IEEE P802.1CBdb (individual contribution) March 13, 2019

Frame Replication and Elimination for Reliability — Amendment:

Extended Stream identification functions

Abstract: This standard specifies procedures, managed objects and protocols for bridges and end systems that provide identification and replication of packets for redundant transmission, identification of duplicate packets, and elimination of duplicate packets. It is not concerned with the creation of the multiple paths over which the duplicates are transmitted.

Keywords: TSN, Time-Sensitive Networking, Redundancy, Bridging, Bridges, Frame Replication, Frame Elimination, Bridged Local Area Networks, IEEE 802®, IEEE 802.1Q[™], IEEE 802.1CB[™], local area networks (LANs), MAC Bridges, Virtual Bridged Local Area Networks (virtual LANs).

IEEE Draft Standard for Local and metropolitan area networks — Frame Replication and Elimination for Reliability — Amendment: Extended Stream Identification Functions

6

7

81. Overview

9 **1.1 Scope**

¹⁰ This amendment specifies procedures and managed objects that add new stream identification functions. ¹¹ Additionally this amendment addresses errors and clarifications.

12 **1.2 Rationale**

¹³ Stream identification is required by an increasing number of traffic management mechanisms implemented ¹⁴ in Layer 2: ingress policing, traffic scheduling, congestion management, mapping to traffic classes, that ¹⁵ make Ethernet networks suitable for a growing number of applications. Current stream identification ¹⁶ methods defined in IEEE Std 802.1CB are insufficient for some of these applications.

17 **1.6 Introduction**

¹⁸ This amendment defines an additional passive stream identification function, which input parameters are not ¹⁹ limited to the addressing parameters provided by the EISS indication primitive (destination_address, ²⁰ source_address and vlan_identifier) and, or, to some specific upper layer protocol (e.g. IP) information. The ²¹ Extended Stream identification function is based on a mask-and-match scheme, where a set of masks is first ²² applied to a subset of the parameters passed by the EISS primitive: destination_address, source_address, ²³ vlan_identifier and mac_service_data_unit. The resulting masked information fields are then compared ²⁴ against a set of values, one for each mask, that identify a particular Stream. Masks and match values are ²⁵ defined by managed objects.

26 << Editor's Note: TBC >>

12. Normative references

² The following referenced documents are indispensable for the application of this document (i.e., they must ³ be understood and used, so each referenced document is cited in text and its relationship to this document is ⁴ explained). For dated references, only the edition cited applies. For undated references, the latest edition of ⁵ the referenced document (including any amendments or corrigenda) applies. Non-normative references (i.e., ⁶ that provide additional information not required for the application of this document) are given in Annex D.

7 IEEE Std 802[®], IEEE Standard for Local and metropolitan area networks: Overview and Architecture.^{1, 2}

8 IEEE Std 802.1AC[™], IEEE Standard for Local and metropolitan area networks—Media Access Control 9 (MAC) Service Definition.

¹⁰ IEEE Std 802.1Q[™], IEEE Standard for Local and metropolitan area networks—Bridges and Bridged ¹¹ Networks.

12 << Editor's Note: other normative references will be added, as appropriate >>

¹The IEEE standards or products referred to in Clause 2 are trademarks owned by The Institute of Electrical and Electronics Engineers, Incorporated.

²IEEE publications are available from The Institute of Electrical and Electronics Engineers (<u>http://standards.ieee.org</u>).

13. Definitions

2 << Editor's Note: Definitions will be added, as appropriate >>

3 Mask: aaabbb

4

14. Acronyms and abbreviations

2 << Editor's Note: to be added to the existing list >>

₃XXX Text

5 YYYY Text

15. Conformance

² This clause specifies the mandatory and optional capabilities provided by conformant implementations of ³ this standard.

4 5.5 Stream identification component optional behaviors

⁵*Insert new item d) as shown and re-number subsequent items:*

- 6 a) The items in 5.3 and 5.4 on more than one port;
- 7 b) The items in 5.3 and 5.4 for some number of Compound Streams greater than 1;
- 8 c) An IP Stream identification function (6.7); and/or
- 9 d) <u>An Extended Stream identification function (crossref); and/or</u>
- 10 e) Additional types of Stream identification functions.

