
ANIMA P. Peloso
Internet-Draft L. Ciavaglia
Intended status: Standards Track Nokia
Expires: September 22, 2016 March 21, 2016

 A Day in the Life of an Autonomic Function
 draft-peloso-anima-autonomic-function-01.txt

Abstract

 While autonomic functions are often pre-installed and integrated with
 the network elements they manage, this is not a mandatory condition.
 Allowing autonomic functions to be dynamically installed and to
 control resources remotely enables more versatile deployment
 approaches and enlarges the application scope to virtually any legacy
 equipment. The analysis of autonomic functions deployment schemes
 through the installation, instantiation and operation phases allows
 constructing a unified life-cycle and identifying new required
 functionality. Thus, the introduction of autonomic technologies will
 be facilitated, the adoption much more rapid and broad. Operators
 will benefit from multi-vendor, inter-operable autonomic functions
 with homogeneous operations and superior quality, and will have more
 freedom in their deployment scenarios.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 22, 2016.

Peloso & Ciavaglia Expires September 22, 2016 [Page 1]

Internet-Draft Autonomic Function March 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

 This document may not be modified, and derivative works of it may not
 be created, except to format it for publication as an RFC or to
 translate it into languages other than English.

Table of Contents

 1. Problem statement . 3
 2. Motivations from an operator viewpoint 4
 2.1. Illustration of increasingly constraining operator’s
 objectives . 4
 2.2. Deployment scenarios of autonomic functions 5
 2.3. Operator’s requirements with regards to autonomic
 functions . 9
 3. Installation phase . 10
 3.1. Operator’s goal . 10
 3.2. Installation phase inputs and outputs 11
 4. Instantiation phase . 12
 4.1. Operator’s goal . 12
 4.2. Instantiation phase inputs and outputs 13
 4.3. Instantiation phase requirements 13
 5. Operation phase . 14
 6. Autonomic Function Agent specifications 15
 6.1. Life-cycle . 15
 6.2. ASA Class Manifest 16
 6.3. ASA Instance Mandate 17
 6.4. ASA Instance Manifest 18
 7. Implication for other ANIMA components 19
 7.1. Additional entities for ANIMA ecosystem 19
 7.2. Requirements for GRASP and ACP messages 20
 7.2.1. Control when an ASA runs 21
 7.2.2. Know what an ASA does to the network 21
 7.2.3. Decide which ASA control which equipment 22
 8. Acknowledgments . 22
 9. IANA Considerations . 22
 10. Security Considerations 22
 11. References . 22

Peloso & Ciavaglia Expires September 22, 2016 [Page 2]

Internet-Draft Autonomic Function March 2016

 11.1. Normative References 22
 11.2. Informative References 23
 Authors’ Addresses . 23

1. Problem statement

 While autonomic functions are often pre-installed and integrated with
 the network elements they manage, this is not a mandatory condition.
 Allowing autonomic functions to be dynamically installed and to
 control resources remotely enables more versatile deployment
 approaches and enlarges the application scope to virtually any legacy
 equipment. The analysis of autonomic functions deployment schemes
 through the installation, instantiation and operation phases allows
 constructing a unified life-cycle and identifying new required
 functionality.

 An Autonomic Service Agent (ASA) controls resources of one or
 multiple Network Elements (NE), e.g. the interfaces of a router for a
 Load Balancing ASA. An ASA is a software, thus an ASA need first to
 be installed and to execute on a host machine in order to control
 resources.

 There are 3 properties applicable to the installation of ASAs:

 The dynamic installation property allows installing an ASA on
 demand, on any hosts compatible with the ASA.

 The decoupling property allows controlling resources of a NE from a
 remote ASA, i.e. an ASA installed on a host machine different from
 the resources’ NE.

 The multiplicity property allows controlling multiple sets of
 resources from a single ASA.

 These three properties provide the operator a great variety of ASA
 deployment schemes as they decorrelate the evolution of the
 infrastructure layer from the evolution of the autonomic function
 layer. Depending on the capabilities (and constraints) of the
 infrastructure and of the autonomic functions, the operator can
 devise the schemes that will better fit to its deployment objectives
 and practices.

 Based on the above definitions, the ASA deployment process can be
 formulated as a multi-level/criteria matching problem.

 The primary level, present in the three phases, consists in matching
 the objectives of the operator and the capabilities of the
 infrastructure. The secondary level criteria may vary from phase to

Peloso & Ciavaglia Expires September 22, 2016 [Page 3]

Internet-Draft Autonomic Function March 2016

 phase. One goal of the document is thus to identify the specific and
 common functionality among these three phases.

 This draft will explore the implications of these properties along
 each of the 3 phases namely Installation, Instantiation and
 Operation. This draft will then provide a synthesis of these
 implications in requirements for functionalities and life-cycle of
 ASAs. Beforehand, the following section will deal with the network
 operator’s point of view with regards of autonomic networks.

