
Error Propagation in RR
Calculation using Sync Messages

Dragan Obradovic, Siemens AG

RR calculation via Sync messages
𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛: 𝑅𝑅𝑀,𝑆𝑛

𝑖−1,𝑖 =
෡𝑀𝑛−1
𝑖 − ෡𝑀𝑛−1

𝑖−1

𝑆𝑛
𝑖 − 𝑆𝑛

𝑖−1

෡𝑀𝑛−1
𝑖 : estimated Master time passed on by element „n-1“ in the Sync message number „i“

𝑀𝑖: the Master Time passed on by the GM in the Sync Message “i”

𝑆𝑛
𝑖 : the local time of Slave n at the arrival of Sync message i

LB: sum of estimated pDelay and Residence time in LocalClock frame

𝑅𝑅𝑀,𝑆2
𝑖−1,𝑖 =

෡𝑀1
𝑖 − ෡𝑀1

𝑖−1

𝑆2
𝑖 − 𝑆2

𝑖−1
=
(𝑀𝑖+𝑅𝑅𝑀,𝑆1

𝑖−1,𝑖 ∙ 𝐿𝐵𝑆1
𝑖) − (𝑀𝑖−1+𝑅𝑅𝑀,𝑆1

𝑖−2,𝑖−1 ∙ 𝐿𝐵𝑆1
𝑖−1)

∆𝑇𝑆2
𝑖−1,𝑖

𝑅𝑅𝑀,𝑆1
𝑖−1,𝑖 =

𝑀𝑖 −𝑀𝑖−1

𝑆1
𝑖 − 𝑆1

𝑖−1
=
∆𝑇𝑀

𝑖−1,𝑖

∆𝑇𝑆1
𝑖−1,𝑖

𝑅𝑅𝑀,𝑆3
𝑖−1,𝑖 =

෡𝑀2
𝑖 − ෡𝑀2

𝑖−1

𝑆3
𝑖 − 𝑆3

𝑖−1
=
(𝑀𝑖+𝑅𝑅𝑀,𝑆1

𝑖−1,𝑖 ∙ 𝐿𝐵𝑆1
𝑖 + 𝑅𝑅𝑀,𝑆2

𝑖−1,𝑖 ∙ 𝐿𝐵𝑆2
𝑖) − (𝑀𝑖−1+𝑅𝑅𝑀,𝑆1

𝑖−2,𝑖−1 ∙ 𝐿𝐵𝑆1
𝑖−1 + 𝑅𝑅𝑀,𝑆2

𝑖−2,𝑖−1 ∙ 𝐿𝐵𝑆2
𝑖−1)

∆𝑇𝑆3
𝑖−1,𝑖

M S1 S2 S3

Sync(i-2)

Sync(i)

LB_S1 LB_S2 LB_S3

∆𝑇𝑀

∆𝑇𝑆1

∆𝑇𝑆2

∆𝑇𝑆3

Sync(i-1)

RR calculation via Sync messages

𝑅𝑅𝑀,𝑆𝑛
𝑖−1,𝑖 =

෡𝑀𝑛−1
𝑖 − ෡𝑀𝑛−1

𝑖−1

𝑆𝑛
𝑖 − 𝑆𝑛

𝑖−1

From the last page, we can generalize to slave “n”:

𝑅𝑅𝑀,𝑆𝑛
𝑖−1,𝑖 =

෡𝑀𝑛−1
𝑖 − ෡𝑀𝑛−1

𝑖−1

𝑆𝑛
𝑖 − 𝑆𝑛

𝑖−1
=
∆𝑇𝑀

𝑖−1,𝑖

∆𝑇𝑆𝑛
𝑖−1,𝑖

+
σ𝑘=1
𝑛−1 𝑅𝑅𝑀,𝑆𝑘

𝑖−1,𝑖 ∙ 𝐿𝐵𝑆𝑘
𝑖 − 𝑅𝑅𝑀,𝑆𝑘

𝑖−2,𝑖−1 ∙ 𝐿𝐵𝑆𝑘
𝑖−1

∆𝑇𝑆𝑛
𝑖−1,𝑖

This is a recursive formula in both time and line-depth dimensions.

