
 

1 | P a g e  
 

BGU  ISE-CS-DT                                                                                                        

GPU  Cluster  

User  Guide 
 

 

 

 

3/3/2024 

  



 

2 | P a g e  
 

Contents  
Abstract ......................................................................................................................................................... 4 

Use ................................................................................................................................................................ 6 

Submitting a Job ........................................................................................................................................ 7 

Batch File ............................................................................................................................................... 7 

Allocating Resources ................................................................................................................................. 8 

Interactive vs Non-Interactive Use ........................................................................................................... 8 

Information about the compute nodes .................................................................................................... 9 

List of My Currently Running Jobs ............................................................................................................ 9 

Cancel Jobs ................................................................................................................................................ 9 

Cancel All Pending jobs for a Specific User ........................................................................................... 9 

Running Job Information .......................................................................................................................... 9 

Complete Job Information ........................................................................................................................ 9 

GPU Resources Usage ............................................................................................................................... 9 

Advanced Topics ......................................................................................................................................... 10 

Jupyter Lab .............................................................................................................................................. 10 

Installation .......................................................................................................................................... 10 

Make the Conda Environment Available in Notebook’s Interface ..................................................... 10 

Launch Jupyter Lab ............................................................................................................................. 10 

Release Job Resources from Within Jupyter After Code Has Finished Running ................................. 10 

Tensorboard ........................................................................................................................................ 11 

Working with Notebooks .................................................................................................................... 11 

High Priority Jobs (Golden Tickets) ......................................................................................................... 12 

Allocate Extra RAM/CPUs ....................................................................................................................... 13 

Working with the Compute Node SSD Drive .......................................................................................... 14 

Sending Arguments to sbatch File .......................................................................................................... 15 

Job Arrays ................................................................................................................................................ 16 

Send Name of an Input File to Each Task ............................................................................................ 16 

Read a Line from an Input File for Each Task ...................................................................................... 16 

Email Notifications .............................................................................................................................. 16 

Limiting the Number of Simultaneously Running Tasks from the Job Array ...................................... 17 

Job Dependencies ................................................................................................................................... 18 

CUDA Version Selection .......................................................................................................................... 19 



 

3 | P a g e  
 

IDEs ......................................................................................................................................................... 20 

pyCharm .............................................................................................................................................. 20 

Visual Studio Code .............................................................................................................................. 23 

Docker ..................................................................................................................................................... 27 

Apptainer ............................................................................................................................................ 27 

UDOCKER............................................................................................................................................. 27 

Matlab ..................................................................................................................................................... 29 

julia .......................................................................................................................................................... 30 

R .............................................................................................................................................................. 31 

Command Line .................................................................................................................................... 31 

C# ............................................................................................................................................................ 32 

Install In Conda Environment .............................................................................................................. 32 

Use ...................................................................................................................................................... 32 

gfortran ................................................................................................................................................... 33 

Fiji – Image Analysis Tool ........................................................................................................................ 34 

Appendix ..................................................................................................................................................... 35 

Step by Step Guide for First Use of Python and Conda .......................................................................... 35 

Example for Creating Latest Tensorflow-gpu and Jupyter Lab Environment ..................................... 36 

Conda ...................................................................................................................................................... 37 

Viewing a list of your environments ................................................................................................... 37 

list of all packages installed in a specific environment ....................................................................... 37 

Activating / deactivating environment ............................................................................................... 37 

Create Environment ............................................................................................................................ 37 

Remove Environment ......................................................................................................................... 38 

Update Conda ..................................................................................................................................... 38 

Compare Conda Environments ........................................................................................................... 38 

Transfer Files ........................................................................................................................................... 39 

To / From Your PC ............................................................................................................................... 39 

Get a Public File ................................................................................................................................... 39 

FAQ .......................................................................................................................................................... 40 

Usage ................................................................................................................................................... 40 

Errors ................................................................................................................................................... 42 

 



 

4 | P a g e  
 

Abstract 
 

This document is located here and is being updated from time to time. Please make sure you have the 

most recent version.  

 

 

 

 

 

 

 

https://www.ise.bgu.ac.il/clusters/ISE_CS_DT_GpuClusterUserGuide.pdf


 

5 | P a g e  
 

 

BGU ISE, DT and CS departments have two Slurm clusters – a GPU cluster and a CPU cluster. Slurm is job 

scheduler and resource manager used in most of the greatest super computers. The cluster consists of a 

manager node (also called master node) and several compute nodes (view above illustration). 

The manager node is a shared resource used for launching, monitoring, and controlling jobs and should 

NEVER be used for computational purposes. 

The compute nodes are powerful Linux machines, installed with GPUs. 

The user connects, by SSH, to the manager node and submits jobs that are executed by a compute node. 

A job is allocation of compute resources such as RAM memory, cpu cores, gpu, etc. for a limited time. A 

job may consist of job steps which are tasks within a job. 

In the following pages, Italic writing is reserved for Slurm CLI commands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

6 | P a g e  
 

Use 
 

• Make sure you got admission to the cluster by your IT team. 

• Ssh to the Manager Node: gpu.bgu.ac.il  (132.72.44.112) 

• Use your BGU user name and password to login to the manager node. The default path is to 

your home directory on the storage. 

• Python users: create your virtual environment (Conda Create Environment) on the manager 

node. 

• If you copy files to your home directory, don’t forget about file permissions. E.g. files that need 

execution permissions, do: chmod +x <path to file> 

• Remember that the cluster is a shared resource. Currently, users are trusted to act with 

responsibility in regards to the cluster usage – i.e. release unused allocated resources (with 

scancel), not allocate more than needed resources, erase unused files and datasets, etc. Please 

release the resources even if you are taking a few hours break from interactively using them. 

• Anaconda3 is already installed on the cluster. 

• Should you need tensorflow-gpu package, please do not use pip install to install. Rather use: 

conda install -c anaconda tensorflow-gpu 

• Please read thoroughly, the following page or two. If you are clueless about Linux, Conda and 

the rest of the environment then use the Step by Step Guide for First Use page. 

 

 

  



 

7 | P a g e  
 

Submitting a Job 
In order to submit a job, type: 

sbatch <your batch file name> 

• Conda users: Make sure you submit the job while virtual environment deactivated in the CLI 

(‘conda deactivate’)! 

• Jupyter and IDE users: make sure you release the resources, after you were done, by using 

‘scancel <job_id>’ (Cancel Jobs).  

 

Jupyter: After submitting the job, open the output file, copy the 2nd token (https://132.72...) and 
paste it into your web browser’s address bar. 