2. Motivations from an operator viewpoint

 Only few operators would dare relying on a pure autonomic network,
 without setting objectives to it. From an operator to the other, the
 strategy of network management vary, as much for historical reasons
 (experience, best-practice, tools in-place, organization), as much
 for differences in the operators goals (business, trade agreements,
 politics, risk policy). Additionally, network operators do not
 necessarily perform a uniform network management across the different
 domains composing their network infrastructure. Hence their
 objectives in terms of availability, load, and dynamics vary
 depending on the nature of the domains and of the types of services
 running over each of those domains.

 To manage the networks according to the above variations, ASAs need
 to capture the underlying objectives implied by the operators. The
 instantiation phase is the step in-between installation and
 operation, where the network operator determine the initial ASA
 behavior according to its objectives. This step allows the network
 operator to determine which ASAs should execute on which domains of
 its network, with appropriate settings. At this stage, thanks to the
 intent-policy setting objectives to groups of ASAs, the network
 management should become far simpler (and less error-prone) than
 setting low-level configurations for each individual network
 resources.

2.1. Illustration of increasingly constraining operator’s objectives

 This paragraph describes the following example of operator intents
 with regards to deployments of autonomic functions. The autonomic
 function involved is a load balancing function, which uses monitoring
 results of links load to autonomously modify the links metrics in
 order to balance the load over the network. The example is divided
 into steps corresponding to an increasing implication of the operator
 in the definition of objectives/intents to the deployment of
 autonomic functions:

Peloso & Ciavaglia Expires September 22, 2016 [Page 4]

Internet-Draft Autonomic Function March 2016

 Step 1 The operator operates its network and benefits from the
 autonomic function on the nodes which have the installed ASAs.

 Step 2 Then the operator, specifies to the autonomic function an
 objective which is to achieve the maximum number of links with a
 load below 6O%.

 Step 3 The network is composed of five domains, a core transport
 network and four metropolitan networks, each interconnected
 through the core network, the operator sets a different objective
 to the autonomic function for each of the five domain.

 Step 4 As inside metropolitan domains the traffic variations are
 steeper and happen in a periodic fashion contrary to the traffic
 in the core domain, the network operators installs an additional
 autonomic function inside each of these domains. This autonomic
 function is learning the traffic demands in order to predict
 traffic variations. The operators instructs the load balancing
 function to augment its monitored input with the traffic
 predictions issued by the newly installed autonomic function.

 Step 5 As the algorithm of the load balancing autonomic function is
 relying on interactions between autonomic function agents, the
 operator expects the interactions to happen in-between ASAs of
 each domain, hence the load will be balanced inside each of the
 domain, while previously it would have been balanced over the
 whole network uniformly.

 Step 6 Finally, the network operator has purchased a new piece of
 software corresponding to an autonomic function achieving load
 balancing with a more powerful algorithm. For trial sake, he
 decides to deploy this new load balancing function instead of the
 previous one on one of its four metropolitan domains.

 This short example illustrates some specificities of deployment
 scenarios, the sub-section below sets itself at providing a more
 exhaustive view of the different deployment scenarios.

2.2. Deployment scenarios of autonomic functions

 The following scenarios illustrate the different ways the autonomic
 functions could be deployed in an ANIMA context. Subsequently,
 requirements for the autonomic functions and requirements these
 autonomic functions impose on other components of the ANIMA ecosystem
 are listed.

 These various deployment scenarios are better understood by referring
 to the High level view of an Autonomic Network, Figure 1 of

Peloso & Ciavaglia Expires September 22, 2016 [Page 5]

Internet-Draft Autonomic Function March 2016

 [I-D.behringer-anima-reference-model]. The figure is slightly
 extended for the purpose of the demonstration as follows:

 + - +
 | : Autonomic Function 1 : |

 | ASA 1.1 : ASA 1.2 : ASA 1.3 : ASA 1.4 |
 + - +
 : : :
 : + - - - - - - - - - - - - - + :
 : | Autonomic Function 2 | :

 : | ASA 2.2 : ASA 2.3 | :
 : + - - - - - - - - - - - - - + :
 : : :
 + - - - - - - - - - - - - - + : + - - - - - - - - - - - - - +
 | Autonomic Function 3 | : | Autonomic Function 4 |

 | ASA 3.1 : ASA 3.2 | : | ASA 4.3 : ASA 4.4 |
 + - - - - - - - - - - - - - + : + - - - - - - - - - - - - - +
 : : :
 + - +
 | Autonomic Networking Infrastructure |
 + - +
 +--------+ : +--------+ : +--------+ : +--------+
 | Node 1 |-------| Node 2 |-------| Node 3 |-------| Node 4 |
 +--------+ : +--------+ : +--------+ : +--------+

 Figure 1: High level view of an Autonomic Network

 Figure 1 depicts 4 Nodes, 4 Autonomic Functions and 10 Autonomic
 Service Agents. Let’s list assumptions with regards of these
 elements.

