60802 Time Sync: Reducing dTE – Complexities & Tradeoffs – Ad Hoc Next Steps David McCall (Intel) Version 2 #### References - 1. D. McCall, "60802 Time Sync Ad Hoc Status Update", IEC/IEEE 60802 contribution", September 2022 - D. McCall, "60802 Time Synchronisation Monte Carlo Analysis: 100-hop Model, "Linear" Clock Drift, NRR Accumulation, Overview & Details, Including Equations", IEC/IEEE 60802 contribution, September 2022 #### Background - IEC/IEEE 60802 has a stated requirement of 1us time accuracy over 64 hops (i.e. 65 devices) with a goal of 100 hops (i.e. 101 devices). - The Monte Carlo Analysis has identified several components of dynamic time error (dTE) that can be addressed by altering parameters or via algorithmic compensation. - Most of these approaches involve tradeoffs and additional complexity - This presentation provides and overview of the approaches, tradeoffs and potential complexities to elicit feedback on where an acceptable balance may lie. #### Content - Components of dTE - pDelay Interval - Sync Interval - Residence Time - Aligning pDelayResp with Sync - mNRRsmoothingN using older pDelayResp timestamps - mNRRsmoothingM taking a median of previous mNRR values - And why this is a bad idea - NRR measurement and compensation - RR measurement and compensation ### Components of DTE #### Dynamic Time Sync Error Accumulation All errors in this analysis are caused by either Clock Drift or Timestamp Errors *DTE based on protocol messaging only. Total DTE at the application level will also depend on ClockMaster, ClockSlave, ClockSource, Clock Target, etc... # Graphical Representation of Error Accumulation # Graphical Representation of Error Accumulation The 7σ dTE value is split repeatedly according to the ratio of 7σ values of underlying errors. 7σ probabilities do not combine via addition so, at each level, the sum of the underlying 7σ values is greater than the value that is being split. Larger errors will often swamp smaller errors, so small errors are, in general, over-represented by this approach. It does, however, provide a useful visualisation of how underlying errors combine to make up the 7σ dTE value. # Graphical Representation of Error Accumulation #### pDelayInterval Sensitivity Analysis | Input Errors | | | | | |-----------------------------------|-------|-------|--|--| | Drift Type (Linear Temp Ramp) | 2 | | | | | GM Clock Drift Max | +1.35 | ppm/s | | | | GM Clock Drift Min | -1.35 | ppm/s | | | | Fraction of GM nodes w/ Drift | 80% | | | | | non-GM Clock Drift Max | +1.35 | ppm/s | | | | non-GM Clock Drift Min | -1.35 | ppm/s | | | | Fraction of non-GM Nodes w/ Drift | 80% | | | | | Temp Max | +85. | °C | | | | Temp Min | -40. | °C | | | | Temp Ramp Rate | ±1 | °C/s | | | | Temp Ramp Period | 125 | S | | | | Temp Hold Period | 30 | S | | | | GM Scaling Factor | 100% | | | | | non-GM Scaling Factor | 100% | | | | | Timestamp Granularity TX | ±4 | ns | | | | Timestamp Granularity RX | ±4 | ns | | | | Dynamic Time Stamp Error TX | ±4 | ns | | | | Dynamic Time Stamp Error RX | ±4 | ns | | | | Input Parameters | | | | | | pDelay Interval | VAR | ms | | | | Sync Interval | 125 | ms | | | | pDelay Turnaround Time | 10 | ms | | | | residenceTime | 10 | ms | | | | Input Correction Factors | | | | | | Mean Link Delay Averaging | 0% | | | | | NRR Drift Rate Correction | 0% | | | | | RR Drift Rate Error Correction | 0% | | | | | pDelayResp → Sync Type (Uniform) | 1 | | | | | pDelayResp → Sync Max | 100% | | | | | pDelayResp → Sync Min | 0% | | | | | pDelayResp → Sync Target | 10 | ms | | | | mNRR Smoothing N | 1 | | | | | mNRR Smoothing M | 1 | | | | | Configuration | | | | | | Hops | 100 | | | | | Runs | 500 | 0,000 | | | IEEE 802.1 TSN / 60802 10,999 As *pDelayInterval* is reduced... - RT & ES errors due to **Timestamp** component of $mNRR_{error}$, via Rate Ratio **increase**. - RT & ES errors due to Clock Drift component of mNRR_{error}, via Rate Ratio decrease. - RT & ES errors due to Clock Drift between measurement of