

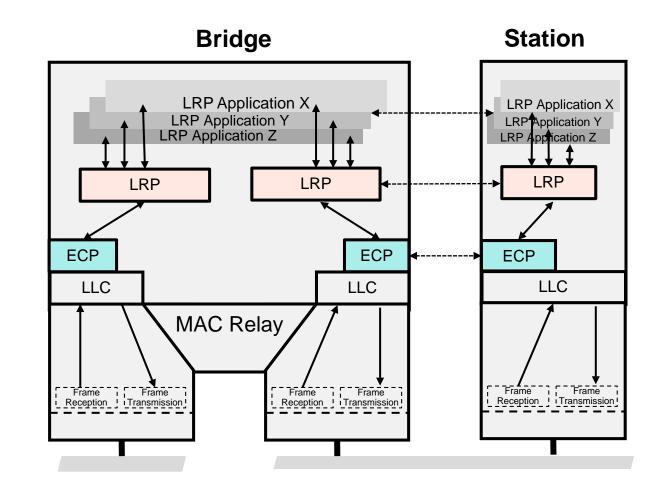
Edge Control Transport for LRP

September 2017

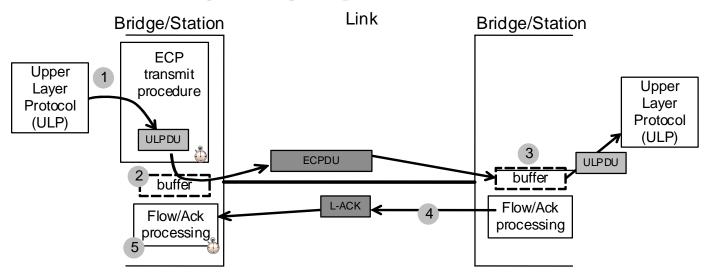
Paul Bottorff, Network System Architect, Aruba CTO's Office Paul.Bottorff@hpe.com

Link-local Registration Protocol Choices

- Draft 1.0 is based on an IS-IS-like protocol supported by two data transport options
 - Raw 802 datalink, LRP-DT ISS
 - -TCP Transport (of some type), LRP-DT TCP
- -This presentation explores the use of the Edge Control Protocol (ECP, IEEE Std 802.1Q-2014 clause 43) as a data transport for an IS-IS-like protocol

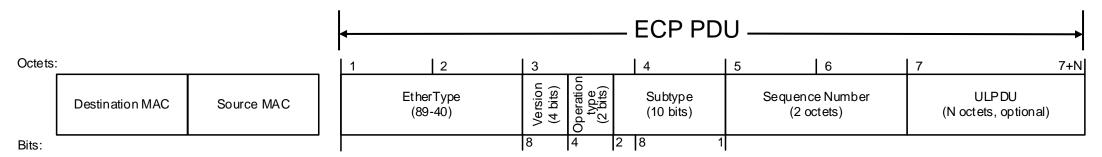

Edge Control Protocol (ECP) Service Characteristics

- ECP as defined in 802.1Q-2014 clause 43 supports transfer of control information between bridges and stations over 802 links
- -ECP is currently used by two 802.1 protocols:
 - Virtual Network Interface Discovery and Configuration Protocol (VDP, 802.1Q Clause 41)
 - Port Extender Control and Status Protocol (PE CSP, 802.1BR)
- ECP can provide service to multiple Upper Layer Protocols (ULPs)
- Basic services provided by ECP are:
 - Reliable delivery of ULPDUs, resilient against frame loss. The value of the maxRetries
 parameter determines the number of sequential lost frames that the protocol can sustain
 - Delivery of ULPDUs to the recipient ULP in the order that they were transmitted by the sending ULP
 - Delivery of a single copy of each ULPDU to the recipient
 - Flow control that provides protection against buffer overrun on the receive side



Edge Control Protocol (ECP) in Bridges and End Stations

- ECP is an L2 transport service sitting on top of LLC
- Each ECP dialogs with a peer determined by the destination MAC address used in the ECP frame
- ECP layer provides a service interface for client layers which can be used by any Upper Layer Protocol (i.e. LRP in this example)
- By using ECP rather than LLC for LDP-DT, LRP can be based on a reliable delivery service

