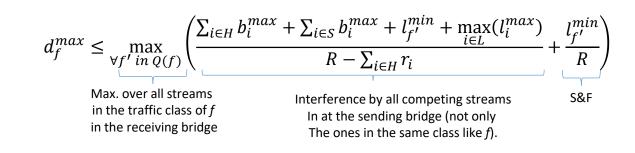


**Open-**Minded

# ATS Current Work

### Johannes Specht, University of Duisburg-Essen


# Status

### Short Summary

- First WG draft is in progress
- Goal: Draft as complete as possible, i.e. no stub clauses, no big changes needed afterwards
- Special Topic: Informative Delay Analysis Framework for ATS
- Challange
  - A Delay Analysis Framework has been published in 2016 https://ieeexplore.ieee.org/abstract/document/7557870/
  - ATS Evolved Most important: IEEE 802.1Qcr allows real-world implementation inaccuracies
  - The Delay Analysis Framework should take these into account!
- This Slidedeck
- Description of Inaccuracies
- Current work of the Editor

# Delay Analysis 2016

**Open-**Minded

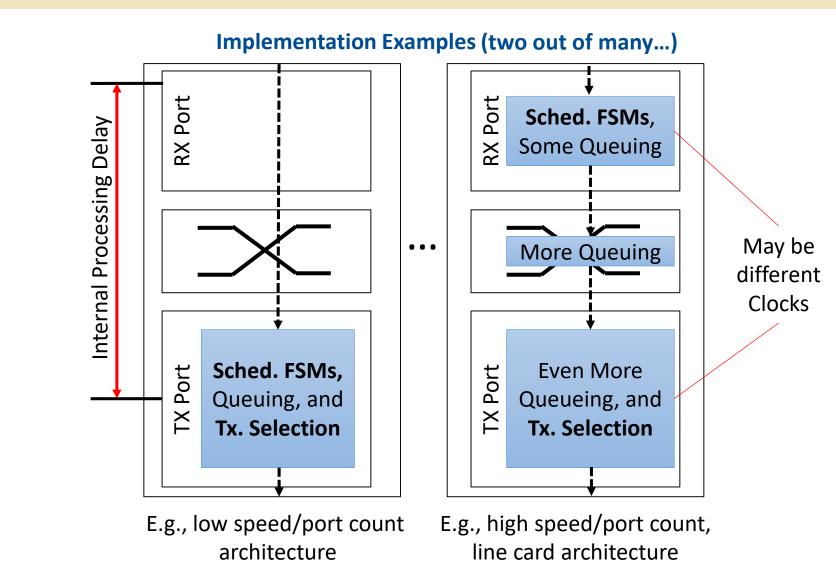


### Description

- Single hop delay bound from a sending bridge to a receiving bridge
- End-to-end: Sum of single hop delay bounds Note: Simplified equation for the last hop


### What is missing: Inaccuracies (the new stuff!)

- Link Delays Often rather small
- Device Internal Processing Delays
   Implementation dependent implementations may vary significantly
- Clock Inaccuracies
   ATS entities in a bridge may be placed in different clock domains in terms of digital logic, not in terms of 802.1AS or similar (!)


| Term                       | Description                                                                                                                            |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| $d_f^{max}$                | Max. per hop delay of a stream <i>f.</i>                                                                                               |
| $\sum_{i\in H} b_i^{max}$  | Sum of max. burstiness (i.e. <i>, Committed Burst Size</i> parameters) of streams with a higher priority than <i>f</i> .               |
| $\sum_{i\in S} b_i^{max}$  | Sum of max. burstiness of stream <i>f</i> and all streams with priority level equal to the priority level of <i>f</i> .                |
| $\max_{i\in L}(l_i^{max})$ | Maximum frame length of all streams with a lower priority level than <i>f</i> ′, including all non-ATS lower priority traffic classes. |
| $l_{f'}^{min}$             | Minimum frame length of stream f'.                                                                                                     |
| R                          | Link speed.                                                                                                                            |
| $\sum_{i\in H} r_i$        | Sum. of max. data rates (i.e., <i>Committed</i><br><i>Information Rate</i> parameters) of streams with<br>a higher priority than f'.   |

