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for machine learning enablement 

  

Summary 

QKDN is expected to maintain stable operations and meet the requirements of various cryptographic 

applications efficiently. Due to the advantages of machine learning (ML) related to autonomous 

learning, ML can help to overcome the challenges of QKDN in terms of quantum layer performances, 

key management layer performances and QKDN control and management efficiency. Based on the 

functional requirements and architecture of QKDN in [ITU-T Y.3801] and [ITU-T Y.3802], this 

recommendation is to specify one possible set of functional requirements and a possible architecture 

for ML-enabled QKDN (QKDNml), including the overview, the functional requirements, 

architecture and operational procedures of QKDNml. 
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Draft new Recommendation ITU-T Y.3814 (ex. Y.QKDN-ml-fra) 

 

Quantum key distribution networks - functional requirements and architecture 

for machine learning enablement 

1. Scope 

This Recommendation specifies one possible set of functional requirements and a possible 

architecture for ML-enabled QKDN (QKDNml). 

In particular, the Recommendation includes:  

- Overview of QKDNml; 

- Functional requirements of QKDNml; 

- Functional architecture of QKDNml; 

- Operational procedures of QKDNml. 

This draft Recommendation specifies requirements for generic data collection. It does not specify the 

requirements for specific data related to Personal Identifiable Information (PII). 

2. References 

[ITU-T Y.3800] Recommendation ITU-T Y.3800 (2019), Framework for Networks to support 

Quantum Key Distribution. 

[ITU-T Y.3801] Recommendation ITU-T Y.3801 (2020), Functional requirements for quantum key 

distribution networks. 

[ITU-T Y.3802] Recommendation ITU-T Y.3802 (2020), Functional architecture of the Quantum 

Key Distribution network. 

[ITU-T Y.3172] Recommendation ITU-T Y.3172 (2019), Architectural framework for machine 

learning in future networks including IMT-2020. 

3. Terms and definitions 

3.1. Terms defined elsewhere 

This recommendation uses the following terms defined elsewhere: 

3.1.1 key manager (KM) [ITU-T Y.3800]: A functional module located in a quantum key 

distribution (QKD) node to perform key management in the key management layer.  

3.1.2 machine learning (ML) [ITU-T Y.3172]: processes that enable computational systems to 

understand data and gain knowledge from it without necessarily being explicitly programmed. 

NOTE - Definition adapted from [b-ETSI GR ENI 004]. 

3.1.3 machine learning function orchestrator (MLFO) [ITU-T Y.3172]: a logical orchestrator 

that can monitor and manage the nodes in a machine learning pipeline. 

3.1.4 machine learning model [ITU-T Y.3172]: model created by applying machine learning 

techniques with data to learn from. 

NOTE 1 – A machine learning model is used to generate predictions on new (untrained) data. 

NOTE 2 – A machine learning model may be encapsulated in a deployable fashion in the form of a 

software or hardware component. 
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NOTE 3 – Machine learning techniques include learning algorithms (e.g. learning the function that 

maps input data attributes to output data). 

3.1.5 machine learning pipeline [ITU-T Y.3172]: a set of logical nodes, each with specific 

functionalities, that can be combined to form a machine learning application in a 

telecommunication network. 

NOTE – The nodes are entities that are managed in a standard manner and can be hosted in a 

variety of network functions.  

3.1.6 machine learning sandbox [ITU-T Y.3172]: an environment in which machine learning 

models can be trained, verified and their effects on the network analysed. 

NOTE – A machine learning sandbox is designed to prevent a machine learning application from 

affecting the network, or to restrict the usage of certain machine learning functionalities. 

3.1.7 quantum key distribution (QKD) [b-ETSI GR QKD 007]: Procedure or method for 

generating and distributing symmetrical cryptographic keys with information theoretical 

security based on quantum information theory. 

3.1.8 quantum key distribution link (QKD link) [ITU-T Y.3800]: A communication link between 

two quantum key distribution (QKD) modules to operate the QKD.  

NOTE – A QKD link consists of a quantum channel for the transmission of quantum signals, and a 

classical channel used to exchange information for synchronization and key distillation. 

3.1.9 quantum key distribution module (QKD module) [ITU-T Y.3800]: A set of hardware and 

software components that implements cryptographic functions and quantum optical processes, 

including quantum key distribution (QKD) protocols, synchronization, distillation for key 

generation, and is contained within a defined cryptographic boundary.  