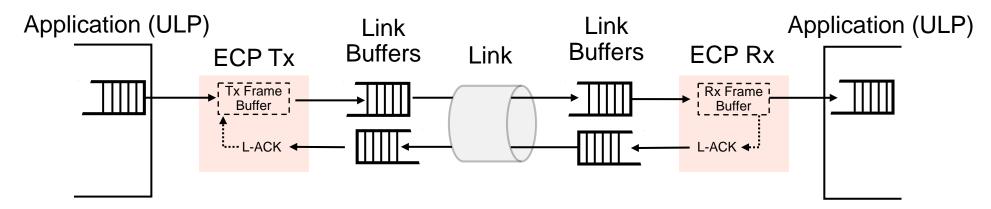


Edge Control Protocol (ECP) Operation

- ECP is a simple stop and wait automatic repeat request protocol supporting frame by frame transport of data from multiple Upper Layer Protocols (i.e. LRP database management protocol).
- 1 Upper layer (ULP) passes an outgoing ULP Data unit to ECP by invoking a transmit request procedure
- 2 The ULPDU (perhaps containing a set of TLVs) is transmitted and an ECP low-level acknowledgement (ACK) timer is set. The ULPDU is retained in a local ECP buffer.
- The ECP frame is received into a receive buffer, here it is held until it is removed by an ECP procedure that passes the ULP Data Unit to the associated ULP.
- 4 When the receive buffer is emptied, a L-ACK is sent to the sender
- 5 If the L-ACK is received before the L-ACK timer expires, then the transmit buffer is cleared and ECP can process another ULPDU
- 5 If the L-ACK timer expires before the L-ACK is received, then the frame in the transmit buffer is re-sent and the L-ACK timer is re-initialized
- 2 Retransmissions continue for a maximum number of re-tries

Edge Control Protocol (ECP) Frame Format

- ECP uses a destination MAC address specified by the Upper Layer Protocol (LRP in this case) and a source MAC address for system where ECP is resident
- ECP destination may be multi-cast, for instance the current application uses nearest customer bridge, provided we are on a point-to-point link
- ECP also supports unicast destinations which can pass though multiple bridges or operate on shared media
- LLC decodes ECP by EtherType 89-40 and Version (0x1)
- ECP Operation types are Request and Acknowledgement
- The Subtype identifies the Upper Layer Protocol
 - Currently subtype 0x001 identifies VDP and subtype 0x002 identifies the PE-CSP
 - IEEE has reserved all values which could be assigned to new protocols like LRP
- The sequence number is used for acknowledgement and error checking
- The Upper Layer PDU is opaque data passed to the ULP


6

ECP Configuration

- -ECP has two configuration parameters which must be set:
 - 1. maxRetries
 - 2. ackTimerInit (in units of 10 usec)
- -For the Edge Virtual Bridge application (IEEE Std 802.1Q clause 40-42) these parameters are negotiated between the link ends using the LLDP EVB Discovery and Configuration TLV (IEEE Std 802.1Q clause D.2.12)
- –ECP can be used without the LLDP discovery by setting the parameters in the MIB, however
- –Adding a Configuration and Discovery LLDP TLV for the LRP protocol with ECP configuration parameters is desirable since it allows the negotiation of the ECP parameters between the link ends

ECP Is Enough For LAN/MAN Control Applications

- ECP transmits a single frame per round trip time therefore the round trip time limits throughput
- Round trip time depends on transmission time, link latency, chip pipeline delay, link scheduling delay, queueing delay, ECP scheduling delay, and ECP execution time
- Assuming uncongested links with zero link scheduling delay, queueing delay, and ECP scheduling delay we can approximate the best case bandwidth
- For long link distance 10-100 Km TCP becomes desirable, and at longer distances it probably is mandatory

Approximate Best Case Throughput*

Link	Dist	Max f/s	utilization	1 Mbyte
1 GigE	100 m	60,000	75%	10 msec
1 GigE	1 Km	40,000	50%	20 msec
1 GigE	10 Km	8,500	10%	80 msec
1 Gig	100 Km	1000	1%	700 msec

^{*}Considering only link latency, link transmission time, and using 1 usec for chip pipeline delay. Calculations assume 1 Mbyte of data is delivered in 1518 octet frames.

