
Language-Independent Development Environment
Support for Dynamic Runtimes

Daniel Stolpe
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

daniel.stolpe@student.hpi.uni-
potsdam.de

Tim Felgentreff
Oracle Labs

Potsdam, Germany
tim.felgentreff@oracle.com

Christian Humer
Oracle Labs

Zurich, Switzerland
christian.humer@oracle.com

Fabio Niephaus
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

fabio.niephaus@hpi.uni-potsdam.de

Robert Hirschfeld
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

hirschfeld@hpi.uni-potsdam.de

Abstract
There aremany factors for the success of a new programming
language implementation. Existing language implementa-
tion frameworks such as Truffle or RPython have focused
on run-time performance and security, or on providing a
comprehensive set of libraries.
The tools that language users need to be productive are

also an important factor for the adoption of a programming
language. The aforementioned frameworks, however, pro-
vide limited support for creating comprehensive develop-
ment tools. This is an impediment to language adoption that
can be as serious as performance issues or lack of libraries.
Both Truffle and RPython already provide run-time tools
such as for debugging, profiling, or coverage in a language-
independent manner, but neither support static development
tasks carried out in code editors.
In this work, we propose a language-agnostic approach

to add this missing tooling by making the Language Server
Protocol available automatically to all language implemen-
tations on the Truffle framework. Furthermore, we show
how our approach can utilize runtime information to pro-
vide IDE features rarely available for dynamic programming
languages.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
DLS ’19, October 20, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6996-1/19/10. . . $15.00
https://doi.org/10.1145/3359619.3359746

CCS Concepts • Software and its engineering → In-
tegrated and visual development environments; Soft-
ware maintenance tools.
Keywords Language Server Protocol, Truffle, Graal
ACM Reference Format:
Daniel Stolpe, Tim Felgentreff, Christian Humer, Fabio Niephaus,
and Robert Hirschfeld. 2019. Language-Independent Development
Environment Support for Dynamic Runtimes. In Proceedings of
the 15th ACM SIGPLAN International Symposium on Dynamic Lan-
guages (DLS ’19), October 20, 2019, Athens, Greece. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3359619.3359746

1 Introduction
As use-cases evolve, so do programming languages to deal
with the rising complexity of modern software systems. De-
veloping a new programming language from scratch is a
challenging task. Traditionally, ensuring the performance of
new implementations is competitive with existing ones has
consumed a large amount of development time. Frameworks
such as RPython [1] and Truffle [21] address this and provide
good performance with reasonable effort on the part of the
language developer.

However, another barrier for new and evolving languages
has been tool support. Users often have to give up on existing
tools and learn new ones, if there even are replacements
for all the tools they used before. The Truffle and RPython
frameworks have recognized this and thus provide hooks
for language implementations to gain support for interactive
debugging, profiling, and coverage information easily.
One tool that is still missing is a code editor with a rich

set of capabilities. The Language Server Protocol (LSP) tack-
les this tooling aspect by connecting multiple Development
Environments (DEs) with a language server. This server is
implemented per language, but the burden of building or
integrating with existing environments is handled by the
protocol.

80

https://doi.org/10.1145/3359619.3359746
https://doi.org/10.1145/3359619.3359746

DLS ’19, October 20, 2019, Athens, Greece Daniel Stolpe, Tim Felgentreff, Christian Humer, Fabio Niephaus, and Robert Hirschfeld

In this work, we propose an approach to provide assisted
code editing for new language implementations in a frame-
work like Truffle with the same ease as it provides perfor-
mance. Language implementers merely have to use the hooks
provided by the framework in order to get an integration
with any LSP client for free, and receive at least basic syn-
tax error reports, completion of globals and locals, as well
references, definition, and meta-information lookups. Our
language-agnostic approach is not meant to replace estab-
lished language servers for a specific language, but provide a
good baseline for languages for which no such server exists
yet.
Code assistance for dynamic language code is especially

challenging and our approach includes suggestions on how
to collect and utilize runtime information to improve editing
features for dynamic languages. For programming languages
with typed symbols, like Java, the required information can
be derived from the source code, but for dynamically typed
languages, DEs typically try to infer types and/or make use
of additional type hints in source code comments or other
annotations. Good type inference engines are difficult to
build and require language-specific knowledge. Many dy-
namic languages also include constructs that prevent type
inference such as eval.
As proof of concept, we have implemented Graal-lsp, a

polyglot language server implementation for the GraalVM.
Thus, our contributions in this work are:

• An approach to build a language-agnostic language
server on top of performance-focused language imple-
mentation frameworks.

• An approach to provide IDE-like features for dynamic
languages, by collecting and utilizing runtime infor-
mation.

• An implementation of these approaches using the Truf-
fle framework, which includes polyglot code comple-
tion and goto-definition features.

The rest of this paper is structured as follows: in section 2,
we provide background information pertaining to the LSP
and language implementation frameworks. In section 3 we
describe our approach to build a language-agnostic language
server on top of Truffle and what the language developer
has to do in order to support the different features. Finally,
in section 4 we discuss related work and we conclude and
summarize future work in section 5.