NOTE – A QKD module is connected to a QKD link, acting as an endpoint module in which a key is 

generated. These are two types of QKD modules, namely, the transmitters (QKD-Tx) and the 

receivers (QKD-Rx). 

3.1.10 quantum key distribution network (QKDN) [ITU-T Y.3800]: A network comprised of two 

or more quantum key distribution (QKD) nodes connected through QKD links. 

NOTE – A QKDN allows sharing keys between the QKD nodes by key relay when they are not 

directly connected by a QKD link. 

3.1.11 quantum key distribution network controller (QKDN controller) [ITU-T Y.3800]: A 

functional module, which is located in a quantum key distribution (QKD) network control 

layer to control a QKD network.  

3.1.12 quantum key distribution network manager (QKDN manager) [ITU-T Y.3800]: A 

functional module, which is located in a quantum key distribution (QKD) network 

management layer to monitor and manage a QKD network.  

3.1.13 quantum key distribution node (QKD node) [ITU-T Y.3800]: A node that contains one or 

more quantum key distribution (QKD) modules protected against intrusion and attacks by 

unauthorized parties. 

NOTE – A QKD node can contain a key manager (KM). 

3.2. Terms defined in this Recommendation 

This chapter defines all the terms used in this recommendation. 

3.2.1 Machine learning-enabled quantum key distribution network (ML-enabled QKDN): A 

quantum key distribution network (QKDN) that extends or enhances its functionalities 

enabled by machine learning (ML) capabilities to achieve different objectives. 
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NOTE – ML is an optional functionality for QKDN. 

NOTE – Examples of different objectives are specified in [b-ITU-T Y-Suppl.70]. 

4. Abbreviations and acronyms 

This chapters describes all the abbreviations and acronyms used in the recommendation. 

C  Collector (ML pipeline) 

D  Distribution (ML pipeline) 

FCAPS Fault, Configuration, Accounting, Performance and Security 

KM  Key Manager 

M  Model (ML pipeline) 

ML  Machine Learning 

MLFO  Machine Learning Function Orchestrator 

P  Policy (ML pipeline) 

PP  Pre-Processor (ML pipeline) 

QKD  Quantum Key Distribution 

QKDN  Quantum Key Distribution Network 

QKDNml ML-enabled QKDN 

QL  Quantum Layer 

RUL  Remaining Use Life 

SRC  Source node 

SINK  Sink node 

XLMO  Cross Layer Management and Orchestration 

5. Conventions 

In this Recommendation: 

The keywords “is required to” indicate a requirement which must be strictly followed and 

from which no deviation is permitted if conformance to this document is to be claimed.  

The keywords “is recommended” indicate a requirement which is recommended but which 

is not absolutely required. Thus this requirement need not be present to claim conformance.  

6. Overview 

QKDN is a technology that extends the reachability and availability of QKD, which is stated in [ITU-

T Y.3800]. It is comprised of two or more QKD nodes connected through QKD links. In a QKDN, 

two or more designated parties in a user network can share the keys for various cryptographic 

applications. QKDN is expected to maintain stable operations and meet the requirements of various 

cryptographic applications in an efficient way. However, when the QKDN becomes large-scale and 

complex, QKDN performance optimization in quantum layer, key management layer, QKDN control 

and management layer can be challenging. 

In detail, to improve QKDN performances, QKDN faces the following important challenges: 

1) Without the awareness of sudden QKDN performance deterioration in advance, high cost (e.g. 

time cost, labour cost) and instability of QKDN will increase. 
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2) For the large amount of heterogenous data in QKDN, there is difficulty to accurately perceive the 

needed and valuable information for use, which will affect QKDN performances. 

3) Since the requirements of cryptographic applications vary (e.g. different security requirements) 

and a large number of cryptographic applications arrive and leave dynamically, it is difficult to 

schedule the QKDN resources for cryptographic applications with the limited resources. 

To overcome the above challenges, applying ML technology into QKDN is a promising solution. ML 

can extract implicit relationships between input and output data, and use this learned mapping to 

analyse new data. It has been applied to networking field which can intelligently learn various 

network environments and react to dynamic situations ([ITU-T Y.3170]). In recent years, ML 

technologies based on neural networks have seen many developments in both hardware and software, 

and they have attracted attention from both the academia and the industry. There is also an increasing 

number of new low-power devices implementing on-board acceleration chips for neural networks.  

