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ABSTRACT
Benchmarking is a widely-used technique to quantify the
performance of software systems. However, the design and
implementation of a benchmarking study can face several
challenges. In particular, the time required to perform a
benchmarking study can quickly spiral out of control, ow-
ing to the number of distinct variables to systematically ex-
amine. In this paper, we propose IRIS, an IteRative and
Intelligent Experiment Selection methodology, to maximize
the information gain while minimizing the duration of the
benchmarking process. IRIS selects the region to place the
next experiment point based on the variability of both de-
pendent, i.e., response, and independent variables in that
region. It aims to identify a performance function that min-
imizes the response variable prediction error for a constant
and limited experimentation budget. We evaluate IRIS for a
wide selection of experimental, simulated and synthetic sys-
tems with one, two and three independent variables. Con-
sidering a limited experimentation budget, the results show
IRIS is able to reduce the performance function prediction
error up to 4.3 times compared to equal distance experiment
point selection. Moreover, we show that the error reduction
can further improve through system-specific parameter tun-
ing. Analysis of the error distributions obtained with IRIS
reveals that the technique is particularly effective in regions
where the response variable is sensitive to changes in the
independent variables.

Categories and Subject Descriptors
System performance [Performance benchmarking]:
Controlled Experimentation
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Experiment selection, Benchmarking, performance function,
Kriging
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1. INTRODUCTION
Careful performance benchmarking is important to un-

derstand how computer systems will operate under differ-
ent loads and configurations. Benchmark results are often
used to optimize a system’s configuration or to prepare a
capacity plan, and must therefore be accurate. However,
creating and modifying testbeds to accurately characterize
applications under different configurations and workloads is
often time consuming and expensive. As an example, a pre-
vious benchmarking study on interactive Web applications
deployed on multicore hardware [6] required around 1,800
experiments to examine six independent variables in a full
factorial setup, even with three of the variable being binary.

At a high level, careful performance benchmarking in-
volves quantifying the performance impact that different
system configurations and workload parameters, i.e., inde-
pendent variables, have on various system performance met-
rics, i.e., response variables. To capture these relationships,
i.e., the underlying performance function of the system un-
der test, it is important to determine (i) where in the inde-
pendent variable space to place experimental measurement
points, and (ii) how to estimate the underlying function
that relate these variables, given a set of such experimental
points. Most prior work in this area have been focused on
the second question, typically by comparing the accuracy of
different function prediction techniques and their abilities to
build statistically inferred models or interpolated functions
of system performance [17] [3] [5]. In contrast, we focus on
where in the independent variable space to place experimen-
tal measurement points, to achieve a desirable accuracy in
a cost-effective manner. In particular, we present IRIS, an
IteRative and Intelligent Experiment Selection methodol-
ogy which reduces the number of experimental points needed
for good performance function prediction and evaluate its
effectiveness when applied to a variety of performance func-
tions. IRIS allows us to focus on regions of greater interest
more quickly and efficiently. Furthermore, in contrast to
most existing experiment selection techniques, IRIS is iter-
ative and in each step places new test points where they are
expected to provide maximum information about the under-
lying performance relationships.

To illustrate the value of careful, iterative point selection,
consider a system in which the independent variable is the
user population of a Web server and the response variable is
the server’s response time. A naive benchmarking approach
would perform experiments for user population sizes evenly
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Figure 1: Sample point toy example.

split over the expected range of population sizes. The prob-
lem with this approach is that the response time may be
relatively constant for a wide range of (smaller) user popu-
lations, but may increase dramatically for a small range of
(larger) user population sizes, for which the system utiliza-
tion approaches one. The naive approach places unnecessary
points in the flat region of the independent variable space,
where performance function estimation is easy. A more effi-
cient approach would instead place additional points in the
region that sees the most change, and where it is more diffi-
cult to estimate performance accurately. If the approximate
shape of the underlying performance function is known or
can be quickly (and adaptively) learned, a more intelligent
sampling strategy, based on the current knowledge and es-
timates of the underlying shape, can instead redistribute
experimental points to the region with the bigger changes
in the response variable. This can in turn allow for bet-
ter tracking of the performance function and result in more
accurate benchmarking. IRIS leverages this observation.

This paper makes three main contributions. First, we
introduce the IRIS technique for performance benchmark-
ing. IRIS carefully adapts the experimental sample points
selection based on the current knowledge learned through
existing system models and the results obtained from prior
experiments. To capture the importance of these aspects,
IRIS allows the user to determine the weight given to the
initial point selection, e.g., based on offline system models,
relative to the iterative point selection process. IRIS uses a
single tuning parameter α that weights the desire to evenly
cover the full independent variable space and placing par-
ticular focus on regions with larger changes in the response
variable.

Second, we evaluate IRIS using several experimental, sim-
ulation based, and synthetic datasets for systems with up
to three independent variables. These datasets represent a
wide range of system performance functions, allowing us to
provide insights into parameter tuning under different types
of performance behaviours. The results show that IRIS can
significantly outperform baseline approaches based on equal
distance point selection. In particular, considering scenar-
ios with limited experimentation budget, we measure up to
4.3 times error reduction for the systems with one indepen-
dent variable and 2.8 times error reduction for the systems
with multiple independent variables. Moreover, IRIS does
not cause a significant degradation in prediction accuracy
for any of the eight cases we examine.

Third, we perform an in-depth analysis of different aspects
that impact the effectiveness of IRIS. In particular, we focus
on the criteria behind the selection of tuning parameters,

the effect of using an educated guess about the performance
function for the initialization of IRIS, the individual effect of
iterative versus weight based point selection, and the impact
of IRIS on the prediction error distribution. Our analysis
provides insights into how to best use IRIS to obtain the
ideal trade-off between prediction accuracy and the number
of experiments needed.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces IRIS and describes its behaviour under
different dimensions of independent variables. Section 3 ex-
plains our evaluation process. Section 4 compares IRIS with
baseline approaches for different systems. Section 5 presents
results that further characterize the behaviour of IRIS. Sec-
tion 6 discusses related work. Section 7 concludes the paper.