 

 

Batch File 
The batch file should look like the following: 

There is an example sbatch file located on cluster here: /storage/sbatch_gpu.example  

#!/bin/bash 

### sbatch config parameters must start with #SBATCH and must precede any other command. to ignore just add another # - like ##SBATCH 

#SBATCH --partition main                        ### partition name where to run a job. Use ‘main’ unless qos is required. qos partitions ‘rtx3090’ ‘rtx2080’ ‘gtx1080’  

#SBATCH --time 0-10:30:00                      ### limit the time of job running. Make sure it is not greater than the partition time limit (7 days)!! Format: D-H:MM:SS 

#SBATCH --job-name my_job                   ### name of the job. replace my_job with your desired job name 

#SBATCH --output my_job-id-%J.out                ### output log for running job - %J is the job number variable 

#SBATCH --mail-user=user@post.bgu.ac.il      ### user’s email for sending job status notifications 

#SBATCH --mail-type=BEGIN,END,FAIL             ### conditions for sending the email. ALL,BEGIN,END,FAIL, REQUEU, NONE 

#SBATCH --gpus=1  ### number of GPUs. Choosing type e.g.: #SBATCH --gpus=gtx_1080:1 , or rtx_2080, or rtx_3090 . Allocating more than 1 requires the IT team’s permission 

##SBATCH --tasks=1  # 1 process – use for processing of few programs concurrently in a job (with srun). Use just 1 otherwise 

 

### Print some data to output file ### 

echo "SLURM_JOBID”=$SLURM_JOBID 

echo "SLURM_JOB_NODELIST"=$SLURM_JOB_NODELIST 

nvidia-smi -L  

 

### Start your code below #### 

module load anaconda              ### load anaconda module 

source activate my_env            ### activate a conda environment, replace my_env with your conda environment 

jupyter lab    ### this command executes jupyter lab – replace with your own command e.g. ‘python my.py my_arg’ 



 

8 | P a g e  
 

Should you need the IT team’s support, in your request remember to state the job id and include the 

sbatch file and the output file. 

 

Allocating Resources 
Since the resources are expensive and in high demand, you should make use of just 1 GPU per job. 

You should use the minimum possible RAM. If your code makes use of 30G then by all means, do NOT 

ask for 50G! (to get an idea of how much RAM was in use, when the job completes, use: sacct -j <jobid> 

--format=JobName,MaxRSS). 

You can only load about 11G to most of the GPUs and 24G to the advanced ones. If your code makes use 

of 60G then revise it. Do not allocate more than 60G! 

4-6 CPUs are sufficient to serve the GPU. Do not allocate more than 6 CPUs per GPU. 

If your job does not require a GPU then submit it to the CPU cluster. 

 

Interactive vs Non-Interactive Use 
There are two ways to work with the cluster. Non-interactive way like fire-and-forget, the user specifies 

the code to be executed and the code shall be executed on a compute node without the user interfering 

the run. The output to terminal will be directed to a file. 

Working interactively with the cluster requires the ssh session to be opened constantly. Once the 

session is closed it won’t be possible to be renewed. This mode is used when working with Jupyter 

notebooks or IDEs such as pyCharm. 

  



 

9 | P a g e  
 

Information about the compute nodes 
sinfo shows cluster information.  

sinfo -Nel 

 NODELIST – name of the node 

S:C:T - sockets:cores:threads 

 

List of My Currently Running Jobs 
squeue --me 

 

Cancel Jobs 
scancel <job id> 

scancel --name <job name> 

Cancel All Pending jobs for a Specific User 
scancel -t PENDING -u <user name> 

 

Running Job Information 
Use sstat. Information about consumed memory: 

sstat -j <job_id> --format=MaxRSS,MaxVMSize 

scontrol show job <job_id> 

 

Complete Job Information 
sacct -j <jobid> 
sacct -j <jobid> --

format=JobName,MaxRSS,AllocTRES,State,Elapsed,Start,ExitCode,DerivedExitcode,

Comment 

MaxRSS is the maximum memory the job needed. 

 

GPU Resources Usage 
sres 

Use it to help you make up your mind about which resources to use, when cluster is used at nearly full 
capacity. 
  



 

10 | P a g e  
 

Advanced Topics 
 

You may Run Jupyter Lab in Udocker .    OR 

 

Jupyter Lab 
 

Installation 
conda install jupyterlab 

 

Make the Conda Environment Available in Notebook’s Interface 
Conda activate your Jupyter installed environment and type: 

python -m ipykernel install --user --name <conda environment> --display-name "<env name to show in 

web browser>" 

e.g.: 

python -m ipykernel install --user --name my_env --display-name "my best env” 

Don’t forget to choose the right kernel while in the notebook. 

 

 

 

 

Launch Jupyter Lab 
Launch jupyter by submitting a job. The sbatch file should like the example Batch File, only replace the 

last line with: jupyter-lab 

About 45 seconds after the job has started running, open the output file and look for a url containing the 

ip substring “132.72”. Copy the whole url and paste it in your web browser’s address bar. 

 

Release Job Resources from Within Jupyter After Code Has Finished Running 
Add the following 3 lines at the end of your code to make the code release the job resources when 

done: 

Import os 



 

11 | P a g e  
 

job_cancel_str="scancel " + os.environ['SLURM_JOBID'] 

os.system(job_cancel_str) 

 

 

 

 

 

Tensorboard 

No Jupyter 

1. Run program and generate logs in my_log_dir (or any other directory) 
2. Wait for program run to end 
3. ssh to the compute node 
4. conda activate my_environment 
5. tensorboard --bind_all --logdir=my_log_dir 
6. Wait for output. Copy paste link to web browser 

 

In Jupyter 

1. In one of the first cells, load the tensorboard extension:  %load_ext tensorboard 
2. After cells generated log files, write in a cell:  !tensorboard --bind_all --logdir=my_log_dir 
3. Wait for output. Copy paste link to web browser 

 

 

Working with Notebooks 
Working with notebooks is interactive. If you closed your browser tab while a notebook’s cell is running, 

it keeps running on the cluster, but you will lose the output. On the other hand, it is not always possible 

to leave your browser open. The simple solutions to that are either to write variable values and results 

into a file or to run the code as a python script instead of using a notebook. 

In Ipython 6.0 and higher you can use %capture cell magic to save all output to file. Use the following 

line as the very first line of the cell:   %%capture cap_out 

Then, in order to save to variable, on the cell’s last line:  var = cap_out.stdout 

If you rather print to file then:   with open('cap_output.txt', 'w') as f: 

      f.write(cap_out.stdout) 

When you come back to the notebook you can print the content of var or cap_out.show() in another 

cell. 

  



 

12 | P a g e  
 

High Priority Jobs (Golden Tickets) 
Some users have the right to prioritize their jobs when the required resources for their job are not 

available. When you give your job high priority, while submitting it, it might preempt another running 

job or several running jobs. Also, the prioritized resources are limited and shared among the group 

users. If a user asks to prioritize a job and the prioritization resources rights are exhausted by the group 

users, then the job will be pending even though there may be available cluster resources. 

The use of high priority jobs is disabled in ‘main’ partition. User should use another partition in 

accordance with group’s rights for certain resources. For example, if the group’s rights include nothing 

more than 4 2080 type GPUs, then a user in the group can only use the rtx2080 partition for high priority 

jobs. 