There can be many benefits of enabling ML in QKDN. Application use cases of enabling ML to 

achieve different objectives in QKDN have been specified in [b-ITU-T Y-Suppl.70]. In the quantum 

layer of QKDN, ML can be applied to realize quantum channel performance prediction, QKD system 

parameter optimization and RUL prediction of components in a QKD system; in the key management 

layer of QKDN, ML can be applied to realize intelligent key formatting, key storage management, 

and suspicious behavior detection; in the control and management layers of QKDN, ML can be 

applied in key relay routing and fault prediction to improve control and management efficiency.  

With the advantages of ML especially related to autonomous learning, ML can support overcoming 

the challenges of QKDN performance optimization in quantum layer, key management layer, QKDN 

control and management layer. Thus, an ML-enabled QKDN (QKDNml) can accelerate the 

optimization of QKDN by extending or enhancing QKDN functionalities. Note, however, that ML is 

an optional functionality for QKDN according to the functional requirements and architecture of 

QKDN in [ITU-T Y.3801] and [ITU-T Y.3802]. To enable ML for QKDN, this Recommendation 

specifies one possible set of functional requirements and a possible architecture for QKDNml, 

including overview, the functional requirements, architecture and operational procedures of 

QKDNml.  

7. Functional requirements of QKDNml 

The additional high-level and functional requirements related to ML are specified in this subclause 

to extend high-level requirements defined in [ITU-T Y.3801]. 

7.1 High-level requirements of QKDNml  

The high-level requirements of QKDNml are as follows. 

 It is required to support the configuration, management and orchestration for ML-related 

functional components; 

 It is required to support the data collection, data pre-processing, data repository, modelling and 

training functions;  

 It is required to support ML models for different objectives in QKDNml; 

 It is recommended to use the existing reference points defined in [ITU-T Y.3802] and extend 

them with reference points specific to ML capabilities. 

 It is recommended to use declarative specifications for specifying different objectives in 

QKDNml. 

7.2 Functional requirements of QKDNml data collection 
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The QKDN data can be collected from the quantum layer, key management layer, QKDN control 

layer, QKDN management layer, service layer and user network management layer either passively 

or actively. The functional requirements of QKDNml data collection are as follows. 

 It is required to be able to collect both static and dynamic QKDN data from quantum layer, key 

management layer, QKDN control layer and QKDN management layer. 

 NOTE 1 - Static QKDN data can be collected from quantum layer such as parameters of QKD 

modules, history status information of QKD modules; dynamic QKDN data can be collected 

from quantum layer such as quantum bit error rates, key generation rates, performance 

information of QKD modules. 

 NOTE 2 - Static QKDN data can be collected from key management layer such as history key 

management layer data set; dynamic QKDN data can be collected from key management layer 

such as status of key storage and status of key authentication. 

 NOTE 3 - Static QKDN data can be collected from QKDN control layer such as parameters of 

QKD modules and history status information of QKD modules; dynamic QKDN data can be 

collected from QKDN control layer such as routing and rerouting information and status of 

resource allocation. 

 NOTE 4 - Static QKDN data can be collected from QKDN management layer such as history 

data of fault management, history data of configuration and history data of security management; 

dynamic QKDN data can be collected from QKDN management layer such as multi-layer 

resource usage data and multi-layer performance data. 

 It is recommended to collect both static and dynamic QKDN data from service layer and user 

network management layer. 

 NOTE 1 - Static QKDN data can be collected from service layer such as history cryptographic 

application information; dynamic QKDN data can be collected from service layer such as current 

cryptographic applications information. 

  NOTE 2 - Static QKDN data can be collected from user network management layer such as 

history user requirements; dynamic QKDN data can be collected from user network management 

layer such as current user requirements. 

7.3 Functional requirements for QKDNml data pre-processing and repository 

The functional requirements of QKDNml data pre-processing and repository are as follows. 

 It is required to perform extract-transform-load and transform the collected multi-source, 

heterogeneous QKDN raw data into understandable, unified and easy-to-use structures. 

 It is required to clean and filter noisy data from the collected heterogeneous QKDN raw data. 

 It is recommended to normalize and unify the data format of the collected heterogeneous QKDN 

raw data for further storage and analysis. 

 It is recommended to store the heterogeneous QKDN pre-processed data. 

 It is recommended to store catalogues and data sets for ML models. 

7.4 Functional requirements for QKDNml modelling and training 

The functional requirements of QKDNml modelling and training are as follows. 

 It is required to support ML models based on the pre-processed QKDN data and the specified 

objective. 

 It is required to support ML model training and model updates while preventing impact on 

QKDNml. 

