
60802 Time Sync - Monte Carlo and Time Series
Simulation Configuration Including NRR and RR
Drift Tracking & Error Compensation
David McCall – Intel Corporation

Version 3

June 2023

1 Introduction
As a result of discussions in the 60802 Time Sync ad hoc group, consensus was achieved on a preferred approach to

achieving the group’s goal of 1 μs time synchronisation accuracy over 100 network hops. It is planned to conduct both

Time Series and Monte Carlo simulations to validate that this approach can achieve the goal and provide data on

appropriate normative requirements. This document describes the input parameters, probability distributions (for

random elements) and other configuration parameters for these simulations, in part to ensure clarity and consistency

between the different simulations. In particular it describes the algorithms used for NRR and RR drift tracking and error

compensation.

2 Scope of Simulations
Using this 4-hop example:

The Monte Carlo simulation covers only the portion of the diagram in the “802.11AS” box. At the GM it effectively

assumes that the Working Clock @ GM is the same as the Local Clock @ GM. At the End Station it only models the

(unfiltered) output of the ClockTimeReceiver.

The Time Series simulation also assumes that the Working Clock @ GM is the same as Local Clock @ GM.

The Time Series simulation also models filtering at the ClockTimeReceiver. It produces both filtered and unfiltered

results. [Note: a future version of this document, or a new document will include details of the filtering for Time Series

simulations.]

Future simulations may add the ability to have separate Working Clock @ GM and Local Clock @ GM.

3 Protocol Parameters & Probability Distributions
Note that use of the new Drift_Tracking TLV and the calculation of NRR from Sync message timestamps that it enables,

as opposed to Pdelay_Resp message time stamps, is assumed. Thus Pdelay and Pdelay_Resp messages are not used for

calculation of NRR, but are still used for calculation of meanLinkDelay.

All of the intervals that are randomly generated are independent of each other.

Parameter Value / Probability Distribution

Sync Interval at GM – Nominal 125 ms

Interval between Sync messages
at GM - Simulated

Uniform Distribution
Minimum: 119 ms
Maximum: 131 ms

Interval between Sync message
and related Follow_Up message –
Simulated

Not simulated. Assumed to arrive in time to not affect Residence
Time.

Residence Time – Simulated Normal/Gaussian Distribution
Mean: 5 ms
Standard Deviation: 1.8 ms
Truncated at…
Minimum: 1 ms
Maximum 15 ms
…with values below minimum changed to 1 ms; values above
maximum changed to 15 ms

Pdelay Interval – Nominal 125 ms

Interval between Pdelay
messages – Simulated

Uniform Distribution
Minimum: 112.5 ms (Nominal x 0.9)
Maximum: 162. ms (Nominal x 1.3)

Interval between Pdelay message
and related Pdelay_Resp message
- Nominal

10 ms

Interval between Pdelay message
and related Pdelay_Resp message
- Simulated

Uniform Distribution
Minimum: 9 ms (Nominal x 0.9)
Maximum: 13 ms ((Nominal x 0.9)

Interval between Pdelay_Resp
message and related
Pdelay_Resp_Follow_Up message
- Simulated

Not simulated. Assumed to arrive in time to not affect
calculation of meanLinkDelay prior to next Sync message
transmission.

4 Timestamp Error Modelling
Every timestamp is modelled to have two sources of error.

1. Timestamp Granularity Error (TSGE): Related to the nominal frequency of the node’s local clock. Timestamps

are modelled as being generated on the clock “tick” following an event. Thus the error may be from a minimum

of 0 ns, if the clock tick occurs at exactly the time of the event, up to a maximum of
109

𝑓
 ns, where f is the clock

frequency, if the clock tick occurs just before the event.

2. Dynamic Time Stamp Error (DTSE): A representation of all other errors due to variations and inaccuracies of

measurement. By design this should not only be minimised, but also average as close as possible to zero, i.e.

positive and negative errors on individual timestamps should average, over many measurements, to as close to

zero as possible.