 Starting with nodes,

 each may be either an Unconstrained Autonomic Node, a Constrained
 Autonomic Node (or even a legacy one?),

 they may well be of different models (or having different software
 versions),

 they may well be of different equipment vendors,

 they may well be of different technologies (some may be IP
 routers, some may be Ethernet switches or OTN switches...).

Peloso & Ciavaglia Expires September 22, 2016 [Page 6]

Internet-Draft Autonomic Function March 2016

 Pursuing with Autonomic Functions,

 they may well have different objectives (one could target
 automatic configuration of OSPF-TE, while another one is
 optimizing traffic load), but they may well have identical
 objectives as two could optimize energy consumption (possibly on
 different areas as function 3 and function 4),

 each may be composed of no more than one ASA (either because the
 function is responsible for a single node or because the function
 relies on a centralized implementation),

 each may well be composed of different sort of ASAs, meaning the
 software is different (either because their version number is
 different, or because the software provider is different, or
 because their respective nodes/equipments differ or because the
 role of each agent is different),

 [Observation] Depending on the implementation the same piece of
 software may fulfill different roles or each role may come from a
 different from a different piece of code,

 each has reached a given organization, meaning an organized set of
 ASAs in charge of a set of nodes ()whether formalized or not),
 this organization may either come from the piece of software
 itself (e.g. embedding a self-organization process) or come from
 directions of the network operator (e.g. through intents/policies,
 or through deployment instructions)

 each may work internally in a peer to peer fashion (where every
 agents have the same prerogatives) or in hierarchical fashion
 (where some agents have some prerogatives over other) [this option
 is a good example of role differences],

 each having its scope of work in terms of objective to reach and
 area/space/part of the network to manage.

 Completing with individual Autonomic Service Agents, those are pieces
 of software:

 embedded inside the node/equipment OS (hence present since the
 bootstrap or OS update of the equipment),

 running in a machine different than the node (this could be a node
 controller or any other host or virtual machine)

 [Observation] In the latter case, the ASA would likely require
 external credentials to interact with the node,

Peloso & Ciavaglia Expires September 22, 2016 [Page 7]

Internet-Draft Autonomic Function March 2016

 directly monitoring and configuring the equipment (likely requires
 the ASA to be embedded) or through a management interface of the
 equipment (e.g. SNMP, TL1, Q3, NetConf) or through an equipment
 controller (e.g. SDN paradigm) or through a network manager (e.g.
 using the north interface of the manager)

 either activated at start-up or as the result of a management
 action,

 may be installed (either inside the equipment or on a different
 machine) when requested by an operator from a software origin
 (e.g. a repository in the ACP, a media)

 provided by the same vendor as the equipment it manages or by any
 third party (like another equipment vendor, a management software
 vendor, an open-source initiative or the operator software team),

 sharing a technical objective with the other ASAs of the Autonomic
 Function they belong, (or at least a similar one)?

 can it contains multiple technical objective?

 must the technical objective be intrinsic or can it be set by a
 managing entity (a network operator or a management system)?

 The last three points being largely questionable are marked as
 questions.

 The figure below illustrates how an ASA interacts with a node that
 the ASA manages. The left side depicts external interactions,
 through exchange of commands towards interfaces either to the node OS
 (e.g. via SNMP or NetConf), or to the controller (e.g. (G)MPLS, SDN,
 ...), or to the NMS. The right side depicts the case of the ASA
 embedded inside the Node OS.

Peloso & Ciavaglia Expires September 22, 2016 [Page 8]

Internet-Draft Autonomic Function March 2016

 + - - - + +-------------+
 | ASA |------>| NMS *<--*
 + - - - + +------^------+ |
 | | | |
 | | +------V------+ |
 | +-------->| Controller | |
 | +------^------+ | +---------------------+
 | | | | + - - - + |
 | +------V------+ | | | ASA | Node OS |
 +------------>| Node OS *<--* | + - - - + |
 +------^------+ +--------------*------+
 | |
 +------V------+ +-----*------+
 | Node | | Node |
 +-------------+ +------------+

 Figure 2: Interaction possibilities between ASA and Resources

2.3. Operator’s requirements with regards to autonomic functions

 Regarding the operators, at this point we can try to list few
 requirements they may have with regards with the Autonomic Functions
 and their management...

 Being capable to set those functions a scope of work in term of
 area of duty,

 Being capable to monitor the actions taken by the autonomic
 functions, and which are its results (performance with regards to
 the function KPIs)

 Being capable to halt/suspend the execution of an Autonomic
 function (either because the function is untrusted, or because an
 operation on the network is to be conducted without interference
 from the autonomic functions, etc...)

 Being capable to configure the autonomic functions by adjusting
 the parameters of the function (e.g. a Traffic Engineering
 autonomic function may achieve a trade-off between congestion
 avoidance and electrical power consumption, hence this function
 may be more or less aggressive on the link load ratio, and the
 network operator certainly has his word to say in setting this
 cursor.

