
Further Details on
Cycle Identification

Oct, 2022 1

Yizhou Li (Huawei)

Guanhua Zhuang (Huawei)

Shoushou Ren (Huawei)

Jiang Li (Huawei)

Jeong-dong Ryoo (ETRI)

Li Dong (Shenyang Institute of Automation)

Wenbin Dai (Shanghai Jiao Tong University)

Recap and Goal
• dv-yizhou-cycle-identification-0922-v02 in September meeting

• Show the goal to improve the bandwidth utilization in small cycle
• Discuss the cycle ambiguity problem when making dead time (DT) minimum to

improve the utilization
• Propose to use cycle id based determination in addition to time based one in

802.1Qdv
• Provide three options to carry cycle id

• Slides 3-7 recaps the basic concept of using cycle id. Please refer to the
previous slides for more details if needed.

• Goal of this deck of slides is to answer the questions received:
• How to initialize the cycle id based system?
• How to compute cycle and buffer IDs as they have different ID spaces?
• How the mapping works when the #of bins(buffers) are different on two neighbor

nodes?
• How large should the cycle ID space be? What are the considerations when choosing

the field length of it?

2

https://www.ieee802.org/1/files/public/docs2022/dv-yizhou-cycle-identification-0922-v02.pdf

Goal - Improve the utilization in small cycle T

• Why low utilization? DT is relatively too large to a cycle.

• A straightforward way to improve utilization: make DT minimum
• Absorb only the preemption delay instead of the full time variation, i.e. curve out output delay and processing delay

• A remaining problem: cycle ambiguity in reception time based bin determination

3

Node A
(transmitter)

Node B
(transmitter)

Node B
(software
reception
time)

T1 rcv
window

T2 rcv
window

time

T1 T2 T3 T4

DT DT

DT DT

Low utilization
with large DT

Cycle
ambiguity time

Node A
(transmitter)

Node B
(transmitter)

Node B
(software
reception
time)

D
T

T1 rcv window

T2 rcv window

D
T

D
T

D
T

time

T1 T2 T3 T4
High utilization
with small DT

Make DT
minimum

Propose to use the explicit cycle identification

4

1 2

1 2

Node A
(transmitter)

Node B
(transmitter)

Node B
(software
reception time)

D
T

D
T

T1 T2 T3 T4

D
T

D
T

time

T1 T2 T3 T4

21 1

Cycle ambiguity time

• Carry cycle id and change per hop

• Use cycle id based output bin
determination instead of time
based

• Remove the ambiguity

• Achieve the good utilization in small
cycles by making DT minimum

DT Dead time imposed at each cycle

/
Time window for sending or receiving
frames (not a single frame)

How to carry a cycle id
1. R-tag (defined in 802.1CB)

Define a subtype flag and use the last 4-bit in Reserved field for cycle id.

5

Ethertype (F1-C1) Reserved (16-bit) Sequence number (16-bit)

Ethertype (F1-C1)
Reserved (16-bit)

Sequence number (16-bit)
flag(1) Rsvd (11) Cycle id (4)

How to carry a cycle id (cont’d)

2. Define a new cycle-tag

6

Ethertype
(cycle-tag)

Subtype
(4-bit)

Reserved
(4-bit)

Cycle ID
(8-bit)

How to carry a cycle id (cont’d)

3. Use vlan stacking + vlan mapping function
• Inner vlan is used for cycle id, use ACL to map from ingress cycle id to

egress cycle id

• Outer vlan is used as normal vlan based mac learning and forwarding

• Used in a controlled domain, may not be compatible with some existing s-
vlan + c-vlan usage

ACL example: if-match cvlan-id cycle-id-in

remark cvlan-id cycle-id-out

7

Ethertype (s-vlan) vlan-tag (16-bit) Ethertype (c-vlan) Cycle id (16-bit)

Further details on Cycle id

• Conceptually Cycle id = timestamp of cycle start time of the frame’s
transmission buffer on upstream node’s output port

• Try to reuse terms defined in new-finn-multiple-CQF-0921-v02 as
much as possible

8

Some assumptions in this deck to simplify the
illustration
• Only one priority class uses Qdv mechanisms at a physical port.

• The configuration and calculation is for that priority.

• Cycle time Tc remains the same for the same priority in the domain.

• The slides provide a practical way in implementation as example, but
it is not the only way.

9

Terms – buffer related
• n: the number of physical ports. Range: 0 ~ n-1

• Bi,o: the number of buffers required for the input and output port pair
(i, o)

• Bo：the number of physical output buffers on port o.

