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Abstract

• Industrial Automation Systems require microsecond-accurate time across long daisy-chains of 
devices using IEEE Std. 802.1AS™-2020 as specified by IEEE/IEC 60802.

• Simulated protocol and system parameters have thus far either been judged impractical or have 
failed to meet the time-accuracy requirement.

• An analysis of how errors accumulate suggested that a Monte Carlo method analysis could 
support fast iteration of potential scenarios and deliver insights into cause and effect. See...

• 60802-McCall-et-al-Time-Sync-Error-Model-0921-v03.pdf
• 60802-McCall-Stanton-Time-Sync-Error-Model-and-Analysis-2021-11-v02.pdf

• In this contribution we:
• Describe addition of pDelay variation, and “End Station” error (with Sync Interval variation) to analysis
• Discuss error due to clock drift during Sync messaging and potential to mitigate via algorithmic compensation
• Present basis for potential normative and informative contribution to next draft
• Present Monte Carlo analysis results to compare with upcoming Time Series simulation results

https://www.ieee802.org/1/files/public/docs2021/60802-McCall-et-al-Time-Sync-Error-Model-0921-v03.pdf
https://www.ieee802.org/1/files/public/docs2021/60802-McCall-Stanton-Time-Sync-Error-Model-and-Analysis-2021-11-v02.pdf
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Content

• Background & Recap
• Proposals from February

• Additions to the Monte Carlo analysis
• pDelay variation
• “End Station” error due to clock drift between Sync messages

• Includes Sync interval variation

• Error due to drift during Sync messaging
• Potential for algorithmic compensation

• Potential basis for normative and informative contribution to next draft

• Monte Carlo analysis results for comparison with upcoming Time Series 
simulation results (will be generated prior to Geoff’s presentation)
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Background & Recap
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Proposed Next Steps

• Time Series Simulations to validate Monte Carlo Analysis
• Not necessarily with values we would want to use in practice. Main point is to 

ensure that Monte Carlo Analysis and Time Series Simulations match.

• More Monte Carlo Analysis to develop recommendations
• Time Series Simulations to validate

• Prepare spec contribution for March Plenary
• Likely present to 60802 group before then to get guidance on key questions



p. 6David McCall (Intel)IEEE 802.1 TSN / 60802, March 2022 Available at http://www.ieee802.org/1/files/public/docs2022

Proposed Time Series Simulations – Details

Experiment Reason

Errors Parameter Correction Factors

Clock Drift Model
– 40°C ↔ +85°C

Hold for 1min at Each
(Each node’s position in 

cycle distributed at random 
across 100% of Cycle)

Timestamp
Granularity

(ns)

Dynamic
Timestamp

Error
(±ns)

pDelay
Interval

(ms)

Residence 
Time
(ms)

pDelay
Turnaround

Time
(ms)

Mean Link
Delay

Averaging

mNRR
Smooting
Factor N

A
Baseline with previous 
assumptions

Ramp Rate 1°C / s
(Cycle of 310 s)

8 4 31.25 1 1

Off 1

B
Verify optimised 
pDelayInterval

8 4

1000 10 10

C 250 10 10

D 31.25 10 10

E

Verify effect of reduced 
Timestamp Error (reduced 
DTE when pDelay Interval 
is low, i.e. 31.25ms)

4 2 31.25 10 10

F

Verify effect of reduced 
Clock Drift (reduced DTE 
when pDelay Interval is 
high, i.e. 1000ms)

Ramp Rate 0.5°C / s
Cycle of 560s

8 4 1000 10 10

Timestamp Granularity and Dynamic Timestamp Error are uniform distributions unless otherwise stated
Sync Interval: 125ms
pDelay Interval variation is +0-30% with uniform distribution
Sync Interval variation is ±10% with 90% probability with gamma distribution
Note: 8ns Timestamp Granularity in Time Series Simulation is equivalent to ±4ns Timestamp Granularity Error in Monte Carlo Analysis
1°C / s temperature ramp rate is the equivalent of ±1.5 ppm/s clock drift rate in Monte Carlo Analysis
No difference between base (PHY related) propagation delay for pDelay and Sync messages

Added to Monte Carlo analysis

Up from ±0.6 ppm/s previously
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Additions to Monte Carlo Analysis
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pDelay Variation

• Previously: pDelay was always the nominal value

• Now: pDelay varies between nominal value and +30% with uniform distribution

• Mainly effect: increased error due to clock drift between pDelay messaging and 
Sync messaging (average +15%)
• Previously: delay was modelled as uniform distribution between 0 and pDelay
• Now: modelled as...

