SEEKHEADs, but not to itself.
If all non-CLUSTER precede all CLUSTERs (→ section 5.5),
a SEEKHEAD is not really necessary, otherwise, a missing
SEEKHEAD leads to long file loading times or the inability to
access certain data.

Master, # ≥ 0
CLUSTER (→16)
ID: 1F 43 B6 75

A CLUSTER contains video, audio and subtitle data. Note
that a MATROSKA file could contain chapter data or attach-
ments, but no multimedia data, so CLUSTER is not a manda-
tory element.

SEGMENT continued on next page

12

MATROSKA file format

Element Description
Master, # ≥ 0
TRACKS (→6)
ID: 16 54 AE 6B

A TRACKS element contains the description of some or all
tracks (preferably all). This element can be repeated once in
a while for backup purposes. A file containing only chapters
and attachments does not have a TRACKS element, thus it’s
not mandatory.

Master, # ≤ 1
CUES (→18)
ID: 1C 53 BB 6B

The CUES element contains a timestamp-wise index to
CLUSTERs, thus it’s helpful for easy and quick seeking.

Master, # ≤ 1
ATTACHMENTS (→26)
ID: 19 41 A4 69

The ATTACHMENTS element contains all files attached to this
SEGMENT.

Master, # = 1
CHAPTERS (→21)
ID: 10 43 A7 70

The CHAPTERS elements contains the definition of all chap-
ters and editions of this SEGMENT

Master, # ≤ 1
TAGS (→28)
ID: 12 54 C3 67

The TAGS element contains further information about the
SEGMENT or elements inside the SEGMENT that is not really
required for playback.

Index→page 2 end of SEGMENT

5.2 SegmentInfo

The SEGMENTINFO element contains general information about the SEGMENT,
such as its duration, the application used for writing the file, date of creation, a
unique 128 bit ID, to name a few only. Information included in the SEGMENTINFO

element is not required for playback, but should be written by any MATROSKA

muxer.

13

MATROSKA file format

(read: <element name> (<s_size + s_ID>: <size> bytes at <position in file>: value)

Table 3: The SEGMENTINFO element, child of SEGMENT (→2)
Element Description

char[16], # = 1
SEGMENTUID
ID: 73 A4

a unique 128 bit number identifying a SEGMENT. Obviously,
a file can only be referred to by another file if a SEGMEN-
TUID is present, however, playback is possible without that
UID.

utf-8, # ≤ 1
SEGMENTFILENAME

ID: 73 84

contains the name of the file the SEGMENT is stored in. Since
renaming files is easy, the reliability of this element’s value
should not be overrated.

char[16], # ≤ 1
PREVUID
ID: 3C B9 23

contains the unique 128 bit ID of the SEGMENT that is re-
played before the currently active SEGMENT, i.e. the ID of
the SEGMENT that should be loaded if the user tries to seek
to a timecode earlier than the earliest timecode of the ac-
tive SEGMENT. That SEGMENT should, of course, be easy to
locate, for instance in a file in the same directory.

utf-8, # ≤ 1
PREVFILENAME

ID: 3C 83 AB

contains the name of the file in which the SEGMENT having
the ID $PREVUID is stored. PREVFILENAME should not be
considered reliable for the same reason as SEGMENTFILE-
NAME, however, it could be the first filename the player is
looking for when the SEGMENT described in PREVUID is
needed

SEGMENTINFO continued on next page

14

MATROSKA file format

Element Description
char[16], # ≤ 1
NEXTUID
ID: 3E B9 23

contains the unique 128 bit ID of the SEGMENT that is re-
played after the currently active SEGMENT, i.e. the ID of the
SEGMENT that should be loaded if the user tries to seek to
a timecode after the end of the active SEGMENT. Like PRE-
VUID, the corresponding SEGMENT should be easy to locate.

utf-8, # ≤ 1
NEXTFILENAME

ID: 3E 83 BB

contains the name of the file in which the SEGMENT having
the ID $NEXTUID is stored. NEXTFILENAME shall not be
considered reliable for the same reason as SEGMENTFILE-
NAME.

uint, # ≤ 1
TIMECODESCALE

ID: 2A D7 B1

Each scaled timecode in a MATROSKA file is multiplied by
TIMECODESCALE to obtain a timecode in nanoseconds. Note
that not all timecodes are scaled!

float, # ≤ 1
DURATION

ID: 44 89

The DURATION indicates the duration of the SEGMENT. The
duration measured in nanoseconds is scaled and is thus
equal to $DURATION * $TIMECODESCALE. This element
should be written.

utf-8, # ≤ 1
TITLE

ID: 7B A9

Contains a general name of the SEGMENT, like �Lord of

the Rings - The Two Towers�. No language can be at-
tached to the title, however, Tags (→ section 5.9) could be
used to define several titles for a segment. This is not yet
commonly done, though.

string, # = 1
MUXINGAPP

ID: 4D 80

contains the name of the library that has been used to create
the file (like ”libmatroska 0.7.0“). This element should be
written by any muxer! Especially if non-compliant files are
encountered, this help to know who must be blamed for that
file.

utf-8, # = 1
WRITINGAPP

ID: 57 41

contains the name of the application used to create the file
(like ”mkvmerge 0.8.1“). This element should be written for
the same reason as MUXINGAPP.

int, # ≤ 1
DATEUTC
ID: 44 61

contains the production date, measured in nanoseconds rel-
atively to Jan 01, 2001, 0:00:00 GMT+0h

Index→page 2 end of SEGMENTINFO

15

MATROSKA file format

5.3 SeekHead

The SEEKHEAD element contains a list of positions of Level 1 elements in the
SEGMENT. Each pair (element id, position) is stored in one SEEK element:

Table 4: The SEEKHEAD element, child of SEGMENT (→2)
Element Description

Master, # ≥ 1
SEEK (→5)
ID: 4D BB

One SEEK element contains an EBML-ID and the position
within the SEGMENT at which an element with this ID can
be found.

Index→page 2 end of SEEKHEAD

Table 5: The SEEK element, child of SEEKHEAD (→4)
Element Description

uint, # = 1
SEEKID
ID: 53 AB

The SEEKID element contains the EBML-ID of the element
found at the given position

uint, # = 1
SEEKPOSITION

ID: 53 AC

The SEEKPOSITION element contains the position relatively
to the SEGMENT’s data at which an element with the ID
$SEEKID can be found.