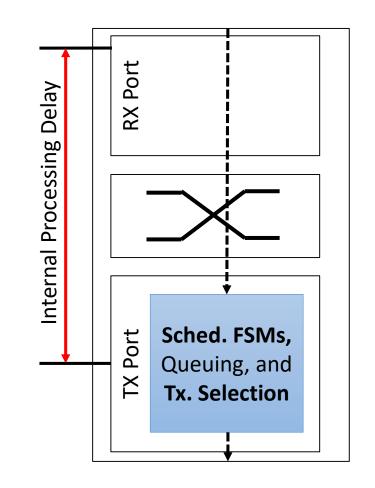
# 802.1 Qcr Model and Implementation





(ext. visible behavior)




## On Inaccuracies: Delays

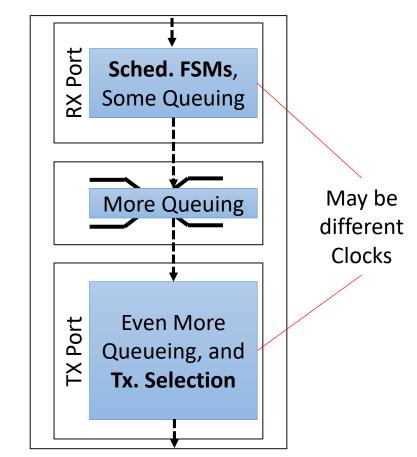
$$d_{f}^{max} \leq \max_{\forall f' \text{ in } Q(f)} \left( \frac{\sum_{i \in H} b_{i}^{max} + \sum_{i \in S} b_{i}^{max} + l_{f'}^{min} + \max_{i \in L} (l_{i}^{max})}{R - \sum_{i \in H} r_{i}} + \frac{l_{f'}^{min}}{R} \right)$$

## Rather trivial: Link and Processing Delays

- Max. Processing delay added to the per hop delay bound
- Max. Link delay added to the per hop delay bound

• I.e.: new 
$$d_f^{max}$$
 = old  $d_f^{max}$  + both delays





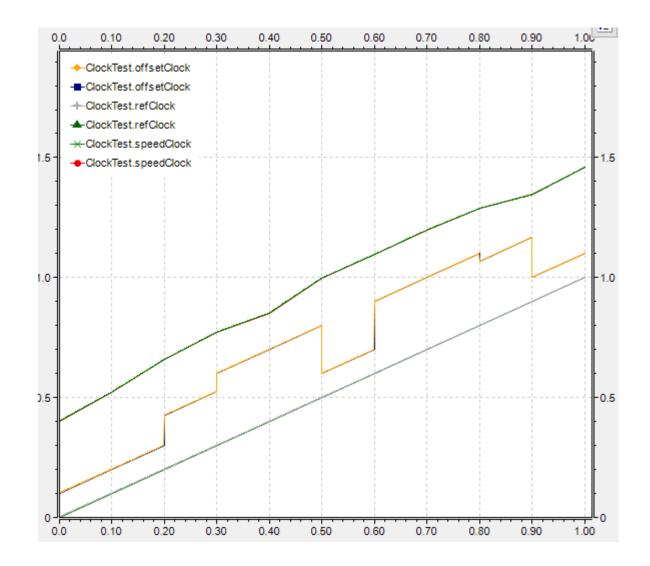

# Inaccuracies: Clocks



## Non-trivial: Clock Inaccuracies (Work in Progress)

- Sched. Clock and Tx Clock: Offsets and Drifts
  - Ok in IEEE 802.1Qcr, as long as the maximum offset is bounded
  - Assumed to be a desirable degree of freedom for implementers (i.e., no "very accurate" device-internal sync. mechanism needed)
- Inaccuracies can deform traffic envelopes, as enforced by shaping
- $\rightarrow$  Several questions:
  - One time, two times, three times?
  - Interaction with processing above delays?
  - Does one absorb the other?
  - Packet Ordering/Race Conditions?