2. IRIS

2.1 Motivation
When using measurements to estimate the performance

function for an underlying system, not all measurement
points are of the same value. Some measurements provide
little new information about the system, while other points
may be very important to improve the overall accuracy of
the performance function. To illustrate this point, consider
the simple toy example illustrated in Figure 1. Here, the
measured response variable yj is sampled from an underly-
ing step function fd(x), which is 1 when the independent
variable x is greater than d, and 0 otherwise. Furthermore,
assume that we use a piecewise linear function between the
measurement points (xj , yj) to estimate the underlying func-
tion. In this case, the two measurement points closest to
either side of the step at x = d have the greatest impact on
the accuracy of the model, whereas any points that are on
the horizontally flat regions, i.e., between points with the
same y = fd(x) value; either all y = 0 or all y = 1, provide
no additional information.

Taking the above toy example one step further, let us
consider the case where we have an initial set S of measure-
ment points, and we want to use additional experiments to
determine more precisely where the step takes place. In this
case, assuming that we have at least one point on either side
of the step, a sensible algorithm would be to use a binary
search, in which a measurement is added at the midpoint
x′ = xa+xb

2
between the two points xa = maxj∈S(xj |yj = 0)

and xb = minj∈S(xj |yj = 1) closest to and on either side of
the step. This procedure is then repeated until the maxi-
mum error (xb − xa) of the current estimate of the x-value
of the step is less than some desired maximum error or until
we have reached our measurement point budget; in which
case the error is minimized, given a certain point budget.

In addition to showing that not all points have the same
value, this example also shows that the accuracy of the
model can be significantly improved by adapting where the
measurements are placed based on the current knowledge of
the system. For example, a naive solution that spreads all
measurement points evenly across the full measurement re-
gion would require exponentially more measurement points
to achieve the same accuracy of where the step is located. To
see this, note that the error of the binary search (above) re-

duces as O(2−|S|), whereas the maximum error when spread-
ing all points evenly is proportional to O( 1

|S| ).

While real systems typically have more than one point
of interest and typically involve more than one independent



variable, this example clearly shows that (i) there are sig-
nificant advantages to selecting measurement points care-
fully when building a performance function of the under-
lying system, and (ii) there are advantages to making use
of past measurements when selecting future measurement
points. In the following, we describe how IRIS generalizes
the approach illustrated on the above toy example to mul-
tiple independent variables (dimensions) and more general
relationships between the response variable and the indepen-
dent variables. Considering a limited point budget to keep
the duration of the benchmarking exercise from spiraling out
of control, IRIS carefully places measurement points based
on the current knowledge of the system, to maximize the in-
formation gain and achieve the overall goal of providing the
best possible performance function for the system. Equiva-
lently, when the accuracy of the performance function can be
explicitly evaluated, the same technique can easily be used
to solve the (equivalent) problem of minimizing the number
of measurements needed to achieve a given accuracy.

2.2 Methodology Overview
Our solution is simple and intuitive. It splits the point

selection process into two phases. First, an initial point se-
lection phase is used to obtain an initial sample point set Si,
with Ni = |Si| sample points. In the simplest case, these
points are evenly spread across the independent variable
space. This is possible even with very limited system knowl-
edge. However, we can typically do better than this. For ex-
ample, a user with a large number of initial measurements
can leverage a queuing model or other system knowledge to
carefully select points in regions of particular interest. While
step functions around which a user may want to place points
such as in the toy example are rare in real systems, most sys-
tems have known regions, e.g., high-utilization regions, with
larger response time differences than in other regions. Later
in this section, we describe how a queuing model can be
used to carefully select the initial points to target some of
these regions. In general, however, the initial point selection
phase is only used to obtain an initial set of sample points
and initialize the identification of region(s) of interest.

Second, an iterative refinement phase is used to identify
the regions of most interest and to iteratively refine the mea-
surement point selection. For this phase, we assume that we
have N ≥ Ni current sample measurements and a total sam-
ple point budget Nt. During each of the remaining (Nt−N)
iterations, a new sample point is placed so as to greedily
improve the accuracy of the performance function. More
specifically, in each step, the independent variable space is
divided into regions, e.g., the x-axis segments between the
sample points in our toy example, and a weighted gain Gj
is calculated for each region based on the variation in the
response variable and the size of the region. The intuition
here is that regions with bigger weighted gains are better
candidates to add measurement points. At the end of each
iteration, a new sample point is always added to the cen-
troid (defined in Section 2.3) of the region with the biggest
weighted gain. Section 2.3 provides the technical details on
how regions are defined in multiple dimensions, and how the
weighted gains are calculated for problems with different di-
mensionality using the current set of sample points.

2.3 Multi-dimensional Weighted Gains

To determine the region that may most benefit from an
additional measurement point, we calculate a weighted gain
for each region. To weight the importance of regions with
large variations in the response variable y with the desire
to have sufficient points in larger regions with smaller vari-
ations in the response variable, we calculate the gain factor
Gj of region j as the product

Gj = Aαj ×R1−α
j , (1)

where Aj is the normalized size1 of region j, Rj is a nor-
malized measure of the maximum observed difference in the
response variable, and α (0 ≤ α ≤ 1) is a parameter that
weights the importance of these two factors. With smaller α
values, IRIS gives higher importance to placing experiments
in regions where there are likely to be larger changes in the
response variable.

One independent variable: First consider cases with
a single independent variable x. In this case, the size
Aj of region j is equal to the difference in x-values be-
tween neighbouring measurement points and the response
spread factor Rj is equal to the absolute difference in y-
values between neighbouring measurement points. For ex-
ample, assuming an ordered list of N measurement points
for which xj ≤ xj+1, we can now calculate the two factors
as Aj = xj+1 − xj and Rj = |yj+1 − yj |, for each of the
N − 1 regions. Referring back to the toy example, we note
that the gain Gj of equation (1) would only be non-zero for
the region that we would like to split into two regions, as
long as α < 1. This process ensures that we focus on the
region of most interest.

For more general systems, there typically are multiple re-
gions with non-zero gain. In these cases, our approach will
greedily add a new point in the region with the greatest
weighted gain. Since each new measurement point splits a
region into multiple smaller regions, both Aj and Rj will
be smaller for this region, effectively increasing the relative
weight given to other regions, which may yet need to be split
to reach a desired accuracy.

