

60802 Time Sync: Reducing dTE – Complexities & Tradeoffs – Ad Hoc Next Steps

David McCall (Intel) Version 2

References

- 1. D. McCall, "60802 Time Sync Ad Hoc Status Update", IEC/IEEE 60802 contribution", September 2022
- D. McCall, "60802 Time Synchronisation Monte Carlo Analysis: 100-hop Model, "Linear" Clock Drift, NRR Accumulation, Overview & Details, Including Equations", IEC/IEEE 60802 contribution, September 2022

Background

- IEC/IEEE 60802 has a stated requirement of 1us time accuracy over 64 hops (i.e. 65 devices) with a goal of 100 hops (i.e. 101 devices).
- The Monte Carlo Analysis has identified several components of dynamic time error (dTE) that can be addressed by altering parameters or via algorithmic compensation.
- Most of these approaches involve tradeoffs and additional complexity
- This presentation provides and overview of the approaches, tradeoffs and potential complexities to elicit feedback on where an acceptable balance may lie.

Content

- Components of dTE
- pDelay Interval
- Sync Interval
- Residence Time
- Aligning pDelayResp with Sync
- mNRRsmoothingN using older pDelayResp timestamps
- mNRRsmoothingM taking a median of previous mNRR values
 - And why this is a bad idea
- NRR measurement and compensation
- RR measurement and compensation

Components of DTE

Dynamic Time Sync Error Accumulation

All errors in this analysis are caused by either Clock Drift or Timestamp Errors

*DTE based on protocol messaging only. Total DTE at the application level will also depend on ClockMaster, ClockSlave, ClockSource, Clock Target, etc...

Graphical Representation of Error Accumulation

Graphical Representation of Error Accumulation

The 7σ dTE value is split repeatedly according to the ratio of 7σ values of underlying errors. 7σ probabilities do not combine via addition so, at each level, the sum of the underlying 7σ values is greater than the value that is being split. Larger errors will often swamp smaller errors, so small errors are, in general, over-represented by this approach. It does, however, provide a useful visualisation of how underlying errors combine to make up the 7σ dTE value.

Graphical Representation of Error Accumulation

pDelayInterval Sensitivity Analysis

Input Errors				
Drift Type (Linear Temp Ramp)	2			
GM Clock Drift Max	+1.35	ppm/s		
GM Clock Drift Min	-1.35	ppm/s		
Fraction of GM nodes w/ Drift	80%			
non-GM Clock Drift Max	+1.35	ppm/s		
non-GM Clock Drift Min	-1.35	ppm/s		
Fraction of non-GM Nodes w/ Drift	80%			
Temp Max	+85.	°C		
Temp Min	-40.	°C		
Temp Ramp Rate	±1	°C/s		
Temp Ramp Period	125	S		
Temp Hold Period	30	S		
GM Scaling Factor	100%			
non-GM Scaling Factor	100%			
Timestamp Granularity TX	±4	ns		
Timestamp Granularity RX	±4	ns		
Dynamic Time Stamp Error TX	±4	ns		
Dynamic Time Stamp Error RX	±4	ns		
Input Parameters				
pDelay Interval	VAR	ms		
Sync Interval	125	ms		
pDelay Turnaround Time	10	ms		
residenceTime	10	ms		
Input Correction Factors				
Mean Link Delay Averaging	0%			
NRR Drift Rate Correction	0%			
RR Drift Rate Error Correction	0%			
pDelayResp → Sync Type (Uniform)	1			
pDelayResp → Sync Max	100%			
pDelayResp → Sync Min	0%			
pDelayResp → Sync Target	10	ms		
mNRR Smoothing N	1			
mNRR Smoothing M	1			
Configuration				
Hops	100			
Runs	500	0,000		

IEEE 802.1 TSN / 60802

10,999

As *pDelayInterval* is reduced...

- RT & ES errors due to **Timestamp** component of $mNRR_{error}$, via Rate Ratio **increase**.
- RT & ES errors due to Clock Drift component of mNRR_{error}, via Rate Ratio decrease.
- RT & ES errors due to Clock Drift between measurement of NRR and calculation of RR decrease.