Index→page 2 end of SEEK

Not all Level 1 elements need to be included. Typical SEEKHEADs either include
a list of all Level 1 elements, or a list of all Level 1 elements except for CLUSTERs
(→ section 5.5). SEEKHEADs can also include references to other SEEKHEADs if
there is, for example, a small SEEKHEAD at the beginning of the file and a larger
one at its end.

The following picture illustrates the SEEKHEAD element in a real file. Note that
the EBML Tree Viewer replaced Level 1 IDs in SEEKID with their human-readable
name:

16

MATROSKA file format

17

MATROSKA file format

5.4 Tracks

The TRACKS element contains information about the tracks that are stored in the
SEGMENT, like track type (audio, video, subtitles), the used codec, resolution and
sample rate. All tracks shall be described in one (or more, but preferably only one)
TRACKS element.

Each track is described in one TRACKENTRY. Theoretically, using the TRACKUID,
information about one track could be spread over different TRACKENTRYs, the UID
would allow to know which track the information applies to, however, it is highly
discouraged to stretch the specification like this.

Also, an empty TRACKS element would be rather useless, but should not lead to
a parser error since the file can be played if all tracks are defined somewhere. Es-
pecially pure chapter files might have an empty TRACKS element if the muxer
doesn’t catch the case that no tracks are present and consequently creates an
empty TRACKS element.

An example of a TRACKENTRY element can be found on (→ page 25)

Table 6: The TRACKS element, child of SEGMENT (→2)
Element Description

Master, # ≥ 1
TRACKENTRY (→7)
ID: AE

One TRACKENTRY element describes one track of the SEG-
MENT

Index→page 2 end of TRACKS

Table 7: The TRACKENTRY element, child of TRACKS (→6)
Element Description

uint, # = 1 (!)
TRACKNUMBER

ID: D7

defines an identification number of the track. This number
cannot be equal to 0. This number is used by the BLOCK and
SIMPLEBLOCK structures.

uint, # = 1
TRACKUID
ID: 73 C5

is a unique identificator of the track within the file. It cannot
be equal to 0

TRACKENTRY continued on next page

18

MATROSKA file format

Element Description
uint, # = 1 (!)
TRACKTYPE (→13)
ID: 83

defines the type of a track, i.e. video, audio, subtitle etc.

bool, # ≤ 1
FLAGENABLED

ID: B9

def: 1

When FLAGENABLED is 1, track is used

bool, # ≤ 1
FLAGDEFAULT

ID: 88

def: 1

When FLAGDEFAULT is 1, the track should be selected by
the player by default. Obviously, if no video track and/or no
audio track has a default flag, one video track and one audio
track should be chosen by the player, whereas no subtitle
should be enabled if no subtitle has a default flag.

bool, # ≤ 1
FLAGFORCED

ID: 55 AA

def: 0

When FLAGFORCED is 1, the track must be played. When
several subtitle tracks are forced, the one matching the au-
dio language should be chose. An example would be a sub-
title track that cannot be disabled, like the one you find on
the german DVD “Eiskalte Engel” when you select english
audio. Since this flag can only be used to apply a restriction
on digital content, it must be qualified as Digital Restrictions
Management.

bool, # ≤ 1
FLAGLACING

ID: 9C

def: 0

When FLAGLACING is 1, the track may contain laced blocks.
A parser that supports all types of lacing (→ section 6.2) can
safely ignore this flag.

uint, # ≤ 1
MINCACHE

ID: 6D E7

def: 0

indicates the number of frames a player must be able to
cache during playback. This is for instance interesting if a
native MPEG4 file with frames in coding order is played.

uint, # ≤ 1
MAXCACHE

ID: 6D F8

indicates the maximum cache size a player needs to cache
frames. A value of NULL means that no cache is required.

TRACKENTRY continued on next page

19

MATROSKA file format

Element Description
uint, # ≤ 1
DEFAULTDURATION

ID: 23 E3 83

This value indicates the number of nanoseconds a frame
lasts. This value is applied if no $DURATION value is in-
dicated for a frame or if lacing (→ section 6.1) is used. A
value of 0 means that the duration of frames of the track
is not necessarily constant (e.g. variable framerate video,
or Vorbis audio). DEFAULTDURATION should be written for
each track with a constant frame rate since it makes seeking
easier.

float, # ≤ 1
TRACKTIMECODESCALE

ID: 23 31 4F

Every timecode of a block (cluster timecode + block

timecode) is multiplied by this value to obtain the real time-
code of a block.

utf-8, # ≤ 1
NAME

ID: 53 6E

A NAME element contains a human-readable name for the
track. Note that you can’t define which language this track
name is in. You have to use Tags (→ section 5.9)) if you
want to use several titles in different languages for the same
track.

string, # ≤ 1
LANGUAGE

ID: 22 B5 9C

def: eng

specifies the language of a track, using ISO639-23. This
is NOT necessarily the language of $NAME, for example a
german AC3 track could be called “German - AC3 5.1” or
“Deutsch - AC3 5.1” or “Allemand AC3 5.1” etc.

string, # = 1 (!)
CODECID
ID: 86

The CODECID specifies the Codec4 which is used to decode
the track.

binary, # ≤ 1
CODECPRIVATE

ID: 63 A2

CODECPRIVATE contains information the codec needs before
decoding can be started. An example is the Vorbis initializa-
tion packets for Vorbis audio.

utf-8, # ≤ 1
CODECNAME

ID: 25 86 88

CODECNAME is a human-readable name of the Codec

uint, # ≥ 0
ATTACHMENTLINK

ID: 74 46

An ATTACHMENTLINK contains the UID of an attachment
that is used by this track.

TRACKENTRY continued on next page

3http://lcweb.loc.gov/standards/iso639-2/englangn.html
4http://matroska.org/technical/specs/codecid/index.html

20

http://lcweb.loc.gov/standards/iso639-2/englangn.html
http://matroska.org/technical/specs/codecid/index.html

MATROSKA file format

Element Description
Master, # ≤ 1
VIDEO (→8)
ID: E0

VIDEO contains information that is specific for video tracks

Master, # ≤ 1
AUDIO (→9)
ID: E1

AUDIO contains information that is specific for audio tracks

Master, # ≤ 1
CONTENTENCODINGS

(→10)
ID: 6D 80

CONTENTENCODINGS contains information about (lossless)
compression or encryption of the track

Index→page 2 end of TRACKENTRY

Obviously, the VIDEO element must be present for video tracks, whereas the AUDIO

element must be present for audio tracks. Although it doesn’t make sense to have
both elements in one TRACKENTRY element, it wouldn’t make a file unplayable.