Usage: 

sbatch --partition=<partition name> --qos=<high priority group name> <batch file name>  

‘high priority group name’ is usually your instructor’s user name. 

‘partition name’ is the name of the partition that goes along with the ‘high priority group name’. It may 

be ‘gtx1080’, ‘rtx2080’, ‘rtx3090’ or ‘rtx6000’, according to the group’s rights. 

Example: 

sbatch --partition=gtx1080 --qos=our_qos my_awesome.sbatch 

When no QoS is needed, do not use partitions other than ‘main’. When using QoS, do not use partition 

‘main’. 

  



 

13 | P a g e  
 

Allocate Extra RAM/CPUs 
If you are sure that your job requires more than the default 24G RAM per gpu: 

In your sbatch file: 

To override default ram: 

#SBATCH --mem=48G 

If you believe that your job requires more than 58G please contact the IT team. 

If you are sure that your job requires more than the default allocation number of cpus: 

To override default cpu number 

#SBATCH --cpus-per-task=16 

 

 

  



 

14 | P a g e  
 

Working with the Compute Node SSD Drive 
You may want to use the compute node local drive for fast access to data.  /scratch directory on the 

compute node is intended for that. 

Add to the sbatch script file: 

#SBATCH --tmp=100G             ### Asks to allocate enough space on /scratch 

Then in users code section: 

export SLURM_SCRATCH_DIR=/scratch/${SLURM_JOB_USER}/${SLURM_JOB_ID} 

cp /storage/*.img $SLURM_SCRATCH_DIR                           ### copy data TO node’s local storage 

mkdir $SLURM_SCRATCH_DIR/testtttt 

… 

some user code 

… 

cp -r $SLURM_SCRATCH_DIR $SLURM_SUBMIT_DIR       ### copy back final results to user home 

or other accessible location 

When job has finished, canceled or failed, ALL data in $SLURM_SCRATCH_DIR is erased! This temp folder 

lives with running jobs only! 

 

 

  



 

15 | P a g e  
 

Sending Arguments to sbatch File 
 

Launch job with command line arguments: 

sbatch --export=ALL,var1='1',var2='hello' my_sbatch_file.sbatch 

 

In the sbatch file, use with ‘$’ e.g.: 

echo $var2 

 

 

 

  



 

16 | P a g e  
 

Job Arrays 
Job array feature allows you to run identical version of your script with different environment variables. 

This is useful for parameter tuning or averaging results over seeds. 

To use job array, add the following line to your Slurm batch file: 

#SBATCH --array=1-10 ### run parallel 10 times 

Adding this will run your script 10 times in parallel, actually creating 10 jobs, where each job gets the 

requested resources, e.g., if you requested 6 CPUs then each job shall get 6 CPUs. The environment 

variable SLURM_ARRAY_TASK_ID for each run will have different values (from 1 to 10 in this case). You 

can then set different parameter setting for each parallel run based on this environment variable. 

Remember to change #SBATCH --output=your_output.out to #SBATCH --

output=output_file_name_%A_%a.out, so the output of each parallel run be directed to a different file. 

%a will be replaced by the corresponding SLURM_ARRAY_TASK_ID for each run. %A will be replaced by 

the master job id. 

To get the above SLURM_ARRAY_TASK_ID variable in python: 

Import sys 

jobid = sys.getenv('SLURM_ARRAY_TASK_ID') 

In R: 

task_id <- Sys.getenv("SLURM_ARRAY_TASK_ID") 

 

Send Name of an Input File to Each Task 
For example, if the input files end in .txt  

file=$(ls *.txt | sed -n ${SLURM_ARRAY_TASK_ID}p) 

myscript -in $file 

 

 

Read a Line from an Input File for Each Task 
SAMPLE_LIST=($(<input.list)) 

SAMPLE=${SAMPLE_LIST[${SLURM_ARRAY_TASK_ID}]} 

 

Email Notifications 
If you would like to receive an email for each task in the array, rather than just for the whole job: 

#SBATCH --mail-type=BEGIN,END,FAIL,ARRAY_TASKS  

 



 

17 | P a g e  
 

Limiting the Number of Simultaneously Running Tasks from the Job Array 
For example, to limit the number of simultaneously running tasks from a 15 jobs job array to 4: 

#SBATCH --array=0-15%4 

 

 

 

  



 

18 | P a g e  
 

Job Dependencies 
Job dependencies are used to defer the start of a job based on other job’s condition. 

sbatch --dependency=after:<other_job_id> <sbatch_script>   ### start job after other_job started 
sbatch --dependency=afterok:<other_job_id> <sbatch_script>   ### start job after other_job ends with 

ok status. E.g. sbatch --dependency=afterok:77:79 my_sbatch_script.sh   -> start after both job 77 
and 79 have finished 

sbatch --dependency=singleton     ### This job can begin execution after the termination of any 
previously launched jobs, sharing the same job name and user 

 

 

  



 

19 | P a g e  
 

CUDA Version Selection 
CUDA drivers are installed on all compute nodes. 

To load a specific version, e.g. 9.0, use the following line in your sbatch file: 

module load cuda/9.0 

 

available versions: 

cuda/7.0   cuda/7.5   cuda/8.0   cuda/9.0   cuda/9.1   cuda/9.2 cuda/10.0 cuda/10.1 cuda/10.2 cuda/11.0 

cuda/11.1 cuda/11.2 cuda/11.3 cuda/11.4 cuda/11.5 cuda/11.6 cuda/11.7 cuda/11.8  cuda/12.0 

 

 

  



 

20 | P a g e  
 

IDEs 

 

pyCharm 
Make sure you have pyCharm Professional installed (free for students/academy people). 

Create an interactive session:  

Ssh to Slurm and copy the script file /storage/pycharm.sh to your working Slurm directory. 

You can modify the following lines at the beginning of the file: 

######################################## 

# USER MODIFIABLE PARAMETERS: 

 PART=main     # partition name 

 TASKS=6       # 6 cores 

 TIME="2:00:00" # 2 hours 

 GPU=1                  # 1 GPU 

 QOS=normal             # QOS Name 

######################################## 

 

Run the script by typing:  . /pycharm.sh 

The output lists the node’s ip address and the job id. 

 

Open pyCharm. 

Go to settings->Project->Project Interpreter 

On the upper right hand corner next to Project Interpreter: press the settings icon, choose ‘add’ 



 

21 | P a g e  
 

 

On the left hand side choose SSH Interpreter. Under ‘New server configuration’ fill in the compute 

node’s ip address (do not fill in the manager node’s ip!!!) and your BGU user name. Click Next. 

You might get a message about the authenticity of the remote host, asking if you want to continue 

connecting. Click ‘yes’. 

Enter your BGU password. Click Next. 

In the ‘Interpreter:’ line, enter the path to the desired interpreter. You can find your environments 

interpreters under /home/<your_user>/.conda/envs/<your_environment>/bin/python. 