All randomly generated timestamp errors are independent of each other.

Error Model

Timestamp Granularity Error
(Assumes 125 MHz clock)

Uniform Distribution
Minimum: 0 ns
Maximum: 8 ns

Dynamic Timestamp Error Uniform Distribution
Minimum: -6 ns
Maximum: +6 ns

5 Clock Drift Modelling
Clock drift is modelled via a combination of a repeating temperature cycle and model of the relationship between

temperature and fractional frequency offset relative to the nominal frequency.

The temperature ramp has four phases.

• Section A – Ramp from minimum to maximum temperature with a “quarter-sinusoidal” curve, i.e. starts steep

(SIN at 0°), ends flat (SIN at 90°).

• Section B – Level at maximum temperature.

• Section C – Ramp from maximum to minimum temperature with a “quarter-sinusoidal” curve, i.e. starts steep

(SIN at 180°), ends flat (SIN at 270°).

• Section D – Level at minimum temperature.

The relationship between temperature and fractional frequency offset relative to the nominal frequency is modelled as

a cubic equation, designed to match real-world measured data.

Here are the relevant equations and parameters.

Parameter Value Unit

tempMax 85 °C

tempMin -20 °C

tempRampPeriod 125 s

tempHold 30 s

𝑡𝑒𝑚𝑝𝐶𝑦𝑐𝑙𝑒𝑃𝑒𝑟𝑖𝑜𝑑 = 2 × (𝒕𝒆𝒎𝒑𝑹𝒂𝒎𝒑𝑷𝒆𝒓𝒊𝒐𝒅 + 𝒕𝒆𝒎𝒑𝑯𝒐𝒍𝒅) = 310 s

𝑡𝑒𝑚𝑝𝑅𝑎𝑛𝑔𝑒 = 𝒕𝒆𝒎𝒑𝑴𝒂𝒙 − 𝒕𝒆𝒎𝒑𝑴𝒊𝒏 = 105 °C

𝜏 =
𝜋

𝒕𝒆𝒎𝒑𝑹𝒂𝒎𝒑𝑷𝒆𝒓𝒊𝒐𝒅 × 2
= 0.0125663

𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐴𝑒𝑛𝑑 = 𝒕𝒆𝒎𝒑𝑹𝒂𝒎𝒑𝑷𝒆𝒓𝒊𝒐𝒅 = 125 s

𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐵𝑒𝑛𝑑 = 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐴𝑒𝑛𝑑 + 𝒕𝒆𝒎𝒑𝑯𝒐𝒍𝒅 = 155 s

𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑒𝑛𝑑 = 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐵𝑒𝑛𝑑 + 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐴𝑒𝑛𝑑 = 280 s

Equation for Frequency Offset (ppm) vs. Temperature:

𝑓𝑟𝑒𝑞𝑂𝑓𝑓𝑠𝑒𝑡 = 𝒂. 𝑡𝑒𝑚𝑝𝑋𝑂3 + 𝒃. 𝑡𝑒𝑚𝑝𝑋𝑂2 + 𝒄. 𝑡𝑒𝑚𝑝𝑋𝑂 + 𝒅

Cubic Constant Value

a 0.00012

b -0.01005

c -0.0305

d 5.73845

From Geoff Garner, “Phase and Frequency Offset, and Frequency Drift Rate Time History Plots Based on New Frequency

Stability Data”, contribution to IEC/IEEE 60802, March 2021

For the Time Series simulation, at the start of each replication, each node is assigned a random position on the

temperature ramp, independently of any other node, and then progresses along the cyclic ramp as the simulation

executes.

For the Monte Carlo simulation, each node is assigned a random position on the temperature ramp for each run. This is

the position when the node transmits its Sync message to the next node (or, for the End Station, receives it from the

previous node). For each run, other calculations may be made relative to that position, but the position is assigned

independently of any other run or any other node.