11 5.8 Talker end system optional behaviors

12 Insert new item d) as shown and re-number subsequent items:

- a) The items in 5.8 and 5.7 on more than one port;
- b) The items in 5.8 and 5.7 for some number of Compound Streams greater than 1;
- 15 c) An IP Stream identification function (6.7);
- 16 d) <u>An Extended Stream identification function (crossref);</u>
- e) Additional types of Stream identification functions;
- 18 f) The HSR sequence tag (7.9);
- 19 g) The PRP sequence trailer (7.10); and/or
- 20 h) Additional types of Sequence encode/decode functions.

21 5.11 Listener end system optional behaviors

22 Insert new item d) as shown and re-number subsequent items:

- a) The items in 5.11 and 5.10 on more than one port;
- b) The items in 5.11 and 5.10 for some number of Compound Streams greater than 1;
- 25 c) An IP Stream identification function (6.7);
- 26 d) <u>An Extended Stream identification function (crossref);</u>
- e) Additional types of Stream identification functions;
- $_{28}$ f) The HSR sequence tag (7.9);
- 29 g) The PRP sequence trailer (7.10);
- 30 h) Additional types of Sequence encode/decode functions; and/or
- ³¹ i) At least two instances of Individual recovery functions (7.5), each using the ³² VectorRecoveryAlgorithm (7.4.3.4).

33 5.13 Relay system recommended behaviors

₃₄*Insert new item c) as shown:*

- a) Active Destination MAC and VLAN Stream identification functions (6.6) for encoding and decoding packets; and
- b) IP Stream identification functions (6.7):<u>-or</u>

- 1 c) <u>Extended Stream identification function (crossref)</u> for identifying packets.
- 2 NOTE-IP Stream identification enables a relay system to proxy for a FRER-unaware end system.

16. Stream identification

² Change the text of the first paragraph as shown:

³ Clause 7 of IEEE Std 802.1AC describes the IEEE 802.1 layering model, that Frame Replication and ⁴ Elimination for Reliability (FRER) follows. Stream identification utilizes a single Service Access Point ⁵ (SAP) to a connectionless packet service offered by the layer below it [e.g., the Intermediate Sublayer ⁶ Service (ISS) of Clause 11 of IEEE Std 802.1AC, or the Enhanced Internal Sublayer Service (EISS) of ⁷ <u>Clause 6.8 of IEEE Std</u>], and offers an array of SAPs to the layers above it, corresponding to different ⁸ Streams. The Stream identification model is illustrated in Figure 6-1.

⁹ Change the text of the note as shown:

10 NOTE—In principle, any number of different methods for identifying and encoding Streams can be defined. Several 11 required methods are specified in the following subclauses (6.4, 6.5, 6.6, 6.9, crossref).

¹² Change the text of item c) and Table 6-1 as shown:

c) Four<u>Five</u> specific IP Stream identifications are described: Null Stream identification (6.4), Source
MAC and VLAN Stream identification (6.5), Active Destination MAC and VLAN Stream
identification (6.6), and IP Stream identification (6.9), and Extended Stream identification
(crossref).

17.

IP Stream identification	Active/passive	Examines	Overwrites	Reference
Null Stream identification	Passive	destination_address, vlan_identifier	None	6.4, 9.1.2
Source MAC and VLAN Stream iden- tification	Passive	source_address, vlan_identifier	None	6.5, 9.1.6
Active Destination MAC and VLAN Stream identifica- tion	Active	destination_address, vlan_identifier	destination_address, vlan_identifier, pri- ority	6.6, 9.1.4
IP Stream identifica- tion	Passive	destination_address, vlan_identifier, IP source address, IP des- tination address, DSCP, IP next proto- col, source port, desti- nation port	None	6.9, 9.1.5
Extended Stream identification func- tion	Passive	<u>destination_address,</u> <u>source_address,</u> <u>vlan_identifier,</u> <u>mac_service_data_unit</u>	None	<u>6.8, 9.1.6</u>

