Overview of TSN use cases

Japan Automotive Software Platform and Architecture 2019.10.29

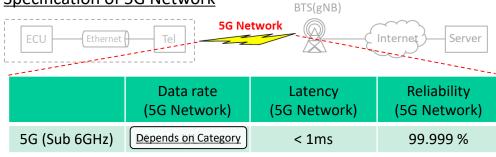
Takumi Nomura (Honda)

Ryohei Kawabuchi (Mazda)

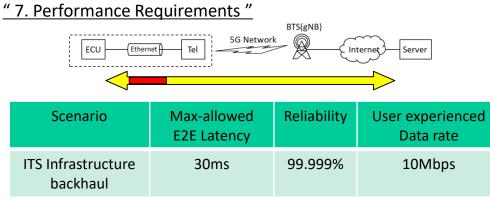
Objective

Provide use case study examples to create the Automotive Profile.

- ✓ Create use cases < We are here</p>
- ✓ Extract Requirements
- ✓ Profiling

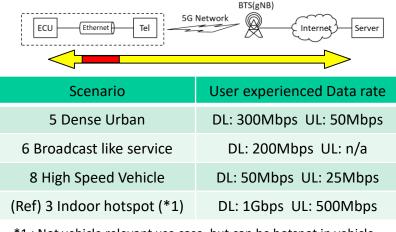

	Use cases from JASPAR
UC1	Connected-Car with 5G network
UC2	Functional Safety
UC3	Real-time communication
UC4	Security
UC5	Automotive In-Vehicle Traffic Types
UC6	Achieve FlexRay features

UC1. Connected-Car with 5G network



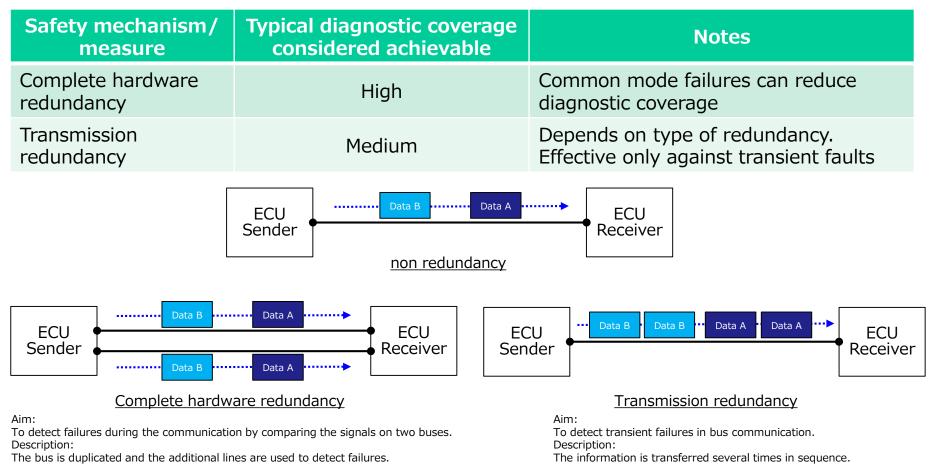
Use case and Requirements for Connected-Car with 5G network technology (3GPP Rel15)

Specification of 5G Network



Use case defined in 3GPP TS 22.261 V15.8.0 (2019-09) (Rel.15)

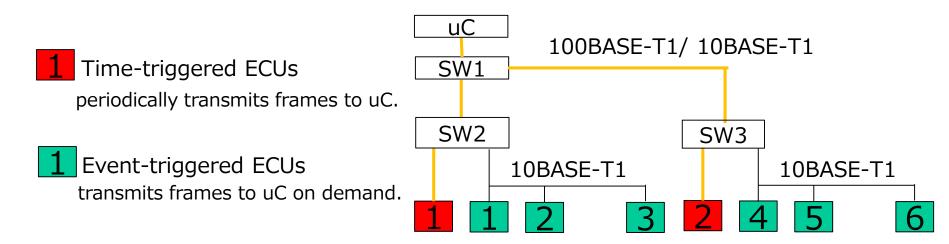
Requirements defined for In-Vehicle Network (Ethernet) (Draft)