The probability distribution for assigned position for each node is the same for both simulations.

Value Distribution

Assigned Position on Along
Temperature Ramp (tOffset for
Time Series or t for Monte Carlo)

Uniform Distribution
Minimum: 0 s
Maximum: 310 ns

The temperature (tempXO), temperature rate of change (tempRoC), and clock frequency drift rate (clockDrift) at a

particular node can be calculated from…

• t for Monte Carlo

• (t + tOffset) % tempCyclePeriod for Time Series where t is the simulated time and % is the modulo operation.

Using t for the input value, i.e. the Monte Carlo value, the equations are…

𝑖𝑓(0 ≤ 𝑡 < 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐴𝑒𝑛𝑑)

𝑡𝑒𝑚𝑝𝑋𝑂 = 𝒕𝒆𝒎𝒑𝑴𝒊𝒏 + 𝒕𝒆𝒎𝒑𝑹𝒂𝒏𝒈𝒆. sin (𝜏. 𝑡)

𝑡𝑒𝑚𝑝𝑅𝑜𝐶 = 𝜏. 𝒕𝒆𝒎𝒑𝑹𝒂𝒏𝒈𝒆. 𝑐𝑜𝑠(𝜏. 𝑡)

𝑐𝑙𝑜𝑐𝑘𝐷𝑟𝑖𝑓𝑡 = (3. 𝒂. 𝑡𝑒𝑚𝑝𝑋𝑂2 + 2. 𝒃. 𝑡𝑒𝑚𝑝𝑋𝑂 + 𝒄) × (𝜏. 𝒕𝒆𝒎𝒑𝑹𝒂𝒏𝒈𝒆. 𝑐𝑜𝑠(𝜏. 𝑡))

𝑖𝑓(𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐴𝑒𝑛𝑑 ≤ 𝑡 < 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐵𝑒𝑛𝑑)

https://www.ieee802.org/1/files/public/docs2021/60802-garner-temp-freqoffset-plots-based-on-new-freq-stabil-data-0321-v00.pdf
https://www.ieee802.org/1/files/public/docs2021/60802-garner-temp-freqoffset-plots-based-on-new-freq-stabil-data-0321-v00.pdf

𝑡𝑒𝑚𝑝𝑋𝑂 = 𝒕𝒆𝒎𝒑𝑴𝒂𝒙

𝑡𝑒𝑚𝑝𝑅𝑜𝐶 = 0

𝑐𝑙𝑜𝑐𝑘𝐷𝑟𝑖𝑓𝑡 = 0

𝑖𝑓(𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐵𝑒𝑛𝑑 ≤ 𝑡 < 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑒𝑛𝑑)

𝑡𝑒𝑚𝑝𝑋𝑂 = 𝒕𝒆𝒎𝒑𝑴𝒂𝒙 − 𝒕𝒆𝒎𝒑𝑹𝒂𝒏𝒈𝒆. sin (𝜏. (𝑡 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐵𝑒𝑛𝑑))

𝑡𝑒𝑚𝑝𝑅𝑜𝐶 = −𝜏. 𝒕𝒆𝒎𝒑𝑹𝒂𝒏𝒈𝒆. 𝑐𝑜𝑠(𝜏. (𝑡 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐵𝑒𝑛𝑑))

𝑐𝑙𝑜𝑐𝑘𝐷𝑟𝑖𝑓𝑡 = −(3. 𝒂. 𝑡𝑒𝑚𝑝𝑋𝑂2 + 2. 𝒃. 𝑡𝑒𝑚𝑝𝑋𝑂 + 𝒄) × (𝜏. 𝒕𝒆𝒎𝒑𝑹𝒂𝒏𝒈𝒆. 𝑐𝑜𝑠(𝜏. (𝑡 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐵𝑒𝑛𝑑)))

𝑖𝑓(𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑒𝑛𝑑 ≤ 𝑡)