Table 6-1—IP Stream identification	ations
------------------------------------	--------

18 << Editor's Note: cross-references to be updated >>

16.1 Stream service subparameters

² Change the text of the first paragraph as shown:

³ The ISS defined in IEEE Std 802.1AC—and the EISS defined in IEEE Std 802.1Q includes a 4 connection_identifier parameter that is of local significance (to a system) only. The parameter is not carried 5 across the underlying service. Stream identification makes use of this parameter to carry parametrized 6 information. Stream identification has need for more than one subparameter, but an implementor can create 7 mathematical algorithms to combine those subparameters (and/or other subparameters for other layers) into 8 a single connection_identifier parameter, especially since the connection_identifier's values are undefined 9 outside the system implementing them. In this document, parameters that are assumed to be encoded in the 10 connection identifier are deemed *subparameters*.

11 Insert new clause 6.8 as shown:

12 6.8 Extended Stream identification

¹³ The Extended Stream identification is a passive Stream identification that operates at the frame level. It can ¹⁴ be defined using the Enhanced Internal Sublayer Service (EISS) described in 6.9 of IEEE Std 802.1Q-2018, ¹⁵ in which case it is enhanced with the extra stream_handle subparameter of the connection_identifier, ¹⁶ specified in 6.1 of the present standard.

¹⁷It discards the stream_handle subparameter passed down the stack. It generates a stream_handle ¹⁸subparameter on frames passed up the stack based on information fields extracted from the frame's ¹⁹destination MAC address, source MAC address, VLAN ID and MAC service data unit. It does not change ²⁰ any of a packet's parameters. It is suitable for applications in which Streams are defined by a set of ²¹parameters derived from those provided through the EISS SAP. This parameter set includes a bit field of the ²²destination MAC address, a bit field of the source MAC address, a bit field of the VLAN identifier and a set ²³of bit fields of the MAC service data unit. In order to instantiate the Extended Stream identification function, ²⁴the tsnStreamIdIdentificationType managed object (9.1.1.6) is encoded using the OUI (00-80-C2) and the ²⁵type values as shown in Table 9-1.

²⁶ Extended Stream identification can be coupled, for example, with Active Destination MAC and VLAN ²⁷ Stream identification (6.6) to assign a particular {MAC address, VLAN, priority} triplet to packets ²⁸ belonging to a particular unicast application Stream identified by the combination of the values of particular ²⁹ fields in the MAC service data unit, as shown in Figure 8-1, Port A, where Extended Stream identification ³⁰ would be in the box labeled "Passive Upper Extended Stream identification (6.8)." The managed objects for ³¹ Extended Stream identification are described in (crossref 9.1.6).

32 NOTE—The drop_eligible parameter is also present, along with the VLAN identifier and priority, in an IEEE 802.1Q 33 VLAN tag. FRER does not affect the use of this parameter. It passes through Extended Stream identification unchanged, 34 and defaults to False when not present.

18. Frame Replication and Elimination for Reliability in Bridges

² Change paragraph of clause 8.2 as shown:

38.2 FRER C-component input transformations

⁴ The Input transformations, marked with white boxed with boldface type in Figure 8-1, enable a Bridge to ⁵ proxy for a non-FRER-capable end system. The expanded input port identifies packets belonging to a ⁶ Stream (e.g., using IP Stream identification, 6.7, or Extended Stream identification, crossref 6.8), serializes ⁷ the packets with a Sequence generation function (7.4.1), encodes the sequence number with an R-TAG ⁸ (7.8), and then gives the packets belonging to this Stream a {vlan_identifier, destination_mac_address} pair ⁹ that is unique, at least inside this Bridge, using Active Destination MAC and VLAN Stream identification ¹⁰ (6.6). The IEEE 802.1Q Forwarding Process, enhanced with the Individual recovery function (7.5) and ¹¹ Sequence recovery function (7.4.2), then forwards the frame.