Table 8: The VIDEO element, child of TRACKENTRY (→7)
Element Description

uint, # = 1
PIXELWIDTH

ID: B0

Width of the encoded video track in pixels

uint, # ≤ 1
PIXELHEIGHT

ID: BA

Height of the encoded video in pixels

uint, # ≤ 1
PIXELCROPBOTTOM

ID: 54 AA

def: 0

Number of Pixels to be cropped from the bottom

uint, # ≤ 1
PIXELCROPTOP

ID: 54 BB

def: 0

Number of Pixels to be cropped from the top

VIDEO continued on next page

21

MATROSKA file format

Element Description
uint, # ≤ 1
PIXELCROPLEFT

ID: 54 CC

def: 0

Number of Pixels to be cropped from the left

uint, # ≤ 1
PIXELCROPRIGHT

ID: 54 DD

def: 0

Number of Pixels to be cropped from the right

uint, # ≤ 1
DISPLAYWIDTH

ID: 54 B0

def: $PIXELWIDTH

Width of the video during playback

uint, # ≤ 1
DISPLAYHEIGHT

ID: 54 BA

def: $PIXELHEIGHT

Height of the video during playback

uint, # ≤ 1
DISPLAYUNIT

ID: 54 B2

def: 0

Unit $DISPLAYWIDTH and $DISPLAYHEIGHT is measured
in. This can be 0→pixels, 1→centimeters, 2→inches

Index→page 2 end of VIDEO

$PIXELCROPXXXX is applied on $PIXELXXX, so the output is cropped after decod-
ing, but before stretching it to the dimensions indicated with $DISPLAYXXXX.

Table 9: The AUDIO element, child of TRACKENTRY (→7)
Element Description

uint, # ≤ 1
SAMPLINGFREQUENCY

ID: B5

def: 8 kHz

Indicates the sample rate the track is encoded at in Hz

AUDIO continued on next page

22

MATROSKA file format

Element Description
uint, # ≤ 1
OUTPUT-
SAMPLINGFREQUENCY

ID: 78 B5

Indicates the sample rate the track must be played at in
Hz. The default value of this element is equal to $SAM-
PLINGFREQUENCY.

uint, # ≤ 1
CHANNELS

ID: 9F

def: 1

Number of channels of the audio track

uint, # ≤ 1
BITDEPTH

ID: 62 64

Bits per sample, this is usually used with PCM-Audio.

Index→page 2 end of AUDIO

Table 10: The CONTENTENCODINGS element, child of TRACKENTRY (→7)
Element Description

Master, # ≥ 1
CONTENTENCODING

(→11)
ID: 62 40

A CONTENTENCODING-element describes one compression
or encryption that has been used on this track.

Index→page 2 end of CONTENTENCODINGS

Table 11: The CONTENTENCODING element, child of
CONTENTENCODINGS (→10)

Element Description
uint, # ≤ 1
CONTENTENCODING-
ORDER

ID: 50 31

def: 0

Tells when to decode according to this pattern. The de-
coder starts with the CONTENTENCODING that has the high-
est CONTENTENCODINGORDER.

CONTENTENCODING continued on next page

23

MATROSKA file format

Element Description
uint, # ≤ 1
CONTENTENCODING-
SCOPE (→14)
ID: 50 32

def: 1

Defines which parts of the track are compressed or en-
crypted this way

uint, # ≤ 1
CONTENTENCODING-
TYPE

ID: 50 33

def: 0

Describes which type of encoding is described. 0 → com-
pression, 1→ encryption

Master, # ≤ 1
CONTENTCOMPRESSION

(→12)
ID: 50 34

If CONTENTENCODINGTYPE=0, this element describes how
it is compressed

Master, # ≤ 1
CONTENTENCRYPTION

(→??)
ID: 50 35

If CONTENTENCRYPTION=1, this element describes how it
is encrypted

Index→page 2 end of CONTENTENCODING

The CONTENTENCODING element allows to apply not only encryption, but also
lossless compression to a track. This can be used to compress text subtitles, but
also to remove sync headers from audio packets. For example, each AC3 frame
starts with 0B 77, and there is no real point in saving those two bytes for each
frame in a MATROSKA file. For a simple AC3 file, this does make sense because
there it can be used to find a new frame start if data is damaged.

Table 12: The CONTENTCOMPRESSION element, child of
CONTENTENCODING (→11)

Element Description
uint, # ≤ 1
CONTENTCOMPALGO

(→15)
ID: 42 54

def: 0

The CONTENTCOMPALGO element says which algorithm was
used for this compression.

CONTENTCOMPRESSION continued on next page

24

MATROSKA file format

Element Description
binary, # ≤ 1
CONTENTCOMPSETTINGS

ID: 42 55

Contains settings that are required for decompression.
These settings are specific for each compression algorithm.
For example, it contains the striped header bytes when
$CONTENTCOMPALGO=3 (→ page 25).

Index→page 2 end of CONTENTCOMPRESSION

Table 13: Values of TRACKTYPE, child of TRACKENTRY (→7)
Value Description

0x01 track is a video track

0x02 track is an audio track

0x03
track is a complex track, i.e. a combined video and
audio track

0x10 track is a logo track

0x11 track is a subtitle track

0x12 track is a button track

0x20 track is a control track
end of TRACKTYPE

Table 14: Bits in CONTENTENCODINGSCOPE, child of
CONTENTENCODING (→11)

Value Description

1 all frames

2 the track’s CODECPRIVATE

4
the CONTENTCOMPRESSION in the next CONTENTEN-
CODING (next as in next in decoding order)

end of CONTENTENCODINGSCOPE

Here is one example of a possible TRACKENTRY element: A DTS-audio track that
is using header striping. The CONTENTCOMPSETTINGS element contains the four
bytes each DTS frame starts with.