𝑡𝑒𝑚𝑝𝑋𝑂 = 𝒕𝒆𝒎𝒑𝑴𝒊𝒏

𝑡𝑒𝑚𝑝𝑅𝑜𝐶 = 0

𝑐𝑙𝑜𝑐𝑘𝐷𝑟𝑖𝑓𝑡 = 0

These equations produce the following behaviors…

6 NRR Drift Tracking
NRR Drift Tracking and Error Correction is carried out for each network hop, i.e. at every node other than the

Grandmaster. It is based on pairs of timestamps with each pair associated with a Sync message transmitted from the

previous node (n-1) to the current node (n)

• ts1outP – Timestamp of the Sync message egress from the previous node (n-1), timestamped by that node’s Local

Clock. Unit: ns.

• ts2in – Timestamp of the Sync message ingress to the current node (n), timestamped by that node’s Local Clock.

Unit: ns.

All timestamps are affected by the relevant Timestamp Errors.

The algorithm uses information from the 16 most recent sync messages

However, a node keeps track of (i.e. remember) the 5 most recent pairs of timestamps from the most recent (x) to the

5th most recent (x-4) Sync message.

On arrival of a new timestamp pair (x), a node executes a NRR calculation…

𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑥) = (
𝑡1𝑜𝑢𝑡𝑃(𝑥)−𝑡1𝑜𝑢𝑡𝑃(𝑥−4)

𝑡2𝑖𝑛(𝑥)−𝑡2𝑖𝑛(𝑥−4)
− 1) × 106 ppm

…with an associated effective measurement point…

𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐𝑇(𝑥) =
𝑡2𝑖𝑛(𝑥)+𝑡2𝑖𝑛(𝑥−4)

2
 ns

A node keeps track of the 12 most recent NRR calculations and effective measurement points from the most recent (x)

to the 12th most recent (x-11).

After of a new most-recent NNR calculation, a node calculates an NRR drift rate…

𝑁𝑅𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐴 = ∑
𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑖)

4
𝑥
𝑖=𝑥−3 ppm

𝑁𝑅𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐵 = ∑
𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑖)

4
𝑥−8
𝑖=𝑥−11 ppm

𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = ∑
𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐𝑇(𝑖)

4
𝑥
𝑖=𝑥−3 − ∑

𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐𝑇(𝑖)

4
𝑥−8
𝑖=𝑥−11 ns

𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(𝑛) = (
𝑁𝑅𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐴−𝑁𝑅𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐵

𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙
) × 109 ppm/s

…where NRRdriftRate(n) is the NRR drift rate for the current Node n.

The node then calculates an error-corrected NRR value.

𝐹𝑜𝑟 𝑖 = 𝑥 𝑡𝑜 (𝑥 − 3)

𝑚𝑁𝑅𝑅𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑖) = 𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑖) + (𝑚𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(𝑛) ×
(𝑡𝑠2𝑖𝑛(𝑥)−𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐𝑇(𝑖))

109) ppm

𝑚𝑁𝑅𝑅𝑐 = ∑
𝑚𝑁𝑅𝑅𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑖)

4
𝑥
𝑖=𝑥−3 ppm

The result is a drift estimate from two sets of averaged measurements.

The drift estimate is then used to create an error corrected NRR measurement, which is an average of four error

corrected calculations.

Events

Timestamps

Intervals

Relevant Message / Timestamp

mNRR Calculation

Effective Measurement Point

mNRRcalc[4]

mNRR for Drift

Measurement 2

mNRRcalc[9]

mNRRcalc[10]

mNRRcalc[11]

mNRRcalc[12]

SI[3] SI[2] SI[1] Res Time

mNRR for Drift

Measurement 1

mNRRcalc[1]

mNRRcalc[2]

mNRRcalc[3]