NRR and calculation of RR decrease. David McCall #### residence Time Sensitivity Analysis | Input Errors | | | | | |-----------------------------------|-------|-------|--|--| | Drift Type (Linear Temp Ramp) | 2 | | | | | GM Clock Drift Max | +1.35 | ppm/s | | | | GM Clock Drift Min | -1.35 | ppm/s | | | | Fraction of GM nodes w/ Drift | 80% | | | | | non-GM Clock Drift Max | +1.35 | ppm/s | | | | non-GM Clock Drift Min | -1.35 | ppm/s | | | | Fraction of non-GM Nodes w/ Drift | 80% | | | | | Temp Max | +85. | °C | | | | Temp Min | -40. | °C | | | | Temp Ramp Rate | ±1 | °C/s | | | | Temp Ramp Period | 125 | S | | | | Temp Hold Period | 30 | S | | | | GM Scaling Factor | 100% | | | | | non-GM Scaling Factor | 100% | | | | | Timestamp Granularity TX | ±4 | ns | | | | Timestamp Granularity RX | ±4 | ns | | | | Dynamic Time Stamp Error TX | ±4 | ns | | | | Dynamic Time Stamp Error RX | ±4 | ns | | | | Input Parameters | | | | | | pDelay Interval | 31.25 | ms | | | | Sync Interval | 125 | ms | | | | pDelay Turnaround Time | 10 | ms | | | | residenceTime | VAR | ms | | | | Input Correction Factors | | | | | | Mean Link Delay Averaging | 0% | | | | | NRR Drift Rate Correction | 0% | | | | | RR Drift Rate Error Correction | 0% | | | | | pDelayResp → Sync Type (Uniform) | 1 | | | | | pDelayResp → Sync Max | 100% | | | | | pDelayResp → Sync Min | 0% | | | | | pDelayResp → Sync Target | 10 | ms | | | | mNRR Smoothing N | 1 | | | | | mNRR Smoothing M | 1 | | | | | Configuration | | | | | | Hops | 100 | | | | | Runs | 500 | 0,000 | | | As residenceTime is reduced... #### mNRRsmoothingN Sensitivity Analysis | Input Errors | | | | |-----------------------------------|-------|-------|--| | Drift Type (Linear Temp Ramp) | 2 | | | | GM Clock Drift Max | +1.35 | ppm/s | | | GM Clock Drift Min | -1.35 | ppm/s | | | Fraction of GM nodes w/ Drift | 80% | pp, 5 | | | non-GM Clock Drift Max | +1.35 | ppm/s | | | non-GM Clock Drift Min | -1.35 | ppm/s | | | Fraction of non-GM Nodes w/ Drift | 80% | pp, 5 | | | Temp Max | +85. | °C. | | | Temp Min | -40. | °C | | | Temp Ramp Rate | ±1 | °C/s | | | Temp Ramp Period | 125 | S | | | Temp Hold Period | 30 | S | | | GM Scaling Factor | 100% | | | | non-GM Scaling Factor | 100% | | | | Timestamp Granularity TX | ±4 | ns | | | Timestamp Granularity RX | ±4 | ns | | | Dynamic Time Stamp Error TX | ±4 | ns | | | Dynamic Time Stamp Error RX | ±4 | ns | | | Input Parameters | | | | | pDelay Interval | 31.25 | ms | | | Sync Interval | 125 | ms | | | pDelay Turnaround Time | 10 | ms | | | residenceTime | 10 | ms | | | Input Correction Factors | | | | | Mean Link Delay Averaging | 0% | | | | NRR Drift Rate Correction | 0% | | | | RR Drift Rate Error Correction | 0% | | | | pDelayResp → Sync Type (Uniform) | 1 | | | | pDelayResp → Sync Max | 100% | | | | pDelayResp → Sync Min | 0% | | | | pDelayResp → Sync Target | 10 | ms | | | mNRR Smoothing N | VAR | | | | mNRR Smoothing M | 1 | | | | Configuration | | | | | Hops | 100 | | | | Runs | 500 |),000 | | As *mNRRsmoothingN* is increased... - RT & ES errors due to **Timestamp** component of $mNRR_{error}$, via Rate Ratio **decrease**. - RT & ES errors due to Clock Drift component of mNRRerror, via Rate Ratio increase. - This is the opposite as for reducing pDelayInterval, but without the consequence of also increasing RT & ES errors due to Clock Drift between measurement of NRR and calculation of RR mNRRs moothing N #### mNRRsmoothingNvs pDelayInterval #### pDelayInterval > Sync Interval #### pDelayInterval = Sync Interval #### pDelayInterval < Sync Interval #### Align pDelayResp & Sync? – No Alignment #### Align pDelayResp & Sync? Better Alignment ### Align pDelayResp & Sync? Deterministic #### Align pDelayResp & Sync? Examples $RT_{errorRR_CD_NRR2sync}$ and $ES_{errorRR_CD_NRR2sync}$ both decrease in the third case, even though the average $T_{pdelay2pdelay}$ is longer. What is going on? (Note that this reduction isn't reflected fully in dTE as it is swamped by other errors.) #### Aligning