19. Stream Identification Management

29.1 Stream identity table

39.1.1 tsnStreamIdEntry

4 Insert new row in Table 9-1 as shown:

5

OUI/CID	Type number	Stream identification function	Controlling parameters
00-80-C2	0	Reserved	
00-80-C2	1	Null Stream identification (6.4)	9.1.2
00-80-C2	2	Source MAC and VLAN Stream identification (6.5)	9.1.6
00-80-C2	3	Active Destination MAC and VLAN Stream identification (6.6)	9.1.4
00-80-C2	4	IP Stream identification (6.7)	9.1.5
<u>00-80-C2</u>	<u>5</u>	Extended Stream identification (crossref 6.8)	(crossref 9.1.6)
00-80-C2	5-255	Reserved	
other	—	Defined by entity owning the OUI or CID	

Table 9-1—Stream identification types

6 Insert Clause 9.1.6 as shown:

79.1.6 Managed objects for Extended Stream identification

8 When instantiating an instance of the Extended Stream identification function (crossref 6.8) for a particular 9 input Stream, the managed objects in the following subclauses serve as the tsnStreamIdParameters managed 10 object (9.1.1.2).

11 9.1.6.1 tsnCpeEsIdDestMacMask

¹² Specifies a 48-bit mask to be applied to the destination_address parameter passed by the EISS indication ¹³ primitive to the Extended Stream identification function. A bit set to '1' in tsnCpeEsIdDestMacMask ¹⁴ indicates that the bit with the same position in the destination_address parameter must match the bit with the ¹⁵ same position in tsnCpeEsIdDestMacMatch (crossref 9.1.6.2). A bit set to '0' in tsnCpeEsIdDestMacMask ¹⁶ indicates that the bit with the same position in the destination_address parameter is ignored. An all-0 ¹⁷ tsnCpeEsIdDestMacMask indicates that the destination_address parameter is ignored.

18 9.1.6.2 tsnCpeEsIdDestMacMatch

¹⁹ Specifies the 48-bit value that the destination_address parameter, passed by the EISS indication primitive to ²⁰ the Extended Stream identification function, must match according to the masking rules defined in (crossref ²¹ 9.1.6.1).

19.1.6.3 tsnCpeEsIdSrcMacMask

² Specifies a 48-bit mask to be applied to the source_address parameter passed by the EISS indication ³ primitive to the Extended Stream identification function. A bit set to '1' in tsnCpeEsIdSrcMacMask ⁴ indicates that the bit with the same position in the source_address parameter must match the bit with the ⁵ same position in tsnCpeEsIdSrcMacMatch (crossref 9.1.6.4). A bit set to '0' in tsnCpeEsIdSrcMacMask ⁶ indicates that the bit with the same position in the source_address parameter is ignored. An all-0 ⁷ tsnCpeEsIdSrcMacMask indicates that the source_address parameter is ignored.

8 9.1.6.4 tsnCpeEsIdSrcMacMatch

⁹ Specifies the 48-bit value that the source_address parameter, passed by the EISS indication primitive to the ¹⁰ Extended Stream identification function, must match according to the masking rules defined in (crossref ¹¹ 9.1.6.3).

12 9.1.6.5 tsnCpeEsIdTagged

¹³ An enumerated value indicating whether a frame in an EISS indication primitive to the Extended Stream ¹⁴ identification function is permitted to have a VLAN tag. It can take the following values:

- 15 1) **tagged:** A frame must have a VLAN tag to be recognized as belonging to the Stream.
- priority: A frame must be untagged, or have a VLAN tag with a VLAN ID = 0 to be recognized as belonging to the Stream.
- 20 3) all: A frame is recognized as belonging to the Stream whether tagged or not.