Two independent variables: In this case, the exper-
iment candidates are selected from candidate regions in a
two-dimensional plane. Here, each candidate region is de-
fined as a triangle, with the corners of the triangle corre-
sponding to close-by measurement points from the current
sample set. For our triangulation, we use Delaunay trian-
gulation [2]. Delaunay triangulations are relatively easy to
calculate, guarantee a unique planar triangulation of the in-
dependent variable space, and generalize to multiple dimen-
sions. By maximizing the minimum angle of all the angles of
the triangles, Delaunay triangulations also provide triangles
consisting of points with high proximity. This is important
in our context, as we will select regions that will be further
split.

For our gain calculation, the size factor Aj is calculated
as the area of each triangle and the response difference fac-
tor Rj is calculated as the maximum absolute difference be-
tween the three corners of the triangle. For point selection,
we consistently add an additional measurement point at the
centroid of the region with the largest gain, where the cen-
troid is used to capture the center point of each triangle.

1In the 1D case the size of a region is defined as a length, in
the 2D case it is defined as an area, and in higher dimensions
it is defined as a volume.



Figure 2: Initial point selection phase.

Many independent variables: To further generalize
the above Delaunay triangulation approach to the case when
there are K > 2 independent variables to examine, we de-
fine each region as a convex hull of K + 1 points in the
K-dimensional space. Similar to the two-dimensional case,
the use of Delaunay triangulation ensures that the circum-
hypersphere of any triangle does not contain any interior
points. For each region, the size factor Aj is calculated as
the volume of each K-dimensional triangle and the response
difference factor Rj is calculated as the maximum absolute
difference between any pair of the the response variables as
observed at the corners of the triangle. Finally, we again
define the centroid as the center point of the hypersphere
and place an additional measurement point at this centroid.

2.4 Detailed Demonstration
We now demonstrate the two phases of our methodology

by applying the algorithm to a simple experimental dataset,
focusing on a single independent variable. The system under
study is a multicore Web server. The goal is to measure the
user experienced response time, i.e., the response variable,
as a function of the number of concurrent users or load, i.e.,
the independent variable. To understand the actual sys-
tem function, we have previously conducted extensive ex-
perimentation, in which we measured the response time for
a large number of experiments with equally spaced load val-
ues [7]. We normalize the load to be a number between 0
and 1. In Figure 2, the curve named ”Experiment Results”
shows the measured response time values as a function of
normalized load.

(i) Initial point selection: In this phase, an educated
guess is used to determine an initial set of Ni sample points.
System models can help us identify reasonable estimates of
the regions of interest and provide us with initial boundaries
of those regions. A simple way to come up with such an ed-
ucated guess is to run experiments for boundary values and
use linear interpolation. An alternative method to place the
initial points would be to use performance bound analysis [9]
to determine the values for the upper and lower bounds of
the response variable and the corresponding values of the
independent variables. A more advanced approach would
be to use a queuing model or other approximate models of
the system to estimate the response variable in the desired
range of independent variables. Such models or educated
guesses of the underlying performance function can then be
used to place the Ni initial points so as to cover variations
in both the independent and response variables. In general,

this can be done by splitting the parameter range so that the
maximum (expected) gain Gj of any of the resulting regions
is minimized. For our discussion here, we will assume a sin-
gle independent variable x and α = 0 for the initial point
selection. In this case, the points xinj are placed so that they
split the (expected) y-range of the Ni − 1 intervals evenly.

Figure 2 depicts the initial point selection phase for our
sample system. The plot shows the actual performance func-
tion of the system, i.e., the curve named “experiment re-
sults”, the educated guess, and the initially selected points.
As mentioned earlier, the system under study is a multicore
web server. The educated guess is obtained from a layered
queuing model [14] of the system, with model parameters
determined using estimated demands of hardware, software,
and network resources. Due to inaccuracy of the demand
estimation process, the final model has more than 100% er-
rors in some regions. However, the model is still useful for
determining the initial points. For this example, we start
with three initial points (Ni = 3), labeled in1, in2, and in3

in the figure.
Let’s look closer at the initial point selection. First, based

on the educated guess (EG), the value of response vari-
able, REG(x), varies for a range of ∆REG. We divide this
y-range into two equal intervals by adding a single point
in the middle of the y-interval at ∆REG

2
. Given the ex-

pected points xin1 and xin3 with the minimum and maxi-
mum load of interest, the second initial point is selected
as xin2 = R−1

EG(REG(xin1 ) + ∆REG
2

), where REG(xin1 ) is the

expected response time for the low load case and R−1
EG()

is the inverse function of REG(). Finally, experiments are
conducted to determine the actual values of the response
variables, yinj , as shown by the red crosses in Figure 2.

The best number of initial points depends on the shape of
the educated guess and the properties of the system under
study. In general, since the initial point selection is per-
formed with α = 0, the systems that benefit from a smaller
value of α can benefit the most from the initial point selec-
tion phase. In Section 5.3, we present an example of how the
initial point selection phase can influence the overall error
reduction achieved through IRIS.

(ii) Iterative point selection: There are two input pa-
rameters for this phase of the algorithm: (i) a sample point
budget (Nt), which is the maximum number of experiments
we can run, and (ii) the factor α that weights the impor-
tance of independent and response variables in selecting the
next point. In this section, we assume that both parameters
are known prior to the start of the iterative phase.

Having selected an initial point set, an ordered list of al-
ready measured (xj , yj) points are available, where initially
1 ≤ j ≤ Ni. With this as the base case, the algorithm then
calculates the gain factor Gj , using equation (1), for all in-
tervals. The centroid of the interval corresponding to the
maximum Gj is selected as the next point to be examined.
After the first iteration, the list of available points grows
to Ni + 1 points. The iterative phase continues until the
number of available points reaches the Nt limit.

We next demonstrate the point selection process for our
example system considering different values of α. Fig-
ures 3(a) to 3(c) show the actual performance functions re-
flecting the experiment data as well as the selected points
for α = 0, α = 0.5, and α = 1. For ease of comparison,
in all cases, we have used the same Ni = 3 initial points
shown with red crosses and a total sample point budget of
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Figure 3: Iterative point selection phase.