(uniform distribution 0 to 1) x (uniform distribution pDelay to pDelay x 1.3)

• Secondary effect: increased mNRR error due to clock drift between pDelay
messages (average +15%; higher values of mNRRsmoothingN mean the 
distribution is closer to gaussian)
• Separate variable pDelay intervals are generated vs. those used for pDelay to Sync messaging
• For mNRRsmoothingN > 1 additional variable pDelay intervals are generated, i.e. a single 

pDelay interval isn’t just multiplied by mNRRsmoothingN
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“End Station” Error

• Previously: only errors as part of Sync messaging were modelled
• Including errors from that feed into Sync messaging, e.g. Link Delay and NRR 

measurement

• Now: include errors due to clock drift between Sync messages
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timeSync

3

timeSync

pDelayResp

pDelayRsp

0.5s
RR1

GM

timeSyncpDelayResp

ppmDrift2_1 Effective Measurement 
Point

Attempt to measure 
NRR (mNNR)

timeSync

1

2

pDelayResp RR2

Combined Drift Rate

1s

t4-pDelay1_2

t3-pDelay1_2

t1-sync2_3

t2-sync1_2

t3-pDelayGM_1 t1-syncGM_1

mNRR used during Sync
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timeSync

100

pDelayResp

t1-sync1_2

t2-syncGM_1

t2-sync99_100

t1-syncGM_1

RR1

GM

timeSyncpDelayResp

RR Calculated

RR Used
Until Next Sync

timeSync

1

2
t1-sync23

pDelayResp RR2

Combined Drift Rate GM to End Station

t2-sync12

t1-sync1_2

t2-syncGM_1

t2-sync99_100

t1-syncGM_1

RR1

t1-sync23

RR2

t2-sync12

ppmDriftGM_100

Error due to clock drift between these two messages.
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“End Station” Error

• Previously: only errors as part of Sync messaging were modelled
• Including errors from that feed into Sync messaging, e.g. Link Delay and NRR 

measurement

• Now: include errors due to clock drift between Sync messages

• Two sources of error
• Error in calculated Rate Ratio

• Error due to clock drift between End Station Local Clock and GM
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31.25ms

1000ms

End Station Error at Hop 100

End Station Error ...due to Clock Drift ...due to Rate Ratio errorpDelay Interval

• Small compared with other sources of error.
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Error Due to Clock Drift During 
Sync Messaging
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timeSync

100

pDelayResp

t1-sync1_2

t2-syncGM_1

t2-sync99_100

t1-syncGM_1

RR1

GM

timeSyncpDelayResp

RR Calculated

RR Used
Until Next Sync

timeSync

1

2
t1-sync23

pDelayResp RR2

Combined Drift Rate GM to End Station

t2-sync12

t1-sync1_2

t2-syncGM_1

t2-sync99_100

t1-syncGM_1

RR1

t1-sync23

RR2

t2-sync98_99

This diagram is accurate for errors due to clock drift between these two messages. But...