22 << Editor's Note: this object provides a work-around to determine if a frame is VLAN-tagged. >>

23 9.1.6.6 tsnCpeEsIdVIanIdMask

²⁴ Specifies a 12-bit mask to be applied to the vlan_identifier parameter passed by the EISS indication ²⁵ primitive to the Extended Stream identification function. A bit set to '1' in tsnCpeEsIdVlanIdMask indicates ²⁶ that the bit with the same position in the vlan_identifier parameter must match the bit with the same position ²⁷ in tsnCpeEsIdVlanIdMatch (crossref 9.1.6.7). A bit set to '0' in tsnCpeEsIdVlanIdMask indicates that the ²⁸ bit with the same position in the vlan_identifier parameter is ignored. An all-0 tsnCpeEsIdVlanIdMask ²⁹ indicates that the vlan_identifier parameter is ignored.

30 9.1.6.7 tsnCpeEsIdVlanIdMatch

³¹ Specifies the 12-bit value that the vlan_identifier parameter, passed by the EISS indication primitive to the ³² Extended Stream identification function, must match according to the masking rules defined in (crossref ³³ 9.1.6.6).

34 9.1.6.8 tsnCpeEsIdMsduFieldNb

³⁵ Specifies the number of bit fields in the mac_service_data_unit parameter of the EISS indication primitive to ³⁶ the Extended Stream identification function to be used to identify the Stream. A value of 0 indicates that the ³⁷ mac_service_data_unit parameter is not used by the Extended Stream identification function. ³⁸ tsnCpeEsIdMsduFieldNb has a maximum value of XXX. If tsnCpeEsIdMsduFieldNb has a value N greater ³⁹ than 0, then N bit fields shall be defined using N mask definitions (tsnCpeEsIdMsduField1, ..., ⁴⁰ tsnCpeEsIdMsduFieldN (crossref 9.1.6.9)), and N matching values shall be defined by ⁴¹ tsnCpeEsIdMsduFieldValue1, ..., tsnCpeEsIdMsduFieldValueN (crossref 9.1.6.10)

42 << Editor's Note: XXX to be fixed. >>

19.1.6.9 tsnCpeEsIdMsduFieldN

² Specifies a series of consecutive bits of the mac_service_data_unit parameter passed by the EISS indication ³ primitive to the Extended Stream identification function. tsnCpeEsIdMsduFieldN is defined using two other ⁴ objects indicating the location (tsnCpeEsIdMsduFieldOffsetN, (crossref 9.1.6.9.1)) and length ⁵ (tsnCpeEsIdMsduFieldLengthN, (crossref 9.1.6.9.2) of the bit field.

6 9.1.6.9.1 tsnCpeEsIdMsduFieldOffsetN

⁷ Specifies the offset, expressed in bits and relative to the first bit of the mac_service_data_unit parameter, of 8 the first bit of tsnCpeEsIdMsduFieldN. A value of i indicates that the first bit of tsnCpeEsIdMsduFieldN is 9 the (i+1)th bit of the mac_service_data_unit parameter. tsnCpeEsIdMsduFieldOffsetN has a value comprised 10 between 0 and XXX.

11 << Editor's Note: XXX has to be fixed >>

12 9.1.6.9.2 tsnCpeEsIdMsduFieldLengthN

¹³ Specifies the length, expressed in bits, of tsnCpeEsIdMsduFieldN. tsnCpeEsIdMsduFieldLengthN has a ¹⁴ value comprised between 1 and XXX.

15 << Editor's Note: XXX has to be fixed >>

16 9.1.6.10 tsnCpeEsIdMsduFieldValueN

¹⁷ Specifies the value of tsnCpeEsIdMsduFieldN, as defined in (crossref 9.1.6.9), that participates to the ¹⁸ Stream identification by the Extended Stream identification function.

