intel

60802 Time Synchronisation — Monte Carlo Analysis:
100-hop Model, “Linear” Clock Driftl, NRR Accumulation?
Overview & Detalls, Including Equations —v2

David McCall (Intel)

1 — The model includes various options for modelling Clock Drift distribution, but
assumes Clock Drift can be considered linear over the short periods of interest.

2 — The model implements calculating Rate Ratio via an accumulation of
Neighbor Rate Ratio (NRR) vs. calculating it directly via Sync messages.

IEEE 802.1 TSN /60802 Monte Carlo Simulation — 100-hop — Linear Clock Drift — Overview & Detail — September 2022 David McCall

References — 1

1.

G. Garner, “Initial Simulation Results for Time Error Accumulation in an IEC/IEEE 60802
Network”, IEC/IEEE 60802 contribution, 16 March 2020

G. Garner, “Further Simulation Results for Time Error Performance for Transport over
an IEC/IEEE 60802 Network”, IEC/IEEE 60802 contribution, 13 July 2020

G. Garner, “New Simulation Results for Time Error Performance for Transport over an
|IEC/IEEE 60802 Network Based on Updated Assumptions”, IEC/IEEE 60802
contribution, 5 October 2020

G. Garner, “Further Simulation Results for Dynamic Time Error Performance for
Transport over an |IEC/IEEE 60802 Network Based on Updated Assumptions”, IEC/IEEE
60802 contribution, 14 December 2020

G. Garner, “New Simulation Results for dTE for an IEC/IEEE 60802, Based on New
Frequency Stability Model”, IEC/IEEE 60802 contribution, 16 June 2021

G. Garner, “New Simulation Results for dTE for an IEC/IEEE 60802 Network, with
Variable Inter-message Intervals”, IEC/IEEE 60802 contribution, Rev 2, 01 July 2021

References — 2

7.

10.

D. McCall, K. Stanton, G Schlechter, G Woods, T Weingartner, “The 60802
challenge of meeting time accuracy goals across long daisy-chains using
802.1AS™-2020, An analysis and a proposed path forward”, IEC/IEEE
60802 contribution, September 2021

D. McCall, K. Stanton, “60802 Dynamic Time Sync Error — Error Model &

Monte Carlo Method Analysis”, IEC/IEEE 60802 contribution, November
2021

D. McCall, K Stanton, “60802 Dynamic Time Sync Error — NRR Medians,
Algorithms & Analysis Validation”, IEC/IEEE 60802 contribution, January
2022

D. McCall, K. Stanton, “60802 Dynamic Time Sync Error — Error Model &
Monte Carlo Method Analysis”, IEC/IEEE 60802 contribution, March 2022

Background

* |[EC/IEEE 60802 has a stated requirement of 1us time accuracy over 64 hops (i.e.
65 devices) with a goal of 100 hops (i.e. 101 devices).

* Prior to the development of the Monte Carlo Analysis, simulations of different
configurations and parameters were carried out via Time Series Simulation. See
[1], [2], [3], [4] and [5]. Typically...

* 1 replication simulates 3,100 seconds.
* To generate statistically significant results, 300 replications are run.
* This takes 1 to 2 weeks, depending on various parameters.

 The Monte Carlo Analysis presented in these slides was developed over several
months in order to provide faster iterations, albeit at the cost of some accuracy.
* To generate the equivalent number of Sync message simulations as 300 replications of the
Time Series Simulation (7,440,000) takes 10-16 minutes
* The analysis also enables deep insights into the source of errors and how they accumulate.

Content

* History & Current Status

* Overview & Assumptions

* Timestamp Errors

* Clock Drift Errors

* Error Contributions & Accumulation

* Main Equations

* Tracking Error Contributions & Graphical Representations
* Algorithmic Improvements & Corrections

History & Current Status

* The development history of the Monte Carlo Analysis is mostly covered in a
series of contributions to IEC/IEEE 60802. See [6], [7], [8] and [9].

* Over the course of development, modelling of additional errors was added
to the original model as well as options to model Clock Drift distributions
based on different temperature time-series temperature ramps.

* This contribution describes the current operation of the model and the
Excel workbook used for post-processing some results.

* |t is still intended to open-source the R Studio script which implements the
model, although the date is TBD.

Overview & Assumptions

Overview — 1

* Implemented in R Studio (IDE for R)

* Models individual “runs”: single Sync message passing down a chain of nodes with all significant, associated
errors.

* Script generates results for Hop 1 for all runs (typically 10,000 to several million)...then Hop 2...then Hop 3...

e Calculations are the same for every hop, with two exceptions:
* Hop 1: first node is GM

* Last Hop: no Residence Time; instead, there is End Station Error

* Script tracks error contributions from different sources

* Full results (values for every error and contributing factor) for each node are calculated, but are not saved, which reduces
memory footprint. Maximum absolute, mean and standard deviation values for every contributing error at every node
across all runs are saved, e.g. the maximum absolute error across all runs of the contribution to Residence Time Error due to

the timestamp component of Neighbor Rate Ratio via Rate Ratio at node 15 is saved.

* Full results for final node are saved.

Overview — 2

* The script only models errors and values necessary to derive errors. Example: it does not model

the Correction Field, only errors associated with it; it only models the period between pDelayResp
messages to calculate the error due to Clock Drift during that interval.

* The script only models errors associated with the messaging protocol. It does not model Clock
Source, Clock Target, Clock Master or Clock Slave. Neither does it model any filtering of the

messaging information, i.e. it’s results are most directly comparable to the “unfiltered” results
from the Time Series simulation.

* The script can be thought of, for each run, as focussed on modelling the error in the Correction Field when it
arrives at the last node (usually in a Follow-up message after a Sync message) which is, at the time, the best
estimate the node has of GM time. It then adds additional errors due to Rate Ratio and Clock Drift as the last
node tries to track GM time prior to the arrival of the next Sync message (and Follow-up message).

RStudio Script Summary

Configuration

(Output? Hops? Runs? More charts? Seed value?)

Inputs

(Errors, Parameters, Correction Factors)

Calculations per Hop

Graphs

(Tracking Analytics per hop; final distributions)

Output

(Key parameters output to file for offline analysis)

Generate Base Errors
(Timestamp Errors & Clock Drifts)

Calculate mNRR Error

(& components)

Calculate RR Error

(& components)

Calculate Mean Link Delay Error
& Residence Time / End Station Error

(& components)

Calculate Tracking Analytics

(Max Absolute, Mean, Sigma for each component per hop)

Assumptions — 1

* The model assumes it is sufficient to account for only the major error
contributors and only in enough detail to draw useful conclusions.

* It doesn’t model errors that would be swamped other larger errors in all realistic
scenarios. Example: the effect of Rate Ratio error on Mean Link Delay Error, see [6].

* |t doesn’t model the detail of ambient temperature on a physical system. Instead
models a simple temperature ramp on a crystal oscillator (XO); the latter modelled as
a cubic equation approximating the relationship between temperature and
frequency offset. (This is the same as the Time Series Simulations.)

* Note: a simpler model which generates clock drift based on a uniform probability between
two values, i.e. no temperature modelling, is also available.

Assumptions — 2

* The model assumes that XO Clock Drift can be treated as linear within a single run, i.e. that for
each clock a drift rate can be generated once and used for all calculations for that run.

* This is a major simplification; one that places limits on the model’s ability to model algorithms that attempt to
correct for errors due to Clock Drift.

 The model assumes that some errors are uncorrelated due to the amount of time passing
between their generation.

* Example: timestamp granularity for pDelayReq and pDelayResp messages. See slide ZZZ.

* The model assumes that small (<20) ppm values can be added instead of carrying out a more
accurate multiplication calculation
* Example: the model assumes that 3ppm + 6ppm = 9ppm. The accurate value is 9.00018ppm.

* This simplification saves processing time. It is assumes that the resulting inaccuracy is small compared with
other errors that are being modelled.

* 802.1AS makes the same assumption when calculating RR via accumulated NRR values

Assumptions — 3

* The model assumes that modelling errors generated between
processing of Sync messages at only the last node in the chain is
sufficient.

* At all other nodes, only errors related to processing Sync messages are
modelled.

* The assumption is that although, for an individual run, the worst case DTE
may not occur at the final node, the overall probability distribution of DTE will
be worst at the final node.

* The model does not account for errors due to path delay asymmetry
on the assumption that they are a) small relative to other errors and
b) will tend to balance out over a long chain of hops.

Assumptions — 4

* The model assumes that there is no effective difference, as far as the
errors ultimately being modelled is concerned, between 1-step and 2-
step Sync messaging. For simplicity it therefore does not model
behaviour related to Follow-up messaging.

* The errors ultimately being modelled are at the End Station at the end of the
chain, just prior to the arrival of the next Sync message.