 It is recommended to train ML models based on the available pre-processed QKDN data for the 

specified objective in QKDNml. 
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8. Functional architecture of QKDNml 
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Fig. 8.1. Functional architecture model of QKDNml 

To enable ML capabilities for QKDN, a new QKDN ML layer is introduced with QKDN layer 

specific ML capabilities. The QKDN ML layer consists of QKDN ML functions, QKDN ML 

repository, QKDN ML sandbox, and QKDN ML management. The QKDN management layer also 

specifies QKDN layer specific ML SRCs and SINKs. ML pipelines in QKDNml can be constructed 

to realize ML applications for different objectives. The interaction between QKDN ML layer and 

QKDN management layer is made through a newly introduced reference point Mml between QKDN 

ML management in the QKDN ML layer and the cross-layer management orchestration in the QKDN 

management layer. The functional architecture model of QKDNml is specified in Fig. 8.1. 

8.1 QKDN ML layer in QKDNml 

There are QKDN ML functions, QKDN ML repository, QKDN ML sandbox ([ITU-T Y.3172]), and 

QKDN ML management in the QKDN ML layer, which are responsible for configuration, 

management and orchestration for ML-related functional components in QKDNml.  

8.1.1 QKDN ML functions 

The QKDN ML functions support a set of functional elements in a ML pipeline subsystem including 

collector (C), pre-processor (PP), model (M), policy (P) and distributor (D).  

– C: responsible for collecting QKDN data from one or more SRC(s). The C may have the 

capability to configure SRC nodes. Such configurations may be used to control the nature of data, 

its granularity and periodicity while it is generated from SRCs. 

– PP: responsible for cleaning, aggregating, normalizing or performing any other PP of 

heterogeneous data that should be in a suitable form so that the M can consume it. 

– M: responsible for deploying the trained ML models for different objectives in QKDNml.  

– P: responsible for making P decisions in QKDNml based on the results of the M. 
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– D: responsible for identifying the SINK(s) and distributing the P decisions to the corresponding 

SINK(s) in QKDNml. 

8.1.2 QKDN ML repository 

ML repository function is to store various data sets collected from ML SRCs, pre-processed by PP, 

generated by ML models, and catalogues of ML models, etc. It can be used by QKDN ML 

management, ML functions, and ML sandbox. 

8.1.3 QKDN ML sandbox 

A QKDN ML sandbox is an isolated domain that allows the hosting of separate ML pipelines to train, 

test and evaluate them before deploying them in a QKDN. The QKDN ML sandbox subsystem allows 

network operators to study the effect of ML outputs before deploying them on live QKDNs. For 

training or testing, the QKDN ML sandbox can use data generated from a simulated ML underlay 

QKDN. 

8.1.4 QKDN ML management  

This QKDN ML management includes intent and MLFO. 

– Intent in QKDNml: Intent is a declarative description ([ITU-T Y.3172]) in QKDNml. The intent 

provides a basis for mapping ML use cases to different QKDN layers. 

 NOTE – Intent is a declarative description which is used to specify a ML application. Intent does 

not specify any technology-specific network functions to be used in the ML application and 

provides a basis for mapping ML use cases to diverse technology-specific instantiations. Intent 

can use a meta language specific for machine learning to define ML applications. ([ITU-T 

Y.3172])  

– MLFO in QKDNml: MLFO has functionalities that manage and orchestrate the nodes of the 

ML pipelines and ML sandbox based on the intent or dynamic conditions in QKDNml. The 

MLFO provides chaining functionality, i.e., connecting ML nodes together to form an ML 

pipeline. It also supports the ML model selection for different objectives. 

 NOTE – For example, chaining can be used to connect an SRC specific to the quantum layer 

with the ML functions in the QKDN ML layer. The MLFO determines the chaining considering 

the constraints (e.g., timing constraints for prediction). ([ITU-T Y.3172]) 

8.2 ML pipeline SRC/SINK in QKDNml 

An ML pipeline in QKDNml is a set of logical nodes, each with specific functionalities that can be 

combined to form an ML application in QKDNml. The ML pipeline in QKDNml has three parts 

including SRCs, ML functions and SINKs. The ML functions are able to collect input data from SRCs 

([ITU-T Y.3172]) in different QKDN layers. The SINK, as the target of the ML output ([ITU-T 

Y.3172]), can be the elements in quantum layer, key management layer and QKDN control and 

management layers. The ML pipeline SRCs and SINKs are managed in FCAPS function in the 

QKDN management layer. More details related to ML pipeline can be found in [ITU-T Y.3172]. 