1 Annex A

² (normative)

³ Protocol Implementation Conformance Statement (PICS)

₄ proforma

5 A.2 PICS proforma for Frame Replication and Elimination for Reliability

6 A.2.2 Stream identification component

7 Insert item IS5 and re-number subsequent entries in Table as shown:

Item	Feature	Subclause	Value/Comment	Status	Support
IS1	Can the system identify frames using the Null Stream identifica- tion function?	5.3:b, 6.4		IS: M	Yes []
IS2	Does the system implement the required managed objects of Clause 9?	5.3:c, 9		IS: M	Yes []
IS3	Can the system encode frames using the Active Destination MAC and VLAN Stream identi- fication?	5.4:a, 6.6		IS: O	Yes [] No [] 1
IS4	Can the system identify packets using the IP Stream identifica- tion?	5.5:c, 6.7		IS: O	Yes [] No []
185	Can the system identify packets using the Extended Stream iden- tification [crossref]?	<u>5.5:d, 6.8</u>		<u>IS: O</u>	<u>Yes []</u> <u>No []</u>
IS6	For what additional Stream decodings can the system be configured?	5.5:e		IS: O	—
IS7	Explain the limits on which ports the above features can be configured.	5.5:a		IS: O	—
IS8	Explain the limits on the number of Streams for which the above features can be configured.	5.5:b		IS: O	_

¹If "No," supply a reason why.

1 A.2.3 Talker end system

²Insert item TE16 and re-number subsequent entries in Table as shown:

Item	Feature	Subclause	Value/Comment	Status	Support
TE9	Can the system identify frames using the Null Stream identifica- tion function?	5.6:b, 6.4		TE: M	Yes []
TE10	Can the system be configured with a Sequence generation function?	5.6:c, 7.4.1		TE: M	Yes []
TE11	Can the system be configured with a Sequence encode/decode function?	5.6:d, 7.8		TE: M	Yes []
TE12	Does the system implement the managed objects of Clause 9 and Clause 10 (10.7 not required)?	5.6:e, 9, 10		TE: M	Yes []
TE13	Can the system encode frames using the Active Destination MAC and VLAN Stream identi- fication?	5.7:a, 6.6		TE: O	Yes [] No [] 1
TE14	Can the system be configured with a Stream splitting function?	5.7:b, 7.7		TE: M	Yes [] No [] a
TE15	Can the system identify packets using the IP Stream identifica- tion?	5.8:c, 6.7		TE: O	Yes [] No []
TE16	Can the system identify packets using the Extended Stream iden- tification [crossref]?	<u>5.8:d, 6.8</u>		<u>TE: O</u>	<u>Yes []</u> <u>No []</u>
TE17	For what additional Stream decodings can the system be configured?	5.8:e		TE: O	—
TE18	Can the system encode frames using HSR sequence tag?	5.8:f, 7.9		TE: O	Yes [] No []
TE19	Can the system encode frames using PRP sequence trailer?	5.8:g, 7.10		TE: O	Yes [] No []
TE20	For what additional Sequence encode/decode functions can the system be configured?	5.8:h		TE: O	_
TE21	Explain the limits on which ports the above features can be configured.	5.8:a		TE: O	_
TE22	Explain the limits on the number of Streams for which the above features can be configured.	5.8:b		TE: O	_

¹If "No," supply a reason why.

1 A.2.4 Listener end system

² Insert item LE11 and re-number subsequent entries in Table as shown:

Item	Feature	Subclause	Value/Comment	Status	Support
LE1	Can the system identify frames using the Null Stream identifica- tion?	5.9:b, 6.4		LE: M	Yes []
LE2	Can the system be configured with at least two Individual recovery functions?	5.9:c, 7.5		LE: M	Yes []
LE3	Can the system be configured with at least one Sequence recovery function using the MatchRecoveryAlgorithm?	5.9:c, 7.4.2, 7.4.3.5		LE: M	Yes []
LE4	Does the system support the Sequence recovery function using the VectorRecoveryAlgo- rithm with a value of frerSe- qRcvyHistoryLength ≥ 2 ?	5.9:c, 7.4.2, 7.4.3.4		LE: M	Yes []
LE5	Can the system be configured with at least two Individual recovery functions using the MatchRecoveryAlgorithm?	5.9:d, 7.5, 7.4.3.5		LE: M	Yes []
LE6	Can the system be configured with a Sequence decoding func- tion?	5.9:e, 7.8		LE: M	Yes []
LE7	Does the system implement the managed objects of Clause 9 and Clause 10 (10.7 not required)?	5.9:f, 9, 10		LE: M	Yes []
LE8	Does the Base recovery function process a frame before its FCS has been verified?	7.4.3		LE: M	No []
LE9	Can the system decode frames using the Active Destination MAC and VLAN Stream identi- fication?	5.10:a, 6.6		LE: O	Yes [] No[] 1
LE10	Can the system decode packets using the IP Stream identifica- tion?	5.11:c, 6.7		LE: O	Yes [] No []
LE11	Can the system identify packets using the Extended Stream iden- tification [crossref]?	<u>5.11:d, 6.8</u>		<u>LE: O</u>	<u>Yes []</u> <u>No []</u>
LE12	For what additional Stream decodings can the system be configured?	5.11:e		LE: O	_
LE13	Can the system decode frames using HSR sequence tag?	5.11:f, 7.9		LE: O	Yes [] No []
LE14	Can the system decode frames using PRP sequence trailer?	5.11:g, 7.10		LE: O	Yes [] No []

Item	Feature	Subclause	Value/Comment	Status	Support
LE15	For what additional Sequence decodings can the system be configured?	5.11:h		LE: O	
LE16	Can the system be configured with at least two Individual recovery functions using the VectorRecoveryAlgorithm?	5.11:i, 7.5, 7.4.3.4		LE: O	Yes []
LE17	Explain the limits on which ports the above features can be configured.	5.11:a		LE: O	—
LE18	Explain the limits on the number of Streams for which the above features can be configured.	5.11:b		LE: O	—

¹If "No," supply a reason why.

1 A.2.5 Relay system

² Insert item RS12 and re-number subsequent entries in Table as shown:

Item	Feature	Subclause	Value/Comment	Status	Support
RS1	Can the system identify frames using the Null Stream identifica- tion function?	5.12:b, 6.4		RS: M	Yes []
RS2	Can the system be configured with a Sequence generation func- tion?	5.12:c, 7.4.1		RS: M	Yes []
RS3	Can the system be configured with at least two Individual recovery functions?	5.12:e, 7.5		RS: M	Yes []
RS4	Can the system be configured with at least one Sequence recov- ery function using the MatchRe- coveryAlgorithm?	5.12:e, 7.4.2, 7.4.3.5		RS: M	Yes []
RS5	Does the system support the Sequence recovery function using the VectorRecoveryAlgo- rithm with a value of frerSe- qRcvyHistoryLength ≥ 2 ?	5.12:e, 7.4.2, 7.4.3.4		RS: M	Yes []
RS6	Can the system be configured with at least two Individual recovery functions using the MatchRecoveryAlgorithm?	5.12:f, 7.5, 7.4.3.5		RS: M	Yes []
RS7	Can the system be configured with a Sequence encode/decode function?	5.12:d, 7.8		RS: M	Yes []