ppmDriftGM_100
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t2-sync98_99

timeSync

100

pDelayResp

t1-sync1_2

t2-syncGM_1

t2-sync99_100

t1-syncGM_1

RR1

GM

timeSyncpDelayResp

ppmDriftGM_100
RR Calculated

RR Used
Until Next Sync

timeSync

1

2
t1-sync23

pDelayResp RR2

Combined Drift Rate GM to End Station
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t1-sync23
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There are a lot more messages between these two.
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t2-sync98_99

timeSync
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pDelayResp
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1
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97 more...and 100 x 10ms = 1s
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RR3

t2-sync2_3

t1-sync3_4

timeSync

3

timeSync

timeSync

2
t1-sync2_3

t2-sync1_2

RR2

ppmDriftGM_1 Sync Process Start

Node 1 Calculates RR

Combined Drift Rate GM to End Station

t1-sync1_2

t2-syncGM_1

RR1

GM

timeSync

1

10ms

t1-syncGM_1
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Error Due to Clock Drift
During Sync Messaging
• Additional RRerror applied at each node

• Does not accumulate as other RRerror factors do
• Not part of mNRR calculation.  (Other RRerror factors accumulate as a result of RR 

calculation being an accumulation of mNRR calculations.)

• Does increase linearly along the chain of devices.
• On average.  For each run at each node it is proportional to the relative clock drift 

between the Local Clock and the GM

• GM Clock Drift has a huge impact on the magnitude of these errors
• Residence Time Errors due to the impact of these errors do accumulate in 

the Correction Field

𝑅𝑅𝑒𝑟𝑟𝑜𝑟𝐶𝐷_𝑅𝑅
𝑛 =

𝑛 × 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒𝑇𝑖𝑚𝑒

1000
× 𝑐𝑙𝑜𝑐𝑘𝐷𝑟𝑖𝑓𝑡𝐺𝑀 − 𝑐𝑙𝑜𝑐𝑘𝐷𝑟𝑖𝑓𝑡 𝑛
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Error Due to Clock Drift
During Sync Messaging – pDelay Interval 31.25ms
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Error Due to Clock Drift
During Sync Messaging – pDelay Interval 31.25ms
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Algorithmic Compensation for Error Due to 
Clock Drift During Sync Messaging 
• Clock Drift Compensation previously discussed was intended to apply 

to mNRR measurement. (See backup)

• Same principle applies to RR measurement
• RR is being measured repeatedly over time

• Drift of RR over time can be inferred and a correction factor applied

• Linear drift should be a good approximation over short periods of time (~1s)

• Beyond the scope of detailed analysis using current Monte Carlo 
model, but can be modelled as a % effective (similar to Clock Drift 
error correction for mNRR)
• Included in these simulations
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Contribution to Next Draft
Potential basis for contribution
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Potential Parameters & Settings

Input Errors

GM Clock Drift Max +1.5 ppm/s

GM Clock Drift Min -1.5 ppm/s

Clock Drift Min (non-GM) +1.5 ppm/s

Clock Drift Min (non-GM) -1.5 ppm/s

Timestamp Granularity TX 4 ±ns

Timestamp Granularity RX 4 ±ns

Dynamic Time Stamp Error TX 4 ±ns

Dynamic Time Stamp Error RX 4 ±ns

Input Parameters

pDelay Interval 125 ms

Sync Interval 125 ms

pDelay Response Time 10 ms

residenceTime 10 ms

Input Correction Factors

Mean Link Delay 98 %

mNRR Drift Rate 90 %

RR Drift Rate 90 %

pDelayResponse → Sync 0 %

mNRR Smoothing 8

Configuration

Hops 100

Runs 1,000,000
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Potential Parameters & Settings

Input Errors

GM Clock Drift Max +1.5 ppm/s

GM Clock Drift Min -1.5 ppm/s

Clock Drift Min (non-GM) +1.5 ppm/s

Clock Drift Min (non-GM) -1.5 ppm/s

Timestamp Granularity TX 4 ±ns

Timestamp Granularity RX 4 ±ns

Dynamic Time Stamp Error TX 4 ±ns

Dynamic Time Stamp Error RX 4 ±ns

Input Parameters

pDelay Interval 125 ms

Sync Interval 125 ms

pDelay Response Time 10 ms

residenceTime 10 ms

Input Correction Factors

Mean Link Delay 98 %

mNRR Drift Rate 90 %

RR Drift Rate 90 %

pDelayResponse → Sync 0 %

mNRR Smoothing 8

Configuration

Hops 100

Runs 1,000,000
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Thank you!
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Back Up Material
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Clarification: Scope of Monte Carlo Analysis

• The analysis models errors and how they arise and interact, not the underlying entities that 
experience or generate the errors.
• There is only Clock Drift...there are no Clocks

• There is only Timestamp Error...there are no Timestamps

• There is only Dynamic Time Error...there is no modelling of Time

• The analysis only covers errors associated with pDelay and Sync 
messaging...which are based on the Local Clock.
• It models each node, including the GM, as a single clock...or rather, 

errors associated with a single clock.

