TELECOMMUNICATION STANDARDIZATION SECTOR

STUDY GROUP 15 TD 036 Rev.1 (PLEN/15)

STUDY PERIOD 2013-2016

Original: English

English only

Question(s):	10/15	1-12 July 2013
	TD	
Source:	Editor G.8121.1/Y.1381.1	
Title:	Draft new Recommendation ITU-T G.8121.1/Y.1381.1 (for Consent,	July 2013)

Abstract

This document contains the latest draft of new Recommendation G.8121.1 for consent. This document has been updated in Hiroshima meeting (January 2013), as <u>wd24</u>, based on <u>TD741/3</u> (Geneva, September 2012) and in this meeting as; <u>wd14r1_T13-SG15-130701-TD-PLEN-0036!!MSW-E.docx</u>

Update history

Update in Hiroshima meeting

- WD10: Updated the scope (Clause 1)
- WD11: Review the proposed text and updated. .

Update after Hiroshima

The update is Diffmark "G.8121 Editor"

- Update **only** the figures that have <u>editor notes under their titles</u> to be updated or the figures that need **pure** editorial update like Pri →CoS.
 - For the formers, editor notes are removed. For the latters, editor notes are added.
- Fill some references
- Figures' number and texts for them are fixed

Drafting in Geneva, Jul 2013

C159, 158r1 are input for drafting.

And add some texts to Summary, Keywords, Clause 5, and 6. (Just editorial)

Contact:	Yuji Tochio	Tel: +81-44-754-8829
	Fujitsu	Fax: +81-44-754-2741
	Japan	Email: tochio@jp.fujitsu.com
Contact:	Huub van Helvoort	Tel: +31-20-4300-8108
	Huawei Technologies	Fax: +31-20-4300-888
	P.R .China	Email: <u>hhelvoort@huawei.com</u>
Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the		
Member States of ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related		
work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of ITU-T.		

Draft Recommendation ITU-T G.8121.1/Y.1381.1

Characteristics of MPLS-TP equipment functional blocks supporting ITU-T G.8113.1/Y.1373.1

Summary

Recommendation ITU-T G.8121.1specifies both the functional components and the methodology that should be used in order to specify MPLS-TP layer network functionality of network elements based on the protocol neutral constructs defined in ITU-T G.8121 and on the tools defined in ITU T G.8113.1/Y.1373.1<

Keywords

Atomic functions, equipment functional blocks, MPLS-TP layer network, MPLS-TP.

1 Scope

This Recommendation describes both the functional components and the methodology that should be used in order to describe MPLS-TP layer network functionality of network elements; it does not describe individual MPLS-TP network equipment as such.

This recommendation provides protocol-specific extensions of the protocol-neutral constructs defined in [ITU-T G.8121] to support the OAM tools defined in [ITU-T G.8113.1]

This Recommendation provides a description of the MPLS-TP functional technology using the same methodologies that have been used for other transport technologies (e.g. SDH, OTN and Ethernet).

This Recommendation forms part of a suite of Recommendations covering the full functionality of network equipment. These Recommendations are [ITU-T G.806], [ITU-T G.8121], [ITU-T G.798], [ITU-T G.783], [ITU-T G.705] and [ITU-T G.8021]. This Recommendation also follows the principles defined in [ITU-T G.805].

These Recommendations specify a library of basic building blocks and a set of rules by which they may be combined in order to describe digital transmission equipment. The library comprises the functional building blocks needed to specify completely the generic functional structure of the MPLS-TP layer network. In order to be compliant with this Recommendation, equipment needs to be describable as an interconnection of a subset of these functional blocks contained within this Recommendation. The interconnections of these blocks should obey the combination rules given.

Not every atomic function defined in this Recommendation is required for every application. Different subsets of atomic functions may be assembled in different ways according to the combination rules given in this Recommendation to provide a variety of different capabilities. Network operators and equipment suppliers may choose which functions must be implemented for each application.

2 References

The following ITU-T Recommendations and other references contain provisions, which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published.

The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T G.705]	Recommendation ITU-T G.705 (2000), <i>Characteristics of plesiochronous digital hierarchy (PDH) equipment functional blocks</i> .
[ITU-T G.783]	Recommendation ITU-T G.783 (2006), Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks.
[ITU-T G.798]	Recommendation ITU-T G.798 (2010), Characteristics of optical transport network hierarchy equipment functional blocks
[ITU-T G.805]	Recommendation ITU-T G.805 (2000), Generic functional architecture of transport networks.
[ITU-T G.806]	Recommendation ITU-T G.806 (2012), Characteristics of transport equipment – Description methodology and generic functionality.
[ITU-T G.8021]	Recommendation ITU-T G.8021/Y.1341 (2010), Characteristics of Ethernet transport network equipment functional blocks.
[ITU-T G.8121]	Recommendation ITU-T G.8121/Y.1381 (201 <mark>3</mark>), <i>Characteristics of MPLS-TP</i> equipment functional blocks
[ITU-T G.8113.1]	Recommendation ITU-T G.8113.1/Y.1371.1, Operations, administration and maintenance mechanism for MPLS-TP in packet transport networks

3 Definitions

3.1 Terms defined elsewhere:

This Recommendation uses the following terms defined elsewhere:

- 3.1.1 access point: [ITU-T G.805]
- **3.1.2** adapted information: [ITU-T G.805]
- 3.1.3 characteristic information: [ITU-T G.805]
- 3.1.4 client/server relationship: [ITU-T G.805]
- **3.1.5** connection: [ITU-T G.805]
- 3.1.6 connection point: [ITU-T G.805]
- 3.1.7 layer network: [ITU-T G.805]
- 3.1.8 network: [ITU-T G.805]
- **3.1.9** network connection: [ITU-T G.805]
- 3.1.10 reference point: [ITU-T G.805]

- **3.1.11** subnetwork: [ITU-T G.805]
- **3.1.12** subnetwork connection: [ITU-T G.805]
- 3.1.13 termination connection point: [ITU-T G.805]
- **3.1.14** trail: [ITU-T G.805]
- **3.1.15** trail termination: [ITU-T G.805]
- **3.1.16** transport: [ITU-T G.805]
- 3.1.17 transport entity: [ITU-T G.805]
- **3.1.18** label: [ITU-T G.8101]
- 3.1.19 label stack: [ITU-T G.8101]
- **3.1.20** MPLS label stack: [ITU-T G.8101]
- 3.1.21 label switched path: [ITU-T G.8101]
- **3.1.22** Bottom of Stack: [ITU-T G.8101]
- 3.1.23 Time To Live: [ITU-T G.8101]
- **3.1.24** Label value: [ITU-T G.8101]
- 3.1.25 Per-Hop Behaviour: [ITU-T G.8101]
- 3.1.26 Associated Channel Header: [ITU-T G.8101]
- 3.1.27 Generic Associated Channel: [ITU-T G.8101]
- 3.1.28 G-ACh Label: [ITU-T G.8101]
- **3.1.29** traffic class: [ITU-T G.8101]

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

None

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

ACH Associated Channel Header AI Adapted Information AIS Alarm indication signal AP Access Point APS Automatic protection switching CC **Continuity Check** CC/CV Continuity Check and Connectivity Verification CI Characteristic Information CoS **Class of Service** CP **Connection Point** CSF **Client Signal Fail** CV **Connectivity Verification** CW Control Word DM **Delay Measurement** DP **Drop Precedence**

DT	Diagnostic Test
EMF	Equipment Management Function
FP	Flow Point
FTP	Flow termination point
G-ACh	Generic Associated Channel
GAL	G-ACh Label
GFP-F	
ULLCK	Frame-mapped Generic Framing Procedure Locked
LM	Loss Measurement
LOS	Loss of Signal
LStack	Label Stack
MCC	Maintenance Communication Channel
MEG	Maintenance Entity Group (New)
MEP	Maintenance entity group (MEG) End Point
MIP	Maintenance entity group (MEG) Intermediate Point
MP	Management Point
MPLS	Multi-Protocol Label Switching
MPLS-TP	
MT	Multi-Protocol Label Switching - Transport Profile
MTDe	MPLS-TP MEP Diagnostic function
MTDi	MPLS-TP MIP Diagnostic function
OAM	Operation, Administration and Maintenance
PDU	Protocol Data Unit
PHB	Per Hop Behaviour
PW	Pseudowire
PSC	PHB Scheduling Class
RDI	Remote Detect Indidation
RI	Remote Information
RP	Remote Point
RT	Route Trace
SCC	Signalling Communication Channel
TCP	Termination Connection Point
TFP	Termination Flow Point
TH	Throughput
TTL	Time-To-Live
PM	Performance Monitoring
SSF	Server Signal Fail
TC	Traffic Class
TLV	Type Length Value
TSD	Trail Signal Degrade
TSF	Trail Signal Fail
	······································

5 Conventions

The diagrammatic convention for connection-oriented layer networks described in this Recommendation is that of [ITU T G.805].

6 Supervision

The generic supervision functions are defined in clause 6 in [ITU-T G.806]. Protocol neutral supervision functions for the MPLS-TP network are defined in this clause6 in [ITU-T G.8121]. Specific supervision functions for the MPLS-TP network are defined in this clause.

6.1 Defects

The defect Entry and Exit conditions are based on events. Occurrence or absence of specific events may raise or reset specific defects.

The events used by this recommendation are defined in Table 6-1 in[ITU-T G.8121].

6.2 Consequent actions

For generic consequent actions, see [ITU-T G.806]. For the specific consequent actions applicable to MPLS-TP, refer the specific atomic functions.

6.3 Defect correlations

For the defect correlations, see the specific atomic functions.

6.4 Performance filters

For further study

7 Information flow across reference points

Information flow for MPLS-TP functions is defined in clause 9. A generic description of information flow is defined in clause 7 in [ITU-T G.806].

8 MPLS-TP processes

8.1 G-ACh Process

See the clause 8.1 in [ITU-T G.8121]

8.2 TC/Label processes

See the clause 8.2in [ITU-T G.8121]

8.3 Queuing process

See the clause 8.3in [ITU-T G.8121]

8.4 MPLS-TP-specific GFP-F processes

See the clause 8.4in [ITU-T G.8121]

8.5 Control Word (CW) processes

See the clause 8.5in [ITU-T G.8121]

8.6 OAM related Processes used by Server adaptation functions

8.6.1 Selector Process

See the clause 8.6.1[ITU-T G.8121]

8.6.2 AIS (Alarm Reporting) Insert Process

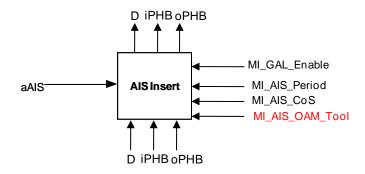
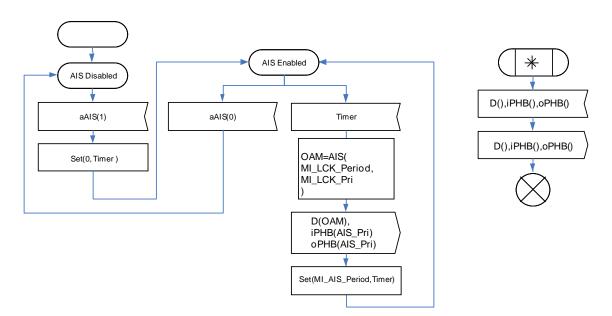



Figure 8-1 shows the AIS Insert Process Symbol as shown in Figure 8-13 of [ITU-T G.8121] and Figure 8-2 defines the behaviour. If the aAIS signal is true, the AIS Insert process continuously generates MT_CI traffic units where the MT_CI_D signal contains the AIS signal until the aAIS signal is false. The generated AIS traffic units are inserted in the incoming stream, i.e., the output stream contains the incoming traffic units and the generated AIS traffic units.

Figure 8-2/G.8121.1/Y.1381.1 – AIS Insert behaviour

The period between consecutive AIS traffic units is determined by the MI_AIS_Period parameter. Allowed values are once per second and once per minute; the encoding of these values is defined in Table 8-1. Note that these encoding are the same as for the LCK generation process.