Nt = 8 shown as green circles. In Figure 3(a), where α = 0,
the first iteratively selected point, labeled as it4 to indicate
that it is added during the iterative phase and is the 4th

selected point, is selected in the right-most interval since
it has the maximum value of Rj of the different candidate
intervals, and the interval with maximum Rj is always pri-
oritized when α = 0. After this point is added to the set, the
algorithm examines three intervals in the second iteration.
Again, the next point, it5, is selected as the centroid of the
right-most interval. The iterative phase continues until the
number of selected points reaches Nt.

Considering the changes in the position of selected points
from Figure 3(a) for α = 0 to 3(c) for α = 1, we note that as
the α values increases, the selected points are more spread
along the x-axis. This illustrates how the α parameter can
be used as a tuning knob to put more or less emphasis on the
regions with higher changes on the response variables. For
example, with α = 1 the interval with the largest x-range
difference (Aj) is always split, and with α = 0 the interval
with the largest y-range difference (Rj) is always split.

3. EVALUATION METHODOLOGY
For the purpose of evaluation, we have applied IRIS to

several systems with different characteristics. This section
provides details of the general evaluation process. In partic-
ular, we outline a common baseline protocol against which
we compare our technique, describe the input parameters,
and explain evaluation metrics and the techniques we used
to estimate the performance function.

3.1 Equal Distance Point Selection
A common way of selecting the values of independent

variables to perform benchmarking studies is through equal
distance (EQD) point selection. With this approach, the
possible range of each independent variable is divided into

N −1 equally sized intervals. Assuming D dimensions, each
dimension d (1 ≤ d ≤ D) divided into Nd − 1 intervals,

this approach results in
∏D
j=1 Nj evenly spread experiment

points.
A major drawback of EQD is the cost of adding additional

points to achieve a desirable accuracy. As a simple exam-
ple, consider a system with a single independent variable,
where the initial estimate of the required number of points
is five. Now assume that after running the experiments for
five equally distanced points and applying a function esti-
mation technique, the accuracy of the estimated function
is not desirable. If there is additional budget available for
adding more experiment points, and one wants to spend the
additional points through the EQD approach, there are two
ways to proceed. First, one can replace the three middle
points with four new points that are equally spaced. Sec-
ond, one can add a single point in the middle of each interval.
In both cases, four new experiment points are required to
increase the accuracy of the predicted function while still
maintaining the equal distance property. Therefore, one re-
quires nine points for identifying the performance function
at this stage. These examples describe cases where the avail-
able point budget is spent in multiple rounds of EQD. We
refer to this approach as multi-stage EQD.

We also consider a penalty-free version in which any pre-
viously performed measurements not used, as in the first of
the above approaches, are ignored. This corresponds to the
optimistic case when we always guess the correct number of
sample points to use from the start and place all the point
budget in a single round of EQD. We refer to this optimistic
approach as single-stage EQD.

In our case studies, we compare both multi-stage EQD
and single-stage EQD with IRIS, emphasizing that single-
stage EQD is optimistic in most cases. For the systems with
a single variable, the number of equally distanced points is
set to Nt. For the cases with more than one independent
variable, we consider all combinations of number of intervals
in different directions that lead to a total of Nt points.

3.2 IRIS Parameters
As described in Section 2.4, there are four main input

parameters for IRIS: (i) an educated guess of the expected
performance function, (ii) the number of initial points Ni,
(iii) the weight tuning gain parameter α, and (iv) the to-
tal sample point budget Nt. In the case studies presented in
Section 4, we keep the first three inputs constant to facilitate
a direct comparison. For the evaluation, we typically assume
minimum knowledge about the system and try to minimize
the effect of the initial point selection. In particular, we
assume that the educated guess is simply a linear relation-
ship between the independent and response variables and
use Ni = 3D, where D is the number of dimensions. Hence,
for the single dimensional case we have Ni = 3. Section 4
considers the performance using default settings, before Sec-
tion 5 evaluates the effect of tuning these parameters on the
final results. For each case study, we explore a range of Nt
values. The minimum of this range depends on the dimen-
sionality of the system. The maximum is determined as the
point budget beyond which there is no significant improve-
ment in the prediction errors from the performance functions
estimated by all the techniques.

For each case study, five values of α (0, 0.25, 0.5, 0.75, and
α = 1−ε) are examined for a wide range of Nt values. Recall



that α = 0 leads the algorithm to only consider the change
in the response variable Rj . Conversely, α = 1 considers the
other extreme and only considers the area Aj of each region
in the gain calculations. Selecting α = 1− ε ensures that in
case IRIS encounters equal areas, it selects the region with
maximum variability in the response variable Rj .

2

3.3 Evaluation Metrics
All methods are compared based on their relative accu-

racy for fixed numbers of point budgets. To calculate the
accuracy metric we use the following three steps for each
dataset and algorithm considered.

1. Run the algorithm: The output of this step is the set
of selected points. Each point is a set of values for the
independent variables and the corresponding response
variable obtained from the experiment dataset.

2. Estimate the performance function: The set of points
selected in the previous step is fed to a function es-
timation technique to estimate the performance func-
tion. The prediction for each point xj obtained from
this function is referred to as RPRD(xj). The func-
tion estimation techniques we consider are explained
in Section 3.4.

3. Calculate the Average Absolute Error (AAE): At this
step, the values predicted by the performance function
are compared with their corresponding experimentally
measured values for all the available points in the ex-
periment dataset. The AAE is calculated as follows:

AAE =

∑n
j=1 |RPRD(xj)−R(xj)|∑n

j=1 R(xj)
· 100, (2)

where n is the number of input points in the exper-
iment dataset. For our evaluation, we consider con-
strained experiment budgets; i.e., Nt << n.

For head-to-head comparisons, we repeat the same process
with the two EQD point selection approaches in step 1. For
each dataset, the process is repeated for a range of point
budgets (Nt). Finally, to quantify the effectiveness of IRIS
compared to the EQD baselines, we define the Error Reduc-
tion (ER) ratio as:

ER =
(AAEbaseline −AAEIRIS)

AAEIRIS
, (3)

where the AAE is the average of all AAE values measured
for setups with different point budgets (Nt). To calculate
AAE , we only consider Nt’s that are common between the
IRIS and baseline methods.3 Note that the baseline method
can be any of the two EQD approaches.