David McCall

residence Time Sensitivity Analysis

Input Errors				
Drift Type (Linear Temp Ramp)	2			
GM Clock Drift Max	+1.35	ppm/s		
GM Clock Drift Min	-1.35	ppm/s		
Fraction of GM nodes w/ Drift	80%			
non-GM Clock Drift Max	+1.35	ppm/s		
non-GM Clock Drift Min	-1.35	ppm/s		
Fraction of non-GM Nodes w/ Drift	80%			
Temp Max	+85.	°C		
Temp Min	-40.	°C		
Temp Ramp Rate	±1	°C/s		
Temp Ramp Period	125	S		
Temp Hold Period	30	S		
GM Scaling Factor	100%			
non-GM Scaling Factor	100%			
Timestamp Granularity TX	±4	ns		
Timestamp Granularity RX	±4	ns		
Dynamic Time Stamp Error TX	±4	ns		
Dynamic Time Stamp Error RX	±4	ns		
Input Parameters				
pDelay Interval	31.25	ms		
Sync Interval	125	ms		
pDelay Turnaround Time	10	ms		
residenceTime	VAR	ms		
Input Correction Factors				
Mean Link Delay Averaging	0%			
NRR Drift Rate Correction	0%			
RR Drift Rate Error Correction	0%			
pDelayResp → Sync Type (Uniform)	1			
pDelayResp → Sync Max	100%			
pDelayResp → Sync Min	0%			
pDelayResp → Sync Target	10	ms		
mNRR Smoothing N	1			
mNRR Smoothing M	1			
Configuration				
Hops	100			
Runs	500	0,000		

As residenceTime is reduced...

mNRRsmoothingN Sensitivity Analysis

Input Errors			
Drift Type (Linear Temp Ramp)	2		
GM Clock Drift Max	+1.35	ppm/s	
GM Clock Drift Min	-1.35	ppm/s	
Fraction of GM nodes w/ Drift	80%	pp, 5	
non-GM Clock Drift Max	+1.35	ppm/s	
non-GM Clock Drift Min	-1.35	ppm/s	
Fraction of non-GM Nodes w/ Drift	80%	pp, 5	
Temp Max	+85.	°C.	
Temp Min	-40.	°C	
Temp Ramp Rate	±1	°C/s	
Temp Ramp Period	125	S	
Temp Hold Period	30	S	
GM Scaling Factor	100%		
non-GM Scaling Factor	100%		
Timestamp Granularity TX	±4	ns	
Timestamp Granularity RX	±4	ns	
Dynamic Time Stamp Error TX	±4	ns	
Dynamic Time Stamp Error RX	±4	ns	
Input Parameters			
pDelay Interval	31.25	ms	
Sync Interval	125	ms	
pDelay Turnaround Time	10	ms	
residenceTime	10	ms	
Input Correction Factors			
Mean Link Delay Averaging	0%		
NRR Drift Rate Correction	0%		
RR Drift Rate Error Correction	0%		
pDelayResp → Sync Type (Uniform)	1		
pDelayResp → Sync Max	100%		
pDelayResp → Sync Min	0%		
pDelayResp → Sync Target	10	ms	
mNRR Smoothing N	VAR		
mNRR Smoothing M	1		
Configuration			
Hops	100		
Runs	500),000	

As *mNRRsmoothingN* is increased...

- RT & ES errors due to **Timestamp** component of $mNRR_{error}$, via Rate Ratio **decrease**.
- RT & ES errors due to Clock Drift component of mNRRerror, via Rate Ratio increase.
- This is the opposite as for reducing pDelayInterval, but without the consequence of also increasing RT & ES errors due to Clock Drift between measurement of NRR and calculation of RR

mNRRs moothing N

mNRRsmoothingNvs pDelayInterval

pDelayInterval > Sync Interval

pDelayInterval = Sync Interval

pDelayInterval < Sync Interval

Align pDelayResp & Sync? – No Alignment

Align pDelayResp & Sync? Better Alignment

Align pDelayResp & Sync? Deterministic

Align pDelayResp & Sync? Examples

 $RT_{errorRR_CD_NRR2sync}$ and $ES_{errorRR_CD_NRR2sync}$ both decrease in the third case, even though the average $T_{pdelay2pdelay}$ is longer. What is going on?

(Note that this reduction isn't reflected fully in dTE as it is swamped by other errors.)