Parameters

Parameter Default Unit Notes

Limited to 1s x 2". Typical values are:

pDelaylnterval 1,000 MS | 1.000ms; 500ms; 250ms; 125ms; 62.5ms; 31.25ms
Limited to 1s x 2". Typical values are:

syncinterval 125 MS | 1.000ms; 500ms; 250ms; 125ms; 62.5ms; 31.25ms

pDelayTurnaround 10 ms

residenceTime 10 ms

All equations can be traced back to constants, Parameters, Timestamp Errors, errors due to Clock Drift, or
Correction Parameters

Error Contributors &
Error Accumulation

Time Sync — Elements & Relationships

GM Origin Timestamp GM Origin Timestamp

Sync In Correction Field Correction Field _Sync Out.
tin (Incoming) (Outgoing) tiout

_ _ _ _ Rate Ratio
Ongoing End Station Correction Field (Outgoing)

Estimate of GM Time Adjustment

Correction Field + (Local Clock x RR) (meanLinkDelay + residenceTime) x RR

Rate Ratio

(Incoming)

Rate Ratio
(Local)

Neighbor Rate Ratio

Mean Link Delay

meanLinkDelay

t; - t, = pDelayTurnaround

[|

pDelayReq pDelayResp

7 Y

meanlLinkDelay = (

(t4 - t1) - (tfvglgz)>

2

ns

Measured Neighbor Rate Ratio (mMNRR)

t; - t3'
< >

pDelayResp’ pDelayResp

NAE ty
mNRR = <—t4 _ t4,> ppm

Residence Time

Sync

Sync

/v [
t / Xn /

tiout - ton = residenceTime

residenceTime = (t,,; — tyi)

ns

Rate Ratio & Correction Field

* Rate Ratio (RR) is calculated via accumulated Neighbor Rate Ratios. At each node the local Rate
Ratio (at Node n) is used to estimate the GM clock and passed on to the next node via an
outgoing Sync message. It is calculated as follows...

(n) = RR(n—1) + ppm

* The outgoing correction field is calculated as follows...

correctionField(n) = correctionField(n — 1) + RR(meanLinkDelay + residenceTime) ns

* The sum of meanLinkDelay (between the current and upstream node) and residenceTime (at the current
node) gives the interval between reception of the incoming Sync message and transmission of the outgoing
Sync message

* Multiplication by RR translates this from Local Clock to Working Clock

Sources of Errors

* There are two types of error sources in the model...

* Timestamp Errors; inaccuracies in measuring when messages are received or
transmitted. There are two types.
* Timestamp Granularity Error (TSGE) related to the measurement resolution.

* Dynamic Timestamp Error (DTSE) related to accuracies inherent in the implementation,
excluding TSGE.

* Errors due to Clock Drift. If all frequency offsets were stable, there would be no
errors due to Clock Drift...but they are not, and the events being modelled take place
over a period of time. Thus errors occur due to the difference between...

* Time when a measurement is effectively taken

* Time when a measurement is used
The model therefore includes Clock Drift and various relevant intervals, all modelled
according to probability distributions.

Timestamp Error Parameters

* The model includes separate parameters for timestamp errors on
transmitted (TX) and received messages (RX)

Error Default Unit
TSGE +4 ns
TSGE x +4 ns
DTSE +4 ns
DTSE gy +4 ns

Timestamp Error Equations

Both TSGE and DTSE are modelled via uniform distributions between a maximum and a minimum.
Timestamp Granularity always results in a timestamp after the event occured...

= ~U(0,+TSG)

...(where TSG is Timestamp Granularity) however, because the consequent errors are always in
interval measurements which involve two events and two timestamps, modelling it as an error
between *TSG/2 is equivalent. In the R Studio script the parameter TGSE represents TSG/2...

TSG TSG
=~U<_ 2 "2 >=~U(_ ') =~U(- +)

DTSE magnitude and probability distribution is implementation dependant, but implementations

that deliver a uniform probability between a minimum and maximum, equally spread either side
of zero, are common and a worst case.

* Triangular or normal distributions will have fewer extreme errors.

=~U(— ,) =~U(— , T)

Clock Drift Error Modelling

Clock Drift Error is modelled as a combination of Clock Drift and the passage of time
during relevant intervals.

Clock Drift is modelled as a single value for each clock for each run. The script allows a
choice of two classes of model for Clock Drift

* Uniform distribution between a maximum and minimum (ppm/s)
» Distribution based on a temperature cycle and a theoretical crystal oscillator (XO).

For the second class, the value is generated in three steps...

e Atime (t): uniform random distribution between 0 and a maximum representing the period of a
defined temperature cycle.

e Atemperature cycle that ramps temperature up and down between a minimum and maximum in
a defined manner. This is used to translate the time (t) into a temperature value for a theoretical
crystal oscillator (tempXO).

* Afrequency offset curve for a theoretical XO, based on measured data from a selection of
representative XOs, modelled as a cubic equation. The first derivative of the cubic equation allows
translation from the from time (t) and XO temperature (tempXO) to Clock Drift.

There are also probability models for each of the relevant intervals

Clock Drift Error —
Uniform Probability Clock Drift

* Model includes separate parameters for minimum and maximum
clock drift for both GM and non-GM clocks.

* It also includes parameters for the fraction of GM and non-GM clocks
that will experience drift.

* This is done to emulate the behaviour of a temperature cycle that holds
steady — usually at the maximum or minimum value — for a period of time.
See section on Clock Drift probabilities based on a temperature cycle for more
details.

* The R Studio Script generates a value for Clock Drift and as well as a Yes/No
value of 1 or 0 and multiplies them together.

Clock Drift Error —
Uniform Probability Clock Drift Parameters

Error Default Unit
clockDrift,,,. .. +1.5 | ppm/s
clockDrift gy, -1.5 | ppm/s
clockDriftFractiong, | 0.8
clockDrift,,,, +1.5 ppm/s
clockDrift,,, -1.5 | ppm/s
clockDriftFraction 0.8

Clock Drift Error —
Uniform Probability Clock Drift Equations

Error yockprifigm = ~U(clockDrift,,;,cy, clockDrift,, ,.cu) X ~B(1,clockDriftFractiong)

Error ockprise = ~U(clockDrift,,;,, clockDrift,,,) X ~B(1, clockDriftFraction)

min’

* The fuction in R to generate random values according to a binomial probability distribution has three input
parameters
* n: number of values to generate; not shows above; equal to the number of runs
* N; number of “trials” e.g. flips of the coin; in this case “1”
* p; probability of success; in this case the probability of a clock instance experiencing drift, represented by a “1” (vs. “0”)

Clock Drift Error —
Clock Drift from Temp Cycle Modelling

* The temperature variation model has four sections over a complete cycle
* Ramp from minimum to maximum temperature (Section A)
* Hold at maximum temperature (Section B)
 Ramp from maximum to minimum temperature (Section C)
* Hold at minimum temperature (Section D)

* The R Studio script support three types of temperature ramp model
* Linear
 Sinusoidal
* Half-sinusoidal

* The ramp is defined by temPerature rate of change for linear ramp; duration of
ramp for sinusoidal and half-sinusoidal. The hold period at maximum and
minimum temperature is the same.

 The model for the XO’s frequency offset is the same for all types of temperature
ramp

Clock Drift Error — Offset Frequency Curve

Cubic Value freqOffset = a.tempX03 + b.tempX0? + c.tempX0 +d
Constants
60
a 0.00012 ~om
— Cubic p_oly_nomia;l fit _
b -001005 40 - —— Cubic fit with 10% margin
c -0.0305 E
&
d 5.73845 3 201
[
20 -
-40 T T T T T T T T
-60 -40 -20 0 20 40 60 80 100 120

Temperature (deg C)

From Geoff Garner, “Phase and Frequency Offset, and Frequency Drift Rate Time History Plots Based on New Frequency Stability Data”, contribution to IEC/IEEE 60802, March 2021
The calculation of freqOffset is not used in the model but is included for completeness and in case the reader wishes to recreate the example graphs.

Clock Drift Error —
Temperature Cycle Parameters

* The model includes a parameter to scale the Clock Drift up or down to emulate less or more
accurate XOs. The default of 1 means no scaling; 0.5 results in half the amount; 2 in twice the
amount. (The model has a separate parameter for GM node scaling and one for non-GM node
scaling, but the equations on subsequent pages refer only to a single parameter of “scale”, since
all other elements of the equations are the same.)

Error Default Unit Notes

tempMax 85 °C

tempMin -20 °C

tempRampRate +1 °C/s Only used for linear temperature ramp
tempRampPeriod 125 S Only used for sinusoidal and half-sinusoidal temperature ramps
tempHold 30 S

GMscale 1 -

nonGMscale 1 -

Clock Drift Error —
Linear Temp Ramp Equations —1

tempMax — tempMin
Default tempCyclePeriod = 2 X P P + tempHold
Value tempRampRate

tempMax 85 °C _ tempMax — tempMin
sectionA =

tempMin -20 °C tempRampRate

tempRampRate +1 °C/s sectionB = sectionA + tempHold

tempHold 30 S sectionC = sectionB + sectionA

Clock Drift Error —
Linear Temp Ramp Equations — 2

t = ~U(0,tempCyclePeriod)

if (0 <t < sectionA)

tempX0 = tempMin + tempRampRate.t
tempRoC = tempRampRate
clockDrift = (3.a.tempX0? + 2.b.tempX0 + ¢) X tempRampRate X scale

if (sectionB < t < sectionC)

tempX0 = tempMax — tempRampRate. (t — sectionB)
tempRoC = —tempRampRate

clockDrift = —(3.a.tempX0? + 2.b.tempX0 + ¢) X tempRampRate X scale

The calculation of tempRoC is not used in the model but is included for completeness and in case the reader wishes to generate the example graphs.

if (sectionA <t < sectionB)
tempX0 = tempMax
tempRoC =0
clockDrift =0

if (sectionC <t)
tempX0 = tempMin
tempRoC =0
clockDrift =0

Clock Drift Example —
Linear Temperature Ramp: 1°C/s 125s

X0 Temp (°C)

Temp Rate of Change (°C/s)

Clock Offset (ppm)