25

MATROSKA file format

Table 15: Values of CONTENTCOMPALGO, child of
CONTENTCOMPRESSION (→12)

Value Description

0 zlib

1 bzlib

2 lzo1x

3 header striping

end of CONTENTCOMPALGO

26

MATROSKA file format

5.5 Cluster

A CLUSTER contains multimedia data and usually spans over a range of a few
seconds. The following picture shows a typical cluster:

Although sticking to this order of the elements is not mandatory, it is recom-
mended not to have any non-BLOCKGROUP/SIMPLEBLOCK after the first BLOCK-
GROUP/SIMPLEBLOCK, because it’s bad if the entire cluster must be read before it
can be used just because the timecode is stored at the end.

Table 16: The CLUSTER element, child of SEGMENT (→2)
Element Description

uint, # ≤ 1
TIMECODE

ID: E7

def: 0

The Cluster timecode is the timecode all block timecodes are
indicated relatively to.

uint, # ≤ 1
POSITION

ID: A7

The POSITION element indicates the position of the begin-
ning of its parent element inside its grand parent element.
This can help to resync in case of damaged data, but is of no
use if no data is damaged.

CLUSTER continued on next page

27

MATROSKA file format

Element Description
uint, # ≤ 1
PREVSIZE

ID: AB

Indicates the size of the preceding cluster in bytes. This
helps to seek backwards, and to find the preceding cluster,
without having to look at METASEEK or CUE data. This is
also helpful to resync, e.g. if the EBML-ID of the preceding
CLUSTER is damaged.

Master, # ≥ 0
BLOCKGROUP (→17)
ID: A0

Contains a BLOCK along with some attached information
like references

binary, # ≥ 0
SIMPLEBLOCK

ID: A3

This is a BLOCK (→ page 39) without additional attached in-
formation. Since a SIMPLEBLOCK does not require a BLOCK-
GROUP around it, it causes less overhead. SIMPLEBLOCK is
MATROSKA v2.

Index→page 2 end of CLUSTER

Table 17: The BLOCKGROUP element, child of CLUSTER (→16)
Element Description

binary, # = 1 (!)
BLOCK

ID: A1

contains data to be replayed. See page 39 for details.

int, # ≥ 0
REFERENCEBLOCK

ID: FB

Timecode of a frame, relative to the BLOCK’s timecode, of
a frame that needs to be decoded before this BLOCK can be
decoded.

int, # ≤ 1
BLOCKDURATION

ID: 9B

Indicates the scaled duration of the BLOCK. If this
value is not written, it is assumed to be (1) the differ-
ence <timecode of next block of the same stream> -

<timecode> (2) equal to DEFAULTDURATION (for the last
block of each stream).
As a consequence, the DURATION element is mandatory for
every BLOCK of subtitle tracks, unless a subtitle is indeed
supposed to disappear only directly before the next one ap-
pears. But even then it is recommended to write DURATION.

Index→page 2 end of BLOCKGROUP

28

MATROSKA file format

5.6 Cues

The CUEs element contains information helpful (but not necessary) for seeking.
Each piece of information, called a CUEPOINT, contains a timestamp, and a list of
pairs (track number, (cluster position[, block number within cluster])). Generally,
a CUEPOINT should only point to keyframes.

Table 18: The CUES element, child of SEGMENT (→2)
Element Description

Master, # ≥ 1
CUEPOINT (→19)
ID: BB

One CUEPOINT contains one entry point (or a list of entry
points with one point for one track) for one timecode.

Index→page 2 end of CUES

29

MATROSKA file format

Table 19: The CUEPOINT element, child of CUES (→18)
Element Description

uint, # = 1 (!)
CUETIME

ID: B3

The timecode of the CLUSTERs or BLOCKs that are referred
to by this CUEPOINT

Master, # ≥ 1
CUETRACKPOSITIONS

(→20)
ID: B7

A position where a CLUSTER or BLOCK can be found with
the timecode $CUETIME.

Index→page 2 end of CUEPOINT

Table 20: The CUETRACKPOSITIONS element, child of CUEPOINT (→19)
Element Description

uint, # ≥ 1 (!)
CUETRACK

ID: F7

Track for which a position is given. This track number is the
same as TRACKENTRY (→ Table 7)::TRACKNUMBER.

uint, # ≥ 1 (!)
CUECLUSTERPOSITION

ID: F1

The position of the cluster the referred block is found in.
This position is relative to the SEGMENT’s (→ Table 2) data
section.

uint, # ≤ 1
CUEBLOCKNUMBER

ID: 53 78

The block with timecode $CUETIME is the $CUEBLOCK-
NUMBER-th BLOCK/SIMPLEBLOCK inside the CLUSTER at
position $CUECLUSTERPOSITION.

Index→page 2 end of CUETRACKPOSITIONS

30

MATROSKA file format

5.7 Chapters - Editions and ChapterAtoms

The CHAPTERS element contains a list of all editions and chapters found in this
SEGMENT. Chapters in MATROSKA files are more powerful than chapters on DVDs,
their handling is, however, way more complex.

Table 21: The CHAPTERS element, child of SEGMENT (→2)
Element Description

Master, # ≥ 1
EDITIONENTRY (→22)
ID: 45 B9

One EDITIONENTRY describes one Edition. Just like with
TRACKENTRY (→ Table 7), theoretically you could spread
information about one Edition over different EDITIONEN-
TRYs and use $EDITIONUID to find out which edition the
EDITIONENTRY is referring to, but it’s highly discouraged.

Index→page 2 end of CHAPTERS

An edition contains one set of chapter definitions, so having several editions means
having several sets of chapter definitions. This case is used when using this as
a playlist - playing one chapter after the other while having gaps between the
chapters.

Table 22: The EDITIONENTRY element, child of CHAPTERS (→21)
Element Description

uint, # ≤ 1
EDITIONUID
ID: 45 BC

$EDITIONUID is the UID of the edition. This element is
mandatory if you want to apply one or more titles to an
edition

bool, # ≤ 1
EDITIONFLAGHIDDEN

ID: 45 BD

def: 0

When $EDITIONFLAGHIDDEN is 1, this edition should not
be available via the user interface

bool, # ≤ 1
EDITIONFLAGDEFAULT

ID: 45 DB

def: 0

When $EDITIONFLAGDEFAULT is 1, this edition should be
selected by the player as default

EDITIONENTRY continued on next page

31

MATROSKA file format

Element Description
bool, # ≤ 1
EDITIONFLAGORDERED

ID: 45 DD

def: 0

When $EDITIONFLAGORDERED is 1, this edition contains a
playlist. When $EDITIONFLAGORDERED is 0, it contains a
simple DVD like chapter definition.