Bo = Max(Bi,o), i = 0 ~ n-1 on a given port o

• buf_id ：
• id assigned to the physical buffer in which a frame should be placed at output

port o when the frame is processed.

• buf_id  [0, Bo -1]

10
Note: All values are integers

Terms – latency related
• TV: sum of the frame-based time variation

• Include output delay, processing delay and link delay
• Link delay is the first-bit-out to last-bit-in delay that varies with packet size

• TVi,o: TV value for the input and output port pair (i, o).

• Calculate Bi,o as follows:

11

Node A
(transmitter)

Node B
(transmitter)

Node B
(software
reception
time)

T1 rcv window
= Tc+TVio

time

T1 T2 T3 T4

Bi,o = floor(TVi,o / Tc) +4 --- baseline
• Max receiving window time interval Tc+TVio

• # of receiving buffer to accommodate the max
receiving window time:
floor((Tc+TVi,o)/ Tc) + 2 = floor(TVi,o/ Tc) + 3

• # of sending buffer = 1
• Hence, Bi,o = receiving buffer + sending buffer

= floor(TVi,o/ Tc) + 4
• Special cases:

• use one less buffer, i.e. Bi,o = floor(TVi,o / Tc) +3
• rev window spans over 2 cycles in case of lucky or intentional cycle

phase shift between A & B. We assume A&B independently run
cycles here, hence always use at least the baseline calculation

• Use more buffers, i.e. Bi,o = floor(TVi,o / Tc) +5/6/../n
• Introduce intentional extra delay, e.g. to balance replicated frames

over diff paths

Terms – cycle related
• cycle_id: cycle id assigned to a frame when the frame is placed to a

buffer with buf_id at an output port o
• Max value of cycle_id C is limited by the field length, e.g. if length is 4, then C

= 16, so that cycle_id [0, 15]
• C is the same for all ports on all nodes in a domain
• increments (modulo C) each cycle time

• N: the least common multiple over all Bo and C in a node. Value of N
can be different on the nodes.

• Si: Each input port i assigns each received frame a logical buffer
selector Si, which is an integer in the range 0 through N-1, and which
increments (modulo N) each cycle. The value of Si is si.
• si is directly used by data frames, not for (cycle) mapping determination

frames.

12
Note: All values are integers

4 steps in initialization and determination in
the following slides
• Step 1: Base parameter provisioning

• Step 2: Initialization of buffer selector and output buffers

• Step 3: Determination of cycle id mapping relation for port pair (i,o)

• Step 4: Determination of output cycle id and buffer id for data frame
• This step is for real data traffic, not part of initialization and provisioning.

13

Example Step 1– base parameter provisioning

14

• The node has n=8 port.
• Cycle time Tc is set and time variation TVi,o for port pair (i,o) is known.
• Calculate Bi,o = floor(TVi,o / Tc) +4 and Bo is the max(Bi,o) for a port o.
• Assume the calculation results of the number of physical buffers Bo on

each port:
• B5 = B7 = 6, B6 = B8 = 4
• B1 – B4 not shown, assume all are 4

• Assume Max # of cycle_id C = 8, cycle_id [0, 7]
• i.e. length of cycle_id = 3 bit. (This is for picture simplicity. In reality,

it should be larger)
• Then N = 24 (the least common multiple of 4,6,8)
• Logical buffer selector Si makes value si rotate between 0 – 23.

• Note: It is the index assignment for calculation simplicity. No real
buffer attached.

1

2

3

4

5

6

7

8

Logical Buffer
Selector Si

Physical
Buffers

0 1 2 3 4 5 … 2122 23

s1

0 1 2 3 4 5 … 2122 23

s2

0 1 2 3 4 5 … 2122 23

s3

0 1 2 3 4 5 … 2122 23

s4

Example Step 2 – initialization of buffer
selector and output buffers

15

• All the ports of a node use the same system time T. T is the time elapsed
(in nanosecond) from the latest system startup. All the components in
the node can use T as a time source.

• System Synchronized Initialization:
• Initialize the starting time for Si and buf_id on all ports to be

multiple of N*Tc.
• Logically make the position and shifting for all Si the same, thus a

single selector S can be used to simplify the implementation. Let s
be the value of the selector S.