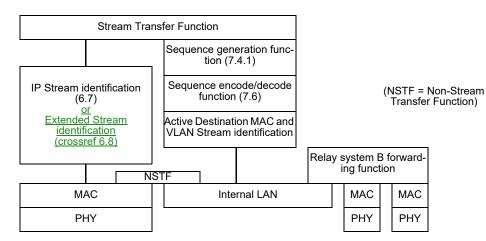
Item	Feature	Subclause	Value/Comment	Status	Support
RS8	Does the system implement the managed objects of Clause 9 and Clause 10 (including 10.7)?	5.12:g, 9, 10		RS: M	Yes []
RS9	Does the Base recovery function process a frame before its FCS has been verified?	7.4.3		RS: M	No []
RS10	Can the system encode/decode frames using the Active Destina- tion MAC and VLAN Stream identification?	5.13:a, 6.6		RS: O	Yes [] No[] 1
RS11	Can the system identify packets using the IP Stream identifica- tion?	5.13:b, 6.7		RS: O	Yes [] No [] a
RS12	Can the system identify packets using the Extended Stream iden- tification [crossref]?	<u>5.13:c, 6.8</u>		<u>RS: O</u>	Yes [] <u>No []</u> ^a
RS13	For what additional Stream iden- tification functions can the sys- tem be configured?	5.14:c		RS: O	
RS14	Can the Stream splitting function be configured on the system?	5.14:d, 7.7		RS: O	Yes [] No []
RS15	Can the system encode/decode frames using HSR sequence tag?	5.14:e, 7.9		RS: O	Yes [] No []
RS16	Can the system encode/decode frames using PRP sequence trailer?	5.14:f, 7.10		RS: O	Yes [] No []
RS17	For what additional Sequence encode/decode functions can the system be configured?	5.14:g		RS: O	
RS18	Can the system be configured with at least two Individual recovery functions using the Vec- torRecoveryAlgorithm?	5.14:i, 7.5, 7.4.3.4		RS: O	Yes [] No []
RS19	Can the system be configured for Autoconfiguration via the Man- aged objects for autoconfigura- tion?	5.14:j, 7.11, 10.7		RS: O	Yes [] No []
RS20	Explain the limits on which ports the above features can be config- ured.	5.14:a		RS: O	_
RS21	Explain the limits on the number of Streams for which the above features can be configured.	5.14:b		RS: O	_
RS22	Explain the limits on whether the above features can be configured at in-facing or out-facing positions.	5.14:h		RS: O	

¹If "No," supply a reason why.

1

Annex C

² (informative)


³ Frame Replication and Elimination for Reliability in systems

4 C.2 Example 2: Various stack positions

⁵ Change 3rd paragraph of clause C.2, and Figure C-5 as shown:

⁶ Figure C-5 illustrates relay system B in Figure C-4. As the packets enter from the left, from End System A, ⁷ they pass first through a Stream identification function [IP Stream identification (6.7), or Extended Stream ⁸ <u>identification (crossref 6.8)</u>], which identifies the Stream. The Stream Transfer Function delivers the packet ⁹ with all TSN parameters, including the stream_handle subparameter, to the Sequence generation function ¹⁰ (7.4.1, marked "Seq." in Figure C-4), which adds a sequence_number subparameter with a steadily-¹¹ increasing integer sequence value (modulo the size of the packet field carrying the sequence_number). The ¹² sequence_number subparameter is encapsulated into the packet by the Sequence encode/decode function ¹³ (7.6). A Stream identification function [this time, Active Destination MAC and VLAN Stream identification ¹⁴ (6.6)] modifies the two packets' destination MAC addresses and VLANs for identification through the ¹⁵ bridged network. Relay system B's forwarding function then outputs the two packets on two different ports. ¹⁶ The external form of the packets are labeled differently, as indicated by the italic numbers **26** and **31** in ¹⁷ Figure C-4.

18.

19

20 C.5 Example 5: Protocol interworking

²¹Change 1st paragraph of clause C.5 as shown:

 $_{22}$ Figure C-10 illustrates a simple protocol interworking function in one port of a relay system. In this $_{23}$ example, two different encapsulation schemes **1** and **2** are used for the two legs of the Stream Transfer

¹ Function, so that packets are transformed from using one encapsulation to using the other encapsulation as ² they pass through the port. No additional functions, e.g., a Sequence recovery function (7.4.2) are shown, ³ although they would be perfectly admissible. If this were a port of a bridge attached to an end system, ⁴ encapsulation **1** could be the Active Destination MAC and VLAN Stream identification (6.6), and ⁵ encapsulation **2** could be the IP Stream identification (6.7) or the Extended Stream identification (crossref ⁶ <u>6.8</u>). The net result for the end system could be to convert a specific unicast IP Stream to use a specific ⁷ multicast destination address and VLAN, in order to direct the packet through a specific path through the ⁸ bridged network. Presumably, a similar interworking pair at the other end of the Stream would restore the ⁹ packet to its original destination MAC address and VLAN.

1	
	U