pDelayResp & Sync – Implications - Absolute magnitude of the delay between measurement of mNRR and use during RR calculation is not the key factor - The equations for the relevant errors are... $$mNRR_{errorCD_X} = \frac{T_{pdelay2pdelay}(clockDrift_n - clockDrift_{n-1})}{2 \times 10^3} \qquad RR_{errorCD_NRR2Sync_X} = \frac{T_{mNRR2Sync}(clockDrift_n - clockDrift_{n-1})}{10^3}$$ - If $T_{pdelay2pdelay}$ and $T_{mNRR2sync}$ are identical for node n-1 and node n, and clock drift at node n-1 is constant (i.e. doesn't change), then the total error contribution due to clock drift at from n (for these errors) is zero. - Absolute magnitudes of $T_{pdelay2pdelay}$ and $T_{mNRR2sync}$ are not as important as variability. Stable values for both results in maximum cancellation of errors in RR during the Sync process. - Note that this statement starts to break down if the intervals are large enough for significant changes in Clock Drift. - Reducing the variability of $T_{mNRR2sync}$ and $T_{pdelay2pdelay}$ is therefore a valid approach to error reduction. - Reduce $T_{mNRR2sync}$: align pDelayResp with Sync - Reduce $T_{pdelav2pdelav}$: reduce variability of period between pDelayResp messages - Doing both at the same time may require reducing the variability of the period between Sync messages. #### **MLDErrCor** Effect Decreases MLD_{error} #### NRRdriftRateErrorCor Effect Decreases $RT_{errorRR_NRR_CD}$, $RT_{errorRR_CD_NRR2sync}$, $ES_{errorRR_NRR_CD}$, $ES_{errorRR_CD_NRR2sync}$ #### RRdriftRateErrorCor Effect Decreases $RT_{errorRR_CD_RR2sync}$, $RT_{errorCDdirect}$, $ES_{errorRR_CD_NRR2sync}$, $ES_{errorCDdirect}$ ### Complexities | Approach | Complexity / Level of Challenge | | |---------------------------------------|---|--| | Optimise pDelayInterval | Deguired Law values may be problematic (125ms would be OK2) | | | Optimise syncInterval | Required. Low values may be problematic. (125ms would be OK?) | | | Optimise residenceTime | Required. Values below 10ms may be problematic. | | | mNRRsmoothingN | Low complexity. Optimal value depends on effectiveness of other measures. | | | Align pDelayResp and Sync | | | | Reduce variability of | Unknow complexity; depends on mechanism. Investigation required. | | | $T_{pdelay2pdelay}$ | onknow complexity, acpends on mechanism. Investigation required. | | | Reduce variability of $T_{sync2sync}$ | | | | Mean Link Delay Averaging | Low complexity. Averaging is required for Mean Link Delay to be useful. | | | NRR Drift Tracking & Compensation | Medium complexity, assuming tracking is accomplished via looking at past mNRR measurements and clock drift linearity is assumed. Efficacy and effect of sudden changes in drift rates remains to be determined . | | | RR Drift Tracking & Compensation | | | ## Time Sync Ad Hoc Next Steps #### 60802 Time Sync Ad Hoc – Next Steps #### Key: Can progress now Contribution required Dependant on other items - Messaging & Algorithms - Align pDelay & Sync messaging; reduce variability of $T_{pdelay2pdelay}$ & $T_{sync2sync}$ investigation of possible mechanism - · Contributions requested - NRR & RR drift measurement & compensation Monte Carlo & Time Series simulations to determine efficacy and robustness - Clock Filters & Control Loops - Continued discussion based on latest Time Series simulation results - Sync Message Timestamping (using synced ClockSlave to timestamp) - Assessment (simulations?) based on results of Clock Filters & Control Loops discussion. - Rate Ratio Measurement - Analysis of Rate Ratio measurement via Sync messaging, similar to [2]. Subsequent Monte Carlo simulation and assessment. - Normative vs. Informative - Discussion on normative requirements for error generation - Possible discussion of normative requirements for error tolerance if NRR and/or RR drift measurement & compensation is adopted. - Everything else is informative. Some will be obvious. Others may require discussion. - Unified Proposal - Dependant on progress of above subject areas. ### Thank you!