*1 : Not vehicle relevant use case, but can be hotspot in vehicle

5G Scenario for Vehicle	Latency	Reliability	User experienced Data rate
ITS Infrastructure backhaul (*2) 5 Dense Urban (*3)	?? ms (*2)	100% ? (*2) with redundant NW?	DL: 300Mbps UL: 50Mbps (*3)

UC2. Functional Safety

Extracts from ISO 26262-5:2018, Annex D, TableD.6 – Communication Bus

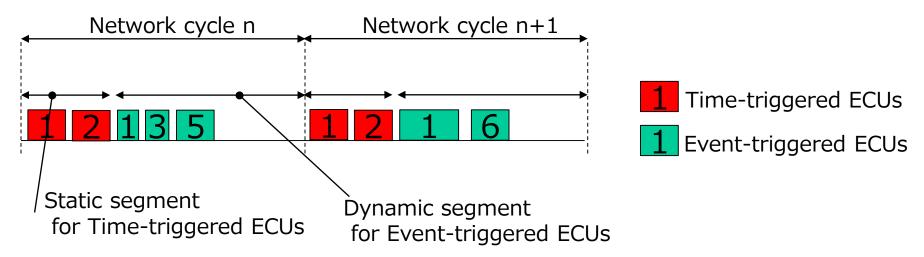


802.1CB may be able to achieve **High/Medium diagnostic coverage**. Considering application of TSN standards for Functional Safety.

UC3. Real-time communication

Example network of real-time communication

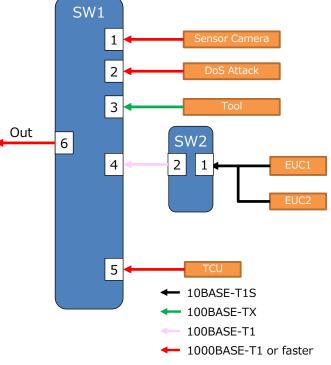
<u>Requirements</u>


Characteristics	Requirement		
Network cycle	1 ms to 100ms		
Bounded latency	100µs to 1ms		
Network diameter	2 to 3		
Link speed	10Mbps to 1Gbps		
Number of devices	8 Time-triggered ECUs 16 Event-triggered ECUs		

Useful aspects of TSN

Requirement	Function	Standard	
Periodic traffic	Clock synchronization	802.1AS	
Bounded low latency	Scheduled traffic	802.1Q 8.6.8.4 : Qbv	
	TCP/IP-based stream identification	802.1 CBdb	
Traffic classification	Ingress Policing	802.1Q 8.6.5.1 : Qci	
Configuration		802.1Qcc, 802.1ABcu etc.	

Example of traffic scheduling



UC4. Security

Goal

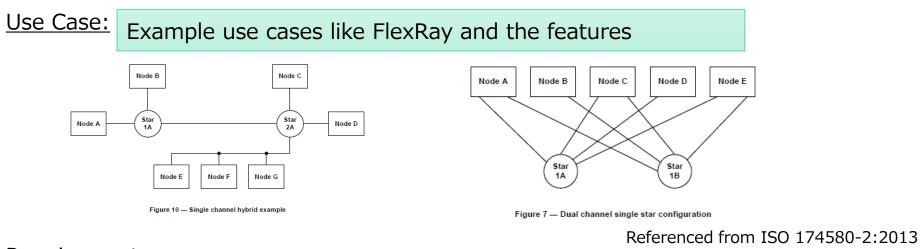
- 1. Define an IVN profile which can provide protection of high priority traffic
- 2. Ensure low latency with this IVN profile for ECUs communication(Scheduled Traffic) against DDoS attacks
- 3. Detect DDoS attacks immediately and protect the IVN and ECUs from them
- Potential Security Issues
 - 1. DDoS attacks bring bandwidth exhaustion and disturbances to traffic prioritization on switch
 - 2. IVN is exposed to unauthorized access due to Brute-force attack
- Example approach of using Qci to Security Issues
 - 1. Block misbehaving streams by Per-Stream Filtering and Policing
 - 2. Detect unknown nodes or streams by Per-Stream Filtering and Policing
 - 3. Protect high-priority traffic from DDoS attacks and keep low latency