• No Global Time. No Working Clock. No ClockTarget or ClockSlave (only 
the lowest box from Guenter’s presentation*)

• Additional modelling may be required for errors associated with these elements.  But, 
if the basic mechanism can’t achieve the goal, these elements aren’t going to improve 
the situation.

* https://www.ieee802.org/1/files/public/docs2021/60802-Steindl-ClockTarget-and-ClockSource-1121-v05.pdf

https://www.ieee802.org/1/files/public/docs2021/60802-Steindl-ClockTarget-and-ClockSource-1121-v05.pdf
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Clarification: Scope of Monte Carlo Analysis

• The RStudio script combines ppm errors via addition...which 
introduces an error in the error...but the error in the error is 
swamped by other errors.
• Errors in ppm are ratios and, to be accurate, should be multiplied.

• But...if the ppm errors are small (one or two digits)...the inaccuracy from 
addition isn’t significant.
• 20 ppm + 30 ppm = 50 ppm

• 20 ppm x 30ppm = 50.0006 ppm

• The trade-off is worth it for reduced runtime.
• Multiplication is more expensive, computationally, than addition...especially 

when using double precision floating point numbers.
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Planned Improvement

• Analysis in this and previous presentations modelled DTE at the point 
the Sync message arrived at the End Station (hop 100).

• There is additional error as the GM and Local Clock drift with respect 
to each other prior to arrival of the next Sync message.
• Modelled as follows (when hop = hops, i.e. for the final hop only)...

• Note: first time syncInterval has been used in this approach to error analysis

• This error will be added to future analyses (again: but not this one)

• Not expected to be significant relative to overall DTE

𝐷𝑇𝐸𝑒𝑛𝑑𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟 =
𝑠𝑦𝑛𝑐𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 × 𝑅𝑅𝑒𝑟𝑟𝑜𝑟(ℎ𝑜𝑝)

1000
ns
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Algorithms – Clock Drift
Potential algorithm Clock Drift Compensation

36
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Compensating for Clock Drift

• Very hard to measure clock drift of an individual device...
...but we don’t care about the clock drift of an individual device

• We care about Neighbor Rate Ratio and Rate Ratio...and we are constantly measuring both

• We can use theses measurements to track clock drift between two devices and create a 
correction factor

• The simplest algorithm would be to assume that clock drift is linear over the period of time we 
are interested in, i.e. one pDelay Interval

• Actually, up to...

𝑝𝐷𝑒𝑙𝑎𝑦𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 +
𝑝𝐷𝑒𝑙𝑎𝑦𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 × 𝑁 + 2𝑀 − 1

2

Maximum delay between attempt 
to measure NRR and effective 

measurement point

Maximum delay between attempt 
to measure NRR and using NRR as 

part of Sync messaging
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B

A

1s

localClkB localClkB

localClkA localClkA

pDelayResp pDelayResp’

NRRAB
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B

A

1s
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B

A
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t3(p-1)

t4(p-1)

t3(p)

t4(p)

t3(p) – t3(p-1)

t4(p) – t4(p-1)
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localClkB
125MHz + 11.2ppm

localClkB
125MHz + 10ppm

localClkA
125MHz – 11.2ppm

localClkA
125MHz - 10ppm

749,997,350

1,750,002,650

1,000,000,000

2,000,000,000

1.2

0

ppmDriftB

0

-1.2

ppmDriftA

Effective Measurement 
Point

Effective Measurement 
Point

-0.6ppm/s

+0.6ppm/s

t3(p-1) – t3(p-1)

t4(p) – t4(p-1)

t3'

t4'

t3''

t4''

