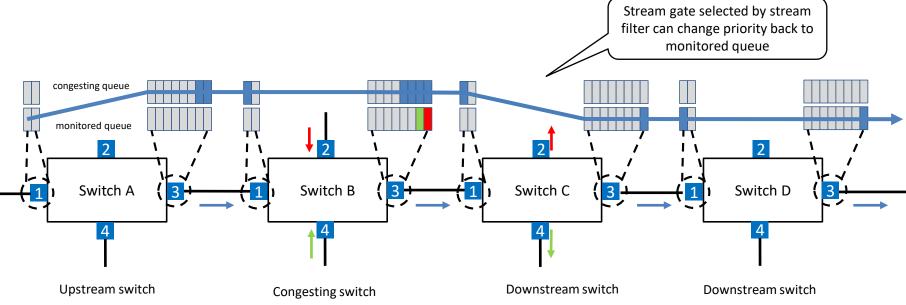

P802.1Qcz D0.4

Paul Congdon November 2019

Agenda

- Final disposition posted:
 - http://www.ieee802.org/1/files/private/cz-drafts/d0/802-1Qcz-d0-3-dis-v01.pdf
- Draft d0.4 with latest changes for review:
 - <u>http://www.ieee802.org/1/files/private/cz-drafts/d0/802-1Qcz-d0-4.pdf</u>
- Major changes to discuss/review
 - Handling congesting flow downstream of the congestion root
 - New stream_handle specification type
 - CI stream table and 802.1CB stream identity table
 - Multiple Monitored/Congesting Queue pairs
 - Keeping track of why a flow as been considered congesting
 - End-station support
 - CIM Encapsulations
 - CIM PDU and the new Add/Del CIM indicator
 - Sending a CIM when a flow is removed from stream identity table
 - CIM transmission conditions
 - Knowing position in the topology using LLDP TLV

Congesting Flow Stickiness



Solution to congesting stickiness

- Downstream switches should change the priority of these frames back to use the monitored queue.
 - We need a stream filter to match these frames
- Downstream switches do NOT have an entry in the stream identity table for these streams
 - Entries are created by detecting local congestion not present downstream
 - Entries are created by receipt of CIM not sent downstream
- We need a new stream_handle specification to match the absence of a stream_handle

Solution to congesting stickiness

- Downstream switches should change the priority of these frames back to use the monitored queue.
 - We need a stream filter to match these frames

- However, downstream switches do NOT have an entry in the stream identity table for these streams
 - Entries are created by detecting local congestion not present downstream
 - Entries are created by receipt of CIM not sent downstream
- We need a new stream_handle specification to match the absence of a stream_handle!

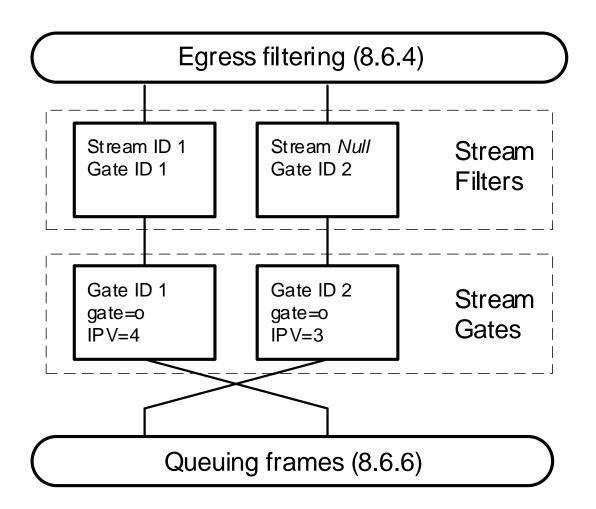
Proposed changes

8.6.5.3 Stream Identification

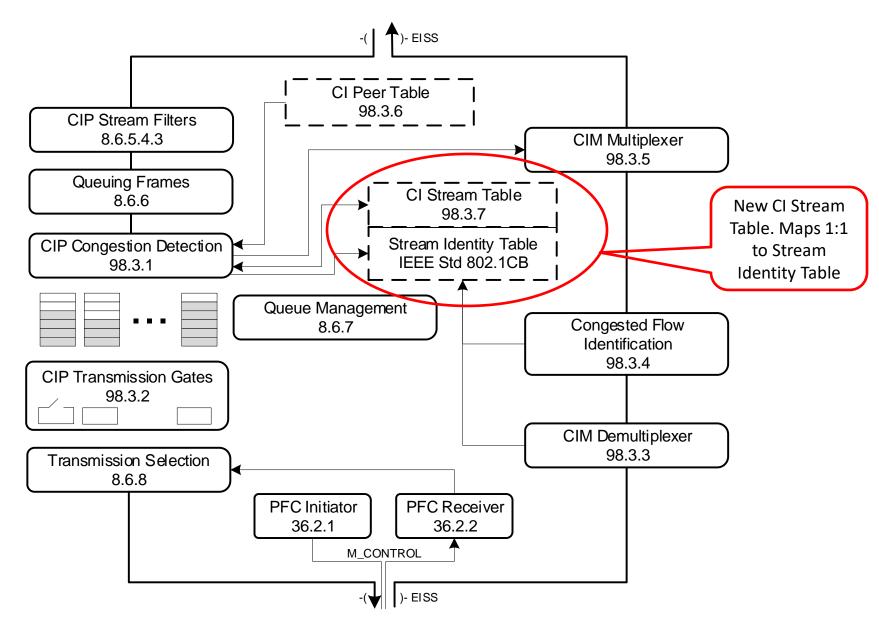
Modify item b) in list as follows:

- b) A stream_handle specification, either:
 - 1) A single value, as specified in IEEE Std 802.1CB.
 - 2) A wildcard, that matches any stream_handle.
 - 3) <u>A null, that matches when no stream_handle is provided.</u>

12.31.2.2 stream_handle specification data type


Change the opening list as follows:

The stream_handle specification data type allows either of the following to be represented:


- a) A stream_handle value, represented as an integer.
- b) The wild card value.
- c) <u>The null value.</u>

Must change MIBs and YANG as well

New Figure 8-16 for Cl

802.1Qcz Reference Diagram

12.32.3 CI Stream Table

Table 12-3—CI stream table entry

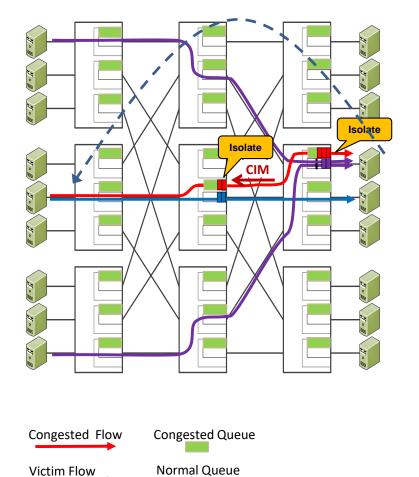
Name	Data type	Operations supported	Conformance	References
ciStreamIdHandle	stream_handle value	RW	IEEE Std 802.1CB	98.4.1.5.1
ciCIMCount	integer	RW		98.4.1.5.2
ciStreamCreateMask	2-bit mask	RW		98.4.1.5.3
ciQueueKey	integer	RW		98.4.1.5.4
ciDestination_address	MAC address	RW		98.4.1.5.5
ciSource_address	MAC address	RW		98.4.1.5.6
ciVlan_identifier	12-bit VID	RW		98.4.1.5.7
ciMsdu	octet string (size 64-512)	RW		98.4.1.5.8

98.4.1.2.5 cipQueueMap[]

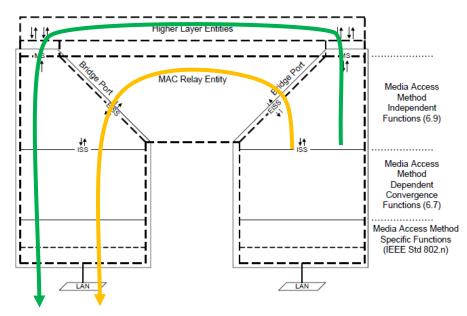
- Managed object that provides the mapping between monitored queues and congested queues.
- Used by cilnitialize() to set-up Stream Filters and Stream Gates.
- An array of 8 entries one for each traffic class.
- Contents in range -8..8:
 - 0 not participating in Cl
 - Negative maps to a congested queue (|value|-1)
 - Positive maps to a monitored queue (value-1)
- Example; traffic class 3 is the congesting class for monitored class 4

Index	Value		
0	0		
1	0		
2	0		
3	-5		
4	4		
5	0		
6	0		
7	0		

98.4.1.5.3 ciStreamCreateMask


- 2-bit attribute of entries in the CI Stream Table
- LSB = entry created because of local congestion
- MSB = entry created because of receipt of CIM
- Actions:
 - Clear LSB when local congestion subsides
 - Set MSB when CIM received/refreshed
 - Clear MSB when receiving a CIM Del or not refreshed
 - Delete entries when LSB and MSB are clear

End-station Support


- End-station queuing, stream filters and stream gates aren't really defined for end-stations?
- Propose allowing optional sending/receiving CIM messages
- Consider future amendment to 802.1DC
- Specific text changes are TBD

Different CIM PDU encapsulations

Typical Environment for Cl

- DCN is primarily Layer-3
- CIMs are sent hop-by-hop
- CIM Multiplexer uses relay to deliver