2 Context
In this section we give a brief overview over the two areas we
combine in this work: a) Truffle and RPython as instances of
performance-focused language implementation frameworks,
and b) the LSP and how we approached supporting it in a
language-independent manner.

2.1 Tools in Language Implementation Frameworks
In this work we are interested in performance-focused
language implementation frameworks like Truffle [21] or
RPython [1]. In these frameworks, tooling has been a fo-
cus only where it did not compete with performance. Thus,
languages developed in these frameworks have fewer tools
available when compared to language workbenches like
Spoofax [7], Xtext [3], or MPS [20], which are used to create
Domain Specific Languages (DSLs) and their corresponding
DEs.

Truffle [21] is a language implementation framework writ-
ten in Java. The language developer uses the framework
to write an Abstract Syntax Tree (AST) interpreter, which
the framework optimizes during interpretation. How source
code is parsed and the AST is structured is the responsi-
bility of the language implementation. Truffle has built-in
support for developing language-agnostic tools by providing
an instrumentation API [16] using meta-information that
language implementations attach to their AST nodes. This
API has been used already to provide all Truffle languages
with code coverage, CPU and memory profiling tools, as well
as debugging with the Chrome debugger. (The debugger pro-
tocol is also supported by VSCode, IntelliJ, and Netbeans.)

PyPy [13] is an alternative implementation of the Python
language [17] written in RPython, a restricted subset of
Python. The language developer is free to structure the in-
terpreter as they see fit, although bytecode interpreters are
the most common approach for RPython-based languages.
RPython provides no generic API for tools like Truffle does.
However, the RPython library includes a CPU profiler1 and
a reverse debugger2. Languages can make use of these with
minimal effort by registering entry points with Python deco-
rators and by implementing callbacks to attach for the tools
to call into.

2.2 Code Editors and the Language Server Protocol
A huge number of code editors exist and the choice of editor
is an amusingly frequent source of arguments amongst de-
velopers. The LSP3 is an approach to standardize language
support for development tools to make the choice of editor
less tied to the choice of language. The LSP defines a server
and a client. The server needs to be implemented only once
for every language, providing the language-specific develop-
ment features. Any editor that can act as a language client
can make use of any language server and therefore are able
to support multiple languages with minimal effort.
For a number of languages (including R, Python, Ruby,

and JavaScript), multiple LSP server implementations already

1https://morepypy.blogspot.com/2016/08/pypy-tooling-upgrade-
jitviewer-and.html, accessed 2018-12-17
2https://morepypy.blogspot.com/2016/07/reverse-debugging-for-
python.html, accessed 2018-12-17
3https://microsoft.github.io/language-server-protocol (accessed 2018-12-17)

81

https://morepypy.blogspot.com/2016/08/pypy-tooling-upgrade-jitviewer-and.html
https://morepypy.blogspot.com/2016/08/pypy-tooling-upgrade-jitviewer-and.html
https://morepypy.blogspot.com/2016/07/reverse-debugging-for-python.html
https://morepypy.blogspot.com/2016/07/reverse-debugging-for-python.html
https://microsoft.github.io/language-server-protocol

Language-Independent Development Environment Support for Dynamic Runtimes DLS ’19, October 20, 2019, Athens, Greece

exist and these servers can be also be used with the Truf-
fle language implementations. However, both Truffle and
RPython already try to obsolete the need for multiple imple-
mentations of a GC, JIT, dynamic object model, debugger,
profiler, and more. We argue that there should not be a need
for multiple implementations of language servers, either.
In this work we focus on how Truffle can (in a language-

independent manner) support a subset of the features of the
LSP: 1) navigational features to follow references of names
and go to the implementations of functions; 2) informational
features to display syntax errors, documentation, function
signatures, and types; 3) code completion both of names
available in local and global scopes as well as properties on
names or results of operations; and 4) code completion when
multiple languages are mixed as an example of a feature that
other language servers cannot easily support.

3 Approach and Implementation
In this section we will address, in the order given in the
previous section, the LSP features we have implemented
for the Truffle framework4. To support all the LSP features
we describe, language implementations on Truffle need to
implement existing as well as a small number of new API
methods. Table 1 gives an overview of LSP support in differ-
ent languages at the time of writing.
Central to our approach is our code execution strategy

for dynamic analysis. For each feature, we detail both how
information can be obtained statically and dynamically.

3.1 Obtaining Runtime Information
Code editor support for programming languages with static
information about symbols, like Java, can be built by parsing
and analyzing the source code. In dynamic languages with
untyped symbols, however, there are only limited language-
specific approaches to statically infer information about the
code. These approaches are necessarily limited by certain dy-
namic language features (e.g. eval or results of foreign func-
tion calls). Furthermore, we are not aware of a performance-
focused language implementation framework that supports
static inference in a language-agnostic way for their imple-
mented dynamic languages. The RPython framework does
use type inference internally, but this cannot be applied to
arbitrary dynamic languages developed with RPython.
Our basic approach to get runtime information at a spe-

cific position in the source code, is to execute that source
code while observing the execution. We cannot rely on any
language specifics to analyze execution or attach to it, and
we do not want to burden the developer with having to do
significantly more work that is not related to simply running
the language.