Master, # ≥ 1
CHAPTERATOM (→23)
ID: B6

One CHAPTERATOM contains the definition of one chapter.
This element is the only one in MATROSKA files that can con-
tain itself recursively - in this case to define subchapters.

Index→page 2 end of EDITIONENTRY

The following picture shows an ordered edition:

Table 23: The CHAPTERATOM element, child of EDITIONENTRY (→22),
child of CHAPTERATOM (→23)

Element Description
uint, # = 1
CHAPTERUID
ID: 73 C4

The UID of this chapter. It must be unique within the file.

CHAPTERATOM continued on next page

32

MATROSKA file format

Element Description
uint, # ≤ 1
CHAPTERTIMESTART

ID: 91

def: 0

The unscaled timecode the chapter starts at. As the value
is unsigned, a chapter cannot start earlier than at timecode
0, even whereas timecodes up to -30.000 are possible for
multimedia data.

uint, # ≤ 1
CHAPTERTIMEEND

ID: 92

The unscaled timecode the chapter ends at. The default
value is the start of the next chapter or the end of the parent
chapter or the end of the segment, whatever exists, in that
order.

bool, # ≤ 1
CHAPTERFLAGHIDDEN

ID: 98

def: 0

When $CHAPTERFLAGHIDDEN is 1, the chapter should not
be visible in the user interface, but should be played back
normally.

bool, # ≤ 1
CHAPTERFLAGENABLED

ID: 45 98

def: 1

When $CHAPTERFLAGENABLED is 0, the chapter should be
skipped by the player

char[16], # ≤ 1
CHAPTERSEGMENTUID
ID: 6E 67

This element can only occur if $EDITIONFLAGORDERED=1.
The SEGMENT of which the UID is $CHAPTERSEGMENTUID
is used instead of the current SEGMENT. Obviously, this
SEGMENT should be easy to find, like when it is the first
segment of a file in the same directory.

uint, # ≤ 1
CHAPTERSEGMENT

-EDITIONUID
ID: 6E BC

The edition to use inside the SEGMENT selected via CHAP-
TERSEGMENTUID. The timecodes $CHAPTERTIMESTART

and $CHAPTERTIMEEND refer to playback timecodes of that
edition, i.e. the timecodes are relative to that playlist. This
is called “nested Editions” and is NOT SUPPORTED by Haali
Media Splitter.

Master, # ≤ 1
CHAPTERTRACKS

(→24)
ID: 8F

Contains a list of tracks the chapter applies to.

Master, # ≥ 0
CHAPTERDISPLAY

(→25)
ID: 80

Contains all chapter titles

Index→page 2 end of CHAPTERATOM

33

MATROSKA file format

A useful application for the CHAPTERFLAGHIDDEN element in connection with
ordered editions is the following: You have a couple of episodes of a series, but
want to save space by only saving the intro and outtro once. You create one playlist
(ordered edition) per episode, and another playlist playing all episodes in a row.
Whereas in the first case you might want to play intro and outtro for each episode,
you might not want to do that in the second case.

If you don’t want to make the three parts intro - movie - outtro selectable via the
user interface when playing single episodes, you call the intro-chapter “Episode
- blah” and hide the movie- and the outtro chapter using $CHAPTERFLAGHID-
DEN=1. Then, the playlist playing all episodes would be intro - episode 1 - episode
2 - ... - last episode - outtro, whereas the other playlists would be intro - episode N

- outtro. The name of the intro chapter would be set to “Episode n”.

Table 24: The CHAPTERTRACKS element, child of CHAPTERATOM (→23)
Element Description

uint, # ≥ 1
CHAPTERTRACKNUMBER

ID: 89

One number of a track a chapter is used with.

Index→page 2 end of CHAPTERTRACKS

Table 25: The CHAPTERDISPLAY element, child of CHAPTERATOM (→23)
Element Description

utf-8, # ≤ 1
CHAPSTRING

ID: 85

A title of a chapter

string, # ≥ 0
CHAPLANGUAGE

ID: 43 7C

def: eng

The language of $CHAPSTRING as defined in ISO639-25

utf-8, # ≥ 0
CHAPCOUNTRY

ID: 43 7E

A country the title is used in. For example, a german title in
Germany might be different than the title used in Austria.

Index→page 2 end of CHAPTERDISPLAY

5http://lcweb.loc.gov/standards/iso639-2/englangn.html#two

34

http://lcweb.loc.gov/standards/iso639-2/englangn.html#two

MATROSKA file format

5.8 Attachments

Theoretically, any file type can be attached to a MATROSKA file, however, this
possibility is usually used to attach pictures like CD covers or fonts required to
display a subtitle track correctly. Obviously, attaching executable files would allow
for MATROSKA files to contain viruses - a scenario that is not exactly the indended
application of attachments or anything else MATROSKA is capable of.

Table 26: The ATTACHMENTS element, child of SEGMENT (→2)
Element Description

Master, # ≥ 1
ATTACHEDFILE (→27)
ID: 61 A7

Describes and contains one attached file

Index→page 2 end of ATTACHMENTS

Table 27: The ATTACHEDFILE element, child of ATTACHMENTS (→26)
Element Description

utf8, # ≤ 1
FILEDESCRIPTION

ID: 46 7E

A human-readable description of the file

utf8, # ≤ 1
FILENAME

ID: 46 6E

The name that should be proposed by a demuxer when ex-
tracting the file

string, # ≤ 1
FILEMIMETYPE

ID: 46 60

MIME type of the file, like ...

binary, # ≤ 1
FILEDATA

ID: 46 5C

The file itself

uint, # = 1
FILEUID
ID: 46 AE

The UID of that file, just like TRACKUID, CHAPTERUID etc.
The UID is required if a TRACKENTRY (→ Table 7) wants to
refer to this Attachment.

Index→page 2 end of ATTACHEDFILE

35

MATROSKA file format

5.9 Tags

Table 28: The TAGS element, child of SEGMENT (→2)
Element Description

Master, # ≥ 1
TAG (→29)
ID: 73 73

One TAG element describes one Tag

Index→page 2 end of TAGS

TAGS provide additional information6 not important for replay. A TAGS element
contains a number of TAG elements. Each TAG element contains a list of UIDs (usu-
ally TRACKUIDs or EDITIONUIDs), and a list of SIMPLETAGs, each one containing
a name and a value:

If no TARGETs are specified, then the TAG is a global TAG refering to the entire
SEGMENT. Of course, two different TAG elements can contain identical TARGETS.