The terms in the sum are weighted differences (weights are LBs) over time (i.e. this is a discrete differentiation)!

The position of the element in the line determines the amount of the past information it carries along.

RR calculation via Sync messages – Recursion Transfer Function
in z domain where RR calculating using consecutive Syncs

𝑹𝑹𝑴,𝑺𝒏
𝒊−𝟏,𝒊−𝑹𝑹𝑴,𝑺𝒏−𝟏

𝒊−𝟏,𝒊

= ∆𝑇𝑀
𝑖−1,𝑖 +෍

𝑘=1

𝑛−2

𝑅𝑅𝑀,𝑆𝑘
𝑖−1,𝑖 ∙ 𝐿𝐵𝑆𝑘

𝑖 − 𝑅𝑅𝑀,𝑆𝑘
𝑖−2,𝑖−1 ∙ 𝐿𝐵𝑆𝑘

𝑖−1 ∙
1

∆𝑇𝑆𝑛
𝑖−1,𝑖

−
1

∆𝑇𝑆𝑛−1
𝑖−1,𝑖

+
𝑅𝑅𝑀,𝑆𝑛−1

𝑖−1,𝑖 ∙ 𝐿𝐵𝑆𝑛−1
𝑖 − 𝑅𝑅𝑀,𝑆𝑛−1

𝑖−2,𝑖−1 ∙ 𝐿𝐵𝑆𝑛−1
𝑖−1

∆𝑇𝑆𝑛
𝑖−1,𝑖

𝑅𝑅𝑀,𝑆𝑛
𝑖−1,𝑖≈ 𝑅𝑅𝑀,𝑆𝑛−1

𝑖−1,𝑖 ∙ 1 +
𝐿𝐵𝑆𝑛−1

𝑖

∆𝑇𝑆𝑛
𝑖−1,𝑖

− 𝑅𝑅𝑀,𝑆𝑛−1
𝑖−2,𝑖−1 ∙

𝐿𝐵𝑆𝑛−1
𝑖−1

∆𝑇𝑆𝑛
𝑖−1,𝑖

𝑅𝑅𝑀,𝑆𝑛
𝑖−1,𝑖(𝑧) ≈

𝑧 ∙ 1 +
𝐿𝐵𝑆𝑛−1

𝑖

∆𝑇𝑆𝑛
𝑖−1,𝑖 −

𝐿𝐵𝑆𝑛−1
𝑖−1

∆𝑇𝑆𝑛
𝑖−1,𝑖

𝑧
∙ 𝑅𝑅𝑀,𝑆𝑛−1

𝑖−1,𝑖

This recursive equation describes the additive “error” propagation
over the nodes

Example: stamping error at GM s. t. ∆𝑇𝑀
𝑖−1,𝑖- ∆𝑇𝑀−𝑡𝑟𝑢𝑒

𝑖−1,𝑖 = err

RR calculation via Sync messages – Recursion Transfer Function
in z domain where RR calculating using consecutive Syncs

𝑅𝑅𝑀,𝑆𝑛
𝑖−1,𝑖≈ 𝑅𝑅𝑀,𝑆𝑛−1

𝑖−1,𝑖 ∙ 1 +
𝐿𝐵𝑆𝑛−1

𝑖

∆𝑇𝑆𝑛
𝑖−1,𝑖

− 𝑅𝑅𝑀,𝑆𝑛−1
𝑖−2,𝑖−1 ∙

𝐿𝐵𝑆𝑛−1
𝑖−1

∆𝑇𝑆𝑛
𝑖−1,𝑖

𝑅𝑅𝑀,𝑆𝑛
𝑖−1,𝑖(𝑧) ≈

𝑧 ∙ 1 +
𝐿𝐵𝑆𝑛−1

𝑖

∆𝑇𝑆𝑛
𝑖−1,𝑖 −

𝐿𝐵𝑆𝑛−1
𝑖−1

∆𝑇𝑆𝑛
𝑖−1,𝑖

𝑧
∙ 𝑅𝑅𝑀,𝑆𝑛−1

𝑖−1,𝑖

Tsync=32ms, LB=1ms, RR with every Sync

MaxGain=1.0625

MaxGain^100= 429.4315

RR calculation via Sync messages – Recursion Transfer Function
in z domain where RR calculating using consecutive Syncs

Tsync=32ms, LB=1ms, RR with every Sync

MaxGain=1.0625

MaxGain^100= 429.4315

Why this high-pass filter behavior?