 



 

22 | P a g e  
 

Click Finish. 

Give pyCharm some time to upload files to the cluster (upload status is shown on the status bar). 

• If you don’t want to upload your files to the compute node each time you connect to a new 

compute node, you can map the sync folder to your cluster home directory or subdirectory. You 

may also opt not to automatically sync files. These are done in the bottom part of the ‘Add 

python interpreter’ box that is illustrated above. 

 

Make phCharm Continue Running Script When Sessions is Disconnected 

The offline_training.py script in the frame below, launches another script with arguments:  

 train.py  -- size 192 

The output be redirected into result.txt file. 

 

offline_training.py 

 

The result.txt file may be found on the compute node. Once you run offline_training.py In Pycharm, on 

the ‘Python Console’ pane, the next line should show up: 

runfile('/tmp/pycharm_project_<some_number>/<your_offline_running_file>.py', 

wdir='/tmp/pycharm_project_<some_number>') 

The path is the path to the folder in the compute node where your local files are synced. Ssh to the 

compute node and you may find result.txt at that path. 

Remember that once the job ends, that folder is erased! 

  

import os 
import sys 
 
os.system("nohup bash -c '" + 
          sys.executable + " train.py --size 192 >result.txt" + 
          "' &") 

 



 

23 | P a g e  
 

Visual Studio Code 
Create an interactive session:  

Ssh to Slurm and copy the script file /storage/pycharm.sh to your working Slurm directory. 

You can modify the following lines at the beginning of the file: 

######################################## 

# USER MODIFIABLE PARAMETERS: 

 PART=main     # partition name 

 TASKS=6       # 6 cores 

 TIME="2:00:00" # 2 hours 

 GPU=1                  # 1 GPU 

 QOS=normal             # QOS Name 

######################################## 

 

Run the script by typing:  . /pycharm.sh 

The output lists the newly allocated compute node’s ip address and the job id. 

 

Assuming you have VS Code installed and a supported OpenSSH client installed, install the ‘Remote – 

SSH’ pack.  

 

 

Install the Python package, if needed. 

Press the green button (><) on the bottom left corner of the window (under the ‘settings’ button). 

On the middle upper side of the window, choose “Remote – SSH: Connect to host…” and enter 

<your_BGU_user>@<compute_node_ip_address> . Do not fill in the manager node’s ip!!! 



 

24 | P a g e  
 

A new window opens. Enter your BGU password, when prompted. 

 

 

Ctrl+Shift+P for the Command Palette then choose ‘Python: Select Interpreter’ (start typing – it will 

show up) and choose the interpreter from your desired environment 

(~/.conda/envs/<environment>/bin/python). 

 

 

 

To enable interactive work with notebook like cells, Ctrl+Shift+P for the Command Palette then choose 

‘Preferences: Open Workspace Settings’ (start typing – it will show up) and click ‘Python’. Scroll down 

until you find ‘Conda Path’ and fill in 

‘/storage/modules/packages/anaconda3/lib/python3.7/venv/scripts/common/activate’. 



 

25 | P a g e  
 

 

 

 

To solve an errata with finding the actual path of the python script add the following line to launch.json 

file: 

"cwd": "${fileDirname}" 

Refer to the following paragraph for instructions as to how to place it in the file and where. 

 

Run/Debug with Arguments 

Press the Debug symbol on the left vertical ribbon. Click ‘create a launch.json file’ on the left pane. 

Open file launch.json and add another line within ‘configurations like so (example for 4 arguments): 

"args": ["—arg_name1", "value_1", "—arg_name2", "value_2"] 
 

Here is an example: 

    "configurations": [ 

        { 

            "name": "Python: Current File", 



 

26 | P a g e  
 

            "type": "python", 

            "request": "launch", 

            "program": "${file}", 

            "console": "integratedTerminal", 

            "cwd": "${fileDirname}", 

            "args": ["cuda", "100", "exit"] 

        } 

    ] 
 

 

Run Jupyter Notebook 

To avoid SSL certificate error, do the following: 

1. Press the cogwheel then select ‘Settings’, start writing ‘cert’, scroll all the way down and tick 

‘Jupyter: Allow Unauthorized Remote Connection’.  

2. Edit cluster file ~/.vscode/settings.json -> add the line:  "http.systemCertificates": true 
3. Add the following line line at the end of cluster file ~/.bashrc:   

export NODE_TLS_REJECT_UNAUTHORIZED='0' 
 

  



 

27 | P a g e  
 

Docker 

 
Running Docker containers on the cluster may be done using either the preferred Apptainer or 

UDOCKER.  

 

Apptainer 
• Create an interactive job using the following script:  /storage/pycharm.sh 

• Ssh to the compute node that was allocated to you 

• Download your desired container and create a .sif file: 

apptainer build --force --sandbox my_container.sif docker://my_container_page/my_container 

• Run the container (the last argument is a command. In this example, it starts a bash shell):  

apptainer exec my_container.sif /bin/bash 

 

 

UDOCKER 
UDOCKER shall be installed in a Conda environment. 

UDOCKER is not a full Docker replacement and usage is currently limited to pulling and running 

containers. The actual containers should be built using Docker and dockerfiles. 

UDOCKER is not a full Docker replacement and usage is currently limited to pulling and running 

containers. The actual containers should be built using Docker and dockerfiles. 

 

Installation 

o Installation for Python3 udocker. For Python2: remove the “python=3.8” string in the next line. 

conda create -n udocker_env python=3.8 

conda activate udocker_env 

conda install configparser 

pip install udocker 

 



 

28 | P a g e  
 

Test 

For example: test a tensorflow-gpu container. Copy paste the following at the end of an sbatch file: 

Once udocker environment is activated you can use: 

udocker --help – info about commands and way of use 

udocker run --help – help for the ‘run’ command. This can be done also with other commands 

udocker ps – list your containers 

udocker images – list your images 

udocker rm <container name/id> - remove container 

udocker rmi <image id> - remove image 

There is no need to pull the image every time. 

There is no need to create the container if it already exists. No need to setup Nvidia, for that container, 

either, if that was already done. 

 

Run Jupyter Lab in Udocker 

• After Error! Reference source not found. of a udocker conda environment as explained, copy 

file /storage/udocker_jup.sbatch to your directory 

• Modify the environment name and the docker image as desired. 

• Run: sbatch udocker_jup.sbatch 

• Open the output file and grab the port number from the first lines. Grab the token from the last 

lines of the file (it may take some time before the image is downloaded and the token displayed. 

For the example image it took 15 minutes) 

• Replace the port number of the token with the port number you grabbed. 

