
Controller Design for

ClockSlaves
27.06.2022
Dragan Obradovic, Siemens AG

2022Page 2

Agenda

1. Control problem formulation

2. Discrete-Time controller formulation

3. Robustness to Sync-Message losses, variation of Sync-Intervals

4. Propagation of the control information over Slave elements

2022Page 3

Different Clocks and ClockMaster-Time Propagation

“Time” = number of tics (counter value)

Clock

Master

Local

Clock

Clock

Slave

Local

Clock

Clock

Target

Clock

Slave

Local

Clock

Clock

Target

gmRR

“M” “B1” “B2”

SyncM(CM_Time_orig, RR=gmRR,

CM_Time_correction(@”M”))k

SyncM(CM_Time_orig, RR=gmRR*NRR(@B1),

CM_Time_correction(@”M, B1”))k

Clock

Source

2022Page 4

Control Problem: Make ClockSlave Track

ClockMaster

• This is a tracking problem, which is a standard control problem

• ➔ ClockSlave should track the ClockMaster counter value based on the

information it receives from SyncMessages (after compensation of the

Propagation Delay)

• Characteristics of this control problem

• ClockSlave’s counter value can only change gradually (periodic jumps of 1

extra tick allowed, large instantaneous jumps are not permitted)

• ClockSlave’s counter value (output) should be always available

• ClockSlave is a SW-disciplined Clock. Hence, it is a disciplined counter

connected to an oscillator (e.g. LocalClock).

• Sync Messages are available periodically (with some deviation). Hence,

the tracking controller can update the ClockSlave only at these instants.

• Sync Messages content is noisy, their arrival interval can vary and they can

even be lost. Hence, the control solution has to be robust!

Clock

Slave

Local

Clock

Clock

Target

“Bn”

SyncM(k-1) SyncM(k-1)

SyncM(k) SyncM(k)

2022Page 5

Closed Loop Control Implementation of ClockSlave

tracking the ClockMaster

• OCF: Offset Compensation Factor

Clock

Slave

Local

Clock

Clock

Target

“Bn”

SyncM(k-1) SyncM(k-1)

SyncM(k) SyncM(k)

Plant

P

Controller

C

Error=
Offset

Control
action
OCF

-
+

ClockSlave
Counter Value

ClockMaster
Counter Value

Time

SyncM(k-1) SyncM(k)

Tsync

t(k-1) t(k)

2022Page 6

Plant: Counter of ClockSlave as controlled Counter of LocalClock

𝐶𝑆𝐶 𝑡(𝑘) = න

0

𝑡(𝑘)

𝑂𝐶𝐹(𝑡) ∙ 𝑓𝐹𝑅𝐶 𝑡 ∙ 𝑑𝑡 =

= 𝐶𝑆𝐶 𝑡(𝑘 − 1) + 𝑂𝐶𝐹(𝑡 𝑘 − 1) ∙ න

𝑡(𝑘−1)

𝑡(𝑘)

𝑓𝐹𝑅𝐶 𝑡 ∙ 𝑑𝑡

Plant

P

Controller

C

Error=
Offset

Control
action
OCF

-
+

ClockSlave Counter
(CSC) Value

ClockMaster
Counter State

FRC: Free Running Clock (Local Clock)

Offset: difference of counter values, i.e. error

𝑓𝐹𝑅𝐶 𝑡 : frequency of FRC at time t

OCF:

• control signal kept constant between

two successive Sync messages

• Scales the frequency of the Local Clock

• Can be used (its value (k-1)) to

calculate the ClockSlave counter value

at any time between two successive

Sync messages [(k-1) , (k)]!