Aligning pDelayResp & Sync – Implications

- Absolute magnitude of the delay between measurement of mNRR and use during RR calculation is not the key factor
- The equations for the relevant errors are...

$$mNRR_{errorCD_X} = \frac{T_{pdelay2pdelay}(clockDrift_n - clockDrift_{n-1})}{2 \times 10^3} \qquad RR_{errorCD_NRR2Sync_X} = \frac{T_{mNRR2Sync}(clockDrift_n - clockDrift_{n-1})}{10^3}$$

- If $T_{pdelay2pdelay}$ and $T_{mNRR2sync}$ are identical for node n-1 and node n, and clock drift at node n-1 is constant (i.e. doesn't change), then the total error contribution due to clock drift at from n (for these errors) is zero.
- Absolute magnitudes of $T_{pdelay2pdelay}$ and $T_{mNRR2sync}$ are not as important as variability. Stable values for both results in maximum cancellation of errors in RR during the Sync process.
 - Note that this statement starts to break down if the intervals are large enough for significant changes in Clock Drift.
- Reducing the variability of $T_{mNRR2sync}$ and $T_{pdelay2pdelay}$ is therefore a valid approach to error reduction.
 - Reduce $T_{mNRR2sync}$: align pDelayResp with Sync
 - Reduce $T_{pdelav2pdelav}$: reduce variability of period between pDelayResp messages
 - Doing both at the same time may require reducing the variability of the period between Sync messages.

MLDErrCor Effect

Decreases MLD_{error}

NRRdriftRateErrorCor Effect

Decreases $RT_{errorRR_NRR_CD}$, $RT_{errorRR_CD_NRR2sync}$, $ES_{errorRR_NRR_CD}$, $ES_{errorRR_CD_NRR2sync}$

RRdriftRateErrorCor Effect

Decreases $RT_{errorRR_CD_RR2sync}$, $RT_{errorCDdirect}$, $ES_{errorRR_CD_NRR2sync}$, $ES_{errorCDdirect}$

Complexities

Approach	Complexity / Level of Challenge	
Optimise pDelayInterval	Deguired Law values may be problematic (125ms would be OK2)	
Optimise syncInterval	Required. Low values may be problematic. (125ms would be OK?)	
Optimise residenceTime	Required. Values below 10ms may be problematic.	
mNRRsmoothingN	Low complexity. Optimal value depends on effectiveness of other measures.	
Align pDelayResp and Sync		
Reduce variability of	Unknow complexity; depends on mechanism. Investigation required.	
$T_{pdelay2pdelay}$	onknow complexity, acpends on mechanism. Investigation required.	
Reduce variability of $T_{sync2sync}$		
Mean Link Delay Averaging	Low complexity. Averaging is required for Mean Link Delay to be useful.	
NRR Drift Tracking & Compensation	Medium complexity, assuming tracking is accomplished via looking at past mNRR measurements and clock drift linearity is assumed. Efficacy and effect of sudden changes in drift rates remains to be determined .	
RR Drift Tracking & Compensation		

Time Sync Ad Hoc Next Steps

60802 Time Sync Ad Hoc – Next Steps

Key:

Can progress now
Contribution required
Dependant on other items

- Messaging & Algorithms
 - Align pDelay & Sync messaging; reduce variability of $T_{pdelay2pdelay}$ & $T_{sync2sync}$ investigation of possible mechanism
 - · Contributions requested
 - NRR & RR drift measurement & compensation Monte Carlo & Time Series simulations to determine efficacy and robustness
- Clock Filters & Control Loops
 - Continued discussion based on latest Time Series simulation results
- Sync Message Timestamping (using synced ClockSlave to timestamp)
 - Assessment (simulations?) based on results of Clock Filters & Control Loops discussion.
- Rate Ratio Measurement
 - Analysis of Rate Ratio measurement via Sync messaging, similar to [2]. Subsequent Monte Carlo simulation and assessment.
- Normative vs. Informative
 - Discussion on normative requirements for error generation
 - Possible discussion of normative requirements for error tolerance if NRR and/or RR drift measurement & compensation is adopted.
 - Everything else is informative. Some will be obvious. Others may require discussion.
- Unified Proposal
 - Dependant on progress of above subject areas.

Thank you!