Effective Measurement 
Point

Effective Measurement 
Point

t3(p-1) – t3(p-2)

t4(p-1) – t4(p-2)

t3

t4

874,998,713

1,875,001,288

1s 1s

-20.6ppm-21.8ppm
mNRRmNRR Combined Drift Rate +1.2ppm/s

𝑫𝒓𝒊𝒇𝒕 𝑹𝒂𝒕𝒆

𝑻𝒊𝒎𝒆 𝑺𝒊𝒏𝒄𝒆𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕

-20ppm
NRR

×
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t4-pDelayGM1

mNRR1GM = +10.6 ppm
mRR1 = +10.6 ppm

t3-pDelayGM1

timeSync

3

0.5s

GM

timeSync

t1-syncGM1

t2-sync23

timeSync

t1-sync34

125MHz 0 ppm
Drift = 0 ppm/s

125MHz +5 ppm
Drift = 0 ppm/s

RR1

+10 ppm

RRerror1 = +0.6 ppm

ppmDrift21 Effective Measurement 
Point

pDelayResp

pDelayResp

pDelayRsp

t4-pDelay23

mNRR32 = +15 ppm
mRR3 = +4.7 ppm

0.25s

RR3

+5 ppm

RRerror3 = -0.3 ppm

Attempt to measure 
NRR (mNNR)

timeSync

1

2

t2-syncGM1

t1-sync12

t2-sync12

t1-sync23

t3-pDelay12

t3-pDelay23

125MHz +10 ppm
Drift = -0.6 ppm/s

125MHz -10 ppm
Drift = 0 ppm/s

RRerror2 = -0.3 ppm

pDelayResp

t4-pDelay12

mNRR21 = -20.9 ppm
mRR2 = -10.3 ppm

RR2

-10 ppm

Combined Drift Rate

1s
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Clock Drift Compensation – Possible 
Algorithm – 1
• Assume clock drifts linearly over the period of interest.

• Calculate Drift Rate

• Most of the time this will simplify to...

• ...but if taking a median of past NRR calculations it will get more 
complicated
• If M>N the effective measurement time of (p) could be earlier than (p-1)!

𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒 =
𝑚𝑁𝑅𝑅 𝑝 − 𝑚𝑁𝑅𝑅(𝑝 − 1)

𝑇𝑖𝑚𝑒𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑝 − 𝑇𝑖𝑚𝑒𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑀𝑒𝑎𝑠𝑢𝑟𝑒(𝑝 − 1)

𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒 =
𝑚𝑁𝑅𝑅 𝑝 − 𝑚𝑁𝑅𝑅(𝑝 − 1)

𝑁 × 𝑝𝐷𝑒𝑙𝑎𝑦𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙
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Clock Drift Compensation – Possible 
Algorithm – 2
• Apply the correction factor. Example for NRR applied during Sync 

messaging (ppm)...

• If a median of past NRR calculations is taken...

𝑁𝑅𝑅𝑠𝑦𝑛𝑐 = 𝑚𝑁𝑅𝑅 + 𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒 𝑑𝑒𝑙𝑎𝑦𝑚𝑁𝑅𝑅_𝑠𝑦𝑛𝑐 +
𝑝𝐷𝑒𝑙𝑎𝑦𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 × 𝑁

2

𝑁𝑅𝑅𝑠𝑦𝑛𝑐 = 𝑚𝑁𝑅𝑅 + 𝑁𝑅𝑅𝑑𝑟𝑖𝑓𝑡𝑅𝑎𝑡𝑒 𝑑𝑒𝑙𝑎𝑦𝑚𝑁𝑅𝑅_𝑠𝑦𝑛𝑐 +
𝑝𝐷𝑒𝑙𝑎𝑦𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 × 𝑁 + 2 𝑀𝑢𝑠𝑒𝑑 𝑝 − 1 − 𝑀𝑢𝑠𝑒𝑑 𝑝 − 1

2