𝐶𝑆𝐶 𝑘 = 𝐶𝑆𝐶 𝑘 − 1 + 𝑂𝐶𝐹 𝑘 − 1 ∙ 𝑁𝑢𝑚𝑇𝑖𝑐𝑠𝐹𝑅𝐶(𝑤𝑖𝑡ℎ𝑖𝑛 𝑇𝑠𝑦𝑛𝑐)

2022Page 7

Controller: a Discrete Time PI controller

𝑂𝐶𝐹 𝑡(𝑘) = 𝐾𝑝 ∙ 𝑒𝑟𝑟 𝑡(𝑘) + 𝐾𝐼 ∙ 0׬
𝑡(𝑘)

𝑒𝑟𝑟 𝑡 ∙ 𝑑𝑡 =

= 𝑂𝐶𝐹 𝑘 − 1 + 𝐾𝑝∙ (𝑒𝑟𝑟 𝑘 − 𝑒𝑟𝑟 𝑘 − 1) + 𝐾𝐼 ∙ 𝑒𝑟𝑟 𝑘 − 1 ∙ 𝑁𝑢𝑚𝑇𝑖𝑐𝑠𝐹𝑅𝐶(𝑤𝑖𝑡ℎ𝑖𝑛 𝑇𝑠𝑦𝑛𝑐)/𝑓𝐹𝑅𝐶

𝑂𝐶𝐹 𝑘 = 𝑂𝐶𝐹 𝑘 − 1 + 𝐾𝑝 ∙ (𝑒𝑟𝑟 𝑘 − 𝑒𝑟𝑟 𝑘 − 1) + 𝐾𝐼 ∙ 𝑒𝑟𝑟 𝑘 − 1 ∙ 𝑇𝑠𝑦𝑛𝑐

= 𝐾𝑝∙ 𝑒𝑟𝑟 𝑡(𝑘) ±𝐾𝑝 ∙ 𝑒𝑟𝑟 𝑡(𝑘 − 1) + 𝐾𝐼 ∙ 0׬
𝑡(𝑘−1)

𝑒𝑟𝑟 𝑡 ∙ 𝑑𝑡 + 𝐾𝐼 ∙ 𝑡(𝑘−1)׬
𝑡(𝑘)

𝑒𝑟𝑟 𝑡 ∙ 𝑑𝑡

Offset is the error (err)

Nominal frequency 𝒇𝑭𝑹𝑪 of the Free

Running Clock known

Controller: discrete time PI controller with

Tsync as sampling rate

To be discretized

with ZOH (constant

value during the

discretization

interval).

Plant

P

Controller

C

Error=
Offset

Control
action
OCF

-
+

ClockSlave Counter
(CSC) Value

ClockMaster
Counter State

2022Page 8

Controller: a Discrete Time PI controller

= 𝑂𝐶𝐹 𝑘 − 1 + 𝐾𝑝∙ (𝑒𝑟𝑟 𝑘 − 𝑒𝑟𝑟 𝑘 − 1) + 𝐾𝐼 ∙ 𝑒𝑟𝑟 𝑘 − 1 ∙ 𝑁𝑢𝑚𝑇𝑖𝑐𝑠𝐹𝑅𝐶(𝑤𝑖𝑡ℎ𝑖𝑛 𝑇𝑠𝑦𝑛𝑐)/𝑓𝐹𝑅𝐶

𝑂𝐶𝐹 𝑘 = 𝑂𝐶𝐹 𝑘 − 1 + 𝐾𝑝 ∙ (𝑒𝑟𝑟 𝑘 − 𝑒𝑟𝑟 𝑘 − 1) + 𝐾𝐼 ∙ 𝑒𝑟𝑟 𝑘 − 1 ∙ 𝑇𝑠𝑦𝑛𝑐

Plant

P

Controller

C

Error=
Offset

Control
action
OCF

-
+

ClockSlave Counter
(CSC) Value

ClockMaster
Counter State

Offset is the control error (err)

Nominal frequency 𝒇𝑭𝑹𝑪 of the Free

Running Clock known

Controller: discrete time PI controller with

Tsync as sampling rate

Question: How is OCF(k) implemented? We cannot change the frequency but only the clock (the number of ticks)!