→ Because there is a discrete differentiation

Low-pass filtering can help. This is exactly what we have done!

𝑅𝑅𝑀,𝑆𝑛
𝑖−1,𝑖≈ 𝑅𝑅𝑀,𝑆𝑛−1

𝑖−1,𝑖 ∙ 1 +
𝐿𝐵𝑆𝑛−1

𝑖

∆𝑇𝑆𝑛
𝑖−1,𝑖

− 𝑅𝑅𝑀,𝑆𝑛−1
𝑖−2,𝑖−1 ∙

𝐿𝐵𝑆𝑛−1
𝑖−1

∆𝑇𝑆𝑛
𝑖−1,𝑖

RR calculation via Sync messages – Recursion Transfer Function
in z domain with RR calculation using every 7th Sync

𝑅𝑅𝑀,𝑆𝑛
𝑖−7,𝑖≈ 𝑅𝑅𝑀,𝑆𝑛−1

𝑖−7,𝑖 ∙ 1 +
𝐿𝐵𝑆𝑛−1

𝑖

∆𝑇𝑆𝑛
𝑖−7,𝑖

− 𝑅𝑅𝑀,𝑆𝑛−1
𝑖−14,𝑖−7 ∙

𝐿𝐵𝑆𝑛−1
𝑖−7

∆𝑇𝑆𝑛
𝑖−7,𝑖

𝑅𝑅𝑀,𝑆𝑛
𝑖−7,𝑖(𝑧) ≈

𝑧^7 ∙ 1 +
𝐿𝐵𝑆𝑛−1

𝑖

∆𝑇𝑆𝑛
𝑖−7,𝑖 −

𝐿𝐵𝑆𝑛−1
𝑖−7

∆𝑇𝑆𝑛
𝑖−7,𝑖

𝑧^7
∙ 𝑅𝑅𝑀,𝑆𝑛−1

𝑖−7,𝑖

Tsync=32ms, LB=1ms, RR calculated with every 7th Sync

MaxGain=1.0089

MaxGain^100= 2.4324 (instead of 429)

RR calculation via Sync messages – Recursion Transfer Function in z domain
with RR calculation using every 7th Sync including filtering with a moving window of length
M

𝑅𝑅𝑀,𝑆𝑛
𝑖−7,𝑖(𝑧) ≈

𝑧^7 ∙ 1 +
𝐿𝐵𝑆𝑛−1

𝑖

∆𝑇𝑆𝑛
𝑖−7,𝑖 −

𝐿𝐵𝑆𝑛−1
𝑖−7

∆𝑇𝑆𝑛
𝑖−7,𝑖

𝑧^7
∙ 𝑅𝑅𝑀,𝑆𝑛−1

𝑖−7,𝑖

Tsync=32ms, LB=1ms, RR calculated with every 7th Sync, filtered

MaxGain=1

MaxGain^100= 1! → NO error accumulation

Now implement a moving averaging filter of the length M=7 with a step of Tsync. The Bode plot of the filtered system is:

RR calculation using Sync Messages: Conclusion

Calculation of RR at Sn via Sync messages {i-1,i} carries (depends on) the past information contained in the already calculated RRs with previous
Sync messages

The size of „carried past“ is determined by the position („n“) of the studied element in the line

The discrete differentiation present in RR calculation is a high-pass filter whose frequency response depends on the ratio ResidenceTime/Tsync

The mentioned high pass filter can amplify the high frequency noise which might lead to gain-peaking

Filtering (already applied) remedies this problem and there is no error accumulation

The RR calculation based on nRRs does not have “memory” in the sense of depending on the GM time carried in the previous messages, but
has as a problem of using the old nRR information

The proposed idea of letting Sync messages be used in calculating nRRs is promising.

