[bookmark: _GoBack]LGR Toolset: Functional and Non-Functional Requirements

1. Functional Requirements
This sections gives detailed requirements for the three phases.
1.1. Phase 1: LGR Creation - Functional Requirements
1. The system will conform to the specifications, input choices and output format given in the XML Format, even if not completely specified explicitly in the requirements below.
2. The system will allow multiple input methods for users, as per the details given below. The system shall not permit input of code points disallowed or unassigned in IDNA2008. The characters allowed for input should be based on the script(s) selected by the user and on the version of IDNA2008 tables (and corresponding Unicode data file) specified by the user. The software should have the ability to have the Unicode data updated to newer versions of Unicode easily by updating the requisite data files in the software package.

2.1. Input code point by keying in a Unicode character, e.g. “ب”
2.2. Input code point by keying in the hexadecimal value of the Unicode code point e.g. “0628” (for ب)
2.3. Input a range of code points by one of the two methods in 2.1 or 2.2, e.g. “a .. z”, or “0061 .. 007A”
2.4. Select (and de-select) one or more code points from the list of code points (both Unicode value and character displayed in a linear list).
2.5. Input a text file in one of the three plain text formats: (i) simple one rule per line (to be defined), (ii) the format described n RFC 3743, and (iii) the format described in RFC 4290. When input is from a file, the user may select to process it in a “manual” mode or an “automatic” mode.
2.5.1. The manual mode will require the system to prompt input for each line and allow user to accept or skip that line for incorporating in the LGR. All lines skipped must be logged in a log file that can be used for debugging, including time stamps and the text content skipped.
2.5.2. In the automatic mode, the system will process the entire file without user interaction, logging any erroneous lines or which it is unable to process and incorporate.
3. The system should allow user to input metadata as specified in the XML Format, including the elements specified in 3.1 – 3.8 below. For each element, where available, the system should allow look-up for the user to select among available options, showing both human readable and formal values of these elements. For compound elements, the system should accept input of each portion separately and compound them internally. Clear and precise instructions should be displayed on the screen during the process for users to select the appropriate input.
3.1. The version element – numerical positive value (e.g. 1, 2, 3, etc.) and associated comment
3.2. The date element using a date-picker – internally stored in a valid ISO 8601 date string as described in RFC 3339 – using current system date as default value.
3.3. The language element - must be a valid language tag as described in RFC 5646 – the system will take input for each field (language, script, etc.) separately from users using a look-up field, where possible– and create the complete tag internally. Commonly used English names should also be displayed in addition to the formal names to facilitate user input. Language element can be repeated to allow for adding multiple language elements.
3.4. The scope element – optional element which may contain a domain name to which the policy is applied.
3.5. The description element - optional free-form element – has a "type" attribute which should be a valid MIME type, and refers to the media type of the data, with typical types as "text/plain" or "text/html". "text/plain" will be assumed if no type attribute is specified.
3.6. The validity-start and validity-end elements – optionally specifying the start and end times as an RFC 3339 date-time string (e.g. “2014-11-12T04:28:00Z”) during which the LGR is valid. There is no default specified.
3.7. The Unicode-version element – look up from stable Unicode versions – would need to be updated as stable Unicode versions are released.
3.8. The references element – optional as per details in section 4.3.8 in http://tools.ietf.org/html/draft-davies-idntables.
4. User must select a starting code point repertoire. User should be given the following choices by default, but may select another alternate reference file. All these files must be in the XML Format.
4.1. IDNA2008 PVALID and CONTEXT O/J characters based on Unicode 6.3.0 – system should not allow Unicode code points which are DISALLOWED by IDNA 2008. The default should be configurable to include later updates to IDNA 2008 repertoire, based on Unicode releases, from the IANA pages, e.g. http://www.iana.org/assignments/idna-tables-6.3.0/idna-tables-6.3.0.xhtml for Unicode version 6.3.0.
4.2. Maximal Starting Repertoire (MSR-2). The default should be configurable to include later releases of the MSR.
4.3. The system should check each discrete permissible code point being added in the LGR by the user against the selected reference list and give warning to the user if a code point does not exist in the reference. The user may over-ride the reference and may still include the code point. All such code points, which are over-ridden must be logged. However, the user must not be allowed to override the IDNA2008 restrictions.
5. User may also define a sequence of two or more code points in a LGR – for example, when defining the source for n:m variant mappings.
6. The system should allow users to enter one or more variants of (a) a code point, or (b) a code point sequence. Each variant may be a single code point or a sequence of code points.
7. The system should check for symmetric (if A is a variant of B, then B is a variant of A) and transitive (if A is a variant of B and B is a variant C then A is also a variant of C) relationship between variants on the request for user or before finalizing the LGR.
8. The system should also allow users to select the type for each code point variant. The type for each code point variant should be “block” by default.
9. The system should allow for defining conditional code point variants. The user should select the “when” or “not-when” relationship and the set of applicable elements or label to represent such a set.
10. Uniqueness of code point variants against a code point must be determined and any input should be rejected if it introduces repeated entries. It should be noted that the same variant can be repeated if its “when” or “not-when” attributes are different.
11. Any "char", "range" or "variant" element may contain a comment in a "comment" attribute. The contents of a comment attribute are free-form plain text. If the system breaks a range into individual elements internally, the comment must be duplicated for each such entry created.
12. The system should also allow users to add reference to each code point or code point sequence. References must be defined before being looked up. When looking up, the user should see the reference no. and reference details, though only the former is stored internally when selected. User should also have “add new reference” option, in case a new reference is needed at the time of association.
13. The system should allow users to create, view and edit incomplete versions of LGR, in the XML Format. See Requirement 2.4 in Phase 1 as a display option to view data. Data may be added by the options given in Requirement 2 of Phase 1.
13.1. Allow user to create a new LGR.
13.2. Allow user to save intermediate (incomplete) version of an LGR being created. The system should check and log the required elements not present in the intermediate version while saving it.
13.3. Allow user to load for further alteration an intermediate (incomplete) version of a LGR already saved.
14. Starting from a new or an intermediate (incomplete) version of a LGR already saved, the system should allow the user to finalize for release and export a LGR. All necessary checks for completion and correction must be performed at this time and release should only be possible if the criteria specified in the XML Format are met.
15. All text labels, look up choices, messages and error messages should be in English, but the interfaces should be internationalized, loading text from a resource file, so that they may be localized to other languages. By selecting appropriate languages (English by default) the system should be able to display interface in other languages for which the resource files have been translated.
16. The system should generate the summary of the LGR built, including counts of code points, variants by type, count of rules, counts by script code, and number of code points sharing a tag value.

