

Real-time networks and preemption

More to it than latency

Rev. 3

Norman Finn

nfinn@cisco.com

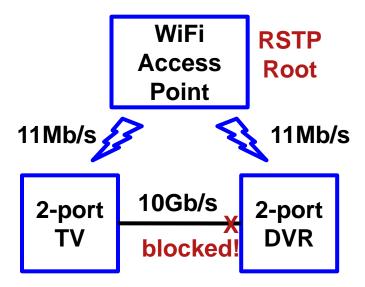
http://www.ieee802.org/1/files/public/docs2011/new-avb-nfinn-real-time-networks-1111-v03.pdf

What is a real-time network?

- In a real sense, all networks are "real-time" except for simulations of networks.
- Video or voice data is certainly a kind of "real-time"
- Priority, resource reservation, and other methods work for many networks that have tight latency and/or jitter requirements.
- In this slide deck, "real-time" means a guaranteed response time to any given input or combination of inputs. No excuses, no exceptions.
- Typical examples are automatic automobile braking systems and robot control.

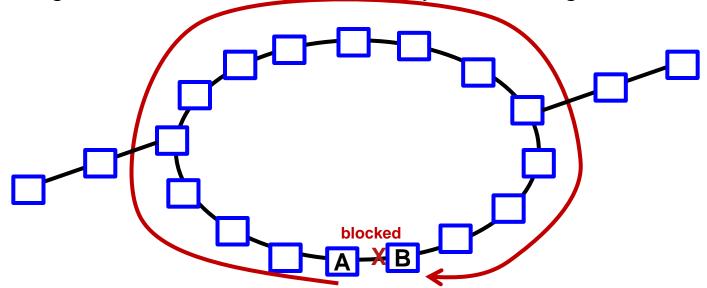
What do real-time networks lack?

- Some excellent presentations have been made this year on requirements from users and designers of realtime automotive and industrial networks.
- There are common threads that we can address:


Topology

Delivery

Predictability


 But, we cannot address them in isolation, either from each other, or from more general uses of Ethernet networks.

 As has been known for a long time, spanning tree has issues in simple networks with links of widely disparate data rates.

This diagram illustrates the problem in the home.

- Similarly, large rings, as are common in automobiles and industrial networks, are the least-favored topology for spanning tree.
 - Rings (with tails) exhibit the worst case reconfiguration times.
 - Rings exhibit the worst case penalty for blocking a link.

- We could build on spanning tree. But ...
 - Bridges running MSTP lack a view of the whole network, and this may useful information to applications.
 - •Using MSTP requires that MSRP or similar protocols must converge *after* MSTP converges, instead of simultaneously.
- For these reasons, and because the blocked-link problems in the previous slides are solved, this author believes that a link-state protocol should be the basis for real-time networks.

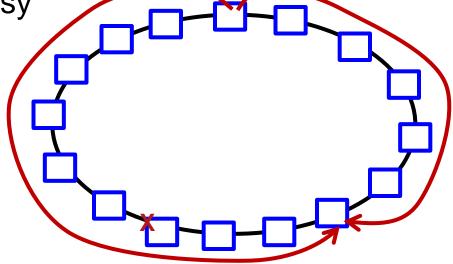
Shortest Path Bridging

- Coincidentally, SPBV (VLAN-mode Shortest Path Bridging) can be made plug-and-play for networks in the size range we're interested in.
- Some work would still be needed:
 - We must balance the number of VLANs against number of bridges ([number of bridges] * [number of VLANs] < 4096).
 - Learning MAC address can preclude the use of two paths between two stations.
- It is true that SPBV is more complex than alternatives that are based on a fixed topology. But, not all real-time networks are rings, and one must ask whether the topology is *really* fixed.

Delivery

Delivery

 For ultra-reliable communications between consenting stations, delivery of frames along two paths would be very helpful, and there are documented methods for it.


 This cannot be easily done by current bridging/routing protocols: paths are not equal cost, overriding the topology to slip past blocked links breaks address

learning, and it is not easy

to discovery maximally-

disparate paths.

• But, if we can do it, the value will be significant!