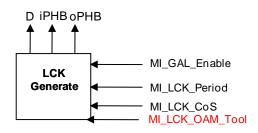

3-bits	Period Value	Comments
000-011	Invalid Value	Invalid value for AIS PDUs
100	1s	1 frame per second
101	Invalid Value	Invalid value for AIS PDUs
110	1 min	1 frame per minute
111	Invalid Value	Invalid value for AIS PDUs

Table 8-1/G.8121.1/Y.1381.1 – AIS period values

The MT_CI_D signal contains an M_SDU field. The format of the M_SDU field for AIS traffic units is defined in [ITU-T G.8113.1].

The periodicity (as defined by MI_AIS_Period) is encoded in the three least significant bits of the Flags field in the AIS PDU using the values from Table 8-2.

8.6.3 LCK (Lock Reporting) Generate Process

Figure 8-3/G.8121.1/Y.1381.1 – LCK Generation process

Figure 8-3 shows the LCK Generate Process Symbol as shown in Figure 8-14 of [ITU-T G.8121]. The LCK Generation Process generates MT_CI traffic units where the MT_CI_D signal contains the LCK signal. Figure 8-4 defines the behaviour of the LCK Generation Process as shown in Figure 8-15 of [ITU-T G.8121].

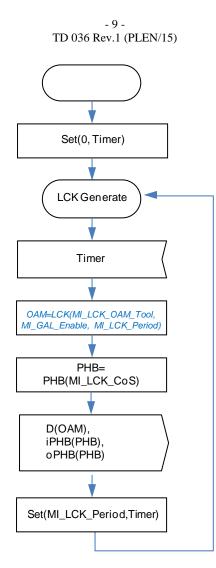


Figure 8-4/G.8121.1/Y.1381.1 – LCK Generation behaviour

The LCK Generation Process continuously generates LCK Traffic Units; every time the Timer expires a LCK Traffic Unit will be generated. The period between two consecutive traffic units is determined by the MI_LCK_Period input signal. Allowed values are defined in Table 8-2.

3-bits	Period Value	Comments
000-011	Invalid Value	Invalid value for LCK PDUs
100	1s	1 frame per second
101	Invalid Value	Invalid value for LCK PDUs
110	1 min	1 frame per minute
111	Invalid Value	Invalid value for LCK PDUs

Table 8-2/G.8121.1/Y.1381.1 - LCK period values

The MT_CI_D signal contains an M_SDU field. The format of LCK units is defined in [ITU-T G.8113.1].

The periodicity (as defined by MI_LCK_Period) is encoded in the three least significant bits of the Flags field in the LCK PDU using the values from Table 8-1.

The value of the MT_CI_PHB signal associated with the generated LCK traffic units is defined by the MI_LCK_Pri input parameter.

- 10 -TD 036 Rev.1 (PLEN/15)

8.7 OAM related Processes used by adaptation functions

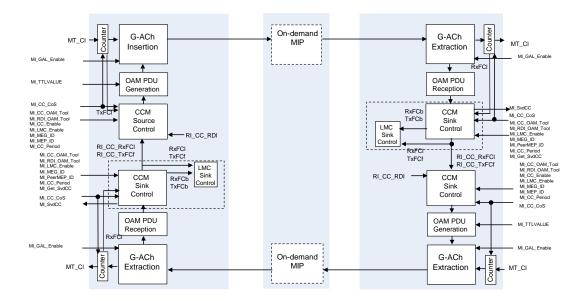
8.7.1 MCC/SCC Mapping Insert and De-mapping Process

See the clause 8.7.1in [ITU-T G.8121]

8.7.2 APS Insert and ExtractProcess

See the clause 8.7.2 in [ITU-T G.8121]

8.7.3 CSF Insert and Extract Process


See the clause 8.7.3 in [ITU-T G.8121]

8.8 Pro-active and on-demand OAM related Processes

8.8.1 Proactive Continuity Check and Connectivity Verification (CC/CV)

8.8.1.1 Overview

To support CC/CV, the Continuity Check Message (CCM) as described in [ITU-T G.8113.1] clause 8.2.1 is used.

Figure 8-5/G.8121.1/Y.1381.1 - Overview of Processes involved with CC/CV

Figure 8-5 provides an overview of the processes that support the CC/CV function. The CCM Generation process generates the CCM frames if MI_CC_Enable is true. The MI_MEG_ID and MI_MEP_ID are the MEG and MEP IDs of the MEP itself and these IDs are carried in the CCM frame. The CCM frames are generated with a periodicity determined by MI_CC_Period and with a

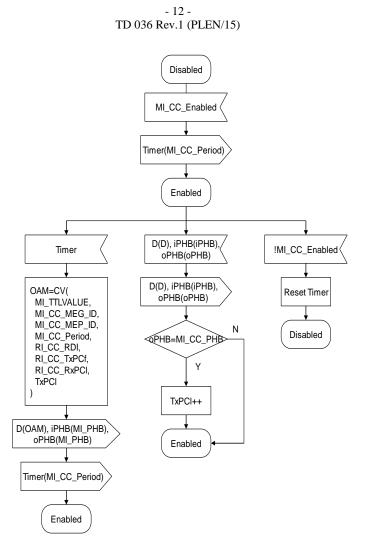
- 11 -TD 036 Rev.1 (PLEN/15)

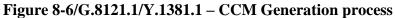
priority determined by MI_CC_CoS. If MI_LM_Enable is set the CCM frames will also carry Loss Measurement information. The Generated CCM Traffic Units are inserted in the flow of MT_CI by the OAM MEP Source Insertion Process.

The CCM frames pass transparently through MIPs.

The OAM MEP Sink Extraction process extracts the CCM Unit from the flow of MT_CI and the CCM Reception process processes the received CCM Traffic Unit. It compares the received MEG ID with the provisioned MI_MEG_ID, and the received MEP_ID with the provisioned MI_PeerMEP_ID, that contains the list of all expected peer MEPs in the MEG. Based on the processing of this frame one or more events may be generated that serve as input for the Defect Detection Process (not shown in Figure 8-5).

RDI information is carried in the CCM frame based upon the RI_CC_RDI input. It is extracted in the CCM Reception Process.


8.8.1.2 CCM Generation Process


Figure 8-6 describes the behaviour for the CCM Generation Process.

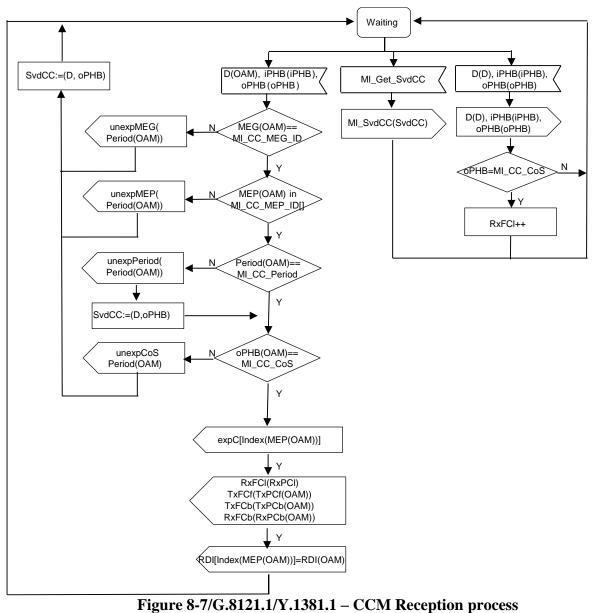
This process generates MPLS-TP CI traffic units where MT_CI_D signal contains the CCM traffic units for pro-active monitoring and counts all data frames with PHB equal to MI_CC_CoS (TxPCl).

The D, iPHB and oPHB signal are forwarded unchanged as indicated by the dotted lines in Figure 8-6

The CCM Generation process can be enabled and disabled using the MI_CC_Enable signal.

The period between the generating consecutive CCM traffic units is determined by the MI_CCM_Period parameter. Allowed values and the encoding of these values are defined in Table 8-3.

MI_CV_Period	Period Value	Comments
000	Invalid Value	Invalid value for CC-V PDUs
001	3.33ms	300 frames per second
010	10ms	100 frames per second
011	100ms	10 frames per second
100	1s	1 frame per second
101	10s	6 frames per minute
110	1 min	1 frame per minute
111	10 min	6 frame per hour


Table 8-3/G.8121.1/Y.1381.1 - CCM Period Values

8.8.1.3 CCM Reception Process

Figure 8-7 describes the behaviour for the CCM Reception Process.

The CC-V reception process transparently forwards all the data frames and counts all data frames that have PHB (per-hop behaviour) equal to MI_CCM_CoS.

Furthermore the CCM reception process processes received CCM OAM traffic units. It checks the various fields of the OAM PDU and generates the corresponding events (as defined in clause 6).

8.8.1.4 ProActive Loss Measurement (LMp) Process

Figure 8-8shows proactive LM Process behaviour by CCM. This process calculates the number of transmitted and lost frames per second.

- 14 -TD 036 Rev.1 (PLEN/15)

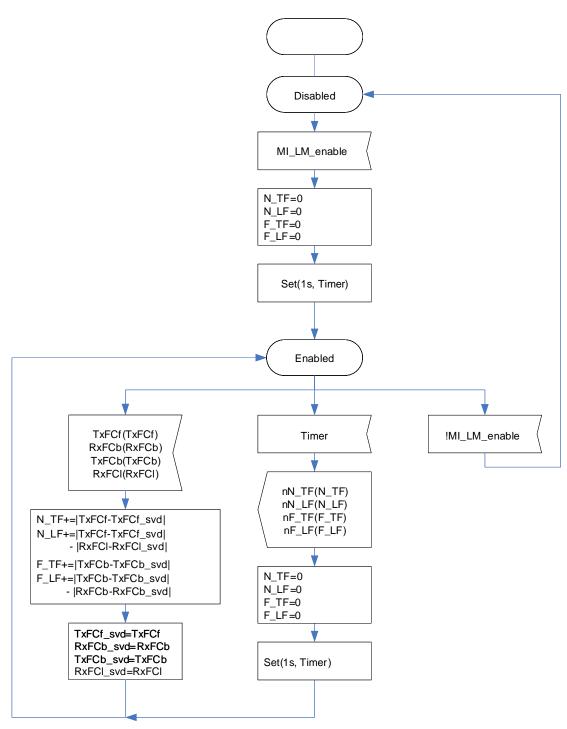
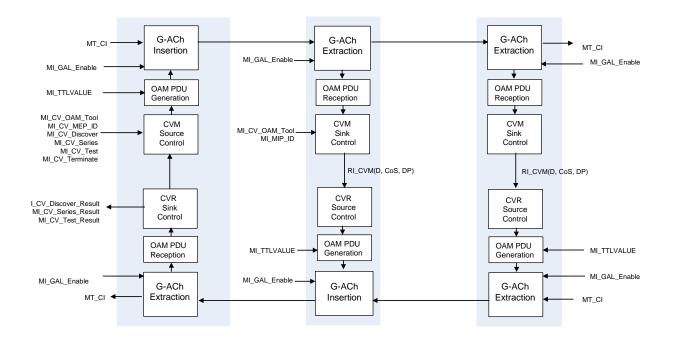


Figure 8-8/G.8121.1/Y.1381.1- LM Process behaviour

8.8.2 Remote Defect Indication (RDI)

As described in clause 8.8.2 in [ITU-T G.8121], RDI information associated with proactive CC/CV and carried in the CC/CV packets based upon the RI_CC/CV_RDI input.

See clause 8.8.1 for further information.


8.8.3 On-demand Connectivity Verification (CV)

8.8.3.1 Overview

To support on-demand CV, Loopback (LBM/LBR) as described in [ITU-T G.8113.1] clause 8.2.2 is used.

Figure 8-9 provides the different processes inside MEPs and MIPs that are involved in the Loopback Protocol.

The MEP On-Demand OAM Source insertion process is defined in clause 9.4.1.1, the MEP On-Demand OAM Sink extraction process in clause 9.4.1.2, the MIP On-Demand OAM Sink Extraction process in clause 9.4.1.2, and the MIP On-Demand OAM Source insertion process in clause 9.4.2. In summary, they insert and extract MT_CI OAM signals into and from the stream of MT_CI_D Traffic Units. The other processes are defined into this clause.