Peloso & Ciavaglia Expires September 22, 2016 [Page 9]

Internet-Draft Autonomic Function March 2016

3. Installation phase

 Before being able to instantiate and run ASAs, the operator must
 first provision the infrastructure with the sets of ASA software
 corresponding to its needs and objectives. The provisioning of the
 infrastructure is realized in the installation phase and consists in
 installing (or checking the availability of) the pieces of software
 of the different ASA classes in a set of Installation Hosts.

 As mentioned in the Problem statement section, an Autonomic Function
 Agent (ASA) controls resources of one or multiple Network Elements
 (NE), e.g. the interfaces of a router for a Load Balancing ASA. An
 ASA is a software, thus an ASA need first to be installed and to
 execute on a host machine in order to control resources.

 There are 3 properties applicable to the installation of ASAs:

 The dynamic installation property allows installing an ASA on
 demand, on any hosts compatible with the ASA.

 The decoupling property allows controlling resources of a NE from a
 remote ASA, i.e. an ASA installed on a host machine different from
 the resources’ NE.

 The multiplicity property allows controlling multiple sets of
 resources from a single ASA.

 These three properties are very important in the context of the
 installation phase as their variations condition how the ASA class
 could be installed on the infrastructure.

3.1. Operator’s goal

 In the installation phase, the operator’s goal is to install ASA
 classes on Installation Hosts such that, at the moment of
 instantiation, the corresponding ASAs can control the sets of target
 resources. The complexity of the installation phase come from the
 number of possible configurations for the matching between the ASA
 classes capabilities (e.g. what types of resources it can control,
 what types of hosts it can be installed on...), the Installation
 Hosts capabilities (e.g. support dynamic installation, location and
 reachability...) and the operator’s needs (what deployment schemes
 are favored, functionality coverage vs. cost trade-off...).

 For example, in the coupled mode, the ASA host machine and the
 network element are the same. The ASA is installed on the network
 element and control the resources via interfaces and mechanisms
 internal to the network element. An ASA MUST be installed on the

Peloso & Ciavaglia Expires September 22, 2016 [Page 10]

Internet-Draft Autonomic Function March 2016

 network element of every resource controlled by the ASA. The
 identification of the resources controlled by an ASA is
 straightforward: the resources are the ones of the network element.

 In the decoupled mode, the ASA host machine is different from the
 network element. The ASA is installed on the host machine and
 control the resources via interfaces and mechanisms external to the
 network element. An ASA can be installed on an arbitrary set of
 candidate Installation hosts, which can be defined explicitly by the
 network operator or according to a cost function. A key benefit of
 the decoupled mode is to allow an easier introduction of autonomic
 functions on existing (legacy) infrastructure. The decoupled mode
 also allows de-correlating the installation requirements (compatible
 host machines) from the infrastructure evolution (NEs addition and
 removal, change of NE technology/version...).

 The operator’s goal may be defined as a special type of intent,
 called the Installation phase intent. The details of the content and
 format of this proposed intent are left open and for further study.

3.2. Installation phase inputs and outputs

 Inputs are:

 [ASA class of type_x] that specifies which classes ASAs to install,

 [Installation_target_Infrastructure] that specifies the candidate
 Installation Hosts,

 [ASA class placement function, e.g. under which criteria/constraints
 as defined by the operator]
 that specifies how the installation phase shall meet the
 operator’s needs and objectives for the provision of the
 infrastructure. In the coupled mode, the placement function is
 not necessary, whereas in the decoupled mode, the placement
 function is mandatory, even though it can be as simple as an
 explicit list of Installation hosts.

 The main output of the installation phase is an up-to-date directory
 of installed ASAs which corresponds to [list of ASA classes]
 installed on [list of installation Hosts]. This output is also
 useful for the coordination function and corresponds to the static
 interaction map.

 The condition to validate in order to pass to next phase is to ensure
 that [list of ASA classes] are well installed on [list of
 installation Hosts]. The state of the ASA at the end of the
 installation phase is: installed. (not instantiated). The following

Peloso & Ciavaglia Expires September 22, 2016 [Page 11]

Internet-Draft Autonomic Function March 2016

 commands or messages are foreseen: install(list of ASA classes,
 Installation_target_Infrastructure, ASA class placement function),
 and un-install (list of ASA classes).

4. Instantiation phase

 Once the ASAs are installed on the appropriate hosts in the network,
 these ASA may start to operate. From the operator viewpoint, an
 operating ASA means the ASA manages the network resources as per the
 objectives given. At the ASA local level, operating means executing
 their control loop/algorithm.

 But right before that, there are two things to take into
 consideration. First, there is a difference between 1. having a
 piece of code available to run on a host and 2. having an agent based
 on this piece of code running inside the host. Second, in a coupled
 case, determining which resources are controlled by an ASA is
 straightforward (the determination is embedded), in a decoupled mode
 determining this is a bit more complex (hence a starting agent will
 have to either discover or be taught it).