8.2.1 SRCs in QKDNml 

The SRCs in QKDNml are the source nodes of QKDN data that can be used as input to the ML 

functions in QKDNml. The types of SRCs include: 

– Quantum layer ML SRC: responsible for reporting the data (static, dynamic) from QKD 

modules and links in the quantum layer to QKDN ML functions; 

– Key management layer ML SRC: responsible for reporting the data (static, dynamic) from the 

key manager in the key management layer to QKDN ML functions; 

– Control layer ML SRC: responsible for reporting the data (static, dynamic) from the QKDN 

controller in the QKDN control layer to QKDN ML functions. 
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8.2.2 SINKs in QKDNml 

The SINKs are the targets of the ML output in QKDNml on which actions are taken. The types of 

SINKs can include: 

– Quantum layer ML SINK: represents that the QKD module or the QKD link is the target of 

configurations (as a result of ML pipeline execution) in the quantum layer; 

 NOTE - ML output is applied to QKD modules or QKD links to optimize quantum layer 

performances of QKDN. The use cases can include ML-based QKD system parameter 

optimization, ML-based quantum channel performance prediction and ML-based RUL 

prediction of components in a QKD system ([b-ITU-T Y-Suppl.70]). 

– Key management layer ML SINK: represents that key manager is the target of configurations 

in the key management layer; 

 NOTE - ML output is applied to the key manager in the key management layer to optimize key 

management efficiency and stability. Three use cases are ML-based key formatting, ML-based 

key storage management, and ML-based suspicious behavior detection in the key management 

layer ([b-ITU-T Y-Suppl.70]). 

– Control layer ML SINK: represents that QKDN controller is the target of configurations in the 

QKDN control layer. 

 NOTE – ML output is applied to the QKDN controller in the QKDN control layer to improve 

QKDN control efficiency. Two use cases are ML-based data collection and data pre-processing 

and ML-based routing ([b-ITU-T Y-Suppl.70]). 

8.3 Reference points 

Most of the reference points in Figure 8.1 have been defined in [ITU-T Y.3802]. This 

Recommendation defines the newly added one and presents the existing ones related to ML 

functionalities. 

NOTE –The new, extended ML enabled functions are implemented by extending the interaction 

information of reference points.  

The newly added reference point is: 

- Mml: a reference point connecting QKDN ML management and QKDN manager. It is 

responsible for exchanging the intent information and the management and orchestration 

information of MLFO between the QKDN ML management and the QKDN manager. 

The existing reference points in [ITU-T Y.3802] related to ML include: 

- Mc: a reference point connecting the QKDN manager and a QKDN controller control and 

management function in a QKDN controller. It is responsible for the QKDN manager to collect 

the data from the QKDN controller for ML functions and apply ML output on the QKDN 

controller. 

- Mk: a reference point connecting the QKDN manager and a KM control and management 

function in a KM. It is responsible for the QKDN manager to collect the data from KM for ML 

functions and apply ML output on the KM. 

- Mq: a reference point connecting the QKDN manager with a QKD module control and 

management function in a QKD module. It is responsible for the QKDN manager to collect the 

data from QKD modules for ML functions and apply ML output on QKD modules. 

- Mqrp, Mops: reference points connecting the QKDN manager and the QKD link. They are 

responsible for the QKDN manager to collect the data from QKD links for ML functions and 

apply ML output on QKD links. 
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9. Operational procedures of QKDNml 

In QKDNml, QKDN functionalities are extended or enhanced by enabling ML capabilities for 

different objectives. Fig. 9.1 shows a general operational procedure of QKDNml for a specific 

objective.  

QKDN ML 

management
XLMO

QKDN ML 
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QKDN ML 

functions

QKDN ML 

SINK

1) Translate the objective into 

QKDNml intent and get management 

and orchestration information
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QKDN ML layer QKDN management layer QKDN ML layer QKDN management layer

 

Fig. 9.1. A general operational procedure of QKDNml 

1) QKDN ML management translates the objective of the ML application in QKDNml into 

QKDNml intent, which is a declarative description used to specify the objectives of extending 

or enhancing the QKDN functionalities using ML. The intent is the information for technology-

specific implementation. 

2) QKDN ML management inputs the management and orchestration information of MLFO to 

XLMO (Cross-layer management orchestration) in the QKDN manager using the reference point 

Mml.  