Clock Drift (ppm/s)

Inputs Temp Rate of Change Clock Drift

Temp Max 85°C MAX 1.001°C/s MAX 1.35|ppm/s
Temp Min -40|°C MIN -1.00/°C/s MIN -1.35|ppm/s
Temp Ramp Rate 1/°C/s

Temp Hold 30/s

Clock Drift Error —
Sinusoidal Temp Ramp Equations —1

_ Default m tempCyclePeriod = 2 X (tempRampPeriod + tempHold)
HElIE tempMax — tempMin

tempMax 85 °C tempDeviation = >

tempMin -20 °C tempMidpoint = tempMax — tempDeviation
tempRampPeriod 125 S T

tempHold 30 S “= tempRampPeriod

sectionA = tempRampPeriod
sectionB = sectionA + tempHold

sectionC = sectionB + sectiond

Clock Drift Error —
Sinusoidal Temp Ramp Equations — 2

t = ~U(0,tempCyclePeriod)

if (0 <t < sectionA) if (sectionA <t < sectionB)
tempX0 = tempMidpoint — tempDeviation.cos(w.t) tempX0 = tempMax
tempRoC = w.tempDeviation.sin(w.t) tempRoC =0
clockDrift = (3.a.tempX0? + 2.b.tempXO0 + ¢) x (w.tempDeviation.sin(w.t)).scale clockDrift =0

if (sectionB <t < sectionC) if (sectionC <t)
tempX0 = tempMidpoint + tempDeviation. cos(w. (t— sectionB)) tempX0 = tempMin
tempRoC = —w. tempDeviation. sin(w. (t — sectionB)) tempRoC = 0
clockDrift = —(3.a.tempX0? + 2.b.tempX0 + c) X (a). tempDeviation.sin(w. (t — sectionB))) scale clockDrift =0

The calculation of tempRoC is not used in the model but is included for completeness and in case the reader wishes to generate the example graphs.

Clock Drift Example —
Sinusoidal Temperature Ramp: 125s

X0 Temp (°C) Clock Offset (ppm)

Temp Rate of Change (°C/s) Clock Drift (ppm/s)

Inputs Temp Rate of Change Clock Drift

Temp Max 85°C MAX 1.57°C/s MAX 0.76|ppm/s
Temp Min -40[°C MIN -1.57|°C/s MIN -0.76|ppm/s
Temp Ramp Period 125|s

Temp Hold 30is

Clock Drift Error —
Half-sinusoidal Temp Ramp Equations — 1

_ Typical m tempCyclePeriod = 2 X (tempRampPeriod + tempHold)
value tempRange = tempMax — tempMin

tempMax 85 °C -

tempMin -20 °C ' = tempRampPeriod x 2
tempRampPeriod 125 S

tempHold 30 S sectionA = tempRampPeriod

sectionB = sectionA + tempHold

sectionC = sectionB + sectiond

Clock Drift Error —

Half-sinusoidal Temp Ramp Equations — 2

t = ~U(0,tempCyclePeriod)

if (0 <t < sectionA)
tempX0 = tempMin + tempRange.sin(z.t)
tempRoC = 1.tempRange. cos(t.t)

clockDrift = (3.a.tempX0? + 2.b. tempXO0 + c) x (r.tempRange. cos(z.t)).scale

if (sectionB < t < sectionC)

tempX0 = tempMax — tempRange.sin(z. (t — sectionB))
tempRoC = —1.tempRange. cos(t. (t — sectionB))

clockDrift = —(3.a.tempX0? + 2.b.tempXO0 + ¢) X (T. tempRange. cos(t. (t — sectionB))) .scale

The calculation of tempRoC is not used in the model but is included for completeness and in case the reader wishes to generate the example graphs.

if (sectionA <t < sectionB)
tempX0 = tempMax
tempRoC =0
clockDrift =0

if (sectionC <t)
tempX0 = tempMin
tempRoC =0
clockDrift =0

Clock Drift Example —
Half-Sinusoidal Temperature Ramp: 125s

X0 Temp (°C) Clock Offset (ppm)

Temp Rate of Change (°C/s) Clock Drift (ppm/s)

Inputs Temp Rate of Change Clock Drift

Temp Max 85°C MAX 1.57°C/s MAX 2.12|ppm/s
Temp Min -40[°C MIN -1.57|°C/s MIN -1.35|ppm/s
Temp Ramp Period 125|s

Temp Hold 30is

Clock Drift Error — Relevant Intervals

4 Hops

Clock Drift Error — Relevant Intervals
4 Hops — 1t Hop

Residence Time measured

RR(1) = mNRR(1)

> correctionField(1) = RR(1). (meanLinkDelay + residenceTime)
O =
j/ ; Hin
mNRR measured € >€ mNRR and Residence Time used
t,-t,) pDelay Interval pDelayResp
2 - 2 . to Sync i
<€ Total Drift Interval)

I

* Error due to drift during NRR measurement (Node 1 to GM)
* Interval is half t,-t,” which is nominally half the pDelay Interval, but actual pDelay Interval varies.
* Error due to drift between measuring and using NRR (Node 1 to GM)
* Interval is between zero and the maximum pDelay Interval, which is larger than the nominal pDelay Interval.
* Assumes that pDelayResp arriving between t2in and t1lout will trigger new mNRR calculation; not
unreasonable as information is included in Follow-up, not Syng, if 2-step Sync is used.

l pDeIayResp l Sync * Error due to drift during Residence Time measurement (Node 1 to GM)
* meanlinkDelay is measured separately, is much smaller, and can be averaged to remove errors, so is ignored.

Clock Drift Error — Relevant Intervals

24 Hop

RR(1) = mNRR(1)
t l /\/‘iorrectionField(l) = RR(1). (meanLinkDelay + residenceTime)

\‘ :— meanlLinkDelay + Residence Time

Residence Time measured

RR(2) = RR(1) + mNRR(2)

correctionField(2) = correctionField(1) + RR(2). (meanLinkDelay + residenceTime)

tZin

t,

5 >
mNRR measured—/gi

i t,t, pDelayInterval i pDelayResp i

>

MNRR and Residence Time used

2

2 to Sync

.

l pDelayResp

l Sync

* Same errors in mNRR as 1%t Hop.
* Error due to drift during NRR measurement. (Node 2 to Node 1)
* Error due to drift between measuring and using NRR. (Node 2 to Node 1)
* Error due to drift during Residence Time measurement. (Node 2 to GM)
* Additional error from drift between RR(1) calculation, at Node 1, and use in calculating RR(2). (Node 1 to GM)
* In the model the contribution from meanLinkDelay is ignored; only Residence Time is used.

Clock Drift Error — Relevant Intervals
4 Hops — 3™ Hop

RR(2) = RR(1) + mNRR(2)
correctionField(2) = correctionField(1) + RR(2). (meanLinkDelay + residenceTime)

] :— meanLinkDelay + Residence Time

/— Residence Time measured

RR(3) = RR(2) + mNRR(3)
out correctionField(3) = correctionField(2) + RR(3). (meanLinkDelay + residence]

MNRR and Residence Time used

! : 2in

i t,t, pDelay Interval pDelayResp to Sync
2 2

|:lTime—> l

» Same errors in NRR and RR as 2" Hop.
* Error due to drift during NRR measurement. (Node 3 to Node 2)
* Error due to drift between measuring and using NRR. (Node 3 to Node 2)
l pDeIayResp l Sync * Error due to drift during Residence Time measurement. (Node 3 to GM)
* Error due to drift between RR(2) calculation, at Node 2, and use in calculating RR(3). (Node 2 to GM)

Clock Drift Error — Relevant Intervals
4 Hops — 4" Hop

RR(3) = RR(2) + mNRR(3)
l correctionField(3) = correctionField(2) + RR(3). (meanLinkDelay + residence]

meanLinkDeIayM

RR(4) = RR(3) + mNRR(4)
correctionField(4) = correctionField(3) + RR(4). (meanLinkDelay)

— O f
Time = t ; : f
mNRR measured—j\; D>i€)

tZin

: mNRR used
i t,-t, pDelay Interval pDelayResp to Sync
2 2

* Similar errors in NRR and RR as 2" & 3 Hop.
* Error due to drift during NRR measurement. (Node 4 to Node 3)
* Error due to drift between measuring and using NRR. (Node 4 to Node 3)
* Error due to drift between RR(3) calculation, at Node 3, and use starting at receipt of Sync. (Node 3 to GM)
* Modeled as zero due to the absence of Residence Time at the final node.

l pDeIayResp l Sync * No Residence Time, so no error due to drift during measurement.
* There is additional error during the period until the next Sync message...

Clock Drift Error — Relevant Intervals
4 Hops — 4" Hop

I:Time—>

tz;in

t;
ty(x+1) — t,;,(x) = Sync Interval "

* Error due to drift between receipt of one Sync message and the next. (Node 4 to GM).

l pDeIayResp l Sync * Interval is nominally the Sync Interval, but there is some variation.
* Additional pDelayResp messages, updating mNRR (Node 4 to Node 3) are not useful to update RR.

Clock Drift Error — Relevant Intervals
Summary — 1

* There are six relevant intervals...

1. Effective NRR Measurement - Actual NRR Measurement
* The relevant drift is between the current node’s clock and the upstream node’s clock.

* NRR is measured via information from a pair of pDelayResp messages. As Clock Drift is assumed to be linear, the effective
measurement point is half-way between the two. The actual measurement point is at receipt of the second message.