3.4 Function Estimation Techniques
In this study, we used two function estimation techniques,

namely, the commonly used Cubic Spline interpolation tech-
nique for one-dimensional systems and Kriging for multi-
dimensional systems. The Cubic Splines method can also be
applied for multi-dimensional systems. However, it requires

2We use ε = 0.001 for all the datasets.
3Due to the stepwise nature of multi-stage EQD approach,
only a subset of point budget values are possible with this
approach.

a grid of points in all dimensions to perform the interpola-
tion. Recall that IRIS is based on scattered and iterative
point selection. Therefore, we select the Kriging [4] tech-
nique as it is better equipped to handle scattered point se-
lection in multi-dimensional scenarios. Previous studies [17]
have also confirmed the applicability of Kriging for estimat-
ing performance functions. Kriging has several variants such
as simple Kriging, ordinary Kriging and universal Kriging.
We select the ordinary Kriging approach as it requires no
initial information about the trend of the estimated perfor-
mance function. We use the UQLab [15] implementation of
Kriging for MATLAB.

4. RESULTS
To evaluate the effectiveness of IRIS, we perform sev-

eral case studies based on datasets collected through experi-
ments, simulations, or synthetic performance functions. We
evaluate the approach for a total of eight datasets based on
four systems with a single independent variable, three sys-
tems with two independent variables and one system with
three independent variables.

4.1 Single Independent Variable
We consider four systems with vastly different shapes of

the underlying performance functions. Each dataset consists
of a family of performance functions with similar high-level
characteristics but different properties, e.g., different sizes
of the flat regions. This allows us to determine the relation-
ship between the tuning parameters, in particular α, and the
properties of the performance function, as we will elaborate
later in Section 5.1. The plots in Figure 4 show the normal-
ized response variable (y) as a function of the normalized
independent variable (x) for all four families of performance
functions considered. Note that both the independent and
response variables are normalized by rescaling to the range
of [0, 1].

The performance functions of the first dataset, shown in
Figure 4(a), are the results of a simulation study of a closed
system with two resources and two user classes. The inde-
pendent variable (x-axis) is the service time for resource one
while the response variable (y-axis) is the response time of
the class that poses the largest service demand on that re-
source. Each curve C1, C2 and C3 in Figure 4(a) are the re-
sults of simulations for various combinations of populations
for the two classes. Further discussions about the analysis of
the system’s behavior can be found in Chapter 7 of the text-
book by Lazowska et al. [9]. These s-shaped curves represent
cases where the response variable is initially constant then
has a sharp increment before entering a saturation mode.

The second dataset, shown in Figure 4(b), is collected
from the experimental system described in Section 2.4. Here,
a large number of concurrent web requests are served using
a multicore server, and the primary performance trade-off of
interest is the impact that the normalized load, i.e., normal-
ized number of concurrent users per core, has on the mean
response time. We refer to this system as the load-response
time dataset. The curves, C1, C2 and C3 show the ac-
tual experimental results for this system with two, four and
eight processor cores, respectively. The three curves differ
in terms of the extent of the flat region as well as the rate
at which the response time increases with load. The main
characteristics of this system is that the response variable
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Figure 4: 1D systems: (a) S-shaped, (b) Load-response time, (c) Hockey stick, and (d) Bell-shaped.
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Figure 5: ER ratios for 1D systems: (a) S-shaped, (b) Load-response time, (c) Hockey stick, and (d) Bell-
shaped.

increases sharply for a small range of the independent vari-
able.

Third, we consider a group of performance functions gen-
erated by simulating a closed queuing model with three re-
sources. The goal of this simulation is to identify the im-
pact of user think time on the average response time. The
results of this study are depicted in Figure 4(c). We refer to
this family of curves as hockey stick as they have a section
with constant slope as well as a flat region. The combina-
tions of the resource demand values used in the simulation
results in three curves that are different in terms of the ex-
tent of the flat region. Similar to the load-response time
system, this dataset contains a region where the response
variable does not change significantly with the independent
variable. However, in contrast to the load-response time sys-
tem, the increase in the response variable is only gradual in
the hockey stick dataset.

The last dataset, shown in Figure 4(d), includes a group of
bell-shaped synthetic functions representing normal distribu-
tions. We change the mean and standard deviation to vary
the position of the maximum response and the width of the
bell in the four curves. Compared to the previous datasets,
the bell shapes display both an increase and decrease in the
response variable over the range of the independent variable.

Figures 5(a) to 5(d) show the Error Reduction (ER) ratio
for IRIS compared to the two EQD baselines. We again note
that the single-stage EQD is highly optimistic in most cases,
is not always feasible, but provides the most competitive
baseline comparison in one dimensional cases. A negative
ER value implies that IRIS causes a larger AAE compared

to the baseline method. The ER ratios in Figure 5 are
calculated for α = 0.5. We will discuss the effect of other
values of α in Section 5.1.

Figure 5 reveals that IRIS leads to a positive ER ratio for
a vast majority of cases. Figure 5(a) for the s-shaped dataset
suggests that our approach led to a maximum of ER = 0.3,
which is equivalent to a 30% error reduction. The maximum
ER value is measured for the curve with the steepest slope
and the largest flat region. IRIS yields dramatic gains for
the load-response time dataset. As shown in Figure 5(b),
IRIS leads to an ER of 4.3 and 2.3 compared to multi-stage
and single-stage EQDs, respectively. The results also reveal
that the ER ratio increases as we move from C1 with the
smallest flat region to C3 with the largest flat region. A
similar trend is observable for the hockey stick dataset, as
shown in Figure 5(c). For this system, the ER ratios are
slightly less than the load-response time dataset. Finally,
the results for the bell-shaped curves, as depicted in Fig-
ure 5(c), reveal a few cases where IRIS with α = 0.5 sees
slightly worse performance than single-stage EQD, i.e., neg-
ative ER values. However, in general, IRIS improves the
accuracy for the bell-shaped curves as well. In particular,
for C1 it reduces errors by as much 130%. It should also be
noted that IRIS allows incremental point selection, allowing
the technique to be used iteratively until meeting a desired
accuracy or stopping criteria. In contrast, single-stage EQD
is optimistic in that it always ”guesses” the correct number
of sample points.

