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Why do we need to update LLDP?

• LLDP is widely deployed in many environments

• The number of TLVs sent in LLDPDUs continues to grow
• New standards continue to defined new objects

• A large number of Vendor Specific TLVs

• Alternative protocols are being proposed to get around the single 
PDU size limit

• Relying on Jumbo frames to support more TLVs is problematic in 
many environments

• Summary: We need to be able to exchange more TLVs.



Objectives for a new version

• Support the ability to send more than 1 PDUs worth of TLVs

• Support the ability to communicate with an LLDPv1 implementation 
(only the first PDUs worth of TLVs).

• Ensure the integrity of the full set of TLVs is received by partner
• NOTE: This can be useful in v1 implementations as well

• Consider if there are other optimizations to address
• E.g. Less frequent updates

• E.g. New reachability addresses (Nearest-station or Nearest-Router)
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NOTE: Think of the Remote and Local MIBs as a database that must fit into a single PDU
Replace all values of the Remote MIB with contents of LLDPDU when something changes



Proposal
• Define a new mandatory (for v2 implementations) TLV that appears just after the current mandatory set of 3 TLVs.

• ChassisID TLV + PortID TLV + TTL TLV + (new) ExtensionPDU TLV

• In the new TLV, define a vector that specifies:
• The number of extension PDUs to be sent

• An identity of each PDU (e.g. hash, checksum, version number or PDU number)

• Acknowledges the receipt of partner extension PDUs

• The first v2 PDU looks like a standard v1 PDU with the extra ExtensionPDU TLV (i.e. will be received by v1 implementations).

• The new extension PDUs need to be ignored by v1 LLDP in a non-intrusive way.  Options:
• Force an error in the v2 PDUs – will cause error counters to increment

• Use a new Ethertype for v2 extension PDUs - preferred

• The new PDUs need to have a mandatory format as well: 
• Includes at least the first two mandatory TLVs of a v1 PDU (ChassisID + PortID)

• Includes new TLV that identifies the extension PDU.

• Optimizations:
• There is no need to resend extension PDUs if nothing has changed.  

• Only periodically send the 1st PDU.  

• TTL in 1st PDU relates to all extension PDUs.

• NOTE: The maximum size of a TLV defines the maximum number of extension PDUs that can be included.  (depends on identity 
field)
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NOTE: Send primary LLDPDU and all extension PDU when something changes locally
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Example Extension TLV

TLV type = Y 
(7 bits)

TLV 
information 
string length 

(9 bits)

Number of Tx 
extension 

PDUs 
(4 bits)

Number of Rx 
extension 

PDUs
(4 bits)

n MD5 sums of Tx extension 
PDUs

(0 <= n < 16)

m MD5 sums of Rx extension 
PDUs

(0 <= m < 16)

TLV header TLV information string

1                            2                           3                                                             4     (n+m)*16 + 3

• TLV Type
• probably use the next reserved type (i.e. 9)

• Number of Tx and Rx extension PDUs
• If using MD5 Sum of 16 bytes, can only pack 30 sums into a TLV

• MD5 Sums
• Should cover the entire extension LLDPDU 



Example Extension PDU
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• LLDP Extension Ethertype
• New Ethertype allows LLDPv1 implementations to ignore these frames

• Chassis ID + Port ID are mandatory
• Note TTL from 1st PDU should apply and is not needed here

• Extension Description TLV
• Numbers the extension PDU in the sequence of all extension PDUs
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Example Extension Description TLV

TLV type = Y 
(7 bits)

TLV 
information 
string length 

(9 bits)

PDU
Number 
(4 bits)

Max PDU 
Number
(4 bits)

TLV header TLV information string

1                            2                           3                                                             4

• TLV Type
• Another new base TLV type (i.e. 10)

• PDU Number and Max PDU Number
• For example PDU 1 of 5



Questions / comments / TBDs

• How to define the extension PDU TLV?
• It needs to contain a vector of information for all extension PDUs 
• It needs to acknowledge received extension PDUs.
• The smaller the identity field, the more extension PDUs that can be supported (e.g. 

CRC-16 or MD5 Hash?)
• We could define two extension TLVs – one for Tx and one for Rx to support more 

extension PDUs
• Should the MD5 Hash cover all PDUs or individual?

• When to send the 1st PDU as an ACK of received extension PDUs?
• Need a final bit in the extension PDUs or a PDU number scheme?
• Define another End of LLDPDU TLV?

• Retransmission strategy?  SACK or just retransmit the entire sequence?