Figure 8-9/G.8121.1/Y.1381.1 – Overview of Processes involved with Loopback

The LBM Protocol is controlled by the LB Control Process. Two MI signals that can trigger the LB protocol are defined below:

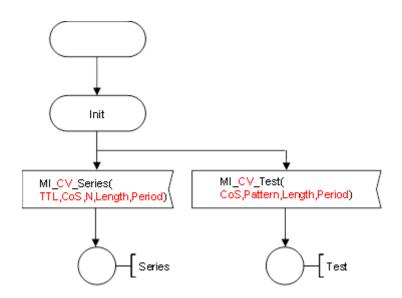
• MI_CV_Series(TTL,CoS,N,Length,Period): To send a series of N LB messages to a particular MEP/MIP; these LB messages are generated every 'Period'.

• MI_CV_Test(CoS,Pattern,Length,Period): To send a series of LB messages carrying a Test Pattern to a particular MEP; these LB messages are generated every 'Period' until the MI_LB_Test_Terminate signal is received.

The details are described later in this clause.

The LBM Control Protocol triggers the LBM Generation Process to generate an LBM Traffic Unit that is received and forwarded by MIPs and received by MEPs in the same MEG. The LBM Control process controls the number of LBM generated and the period between consecutive LBM Traffic Units.

The LBM MIP/MEP reception processes process the received LBM Traffic Units and as a result the LBR Generation Process may generate an LBR Traffic Unit in response. The LBR Reception Process receives and processes the LBR Traffic Units..


The LBM Control Process processes these received values to determine the result of the requested LB operation. The result is communicated back using the following MI signals:

- MI_CV_Series_Result(REC, ERR, OO): Reports back the total number of received LBR frames (REC), as well as counts of specific errors (ERR):
 - OO: Number of LBR Traffic Units that were received out of order (OO).
- MI_CV_Test_Result(Sent, REC, CRC, BER, OO): Reports back the total number of LBM frames sent (Sent) as well as the total number of LBR frames received (REC); for the latter counts of specific errors are reported:
 - CRC: Number of LBR frames where the CRC in the pattern failed.
 - BER: Number of LBR frames where there was a bit error in the pattern.
 - OO: Number of LBR frames that were received out of order.

The detailed functionality of the various processes is defined below.

8.8.3.2 LB Control Process

The LB Control Process can receive several MI signals to trigger the LB protocol; this is shown in Figure 8-10.

Figure 8-10/G.8121.1/Y.1381.1 -CV Control Behaviour

Figure 8-11 shows the behaviour if the MI_CV_Series signal is received.

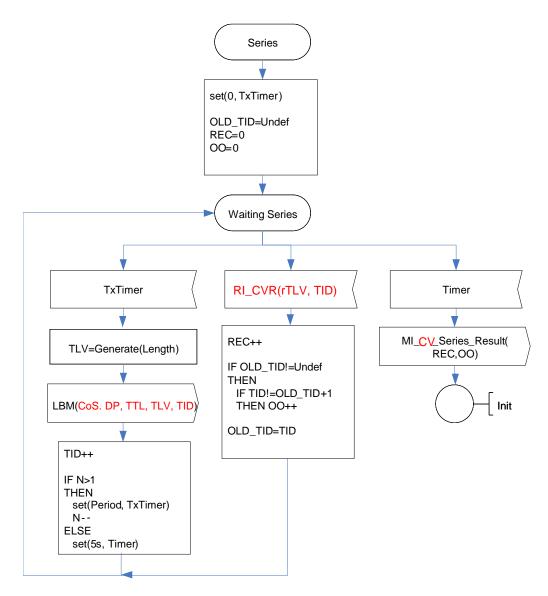


Figure 8-11/G.8121.1/Y.1381.1 – CV Control Series Behaviour

Figure 8-11defines the behaviour of the LB Control Process after the reception of the MI_CV_Series(, DP ,CoS, N,Length,Period) signal.

The TLV field of the LBM frames is determined by the Generate(Length) function. Generate(Length) generates a Data TLV with length 'Length' of arbitrary bit pattern to be included in the LBM frame. After the receipt of the MI_CV_Series signal, the LBM Generation Process is requested N times to generate an LBM frame (where Period determines the interval between two LBM frames); this is done by issuing the LBM(D, DP, CoS, TLV,TID) signal.

Whenever an RI_CV(rTLV, TID) signal is received, the number of received LBR frames is increased (REC++). If the TID value from the RI_LBR signal does not consecutively follow the last received TID value, the counter for out of order frames is incremented by one (OO++).

Five seconds after sending the last LBM frame (i.e., after sending the Nth LBM frame) the REC and OO counters are reported back in the MI_CV_Series_Result signal.

8.8.3.3 LBM Generation Process

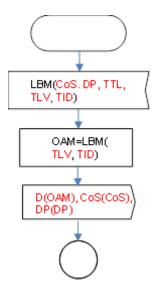


Figure 8-12/G.8121.1/Y.1381.1 – LBM Generation Behaviour

The LBM Generation process generates a *single* LBM OAM Traffic Unit (MT_CI_D) complemented with MT_CI_CoS and MT_CI_DP signals on receipt of the LBM() signal. The process is defined in Figure 8-12.

From the LBM() signal the CoS field determines the value of the MT_CI_CoS signal, the DP field determines the value of the MT_CI_DP signal. The TLV and TID fields are used in the construction of the MT_CI_D signal that carries the LBM Traffic Unit.

8.8.3.4 MIP LBM Reception Process

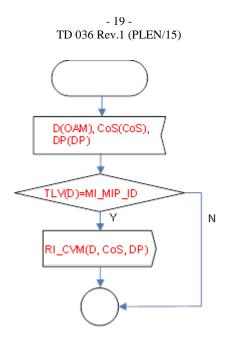
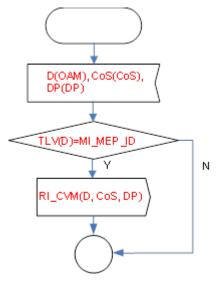



Figure 8-13/G.8121.1/Y.1381.1 – MIP LBM Reception Behaviour

The MIP LBM Reception Process receives MT_CI Traffic Units containing LBM PDUs complemented by the P and D signals.

The behaviour is defined in Figure 8-13. If TLV(D) equals MI_MIP_ID, the Loopback is intended for this MIP and the information is forwarded to the Loopback Reply Generation Process using the RI_LBM(D,DP,CoS) signal; otherwise the information is ignored and no action is taken.

8.8.3.5 MEP LBM Reception Process

Figure 8-14/G.8121.1/Y.1381.1 – MEP LBM Reception Behaviour

The MEP LBM Reception Process receives MT_CI Traffic Units containing LBM PDUs complemented by the CoS and D signals.

The behaviour is defined in Figure 8-14.

If the TLV field in the LBM Traffic Unit (D signal) equals the MI_MEP_ID, the Loopback is intended for this MEP, and the information is forwarded to the Loopback Reply Generation Process (RI_LBM(D,CoS,DP)).

8.8.3.6 LBR Generation Process

Note that the LBR Generation Process is the same for MEPs and MIPs.

Upon receipt of the LBM Traffic Unit and accompanying signals (RI_LBM(D,P,DE)) from the LBM reception process the LBR Generation Process generates an LBR Traffic Unit together with the complementing P and DE signals.

The generated traffic unit is the same as the received RI_LBM(D) Traffic Unit except:

• the Opcode is set to LBR opcode.

[Note: Is it better create the figure follow?

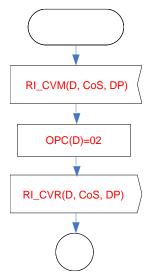


Figure 8-xx/G.8121.1/Y.1381.1 – LBR Generation Behaviour

8.8.3.7 LBR Reception Process

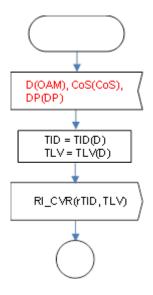


Figure 8-15/G.8121.1/Y.1381.1 – LBR Reception Behaviour

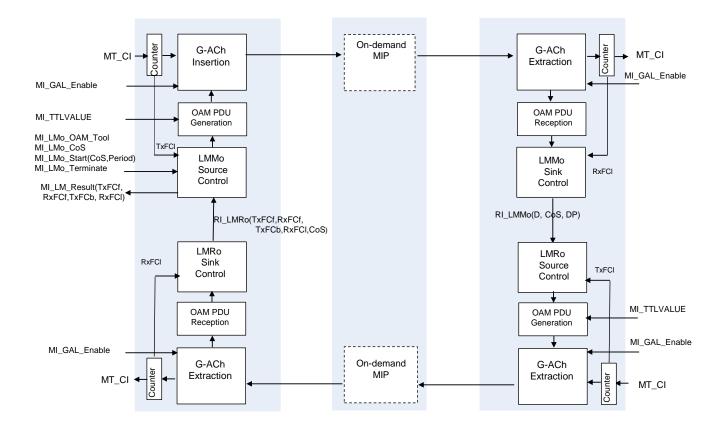
The LBR Reception Process receives LBR Traffic Units (D signal) together with the complementing CoS and signals. The LBR Reception process will inspect the received Traffic

- 21 -TD 036 Rev.1 (PLEN/15)

Unit; if the traffic units is valid, TID and TLV values will be extracted from the LBR PDU and signalled to the LB Control Process using the RI_LBR(TID,TLV) signal. The behaviour is defined in Figure 8-15.

8.8.4 Proactive Packet Loss Measurement (LMp)

This functionality is defined in [ITU-T G.8113.1] only by using CCM. See clause 8.8.1.4


8.8.5 On-demand Packet Loss Measurement (oLM) Process

8.8.5.1 Overview

To support this functionality, On-demand Loss Measurement (LMM/LMR) as described in [ITU-T G.8113.1] clause 8.2.6 is used.

Figure 8-18 provides the different processes inside MEPs and MIPs that are involved in the Loss Measurement Protocol.

The MEP On-Demand OAM Source insertion process is defined in clause 9.2, the MEP On-Demand OAM Sink extraction process in clause 9.2, the MIP On-Demand OAM Sink Extraction process in clause 9.4, and the MIP On-Demand OAM Source insertion process in clause 9.4. In summary, they insert and extract MT_CI OAM signals into and from the stream of MT_CI_D Traffic Units together with the complementing PHB signals going through an MEP and MIP.

Figure 8-16 G.8121.1/Y.1381.1 – Overview of Processes involved with On-demand Loss Measurement

The LMo control process controls the LM protocol. The protocol is activated upon receipt of the MI_LMo_Start(CoS,Period) signal and remains activated until the MI_LMo_Terminate signal is received.

The result is communicated via the MI_LMo_Result(N_TF, N_LF, F_TF, F_LF) signal.

The LMMo Generation Protocol generates an LMM Traffic Unit that passes transparently through MIPs, but that will be processed by the LMM Reception Process in MEPs. The LMRo Generation Process generates an LMR Traffic Unit in response to the receipt of an LMMo Traffic Unit. The LMRo Reception process receives and processes the LMRo Traffic Units.

The behaviour of the processes is defined below.

Note that the LMMo Generation and LMRo Generation Process are both part of the LMx Generation Process. Similarly the LMMo Reception and the LMRo Reception Process are both part of the LMx Reception Process.

8.8.5.2 LMo Control Process

The behaviour of the LMo Control Process is defined in Figure 8-17.