Example IVN in this use case

UC5. Automotive In-Vehicle Traffic Types

Add a supplement to Auto Use Case 04 of [dg-pannell-automotive-use-cases-0719-v04.pdf]

Traffic Type	Period	Guarantee ⁴	Tolerance to Loss⁵	Frame Size	Criticality	L2	L3	L4	L5~L7
Safety-relevant Control: see 3.4.1.2	<= 20ms	Deadline based Reserved w/Latency < 1ms	No	64 bytes	High		IP	ТСР	
Safety-relevant Media: see 3.4.1.3	<= 10ms	Bandwidth based Reserved w/Latency < 1ms	No	64 to max frame size⁵ (w/1500 data bytes)	High		IP	UDP	
Network Control: see 3.4.1.4	50ms to 1s	Sporadic Highest priority Non-Reserved	Yes	64 to 512 ⁷ bytes	High		IP ARP ICMP	ТСР	
Event: see 3.4.1.5	N/A	Sporadic 2 nd Highest priority Non-Reserved	Yes	64 to max frame size (w/1500 data bytes)	Medium		IP	TCP, UDP	
Safety-irrelevant Control see 3.4.1.6	< 200ms	Bandwidth based Reserved w/Latency < 50ms	Yes	64 bytes	Medium		IP	ТСР	MQTT SOME/IP
Safety irrelevant Media: see 3.4.1.7	Defined by the media type	Bandwidth based Reserved w/Latency < 300ms	Yes	64 to max frame size (w/1500 data bytes)	Medium		IP	UDP	HTTP
Best Effort: see 3.4.1.8	N/A	None	Yes	64 to max frame size (w/1500 data by			IP	TCP, UDP	HTTP FTP
M:Mandato O:Option	M:Mandatory O:Option AS ABCU								


O:Option	Input1 Input2 Qt	AS ou+CBdb	id QccQcw(ABcu →Qci→Q-Qt →Qci→Q-Qt vitch structure	.	Ouput
TSN F	unciton (1/	2)	TSN Function (2/2)		
Function	Standard	Convention	Function	Standard	Convention
Clock synchronization	802.1AS	м	Link-local registration	P 802.1CS	0
Preemption	802.1Q 6.7.2	O: 802.1Qbu	Protocol		
Ingress Policing	802.1Q 8.6.5.1	M: 802.1Qci	Resource allocation protocol	P 802.1Qdd	0
VLAN	802.1Q 6.9	м	YANG for Qbv, Qbu,	P 802.1Qcw	0
Transmission	802.1Q 8.6.8	м	Qci	1 002.1QCW	0
selection control			YANG for Bridge	802.1Qcp	0
Scheduled traffic	802.1Q 8.6.8.4	M: 802.1Qbv	LLDP Neighbor	P 802.1ABcu	м
Extended Stream	802.1CBdb	М	discovery		
identification			Centralized configuration	802.1Qcc	м

L2 Colum shows in diagram of TSN functions.

Japan Automotive Software Platform and Architecture7

ADD

UC6. TSN Profiling to achieve FlexRay features Jas Par

Requirement:

R x.1		
R x.2		
R x.3	Requirements to enable FlexRay like functionality	
R x.4		
R x.5		

Useful 802.1 mechanisms:

• 802.1...

TSN protocols/subset proposals to realize above requirements