Layer-3 Layer-2 CIM CIM

CIM encapsulations

Table 98-1—Layer-2 CIM Encapsulation

	Octet	Length
PDU EtherType (XX-XX)	1	2
Version	3	4 bits
Subtype	3	4 bits
CIM PDU	4	66-514

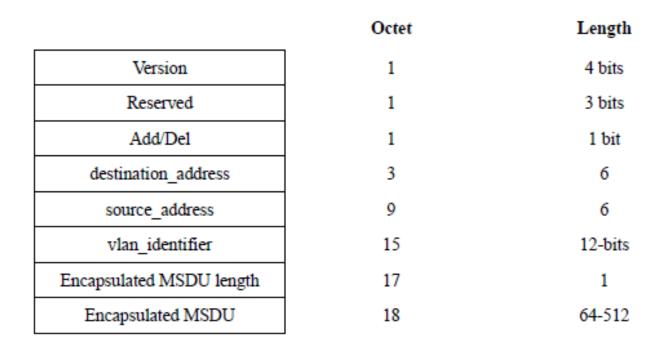

Table 98-2-IPv4 Layer-3 CIM Encapsulation

Table 98-3—IPv6 Layer-3 CIM Encapsulation

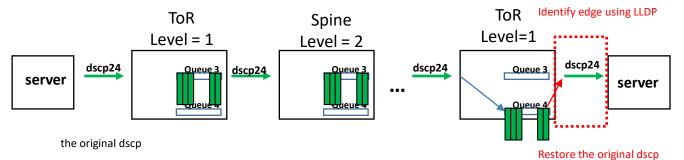
	Octet	Length		Octet	Length
PDU EtherType (08-00)	1	2	PDU EtherType (86-DD)	1	2
IPv4 Header (RFC 791)	3	20	IPv6 Header (RFC 2460)	3	40
UDP Header (RFC 768)	23	8	UDP Header (RFC 768)	43	8
CIM PDU	31	66-514	CIM PDU	51	66-514

The CIM PDU

Table 98-4—CIM PDU

Note: New Add/Del bit informs peer if congesting flow is being added or removed from Stream Identity Table and CI Stream Table

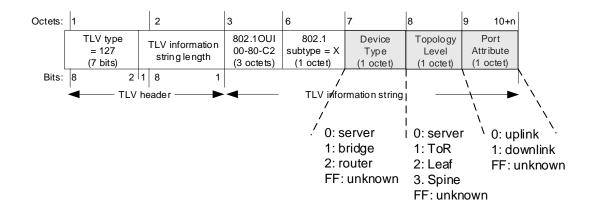
CIM Del Option

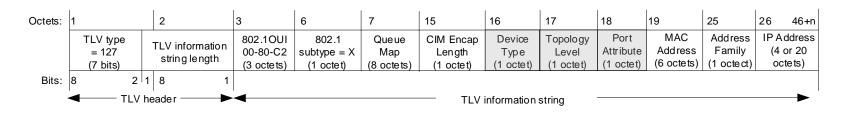

- Topics has been discussed in detail: <u>http://www.ieee802.org/1/files/public/docs2018/cz-congdon-ci-design-topics-1118-v01.pdf</u>
- Purpose:
 - Prevent flows from remaining congesting upstream longer than needed.
 - Allows entries to remain congested upstream when necessary downstream.
- Challenges:
 - CIM Del can be a 'one shot' message. If lost, no gain and requires ageing of entries in CI Stream Table.
 - Receipt of CIM Del requires a look-up in CI Stream Table to find and potentially delete entry.
- Proposal:
 - Specify this functionality is optional.
 - Allow optional ageing of CI Stream Table entries with MSB of ciStreamCreateMask set (98.4.1.5.3).

98.4.2.3 condTransmitCimAddPdu()

- Original text left it to the implementation to decide if it needed to transmit a CIM.
- Sending multiple CIMs helps reliability but increases network overhead.
- New text defines the following condition:
 - If we have sent less than cipMaxCIM CIMs and the AQM indicates that the congesting queue is congesting.
- Requires a CIM count in the CI stream table

Knowing the position in the topology (Topology Recognition)


- Some upper layer services (applications) expect the same DSCP (or 802.1p) at both destination end-point and the source end-point.
- TOR bridge can recover the original DSCP (or 802.1) at edge if it knows where it is in the topology.


- Knowing position in topology also helps identify congestion type (innetwork verses incast)
- Knowing position help prevent PFC deadlocks in lossless networks. See http://www.ieee802.org/1/files/public/docs2019/new-yu-pdf-0919-y00.pdf

LLDP TLV Proposal

1st Choice – Independent 802.1 Organizationally Specific TLV

2nd Choice – Include in existing Congestion Isolation TLV

Note: if Topology Recognition is not supported, all new values are 0xff