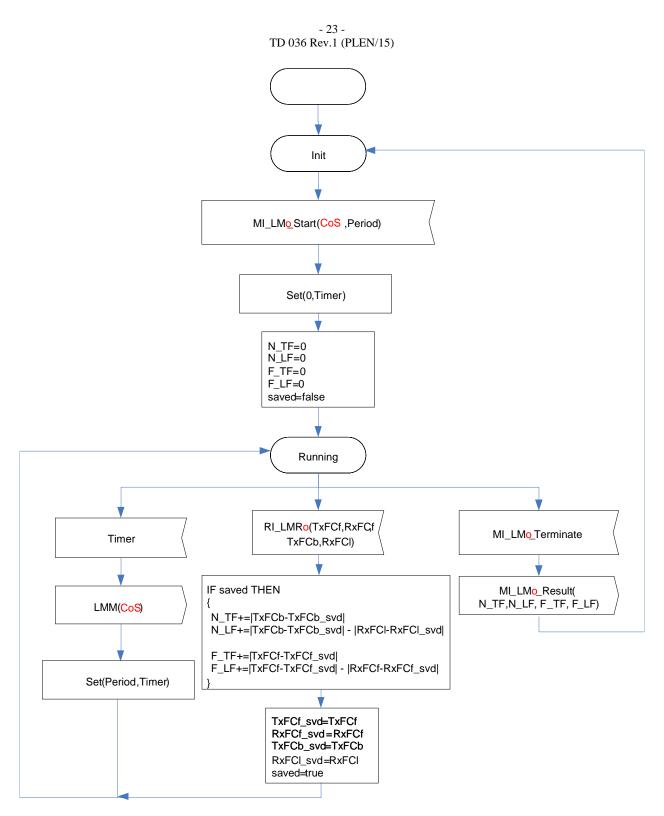
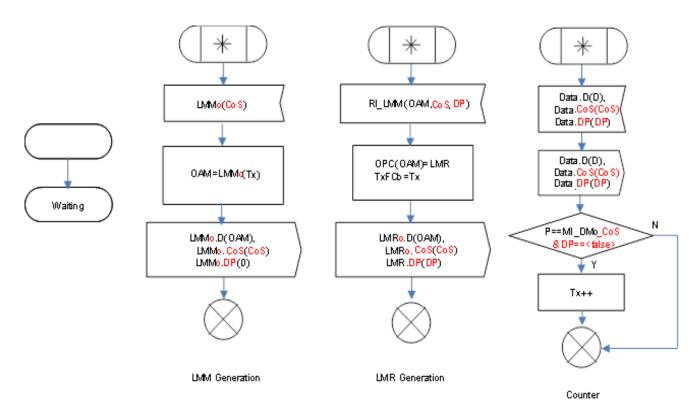


Figure 8-17/G.8121.1/Y.1381.1 – LMo Control Behaviour

Upon receipt of the MI_LMo_Start(CoS,Period), the LM protocol is started. Every Period the generation of an LMM frame is triggered (using the LMMo(CoS) signal), until the MI_LMo_Terminate signal is received.


The received counters are used to count the near end and far end transmitted and lost frames. This result is reported using the MI_LMo_Result(N_TF, N_LF, F_TF, F_LF) signal after the receipt of the MI_LMo_Terminate signal.

8.8.5.3 LMx Generation Process

The LMx Generation Process contains both the LMMo Generation and LMRo Generation functionality.

Figure 8-18 defines the behaviour of the LMx Process. The behaviour consists of three parts:

- LMMo Generation part that is triggered by the receipt of the LMMo(CoS) signal;
- LMRo Generation part that is triggered by the receipt of RI_LMMo(D,CoS,DP) signals;
- Counter part that is triggered by the receipt of a normal data signal.

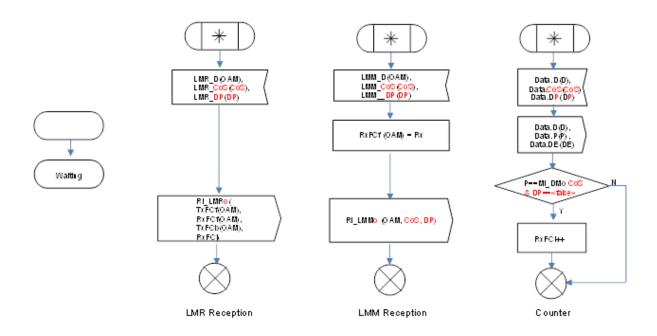
Figure 8-18/G.8121.1/Y.1381.1 – On-demand LMx Generation Behaviour

Counter Part

This part receives MT_AI and forwards it. It counts the number of MT_AI traffic units received with MT_AI_P signal equal to MIo_LM_CoS and MT_AI_DP to <false (0)>.

LMMo Generation Part

This part generates an LMMo Traffic Unit on receipt of the LMMo (D, CoS, DP) signal.


8.8.5.4 LMx Reception Process

The On-demand LMx Reception Process contains both the LMMo Reception and LMRo Reception functionality. F

Figure 8-19 defines the behaviour of the LMx Reception Process. The behaviour consists of three parts:

- 25 -TD 036 Rev.1 (PLEN/15)

- LMM Reception part that is triggered by the receipt of an LMM Traffic Unit;
- LMR Reception part that is triggered by the receipt of an LMR Traffic Unit;
- Counter part that is triggered by the receipt of a normal data signal.

Figure 8-19/G.8121.1/Y.1381.1 – On-demand LMx Reception Behaviour

Counter Part

This part receives MT_CI, extracts on-demand MT OAM frames and forwards the remainder as MT_AI traffic units. It counts this number of MT_AI instances with MT_AI_P signal equal to MI_LM_CoS and MT_AI_DE equal to <false (0)>.

LMMo Reception Part

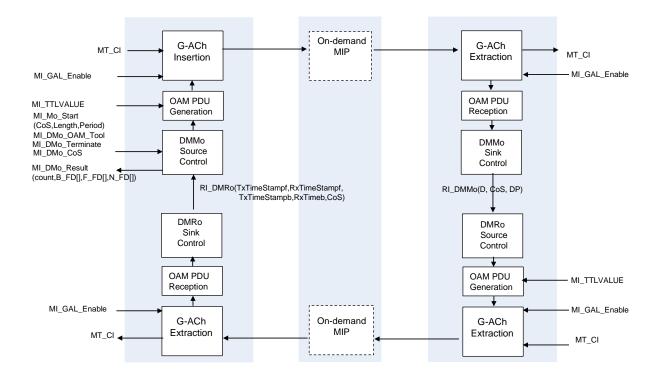
This part processes received LMM Traffic Units. If this is the case the LMM Reception process writes the Rx Counter value to the received Traffic Unit in the RxFCf field, and forwards the received Traffic Unit and complementing CoS and DP signals as Remote Information to the LMR Generation Process.

LMRo Reception Part

This part process received LMR Traffic Units. It extracts the counter values TxFCf, RxFCf, TxFCb from the received Traffic Unit These values together with the value of the Rx counter(RxFCl) are forwarded as RI signals.

8.8.6 Proactive Packet Delay Measurement (DMp)

This functionality is not defined in [ITU-T G.8113.1].


8.8.7 On-demand Packet Delay Measurement (DMo)

8.8.7.1 Overview

To support this functionality, on-demand Delay Measurement (DMM/DMR) as described in [ITU-T G.8113.1] clause 8.2.7 for one-way and [ITU-T G.8113.1] clause 8.2.8 for two-way is used.

Figure 8-20 provides the different processes inside MEPs and MIPs that are involved in the twoway Delay Measurement Protocol.

The MEP On-Demand-OAM Source insertion process is defined in clause 9.2, the MEP On-Demand OAM Sink extraction process in clause 9.2, the MIP On-Demand OAM Sink Extraction process in clause 9.4, and the MIP On-Demand OAM Source insertion process in clause 9.4. In summary, they insert and extract MT_CI OAM signals into and from the stream of MT_C_D Traffic Units and the complementing PHB signals going through an MEP and MIP;

Figure 8-20/G.8121.1/Y.1381.1 – Overview of Processes involved with on-demand Delay Measurement

The DMo control process controls the DM protocol. The protocol is activated upon receipt of the MI_DMo_Start(CoS,Period) signal and remains activated until the MI_DMo_Terminate signal is received. The result is communicated via the MI_DMo_Result(count, B_FD[], F_FD[], N_FD[]) signal.

The DMMo generation process generates DMMo Traffic Units that pass through MIPs transparently, but are received and processed by DMM Reception processes in MEPs. The DMRo Generation process may generate a DMRo Traffic Unit in response. This DMRo Traffic Unit also

passes transparently through MIPs, but is received and processed by DMR Reception processes in MEPs.

At the Source MEP side, the DMMo generation process stamps the value of the Local Time to the TxTimeStampf field in the DMMo message when the first bit of the frame is transmitted. Note well that at the sink MEP side, the DMMo reception process stamps the value of the Local Time to the RxTimeStampf field in the DMMo message when the last bit of the frame is received.

The DMR generation and reception process stamps with the same way as the DMMo generation and reception process.

Figure 8-21 provides the different processes inside MEPs and MIPs that are involved in the One Way Delay Measurement Protocol.

The MEP On-Demand OAM Source insertion process is defined in clause 9.2, the MEP On-Demand-OAM Sink extraction process in clause 9.2, the MIP On-Demand OAM Sink Extraction process in clause 9.4, and the MIP On-Demand OAM Source insertion process in clause 9.4. In summary, they insert and extract MT_CI OAM signals into and from the stream of MT_CI_D Traffic Units and the complementing PHB signals going through an MEP and MIP.

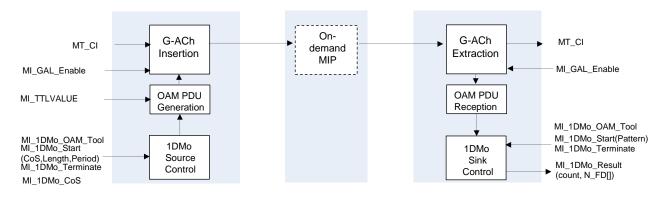
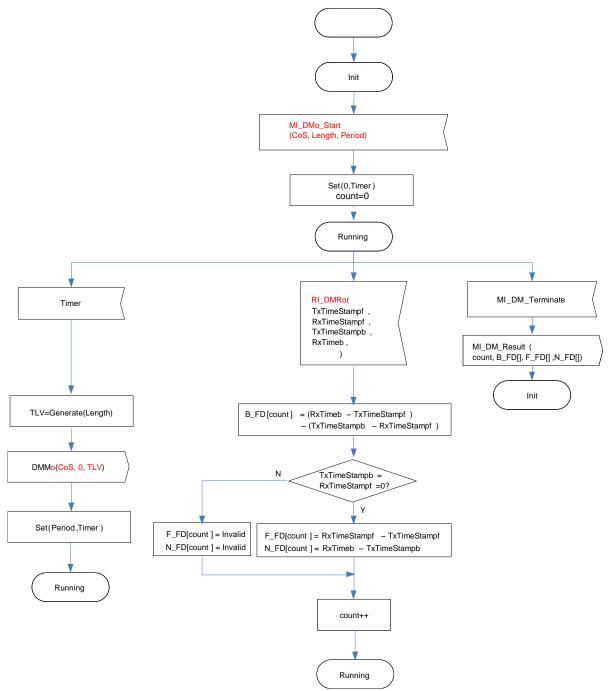


Figure 8-21/G.8121.1/Y.1381.1 – Overview of Processes involved with on-demand One Way Delay Measurement


The 1DM protocol is controlled by the 1DM Control_So and 1DM Control_Sk processes. The 1DM Control_So process triggers the generation of 1DM Traffic Units upon the receipt of an MI_1DM_Start(iPHB, oPHB, Period) signal. The 1DM Control_Sk process processes the information from received 1DM Traffic Units after receiving the MI_1DM_Start(iPHB, oPHB, Period) signal.

The 1DM generation process generates 1DM messages that pass transparently through MIPs and are received and processed by the 1DM Reception Process in MEPs.

At the Source MEP side, The 1DM generation process stamps the value of the Local Time to the TxTimeStampf field in the 1DM message when the first bit of the frame is transmitted. Note well that at the sink MEP side, the 1DM reception process records the value of the Local Time when the last bit of the frame is received.

8.8.7.2 On-demand DM Control Process

The behaviour of the on-demand DM Control Process is defined in Figure 8-22.

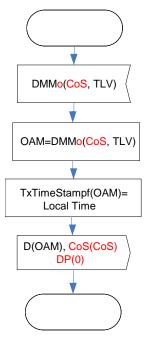


Figure 8-22/G.8121.1/Y.1381.1 – On-demand DM Control Behaviour

Upon receipt of the MI_DMo_Start(CoS, Length,Period), the DM protocol is started. Every Period the generation of a DMM frame is triggered (using the DMMo(CoS,0, TLV) signal), until the MI_DMo_Terminate signal is received. Upon receipt of a DMR Traffic Unit the Delay value recorded by this particular DMRo Traffic Unit is calculated. This result is reported using the MI_DMo_Result(count, B_FD[], F_FD[], N_FD[]) signal after the receipt of the MI_DMo_Terminate signal. Note that the measurements of F_FD and N_FD are not supported by peer MEP if both TxTimeStampb and TxTimeStampf are zero.