 The instantiation phase of an ASA covers both these aspects: starting
 the agent piece of code (when this does not start automatically) and
 determining which resources have to be controlled (when this is not
 obvious).

4.1. Operator’s goal

 Through this phase, the operator wants to control its autonomic
 network in two things:

 1 determine the scope of autonomic functions by instructing which of
 the network resources have to be managed by which autonomic
 function (and more precisely which class e.g. 1. version X or
 version Y or 2. provider A or provider B),

 2 determine how the autonomic functions are organized by instructing
 which ASAs have to interact with which other ASAs (or more
 precisely which set of network resources have to be handled as an
 autonomous group by their managing ASAs).

 Additionally in this phase, the operator may want to set objectives
 to autonomic functions, by configuring the ASAs technical objectives.

 The operator’s goal can be summarized in an instruction to the ANIMA
 ecosystem matching the following pattern:

Peloso & Ciavaglia Expires September 22, 2016 [Page 12]

Internet-Draft Autonomic Function March 2016

 [ASA of type_x instances] ready to control
 [Instantiation_target_Infrastructure] with
 [Instantiation_target_parameters]

4.2. Instantiation phase inputs and outputs

 Inputs are:

 [ASA of type_x instances] that specifies which are the ASAs to be
 targeted (and more precisely which class e.g. 1. version X or
 version Y or 2. provider A or provider B),

 [Instantiation_target_Infrastructure] that specifies which are the
 resources to be managed by the autonomic function, this can be the
 whole network or a subset of it like a domain a technology segment
 or even a specific list of resources,

 [Instantiation_target_parameters] that specifies which are the
 technical objectives to be set to ASAs (e.g. an optimization
 target)

 Outputs are:

 [Set of ASAs - Resources relations] describing which resources are
 managed by which ASA instances, this is not a formal message, but
 a resulting configuration of a set of ASAs,

4.3. Instantiation phase requirements

 The instructions described in section 4.2 could be either:

 sent to a targeted ASA In which case, the receiving Agent will have
 to manage the specified list of
 [Instantiation_target_Infrastructure], with the
 [Instantiation_target_parameters].

 broadcast to all ASAs In which case, the ASAs would collectively
 determine from the list which Agent(s) would handle which
 [Instantiation_target_Infrastructure], with the
 [Instantiation_target_parameters].

 This set of instructions can be materialized through a message that
 is named an Instance Mandate. Instance Mandates are described in the
 requirements part of this document, which lists the needed fields of
 such a message (see Section 6.3 - ASA Instance Mandate).

 The conclusion of this instantiation phase is a ready to operate ASA
 (or interacting set of ASAs), then this (or those) ASA(s) can

Peloso & Ciavaglia Expires September 22, 2016 [Page 13]

Internet-Draft Autonomic Function March 2016

 describe themselves by depicting which are the resources they manage
 and what this means in terms of metrics being monitored and in terms
 of actions that can be executed (like modifying the parameters
 values). A message conveying such a self description is named an
 Instance Manifest. Instance Manifests are described in the
 requirements part of this document, which lists the needed fields of
 such a message (see Section 6.4 - ASA Instance Manifest).

 Though the operator may well use such a self-description "per se",
 the final goal of such a description is to be shared with other ANIMA
 entities like:

 o the coordination entities (see [I-D.ciavaglia-anima-coordination]
 - Autonomic Functions Coordination)

 o collaborative entities in the purpose of establishing knowledge
 exchanges (some ASAs may produce knowledge or even monitor metrics
 that other ASAs cannot make by themselves why those would be
 useful for their execution) (see knowledge exchange items in
 Section 5 - Operation phase)

5. Operation phase

 Note: This section is to be further developed in future revisions of
 the document.

 During the Operation phase, the operator can:

 Activate/Deactivate ASA: meaning enabling those to execute their
 autonomic loop or not.

 Modify ASAs targets: meaning setting them different objectives.

 Modify ASAs managed resources: by updating the instance mandate
 which would specify different set of resources to manage (only
 applicable to decouples ASAs).

 During the Operation phase, running ASAs can interact the one with
 the other:

 in order to exchange knowledge (e.g. an ASA providing traffic
 predictions to load balancing ASA)

 in order to collaboratively reach an objective (e.g. ASAs
 pertaining to the same autonomic function targeted to manage a
 network domain, these ASA will collaborate - in the case of a load
 balancing one, by modifying the links metrics according to the
 neighboring resources loads)

Peloso & Ciavaglia Expires September 22, 2016 [Page 14]

Internet-Draft Autonomic Function March 2016

 During the Operation phase, running ASAs are expected to apply
 coordination schemes

 then execute their control loop under coordination supervision/
 instructions

6. Autonomic Function Agent specifications

6.1. Life-cycle

 Based on the phases described above, this section defines formally
 the different states experienced by Autonomic Function Agents during
 their complete life-cycle.