1.2. Phase 2: LGR Use - Functional Requirements
The system should provide interface using a web browser or and API for the following functionalities.
1. The system should associate an LGR in the XML Format from one of the following categories:
1.1. Default LGRs (built into the system):
1.1.1. IDNA2008 for the Unicode version available at http://www.iana.org/assignments/idna-tables/
1.1.2. MSR-2
1.1.3. LGR-1
1.2. User defined LGR
2. The system should input a (i) U-label, or (ii) an A-label, or (iii) Unicode code point sequence and tell if the label is valid as per the reference LGR associated. The system should output the label in U-label, A-label and Unicode code point sequence format along with the validity information.
3. The system should list all the variants of the label along with their dispositions. The variant labels should be displayed in U-label, A-label and Unicode code point sequence formats. Note that the list of variants can grow very large and for the web interface the software should be designed to handle calculations and user-friendly display of such large sets.
4. If the label is valid, the system should give details of the rules applied for the label (if the user asks for details) and if the label is not valid, the system should in addition list the portions of label and the reasons for which the label has failed.
5. For the list of variant labels, the system should output the rules used to generate them (if the user asks for the details).

1.3. Phase 3: LGR Management - Functional Requirements
1. A code point may also be given a tag attribute.
2. The system should allow for users to define classes based on (a) tags, (b) Unicode property, (c) user-defined sets, and (d) combined classes, which can be created by (i) Union, (ii) Intersection, (iii) Difference, and (iv) Symmetric difference of existing classes.
3. The system should allow input of WLE rules using the tags and rules defined.
4. The system should be able to input two LGRs (in the XML Format) and compare and output the similarities and differences.
5. The system should be able to input two LGRs (in the XML Format) and output their intersection.
6. The system should be able to input two LGRs (in the XML Format) and output their union.
7. The system should be able to completely specify the LGR by converting ranges into code point level entries.

2. Non-Functional Requirements
The following non-functional requirements are applicable to all the phases of the development of the LGR Tool Set.
1. The system should be able to handle large enough amounts of data to develop a single LGR– which may contain a significant part of the Unicode standard.
2. The system should be developed using the Python programming language, which can be licensed with open source license. The system must not contain any third party code which prevents it from release with licensing requirements stipulated.
3. The system should have an extensible architecture to include other possible processing functions. Further, the logic of the web interface and the underlying LGR manipulation should be sufficiently separated such that alternative user interfaces may be developed using the same LGR manipulation library functions.
4. The system code must be properly commented to ensure facilitating internal or third party extension for maintenance by ICANN or the community.
5. The system code must have appropriate unit testing such that changes to the code do not cause regressions in functionality of the underlying LGR handling logic.
6. The system interface should be supported by commonly used web browsers, including Internet Explorer, Chrome, Firefox and Safari.
7. Multiple users must be able to access this application at the same time, without concurrency issues, using web and other interfaces provided.
8. System should allow the user to choose a font available in it for display and should not require special fonts. It is assumed that some limitations of display may exist based on the font selected from the available options.
9. All data for the system must be stored in text files.