* The interval between the two pDelayResp messages is nominally the pDelay Interval. IEEE 1588 defines the permitted
minimum and maximum interval as 90% and 130% of the nominal value. [See IEEE 1588-2019 9.5.13.2]

* The interval is modelled as a uniform distribution between these two.

T paelayzpdeiay = ~U(pdelayInterval.0.9, pdelayInterval. 1.3)

* Note: see section on Algorithmic Improvements & Corrections for how this calculation changes if an older pDelayResp
message is used as the first of the pair.

Clock Drift Error — Relevant Intervals
Summary — 2

2. Actual NRR Measurement - NRR Use
* The relevant drift is between the current node’s clock and the upstream node’s clock.

* For all hops other than the last, NRR is used when RR for the outgoing Sync message
is calculated. For the last hop, NRR is used when RR is calculated for the working
clock of the local device to use until the arrival of the next Sync message.

* In either case, the interval is modelled as a uniform distribution between zero and the
interval between receipt of pDelayResp messages, i.e. random depending on the
phase between Sync and pDelay messaging.

* The interval between receipt of pDelayResp messages is modelled in the same way as
for the previous error, i.e. between 90% and 130% of the nominal value. [See
802.1AS-20209.5.13.2]

Clock Drift Error — Relevant Intervals
Summary — 3

3.

RR Calc at upstream Node - RR Use at Current Node
* The relevant drift is between the upstream node’s clock and the GM’s clock.

* For all hops other than the last, the interval is the path delay between the
upstream node and the current node plus the residence time at the current
node. For the last node there is no residence time, so it’s only the path delay.

* The path delay is sufficiently small that it can ignored. [See assumption that it’s
OK to not model small errors that will be swamped by larger ones.]

* For all hops other than the last, the delay is modelled as equal to the
residenceTime parameter. For the last hop it is not modelled, i.e. per the
previous point, the error is assumed to be small enough to ignore.

Clock Drift Error — Relevant Intervals
Summary — 4

4. Start of Residence Time Measurement > End of Measurement
* The relevant drift is between the current node’s clock and the GM'’s clock.

* When calculating the Correction Field, the goal is to measure Residence Time
in terms of the GM clock. It is measured using the Local Clock with the interval
multiplied by the Rate Ratio to translate it into GM time. There are two
sources of error:

* Error in measuring the interval.
* Error in Rate Ratio.

Clock drift during this interval affects the former.
* It is modelled as equal to the residenceTime parameter.

Clock Drift Error — Relevant Intervals
Summary — 5

5. RR Calc at Receipt of Sync message - Receipt of next Sync Message
* The relevant drift is between the current node’s clock and the GM’s clock.
* Itis only modeled at for the last hop.

* Itis modelled as a gamma distribution with shape 270.5532 and rate 270.5532/syncinterval.
[See IEEE 1588-2019 9.5.9.2 and [7] slides 8-15.]

T

SyncToSync

270.5532
= ~r<270.5532,)

syncinterval

6. Drift during measurement of meanLinkDelay (not shown above; see Equations
section)
* The relevant drift is between the current node’s clock and the upstream node’s clock.
* Itis modeled as equal to the pDelayTurnaround parameter.

Equations

Errors Measuring NRR

IocaICIk(n-l)f localClk(n-1)

< t;' — t; = pDelayinterval >
S / X / &
[“n1f

pDelayResp pDelayResp’

/v /

localClk(n) f — / / «— localClk(n)

t,
< >
‘ t,' - t, = pDelayinterval

Timestamp

Drift

‘ Error Dynamic
Timestamp

Error (TSGE)

f Granularity
_ Clock Error (TSGE)
mNRRerror - mNRRmeasured - mNRRnominal p pm e

meanLinkDelay Errors

localClk(n- 1)

‘ t; - t, = pDelayTurnaround localClk(n-1)
: > S

5 7 ; 1

/ Xn-1 /

pDelayReq pDelayResp

[v [

IocaICIk(n) / Xn / — localClk(n)

‘ < t, - t, = pDelayTurnaround+ (2 x meanLinkDelay) >

Timestamp

Granularity
. . . f Error (TSGE)
meanlinkDelay,, ., = meanlLinkDelayycasurea — meanlLinkDelay, omina ns e Clock

‘ Error Dynamic
Timestamp

Error (TSGE)

Residence Time

Sync
/ / tlout
localClk(n) +—> Xn
f tZin
t,...-t,. = residenceTime
S nc lout 2in
v J < >

residenceTimeg,.,, = residenceTimeqqsyreq — residenceTime,omina NS

f Clock
Drift
‘ Error

localClk(n)

Timestamp
Granularity
Error (TSGE)

Dynamic
Timestamp
Error (TSGE)

End Station Error

Sync Sync

/v 1

localClk(n) tyin / / toin_next localClk(n) f

tZin_next -thin= S_,VHC]I]I'EI'VaI
< > ‘

endStation = endStation

error

, , f Clock
measured — €NAStationnomi, ns G Drift

‘ Error

Dynamic Time Sync Error Accumulation

Dynamic Time Error*
1 - _—
) 1

Mean Link Delay Error Residence Time Error End Station Error
|
t
Rate Ratio Error

All errors in this analysis are caused by either Clock Drift or Timestamp Errors

Timestamp Errors

Timestamp Granularity &

Dynamic Time Stamp Error . .

*DTE based on protocol messaging only. Total DTE at the application level will also depend on ClockMaster, ClockSlave, ClockSource, Clock Target, etc...

Equations — Timestamp Errors

Eight timestamp errors are generated for each node in each run...

errors are associated pDelay and pDelayResponse messages used to measure meanLinkDelay.
and errors are associated with the previous pDelayResponse message used —
along with the most recent one, to measure NRR.

and errors are associated with receiving and transmissing Sync messages.

All timestamp errors use the same equation. For example...

= +

Each timestamp error is uncorrelated to any other timestamp error.

See previous section for definition of and

Equations — Clock Drift

The model tracks the drift of three clocks at each node...
* clockDrift;,,— Clock Drift of the Grandmaster clock
* clockDrift,— Clock Drift of the current node’s clock
* clockDrift, ,— Clock Drift of the upstream node’s clock

See previous section for details on the equations to generate the clockDrift values

clockDrift;,, is generated once for each run. For the first hop, it is equivalent to
clockDrift, ,, i.e. for the hop, the “upstream node” is the GM

For all nodes after the first, clockDrift, is copied to clockDrift, ,before a new value for
clockDrift,is generated.

* Note: the actual implementation uses two vectors and swaps their function between n and n-1 to
reduce processing time by eliminating the need to copy data.

Equations — mMNRR,, .,
Timestamp Error—1

mNRRerror = mNRRerrorTS + mNRRerrorCD

(Neighbor Rate Ratio)

mNRRerrorTS = mNRRmeasuredTSerror - mNRRnominal

_ <((t3 +) - (t +)
((t4 +)—(ta+

ppm
))> —1 | x 106 — <<Z — Z”) - 1) x 106
((

ppm
ty—ty +

t. — to
>—1>x106—(<3 3)—1>><106
- ty —t
_<<t4—ti+

’
4

- t3 — t3
>—1+< , >>x106—<<3—?>—1)x106
- ty —th + - t
The ratio X in ppm is (X — 1) x 106.
mNRR

4 — Uy
erro.

~rsand mNRR,.....pare not entirely independent, but the effect of the relationship on mVNVR

small compared to pDelayTurnaround, which they are for pDelayTurnaround of 1ms or more. See backup for algorithmic proof.

R

error

can be ignored provided the errors are

Equations — mNRR. ... — Timestamp Error

error

ts — t3 ~ t; — t3
NRR _ -1 X 10° — —1)x10° m
m errorTS <t4 _ t:} + — > + (t4 - t:t + -) <(t4 - té) > pp

ty —ty). - — (t: — t2). —

_ =) () — (t3 — t5).() o6
(ts — tg). ((t4 —ty) + -)

~ Tpdelay2pdelay X 106.(-) - TpdelayZpdelay X 106-(-) 106
TpdelayZpdelay X 106- (TpdelayZpdelay X 106 + -)

(-)—(-)
t4—pderror - til-pderror
pdelay2pdelay 106

(-)~ (-)

T

Q

pdelay2pdelay

The error magnitudes are small relative to the £;—#;"and #,—¢,” factors, which are both nominally 7, (which is in ms, whereas the

timestamps are in nanoseconds, hence 7, x10°).

delayZpdelay
delayZpdelay

” divided by 108 on the lower line is small enough relative to 7, to ignore.

t4pa’error - t4pa’error delayZpdelay

MNRR ... Timestamp Error Example

localClk,,_, localClk,,_,
1GHz + 10ppm 1GHz + 10ppm
t; - t;' = pDelayinterval
< >
t;' ts
968,749,687 1,000,000,000

i 31.25ms /

pDelayResp’ pDelayResp

/ 31.25ms /

localClk, t4< ;4 localClk,
1GHz- 10 1GHz-10

z‘ Ep pm t,—t,' = pDelaylnterval z‘ !p pm
1,968,750,312 2,000,000,000

(t, - t,') 31,250,313

' = = % =
mNRR @1, =~ To0cas > 0-002000% = 20.00 ppm

MNRR ... Timestamp Error Example

localClk,,_, localClk,,_,
1GHz + 10ppm 1GHz + 10ppm
t; - t;' = pDelayinterval

< >

t;' t
968,749,685 P > i3ns / / s 1,000,000,000

i 31.25ms /
pDelayResp’ pDelayResp

/ /
] 31.25ms/ — 4_;

localClk, < localClk,
1GHz- 10 1GHz-10

z‘ Ep pm t,—t,' = pDelaylnterval z‘ lp pm
1,968,750,325 2,000,000,000

(t;—t,") 31,250,315

' = = % =
MNRR @ t, t-t) 31.249.675 - 0.0020512% 20.512 ppm

MNRR_ ... Timestamp Error Example

error

e With no Timestamp Error...