• Facilitate halfway port enabling
• Initialize s = 0 and the transmitting buffer id = 0 on all ports
• increments (modulo N) each cycle

• At any time T, the following computations hold
• s = (T mod (N*Tc)) / Tc ---- “/” is floor division
• buffer id currently transmitting frames on port o:

Tx-buf-id = s mod Bo

• cycle id used by currently transmitting buffer:
Tx-cycle-id = s mod C

1

2

3

4

5

6

7

8

Logical Buffer
Selector S

Physical
Buffers

System Clock T

Synchronized
initialization

Example Step 3 – Determination of cycle id mapping relation
for port pair (i,o)

16

Pre-requisite:
• Node A & B have run their cycles independently with cycle Tc

Purpose: For the input and output port pair (i, o) on B, determine mapping
parameter Mi,o so that a stable cycle mapping equation cycle_id_out =
(cycle_id_in + Mi,o) mod C can be used for future data frames over port pair (i,o)
no matter what time variation are experienced by that frame.

Mapping determination frame: special frame to determine the cycle mapping
relation between two neighbors during system initialization and auditing. It
experiences the least time variation
• Shortest frame – 64B
• Highest priority

Cycle mapping relation computation example:
• B receives the mapping determination frame from port 2
• Assume B’s system time is T. Compute the potential worst case s for the frame

over each output port o as：
so = ((T + TV2,o) mod (N*Tc)) / Tc

• Compute cycle_id_out for the potential worst case frame over each output
port o as：

cycle_id_outo = (so + 1) mod C
• Compute Mi,o = (cycle_id_outo - cycle_id_ini + C) mod C

• Assume the frame carries cycle_id_in = 7 from the incoming port 2 and
the computed cycle_id_out is 2 on output port 5, then
M2,5 = (2-7+8) mod 8 = 3

• Mi,o can be simplified to Mi for a port i if Mi takes Max(Mi,o) for a specific i.
That will make the # of mapping parameters O(n) instead of O(n2), n=#of ports.

1

2

3

4

5

6

7

8

Logical Buffer
Selector S

Physical
Buffers

System Clock T

1

2

3

4

5

6

7

8

Logical Buffer
Selector S

Physical
Buffers

System Clock T

A B

Worst case
cycle_id_out5

Worst case
cycle_id_out6

Worst case
cycle_id_out7

Worst case
cycle_id_out8

Compute
mapping
relation

Example Step 4 – Data frames: determination of
output cycle id and buffer id

17

Output cycle id:
• cycle_id_outo = (cycle_id_ini + Mi,o) mod C
• e.g. as M2,5 = 3 for port pair (2,5), the cycle_id determination

is defined as
cycle_id_out = (cycle_id_in + 3) mod 8

1

2

3

4

5

6

7

8

Physical
Buffers

System Clock T

1

2

3

4

5

6

7

8

Logical Buffer
Selector S

Physical
Buffers

System Clock T

A B

M2,5 = 3

Mapping table

Output buffer id:
• Cycle id used by currently transmitting buffer:

Tx-cycle-id = s mod C
• Compute the id offset between targeting placement buffer

and current transmitting buffer as：
offset = (cycle_id_outo - Tx-cycle-id + C) mod C

• Compute the buf_id on port o to place the frame as:
buf_ido = (s + offset) mod Bo

frame with
cycle_id_out

Summary – on each node, for each priority
1. Set cycle time Tc and time variation TVi,o for port pair (i,o)

2. Calculate number of physical buffers Bo on each port o as:

• Bi,o = floor(TVi,o / Tc) +4

• Bo = max(Bi,o) for port o

3. Calculate N = the least common multiple of Bo and C

4. Start system synchronized initialization on every node for buffer selector S and ports

5. Use Mapping Determination Frame to calculate the mapping relation value Mi,o for port pair (i,o)
as follows:

• so = [((T + TVi,o) mod (N*Tc)) / Tc]

• cycle_id_outo = (so + 1) mod C

• Mi,o = (cycle_id_outo - cycle_id_ini + C) mod C

6. For an incoming frame for port pair (i,o), calculate the output cycle id cycle_id_outo and output
buffer id buf_ido

• output cycle id: cycle_id_outo = (cycle_id_ini + Mio) mod C

• output buffer id:
• Tx-cycle-id = s mod C

• offset = (cycle_id_outo - Tx-cycle-id + C) mod C

• buf_ido = (s + offset) mod Bo

18

Step 1: Base parameter
provisioning

Step 2: Initialization of
buffer selector and
output buffers

Step 3: Determination of
cycle id mapping relation

Step 4: Data frame
mapping

One-time static
calculation and
provisioning

for each data frame

Choice of cycle id length

• Number of cycle id C = 2L where L is the length in bits of cycle id

• C should be larger than the number of physical buffer Bo on any port
o in step 1 base parameter provisioning

• Discuss: L to be at least 5？
• C = 32 (L = 5)should be sufficiently large as it can support a 32-buffer port.

• If we make L=8, that would allow 256-buffer on any port.

19