ECP is sufficient for LAN/MAN LRP-DT

TCP Would Be Preferred For WAN Links

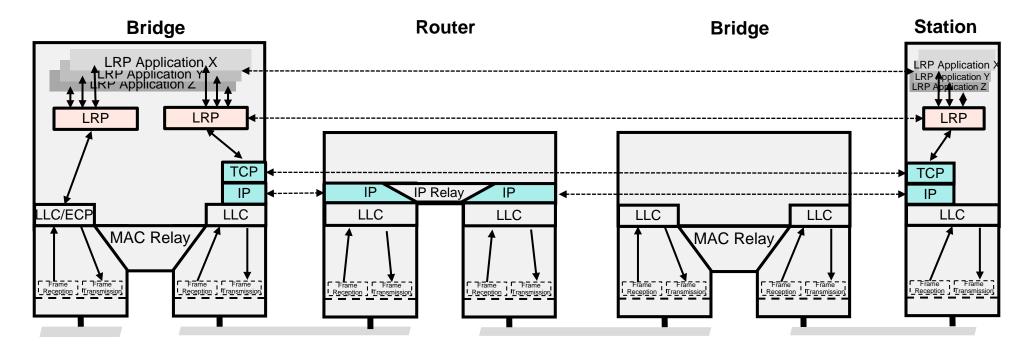
- –Some advantages to TCP are:
 - -Bulk transfer rates are mostly independent from link distance
 - -Bulk transfers can utilize full link bandwidth
 - The ends of a TCP connection could be separated by an L3 rather than L2 network (assuming we are using IP addressing)
- A few TCP considerations
 - -Using IP addresses will require a way to distribute them to the end points
 - –Many TCPs to choose from
 - For single frame transfers TCP will not perform better than ECP
 - -TCP does not enable low level hardware/firmware implementation
 - TCP provides fragmentation service for records up to 64K, however LRP could provide record fragmentation to any size
- -TCP is a reasonable option if WAN and L3 transit networks are a requirement

Do we need TCP or will ECP do?

ECP

- Simple, light weight, fully specified by 802.1
- L2 MAC/ULP Addressed
- Flow Controlled, Sequenced, Reliable Delivery
- Congestion Mgmt always in Slow Start
- No fragmentation service
- Throughput is less than link bandwidth and distance dependent

- Heavy weight, full service, many versions
- L3/L4 IP/Port Addressed
- Flow Controlled, Sequenced, Reliable Delivery
- Congestion Mgmt adjusts to fastest possible rate
- Fragmentation service from 64K to frames
- Bulk transfers at full link bandwidth mostly independent from distance


Summary

- Edge Control Protocol (ECP) is adequate for LAN/MAN LRP-DT applications
 - Fully specified by IEEE 802.1Q cl43
 - Good performance at LAN/MAN distances
 - Practical for low level hardware/firmware implementations
 - Configuration using LLDP TLV
- If we need to support WAN links then TCP would be a reasonable option
 - A TCP "virtual link" may be provisioned at each end of the connection
 - IEEE would need a TCP Port Number for 802 protocols over TCP
 - Using IP addresses to establish a "virtual link" using TCP allows delivery through L3 networks
- ECP and TCP both provide:
 - Flow control
 - Reliable frame delivery
 - Sequenced frame delivery
- The Link-Local Registration Protocol should be designed assuming reliable sequenced frame delivery

Backup Slides

TCP in Routers, Bridges and End Stations

- What TCP is best at is traveling through a series of relays
- -Standard TCP is addressed (IP/Port) allows passage through L2 and L3 relays
- Adjacent relay does not have enough information to configure a destination IP address

