

InES Institute of Embedded Systems

Main issues identified

- Legacy traffic interference
- CBSA caused delays
- Queueing/Ordering effects ...and some combinations?

Legacy traffic interference

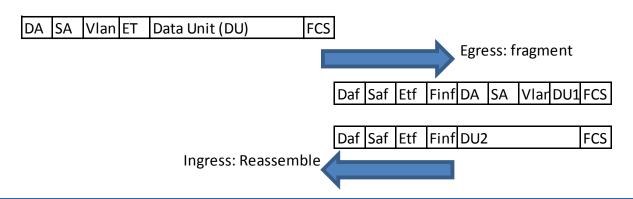
Problem Statement

- Non-preemptive nature of Ethernet
- Frames can be long with 1500 octets payload (means approx. latency <u>125µs</u> @FE, 12,5µs @GE)

➔ Possible Solutions

- Interruption mechanism for long frames
 →some changes in IEEE802.3 (and others?) needed
- Transmit acceptable peaces of information
 restrict max frame size at a link
 - ➔ fragmentation at egress and reassembly at ingress

Architectural consideration


- Short fragments is a LAN(link) property
 Dividged LAN property possible but some issues
- Fragmentation on egress
 Reassembly on ingress
- Short frame requirement leads to
 → 92 Octet data size of a fragmentation element
- Improvement latency by a factor of 10
- Average overhead <20%, peak 30% for legacy traffic
- Can be handled outside MAC in bridge or end device
- Fragmentation expedite any type of high priority traffic

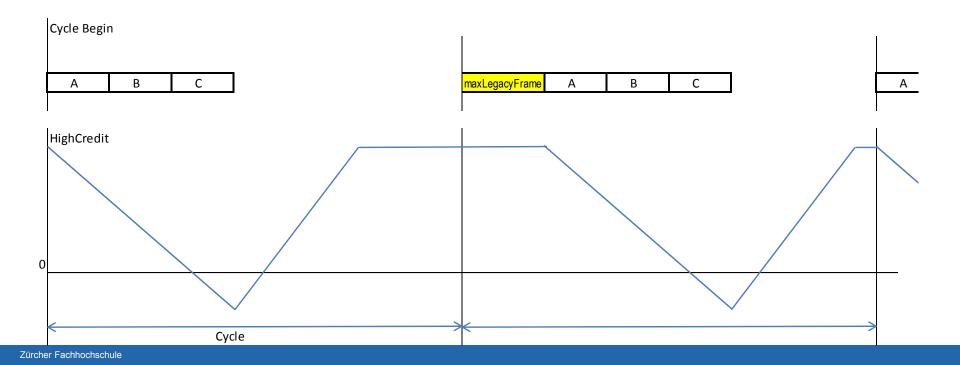
Example fragmentation

InES Institute of **Embedded Systems**

- Higher layers are not affected
- LAN technology not affected
- Some rules avoiding additional overhead:
 - Min Frame size: if residual fragment <46 upgrade last fragment to 46 and reduce last but one
 - A look ahead policy can reduce latency can be activatited after target port selection of stream

CBSA caused delays

- Problem Statement
 - Streams come from different sources at the same time
 - Last stream can be delayed for almost one cycle
 - Occurs with each data rate and each stream load
 e.g. FE 80% and GE 20% load causes similiar delays!


Possible Solution

- Avoid shaping effects in non-overload situations (burst all streams) work with positive credit
- → Handle a sequence of streams like a single stream
- \rightarrow Do shaping only if more than bandwith is exhausted for n cycles
- Drop stream elements if stream exhaust bandwith

Burst all streams

- All streams shall be send at cycle start
- Positive credit on idle
- Idle slope reach high credit before cycle begin (even with interference)

Queueing effects

Problem Statement

- Streams come from different sources
- Each stream on each port goes to a different target port on different bridges
- The last stream element of each ingress port goes to the same egress port

Possible Solutions

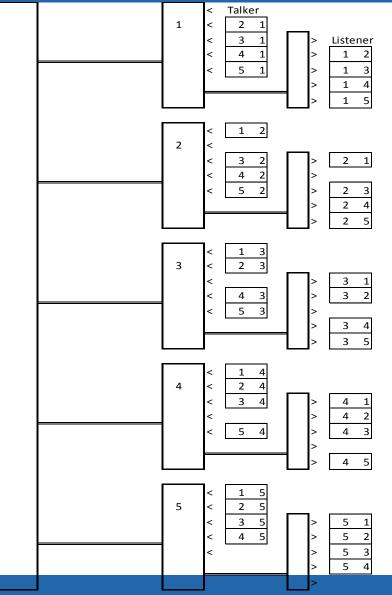
- Send selection depends upon ordering
- → Ordering Algorithm:
 - → Rearrangement of late frames
 - Neighbor can switch/set desired arrival order
- → Giving priorities in advance (per bridge?)

Ordering of streams

- Latency should determine the order
- Example shows a talker with several different listener
- Situation aplies to all structures
- Performance improvement factor 2
- This rule helps for cascaded hierarchial communication
- This shows that transmission time and bandwith must not necessarily be added (slipstream effect)

time	Talker	Bridge B1	Bridge B2	Bridge B3	Bridge B4
	ex B4				
	ex B3	ex B4			
	ex B2	ex B3	ex B4		
\checkmark	ex B1	ex B2	ex B3	ex B4	

More complex structures



0

School of Engineering

InES Institute of Embedded Systems

- Multiple sources and destinations show a different picture
- Path length is all the same
- Send Order in bridges 1 to 5 shall be different:
 - Bridge1: 21, 31, 41, 51
 - Bridge2: 32, 42, 52, 12
 - Bridge3: 43, 53, 13, 23
 - Bridge4: 54, 14, 24, 34
 - Bridge5: 15, 25, 35, 45