8.8.7.3 On-demand DMM Generation Process

The behaviour of the DMM Generation Process is defined in Figure 8-23

Figure 8-23/G.8121.1/Y.1381.1 – DMMo Generation Behaviour

Upon receiving the DMMo(CoS,Type,TLV), a single DMM Traffic Unit is generated together with the complementing P and DE signals. The DA of the generated Traffic Unit is determined by the DMM(DA) signal. The TxTimeStampf field is assigned the value of the local time.

The P signal value is defined by DMMo(CoS). The DE signal is set to 0. The Type signal is set to 1 if it is the proactive OAM, or set to 0 if it is the on-demand OAM operation. The Test ID signal is determined by the DMM signal. The TLV signal is determined by the DMM signal.

8.8.7.4 On-demand DMM Reception Process

The DMM Reception Process processes the received DMM Traffic Units and the complementing P and DE signals. The behaviour is defined in Figure 8-24.

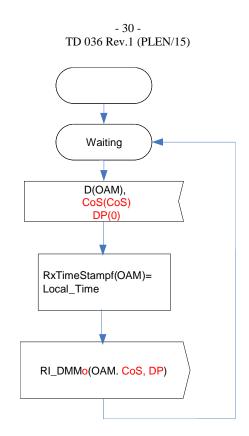


Figure 8-24/G.8121.1/Y.1381.1 – DMMo Reception Behaviour

Traffic Unit and the complementing CoS and DP signals are forwarded as Remote Information to the DMR Generation Process.

8.8.7.5 On-demand DMR Generation Process

The On-demand DMR Generation Process generates a DMRo Traffic Unit and its complementing CoS and P signals. The behaviour is defined in Figure 8-25.

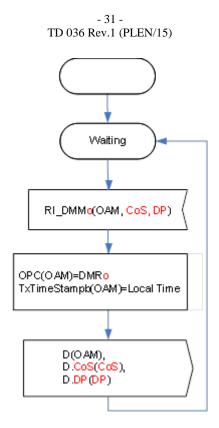


Figure 8-25/G.8121.1/Y.1381.1 – On-demand DMR Generation Behaviour

Upon the receipt of Remote Information containing a DMMo Traffic Unit, the DMR generation process generates a DMR Traffic Unit and forwards it to the OAM insertion Process.

As part of the DMR generation the:

- The Opcode is changed into DMRo Opcode;
- The TxTimeStampb field is assigned the value of the Local Time.
- All the other fields (including TLVs and padding after the End TLV) are copied from the Remote Information containing the original DMM Traffic Unit.

The resulting DMR Traffic Unit is shown in Figure 8-30.

NOTE – In the generated DMR, in the OAM (MEP) Insertion process, the SA will be overwritten with the Local MAC address, and the MEL will be over written with MI_MEL.

The TLVs are copied from the Remote Information containing the original DMM Traffic Unit. If multiple TLVs exist, the order of the TLVs is unchanged.

8.8.7.6 On-demand DMR Reception Process

The On-demand DMR Reception Process processes the received DMRo Traffic Units and the complementing CoS and DP signals. The behaviour is defined in Figure 8-26.

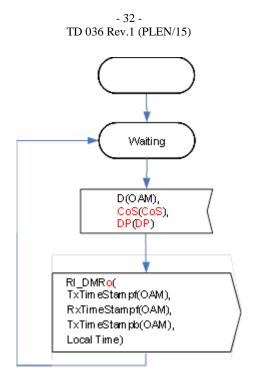


Figure 8-26/G.8121.1/Y.1381.1 – DMR Reception Behaviour

If the DMR Traffic Unit is processed, the TxTimeStampf, RxTimeStampf, TxTimeStampb and Test ID are extracted from the Traffic Unit and signalled together with the Local Time.

8.8.7.7 1DM Control_So Process

Figure 8-27 shows the behaviour of the on-demand 1DM Control_So Process. Upon receipt of the MI_1DMo_Start (D, COS, Length, Period) signal the 1DM protocol is started. The protocol will run until the receipt of the MI_1DM_Terminate signal.

If the On-demand DM protocol is running every Period (as specified in the MI_1DMo_Start signal) the generation of a 1DMo message is triggered by generating the 1DMo(D, CoS,0, TLV) signal towards the 1DMo Generation Process.

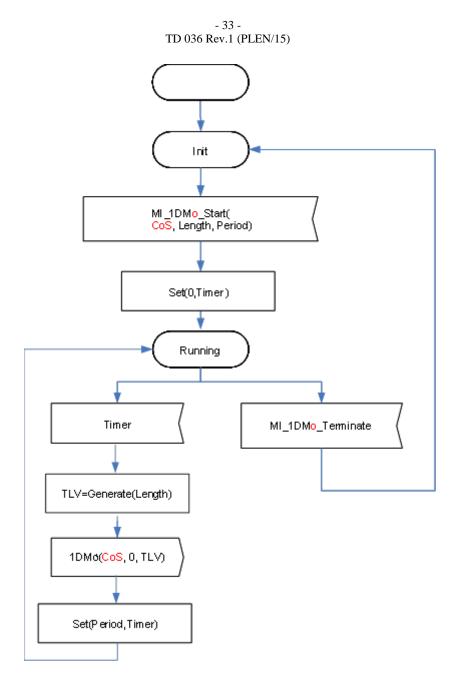


Figure 8-27/G.8121.1/Y.1381.1 – On-demand 1DM Control_So Behaviour

8.8.7.8 1DM Generation Process

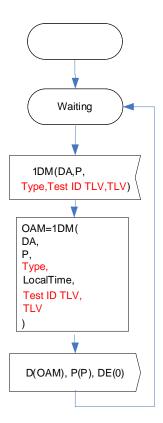


Figure 8-28/G.8121.1/Y.1381.1 – 1DM Generation Behaviour

Figure 8-28 shows the On-demand 1DM Generation Process. Upon receiving the 1DM(CoS,Type, ,TLV) signal a single 1DM Traffic Unit is generated by the OAM=1DM (CoS,Type, LocalTime, TLV) call.

Together with this 1DMo Traffic Unit the complementing P and DE signals are generated. The TxTimeStampf field is assigned the value of the Local Time. The value of the P signal is determined by the 1DM(CoS) signal. The DP signal is set to 0.

8.8.7.9 1DM Reception Process

The On-demand 1DM Reception Process processes the received 1DMo Traffic Units and the complementing P and DE signals. The behaviour is defined in Figure 8-29.

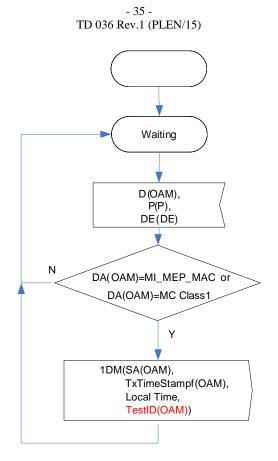


Figure 8-29/G.8121.1/Y.1381.1 – 1DM Reception Behaviour

If the 1DMo Traffic Unit is processed and TxTimeStampf fields are extracted and forwarded to the 1DMo Control_Sk process together with the Local Time using the 1DMo (TxTimeStampf, RxTimef) signal.

8.8.7.10 1DM Control_Sk Process

Figure 8-30 shows the behaviour of the on-demand 1DM Control_Sk process. The protocol runs until the receipt of the MI_1DM_Terminate signal.

While running the process processes the received 1DMo(TxTimeStampf,RxTimef,) information. Otherwise the Delay from the single received 1DM Traffic Unit is calculated. This result is reported using the MI_1DMo_Result(count, N_FD[]) signal after the receipt of the MI_1DM_Terminate signal.

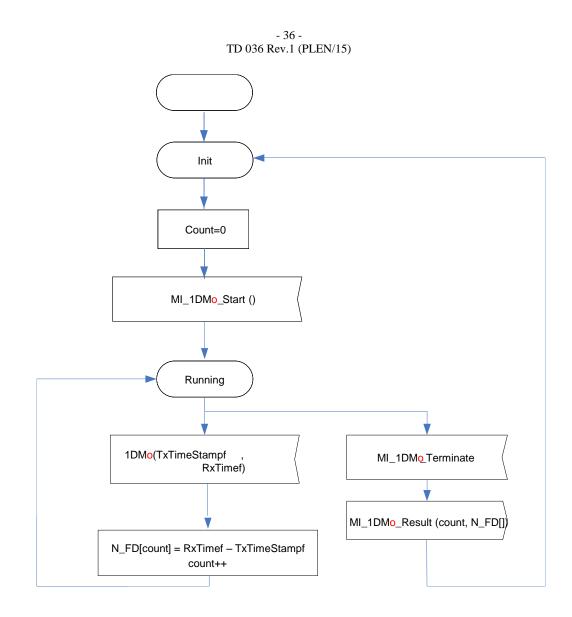


Figure 8-30/G.8121.1/Y.1381.1 – On-demand 1DM Control_Sk Process

8.8.8 Test (TST) Process

8.8.8.1 Overview

To support OAM for dual-ended Throughput Test, TST as described in clause 8.2.5 of [ITU-T G.8113.1] can be used. The control process specific to Throughput Test is for further study.

Figure 8-31 provides the different processes inside MEPs and MIPs that are involved in the Test Protocol.

- 37 -TD 036 Rev.1 (PLEN/15)

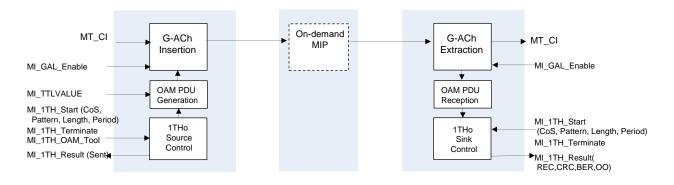


Figure 8-31/G.8121.1/Y.1381.1 – Overview of Processes involved with Test Protocol

The TST(1TH) protocol is controlled by the TST(1TH) Control_So and TST(1TH) Control_Sk processes. The TST(1TH) Control_So process triggers the generation of TST(1TH) Traffic Units after the receipt of an MI_1TH_Start (iCoS, Pattern, Length, Period) signal. The TST(1TH) Control_Sk process processes the information from received TST Traffic Units after receiving the MI_1TH_Start (Pattern) signal.

The TST generation process generates TST messages that pass transparently through MIPs and are received and processed by the TST Reception Process in MEPs.

The processes are defined below.

8.8.8.2 TST Control_So Process

Figure 8-32 defines the behaviour of the TST Control_So Process. This process triggers the transmission of TST Traffic Units after receiving the MI_Test(CoS, DP, Pattern,Length,Period) signal. The transmission of TST(1TH) Traffic Units is triggered by the generation of the 1TH(CoS, DP,TLV,TID) signal. This is continued until the receipt of the MI_1TH_Terminate signal. After receiving this signal the number of triggered TST Traffic Units is reported back using the MI_1TH_Result(Sent) signal.

The TLV field of the 1TH frames is determined by the Generate(Pattern, Length) function. For Pattern the following types are defined:

- 0: "Null signal without CRC-32"
- 1: "Null signal with CRC-32"
- 2: "PRBS 2^31-1 without CRC-32"
- 3: "PRBS 2^31-1 with CRC-32"

The Length parameter determines the length of the generated TLV.

Generate(Pattern, Length) generates a Test TLV with length 'Length' to be included in the 1TH frame. Therefore, this TLV is passed using the 1TH(CoS,DP,TLV,TID) signal to the TST Generation Process.

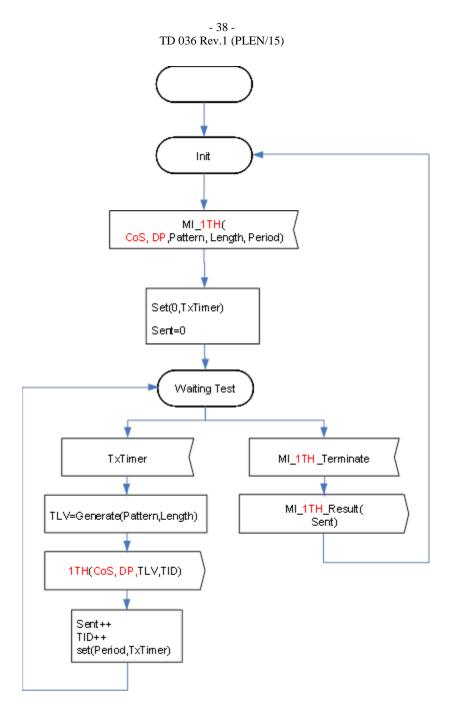


Figure 8-32/G.8121.1/Y.1381.1 – TST Control_So Behaviour

8.8.8.3 TST Generation Process

Figure 8-33 defines the behaviour of the TST Generation Process.