(t,—t,') 31,250,313
mMNRR@t, = = - 0.002000% = 20.00 ppm
(t,—t,') 31,249,688
* With = -8 ns, =+5ns, =+6 ns, =+3 ns, mNRR,,,,..p=0.512 ppm
(t3 - t3')
mMNRR@t, = - N -
(t4 - t4')
* From mNRR,,, .rcequation...
U -)= (-) (6-3)—(-8-5) 16
mNRRerrorrs = T - 31.25 =3125 0-°12ppm

pdelay2pdelay

Equations — mNRR,..,
Errors due to Clock Drift

mNRRerror = mNRRerrorTS + mNRRerrorCD p p m

mNRRerrorCD = mNRRmeasuredCDerror - mNRRnominal ppm
t; — (t5 + t; t; — t3
— < 3 (? :fCDerror)) 1 x 106 . (3 ? 1| x 106
ty — (t3 + t4CDerror) ty — 3
t3 — tg — t3 t3 — t3
— < 3 ? ?CDerror) —1]x 106 _ < 3 ?) 1] x 106
ty — t3 — lacperror ty — t3
ts — t; —t3 ts — t;
— < ,3 ’3 > -1+ (’3CDe1’”r0r > x 106 _ < 3 3’) 1] x 106
ty =ty — tacperror ty =ty — tycperror ly — Ty

The ratio X in ppm is (X — 1) x 106.

Equations — mNRR,..,
Errors due to Clock Drift

i3 — té _téCDerror t3 — té
MNRRerrorcp = ()—1+< x 106 — —1]x10°
error (ty — t:} - t:lCDerror ty — téll - t:}CDerror ty — té’L ppm

— (t4 - tz’})(_téCDerror) - (t3 - t:,’,)(_tAILCDerror) x 106 ppm
(t4 - t4)- ((t4— - t4) - t4CDerror)

6 ! 6 l
TpdelayZpdelay X 10°. (_t3CDerror) — TpdelayZpdelay x 10 (_t4CDerror)

~
~

X 106 ppm

6 6 _ ¢/
TpdelayZpdelay X 10°. (TpdelayZpdelay x 10 t4CDerror)

ty — t;
_ 4CDerror 3CDerror p p m
- !

T. — Z_46‘De*r1'ar
pdelay2pdelay 106

ty — ts
. _“4CDerror 3CDerror

TpdelayZpdelay

The error magnitudes are small relative to the z,—#;"and z,—#,” factors, which are both nominally 7, (which is in ms, whereas the

timestamps are in nanoseconds, hence T, x10°).

delayZpdelay
delayZpdelay

tycperror divided by 10° on the lower line is small enough relative to 7, to ignore.

delayZpdelay

Equations — mNRR,..,
Errors due to Clock Drift

ts — t;
_ “4CDerror 3CDerror

MNRReyrrorcp = p p m

TpdelayZpdelay

! ! 4
t4-CDerror t4measuredCDerr0r - t4nominal nS

2 103
100

=\ls— TpdelayZpdelay x 10° <1 +

) T
clockOf fset, (ty) — clockDrift, « pdelayzpdelay
“ 100

clockOf fset,(t,)
TpdelayZpdelay X 106 (1 + - ns

_ clockDrift, 9 Thaelayzpdelay

2 3
= _TpdelayZpdelay x 10° 106 10 ns

» 2
clockDrift,. Tygeiay2pdetay

- 2% 103 ns

- 2
, _ clockDrift,_,. TpdelayZpdelay
t3CDeTTOT - 2 X 103 ns

Equations — mNRR,..,
Errors due to Clock Drift

ts — t;
_ “4CDerror 3CDerror

MNRReyrrorcp = p p m

TpdelayZpdelay

. 2 ; 2
, _ clockDrift,. TpdelayZpdelay ' _ clockDrift, . TpdelayZpdelay
tacperror = 2 % 103 t3cperror = 2x103 ns

. 2 = 2
clockDrift, 1. Tpaeiay2paeiay — CLOCKDTifty. Trge10y2paetay

2 X 103 X TpdelayZpdelay ppm

MNRRerrorcp =

Tpaelayzpdelay (clockDrift, — clockDrift, 1)

- 2 x 103 ppm

MNRR_ . Clock Drift Example

localClk,,_, localClk,,_,
125MHz + 10ppm 125MHz + 10ppm
t;—t'
D - > O
937,449,375 , 1,000,000,000
t; t3

pDelayResp’ pDelayResp —Sooms—
A 4 A 4
t, t,
localClk, localClk,
125MHz - 10ppm 125MHz - 10ppm
t-t
O - » 2
1,937,500,625 2,000,000,000

(t, - t,') 62,500,675

' = = % =
mNRR @ t, € —t) 62,499,375 - 0.0020000% 20.000 ppm

0.3

Effective Measurement
Point

ppmDriftB

localClk,,_, localClk,,_,
125MHz + 10.3ppm 0 125MHz + 10ppm

t, -t
-0.6 33
‘ " < >

937,499,366 , 1,000,000,000
t; t;
pDelayResp’ pDelayResp —Sooms—
A 4 A 4
ta t localClk,

localClk, f
125MHz - 10ppm 125MHz - 10ppm

2,000,000,000

1,937,500,625

(t,—t,") 62,500,634
(t,—t,") 62,499,375

- 0.0020150% = 20.150 ppm

MNRR@ t,' =

0.6

Effective Measurement
Point

ppmDriftB
localClk,,_, localClk,,_,
125MHz + 10.3ppm 0 125MHz + 10ppm
-t
‘ -0.6ppm/s 33
< >
937,499,366 , 1,000,000,000
t; t;
pDelayResp’ pDelayResp —Sooms—
A 4 A 4
localClk,, f +0.6ppm/s * t localClk,

125MHz - 10.15ppm

t,-t,
: :

1,937,500,630 0 Effective Measurement
Point

ppmDriftA

-0.6

(t, - t,') 62,500,634
(t,—t,') 62,499,370

mMNRR@ t,' = - 0.0020225%

125MHz - 10ppm

2,000,000,000

20.225 ppm

MNRR . Clock Drift Example

error

e With no Clock Drift...

(t,—t,") 62,500,675

mNRR@t,' = = - 0.0020000% = 20.000 ppm
(t,—t,") 62,499,375

* With clockDrift,= 0.3 ppm/s and clockDrift, ,=-0.6 ppm/s, mNRR,,, ,.p=0.225ppm
(t,—t,) 62,499,370

mNRR@ t,) = = - -0.0020225% = 20.225 ppm

* From mNRR,,, ,.pequation...

error

NRR _ T pdelayzpdeiay(ClOckDTift,, — clockDrift, 1) _ 500(0.3 + 0.6) _ 500(0.9) _ 450
errorCD 2 % 103 2 x 103 2x103 2x10

z = 0.225 ppm

Note on Algorithmic Equivalence

* Both the above derivations utilise the following equivalence...

a {4 X (a 1)_ bx — ay
“\b+y b+y) “\b ~ b +y)

* The detailed steps are as follows...

a X a _>zcab—bz—by+bx_cab+ay—b2—by
‘ b+y_1+b+y _C(E_l) b(b+y) b(b +y)
a —b-y X a —b ab — b%* — by + bx — ab — ay + b* + by
=C + + —cl—4+— —
b+y b+y b+y b b b(b +)
a—b—y+x a—>b bx — ay
=C —C —
b+y b b(b +)
ab—b%>—by+bx alb+y)—bb+y)

B ICEE)) ¢ b +y)

Equations—RR, _—1

error

* RR is calculated via an accumulation of NRRs. At each node RR
the sum of...