Delivery

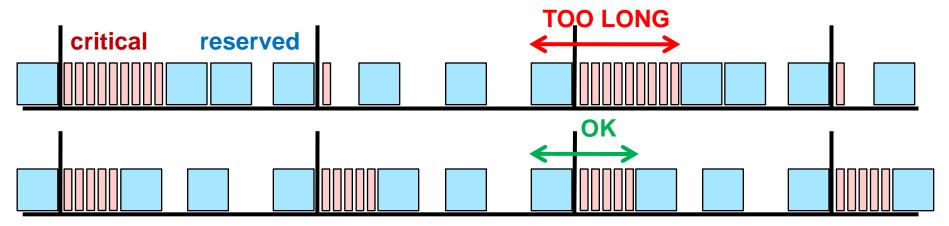
It is worth pointing out that P802.1Qbf Segment Protection can route frames outside the spanning tree or SBP framework, including simultaneous delivery along multiple paths.

Predictability

Predictability

- Preemption reduces queue size, and thus latency, by exactly one frame.
- Improving one flow's latency makes all other flows' latency and jitter even worse.
- As soon as you have two preemptive flows, collisions between those flows put you in the same place you were in before you introduced preemption.
- Cut-through forwarding of preemptive frames would improve best-case latency. Is this improvement also necessary?
- (Cut-through forwarding of preemptable frames results in an intractable fragmentation problem.)
- So, there is more to the predictability problem than latency or preemption.

Improving one hurts all others


- The work on 802.1Qat showed that the biggest impacts on the latency and jitter of a reserved stream (or the highest-priority non-reserved stream) are, in increasing importance:
 - 1. The largest conflicting lower-priority frame.
 - 2. The fan-in at each bridge to a controlled queue.
 - The percentage of bandwidth reserved for this level of controlled traffic.
 - 4. The percentage of bandwidth reserved for higher-priority controlled traffic.
- Preemption eliminates 1. 2 is not a concern for networks that are mostly rings. Preemption has a major impact on other, lower-priority bandwidth-reserved flows.

Time synchronization

- There is a long history of real-time networking, especially in the aerospace industry.
- In this world, "real time" does not mean interrupts and preemptive process scheduling. It does not mean "best effort delivery."
- "Real-time" means scheduling: scheduling processes within a station, scheduling communications between stations, and coordinating the stations' schedules.
- Scheduling guarantees that all processing and communications happen within the required time limits.
- Even network recovery is accounted for by scheduling alternatives.

But ...

- Critical traffic must live with bandwidth reserved traffic, also.
- If scheduled critical traffic takes a high enough percentage of the bandwidth for a long enough time, it will starve the bandwidth reserved (audio or video) traffic.

These requirements can be incompatible.

Non-real-time networks

Preemption in non-real-time networks

- In the typical enterprise or data center network, there is a high degree of connectivity in order to minimize congestion.
- A higher degree of connectivity implies more opportunities for flows to collide.
- Preemption reduces queue size, and thus latency, by exactly one frame.
- In a highly connected network with many transmitters, preemption makes a difference only in benchmark tests.
- It would be unfortunate if we allow a class of unrepresentative benchmark tests skew real requirements.

Summary

Real-time networks: 3 networks in 1

- Three levels of service: Critical, Reserved, and Best-Effort.
- Critical traffic uses preemption (and maybe cut-through forwarding) so that other classes do not disturb it.
- Critical traffic uses time synchronized transmissions to ensure that 1) critical flows do not interfere with each other, and 2) critical flows do not overly disrupt Reserved traffic.
- Reserved traffic uses bandwidth reservation and shaping to guarantee audio/video requirements.
- Best-effort traffic gets what's left.

Real-time networks: 3 networks in 1

- Preemption is required to ensure that non-critical traffic cannot interfere significantly with the scheduled operation of critical traffic.
- Cut-through forwarding (of critical traffic only) may be needed to minimize latency and the impact of critical traffic on other traffic classes.
- Scheduling of critical traffic is required both to meet application requirements and to avoid disrupting bandwidth reserved traffic.
- Existing bandwidth reservation and shaping are required to meet audio / video requirements.
- Existing priorities support best-effort service.