→ Solution: OCF is used to calculate the OCF_Interval

→ OCF_Interval tells you when to add or subtract one tick from the ClockSlave clock!

2022Page 9

Control Signal: from OCF to OCF_Interval

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟: 𝑂𝐶𝐹 𝑘 = 𝑂𝐶𝐹 𝑘 − 1 + 𝐾𝑝 ∙ (𝑒𝑟𝑟 𝑘 − 𝑒𝑟𝑟 𝑘 − 1) + 𝐾𝐼 ∙ 𝑒𝑟𝑟 𝑘 − 1 ∙ 𝑁𝑢𝑚𝑇𝑖𝑐𝑠𝐹𝑅𝐶/𝑓𝐹𝑅𝐶

𝑓𝐹𝑅𝐶: frequency of FRC, without compensation

𝑓𝐶𝑆 = 𝑂𝐶𝐹 ∙ 𝑓𝐹𝑅𝐶: The ClockSlave frequency obtained by scaling the frequency of FRC

Goal:

• find the time interval of length T after which the two counters (of FRC and CS clocks) differ by 1 tick, and

• express this time interval in the number of tics of the Free Running Clock (e.g. Local Clock)

𝑇 ∙ 𝑓𝐶𝑆 = 𝑇 ∙ 𝑓𝐹𝑅𝐶 ± 1

𝑇 =
±1

𝑓𝐶𝑆𝐶−𝑓𝑆𝐹𝑅𝐶
=

±1

𝑓𝐹𝑅𝐶
∙

1

𝑂𝐶𝐹−1
➔ (in praxis can the number of updates be limited)

→ If OCF>1, add 1 extra tick after the OCF_interval,

→ If OCF<1, subtract 1 tick after the OCF_interval,

→ If OCF=1, do nothing (no correction needed)

𝑂𝐶𝐹𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =
±1

𝑂𝐶𝐹 − 1

2022Page 10

Tuning of the Controller Parameters

Plant

P

Controller

C

Error=
Offset

Control
action
OCF

-
+

ClockSlave Counter
(CSC) Value

ClockMaster
Counter Value

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟: 𝑂𝐶𝐹 𝑘 = 𝑂𝐶𝐹 𝑘 − 1 + 𝐾𝑝 ∙

(𝑒𝑟𝑟 𝑘 − 𝑒𝑟𝑟 𝑘 − 1) + 𝐾𝐼 ∙ 𝑒𝑟𝑟 𝑘 − 1 ∙
𝑁𝑢𝑚𝑇𝑖𝑐𝑠𝐹𝑅𝐶/𝑓𝐹𝑅𝐶

There are two parameters pro controller → in a line with 100 Slaves there are 200 parameters

Our Plant is an integrator with a large gain (the FRC frequency). Idea: find good parameters for the integrator with gain one, and scale

them with the FRC frequency.

There are many methods for tuning the parameters of a single PID controller. But, we had another goal:

Goal: Find the common parameters for all Slave elements which guarantee 1µs performance, in the presence of :

• Noise (stamping and quantization) errors

• Frequency drift of the Master and Slave clocks

• …

Done through (a lot of) simulations (for the Siemens Profinet case)!

2022Page 11

Application of the controlled ClockSlave

Standard Application:

• Use the ClockSlave only for providing the Master

Clock Information to the Application

→ The ClockSlave at element “n” does not influence

the estimation of nRR and RR at that element, nor the

update of the Sync message content before it is

forwarded to the next Slave element “n+1”

Clock

Slave

Local

Clock

Clock

Target

“Bn”

SyncM(k-1) SyncM(k-1)

SyncM(k) SyncM(k)

2022Page 12

Application of the controlled ClockSlave

Additional Application:

• Use the ClockSlave also for updating the Sync Message with

the encountered Delays

→Master Time Correction at “Bn” consists of:

• pDelay compensation

• Residence Time (RT) compensation

Two ways of calculating the pDelay and RTdelay:

1. Use LocalClock time scaled to the Master Time by RR(M,Bn). ClockSlave is not

used in this case!