* RR_,. .. at the upstream node

error

* mNRR

error

* Error due to Clock Drift between mNRR calculation and transmission of Sync
* Or, for the last node only, reception of Sync

* Error due to Clock Drift between RR calculation at upstream node and
transmission of Sync

error

Equations—RR,._—2

error

RRerrror (n) = RRerror(n - 1) + mNRRerror + RRerrorCD_NRRZsync + RRerrorCD_RRZsync

Tmngrr2sync(clockDrift, — clockDrift, 1)
RRerrrorCD_NRRZsync = 103

Tmnrr2syne = ~U(pdelayInterval.0.9, pdelayInterval.1.3) X ~U(0,1)

residenceTime(clockDrift,_{ — clockDriftgy)
RRerrrorCD_RRZsync = 103

At the final hop there is no Residence Time, so RR,,,cp grzsync 1S Z€TO.

ppm

ppm

ppm

ppm

Equations — MLD

(Mean Link Delay) — 1

error
MLD = MLDgrror TSdirect + MLD¢yyor NRR
MLDgryorr Sdirect = MLDm dTs — MLDyomina l
NRR NRR
(%)~ (t +) - ((ts +) (2 +) (1-208) (-t - (65— 02 (1 -)
- 2 - 2
mNRR
(-) (-)(1-"5)
B 2
(-)= (-)

ns

ns

Equations — MLD,,,,. (Mean Link Delay) — 2

MLDerrror = MLDerrorTSdirect + MLDerrorNRR

MLDerrorNRR = MLDmeasuredNRRerror - MLDnominal

mNRR + mNRR mNRR
(s = t2) = (&5 — 1) (1 - mer) (1) - (65 - 1) (1- Tt

10° 100

2 B 2

100

(ty — (t4 — pDelayTurnaround x 10° — 2. meanlLinkDelay) — <t3 - <t3 — pDelayTurnaround x 10° (1 _ MNRR + mNRReyror

)

2

(ty — (t4 — pDelayTurnaround x 10° — 2. meanlLinkDelay) — <t3 — <t3 — pDelayTurnaround x 10° (1 — %)))

2

pDelayTurnaround . mNRR g0y

2

ns

ns

Equations —RT,.__(Residence Time) — 1

error

RTerrror = RTerrorTSdirect + RTerrorRR + RTerrorCDdirect

RTerrorrsdirect =
RTerrorRR = RTmeasuredRRerror - RTnominal

(tlsoutNominal - tZSinMeasured) - (tlsoutNominal - tZSinNominal)

=— <tlsoutNominal —residenceTime x 10° (1 +

freqOffset 14 RR 4 RRoprror
10© 10°

reqOffset RR
+ (tlsoutNominal — residenceTime x 10° (1 + %) (1 + W))

reqOffset
= — (—residenceTime. RRorror (1 + M>>

100

residenceTime.RRorror-freqOf fset
106

=residenceTime.RRopror +

~ residenceTime X RRyror

ns

ns

ns

Equations —RT,.__(Residence Time) — 2

error

RTerrror = RTerrorTSdirect + RTerrorRR + RTerrorCDdirect ns
RTerrorTSdirect = tlsouterror - tZSinerror RTerrorRR = residenceTime X RRerror ns
RTerrorCDdirect = RTmeasuredCDerror - RTnominal ns

RR RR
= (tlsoutNominal - tZSinMeasured) (1 + W) - (tlsoutNominal - tZSinNominal) (1 + W)

ClOCkOffsetn(tlout) + 2 103

100

clockDrift, % residenceTime
= —\ tisoutNominar — TesidenceTime x 10° | 1 + (

RR)
1+—

clockOffset, (tioue) + clockDriftey TESldenceTlme> <

2 103
100

+\ tisoutNominal — residenceTime X 10° <1 + i

clockDriftgy y residenceTime)

RR
1+15c)

2 103
100

2 103
100

clockDrift, x residenceTime)

RR
(1 + —> + (—residenceTime x 10°

=—\- id Ti x 106
(residenceTime T0°

B residenceTime?(clockDrift, — clockDriftgy) N residenceTime?. RR(clockDrift, — clockDriftgy)
B 2 x 103 2 x 109

residenceTime?(clockDrift, — clockDriftgy)
- 2% 103

RR

(1+ 550

100

)

Equations —ES... . (End Station) —1

error

E-Serror = ESerrorRR + ESerrorCDdirect

ESerrorRR = ESactualRRerror - ESnominal

frerffset) (1 N RR + RRopror

freqOffset RR
) (1)

6
) - Tsynchync x 10 (1 + 106 1_06

= Tsynchync x 10° <1 +

freqOffset RR freqOffset\ (RR
= Tsynchync X 106 <1 + T 1+ W + Tsynchync X 106 1+ 106 le(;gor - Tsynchync X 106

Tsynchync- RRerror- frerffset
= Tsynchync- RRopror + 106

~ Tsync2sync- RRerror

T

270.5532
= ~I'(270.5532,

SyncToSync syncinterval

The error associated with freqOffset is not modelled as it is orders of magnitude smaller than the main error.

ns

ns

ns

Equations — ES... .. (End Station) — 2

error

ESerrror = ESerrorRR + ESerrorCDdirect nS
ESerrorCDdirect = ESactualCDerror - ESnominal ns
ClOCkDriftn Tsynchync ClOCkDriftGM Tsynchync
7 ool freqOffset + 5 X =103 . RR . ool freqOffset + > X =303 . RR
— Isync2sync X + 106 + W — lsync2sync X + 106 + W

clockDrift, — clockDriftgy Tsyncasync RR
= Tsynchync 2 X 103 + 1_06

Tsynczsyncz(clockDriftn — clockDriftgy) . RR
B 2 x 103 106

Tsynczsyncz(clockDriftn — clockDriftgy) N RR. Tsynczsyncz(clockDriftn — clockDriftgy)
2x103 2 x10°

Tsynczsyncz(clockDriftn — clockDriftgy)
- 2 x 103

The error associated with RR is not modelled as it is orders of magnitude smaller than the main error.

Equations — DTE

* At all hops other than the last...

DTE(n) = DTE(n — 1) + MLD4yror + RTorror

* At the last hop...

DTE(n) = DTE(n — 1) + MLDoyror + ESerror

ns

ns

Error Contribution Tracking &
Graphical Representations

Error Contribution Tracking

* As well as calculating the primary errors required to calculate DTE, the
model also tracks the components of each error and how they
accumulate.

* This makes is relatively simple to answer questions such as “What is
the probability distribution of DTE due to the Timestamp Error related
component of Neighbor Rate Ratio?”

* It also enables a graphical representation of how DTE breaks down
into it’s contributing components.

* This section describes the equations used to track the components
and the graphical representations.

Error Contribution Tracking — Implementation

* For each component or a primary error, the contribution of the component at each hop is calculated. The vector (across all runs) for this is given the
suffix _X.

* For each primary error and component, the vector representing the running total of all errors of this type (across all runs) up to and including the
current hop, is calculated and given the suffix _SUM

* From the SUM vectors, the following statistical values are calculated and stored in a single vector per primary error or component (one value for each
hop representing the statistic across all runs)...
* Maximum Absolute Value (_ MAXabs)
* Mean (_LMEAN)

* Sigma (_SIGMA), assuming a gaussian distribution (which is not always valid)
* The Xand _SUM vectors are not preserved, other than at the last hop.

* There are 3 exceptions...

* mNRR does not accumulate, so the SUM values are not calculated, although MAXabs, MEAN and SIGMA values are (based on the _X error vectors at each hop).

* RR

error

* Atthe last node, Residence Time Error (RT,,,,,) is effectively replaced by End Station Error (ES,,,,,) Which is only calculated at the final hop. Combined RTES,,,., error
vectors track SUM, MAXabs, MEAN and SIGMA (representing the sum of RT errors up to the last-but-one hop, then the sum of RT errors plus the ES errors at the last hop).
The SUM vectors for RT at the last-but-one hop are preserved, and the vectors for ES errors at the last hop are also available as well as the combined RTES error vectors
(to enable statistical analysis).

error

is an accumulation of mNRR, so _Xvalues do not exist. (They do, however, exist for some Clock Drift related error components that don’t accumulate.)

Error & Error Components — Naming

Examples using
Residence Time Residence Time errors due to...

Element RT Residence Time (no errors); other elements are mNRR, RR, MLD & ES.
Error in that Element RT,,, ., All underlying components

RT,1rorrs All Timestamp components

R7;,—,—0,—CD All Clock Drift components

Component of that error

due to another Element RT, . orrsdivect Direct Timestamp components
RT,. codirect Direct Clock Drift components
1
Rate Ratio Error
RErrorRR
RnrerR_TS All Timestamp components of Rate Ratio Error

Next level down... : , :
R];rerR_CDdI,red Direct Clock Drift component of Rate Ratio Error

RT NRR error component of Rate Ratio Error
errorRR_NRR

Component of a component

Next level down...

RT,, 0rRR NRR TS Timestamp component of NRR via Rate Ratio Error

C t of t of
omponent of a component of a RT

Clock Drift component of NRR via Rate Ratio Error
compone nt errorRR_NRR_CD

Equations - mMNRR

error

! !
(tSpderror - t3pderror) - (t4pderror - t4pderror)
T

mNRR errorTS X =
pdelay2pdelay

Primary T pdelayzpaeiay(clockDrift, — clockDrift,_,)

Errors MNRRerrorcp x = 2% 103

mN RRerror_X = mN RRerrorTS_X + mN RRerrorCD_X

ppm

ppm
ppm

Error MNRR, o
Components so there are no additional error components or calculations.

breaks down into a Timestamp Error and an error due to Clock Drift,

Equations - RR

error

Tmnrr2sync(clockDrift, — clockDrift,_)

RRerrrorCD_NRRZSync_X = 103 p p m
Primary _ residenceTime(clockDrift, 1 — clockDriftgy)

Errors RRerrrorCD_RRZSync_X - 103 p p m
RRerrror_SUM (n) = RRerror_SUM (n - 1) + mN RRerror_X + RRerrorCD_NRRtoSync_X + RRerrorCD_RRtoSync_X ppm
RRerrrorNRR_CD_SUM (n) = RRerrorNRR_CD_SUM (TL - 1) + mNRRerrorCD_X (Tl) p p m
RRerrrorcp_NRR2sync_sum (n) = RRerrrorcp_NRR2sync_sum n—-1)+ RRerrrorcp_NRR2Sync x (n) ppm

Error RRerrrorCD_RRZsync_SUM (n) = RRerrrorCD_RRZsync_SUM (n - 1) + RRerrrorCD_RRZSync_X (n) ppm