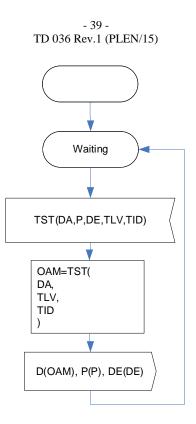


Figure 8-33/G.8121.1/Y.1381.1 – TST Generation Behaviour

Upon receiving the 1TH(CoD,DP,TLV,TID), a single 1TH Traffic Unit is generated together with the complementing CoS and DP signals. The 1TH Traffic Unit is generated by:

OAM=1TH(TLV,TID).

The Transaction Identifier field gets the value of 1TH(TID); the TLV field is populated with TST(TLV). The resulting TST Traffic Unit is shown in Figure 8-58.

The CoS signal is determined by the 1TH(CoS) signal.

The DP signal is determined by the 1TH(DP) signal.

8.8.8.4 TST Reception Process

Figure 8-34 defines the behaviour of the TST Reception Process.

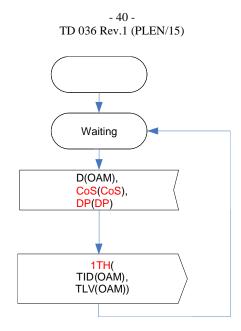


Figure 8-34/G.8121.1/Y.1381.1 – TST Reception Behaviour

8.8.8.5 TST Control_Sk Process

Figure 8-35 shows the behaviour of the TST Control_Sk process. The MI_1TH_Start signal starts the processing of 1TH messages coming from a MEP The protocol is running until the receipt of the MI_1TH_Terminate signal.

While running, the process processes the received 1TH(rTLV,TID) information.

First, the received 1TH counter is incremented by one (REC++).

Furthermore, if the TLV contains a CRC (Pattern 1 or 3), the CRC counter is incremented by one (CRC++) if the CRC check fails.

The function Check(Pattern, TLV) compares the received Test Pattern with the expected Test Pattern. If there is a mismatch the BERR counter is incremented by one.

If the TID value from the RI_LBR signal does not follow the last received TID value the counter for out of order frames is incremented by one (OO++).

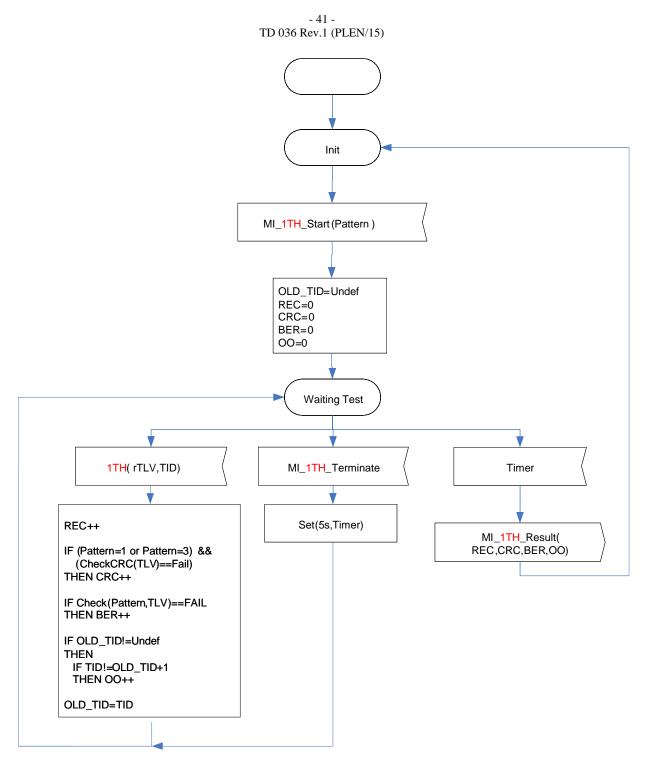


Figure 8-35/G.8121.1/Y.1381.1 – TST Control_Sk Behaviour

8.8.9 Route Tracing (RT)

For further study

8.8.10 LCK/AIS Reception

See clause 8.8.10 of [ITU-T G.8121]

9 MPLS-TP processes

9.1 Connection Functions (MT_C)

See the clause 9 in [ITU-T G.8121]

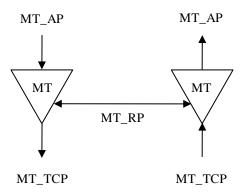
9.1.1 Sub-network connection protection process

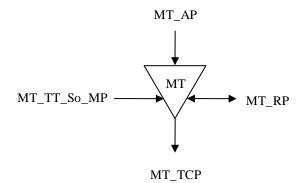
See the clause 9 in [ITU-T G.8121]

9.2 Termination functions

9.2.1 MPLS-TP Trail Termination function (MT_TT)

The bidirectional MPLS-TP Trail Termination (MT_TT) function terminates the MPLS-TP OAM to determine the status of the MPLS-TP (sub)layer trail. The MT_TT function is performed by a co-located pair of the MPLS-TP trail termination source (MT_TT_So) and sink (MT_TT_Sk) functions as shown in Figure 9-1.




Figure 9-1/G.8121.1/Y.1381.1 - MT_TT

9.2.1.1 MPLS-TP Trail Termination Source function (MT_TT_So)

The MT_TT_So function determines and inserts the TTL value in the shim header TTL field and adds MPLS-TP OAM for pro-active monitoring to the MT_AI signal at its MT_AP.

• Symbol:

The MT_TT_So function symbol is shown in Figure9-2.

- 43 -TD 036 Rev.1 (PLEN/15)

Figure9-2/G.8121.1/Y.1381.1 –MT_TT_So function

• Interfaces:

Table 9-1/G.8121.1/Y.1381.1 – MT_TT_So inputs and outputs

Input(s)	Output(s)
MT_AP: MT_AI_D MT_AI_PHB MT_AI_LStack	MT_TCP: MT_CI_D MT_CI_oPHB MT_CI_iPHB MT_CI_LStack
MT_RP: MT_RI_CC_RDI MT_RI_CC_Blk MT_RI_CC_TxFCl MT_RI_CC_RxFCf	MT_RP:
MT_TT_So_MP: MT_TT_So_MI_GAL_Enable MT_TT_So_MI_TTLVALUE MT_TT_So_MI_ MEG_ID MT_TT_So_MI_ MEP_ID	
MT_TT_So_MI_CC_OAM_Tool MT_TT_So_MI_RDI_OAM_Tool MT_TT_So_MI_CC_Enable MT_TT_So_MI_LMC_Enable	
MT_TT_So_MI_CC_CoS	
MT_TT_So_MI_CC_Period	
MT_TP: MT_TT_So_TI_TimeStampl	

• Processes:

The processes associated with the MT_TT_So function are as depicted in Figure 9-3.

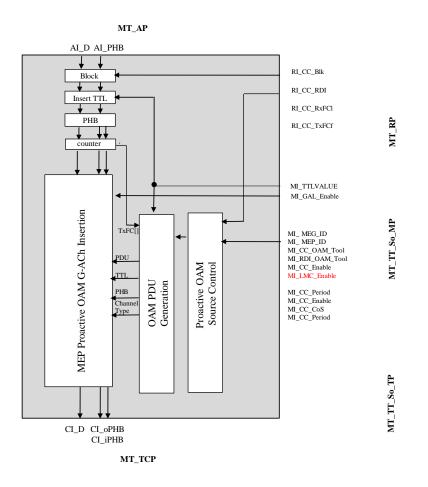


Figure 9-3/G.8121.1/Y.1381.1 –MT_TT_So process diagram

PHB: See 9.2 in [ITU-T G.8121]

Extract TTL: See 9.2 in [ITU-T G.8121]

Block: See 9.2 in [ITU-T G.8121]

Counter process: It is used to count frames for proactive loss measurements with CCM

G-Ach/GAL Insertion Process: See 8.1 in [ITU-T G.8121]

- 45 -TD 036 Rev.1 (PLEN/15)

Pro-active OAM Source Control Process: This process consists of following sub-processes as shown Figure 9-4. These details are in clause 8.8.1.

Shown Figur	C J-4. These uctain	s are in clause 0.0.
U		MI_CC_OAM_Tool
		MI_RDI_OAM_Tool
		MI_CC_Enable
		MI_LMC_Enable
		MI_MEG_ID
CC 1	◀	MI_MEP_ID
CCM		MI_CC_CoS
Source		MI_CC_Period
Control		
		RI_CC_RDI
		RI_CC_RxFCl
		RI_CC_TxFCf

Figure 9-4/G.8121.1/Y.1381.1 – Pro-active OAM Source Control Process

OAM PDU Generation Process: See 9.2 in [ITU-T G.8121]

• Defects:

None.

Consequent actions:

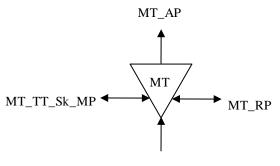
None.

• Defect correlations:

None.

• Performance monitoring:

None.


9.2.1.2 MPLS-TP Trail Termination Sink function (MT_TT_Sk)

The MT_TT_Sk function reports the state of the MPLS-TP Trail (Network Connection). It extracts MPLS-TP trail OAM - for pro-active monitoring - from the MPLS-TP signal at its MT_TCP, detects defects, counts during 1-second periods errors and defects to feed Performance Monitoring when connected and forwards the defect information as backward indications to the companion MT_TT_So function.

Note – The MT_TT_Sk function extracts and processes one level of MPLS-TP OAM irrespective of the presence of more levels.

• Symbol:

The MT_TT_So function symbol is shown in Figure 9-5.

MT_TCP

Figure 9-5/G.8121.1/Y.1381.1 – MT_TT_Sk function

• Interfaces:

Input(s)	Output(s)
MT_TCP:	MT_AP:
MT_CI_D	MT_AI_D
MT_CI_iPHB	MT_AI_PHB
MT_CI_oPHB	MT_AI_TSF
MT_CI_SSF	MT_AI_TSD
MT_CI_Lstack	MT_AI_AIS
MT_RP:	MT_AI_LStack
MT_TT_Sk_MP:	MT_RP:
MT_TT_Sk_MI_GAL_Enable	MT_RI_CC_RDI
MT_TT_Sk_MI_ MEG_ID	MT_RI_CC_Blk
MT_TT_Sk_MI_ PeerMEP_ID	MT_RI_CC_RxFCl
MT_TT_Sk_MI_CC_OAM_Tool	MT_RI_CC_TxFCf
MT_TT_Sk_MI_ RDI_OAM_Tool	
MT_TT_Sk_MI_CC_EnableMT_TT_Sk_MI_	MT_TT_Sk_MP:
LMC_Enable	MT_TT_Sk_MI_SvdCC
	MT_TT_Sk_MI_SVdCC MT_TT_Sk_MI_cSSF
	MT_TT_Sk_MI_cLCK
MT_TT_Sk_MI_CC_Period	MT TT Sk MI cLOC
MT_TT_Sk_MI_CC_CoS	MT_TT_Sk_MI_cMMG
	MT_TT_Sk_MI_cUNM
MT_TT_Sk_MI_Get_SvdCC	MT_TT_Sk_MI_cUNP
MT_TT_Sk_MI_LM_DEGM	MT_TT_Sk_MI_cUNC
MT_TT_Sk_MI_LM_M	MT TT SI- ML DEC
MT_TT_Sk_MI_LM_DEGTHR	MT_TT_Sk_MI_cDEG MT_TT_Sk_MI_cRDI
MT_TT_Sk_MI_LM_TFMIN	MT_TT_Sk_MI_cKDI MT_TT_Sk_MI_pN_LF
	MT_TT_Sk_MI_pN_TF
1	MIT_II_OV_MI_PIV_II

- 47 -TD 036 Rev.1 (PLEN/15)

Input(s)	Output(s)
	MT_TT_Sk_MI_pF_LF MT_TT_Sk_MI_pF_TF

• Processes:

The processes associated with the MT_TT_Sk function are as depicted in Figure 9-6.