 The drawing of the life-cycle presented below shows both the states
 and the events/messages triggering the state changes. For
 simplification purposes, this sketch does not display the transitory
 states which correspond to the handling of the messages.

 The installation and Instantiation phase will be concluded by ASA
 reaching respectively Installed and Instantiated states.

 +--------------+
 Undeployed ------>| |------> Undeployed
 | Installed |
 +-->| |---+
 Mandate | +--------------+ | Receives a
 is revoked | +--------------+ | Mandate
 +---| |<--+
 | Instantiated |
 +-->| |---+
 set | +--------------+ | set
 down | +--------------+ | up
 +---| |<--+
 | Operational |
 | |
 +--------------+

 Figure 3: Life cycle of an Autonomic Function Agent

 Here are described the successive states of ASA.

 Undeployed - In this "state", the Autonomic Function Agent is a
 mere piece of software, which may not even be available on any
 host.

Peloso & Ciavaglia Expires September 22, 2016 [Page 15]

Internet-Draft Autonomic Function March 2016

 Installed - In this state, the Autonomic Function Agent is
 available on a (/multiple) host(s), and after having shared its
 ASA class Manifest (which describes in a generic way independently
 of the deployment how the ASA would work). In this state the ASA
 is waiting for an ASA Instance Mandate, to determine which
 resources ti manage (when the ASA is strictly coupled to resources
 [e.g. part of a Node OS], there is no need to wait for an instance
 mandate, the target resources being intrinsically known).

 Instantiated - In this state the Autonomic Function Agent has the
 knowledge of which resources it is meant to manage. In this state
 the ASA is expecting a set Up message in order to start executing
 its autonomic loop. From this state on the ASA can share an
 Instance Manifest (which describes how the ASA instance is going
 to work).

 Operational - In this state, ASAs are executing their autonomic
 loop, hence acting on network, by modifying resources parameters.
 A set down message will turn back the ASA in an Instantiated
 state.

 The messages are described in the following sections.

6.2. ASA Class Manifest

 An ASA class is a piece of software that contains the computer
 program of an Autonomic Function Agent.

 In order to install and instantiate appropriately an autonomic
 function in its network, the operator needs to know which are the
 characteristics of this piece of software.

 This section details a format for an ASA class manifest, which is (a
 machine-readable) description of both the autonomic function and the
 piece of code that executes the function.

 +--------------+---------------+------------------------------------+
 | Field Name | Type | Description |
 +--------------+---------------+------------------------------------+
 | ID | Struct | A unique identifier made out of at |
 | | | least a Function Name, Version and |
 | | | Provider Name (and Release Date). |
 | Description | Struct | A multi-field description of the |
 | | | function performed by the ASA, it |
 | | | is meant to be read by the |
 | | | operator and can point to URLs, |
 | | | user-guides, feature descriptions. |
 | Installation | 3 Booleans | Whether the ASA is dynamically |

Peloso & Ciavaglia Expires September 22, 2016 [Page 16]

Internet-Draft Autonomic Function March 2016

 | properties | | installable, can be decoupled from |
 | | | the NE and can manage multiple |
 | | | resources from a single instance |
 | | | (see Section 1 - Problem |
 | | | statement). |
 | Possible | OS... | Lists the OS/Machines on which the |
 | Hosts | | ASA can be executed. [Only if ASA |
 | | | is dynamically installable] |
 | Network | NetSegment... | Lists the network segments on |
 | Segment | | which the autonomic function is |
 | | | applicable (e.g. IP backbone |
 | | | versus RAN). |
 | Manageable | Equipments... | Lists the nodes/resources that |
 | Equipments | | this piece of code can manage |
 | | | (e.g. ALU 77x routers, Cisco CRS-x |
 | | | routers, Huawei NEXE routers). |
 | Autonomic | Enum | States what is the type of loop |
 | Loop Type | | MAPE-K and whether this loop can |
 | | | be halted in the course of its |
 | | | execution. |
 | Acquired | Raw | Lists the nature of information |
 | Inputs | InfoSpec... | that an ASA agent may acquire from |
 | | | the managed resource(s) (e.g. the |
 | | | links load). |
 | External | Raw | Lists the nature of information |
 | Inputs | InfoSpec... | that an ASA agent may require/wish |
 | | | from other ASA in the ecosystem |
 | | | that could provide such |
 | | | information/knowledge. |
 | Possible | Raw | Lists the nature of actions that |
 | Actions | ActionSpec | an ASA agent may enforce on ASA |
 | | | the managed resource(s) (e.g. |
 | | | modify the links metrics). |
 | Technical | Technical | Lists the type of technical |
 | Objectives | Objective | objectives that can be |
 | Description | Spec... | handled/received by the ASA (e.g. |
 | | | a max load of links). |
 +--------------+---------------+------------------------------------+

 Table 1: Fields of ASA class manifest

6.3. ASA Instance Mandate

 An ASA instance is the ASA agent: a running piece of software of an
 ASA class. A software agent is a persistent, goal-oriented computer
 program that reacts to its environment and interacts with other
 elements of the network.