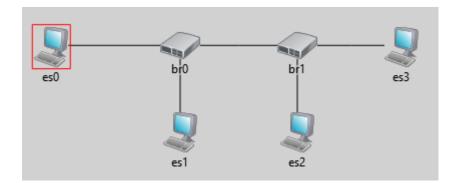

# Clocks: Obtaining Answers

## Math. Analysis

- Formal proofs (i.e., Guarantees)
- Implies abstraction

## Simulations

- NO Replacement for Analysis, but ...
- ... Validation: "Abstraction...Gaps?"
- ... Supportive: "How to proof?"
- $\rightarrow$  Feedback for math. Analysis




**Open-**Minded

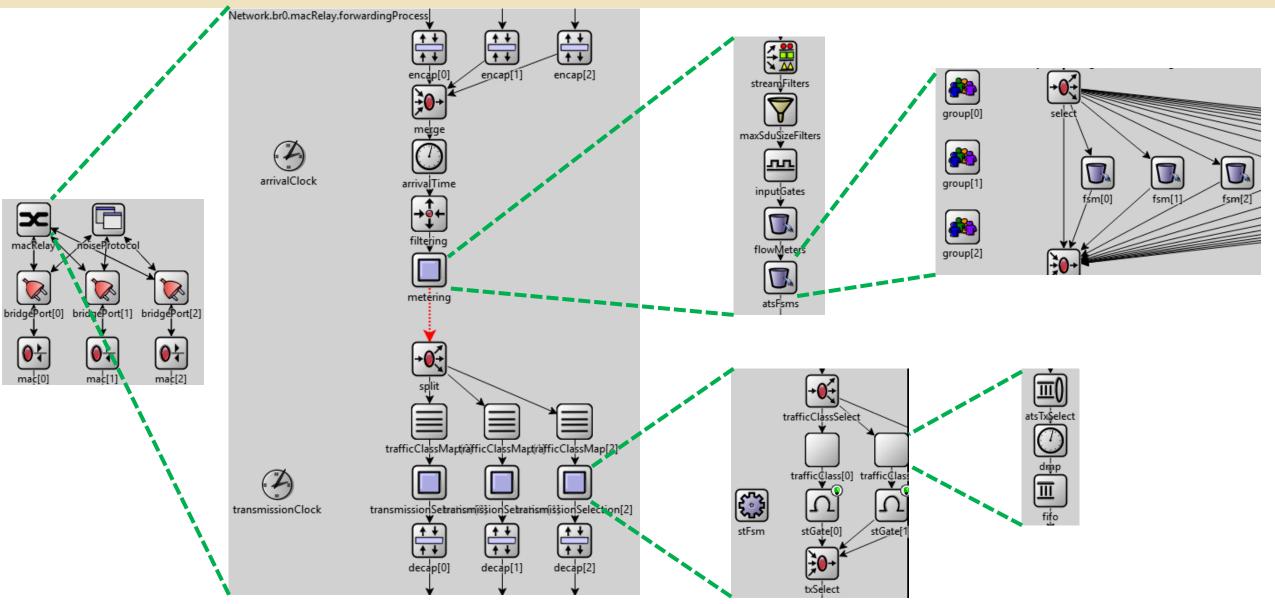
# Math. Analysis and Simulation In Progress

### Math Analysis

- A good guess is there ;)
- Working towards a proof
- May affect "AssignAndProceed(...)"
- Simulation close to IEEE 802.1Q
- Based on 802.1Qcr/Q-Rev 2018
  - <u>not based</u> on
    - UBS/ATS 2016 Models
    - Old IEEE 802.1 Std. Models
    - Particular Implementation Models
    - ...
- More 802.1Qcr: Full data plane model
- Implementation inaccuracies (like clocks):
  - Flexible submodule placement/ordering
  - Replacement by "imperfect" versions



UNIVERSITÄT DUISBURG ESSEN


**Open-**Minded

# Bridge Model in a Nutshell



DUISBURG ESSEN

UNIVERSITÄT



# Thank you for your Attention!



**Open-**Minded

## **Questions, Opinions, Ideas?**

### Johannes Specht

#### Dipl.-Inform. (FH)

Dependability of Computing Systems Schuetzenbahn 70 Institute for Computer Science and Business Information Systems (ICB) Faculty of Economics and **Business Administration** University of Duisburg-Essen

Johannes.Specht@uni-due.de http://dc.uni-due.de

Room SH 502 45127 Essen GERMANY T+49 (0)201 183-3914 F +49 (0)201 183-4573