SI[9] SI[8] SI[7] SI[6] SI[5] SI[4]

x-3 x-2 x-1 x

SI[15] SI[14] SI[13] SI[12] SI[11] SI[10]

x-9 x-8 x-7 x-6 x-5 x-4x-15 x-14 x-13 x-12 x-11 x-10

Sync RX-5 Sync RX-4 Sync RX-3 Sync RX-2 Sync RX-1 Sync TXSync RX-11 Sync RX-10 Sync RX-9 Sync RX-8 Sync RX-7 Sync RX-6Sync RX-16 Sync RX-15 Sync RX-14 Sync RX-13 Sync RX-12

Events

Timestamps

Intervals

Relevant Message / Timestamp

mNRR Calculation

Effective Measurement Point

Interval between Measurements

mNRR for Drift

Measurement 2
Value B

SI[3] SI[2] SI[1] Res Time

mNRR for Drift

Measurement 1

Value A

SI[9] SI[8] SI[7] SI[6] SI[5] SI[4]

x-3 x-2 x-1 x

SI[15] SI[14] SI[13] SI[12] SI[11] SI[10]

x-9 x-8 x-7 x-6 x-5 x-4

Sync RX-3 Sync RX-2 Sync RX-1 Sync TX

x-15 x-14 x-13 x-12 x-11 x-10

Sync RX-9 Sync RX-8 Sync RX-7 Sync RX-6 Sync RX-5 Sync RX-4Sync RX-16 Sync RX-15 Sync RX-14 Sync RX-13 Sync RX-12 Sync RX-11 Sync RX-10

Events

Timestamps

Intervals

Relevant Message / Timestamp mNRRcalc[1] + (Drift x Interval[1])

mNRR Calculation mNRRcalc[2] + (Drift x Interval[2])

Effective Measurement Point

mNRRcalc[3] + (Drift x Interval[3])

mNRRcalc[4] + (Drift x Interval[4])

SI[2] SI[1] Res Time

mNRRc

SI[8] SI[7] SI[6] SI[5] SI[4] SI[3]

x-2 x-1 x

SI[15] SI[14] SI[13] SI[12] SI[11] SI[10] SI[9]

x-8 x-7 x-6 x-5 x-4 x-3

Sync RX-2 Sync RX-1 Sync TX

x-15 x-14 x-13 x-12 x-11 x-10 x-9

Sync RX-8 Sync RX-7 Sync RX-6 Sync RX-5 Sync RX-4 Sync RX-3Sync RX-16 Sync RX-15 Sync RX-14 Sync RX-13 Sync RX-12 Sync RX-11 Sync RX-10 Sync RX-9

Interval[1]

Interval[2]

Interval[3]

Interval[4]

Events

Timestamps

Intervals

Relevant Message / Timestamp

mNRR Calculation

Effective Measurement Point

SI[4] SI[3] SI[2] SI[1] Res Time

mNRRc

SI[10] SI[9] SI[8] SI[7] SI[6] SI[5]

x-4 x-3 x-2 x-1 x

SI[15] SI[14] SI[13] SI[12] SI[11]

x-10 x-9 x-8 x-7 x-6 x-5

Sync RX-4 Sync RX-3 Sync RX-2 Sync RX-1 Sync TX

x-15 x-14 x-13 x-12 x-11

Sync RX-10 Sync RX-9 Sync RX-8 Sync RX-7 Sync RX-6 Sync RX-5Sync RX-16 Sync RX-15 Sync RX-14 Sync RX-13 Sync RX-12 Sync RX-11

6.1 NRR Drift Tracking – Start-up Behaviour
This section only applies to the Time Series simulation. Each run of the Monte Carlo simulates a single Sync message

transmitted from the GM and consequent Sync messages from PTP Relays until arrival at an End Station with associated

errors, including from previous messages, but assuming “steady state” operation, i.e. after at least 2 seconds of

operation.

NRR is used when calculating meanLinkDelay and output Sync message fields. The first mNRRca and mNRRcb values will

only be available after receipt of 16 Sync messages, i.e. at least 2 seconds of operation given the 125 ms Sync Interval.