6http://www.matroska.org/technical/specs/tagging/index.html

36

http://www.matroska.org/technical/specs/tagging/index.html

MATROSKA file format

Table 29: The TAG element, child of TAGS (→28)
Element Description

Master, # ≤ 1
TARGETS (→30)
ID: 63 C0

Describes which elements a Tag applies to

Master, # ≥ 1
SIMPLETAG (→31)
ID: 67 C8

Each SIMPLETAG contains one tag that applies to each target
in TARGETS

Index→page 2 end of TAG

Note that there is nothing like a TAGUID.

Table 30: The TARGETS element, child of TAG (→29)
Element Description

uint, # ≤ 1
TARGETTYPEVALUE

(→??)
ID: 68 CA

def: 50

This number describes the logical level of the object the Tag
refers to

utf-8, # ≤ 1
TARGETTYPE

ID: 63 CA

A string describing the logical level of the object the Tag is
refering to

uint, # ≥ 0
TRACKUID
ID: 63 C5

The UID of a track the tag is referring to

uint, # ≥ 0
EDITIONUID
ID: 63 C9

The UID of an edition the tag is referring to. Note that this
is the only way to apply titles to an edition

uint, # ≥ 0
CHAPTERUID
ID: 63 C4

The UID of a chapter the tag is referring to

uint, # ≥ 0
ATTACHMENTUID
ID: 63 C6

The UID of an attachment the tag is referring to

Index→page 2 end of TARGETS

37

MATROSKA file format

Table 31: The SIMPLETAG element, child of TAG (→29)
Element Description

utf-8, # ≥ 1 (!)
TAGNAME

ID: 45 A3

Name of the tag.

string, # ≤ 1
TAGLANGUAGE

ID: 44 7A

def: und

$TAGLANGUAGE is the language of $TAGNAME. Note that
the default here is ‘und’, whereas the default track / chapter
title language is ‘eng’.

bool, # ≤ 1
TAGORIGINAL

ID: 44 84

def: 1

When 1, this title and language is the original title given to
the item

utf-8, # ≤ 1
TAGSTRING

ID: 44 87

The value of the tag when it is a string

binary, # ≤ 1
TAGBINARY

ID: 44 85

The ‘value’ of the tag when it’s a binary tag

Index→page 2 end of SIMPLETAG

5.9.1 A few common Tags

• TITLE, Target: EditionUID: used to define names for Editions. This is exactly
what you can see in the screenshot above.

• BPS, Target: TrackUID: used to define the bitrate of a track

• FPS, Target: TrackUID: used to define the framerate of a track

38

MATROSKA file format

6 MATROSKA block Layout and Lacing

6.1 Basic layout of a Block

A MATROSKA block has the following format:

BLOCK {
v int TrackNumber
sint16 Timecode // r e l a t i v e to Cluster timecode
int8 Flags // lacing , keyframe , discardable
i f (lac ing) {

int8 frame_count−1
i f (lac ing == EBML lacing) {

v int s ize [0]
sv in t s ize [1 . . frame_count−2]

} else
i f (lac ing == Xiph lacing) {

int8 s ize [s ize of <leading (frame_count−1) frames> / 255 + 1]
}

}
int8 [] data

}

The following bits are defined for FLAGS:

Bit 0x80: keyframe:

No frame after this frame can reference any frame before

this frame and vice versa (in AVC-words: this frame is an

IDR frame). The frame itself doesn't reference any other

frames.

Bits 0x06: lace type

00 - no lacing

01 - Xiph lacing

11 - EBML lacing

10 - fixed-size lacing

Bit 0x08 : invisible: duration of this block is 0

Bit 0x01 : discardable: this frame can be discarded if the decoder

is slow

39

MATROSKA file format

The following flags are only defined for Matroska v2 and can thus only be used
in a SIMPLEBLOCK: keyframe, invisible, discardable. The type of lacing in use
defines how the SIZE values are to be read.

6.2 Lacing

Lacing is a technique that allows to store more than one atom of data (like one
audio frame) in one block, with the goal to decrease overhead, without losing the
ability to separate the frames in a lace later again.

Generally, the size of the last frame in a Lace is not stored, as it can be derived
from the total block size, the size of the block header and the sum of the sizes of
all other frames.
Frame duration values are not preserved! That means, it is highly recommended
not to use lacing if the frame duration is not constant, like Vorbis audio.

6.2.1 Xiph Lacing

The size of each frame is coded as a sum of int8. A value smaller than 255 indi-
cates that the next value refers to the next frame.

Example
size = { 187, 255, 255, 120, 255, 0, 60 } means that there are 4 frames
with 187, 630, 255, 60 bytes.

6.2.2 EBML Lacing

Size of first frame (”frame 0“) of a lace = size[0]

Size of frame i of a lace: size[i] - size[i-1]

6.2.3 Fixed Lacing

Fixed Lacing is used if all frames in a lace have the same size. Examples are AC3
or DTS audio. In this case, knowing the number of frames is enough to calculate
the size of one frame. Consequently, there are no size values.

40

MATROSKA file format

7 Overhead of MATROSKA files

The scope of this section is explaining how to predict the overhead of a MATROSKA

file before muxing, and without analysing any of the source files excessively. This
section assumes that BLOCKGROUPS and BLOCKS are used, and that no SIMPLE-
BLOCKS are used. If you want to estimate overhead of files that use SIMPLE-
BLOCKS, you get about the same overhead as with BLOCKS without BLOCKDURA-
TION, REFERENCEBLOCK or BLOCKGROUP.

7.1 Overhead of BLOCKGROUPS

First, here again the layout of a typical BLOCKGROUP

BlockGroup <size>

Block <size> <number, flag, timecode>

[Reference <size> <val>]

The EBML identication for BLOCKs and BLOCKGROUPs are 1 byte each, so that the
structure above, not counting REFERENCEs, takes:

• BlockGroup < 128 bytes: 8 bytes

• BlockGroup < 16kbytes: 10 bytes

• BlockGroup < 2MBytes: 12 bytes

BLOCKGROUPs larger than 2MBytes are extremely unlike, and even BLOCKGROUPs
larger than 16kBytes won’t occur often, compared to BLOCKGROUPs between 128
bytes and 16 kBytes. That means, assuming an overhead of 10 bytes for BLOCK-
GROUPs without REFERENCES usually results in a good approximation.