Overall, these results show that IRIS can result in up to
2.3 times improvement in terms of AAE, compared to the



single-stage EQD. The improvements are even higher rela-
tive to multi-stage EQD. Moreover, the maximum achievable
improvement depends on the shape of the system’s actual
performance function. Selecting the value of α based on
the expected system behaviour can further increase the ER
ratio, as we will discuss in Section 5.1.

4.2 Multiple Independent Variables
In this section we consider datasets with multiple inde-

pendent variables. The first three datasets are systems with
two independent variables while the last one is a simulation
system with three independent variables. Figure 6 shows the
systems with two independent variables. Similar to the sin-
gle variable systems, each dataset consists of surfaces with
similar high-level characteristics that differ in specific prop-
erties such as the area of the flat surface or the slope.

The system functions of the first dataset, shown in Fig-
ure 6(a), are the results of a simulation study of a closed
system with two resources and two user classes [9]. The
first and second independent variables (x1 and x2) are the
service times for resource one and two, respectively. The
response variable (y) is the response time of the class that
poses the large service demand on resource two. Each sur-
face represents the results of the simulation for a combina-
tion of populations for the two classes. The focus of our
analysis is on the s-shaped surfaces of the response variable
that is almost constant with respect to x1 and is initially
constant then has a sharp increment and then enters a sat-
uration mode with respect to x2.

The second dataset, depicted in Figure 6(b), is a load-
response time dataset with two load parameters as inde-
pendent variables. In this case the system functions are
collected from simulating an open queuing model with an m
server resource and two user classes. The request arrival rate
for each user class is considered as an independent variable
and the average response time over all classes of users as the
response variable. The surfaces S1 to S3 are the results of
running the simulation for m = 1, m = 2 and m = 4.

The last dataset, shown in Figure 6(c), represents a group
of three synthetic Gaussian surfaces with different means
and standard deviations. Similar to the single variable bell-
shaped system, this dataset is selected to examine surfaces
with a maximum point in the middle of the range of inde-
pendent variables. S1 and S2 have similar maximum points
but differ in terms of the radius of the bell. S3 has a simi-
lar radius with S2 but a different position for the maximum
point.

Figures 7(a) to 7(c) show the ER ratios calculated for
the systems with multiple independent variables. Note that
IRIS provides a positive ER ratio when applied to all three
systems. The maximum ER ratio was measured for the s-
shaped dataset, as shown in Figure 7(a). From Figure 7(b),
the ER ratios for the load-response time dataset are between
0.5-0.7 (50%-70%) and 0.3-0.4 (30%-40%) relative to multi-
stage EQD and single-stage EQD, respectively. While the
ratios are all positive, they are lower compared to the s-
shaped dataset. This can be explained by the large size
of the flat region in this dataset. In Section 5.4, we will
discuss a better criteria to evaluate the effect of applying
IRIS for datasets with large flat regions. Finally, applying
IRIS results in considerable error reductions for the bell-
shaped surfaces, as depicted in Figure 7(c). Comparing the
results for S1 and S2, the ER ratio is larger for the wider

surface S1. It is also larger for the symmetric curves S1 and
S2 compared to S3. We explore the relationship between
properties of the bell-shaped surfaces and the effectiveness
of IRIS in more detail in Section 5.1.

Next, we apply IRIS to a dataset with 3 independent vari-
ables. This dataset is obtained from the results of a simu-
lation study of a closed system with two resources and two
user classes presented in Chapter 7 of the textbook by La-
zowska et al. [9]. The example illustrates a case where the
combination of service demand values for the two classes on
the two resources results in the response time of class one to
increase as the service time for resource two decreases. We
used this remarkable behaviour to create a surface with a
hump-shaped maximum point in the middle of the parame-
ter plane. The service time of resource two and the ratio of
class populations for the two classes are selected as the first
and second independent variables. We extend the parame-
ter space to the third dimension by running the simulation
for a range of user populations. The final system is different
from the previous systems in that it simultaneously displays
bell-shaped, s-shaped and the load-response behaviours.

Table 1 shows the ER ratios for various values of α when
compared with multi-stage and single-stage EQD baselines.
The results show that except for the α = 0 case and relative
to the highly infeasible single-stage EQD case, all the ER
ratios are positive and vary between 0.21 < ER < 2.79. The
largest error reduction was achieved with α = 1− ε.

Table 1: ER ratios for 3D system.
α multi-stage EQD single-stage EQD

0 0.21 -0.28
0.25 1.75 0.63
0.5 1.99 0.77
0.75 2.76 1.22
1− ε 2.79 1.24

5. DISCUSSION
This section provides additional experiments to illustrate

various properties of IRIS. We first investigate the best
choice of the tuning parameter α based on the expected
shape of the system’s actual performance function. Second,
we isolate the effect of the iterative point selection to fur-
ther understand this component’s contribution to the im-
provements seen with IRIS. Third, we show how a partially
accurate educated guess about the system under study can
improve the ER ratio. Finally, we perform an in-depth anal-
ysis of the error distribution to identify the regions of the
independent variable space that benefit the most from ap-
plying IRIS.

5.1 Tuning the Gain Parameter
The results presented in Section 4 show that IRIS is able

to reduce the AAE for a vast majority of system functions
with α = 0.5. We now investigate how the initial knowledge
about shape of the system function can be used to select
an even better α. To quantify the effect of α on the AAE,
we apply IRIS to the one-dimensional and two-dimensional
datasets for a range of gain parameter α values, 0 < α < 1.

In general, we find that α should be small when the under-
lying function has a convex knee, e.g., the load-response time
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Figure 6: 2D systems: (a) S-shaped, (b) Load-response time, and (c) Bell-shaped.