NRR is used when calculating meanLinkDelay and three fields in a Sync message. During this time meanLinkDelay and

output Sync messages fields must still be calculated, so an alternative must be used.

At least two Pdelay_Req messages or two Sync messages must be received before calculating a NRR value. Note that it

is technically possible to calculate a NRR using a combination of NRR and Sync messages but if using only two

consecutive messages (i.e. no averaging) this can be very risky due to the potential for very short intervals and resulting

high error due to timestamp errors, so it not recommended.

Prior to two messages being received, NRR = 1 (i.e. 0 ppm) should be used.

If two Pdelay_Req – Pdelay_Resp message exchanges occur prior to two Sync messages being received, NRR should be

calculated using the formula…

𝑚𝑁𝑅𝑅 = ((
𝑡3(𝑥)−𝑡3(𝑥−1)

𝑡4(𝑥)−𝑡4(𝑥−1)
) − 1) × 106 ppm

Where…

• 𝑡3 – Timestamp of the Pdelay_Resp message egress from the previous node (n-1), timestamped by that node’s

Local Clock. Unit: ns.

• 𝑡4 – Timestamp of the Pdelay_Resp message ingress to the current node (n), timestamped by that node’s Local

Clock. Unit: ns.

Once two Sync messages have been received, NRR should be calculated using the following formula…

2nd Sync Message: 𝑚𝑁𝑅𝑅 = ((
𝑡1𝑜𝑢𝑡𝑃(𝑥)−𝑡1𝑜𝑢𝑡𝑃(𝑥−1)

𝑡2𝑖𝑛(𝑥)−𝑡2𝑖𝑛(𝑥−1)
) − 1) × 106 ppm

Note that, since Pdelay Interval and Sync Interval are both 125 ms, two Sync messages should be received before three

Pdelay_Resp messages have been received. When three or four Sync messages have been received, NRR should be

calculated using the following formula…

3rd Sync message: 𝑚𝑁𝑅𝑅 = ((
𝑡1𝑜𝑢𝑡𝑃(𝑥)−𝑡1𝑜𝑢𝑡𝑃(𝑥−2)

𝑡2𝑖𝑛(𝑥)−𝑡2𝑖𝑛(𝑥−2)
) − 1) × 106 ppm

4th Sync message: 𝑚𝑁𝑅𝑅 = ((
𝑡1𝑜𝑢𝑡𝑃(𝑥)−𝑡1𝑜𝑢𝑡𝑃(𝑥−3)

𝑡2𝑖𝑛(𝑥)−𝑡2𝑖𝑛(𝑥−3)
) − 1) × 106 ppm

On arrival of the 5th Sync message the first mNRRcalc and mNRRcalcT calculations can take place and should be used for

NRR…

5th Sync message: 𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑥) = (
𝑡1𝑜𝑢𝑡𝑃(𝑥)−𝑡1𝑜𝑢𝑡𝑃(𝑥−4)

𝑡2𝑖𝑛(𝑥)−𝑡2𝑖𝑛(𝑥−4)
− 1) × 106 ppm

As the 6th, 7th and 8th messages arrive an average can be taken and used for NRR, so…

6th Sync message: 𝑚𝑁𝑅𝑅 = ∑
𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑖)

2
𝑥
𝑖=𝑥−1 ppm

7th Sync message: 𝑚𝑁𝑅𝑅 = ∑
𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑖)

3
𝑥
𝑖=𝑥−2 ppm

8th Sync message: 𝑚𝑁𝑅𝑅 = ∑
𝑚𝑁𝑅𝑅𝑐𝑎𝑙𝑐(𝑖)

4
𝑥
𝑖=𝑥−3 ppm

The equation for the 8th Sync message is the same as for mNRRaverageA, but is not used for calculating NRR drift rate

until arrival of the 16th Sync message.

For the 9th to the 15th Sync message, the same equation as for the 8th message should be used.

