March 2003 doc.: IEEE 802.11-03/203r0

802.1X/802.11 Issues

Nancy Cam-Winget, Cisco Systems
Paul Congdon, Hewlett-Packard
Jesse Walker, Intel Corporation

Agenda

- Issues with 4-way/group key handshakes
- Issues with pre-authentication

4-Way/Group Key Handshake Issues

These

- Represent new protocols, not simply message formats
- Have implications for the 802.1X statement machines
- Have expected sequencing with EAP-Success message
- Enable unicast and multicast traffic independently via same 'port'
- Obviously important and justifiable work
- Need to decide
 - Whether this work belongs in 802.1X or in 802.11i
 - How to resolve state machine interactions
 - Minimize impact on both 802.11i and 802.1X

4-way Handshake

- New 802.1X protocol used to:
 - establish liveness between STA and AP
 - Establish fresh PTK between STA and AP (at both 802.1X and 802.11 layers)
 - Binds management of 802.1X and 802.11 keys
- Diverges from 802.1aa
 - TGi relies on EAP-Success to trigger 4-way handshake
 - Different than current 802.1X key state machine
 - Incompatible with current 802.1aa state machines and interface

doc.: IEEE 802.11-03/203r0

Group Key Handshake

- Relies on a successful 4-way handshake, but not clarified in the 802.1X statement machine
- Relies on unicast traffic to be protected → implies
 partial port block or distinct port at both STA and
 AP

Consensus from 802.11i ad-hoc on 4-way handshake

- Recommend that current key machines in 802.1aa are optional
 - Indicate that other key machines defined in 802.11i may be used
 - Indicate in 802.11i that 4-way handshake 'replaces' key machines of 802.1X and does not 'use' them as defined.
- Recommend and document appropriate key machine interface in 802.1aa
 - Diagram interface to key machines
 - Define variables and interface procedures
- Force opposite sequence of EAP-Success and key machine initiation in 802.1aa

doc.: IEEE 802.11-03/203r0

Pre-authentication Issues

- These
 - 802.1X was not designed to work this way
 - have implications for the 802.1X state machines
 - potentially an additional security threats
- Obviously important and justifiable use of 802.1X
- Need to decide
 - Whether this work belongs in 802.1X or in 802.11i
 - How to resolve state machine interactions
 - Minimize impact on both 802.11i and 802.1X

Pre-authentication

- Forwarding EAPOL frames over DS:
 - Allows STA to authenticate with next AP prior to association via current AP
 - Allows an STA to authenticate with multiple APs at a time
 - Completes when the 1st message of the 4-way handshake is received by the new AP
- New paradigm for EAPOL over wired media
 - Unicast EAPOL frames on wired media
 - No concept of a 'port' over the DS to work with
 - Termination conditions are different than normal wired EAPOL exchanges

Ideas to address pre-authentication issues

- Define how 802.1X machines can run on wired shared media
 - Create a new concept of a 'virtual port' for new MAC addresses or learning events
 - Specify VLAN tagging rules for unicast EAPOL frames
- Encapsulate pre-authentication EAPOL frames differently
 - Define a new Ethertype for pre-auth EAPOL frames to skirt issues current rules
 - Establish a 'connection' to create a 'virtual port' for pre-auth converation
- Have 802.11i re-define authenticator state machines to support pre-auth using combinations of above
- Others?