• Replace the hostname with its IP address (you can ping to it to have its IP address displayed) 

• Paste the modified token in your favorite web browser’s address bar and hit <Enter>  

module load anaconda 

source activate udocker_env                         

udocker pull tensorflow/tensorflow:2.8.0rc0-gpu-jupyter   # pull image 

udocker create --name=tf_gpu_jup28 tensorflow/tensorflow:2.8.0rc0-gpu-jupyter   # create and name container 

udocker setup --nvidia tf_gpu_jup28    # setup GPU support 

udocker run tf_gpu_jup28 nvidia-smi    # run container with command ‘nvidia-smi’ 

# mount your code directory to container’s /home directory and run your python code 

udocker run -v /home/my_user/my_code_dir:/home tf_gpu_jup28 python3 /home/my_code.py 



 

29 | P a g e  
 

Matlab 
 

Run Matlab GUI straight from terminal (no need for sbatch): 

module load matlab  

srun --x11 --nodes=1 --mem=24G --cpus-per-task=4 --gpus=1 --partition=main matlab -desktop -sd ~ 

 

For Matlab 2021A: 

module load matlab/R2021A 

srun --x11 --nodes=1 --mem=24G --cpus-per-task=4 --gpus=1 --partition=main --time=01:00:00 matlab -

desktop -sd ~ 

 

Make sure your ssh terminal supports x11 forwarding! 

 

Send Matlab script to execute as batch by headless Matlab: 

srun --nodes=1 --mem=24G --cpus-per-task=4 --gpus=1 --partition=main matlab -nosplash -nodisplay -

nodesktop -sd ~ -batch "my_matlab_script" 

Headless Matlab may be run by sbatch as well. 

 

•  Cluster params:  

• --nodes – number of allocated cluster nodes (must be 1)  
• --mem=24G – memory allocation  
• --cpus-per-task – number of CPUs  
• --gpus – number of GPUs  
• --partition – partition name 

•  Matlab params:  

• -desktop – run matlab in GUI mode  
• -sd – matlab working directory (user's home directory) 

• Check allocation in Matlab console 

 gpuDeviceCount 

 feature('numcores') 



 

30 | P a g e  
 

julia 
 

First time installation: 

julia -e 'using Pkg;Pkg.add("IJulia")' 

 

The Julia kernel and Julia console will be available in Jupyter Notebook. 

  



 

31 | P a g e  
 

R 
 

Command Line 
 

• Create an R conda environment. E.g.:  conda create -n r_env r-essentials r-base 

• Copy the following file:  /storage/pycharm_mem.sh 

• Edit the first section of the above file to suit your demands. 

• Execute the file:  ./pycharm_mem.sh 

• Wait for the resources to be allocated. 

• Copy the compute node’s ip address from the script output. 

• SSH to the compute node. 

• Type:  conda activate r_env 

• Type:  R 

 

  



 

32 | P a g e  
 

C# 
 

Install In Conda Environment 
Activate your conda environment. 

conda install -c conda-forge dotnet-sdk 

 

Use 

• Use ./pycharm.sh script (see pyCharmError! Reference source not found.) to allocate a compute 

node. 

• ssh to the compte node 

• Activate environment:  conda activate <your dotnet environment name> 

• Create a new dotnet project:  dotnet new console -o myApp 

• cd myApp 

• Run:  dotnet run 

 

  



 

33 | P a g e  
 

 

gfortran 
 

To enable gfortran 9, enable devtoolset: 

scl enable devtoolset-9 bash 

 

To disable it: 

exit 

 

   



 

34 | P a g e  
 

Fiji – Image Analysis Tool 
 

You can read about Fiji here: https://fiji.sc/ 

Run Fiji on the cluster 

srun --x11 --gpus=1 --partition=gtx1080 /storage/apps/Fiji/ImageJ-linux64 

Make sure you use ssh terminal that supports X11 forwarding! 

 

  

https://fiji.sc/


 

35 | P a g e  
 

Appendix 
 

Step by Step Guide for First Use of Python and Conda 
 

1. Make sure you are connected through VPN or from within BGU campus. 

2. Download a SSH terminal (https://mobaxterm.mobatek.net/download.html). 

3. Open the SSH terminal and start a SSH session (port 22). The remote host is 132.72.44.112 (or 

gpu.bgu.ac.il). The username is your BGU username and the password is your BGU password. 

4. Once logged into the cluster’s manager node, create your Conda environment. E.g.:  

conda create -n my_env python=3.10 

5. conda activate my_env 

6. pip install <whatever package you need> or conda install… Should you need tensorflow-gpu 

package, please do not use pip install to install. Rather use: conda install -c anaconda 

tensorflow-gpu 

• It is advisable to use pip install for pytorch. E.g.:  

pip3 install torch torchvision torchaudio --extra-index-url 

https://download.pytorch.org/whl/cu116 

7. conda deactivate 

8. Copy the sbatch file (job launching file) by typing (do not forget the dot at the end!):  

cp /storage/sbatch_gpu.example .  

9. Edit the file using nano editor: nano sbatch_gpu.example 

10. You may change the job name by replacing my_job with your own string. 

11. Go to the last lines of the file. ‘source activate my_env’: if needed, replace ‘my_env’ with your 

environment name that you have created on paragraph 4. 

12. ‘jupyter lab’ is the program to run on the compute node – it will start a jupyter program that you 

may use (refer to Jupyter Lab paragraph). You may use another command instead of ‘jupyter 

lab’, such as ‘python my_script.py my_arg’ 

13. Press ‘<ctrl>+x’, then ‘y’ and ‘<Enter>’ to save and leave the file. 

14. Launch a new job: sbatch sbatch_gpu.example 

15. You should, instantly, get the job id. 

16. To see the status of your job(s) type squeue --me 

17. Under ‘ST’ (state) column if the state is ‘PD’ then the job is pending. If the the state is ‘R’ then 

the job is running and you can look at the output file for initial results (jupyter results will take 

up to a minute to show): less job-<job id>.out 

18. If you asked for jupyter, then copy the 2nd link (which starts with ‘https://132.72.’). Copy the 

whole link, including the token, and paste it in the address bar of your web browser. Make the 

browser advance (twice) in spite of its warnings. 

 

 

https://mobaxterm.mobatek.net/download.html


 

36 | P a g e  
 

 

Example for Creating Latest Tensorflow-gpu and Jupyter Lab Environment 
 

In order to get the latest Tensorflow version, you need to install it on a compute node (and not on the 

master node!) 

• Copy the interactive job submitting script:  cp /storage/pycharm.sh ~ 

• Edit it. Make sure “GPU” value (between the 2 long lines of ‘#’) is set to ‘1’. 

• Submit an interactive job:  ~/pycharm.sh 

• Wait for the job to run. Once you have the compute node’s IP address, ssh to that address. 

• Create new environment named ‘tfgpu_jup’, with tensorflow-gpu:  conda create -n 
tfgpu_jup 

• Activate new env:  conda activate tfgpu_jup 

• Install tensorflow:  conda install conda-forge::tensorflow-gpu 

• Install Jupyter Lab:  conda install -c conda-forge jupyterlab 

• Make the Conda Environment Available in Notebook’s Interface:   python -m ipykernel 
install --user --name tfgpu_jup --display-name “tfgpu_jup” 

• Deactivate new environment:   conda deactivate 

• Submit a new job request: sbatch sbatch_gpu.example 

• wait about a minute and open the output file. Copy the whole middle token (address 132.72.X.Y) 

and paste in your favorite web browser’s address bar. 