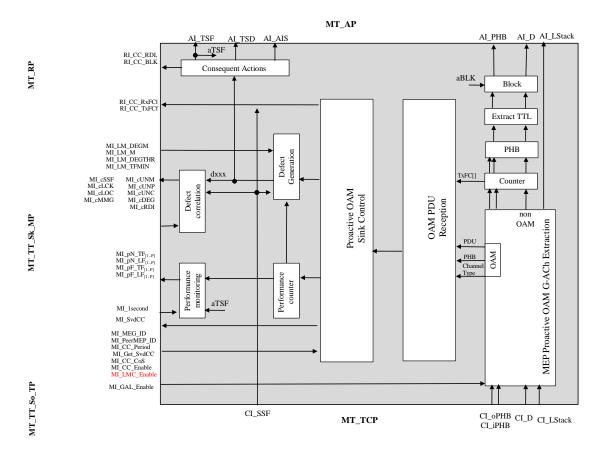


Figure 9-6/G.8121.1/Y.1381.1 – MT_TT_Sk process diagram

PHB: The CI_oPHB signal is assigned to the AI_PHB signal at the reference point MT_AP.

Note that the CI_iPHB signal is not used by any of the processes in the function.

Extract TTL: The Time To Live value is extracted from the outer shim header's TTL field within the MT_CI traffic unit

Block: When the aBlock consequent action is asserted, this process drops all traffic units arriving at its input.

Counter process: It is used to count frames for proactive loss measurements with CCM

G-Ach/GAL Extraction Process: See 8.1 in [ITU-T G.8121].

- 48 -TD 036 Rev.1 (PLEN/15)

Pro-active OAM Sink Control Process: This process consists of following sub-processes as shown Figure 9-7. These details are in Clause 8.8.

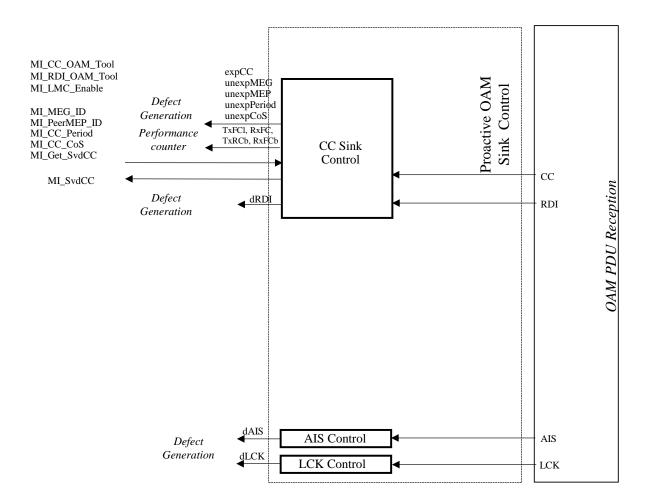


Figure 9-7/G.8121.1/Y.1381.1 – Pro-active OAM Sink Control Process

OAM PDU Reception Process: See 8.8 in [ITU-T G.8121]

Defect Generation: This process raises and clears the defects as defined in clause 6.1 in in [ITU-T G.8121] that are dLOC, dMMG, dUNM, dDEG, dUNP, dUNPr, dRDI, dAIS, dLCK

• Defects:

This function detects dLOC[i], dUNL, dMMG, dUNM, dDEG, dUNP, dUNPr, dRDI[i], dAIS, dLCK.

• Consequent actions:

aBLK \leftarrow (dUNL or dMMG or dUNM)

Note that dUNP and dUNPr does not contribute to aBLK, because a mismatch of periodicity is not considered to be a security issue.

- 49 -TD 036 Rev.1 (PLEN/15)

aTSF \leftarrow (dLOC and MI_CC_Enable) or (dAIS and not(MI_CC_Enable)) or (dLCK and not(MI_CC_Enable)) or dUNL or dMMG or dUNM or CI_SSF

- aTSD \leftarrow dDEG and (not aTSF)
- aAIS ← aTSF

aRDI ← aTSF

• Defect correlations:

cLOC[i] ← dLOC[i] and (not dAIS) and (not dLCK) and (not CI_SSF) and (MI_CC_Enable)

- $cUNL \leftarrow dUNL$
- cMMG ← dMMG
- $cUNM \leftarrow dUNM$

 $cDEG[1] \leftarrow dDEG[1]$ and (not dAIS) and (not dLCK) and (not CI_SSF) and (not (dLOC[1..n] or dUNL or dMMG or dUNM)) and (MI_CC_Enable))

- $cUNP \leftarrow dUNP$
- $cUNPr \leftarrow dUNPr$
- cRDI \leftarrow (dRDI[1..n]) and (MI_CC_Enable)
- $cSSF \leftarrow CI_SSF \text{ or } dAIS$
- cLCK \leftarrow dLCK and (not dAIS)

• Performance monitoring:

pN_TF	←	N_TF
pN_LF	←	N_LF
pF_TF	←	F_TF
pF_LF	←	F_LF
pN_DS	←	aTSF
pF_DS	←	aRDI[1]
pB_FD	←	B_FD
pB_FDV	←	B_FDV
pF_FD	←	F_FD
pF_FDV	←	F_FDV
pN_FD	←	N_FD
pN_FDV	←	N_FDV

9.3 Adaptation functions

9.3.1 MPLS-TP to MPLS-TP adaptation function (MT/MT_A)

This atomic functions are defined in clause 9.3.1 in G.8121. They use the OAM protocol specific AIS insertion process and LCK generation process as defined in clause 8.6.2 and 8.6.3.

9.4 MT Diagnostic Function

9.4.1 MT Diagnostic Trail Termination Functions for MEPs (MTDe)

The bidirectional MTDe Flow Termination (MTDe_TT) function is performed by a co-located pair of MTDe flow termination source (MTDe_TT_So) and sink (MTDe_TT_Sk) functions as shown in Figure 9-c1.

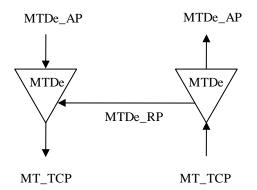
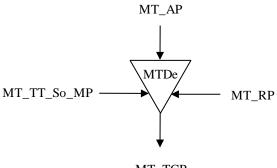



Figure 9-8/G.8121.1/Y.1381.1 - MTDe_TT

9.4.1.1 MT Diagnostic Flow Termination Source Function for MEPs (MTDe_FT_So) Symbol

The MTDe_TT_So function symbol is shown in Figure 9-9.

MT_TCP

Figure 9-9/G.8121.1/Y.1381.1 – MTDe_TT_So symbol

Interfaces

- 51 -TD 036 Rev.1 (PLEN/15)

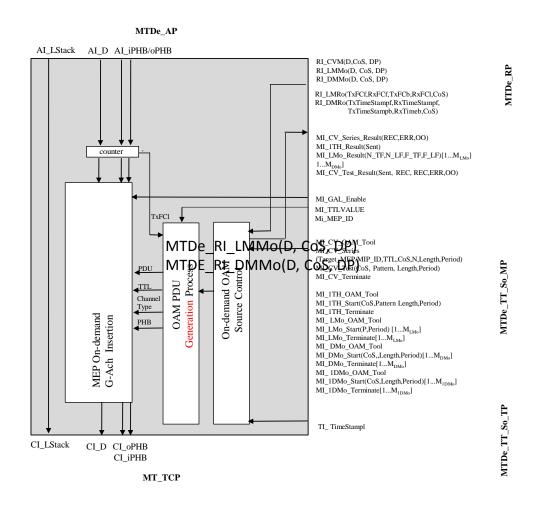
Input(s) **Output(s)** MTDe AP: MT TCP: MTDe AI D MT CI D MT CI oPHB MTDe_AI_oPHB MT CI iPHB MTDe_AI_iPHB MT_CI_LStack MTDe_AI_LStack MTDe TT RP: MTDe_TT_So_MP: MTDe RI LMRo(TxFCf,RxFCf,TxFCb,RxFCl,CoS) MTDe TT So MI CV Series Result(REC,ERR,OO) MTDe_RI_DMRo(TxTimeStampf,RxTimeStampf, MTDe TT So MI CV Test Result(Sent, REC, TxTimeStampb,RxTimeb,CoS) REC,ERR,OO) MTDe RI LMMo(D, CoS, DP) MTDe TT So MI 1TH Result(Sent) MTDE_RI_DMMo(D, CoS, DP) MTDe TT So MI LMo Result(N TF,N LF,F TF,F MTDE_RI_CVM(D, CoS, DP) LF)[1... M_{LM_0}] MTDe_TT_So_MI_DMo_Result(count,B_FD[],F_FD[] MTDe TT So MP: ,N_FD[])[1...M_{DMo}] MTDe TT So MI GAL Enable MTDe TT So MI TTLVALUE MTDe_TT_So_MI_MEP_ID MTDe_TT_So_MI_CV_OAM_Tool MTDe_TT_So_MI_CV_Series (TTL,CoS,N,Length,Period) MTDe_TT_So_MI_CV_Test (CoS, Pattern, Length, Period) MTDe_TT_So_MI_CV_Terminate MTDe_TT_So_MI_1TH_OAM_Tool MTDe_TT_So_MI_1TH_Start(CoS, Pattern, Length, Period) MTDe TT So MI 1TH Terminate MTDe_TT_So_MI_LMo_OAM_Tool MTDe TT So MI LMo Start(CoS, Period) [1...M_{LMo}] MTDe_FT_So_MI_LMo_Terminate[1...MLMo] MTDe_TT_So_MI_DMo_OAM_Tool MTDe_TT_So_MI_DMo_Start (CoS,Length,Period)[1...M_{DMo}] MTDe_TT_So_MI_DMo_Terminate[1...M_{DMo}] MTDe_TT_So_MI_1DMo_OAM_Tool MTDe_TT_So_MI_1DMo_Start (CoS,,Length,Period)[1...M_{1DMo}] MTDe_TT_So_MI_1DMo_Terminate[1...M_{1DMo}] MTDe_TT_So_TP: MTDe_TT_So_TI_ TimeStampl

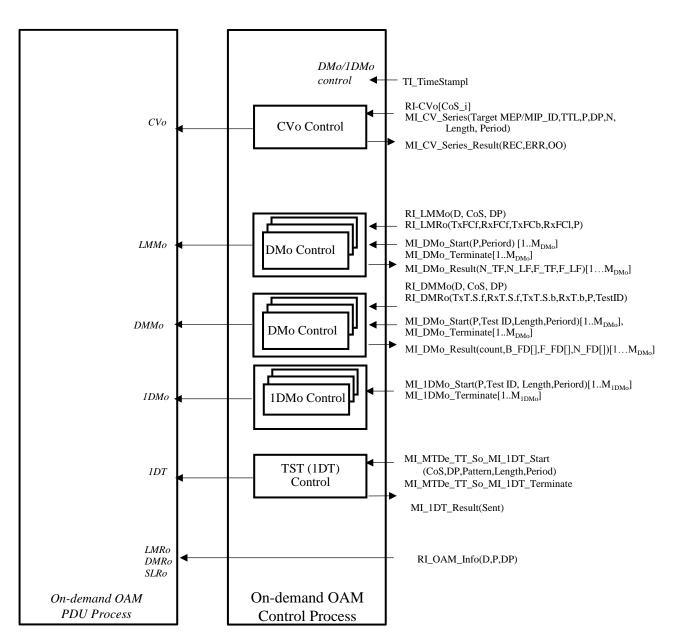
Table 9-3/G.8121.1/Y.1381.1 - MTDe_TT_So interfaces

- 52 -TD 036 Rev.1 (PLEN/15)

Processes

The processes associated with the MTDe_TT_So function are as depicted in Figure 9-10.



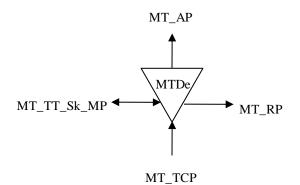

Figure 9-10/G.8121.1/Y.1381.1 – MTDe_FT_So Process

G-Ach/GAL Insertion process: See 8.1 in [ITU-T G.8121].