3) XLMO manages and orchestrates the ML pipeline nodes based on the intent or dynamic network 

conditions. 

4) XLMO configures QKDN ML SRCs and ML SINKs using the reference points among Mc, Mk, 

Mq, Mqrp, Mops and Mu; XLMO configures QKDN ML functions using the reference point 

Mml. 

5) QKDN ML SRCs collect the needed QKDN data from QKDN layers.  

6) QKDN ML SRCs report the collected QKDN data to the QKDN ML functions.  

7) QKDN ML functions in the QKDN ML layer are performed.  

NOTE – In the ML functions, the C collects the data reported from SRCs to PP. PP cleans the 

collected QKDN data by removing noisy data and transforms the cleaned data into a unified data 

format. The pre-processed QKDN data is transferred to M. The intent is performed by the 

deployed M selected by the MLFO. The outputs of the ML model are transferred to the P. Given 
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ML output of M, a QKDN policy decision can be made by P. The policy decision results are 

transferred to D. 

8) D distributes the ML output to the QKDN ML SINKs instantiated by the components in QKDN 

layers corresponding to the intent in QKDNml. 

9) QKDN ML pipeline SINK takes actions on the target QKDN functional element.  
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Appendix I 

 

Use case of the operational procedures for ML-enabled quantum channel 

performance prediction 

(This appendix does not form an integral part of this Recommendation.) 

During the QKD process, the noise in the quantum channel will reduce the quality of the quantum 

channel and cause low key rate. The use case of ML-enabled quantum channel performance 

prediction ([b-ITU-T Y-Suppl.70]) is shown. Firstly, the quantum channel related data and the 

corresponding quantum channel performance are collected through quantum channel measurement 

for ML model training and testing. Then, with the trained ML model, the quantum channel 

performance can be predicted based on the current input quantum channel related data. Lastly, 

according to the predicted channel performance, feedback and adjustment can be finished in advance 

to improve the channel environment and reduce unnecessary loss caused by key rate decreases. The 

detailed operational procedures are as follows. 

1) The intent translated by QKDN ML management is used to specify the quantum channel 

performance prediction, and then is input into the MLFO to get management and orchestration 

information. The quantum channel performance prediction is to predict the future quantum 

channel performance under different channel noise environments, so that measures can be taken 

in advance based on the predictions to improve the channel environment and make the quantum 

channel in an optimal performance state. 

2) QKDN ML management inputs the management and orchestration information of MLFO to 

XLMO in the QKDN manager using the reference point Mml. The information specifies 

managing and orchestrating the ML pipeline subsystems to realize ML-based quantum channel 

performance prediction. The information can include the need to configure the Quantum layer 

ML SRC, QKDN ML functions and Quantum layer ML SINK.  

3) XLMO manages and orchestrates the ML pipeline nodes for connecting ML pipeline nodes 

together to form an ML pipeline including Quantum layer ML SRC, QKDN ML functions and 

Quantum layer ML SINK. 

4) XLMO configures Quantum layer ML SRC and Quantum layer ML SINK using the reference 

points Mq; XLMO configures QKDN ML functions using the reference point Mml. 

5) Quantum layer ML SRC collects the quantum channel parameters in quantum layer.  

6) Quantum layer ML SRC reports the collected QKDN data to the QKDN ML functions.  

7) QKDN ML functions in the QKDN ML layer are performed.  

NOTE 1 - C transfers the collected data to the PP, which includes the quantum-channel-

performance-related parameters, such as QBER of quantum channel, the SPD photon detection 

output counter and code formation rates under different noise environments.  

NOTE 2 - PP cleans the collected QKDN data by removing noisy data and transforms the cleaned 

data into a unified data format. The pre-processed QKDN data is transferred to M after intelligent 

analysis.   

NOTE 3 - Quantum channel performance prediction is performed by the ML models in the M. 

The outputs of the ML model are the predicted quantum channel performance values, which are 

transferred to the P.  

NOTE 4 - Given the predicted quantum channel performance, a Q policy decision is made by 

the P to minimize impacts when the output of ML is applied to a live network. The policy 

decision results are transferred to the D. 
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8) D distributes the ML output related to the predicted channel performance to the Quantum layer 

ML SINK instantiated by the QKD modules in the quantum layer. 

9) According to the predicted channel performance, feedback and adjustment can be finished by 

Quantum layer ML SINK to improve the channel environment and reduce unnecessary loss 

caused by key rate decreases. 
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