• Confirm advancing in spite of the security warning. 

• Create a new notebook. 

• Select tfgpu_jup kernel from the upper right corner of the notebook. 

 

 

 

 

 

  



 

37 | P a g e  
 

Conda 
 

Viewing a list of your environments 
conda env list 

 

list of all packages installed in a specific environment 
conda list 

 

to see a not activated environment 

conda list -n <my_env> 

  

Activating / deactivating environment 
source activate <my_env> 

or (depends on conda version) 

conda activate <my_env> 

conda deactivate 

 

Create Environment 
conda create -n <my_env> 

 

with specific python version 

conda create -n <my_env> python=3.4 

 

with specific package (e.g. scipy) 

conda create -n <my_env> scipy 

Or 

conda create -n <my_env> python 

conda install -n <my_env> scipy 

 

with specific package version 

conda create -n <my_env> scipy=0.15.0 

 

with multiple packages 

conda create -n <my_env> python=3.4 scipy=0.15.0 astroid babel 

 



 

38 | P a g e  
 

Remove Environment 
conda env remove --name myenv 

 

Update Conda 
conda update conda 

 

Compare Conda Environments 
The following python (2) script compares 2 conda environments and can be found in ‘/storage’ 

directory.  

python conda_compare.py <environment1> <environment2> 

  



 

39 | P a g e  
 

Transfer Files 

 

To / From Your PC 
You can use WinSCP to transfer files, or if you use MobaXTerm then it has its own file browser. 

In Windows, SISE department students can also map their cluster home directory like so: 

1. connect to BGU vpn  

2. open file explorer.  

3. on the left pane right click "This PC".  

4. on the menu that will open, click on "map network drive".  

5. choose a drive letter or leave the default letter in place.  

6. in the "Folder" field write down: \\132.72.65.201\usr_home\<your BGU username>  

7. you can choose to check or uncheck "Reconnect at sign-in".  

8. you must check "Connect using different credentials".  

9. click on "Finish" button.  

10. a new authentication window will open, in the Username field write down: bgu-users\<your BGU 

username>  

11. in the Password field write down your BGU password. 

 

Get a Public File  

from AWS s3 
 

Use wget: 

wget --no-check-certificate --no-proxy 'https://<your bucket 

name>.s3.amazonaws.com/<path and name of file>' 

 

from Google Drive 
 

Use wget: 

wget --load-cookies /tmp/cookies.txt 

https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-

cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 

'https://docs.google.com/uc?export=download&id=<YOUR FILE ID>' -O- | sed -rn 

's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=<YOUR FILE ID> 

where <YOUR FILE ID> is the alphanumeric long string that shows when you right click the file in Chrome 

and view the file’s link.  

 

  

https://docs.google.com/uc?export=download&confirm=$(wget%20--quiet%20--save-cookies%20/tmp/cookies.txt%20--keep-session-cookies%20--no-check-certificate%20'https://docs.google.com/uc?export=download&id=%3cYOUR%20FILE%20ID%3e'%20-O-%20|%20sed%20-rn%20's/.*confirm=(%5b0-9A-Za-z_%5d+).*//1/n/p')&id=1g89WgFHMRbr4QrvA0ngh26PY081Nv3lx
https://docs.google.com/uc?export=download&confirm=$(wget%20--quiet%20--save-cookies%20/tmp/cookies.txt%20--keep-session-cookies%20--no-check-certificate%20'https://docs.google.com/uc?export=download&id=%3cYOUR%20FILE%20ID%3e'%20-O-%20|%20sed%20-rn%20's/.*confirm=(%5b0-9A-Za-z_%5d+).*//1/n/p')&id=1g89WgFHMRbr4QrvA0ngh26PY081Nv3lx
https://docs.google.com/uc?export=download&confirm=$(wget%20--quiet%20--save-cookies%20/tmp/cookies.txt%20--keep-session-cookies%20--no-check-certificate%20'https://docs.google.com/uc?export=download&id=%3cYOUR%20FILE%20ID%3e'%20-O-%20|%20sed%20-rn%20's/.*confirm=(%5b0-9A-Za-z_%5d+).*//1/n/p')&id=1g89WgFHMRbr4QrvA0ngh26PY081Nv3lx
https://docs.google.com/uc?export=download&confirm=$(wget%20--quiet%20--save-cookies%20/tmp/cookies.txt%20--keep-session-cookies%20--no-check-certificate%20'https://docs.google.com/uc?export=download&id=%3cYOUR%20FILE%20ID%3e'%20-O-%20|%20sed%20-rn%20's/.*confirm=(%5b0-9A-Za-z_%5d+).*//1/n/p')&id=1g89WgFHMRbr4QrvA0ngh26PY081Nv3lx


 

40 | P a g e  
 

FAQ 

Usage 
❖ Can I ssh the cluster when I am away from university? 

This can be done by using VPN.  

❖ I uploaded files to the cluster, while logged in to the manager node, can a compute node find 

these files? 

The files were uploaded to the storage. All cluster nodes have access to your files on the. 

storage 

❖ I need sudo to install library X / tool Y 

Install it in your conda environment, using ‘conda install’ or ‘pip install’ 

❖ How to tell which GPU was allocated for the job? 

Write ‘nvidia-smi -L’ either in the sbatch file or ssh to the compute node and run it there. 

❖ Performance seems slow when using Tensorflow  

Make sure you have ‘tensorflow-gpu’ package in the Conda environment you use. 

❖ Even though I installed tensorflow-gpu, it does not recognize any gpu. 

Please do not use pip install to install tensorflow-gpu. Rather use: conda install -c anaconda 

tensorflow-gpu 

❖ Does a Jupyter notebook keep on running when I close the browser?   

Please refer to Working with Notebooks. 

❖ When running Jupyter lab on my browser, kernel shows as disconnected?   

Try using another browser or reset browser to factory defaults. Sometimes browser add ons 

may prevent the browser from properly communicating with kernel. 

❖ With Mac OS, when opening Jupyter lab on Chrome or Safari browsers, security settings prevent 

the notebook from loading. 

Use Firefox or Maxthon browsers. 

❖ Is Git installed on the cluster? 

Git is installed on the manager node. 

❖ Why is my job pending? What’s the meaning of REASON? 

PartitionTimeLimit – the ‘time’ variable in your sbatch file is set to time limit greater than the 

partition’s maximum possible time limit (usually 7 days). 

Resources – currently, the cluster has insufficient resources to fulfill your job.  



 

41 | P a g e  
 

Priority – job is queued behind higher priority jobs. You may have exceeded your group QoS 

priority resources – You can launch a job with no QoS priority or wait for QoS priority resource 

to be available. 