E
rr

o
r

R
ed

u
ct

io
n

ra
ti

o

E
rr

o
r

R
ed

u
ct

io
n

ra
ti

o

E
rr

o
r

R
ed

u
ct

io
n

ra
ti

o

surface surface surface
(a) (b) (c)

Figure 7: ER ratios for 2D systems: (a) S-shaped, (b) Load-response time, and (c) Bell-shaped.

or hockey stick systems, and should be larger in the rarer
cases when the system has a symmetric maximum point,
e.g., the bell-shaped systems. The results for one example
of each type are illustrated in Figures 8 and Figures 9 for the
one-dimensional and two-dimensional systems, respectively.

Figure 8(a) shows the AAE as a function of the α param-
eter for the load response time dataset. Here, larger values
of α, say above 0.6, result in a larger AAE. This behaviour
is expected, considering the shape of the three curves in
this dataset, and confirms our intuition that greater weight
should be given to the region with large changes in the re-
sponse time (i.e., the Rj term in equation 1). Using a large α
value for this dataset is sub-optimal since it places too many
points in the flat low-load region. Instead, using smaller α
values appears desirable as this allows more points to be
placed closer to the region of most interest.

In contrast, from Figure 8(b), for the bell-shaped dataset
the optimal α depends on the position of the maximum point
as well as the size of the flat region. More specifically, for
curves C2 and C4 with a more symmetric shape and smaller
flat regions, the higher values of α result in lower errors. In
contrast, for C1 and C3 with the larger flat region, setting
α < 0.8 can minimize the AAE. The difference between
the two systems shows the value of careful selection of the
α parameter. For systems where the existing system knowl-
edge suggests that there is a convex sharp knee we may want
to pick a smaller α, and in the rarer cases in which the sys-
tem knowledge suggests a concave and symmetric maximum
point we may want to select a larger α.
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Figure 8: Effect of α on AAE for 1D systems: (a)
Load-response time, and (b) Bell-shaped.

The two-dimensional results shown in Figures 9(a)
and 9(b) confirm that these observations extend to multi-
ple dimensions. For the load response time dataset, the
surfaces have a large flat region that can suffer from setting
α to lower values. Therefore, as shown in Figure 9(a), an
intermediate α (say α = 0.5) is best in this case. For the
three bell-shaped surfaces without flat regions, the optimal
setting is α = 1.

5.2 Effect of Iterative Point Selection
As mentioned in Section 2, IRIS aims to improve predic-

tion accuracy by applying two main modifications compared
to EQD point selection: (i) selecting the points iteratively,
and (ii) selecting the position of the next point based on
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Figure 9: Effect of α on AAE for 2D systems: (a)
Load-response time, and (b) Bell-shaped.

the observed changes in the response variable. To isolate
the effect of the first modification alone, we evaluate IRIS
with α = 1 − ε , in which case points are spread as evenly
as possible ignoring the changes in the response variable.
Due to space constraints, we show results only for the one-
dimensional load-response time systems but similar results
are observed for the other systems as well. We calculate the
average AAE across all of the curves in this dataset. Fig-
ure 10 shows the AAE as a function of the total sample point
budget Nt. With α = 1− ε, IRIS would always place a new
point at the midpoint of the largest current interval. It is
therefore no surprise that the IRIS result matches the single-
stage EQD results for the cases when Nt = 5, 9,and 17. In
all these cases the distances between the points selected by
IRIS should be equal. For the other Nt cases, IRIS leads
to significantly lower AAE compared to both multi-stage
and single-stage EQD. This emphasizes the importance of
iterative point selection.

The results also confirm that IRIS can achieve a desired
level of accuracy with a smaller point budget compared to
both EQD baselines. For instance, considering a desired
accuracy level of 40%, IRIS needs to spend Nt = 6 points,
while the single-stage and multi-stage EQD need Nt = 9
and Nt = 19 points, respectively.
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Figure 10: Effect of iterative point selection.

5.3 Effect of Initial Point Selection
In the results presented in Section 4, we tried to minimize

the effect of the initial point selection by assuming that there
is limited knowledge about the system under study. Specif-
ically, we assume linear relationships between response and
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Figure 11: Linear guess vs. model based guess.

independent variables. In this section we show the effect of
using a more educated guess about the system in the initial
phase of IRIS.

The demonstration in Section 2.4 suggests that a careful
selection of the initial points can be beneficial for system
functions that generally benefit from smaller α values. Con-
sequently, we consider the single dimension load-response
dataset to explore the impact of careful initial point selec-
tion. As mentioned in Section 2.4, we use a layered queueing
model for this dataset to obtain a realistic, educated guess
of the system’s performance function.

Figure 11 shows the ER ratios for the linear guess, i.e.,
the results presented in Section 4.1, and our educated guess
based on the model. For example, considering single-stage
EQD, selecting the initial points based on the model’s edu-
cated guess can increase the ER ratio by around 17% over
a linear initial guess. Similar results are obtained for other
curves in this dataset as well as all surfaces of the load-
response time dataset with two independent variables.

5.4 Error Distributions
In Section 4, we compared IRIS against the two baseline

algorithms considering the differences between their ”aver-
age” prediction errors (AAE). The results reveal that while
applying IRIS can lead to a significant error reduction in
most cases, the ER ratio improvements are more moderate
for a subset of datasets. For instance, applying IRIS to the
load-response time dataset with two dimensions results in
relatively modest ER ratios between 0.3 to 0.7, depending
on the surface. This may seem counter-intuitive given the
sharp and convex knee point in the surfaces of this dataset.
Our hypothesis is that for this case the AAE metric is bi-
ased towards the prediction errors for the large flat regions
of the surfaces since the metric gives the same weight to
all points in the two dimensional plane. Therfore, it does
not capture the fact that the knee point may be of greater
interest to practitioners, where IRIS can significantly out-
perform the EQD techniques. We confirm this hypothesis
by analyzing the distribution of prediction errors throughout
the two-dimensional space.

Figures 12(a), 12(b), and 12(c), show the colour map of
error values when predicting surface S3 of the load-response
time dataset for IRIS with α = 0.5, single-stage EQD, and
multi-stage EQD, respectively. The contour lines in the
graphs show the values of the response variable in that sur-
face. The figures show that with IRIS the error values for a
large area of the independent variable space, corresponding
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Figure 12: Color map of errors: (a) IRIS with α = 0.5, (b) single-stage EQD and (c) multi-stage EQD.