Peloso & Ciavaglia Expires September 22, 2016 [Page 17]

Internet-Draft Autonomic Function March 2016

 In order to install and instantiate appropriately an autonomic
 function in its network, the operator may specify to ASA instances
 what they are supposed to do: in term of which resources to manage
 and which objective to reach.

 This section details a format for an ASA Instance Mandate, which is
 (a machine-readable) set of instructions sent to create autonomic
 functions out of ASA.

 +-----------+----------------+--------------------------------------+
 | Field | Type | Description |
 | Name | | |
 +-----------+----------------+--------------------------------------+
 | ASA class | Struct | A pattern matching the ID (or part |
 | Pattern | | of it) of ASAs being the target of |
 | | | the Mandate. This field makes sense |
 | | | only for broadcast mandates (see end |
 | | | of this section). |
 | Managed | ResourcesId... | The list of resources to be managed |
 | Resources | | by the ASA (e.g. their IP@ or MAC@ |
 | | | or any other relevant ID). |
 | ID of | Interface Id | The interface to the coordination |
 | Coord | | system in charge of this autonomic |
 | | | function. |
 | Reporting | Policy | A policy describing which entities |
 | Policy | | expect report from ASA, and which |
 | | | are the conditions of these reports |
 | | | (e.g. time wise and content wise) |
 +-----------+----------------+--------------------------------------+

 Table 2: Fields of ASA instance mandate

 An ASA instance mandate could be either:

 sent to a targeted ASA In which case, the receiving Agent will have
 to manage the specified list of resources,

 broadcast to all ASA In which case, the ASAs would collectively
 determine which agent would handle which resources from the list,
 and if needed (and feasible) this could also trigger the dynamic
 installation/instantiation of new agents (ACP should be capable of
 bearing such scenarios).

6.4. ASA Instance Manifest

 Once the ASAs are properly instantiated, the operator and its
 managing system need to know which are the characteristics of these
 ASAs.

Peloso & Ciavaglia Expires September 22, 2016 [Page 18]

Internet-Draft Autonomic Function March 2016

 This section details a format for an ASA instance manifest, which is
 (a machine-readable) description of either an ASA or a set of ASAs
 gathered into an autonomic function.

 +-----------+----------------+--------------------------------------+
 | Field | Type | Description |
 | Name | | |
 +-----------+----------------+--------------------------------------+
 | ASA Class | Struct | A unique identifier made out of at |
 | ID | | least a Function Name, Version and |
 | | | Provider Name (and Release Date). |
 | ASA | Long | A unique Id of the ASA instance (if |
 | Instance | | the ASA instance manifest gathers |
 | ID | | multiple ASAs working together, this |
 | | | would be a list). |
 | Hosts | Resource ID | ID of the Machines on which the ASA |
 | | | executes. |
 | Managed | ResourcesId... | The list of resources effectively |
 | Resources | | managed by the ASA (e.g. their IP@ |
 | | | or MAC@ or any other relevant ID). |
 | Acquired | Instance | Lists information that this ASA |
 | Inputs | InfoSpec... | agent may acquire from the managed |
 | | | resource(s) (e.g. the links load |
 | | | over links with ID x and y). |
 | External | Instance | Lists information that this ASA |
 | Inputs | InfoSpec... | agent requires from the ecosystem |
 | | | (e.g. the links load prediction over |
 | | | links with ID x and y). |
 | Possible | Instance | Lists actions that this ASA agent |
 | Actions | ActionSpec | may enforce on its managed |
 | | | resource(s) (e.g. modify the links |
 | | | metrics over links x and y). |
 +-----------+----------------+--------------------------------------+

 Table 3: Fields of ASA instance manifest

7. Implication for other ANIMA components

7.1. Additional entities for ANIMA ecosystem

 In the previous parts of this document, we have seen successive
 operations pertaining to the management of autonomic functions.
 These phases involve different entities such as the ASAs, the ASA
 Hosts and the ASA Management function. This function serves as the
 interface between the network operator and its managed infrastructure
 (i.e. the autonomic network). The ASA management function
 distributes instructions to the ASAs such as the ASA Instance
 Mandate, ASA set up/set down commands and also trigger the ASA

Peloso & Ciavaglia Expires September 22, 2016 [Page 19]

Internet-Draft Autonomic Function March 2016

 installation inside ASA Hosts. This function is likely to be co-
 located or integrated with the function responsible for the
 management of the Intents.

 In this first version, we do not prescribe any requirements on the
 way the ASA Management function should be implemented, neither the
 various deployment options of such a function and neither on the way
 ACP or GRASP could be extended to interact with this function. We
 believe these design and specifications work should be first
 discussed and analyzed by the working group.