On-demand OAM Source Control Process:

This process consists of following sub-processes, in conjunction with OAM PDU Generation Process, as shown Figure 9-11. These details are in clause8.8/G.8121.1

- 53 -TD 036 Rev.1 (PLEN/15)


Figure 9-11/G.8121.1/Y.1381.1 – On-demand OAM Source Control Process

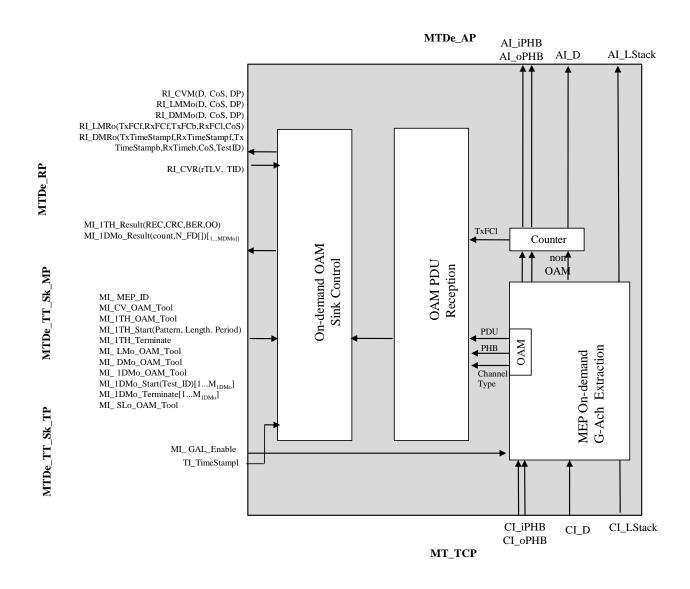
On-demand OAM PDU Generation Process: See 8.8 in [ITU-T G.8121] **Counter Process**: See 8.8 in [ITU-T G.8121]

Defects	None.
Consequent actions	None.
Defect correlations	None.
Performance monitoring	None.

9.4.1.2 MT Diagnostic Trail Termination Sink Function for MEPs (MTDe_TT_Sk) Symbol

The MTDe_TT_Sk function symbol is shown in Figure 9-12.

Figure 9-12/G.8121.1/Y.1381.1 – MTDe_TT_Sk symbol


Interfaces

Input(s)	Output(s)
MT_TCP:	MTDe_AP:
MT_CI_D	MTDe_AI_D
MT_CI_iPHB	MTDe_AI_oPHB
MT_CI_oPHB	MTDe_AI_iPHB
MT_CI_LStack	MTDe_AI_LStack
MT_RP:	MTDe RP:
MTDe_RI_CVR(rTLV, TID)	MTDe RI CVM(D, CoS, DP)
	MTDe RI LMMo(D, CoS, DP)
MTDe_TT_Sk_MP:	MTDE_RI_DMMo(D, CoS, DP)
MTDe_TT_Sk_MI_GAL_Enable	MTDe_RI_LMRo(TxFCf,RxFCf,TxFCb,RxFCl,Co
MTDe_TT_Sk_MI_ MEP_ID	S)
	MTDe_RI_DMRo(TxTimeStampf,RxTimeStampf,
MTDe_TT_Sk_MI_CV_OAM_Tool	TxTimeStampb,RxTimeb,CoS,TestID)
MTDe_TT_Sk_MI_1TH_OAM_Tool	MTDe_TT_Sk_MP:
MTDe_TT_Sk_MI_1TH_Start(Pattern, Length,	MTDe TT Sk MI 1TH Result(REC,CRC,BER,O
Period)	0)
MTDe_TT_Sk_MI_1TH_Terminate	MTDe_TT_Sk_MI_1DMo_Result(count,N_FD[])[1
MTDe TT Sk MI LMo OAM Tool	M _{DMo}]]
MTDe_TT_Sk_MI_DMo_OAM_Tool	
MTDe_TT_Sk_MI_DM0_OAM_Tool	
MTDe_TT_Sk_MI_1DMo_Start[1M _{1DMo}]	
$MTDe_TT_Sk_MI_1DMo_Terminate[1M_{1DMo}]$	
MTDe_TP:	
MTDe_TT_Sk_TI_TimeStampl	

Table 9-4/G.8121.1/Y.1381.1 - MTDe_TT_Sk interfaces

Processes

The processes associated with the MTDe_TT_Sk function are as depicted in Figure 9-13.

Figure 9-13/G.8121.1/Y.1381.1 - MTDe_TT_Sk Process

G-Ach/GAL Extraction Process: See 8.1 in [ITU-T G.8121].

On-demand OAM PDU Reception Process: See 8.8 in [ITU-T G.8121]

On-demand OAM Sink Control Process: This process consists of following sub-processes, in conjunction with OAM PDU Generation Process, as shown Figure 9-13. These details are in Clause 8.8.

- 56 -TD 036 Rev.1 (PLEN/15)

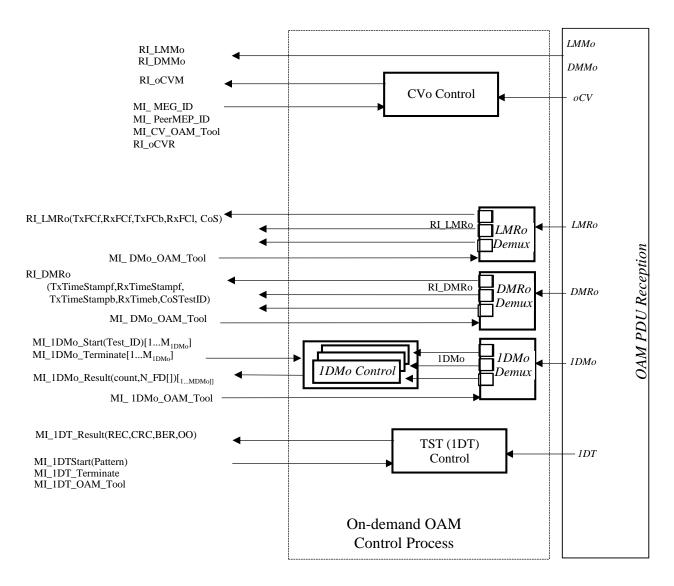
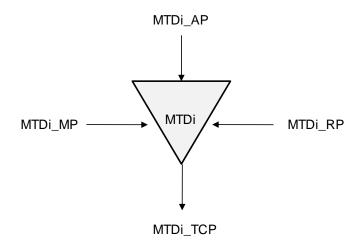


Figure 9-14/G.8121.1/Y.1381.1 – On-Demand OAM Sink Control Process

Defects	None
Consequent actions	None
Defect correlations	None
Performance monitoring	None

9.4.2 MT Diagnostic Flow Termination Functions for MIPs


9.4.2.1 MT Diagnostic Trail Termination Functions for MIPs

The MTDi/MT adaptation function is an empty function; it is included to satisfy the modelling rules.

The bidirectional MTD/MT adaptation function is performed by a co-located pair of MTDi/MT adaptation source (MTDi/MT_A_So) and sink (MTDi/MT_A_Sk) functions.

9.4.2.1.1 MT Diagnostic Trail Termination Source Function for MIPs (MTDi_TT_So) Symbol

The MTDi_TT_So function symbol is shown in Figure 9-15.

Figure 9-15/G.8121.1/Y.1381.1 – MTDi_TT_So symbol

Interfaces

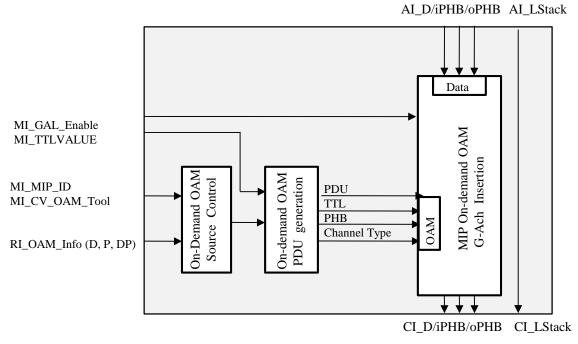

Table 9-5/G.8121.1/ 1.1381.1 – MTDI_11_50 Interfaces		
Inputs	Outputs	
MTDi_AP MT_AI_D MT_AI_iPHB MT_AI_oPHB MT_AI_Lstack	MTDi_TCP MT_CI_D, MT_CI_iPHB, MT_CI_oPHB, MT_CI_LStack	
MTDi_RP MTDi_RI_CV_Info (D, CoS, DP) MTDi_TT_So_MP		
MTDi_TT_So_MI_GAL_Enable MTDi_TT_So_MI_TTLVALUE MTDi_TT_So_MI_MIP_ID MTDi_TT_So_MI_CV_OAM_Tool		

Table 9-5/G.8121.1/Y.1381.1 - MTDi_TT_So interfaces

Processes

The processes associated with the MTDi_TT_So function are as depicted in Figure 9-16

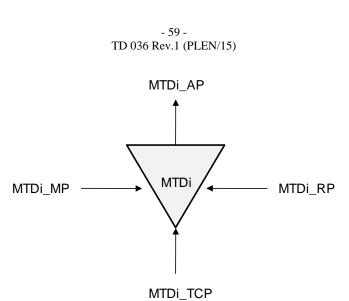
MTDi_AP

MT_TCP

Figure 9-16/G.8121.1/Y.1381.1 – MTDi_TT_So Process

MIP OAM insertion: See clause 9.4.2.1.1 in [ITU-T G.8121]

On-demand OAM PDU Generation Process: See clause 9.4.2.1.1 in [ITU-T G.8121]


On-demand OAM Source Control Process: This process consists of oCV and RT sub-processes. These details are in 8.8/G.8121.1.

Defects	None.
Consequent actions	None.
Defect correlations	None.
Performance monitoring	None.

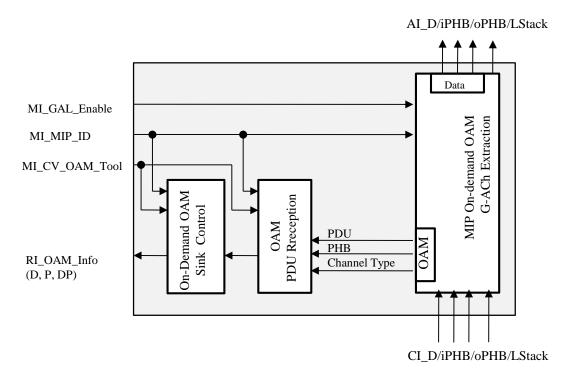
9.4.2.1.2 MT Diagnostic Trail Termination Sink Function for MIPs (MTDi_TT_Sk)

Symbol

The MTDi_TT_Sk function symbol is shown in Figure 9-17.

Figure 9-17/G.8121.1/Y.1381.1 – MTDi_TT_Sk symbol

Interfaces


Table 9-6/G.8121.1/Y.1381.1	– MTDi_TT_	_Sk interfaces
Table 9-6/G.8121.1/Y.1381.1	– MTDi_TT_	_Sk interfaces

Inputs	Outputs
MTDi_TCP MT_CI_D MT_CI_iPHB MT_CI_oPHB MT_CI_LStack	MTDi_AP MT_AI_D MT_AI_iPHB MT_AI_oPHB MT_AI_LStack
MTDi_TT_Sk_MP MTDi_TT_Sk_MI_GAL_Enable MTDi_TT_Sk_MI_MIP_ID MTDi_TT_Sk_MI_CV_OAM_Tool	MTDi_RP MTDi_RI_CV_Info (D, CoS, DP)

Processes

The processes associated with the MTDi_TT_So function are as depicted in Figure 9-18

MTDi_AP

MT_TCP

Figure 9-18/G.8121.1/Y.1381.1 – MTDi_TT_Sk Process

MIP OAM extraction: See clause 9.4.2.1.2 in in [ITU-T G.8121]

On-demand OAM PDU Reception Process: See clause 9.4.2.1.2 in in [ITU-T G.8121]

On-demand OAM Sink Control Process:

This process consists of oCV sub-processes. These details are in Clause 8.8.

Defects	None.
Consequent actions	None.
Defect correlations	None.
Performance monitoring	None.

9.4.2.2 MTDi to MT Adaptation functions (MTDi/MT_A)

See clause 9.4.2.2 in [ITU-T G.8121].

10 MPLS-TP to Non-MPLS-TP client adaptation functions

This atomic functions are defined in clause 10 in [ITU-T G.8121].

11 Non-MPLS-TP Server to MPLS-TP adaptation functions

These atomic functions are defined in clause 11 in [ITU-T G.8121]. They use the OAM protocol specific AIS insertion process and LCK generation process as defined in clause 8.6.2 and 8.6.3.