7.1.1 video

In a typical video stream, there are a lot of frames with 1 REFERENCE (P-Frames,
Delta-Frames), and a few keyframes. Typical rations are 100:1. There might also
be frames with 2 REFERENCES (B-Frames), e.g. native MPEG4 streams. Assuming
a ratio of 66:33:1 for B:P:K, and assuming a bitrate far below 3,2 MBit/s (meaning
that typical B- and P-frames are smaller than 16 kB), that causes about 15 bytes of

41

MATROSKA file format

overhead per frame. If there are no B-Frames, there are about 13 bytes per frame.

Example: 2 hours, 25 fps.
The video stream will cause around 2,3 MB of overhead.

7.1.2 audio - without lacing

As audio does usually not have any REFERENCEs (all audio frames are keyframes),
one audio frame will take 8 or 10 bytes of overhead. For MP3, AC3, DTS and AAC,
frames causing 8 bytes of overhead are unlikely. They are more likely for Vorbis.

Example: MP3 audio, 24ms per frame, duration: 2h
This stream will cause 3MB of overhead.

7.1.3 audio - with lacing

1. CBR+CFR: fixed lacing
In this case, fixed lacing (see section 6.2.3) is used. With fixed lacing, the overhead
is the normal BLOCKGROUP overhead, plus 1 byte for the lace header. Assuming
that BLOCKGROUPS are not larger than 16k, that means that the overhead per
frame is equal to 11 / frame_count

Example: AC3 audio, 448 kbps, 1792 bytes per frame, 32ms per frame
1.) 8 frames per lace.
overhead for one frame = 11/8 = 1,375 bytes = 1 byte / 23,3 ms.
2.) 9 frames per lace.
overhead for one frame = 11/9 = 1,222 bytes = 1 byte / 26,2 ms.
3.) 10 frames per lace.
overhead for one frame = 13/10 = 1,3 bytes = 1 byte / 24,6 ms.

An AC3 stream of 2 hours with 9 frames per lace will cause 270kB of overhead.

2. no CBR, but almost all frames smaller than 255 bytes: XIPH lacing
In this case, XIPH lacing (see section 6.2.1) is used, meaning that the overhead of
a BLOCKGROUP is equal to normal BlockGroup overhead + frame_count, mean-
ing that the overhead per frame is about (11+frame_count)/frame_count, if there
are frame_count frames in each lace. Again, if the BLOCKGROUPs are larger than
16kBytes, then the overhead is (13+frame_count)/frame_count.
In other words, the ratio in bytes / frame will always be between about 1,2 and

42

MATROSKA file format

2,5 for audio streams with mainly small frames.

Although XIPH lacing is also defined for larger frames, EBML lacing is usually
more effective then.

3. otherwise: EBML lacing Assuming that the difference in size between 2 con-
secutive frames is smaller than 8191, 1 or 2 bytes are needed to code the size of
each frame, additionally to the normal BLOCKGROUP overhead.

As a result, we get 3 possible estimations:

a) worst case That means, a lace with frame_count frames using EBML lacing will
cause not more than ((11 or 13)+2*frame_count)/frame_count bytes of over-
head per frame.

Example 1: 16 frames per lace, BLOCKGROUP > 16kB, worst case:
overhead <= (13 + 2*16)/16 = 2,8 bytes / frame.
Example 2: 8 frames per lace, BLOCKGROUP < 16kB, worst case:
overhead <= (11 + 2*8)/8 = 3,4 bytes / frame.

b) best case The best case is obviously that 2 consecutive frames differ by not
more than 62 bytes. In that case, one byte is needed to code the size of one frame.
However, the first frame might need to bytes, if it is larger than 126 bytes.

Example 1: 16 frames per lace, BLOCKGROUP > 16kB, best case:
overhead <= (13 + 1*16)/16 = 1,8 bytes / frame.
Example 2: 8 frames per lace, BLOCKGROUP < 16kB, best case:
overhead <= (11 + 1*8)/8 = 2,4 bytes / frame.

c) average case This is the case you need for optimal overhead prediction. Un-
fortunately, the average case depends on the compression format of the corre-
sponding audio track, its bitrate, maybe even the encoder that has been used. The
easiest way to gather data on the average case of EBML lace header overhead is
to simulate the lace results of different files that are likely to be used. Candidates
are MPEG 1/2/4 audio and Vorbis, but not AC3 or DTS.
I have run a simulation with the following file types:
MPEG 1 Layer 3 (128 and 192 kbps, 48 kHz), HE-AAC (224 kbps and 96 kbps,
44,1 kHz), LC-AAC (268 kbps, 44,1 kHz)

The results obtained from those files are discussed on the following pages. The
lace behaviour simulation has been run using mls7 (short for ’matroska lace sim-

7http://www-user.tu-chemnitz.de/~noe/Video-Zeug/mls/

43

http://www-user.tu-chemnitz.de/~noe/Video-Zeug/mls/

MATROSKA file format

ulator’). Note that it would be required to run the simulation and to evaluate the
results as follows for each audio format, in each bitrate, maybe even with each
encoder, for which results as accurate as possible shall be predicted.

The results for the lace header size are as follows:

Lace header overhead per frame @ <x> Frames per lace
Audio Format 4 8 12 16 24 32 48 64 96

MP3 @ 128 kbps 1,39 1,29 1,26 1,24 1,22 1,22 1,21 1,20 1,20
MP3 @ 192 kbps 1,50 1,41 1,38 1,37 1,36 1,35 1,34 1,34 1,33
HE-AAC @ 224 kbps 1,39 1,29 1,25 1,24 1,22 1,21 1,20 1,20 1,20
HE-AAC @ 64 kbps 1,34 1,23 1,19 1,18 1,16 1,15 1,14 1,14 1,13
LC-AAC @ 268 kbps 1,31 1,19 1,16 1,14 1,12 1,11 1,10 1,09 1,09

Applications using libmatroska for MATROSKA file creation are using 8 frames
per lace. As a consequence, the overhead for a track using EBML lacing can be
predicted to an acceptable accuracy if the audio format is known.
As you can also see, larger laces hardly affect the overhead caused by the lace
headers of BLOCKs from a certain size on.