QOSMaxJobsPerUserLimit – you have reached the maximum allowed concurrent jobs for the 

requested partition. 

MaxGRESPerAccount – your requested high priority job exceeds the limit of  concurrent gpus 

allocated to your account. Job is waiting for golden card to be available. 

❖ In python app I print some run time info but they are buffered and being printed all at once. 

To use unbuffered print to output:  python -u my_py_app.py 

u – unbuffered. 

Another option is to add the following line to your sbatch scripy:  

  export PYTHONUNBUFFERED=TRUE 

Please note it has performance toll, so it is not advisable to use it when not debugging. 

❖ Tensorflow does not recognize GPU 

Make sure the tensorflow version supports GPU. Make sure libraries and driver versions match. 

VERSION PYTHON  COMPILER 
BUILD 
TOOLS CUDNN CUDA 

tensorflow-2.15.0 3.9-3.11 Clang 16.0.0 Bazel 6.1.0 8.9 12.2 

tensorflow-2.14.0 3.9-3.11 Clang 16.0.0 Bazel 6.1.0 8.7 11.8 

tensorflow-2.13.0 3.8-3.11 Clang 16.0.0 Bazel 5.3.0 8.6 11.8 

tensorflow-2.12.0 3.8-3.11 GCC 9.3.1 Bazel 5.3.0 8.6 11.8 

tensorflow-2.11.0 3.7-3.10 GCC 9.3.1 Bazel 5.3.0 8.1 11.2 

tensorflow-2.10.0 3.7-3.10 GCC 9.3.1 Bazel 5.1.1 8.1 11.2 

tensorflow-2.9.0 3.7-3.10 GCC 9.3.1 Bazel 5.0.0 8.1 11.2 
tensorflow-2.8.0 3.7-3.10 GCC 7.3.1 Bazel 4.2.1 8.1 11.2 
tensorflow-2.7.0 3.7-3.9 GCC 7.3.1 Bazel 3.7.2 8.1 11.2 
tensorflow-2.6.0 3.6-3.9 GCC 7.3.1 Bazel 3.7.2 8.1 11.2 
tensorflow-2.5.0 3.6-3.9 GCC 7.3.1 Bazel 3.7.2 8.1 11.2 
tensorflow-2.4.0 3.6-3.8 GCC 7.3.1 Bazel 3.1.0 8.0 11.0 
tensorflow-2.3.0 3.5-3.8 GCC 7.3.1 Bazel 3.1.0 7.6 10.1 
tensorflow-2.2.0 3.5-3.8 GCC 7.3.1 Bazel 2.0.0 7.6 10.1 
tensorflow-2.1.0 2.7, 3.5-3.7 GCC 7.3.1 Bazel 0.27.1 7.6 10.1 
tensorflow-2.0.0 2.7, 3.3-3.7 GCC 7.3.1 Bazel 0.26.1 7.4 10.0 
tensorflow_gpu-1.15.0 2.7, 3.3-3.7 GCC 7.3.1 Bazel 0.26.1 7.4 10.0 
tensorflow_gpu-1.14.0 2.7, 3.3-3.7 GCC 4.8 Bazel 0.24.1 7.4 10.0 

 

To load cuda driver, write “module load cuda/xx.x” where module anaconda is loaded in your 

job submission file. xx.x is the cuda version to load. Refer to CUDA Version Selection. 



 

42 | P a g e  
 

 

❖ My job requires a lot of RAM, what can I do? 

Find the reason for consuming so much RAM. For example if you are working with a pictures 

dataset and the preprocessing of the dataset consumes a lot of RAM, then use pointers to 

pictures for preprocessing the pictures themselves, if possible, as demonstrated here: 
https://www.kaggle.com/itslek/transfer-learning-keras-flowers-sf-dl-v1 

❖ How to profile python memory usage? 

https://www.pluralsight.com/blog/tutorials/how-to-profile-memory-usage-in-python 

❖ Using Bert consumes a lot of RAM and either OOM errors occur or a lot of RAM needs to be 

allocated. 

Follow the following links to learn how to reduce memory consumption when working with Bert: 

github.com/google-research/bert#out-of-memory-issues 

stackoverflow.com/questions/59617755/training-a-bert-based-model-causes-an-outofmemory-

error-how-do-i-fix-this 

 

 

Errors 
❖ “RuntimeError: CUDA out of memory. Tried to allocate 448.00 MiB (GPU 0; 10.73 GiB total 

capacity; 9.64 GiB already allocated; 124.69 MiB free; 195.47 MiB cached)” 

Or “Resource exhausted: OOM when allocating tensor with shape…” 

The problem arises when trying to allocate more GPU memory than available (e.g. 10.73GiB for 

Nvidia 2080). Try to reduce the size of the batch you load to the GPU in order to fit the GPU’s 

available memory. 

If you have done the above and still get this error, it may be related to the code grabbing more 

memory than you realize.  

Working with Tensorflow – Tensorflow grabs 95% of the memory as default (to avoid 

performance costly dynamic allocation), so when trying to allocate more memory (sometimes 

from another process) you will get this error.  

To configure Tensoflow to allocate growing amount of memory (flexible but performance costly) 

(Tensoflow1 apis. For Tensoflow2 there is a compatibility module explained at the end of the 

paragraph): 

config = tf.ConfigProto() 
config.gpu_options.allow_growth = True 
session = tf.Session(config=config, ...) 
 

https://www.kaggle.com/itslek/transfer-learning-keras-flowers-sf-dl-v1
https://github.com/google-research/bert#out-of-memory-issues
https://stackoverflow.com/questions/59617755/training-a-bert-based-model-causes-an-outofmemory-error-how-do-i-fix-this
https://stackoverflow.com/questions/59617755/training-a-bert-based-model-causes-an-outofmemory-error-how-do-i-fix-this


 

43 | P a g e  
 

Or: 
tf.config.experimental.set_memory_growth(physical_devices[0], True) 
 
 
To configure Tensoflow to allocate another fixed size (e.g. 1/3) of fraction of memory per 

process: 

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333) 
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) 
 

For Tensoflow2 compatibility module replace tf.GPUOptions with tf.compat.v1.GPUOptions, 

replace tf.ConfigProto with tf.compat.v1.ConfigProto and so on. 

 

Working with pyTorch – a) sometimes you leave a reference to a tensor(s) in Cuda. That will 

make cuda keep the memory for the tensor and if you are iterating then it accumulates (refer to 

responder ‘samkellerhals’ in https://github.com/pytorch/pytorch/issues/16417).  b) Use 

detach() if appropriate (to remove the graph associated with the tensor if you don’t use gradient 

descent).  c) You can also use the garbage collector and cache emptying, in your code, as 

follows: 

del variables 
gc.collect() 

torch.cuda.empty_cache() 

In order to have a readable summary of allocation of memory in the gpu use: 

torch.cuda.memory_summary(device=None, abbreviated=False) 
 
More reading: https://pytorch.org/docs/stable/notes/faq.html 

❖ Running Jupyter in VS Code I get the following error: Failed to start the 

Kernel. request to https://some.ip.and:port/api/sessions?a_number failed, 

reason: self signed certificate. View Jupyter log for further details. 