(a) (b)

Figure 13: (a) ccdf of errors and (b) ER ratios for
0.1 < R < 0.4.

to 0 < R < 0.1, are somewhat higher compared to the single-
stage EQD as indicated by the larger dark areas. However,
the error values for a smaller area of the space, correspond-
ing to 0.1 < R < 1, are significantly lower compared to
the single-stage EQD. A similar trend is observed for multi-
stage EQD. Recall that for S3 IRIS achieves ER ratios of 0.4
and 0.2, over the multi-stage EQD and single-stage EQD, re-
spectively. This implies that despite the slightly higher error
values in the large flat area IRIS still improves the average
errors by up to 40%.

These observations are further quantified by illustrating
the complementary cumulative distribution function (ccdf)
of errors as depicted in Figure 13(a). The main plot in this
figure indicates that the baselines have significantly heavier
tails than IRIS. Considering 1−P [X < x] < 10−1, errors are
three to four times higher for the two baselines. In contrast,
a closer look at the small, zoomed plot reveals that up to the
50th percentile of error, i.e., smaller error values in the flat
region, the error values are slightly higher for IRIS compared
to the two baselines.

These results reveal that IRIS is more successful in reduc-
ing prediction errors for the area of the knee point where
the response time increases sharply for a small change in
the load. In most scenarios practitioners are interested in
the behaviour of the underlying system for this particular
range of the response variable. We now calculate the effec-
tiveness of IRIS when predicting the system function in this
region of interest. Figure 13(b) shows the ER ratios for the
three surfaces while only considering 0.1 < R < 0.4 as the
desirable range of response times. For this region, the ER
ratio for IRIS is up to 6 times higher comparing the ER ra-

tios in Figures 13(b) and 7(b) for the full region. This again
demonstrate the high accuracy of IRIS in the regions often
of most interest.

6. RELATED WORK
Experiment design techniques focus on identifying the in-

dependent variables that most influence the response vari-
able [1, 12]. Typically, an initial set of experiments is con-
ducted and used to estimate a regression model that relates
the response variable to individual independent variables, as
well as to interactions between the independent variables.
Insights from the model are then used to eliminate inde-
pendent variables that do not significantly influence the re-
sponse variable from subsequent experiments. IRIS comple-
ments experiment design techniques. In particular, given the
identified independent variables of interest, IRIS can help
with the placement of experiment points.

Response Surface Methodology (RSM) [11, 10] is a tech-
nique to identify the independent variable settings at which
the response variable attains the optimum, i.e., minimum or
maximum, value. An experiment design phase is first car-
ried out to establish an initial model of the response variable
as a function of the independent variables. This model is
then used to approximately determine the region that con-
tains the optimal response. Next, more experiments are con-
ducted in this region, aiming to refine the initial model. Fi-
nally, the refined model is used to estimate the independent
variable settings that cause the optimal response. Jamshidi
et al. [8] also propose a technique similar to RSM to identify
optimum configuration settings for applications. In contrast
to IRIS, RSM-based techniques are focus on a particular
region and are not designed for identifying a performance
function that spans the entire independent variable space.

Similar to IRIS, Reussner et al. [13] propose an experi-
mentation technique that seeks to continually improve per-
formance prediction accuracy for a suite of Message Passing
Interface (MPI) benchmarks. Their technique iteratively
estimates regions where the performance function has the
highest errors and conducts additional experiments in those
regions to reduce these errors. In contrast to IRIS, this tech-
nique focuses only on MPI benchmarking. Furthermore, un-
like IRIS, it can only consider one independent variable at
a time when refining the performance function.

Courtois and Woodside [3] and Westermann et al. [16]
propose similar iterative experiment selection techniques for
building a regression model based performance function.
While these techniques can consider more than one inde-



pendent variable at a time, they require multiple experiment
points to be placed in each iteration so as to quantify the er-
rors of the model in various regions. In contrast, IRIS carries
out experiments more sparingly by adding a single experi-
ment point in each iteration. As we show in Section 5.2, this
can facilitate using fewer experiments to achieve a given de-
gree of accuracy. Furthermore, IRIS does not rely on a model
but instead uses actual measurements to drive its point se-
lection. Consequently, it eliminates the effect of modelling
errors on the point selection.

7. CONCLUSIONS
This paper presents an iterative and intelligent experimen-

tation technique called IRIS. The main objective of IRIS is to
obtain the best possible insights on a system’s performance
for a given experimentation budget. Given an initial experi-
mentation plan based on an educated guess, IRIS iteratively
and intelligently adds further experiments in regions of the
independent variable space where the independent variables
have the most effect on the response variable. IRIS exposes a
single tunable gain parameter α that allows an experimenter
to trade off the desire to evenly cover the independent vari-
able space and placing particular focus on regions with larger
changes in the response variable.

Extensive experiments involving systems with single and
multiple dimensions show that IRIS significantly outper-
forms baseline techniques that rely on equal distance point
selection for a vast majority of cases. Moreover, there was
no significant degradation in accuracy for other cases. For
a given experimentation budget, performance functions es-
timated based on experiments suggested by IRIS can yield
average prediction errors for the response variable that are
lower by up to a factor of 4.3. Furthermore, due to the itera-
tive nature of IRIS, fewer experiments are needed to achieve
a desired level of response variable prediction accuracy. IRIS
parameterized with lower values of α, e.g., α = 0.5, are par-
ticularly effective in improving system performance predic-
tions in regions that practitioners typically find interesting,
e.g., the ”knee”regions where response times can change con-
siderably. The gains from IRIS when considering only such
regions is up to 6 times more than that when considering all
regions.

A sensitivity analysis of α settings shows that in general
α should be small when the underlying system performance
function has a convex knee and should be larger in the rarer
cases when the system has a symmetric maximum point.
Our analysis also shows that gains from IRIS can increase
even more if the initial educated guess leverages domain
knowledge or approximate performance models of the sys-
tem under study. We note that IRIS takes negligible time
to make its point selection decisions.

Future work will focus on applying IRIS to systems with
higher dimensionality. We will also focus on leveraging our
insights regarding the relationship between α and the system
performance function to dynamically optimize the value of α
during experimentation. Finally, we will also explore further
the impact of the initial guess on prediction accuracy.
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