However, larger laces mean fewer BLOCKs and thus fewer BLOCKGROUPs, so the
total overhead per frame, including the overhead caused by overhead outside of
the BLOCKS, is worth a look. Here are the results with the same test files as above

Overhead per frame @ <x> Frames per lace
Audio Format 4 8 12 16 24 32 48 64 96

MP3 @ 128 kbps 4,14 2,67 2,17 1,93 1,68 1,56 1,48 1,41 1,33
MP3 @ 192 kbps 4,25 2,79 2,30 2,06 1,81 1,75 1,61 1,54 1,47
HE-AAC @ 224 kbps 4,14 2,66 2,23 2,05 1,76 1,62 1,48 1,40 1,33
HE-AAC @ 64 kbps 4,09 2,61 2,11 1,86 1,62 1,49 1,40 1,34 1,27
LC-AAC @ 268 kbps 4,06 2,57 2,07 1,82 1,66 1,51 1,37 1,30 1,22

Now lets take the 2nd table and find out how much overhead that means in a real
movie of 2 hours.

In the case of the mp3 files used in that example, one frame lasts 24ms. In the
case of our LC-AAC file, one frame lasts 23,22 ms, and for the HE-AAC file we get
46,44ms.

Thus a file of 2 hours will have the following number of frames:
MP3 - 300,000
LC-AAC - 310,000
HE-AAC - 155,000.

44

MATROSKA file format

First, lets use the default setting of libmatroska (8 frames per lace) and calculate
the overhead a muxing app using libmatroska would cause when muxing those
files into a movie:

• MP3 @ 128: overhead = 300,000 * 2,67 = 801,000 bytes

• MP3 @ 192: overhead = 300,000 * 2,79 = 837,000 bytes

• HE-AAC @ 224: overhead = 155,000 * 2,66 = 412,300 bytes

• LC-AAC @ 268: overhead = 310,000 * 2,57 = 796,700 bytes

With 24 frames per lace, an MP3 block would have a duration of 576ms, an HE-
AAC block even about 1 second. That means, when seeking in a file, an awkward
impression of the audio being missing for a moment could occur. Thus, larger laces
than 1 second are highly discouraged. Nevertheless, let’s analyze the overhead in
our file for laces of 24 and 96 frames each, and compare the overhead to the one
caused by libmatroska. Here is the corresponding table:

Frames per lace
Audio Format 8 24 96

MP3 @ 128 kbps 782kB 492kB 389kB
MP3 @ 192 kbps 817kB 530kB 430kB
HE-AAC @ 224 kbps 402kB 266kB 201kB
HE-AAC @ 64 kbps 395kB 245kB 192kB
LC-AAC @ 268 kbps 778kB 502kB 369kB

As you can see, putting 24 frames in one block, compared to 8 frames, saves
some overhead. However, putting 96 frames in one BLOCK instead of 24 saves
less overhead than 24 compared to 8. As 96 frames per lace will usually cause
uncomfortable seeking, it is recommended not to put more than about 24 frames
in one BLOCK.

45

MATROSKA file format

7.2 Overhead of CLUSTERs

Although most of the overhead is caused by BLOCKGROUPs, the amount of over-
head caused by CLUSTERS themselves is noticeable as well.

Here again the basic layout of a CLUSTER:

Cluster <size>

[CRC32]

TimeCode <size> <timecode>

[PrevClusterSize <size> <prevsize>]

[Position <size> <position>]

{ BlockGroup }

First, some conventions:

• each CLUSTER has a size between 16kB and 2MB

• each CLUSTER may begin between 16MB and 4GB

As typical movie files are designed to fit on 1 or 2 CDs, or 2 or 3 of them fill one
DVD, point 2 will be true for most of the clusters in typical files.

With the abovementioned restrictions on CLUSTERs, the overhead inside one Clus-
ter will be:

• CLUSTER ID + <size>: 7 bytes

• CRC32: 6 bytes

• TIMECODE: 5 bytes

• PREVCLUSTERSIZE: 5 bytes

• POSITION: 5 bytes

• SEEKHEAD entry for CLUSTER: 17 bytes

Depending on the muxing settings, the overhead caused by one CLUSTER will be
between 12 and 45 bytes.

Example: Assuming a size of 1 MB per CLUSTER, that means an overhead rate of
0,001% - 0,005%, or up to 100 kB in a file of 2GB.

46

MATROSKA file format

7.3 Overhead caused by Cues

Here again the layout of a CUEPOINT:

CuePoint <size>

CueTime <size> <time>

{ CueTrackPosition <size>

CueClusterPosition <size> <position>

CueTrack <size> <track>

[CueBlockNumber <size> <block number>]

}

Assuming that a CUEPOINT only points into one certain track, the overhead is:

• CuePoint: 2 bytes

• CueTime: 5 bytes

• CueTrackPosition: 2 bytes

• CueClusterPosition: 6 bytes

• CueTrack: 3 bytes

• CueBlockNumber: 4 bytes

Total: 22 bytes.

Example: Assuming that there is a CUEPOINT each 4 seconds (1 keyframe in 100
frames), this adds on overhead of 0,22 bytes / frame

There can also be CUEPOINTs for audio tracks. In that case, as every frame will be
a keyframe, the number of CUEPOINTs only depends on the muxing application.
Predicting the overhead requires to know its behaviour.

47

MATROSKA file format

8 Links

Matroska pages / software:

http://www.matroska.org

http://haali.cs.msu.ru/mkv/

http://www.alexander-noe.com/

http://de.wikipedia.org/wiki/Matroska

http://www.matroska.info/

http://ld-anime.faireal.net/guide/jargon.matroska-en

48

	Introduction
	EBML - basics
	Unsigned Integer Values of Variable Length (''vint``)
	EBML elements
	Signed Integer Values of Variable Length (svint)
	Data Types

	Matroska files - Top-Level elements
	EBML
	Segment

	EBML - The EBML file header
	Level 1 - Elements inside Segments
	Overview
	SegmentInfo
	SeekHead
	Tracks
	Cluster
	Cues
	Chapters - Editions and ChapterAtoms
	Attachments
	Tags

	Matroska block Layout and Lacing
	Basic layout of a Block
	Lacing

	Overhead of Matroska files
	Overhead of BlockGroups
	Overhead of Clusters
	Overhead caused by Cues

	Links