2. Use ClockSlave estimate of the ClockMaster for both pDelay and RTdelay

calculations. This looks like a mixture of a Transparent and a Boundary Clock.

Clock

Slave

Local

Clock

Clock

Target

“Bn”

SyncM(k-1) SyncM(k-1)

SyncM(k) SyncM(k)

2022Page 13

Application of the controlled ClockSlave for pDelay and

Residence Delay calculation

Use ClockSlave estimate of the ClockMaster for both pDelay and RTdelay

calculations. This looks like a mixture of a Transparent and a Boundary

Clock.

→ Should be used only when the slave is in the “inSync” state (e.g. when the

difference between the ClockMaster and ClockSlave counters is under the

threshold)

→ If ClockSlave clock is used in the current and in the previous Slave

elements (or the previous element is the GrandMaster) for the delay

compensation, then the nRR and RR should be equal to 1 (within limits)!

→ Hence, nRR and RR need not be calculated! If calculated, their deviation

from 1 can be an additional information whether the element “n” is in the

“inSync” state (t.b.d.)

Clock

Slave

Local

Clock

Clock

Target

“Bn”

SyncM(k-1) SyncM(k-1)

SyncM(k) SyncM(k)

2022Page 14

ClockSlave for Delay calculation → Propagation of the CS

control loop signals over Slave elements

Sync Message at the output of

“Bn” will depend on the control

loop at this element (on the

calculated OFC(Bn))

Sync Message at the output of

Bn+1 will depend on the own

control loop (OFC(Bn+1)) and also

on the control loop at the previous

element (OFC(Bn))

Question: how does OFC(Bn)

propagates over elements?

Clock

Slave

Local

Clock

Clock

Target

“Bn+1”

SyncM(k-1)

SyncM(k)

SyncM(k-1) SyncM(k-1)

SyncM(k) SyncM(k)

Clock

Slave

Local

Clock

Clock

Target

“Bn”

2022Page 15

Using controlled clock to update Sync Message

PlantControllerOffset

Control
action
OCF(k)

-
+

ClockSlave
Counter
(k)

ClockMaster
Reference(k,
@n)

Tresidence
in FRCX

PlantControllerOffset

Control
action
OCF(k)

-
+

ClockSlave
Counter
(k)

ClockMaster
Reference(k,
@n+1)

Tresidence
in FRCX

ClockMaster
Reference(k,
@n+2)

Bn

Bn+1

The transfer function relevant for the residence delay

compensation with the ClockSlave “time” is between

the ClockMaster_Reference and the control signal

OCF

𝑇𝐹 =
𝐶

1 + 𝑃𝐶
→ The gain of this TF is <<1 at all frequencies (due

to the large gain in P)

→ There is no amplification over consecutive

elements if max(|TF(jw)|)*Tresidence<1! (but

other factors play a role too)

+
+

+

+
+

We also have a limit on the OCF, hence it can not grow indefinitely!

2022Page 16

Can the PI-controlled ClockSlave help with delay

compensation if Master Frequency is drifting? YES!

Case: the frequency of the GM clock has a constant drift in one direction (for some time), while the

frequency of the slave’s Local Clock is constant

→ The Offset (error) will have the same sign (positive).

→ Kp will react proportionally to the current offset (pushes OCF up)

→ Ki will further amplify this increase of OCF the longer the drift is present (due to the cumulation

of the errors with the same sign)

→ ➔ The Ki action “senses” that there is a drift and tries to compensate it! This is done without

explicitly learning the drift!

→ ➔ Hence, OCF has a built-in compensation of the drift, RR does not have it!

→ The compensation is not ideal because of noise, delays, etc. But it has the correct sign!

Plant

P

Controller

C (PI)

Error=
Offset

Control
action
OCF

-
+

ClockSlave Counter
(CSC) Value

ClockMaster
Counter Value

time

Clock Rate

GrandMaster

Slave Local C.

