
Consideration of LLDPv2
Paul Congdon

Paul Unbehagen

Why do we need to update LLDP?

• LLDP is widely deployed in many environments

• The number of TLVs sent in LLDPDUs continues to grow
• New standards continue to defined new objects

• A large number of Vendor Specific TLVs

• Alternative protocols are being proposed to get around the single
PDU size limit

• Relying on Jumbo frames to support more TLVs is problematic in
many environments

• Summary: We need to be able to exchange more TLVs.

Objectives for a new version

• Support the ability to send more than 1 PDUs worth of TLVs

• Support the ability to communicate with an LLDPv1 implementation
(only the first PDUs worth of TLVs).

• Ensure the integrity of the full set of TLVs is received by partner
• NOTE: This can be useful in v1 implementations as well

• Consider if there are other optimizations to address
• E.g. Less frequent updates

• E.g. New reachability addresses (Nearest-station or Nearest-Router)

ChassisID
PortID

TTL

Current LLDP operation reminder

ChassisID
PortID

TTL

ChassisID
PortID

TTL

Local MIBRemote MIB

ChassisID
PortID

TTL

ChassisID
PortID

TTL

ChassisID
PortID

TTL

Local MIB Remote MIB

SomethingChangedLocal()

SomethingChangedRemote()

LLDP Agent LLDP Agent

txTTR

txTTR

rxInfoTTL rxInfoTTL

rxProcessFrame()

rxProcessFrame()

rxProcessFrame()

NOTE: Think of the Remote and Local MIBs as a database that must fit into a single PDU
Replace all values of the Remote MIB with contents of LLDPDU when something changes

Proposal
• Define a new mandatory (for v2 implementations) TLV that appears just after the current mandatory set of 3 TLVs.

• ChassisID TLV + PortID TLV + TTL TLV + (new) ExtensionPDU TLV

• In the new TLV, define a vector that specifies:
• The number of extension PDUs to be sent

• An identity of each PDU (e.g. hash, checksum, version number or PDU number)

• Acknowledges the receipt of partner extension PDUs

• The first v2 PDU looks like a standard v1 PDU with the extra ExtensionPDU TLV (i.e. will be received by v1 implementations).

• The new extension PDUs need to be ignored by v1 LLDP in a non-intrusive way. Options:
• Force an error in the v2 PDUs – will cause error counters to increment

• Use a new Ethertype for v2 extension PDUs - preferred

• The new PDUs need to have a mandatory format as well:
• Includes at least the first two mandatory TLVs of a v1 PDU (ChassisID + PortID)

• Includes new TLV that identifies the extension PDU.

• Optimizations:
• There is no need to resend extension PDUs if nothing has changed.

• Only periodically send the 1st PDU.

• TTL in 1st PDU relates to all extension PDUs.

• NOTE: The maximum size of a TLV defines the maximum number of extension PDUs that can be included. (depends on identity
field)

ChassisID
PortID

TTL

Proposed LLDPv2 Operation

ChassisID
PortID

TTL
Extension

ChassisID
PortID

TTL
Extension

Local MIBRemote MIB

ChassisID
PortID

TTL

ChassisID
PortID

TTL
Extension

ChassisID
PortID

TTL
Extension

Local MIB Remote MIB

LLDP Agent LLDP Agent

txTTR

rxInfoTTL rxInfoTTL

rxProcessFrame()
rxProcessExtFrame()

rxProcessFrame()

NOTE: Send primary LLDPDU and all extension PDU when something changes locally
If extension data has NOT changed, no need to send anything other than primary LLDPDU

SomethingChangedLocal()
extension

extension

SomethingChangedRemote()

Example Extension TLV

TLV type = Y
(7 bits)

TLV
information
string length

(9 bits)

Number of Tx
extension

PDUs
(4 bits)

Number of Rx
extension

PDUs
(4 bits)

n MD5 sums of Tx extension
PDUs

(0 <= n < 16)

m MD5 sums of Rx extension
PDUs

(0 <= m < 16)

TLV header TLV information string

1 2 3 4 (n+m)*16 + 3

• TLV Type
• probably use the next reserved type (i.e. 9)

• Number of Tx and Rx extension PDUs
• If using MD5 Sum of 16 bytes, can only pack 30 sums into a TLV

• MD5 Sums
• Should cover the entire extension LLDPDU

Example Extension PDU

DA SA
LLDP

Extension
Ethertype

Chassis
ID TLV

Port ID
TLV

Extension
Desc TLV

Optional
TLV

…
Optional

TLV

End of
LLDPDU

TLV

Ethernet header LLDP Extension PDU

• LLDP Extension Ethertype
• New Ethertype allows LLDPv1 implementations to ignore these frames

• Chassis ID + Port ID are mandatory
• Note TTL from 1st PDU should apply and is not needed here

• Extension Description TLV
• Numbers the extension PDU in the sequence of all extension PDUs

M M M

Example Extension Description TLV

TLV type = Y
(7 bits)

TLV
information
string length

(9 bits)

PDU
Number
(4 bits)

Max PDU
Number
(4 bits)

TLV header TLV information string

1 2 3 4

• TLV Type
• Another new base TLV type (i.e. 10)

• PDU Number and Max PDU Number
• For example PDU 1 of 5

Questions / comments / TBDs

• How to define the extension PDU TLV?
• It needs to contain a vector of information for all extension PDUs
• It needs to acknowledge received extension PDUs.
• The smaller the identity field, the more extension PDUs that can be supported (e.g.

CRC-16 or MD5 Hash?)
• We could define two extension TLVs – one for Tx and one for Rx to support more

extension PDUs
• Should the MD5 Hash cover all PDUs or individual?

• When to send the 1st PDU as an ACK of received extension PDUs?
• Need a final bit in the extension PDUs or a PDU number scheme?
• Define another End of LLDPDU TLV?

• Retransmission strategy? SACK or just retransmit the entire sequence?