7.2. Requirements for GRASP and ACP messages

 GRASP and ACP seems to be the best (and currently only) candidates to
 convey the following messages between the ASA Management function and
 the ASAs:

 ASA Class Manifest

 ASA Instance Mandate (and Revoke Mandate)

 ASA Instance Manifest

 Set Up and Set Down messages

 These section concludes with requests to GRASP protocol designers in
 order to handle the 3 last messages of the list above. These 3
 messages form the minimal set of features needed to guarantee some
 control on the behavior of ASAs to network operators.

 A mechanism similar to the bootstrapping one would usefully achieve
 discovery of pre-installed ASAs, and possibly provide those with a
 default Instance Mandate.

 A mechanism to achieve dynamic installation of ASAs compatible with
 ACP and GRASP remains to be identified.

 In the case of decoupled ASAs, even more for the ones supporting
 multiplicity, when a Mandate is broadcast (i.e. requesting the
 Instantiation of an autonomic function to manage a bunch of
 resources), these ASAs require synchronization to determine which
 agent(s) will manage which resources. Proper ACP/GRASP messages
 supporting such a mechanism have to be identified together with
 protocol authors.

Peloso & Ciavaglia Expires September 22, 2016 [Page 20]

Internet-Draft Autonomic Function March 2016

7.2.1. Control when an ASA runs

 To control when an ASA runs (and possibly how it runs), the operator
 needs the capacity to start and stop ASAs. That is why an imperative
 command type of message is requested from GRASP.

 Additionally this type of message could also be used to specify how
 the ASA is meant to run, e.g. whether its control loop is subdued to
 some constraints in terms of pace of execution or rhythm of execution
 (once a second, once a minute, once a day...)

 Below a suggestion for GRASP:

 In fragmentary CDDL, an Imperative message follows the pattern:

 imperative-message = [M_IMPERATIVE, session-id, initiator, objective]

 ...

7.2.2. Know what an ASA does to the network

 To know what an ASA does to the network, the operator needs to have
 the information of the elements either monitored or modified by the
 ASA, hence this ASA should disclose those.

 The disclosing should take the form of a ASA Instance Manifest (see
 Section 6.4 - ASA Instance Manifest), which could be conveyed inside
 a GRASP discovery message, hence the fields of the ASA Instance
 Manifest would be conveyed inside the objective.

 At this stage there are two options:

 The whole manifest is conveyed as an objective.

 Each field of the manifest is conveyed as an individual objective,
 more precisely, the acquired inputs would appear as discovery
 only, and the modifiable parameters would appear as negotiation
 objective. The unclear part is the expression of requested fields
 (when the ASA claims being a client for such objective). Could
 one of the already existing objective options a good match or
 should a new one be created.

 ...

Peloso & Ciavaglia Expires September 22, 2016 [Page 21]

Internet-Draft Autonomic Function March 2016

7.2.3. Decide which ASA control which equipment

 To determine which ASA controls which equipment (or vice-versa which
 equipments are controlled by which ASAs), the operators needs to be
 able to instruct ASA before the end of their bootstrap procedure.

 These instructions sent to ASA during bootstrapping should take the
 format of an ASA Instance Mandate (see Section 6.3 -
 ASA Instance Mandate). This ASA Instance Mandate are sorts of
 Intents, and as GRASP is meant to handle Intents in a near future, it
 would be beneficial to already identify which sort of GRASP message
 are meant to be used by Intent in order to already define those. An
 option could be to reuse the Imperative messages defined above.

 ...

8. Acknowledgments

 This draft was written using the xml2rfc project.

 This draft content builds upon work achieved during UniverSelf FP7 EU
 project.

9. IANA Considerations

 This memo includes no request to IANA.

10. Security Considerations

 TBD

11. References

11.1. Normative References

 [I-D.ciavaglia-anima-coordination]
 Ciavaglia, L. and P. Peloso, "Autonomic Functions
 Coordination", draft-ciavaglia-anima-coordination-00 (work
 in progress), July 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

Peloso & Ciavaglia Expires September 22, 2016 [Page 22]

Internet-Draft Autonomic Function March 2016

11.2. Informative References

 [I-D.behringer-anima-reference-model]
 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 Liu, B., Jeff, J., and J. Strassner, "A Reference Model
 for Autonomic Networking", draft-behringer-anima-
 reference-model-04 (work in progress), October 2015.

 [RFC7575] Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <http://www.rfc-editor.org/info/rfc7575>.

Authors’ Addresses

 Peloso Pierre
 Nokia
 Villarceaux
 Nozay 91460
 FR

 Email: pierre.peloso@nokia.com

 Laurent Ciavaglia
 Nokia
 Villarceaux
 Nozay 91460
 FR

 Email: laurent.ciavaglia@nokia.com

Peloso & Ciavaglia Expires September 22, 2016 [Page 23]