Components
RRerrrorNRR SUM (n) = RRrrorNRR sUM (n—-1)+ MNRRerror x (n) p p m
RRerrrorrs sum (n) = RRerrorrs sum (n—1) +mN RRerrorrs x (n) p p m
RRerrrorcp_sum n) = RRerrrorNRR_CD_SUM n) + RRerrrorCD_NRRZsync_SUM (n) + RRerrrorCD_RRZsync_SUM (n) p p m

At the last hop, there is no Residence Time, so RR,.orcp rrzsync sum= 0-

Equations — MLD

Primary
Errors

Error
Components

error

— Per Hop

(t4pderr0r - tlpderror) - (t3pderror - thderror) ns

MLDerrrorrsairect x = 2

pDelayTurnaround . mNRR
MLDeyrrornrr x = — 2 e ns
MLDerrror_X = MLDerrorTSdirect + MLDerrorNRR ns
pDelayTurnaround . mNRRorror 5 x ns

MLDeyrrornrR TS X = — 2
pDelayTurnaround . mNRR DX

MLDerrrorcp x = — 2 e ns

M LDerrrorTS_X =M LDerrorTSdirect +M LDerrorNRR_TS_X

ns

Equations — MLD,_ . — Accumulation

Primary
Errors

Error
Components

error

M LDerrrorTSdirect_SUM (Tl) =M LDerrrorTSdirect_SUM (Tl - 1) +M LDerrrorTSdirect_X n S
MLDerrrorNRR_SUM (n) = MLDerrrorNRR_SUM (n - 1) + MLDerrrorNRR_X n S
MLDerrror_SUM (n) = MLDerrror_SUM (Tl - 1) + MLDerrror_X n S
MLDerrrornrr_1s_sum(M) = MLDgrrrorngr s sum (M — 1) + MLDgrrrorngr 15 x ns
M LDerrrorCD_SUM (n) =M LDerrrorCD_SUM (n - 1) +M LDerrrorCD_X n s

M LDerrrorTS_SUM (n) =M LDerrrorTS_SUM (n - 1) +M LDerrrorTS_X

ns

Equations — RT. ... — Per Hop (Except Last

Primary
Errors

Error
Components

error

RTerrorrsairect x = Lisouterror = Lasinerror ns
residenceTime?(clockDrift, — clockDriftgy)
RTerrrorcpdirect x = 2 % 103 ns
RTerrrorrr x = residenceTime X RRgpror sum ns
RTerrror_X = RTerrorTSdirect_X + RTerrorRR_X + RTerrorCDdirect_X ns
RTerrrorrr.NRRcD_x = TesidenceTime X RRerrornrr_cD_SUM ns
RTerrrorRR_CD_NRRZsync_X = residenceTime X RRerrorCD_NRRZsync_SUM ns
RTerrrorRR_CD_RRZsync_X = residenceTime X RRerrorCD_RRZsync_SUM ns
RTerrrorrr.rsx = residenceTime X RRerrorrs_sum ns
RTerrrorRR_NRR_X = RTerrrorRR_NRR_CD_X + RTerrrorRR_TS_X ns
RTerrrorRR_CD_X = RTerrrorRR_NRR_CD_X + RTerrrorRR_CD_NRRZsync_X + RTerrrorRR_CD_RRZsync_X ns
RTerrrorCD_X = RTerrrorCDdirect_X + RTerrrorRR_CD_X ns

RTerrrorTS_X = RTerrorTSdirect_X + RTerrrorRR_TS_X

ns

Equations — RT, ... —Accumulation

Primary
Errors

Error
Components

error

RTerrorrsdirect sum (n) = RTerrorrsdirect sum (n-1)+ RTerrorrsdirect x
RTerrrorCDdirect_SUM (n) = RTerrrorCDdirect_SUM (n - 1) + RTerrrorCDdirect_X
RTerrrorRR_SUM (Tl) = RTerrrorRR_SUM (n - 1) + RTerrrorRR_X

RTerrror_SUM (n) = RTerrror_SUM (n - 1) + RTerrror_X

ns
ns
ns
ns

RTerrrorrr.NrR_cD_sum (M) = RTerrrorrr nrRR_cD_sum (M — 1) + RTerrrorrr_NRR_CD_X
RTerrrorRR_CD_NRRZSync_SUM (n) = RTerrrorRR_CD_NRRZsync_SUM (n - 1) + RTerrrorRR_CD_NRRZsynC_X
RTerrrorRR_CD_RRZsync_SUM (n) = RTerrrorRR_CD_RRZsync_SUM (n - 1) + RTerrrorRR_CD_RRZsync_X
RTerrrorrr_rs_sum(M) = RTerrrorrr ts_sum (M — 1) + RTerrrorrr s_x

RTerrrorRR_NRR_SUM (n) = RTerrrorNRR_SUM (Tl - 1) + RTerrrorNRR_X

RTerrrorRR_CD_SUM (n) = RTerrrorRR_CD_SUM (TL - 1) + RTerrrorRR_CD_X

RTerrrorCD_SUM (n) = RTerrrorCD_SUM (n - 1) + RTerrrorCD_X

RTerrrorTS_SUM (n) = RTerrrorTS_SUM (n - 1) + RTerrrorTS_X

ns
ns
ns
ns
ns
ns
ns

ns

Equations — ES

Primary
Errors

Error
Components

— Last Hop Only

error

ESerrorRR_X = Tsynchync- RRerror_SUM

Tsynczsyncz(clockDrif t, — clockDriftgy)
ESerrorcpairect x = 2 % 103

ESerror_X = ESerrorRR + ESerrorCDdirect

ns

ns

ns

ESerrorRR_NRR_CD_X = Tsynchync- RRerrorNRR_CD_SUM

ESerrorRR_CD_NRRZsync_X = Tsynchync- RRerrorCD_NRRZsync_SUM

ESerrorRR_CD_RRZsync_X = Tsynchync- RRerrorCD_RRZsync_SUM

ESerrorRR_CD_X = ESerrorRR_NRR_CD_X + ESerrorRR_CD_NRRZsync_X + ESerrorRR_CD_RRZsync_X
ESerrorRR_TS_X = Tsynchync- RRerrorTS_SUM

ESerrorRR_NRR_X = ESerrorRR_TS_X + ESerrorRR_NRR_CD_X

ESerrorCD_X = ESerrorRR_CD_X + ESerrorCDdirect_X

ns
ns
ns
ns
ns
ns
ns

Equations — DTE — Per Hop & Accumulation

Primary
Errors

Error
Components

At all hops other than last: DTEx = MLDgyrror x + RTerrror x ns
At last hop: DTEy = MLDeyyror_x + ESerrror x ns
At all hops: DTEgyy(n) = DTEgyy(n — 1) + DTEy ns
At all hops other than last: DTEcp x = MLDgrrrorcp x + RTerrroren x ns

DTErs x = MLDerrrorrs x + Rlerrrorts_x ns
At last hop: DTEcp x = MLDerrrorcp_x + ESerrrorcp_x ns

DTErs x = MLDerrrorrs x + ESerrrorrs x ns
At all hops: DTEcp sum(n) = DTEcp sym(n — 1) + DTE¢p x ns

DTErs symy(n) = DTErs syy(n — 1) + DTE7s x

ns

Graphical Representation of
Error Accumulation

Dynamic Time Error
Mean Link Delay Error Residence Time Error End Station Error

mNRR Error Rate Ratio Error Rate Ratio Error

Timestamp Timestamp mNRR Error Clock Drift mNRR Error Clock Drift

SHror Timestamp | Clock Drift Sior Clock Drift Clock Drift UG Clock Drift Clock Drift UL

Error Error - NRR Timestamp Clock Drift Error - NRR Error - RR ety Clock Drift Error - NRR Error - RR

Error Error - NRR Error Error - NRR

Graphical Representation of
Error Accumulation

i 70 dTE

225 3192 701

651

3165 15 681

L el
1107 1996 1454
1172
m m

The 70 dTE value is split repeatedly according to the ratio of 70 values of underlying errors. 7o probabilities do not combine via addition so, at each
level, the sum of the underlying 7o values is greater than the value that is being split. Larger errors will often swamp smaller errors, so small errors

are, in general, over-represented by this approach. It does, however, provide a useful visualisation of how underlying errors combine to make up
the 70 dTE value.