Once the 16th Sync message arrives, the regular equations will NRR drift tracking and error correction should be used.

7 meanLinkDelay Averaging
Following the 1st Pdelay message exchange, the meanLinkDelay is calculated as follows…

[To be completed – see 60802-McCall-Time-Sync-Recommended-Parameters-Correction-Factors-0322-v04.pdf

(ieee802.org)]

8 Rate Ratio Drift Tracking & Error Compensation

8.1 PTP Relay Instances
Relevant to Rate Ratio drift tracking & error compensation, each node (n), other than the GM, receives from the

previous node (n), three fields in Sync and Sync_Follow_Up messages…

• 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜(𝑛 − 1) ppm

• 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝐷𝑟𝑖𝑓𝑡(𝑛 − 1) ppm/s

• 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐹𝑖𝑒𝑙𝑑(𝑛 − 1) ns

…and generates local equivalents (n) that are forwarded to the next node. So, for example, Node 2 receives…

• 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜(1) ppm

• 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝐷𝑟𝑖𝑓𝑡(1) ppm/s

• 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐹𝑖𝑒𝑙𝑑(1) ns

https://www.ieee802.org/1/files/public/docs2022/60802-McCall-Time-Sync-Recommended-Parameters-Correction-Factors-0322-v04.pdf
https://www.ieee802.org/1/files/public/docs2022/60802-McCall-Time-Sync-Recommended-Parameters-Correction-Factors-0322-v04.pdf

There are four points in time that are of interest, illustrated, for Node 2, in the diagram above…

1. When the previous node transmits the Sync message, (c) for Node 1 above or [1c].

2. When the current node receives the Sync message, (a) for Node 2 above or [2a]. This is also the effective

measurement point of the error corrected mNRRc value for the local node.

3. The effective measurement point of the change to the Correction Field, (b) for Node 2 above or [2b], which is

half way between [1c] and…

4. When the current node transmits the Sync message, (c) for Node 2 above or [2c].

Note that, because [2b] is defined as halfway between [1c] and [2c], it’s position can’t be known until [2c] is know, i.e.

Node 2 transmits the Sync message. Thus, any calculations associated with it can only happen once the Sync

transmission time is known. Also, [2b] is the “effective measurement point” in terms of Rate Ratio if the Rate Ratio is

drifting linearly, which the tracking and compensation algorithms assume.

Looking at the calculations for Node 2, and subsequent PTP Relay instances, i.e. not Node 1, the GM, or End Station…

First, calculate the local Rate Ratio Drift Rate by adding the ppm/s values. The Rate Ratio Drift Rate from the previous

node is in ppm/s relative to the timebase of its Local Clock (i.e. the “s” in “ppm/s”). For highest precision, this should be

converted to the timebase of the current node’s Local Clock…

𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(2) =
𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(1)

(1+
𝑚𝑁𝑅𝑅𝑐𝑎(2)

106)
+ 𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(2) ppm/s

…however, given that adding ppm/s is already lacking the precision of multiplying actual ratios, this simplification is

acceptable…

𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(2) = 𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(1) + 𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(2) ppm/s

Then calculate the mRRa(2) at [2a]. This is the mRR(1) plus mNRR(2), assuming adding ppm values is acceptable, both at

[2a]. (For maximum precision the ratios would be multiplied, but 802.1AS uses addition of ppm values to decrease

calculation time.). Also for maximum precision, mRR(1) would be modified to account for the passage of time since

[1c]…

𝑚𝑅𝑅𝑎(2) = 𝑚𝑅𝑅𝑐(1) + 𝑅𝑅𝑑𝑟𝑖𝑓𝑡1/2(1𝑐 → 2𝑎) + 𝑚𝑁𝑅𝑅𝑐𝑎(2) ppm

 = 𝑚𝑅𝑅𝑐(1) + (
𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(1)

(1+
𝑚𝑁𝑅𝑅𝑐𝑎(2)