Make sure you use the settings described in chapter Run Jupyter Notebook. 

❖ I installed wget python package like so: ‘conda install wget’, and I get ‘ModuleNotFoundError: 

No module named wget’ error. 

Use: pip install wget 

❖ In my conda environment I installed a package which is a python wrapper of binary code. 

Running a code that uses it, with Jupyter notebook was successful, but running the very same 

code from pycharm, failed with the message ‘NotImplementedError: "…" does not appear to be 

https://github.com/pytorch/pytorch/issues/16417
https://pytorch.org/docs/stable/notes/faq.html
command:jupyter.viewOutput


 

44 | P a g e  
 

installed or on the path, so this method is disabled.  Please install a more recent version of … 

and re-import to use this method.’. 

This happens because with pycharm, the environment variable ‘PATH’ remains unchanged, 

unlike with Jupyter that when choosing conda environment, ‘PATH’ gets modified. The solution 

is to modify ‘PATH’ prior to importing the wrapper package in your python code, as follows 

(replace <your_user> and <your_env> with yours): 

import os 
os.environ['PATH'] = 
'/home/<your_user>/.conda/envs/<your_env>/bin:/storage/modules/packages/anacon
da3/bin:/storage/modules/bin:/storage/modules/packages/anaconda3/condabin:/usr
/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/storage/modules/packages/matlab
/R2019B/bin:/home/<your_user>/.local/bin:/home/<your_user>/bin' 
import <python wrapper package> 
… 

❖ Using GPU 3090 with tensorflow, I get the following error:  InternalError: CUDA runtime implicit 

initialization on GPU:0 failed. Status: device kernel image is invalid 

You need tensorflow > 2.2. 

❖ Using GPU 3090 with pytorch, I get the following error:  NVIDIA GeForce RTX 3090 with CUDA 

capability sm_86 is not compatible with the current PyTorch installation. 

The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70. 

If you want to use the NVIDIA GeForce RTX 3090 GPU with PyTorch… 

Pip upgrade your torch version:  pip3 install torch==1.10.1+cu113 torchvision==0.11.2+cu113 

torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html 

❖ VSCode error: Could not establish connection to… The VS Code Server failed to start SSH 

This is an SSL certificate error on the client side. Make sure SSH package of VS Code is updated 

and follow the instructions described in chapter Run Jupyter Notebook.  

❖ VSCode error: windows remote host key has changed port forwarding is disabled 

OR: Could not establish connection to “x.x.x.x”: Remote host key has changed, port forwarding is 

disabled. 

OR: visual studio code could not establish connection… the process tried to write to a 

nonexistent pipe 

These errors mean that the remote host key does not match the key saved locally, anymore. The 

keys mismatch may be a result of reinstalling the remote host. If that is the reason, go to 



 

45 | P a g e  
 

C:\Users\<your Windows user>\.ssh\ and change the names of the files. Windows will create 

new updated files instead. 

❖ VSCode glibc errors when connecting to cluster 

New versions from 1.86 on require advanced glibc versions which are currently not available for 

the cluster. Uninstall VSCode and install VSCode 1.85 from here: 

update.code.visualstudio.com/1.85.2/win32-x64-user/stable 

Then, immediately, disable auto update by: File -> settings, type “update” and change “Update: 

Mode” value to “none”. See picture below. 

 

 

❖ NotImplementedError: Cannot convert a symbolic Tensor… to a numpy array 

Downgrade numpy version to 1.19:  pip install numpy==1.19.5 
 

❖ The sbatch file that activates Jupyter, no longer prints the 132.72… ip address to the output file 

You need to upgrade to jupyterlab version 3, as version 2 is no longer supported. 

❖ When I run the Fiji srun command, I get the following message “srun: error: No DISPLAY variable 

set, cannot setup x11 forwarding.“ 

This happens when you use ssh terminal that does not support x11 forwarding. Use a terminal 

that does support it, such as MobaXterm. 

❖ Output file shows: slurmstepd: error: _is_a_lwp: open() /proc/60830/status failed: No such 

file or directory 

It’s a rare Slurm accounting error message that should not affect the job. Just ignore it. 

https://update.code.visualstudio.com/1.85.2/win32-x64-user/stable
https://stackoverflow.com/questions/58479556/notimplementederror-cannot-convert-a-symbolic-tensor-2nd-target0-to-a-numpy


 

46 | P a g e  
 

❖ I get RuntimeError: CUDA error: no kernel image is available for execution on the device CUDA 

kernel errors might be asynchronously reported at some other API call,so the stacktrace below 

might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1 

This error is a result of incompatible pyTorch version. Update installed version, e.g.:  pip 
install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -

f https://download.pytorch.org/whl/torch_stable.html 

❖ Using pytorch I get: RuntimeError: CUDA error: device-side assert triggered 

Run your tensors on CPU instead of GPU and set CUDA_LAUNCH_BLOCKING=1 to get the exact 

location and nature of the error. Usually the problem arises as a result of out of range indexing. 

❖ When connecting with PyCharm to remote server, I get ‘FileNotFoundError: [Errno 2] No such 

file or directory: '/tmp/pycharm_project_xxx/Main.py'’ 

After finishing a job with PyCharm, saved data in PyCharm: 

(1) Tools -> Deployment -> Configuration -> Remove All IP Cache  

(2) Tools -> Deployment -> Configuration -> SSH Configuration -> three  

dots... -> Remove All IP Cache  

(3) File -> Invalidate Caches and Restart  

(4) Interpreter -> Show All -> Remove All IP Cache 

❖ I use Python, yet I get “srun: error: … Segmentation fault (core dumped)” 

This is typical error, showing when the Conda environment gets corrupted. Create a new 

environment. 

❖ Got an error like this: libstdc++.so.6: version `GLIBCXX_3.4.26' not found 

If you already installed libgcc in your conda environment (like so: conda install libgcc), add the 

following line to your sbatch script right after the #SBATCH lines (replace ‘username’ and 

‘my_env’ with yours): 

export LD_LIBRARY_PATH=/home/username/.conda/envs/my_env/lib:$LD_LIBRARY_PATH 

❖ Using Ninja introduced the following errors "You're running a too old version of GCC. We need 

GCC 5 or later." and “You need C++14 to compile PyTorch” 

After login to the cluster, type: 

scl enable devtoolset-9 bash 

Add the following line to your sbatch file, right after the ‘#SBATCH’ lines: 

export LD_LIBRARY_PATH=/home/<your username>/.conda/envs/<your conda environment 

name>/lib:$LD_LIBRARY_PATH 

 

 

 

https://download.pytorch.org/whl/torch_stable.html