Graphical Representation of
Error Accumulation

Input Errors
Drift Type (Linear Temp Ramp) 2
GM Clock Drift Max +1.35 ppm/s
GM Clock Drift Min -1.35 ppm/s
Fraction of GM nodes w/ Drift 80%
non-GM Clock Drift Max +1.35 ppm/s
non-GM Clock Drift Min -1.35 ppm/s
Fraction of non-GM Nodes w/ Drift 80%
Temp Max +85. °C
Temp Min -40. °C
Temp Ramp Rate +1 °C/s
Temp Ramp Period 125 s
Temp Hold Period 30 s
GM Scaling Factor 100%
non-GM Scaling Factor 100%
Timestamp Granularity TX +4 ns
Timestamp Granularity RX +4 ns
Dynamic Time Stamp Error TX +4 ns
Dynamic Time Stamp Error RX +4 ns
Input Parameters
pDelay Interval 250 ms
Sync Interval 125 ms
pDelay Turnaround Time 10 ms
residenceTime 10 ms
Input Correction Factors
Mean Link Delay Averaging 0%
NRR Drift Rate Correction 0%
RR Drift Rate Error Correction 0%
pDelayResp -> Sync Type (Uniform) 1
pDelayResp - Sync Max 100%
pDelayResp - Sync Min 0%
pDelayResp -> Sync Target 10 ms
mNRR Smoothing N 1
mNRR Smoothing M 1
Configuration
Hops 100
Runs 1,000,000

pDelayinterval Sensitivity Analysis

10,999
Input Errors
Drift Type (Linear Temp Ramp) 2
GM Clock Drift Max +1.35 ppm/s
GM Clock Drift Min -1.35 ppm/s
Fraction of GM nodes w/ Drift 80% 9,430
non-GM Clock Drift Max +1.35 ppm/s
non-GM Clock Drift Min -1.35 ppm/s
Fraction of non-GM Nodes w/ Drift 80%
Temp Max +85. °C
Temp Min -40. °C
Temp Ramp Rate +1 °C/s
Temp Ramp Period 125 s 7 o d T E (n S)
Temp Hold Period 30 s
GM Scaling Factor 100%
non-GM Scaling Factor 100%
Timestamp Granularity TX +4 ns 6'043
Timestamp Granularity RX +4 ns
Dynamic Time Stamp Error TX +4 ns
Dynamic Time Stamp Error RX +4 ns 51059
Input Parameters
pDelay Interval VAR ms
Sync Interval 125 ms
pDelay Turnaround Time 10 ms 3'82 1
residenceTime 10 ms 3;445 .
Input Correction Factors .
Mean Link Delay Averaging 0%
NRR Drift Rate Correction 0%
RR Drift Rate Error Correction 0%
pDelayResp - Sync Type (Uniform) 1
pDelayResp - Sync Max 100%
pDelayResp - Sync Min 0%
pDelayResp - Sync Target 10 ms
mNRR Smoothing N 1
mNRR Smoothing M 1 . .
Configuration pDeIayIntervaI
Hops 100 ms
Hop: o s 62.5 125 250 500 1,000 (ms)

Algorithmic Improvements
& Corrections

Aligning pDelayResp with Sync

* Clock drift between measuring NRR (mMNRR) and using mNRR during
Sync messaging (to calculate RR and then multiply meanLinkDelay +
residenceTime by RR) introduces an error:

TmnrR2sync(clockDrift, — clockDrift, _4)

RRrrror CD_NRR2Sync = 03 Tmnrr2syne = ~U(pdelayInterval.0.9, pdelayinterval.1.3) X ~U(0,1)

* By aligning pDelayResp with Sync messaging RR.... .can be reduced.

error

Aligning pDelayResp with Sync - Parameters

* The Monte Carlo Model offers three approaches to modelling
alignment of pDelayResp with Sync, controlled via input parameter

pDelayRespSyncAlignMode

Default

Correction Parameter

Unit

Notes

1: Uniform distribution between a minimum and maximum
fraction of 7, e1y2p4e1,, Without any alignment
pDelayRespSyncAlignMode 1 - 2: Gamma distribution with target pDelayRespSyncAlignTarget
3: Gaussian distribution with mean pDelayRespSyncAlignTarget
and standards deviation pDelayRespSyncAlignSD
pDelayRespSyncAlignMax 1 - Maximum fraction for uniform distribution
pDelayRespSyncAlignMin 0 - Minimum fraction for uniform distribution
pDelayRespSyncAlignTarget 10 ms Target value for Gamma and Gaussian distribution
pDelayRespSyncAlignSD 3 ms Standard deviation for Gaussian Distribution

Aligning pDelayResp with Sync - Parameters

* In mode 1:

Tmnrr2sync = ~U(pdelayInterval.0.9, pdelayInterval.1.3) X ~U(pDelayRespSyncAlignMin, pDelayRespSyncAlignMax)

°* In mode 2:

270.5532
TmNRRZsynC = "’F 2705532, t

pDelayRespSyncAlignTarge

° In mode 3:

Trnrr2sync = ~N(pDelayRespSyncAlignTarget, pDelayRespSyncAlignSD)

MNNRsmoothingN

* The Monte Carlo approach models using timestamp values from older
pDelayResp messages via the mNRRsmoothing/N parameter
adjusting TpdelayZpdelay.

Correction Parameter Default Unit Notes

mNRRsmoothingN 1 - Must be a whole number, minimum value 1.

mNRRsmoothingN
T pdelay2pdelay = Z ~U(pdelayInterval.0.9,pdelayInterval.1.3)

x=1

MLD, NRR and RR Error Correction

* The model includes error correction factors for MLD, and Clock Drift
related errors in NRR and RR

* As the Monte Carlo approach is not a time series simulation, it does not
model any of these algorithmic corrections in detail. It instead assumes a
percentage effective factor, i.e. how much of the relevant error would be

removed.
* |tis assumed that MLD error correction is accomplished via averaging.
* |tis assumed that NRR and RR error correction is accomplished via measuring

Clock Drift in the past and — as Clock Drift is relatively consistent over time —
compensating for Clock Drift in the future.

MLD Error Correction

Correction Parameter Default Unit Notes

mLinkDelayErrCor 0 - Value between zero (no error correction) and 1 (error is eliminated)

(t4pderr0r - tlpderror) - (tSpderror - thderror) (1 _ mLinkDelayErrCor)
2

MLD¢rrrorrs direct X =

pDelayTurnaround . mNRR gy or

MLDerrrorNrRR X = — > (1 — mLinkDelayErrCor)

pDelayTurnaround . mNRRgyror 5 x
2

MLDerrrorNRR TS.X = — (1 — mLinkDelayErrCor)

pDelayTurnaround . mNRRgrror cp x
2

MLDerrrorcp x = — (1 — mLinkDelayErrCor)

NRR and RR Error Correction

Correction Parameter Default Unit Notes
NRRdriftRateErrorCor 0 - Value between zero (no error correction) and 1 (error is eliminated)
RRdriftRateErrorCor 0 - Value between zero (no error correction) and 1 (error is eliminated)

T clockDrift, — clockDrift,,_
MNRRgrrorcp x = pelayzpdelay(z x);0n3 ftn1) (1 — NRRdriftRateErrorCor)

T. clockDrift,, — clockDrift,,_
RReprrorcp NRRZSynC.X = mnRR2Syne 1(];3" ftn-1) (1 — NRRdriftRateErrorCor)

residenceTime(clockDrift,,_; — clockDrift
RRerrrorcp_RR2Sync x = (103f nl ftom) (1 — RRdriftRateErrorCor)

residenceTime?(clockDrift, — clockDriftgy)
2 %103

RTerrrorcpdirect x = (1 — RRdriftRateErrorCor)

T, %(clockDrift, — clockDrift
ESerrorcpdirect x = synczsyne > x);0n3 ftem) (1 — RRdriftRateErrorCor)

Thank you!

Equations — mMNRR — Independence of TS & CD errors

mNRRerror = mNRRmeasuredCDTSerror - mNRRnominal ppm
((t3 +) — (t3’ + + t3CDerror,)) t3 — t3,
—1 | x10° — | —1]x 106
((t4 +) - (t4, + + t4CDerror’)) 2
tg —t5 + — — ts3cp ' ty — ts'
>) -1 x106—((Z2—2)-1]x10°
ty — t4 + - — tacperror ty — 1ty
t; — t3' - - t3CDerror, 6 tz — t3' 6
= : -1+ /)] x 106 — | -1]x10
ty — Uy + - — tacperror ly — 1ty + - — tacperror ty — 1ty
(t4 - t4’)(- - tSCDerror,) - (t3 - t3,)- (- - t4CDerror,)
= x 10°
(t4 - t4,) ((t4 - t4,) + - - t4CDerror,)
- TpdelayZpdelay X 106(- - tBCDerror’) - TpdelayZpdelay X 106-(- - t4CDerror’) % 106
TpdelayZpdelay X 106(Tpdelay2pdelay X 106 + - - t4CDerror,)

The error magnitudes are small relative to the 2;—#;"and #,—¢,” factors, which are both nominally 7, (which is in ms, whereas the

timestamps are in nanoseconds, hence 7, x10°).

delayZpdelay
delayZpdelay

Equations — mMNRR — Independence of TS & CD errors

6 ! 6 4
mNRR - TpdelayZpdelay x 10 (- — tzcperror) - TpdelayZpdelay x 10 (- — tacperror) v 106 ppm
error = 6 6 [}
TpdelayZpdelay X 10 (TpdelayZpdelay x 10° + - — tacperror)
! !
_ (- — t3cperror) - (- — tacperror) 5 106
= A -
TpdelayZpdelay x 10° + - — tacperror
! !
_ (- — t3cperror) - (- — tacperror)
- [
- - t4CDerror
TpdelayZpdelay + 106
(-)= (-) ’ /
N + t4CDerror - t3CDerror
TpdelayZpdelay TpdelayZpdelay

= MNRR¢rrorrs + MNRRgrrorcD

= tycperror divided 10° by on the lower line is small enough relative to 7, to ignore.

4
L. 4pderror ™~ L. 4pderror delayZpdelay

Colours for Charts

Dynamic Time Error*

Mean Link Delay Error End Station Error

Timestamp Errors Rate Ratio Error

Timestamp Granularity &
Dynamic Time Stamp Error -

DOSEOO

Lines

7F7F7F

4472C4

C00000

DEO00O

ED7D31

70AD47

7030A0

9148C8

Areas

BFBFBF

BAC7E7

FFOB9B

F8CBAD

FFE699

C5E0B4

C8A3E3

Backgrounds

F2F2F2

DAE3F3

FFBDBD

FFC3C3

FBE5SD6

FFF2CC

E2FOD9

DFCOEF

E2CFF1