106)
× 𝑚𝑒𝑎𝑛𝐿𝑖𝑛𝑘𝐷𝑒𝑙𝑎𝑦(2)) + 𝑚𝑁𝑅𝑅𝑐𝑎(2) ppm

…but again, this simplification is acceptable…

𝑚𝑅𝑅𝑎(2) = 𝑚𝑅𝑅𝑐(1) + (𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(1) × 𝑚𝑒𝑎𝑛𝐿𝑖𝑛𝑘𝐷𝑒𝑙𝑎𝑦(2)) + 𝑚𝑁𝑅𝑅𝑐𝑎(2) ppm

Once [2c] is known, calculate the correctionField by first calculating the mRR at [2b]…

𝑚𝑅𝑅𝑏(2) = 𝑚𝑅𝑅𝑎(2) + 𝑅𝑅𝑑𝑟𝑖𝑓𝑡2/2(2𝑎 → 2𝑏) ppm

 = 𝑚𝑅𝑅𝑎(2) + (𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(2) ×
𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒𝑇𝑖𝑚𝑒(2)−𝑚𝑒𝑎𝑛𝐿𝑖𝑛𝑘𝐷𝑒𝑙𝑎𝑦(2)

2
) ppm

…then the correctionField itself…

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐹𝑖𝑒𝑙𝑑(2) = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐹𝑖𝑒𝑙𝑑(1) + (1 +
𝑚𝑅𝑅𝑏(2)

106) × (𝑚𝑒𝑎𝑛𝐿𝑖𝑛𝑘𝐷𝑒𝑙𝑎𝑦(2) + 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒𝑇𝑖𝑚𝑒(2)) ns

…and finally the mRR at [2c]…

𝑚𝑅𝑅𝑐(2) = 𝑚𝑅𝑅𝑎(2) + 𝑅𝑅𝑑𝑟𝑖𝑓𝑡2/2(2𝑎 → 2𝑐) ppm

 = 𝑚𝑅𝑅𝑎(2) + (𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(2) × 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒𝑇𝑖𝑚𝑒(2)) ppm

Three values are then passed on to the next node

• 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜(2) = 𝑚𝑅𝑅𝑐(2) ppm

• 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝐷𝑟𝑖𝑓𝑡(2) = 𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(2) ppm/s

• 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐹𝑖𝑒𝑙𝑑(2) ns

8.2 Grandmaster
At the Grandmaster there are no incoming fields and, because there is no meanLinkDelay or residenceTime and – in the

current simulations – Working Clock @ GM is the same as Local Clock at GM…

• 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜(0) = 0 ppm

• 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝐷𝑟𝑖𝑓𝑡(0) = 0 ppm/s

• 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐹𝑖𝑒𝑙𝑑(0) = 0 ns

8.3 Node 1
At Node 1, calculations are similar to Node 2, but the incoming fields from the GM are…

• 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜(0) = 0 ppm

• 𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝐷𝑟𝑖𝑓𝑡(0) = 0 ppm/s

• 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐹𝑖𝑒𝑙𝑑(0) = 0 ns

Therefore…

𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(1) = 𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒(1) ppm/s

𝑚𝑅𝑅𝑎(1) = 𝑚𝑁𝑅𝑅𝑐𝑎(2) ppm

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐹𝑖𝑒𝑙𝑑(1) = (1 +
𝑚𝑅𝑅𝑏(2)

106) × (𝑚𝑒𝑎𝑛𝐿𝑖𝑛𝑘𝐷𝑒𝑙𝑎𝑦(2) + 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒𝑇𝑖𝑚𝑒(2)) ns

…while all other calculations remain the same.

8.4 End Station
There is no residenceTime at an End Station and no transmitted Sync message, so it only needs to calculate RRdriftRate

and mRRa. These are then used by the ClockTimeReceiver, along with the received preciseOriginTimestamp +

correctionField, to keep the End Station’s Working Clock @ End Station on track.