Observing the execution is already possible in Truffle, be-
cause the framework provides a debugger. We can reuse the

4Changeset available at https://github.com/oracle/graal/pull/764

same approach to halt at an interesting location and obtain
local symbols and their corresponding run-time values from
the active frame. Details such as type, documentation, defi-
nition locations, and more can then be queried from Truffle
objects.

However, executing arbitrary source code poses a number
of challenges: we need to deal with side-effects, the possibil-
ity of a long running or non-terminating execution, or the
fact that the source code of interested might not be reached
by the execution flow.
Unreachable Source Sections There are likely source sec-
tions which are unreachable by the normal execution flow
of the current source code file. Typically a program has a
limited set of entry points, and only from those can other
parts of the program be reached.
One entry point to reach a (hopefully) large number of

source sections are unit tests. Furthermore, most unit tests
have a short execution time and are supposed to be free of
unwanted side-effects – or at least have a clean-up routine
included. The systematic execution of unit tests is therefore
a promising approach to get runtime information for code
completion enhancement. This idea is inspired by type har-
vesting [4]. Programmers need to tell our language server
how to execute the tests via a special comment in the first
or last lines of a source code file, which encodes a path to
a runnable script. Our approach heavily favors test-driven
development, because it will produce better results with it.
It also favors writing unit tests that are small, finish quickly,
and cover only a small part of the code.

However, unit tests might not be available, in which case
we fall back to executing the current source code that is
being edited. One might question the scalability of this. We
believe that users that write more complex programs also
write unit test, because these are beneficial not only for
our approach, but for development in general. However, as
an alternative we could allow users to add comments to
methods with example invocations similar to Babylonian
programming [11] or Godoc examples4.
Sandboxing the Execution Environment Users would
not expect that the source code they are currently work-
ing on is executed when they trigger code completion, and
they should not have to worry about side-effects in their code.
Therefore, any execution needs to happen in a sandboxed
environment.

Our language server, because it can observe all execution,
is well positioned to provide such sandboxing. Furthermore,
one of the goals of the Truffle framework is to be able to
sandbox languages entirely, including all access to system
resources. (RPython similarly can sandbox languages so that

1https://github.com/graalvm/simplelanguage (accessed 2018-12-17)
2https://github.com/graalvm/graalpython (accessed 2018-12-17)
3https://github.com/oracle/fastr (accessed 2018-12-17)
4https://golang.org/pkg/testing/#hdr-Examples

82

https://github.com/oracle/graal/pull/764
https://github.com/graalvm/simplelanguage
https://github.com/graalvm/graalpython
https://github.com/oracle/fastr

DLS ’19, October 20, 2019, Athens, Greece Daniel Stolpe, Tim Felgentreff, Christian Humer, Fabio Niephaus, and Robert Hirschfeld

Table 1. An overview over selected Truffle languages and the current implementation
status of Graal-lsp features.

LSP feature SimpleLanguage (SL)1 Python2 FastR3 GraalSqueak [9]

Symbols ✓ ✓ ✓

Goto-definition (local variables) ✓ ✓

Goto-definition (callables) ⋆ ⋆ ⋆ ?
References and Highlights ✓ ✓ ?
Syntax Errors ✓ ✓ ✓

Signature Help ⋆

Hover Information ⋆ ⋆ ⋆ ⋆

Completion (globals) ✓ ✓ ✓ ✓

Completion (locals) ✓ ✓ ⋆ ✓

Completion (properties) ⋆ ⋆ ✓

✓ Available statically
⋆ Available after collecting runtime information
? Unclear how to implement

all system calls are mediated through a trusted process.)
We use the Truffle sandbox to disallow all native access, as
well as all access to sockets or the file system and redirect
such requests as well as possible. When writing to a file, for
example, an in-memory file system is used as a layer over
the real file system on demand. Reading from files then first
checks the in-memory file before going to the actual file
system.

Network I/O, signals, spawning new processes, or access
to native libraries are not part of our approach and our server
will just disallow such attempts. These limitations are dif-
ficult to lift in the general case, and we currently require
well-written unit tests with mock objects to replace these
operations to gather runtime information.

Unsaved Changes While editing, the source code is con-
stantly out-of-sync with the actual file system. If we execute,
we have to ensure that code imports do not hit the file sys-
tem if our server has newer, but yet unsaved versions. The
LSP specifies no request sent from server to client to trigger
saving files.
As part of the sandboxing approach described above, we

already provide an in-memory file system completely trans-
parently to the languages and can serve the current state of
unsaved files instead of the versions stored on the real file
system.

Long Running or Non-terminating Executions The ex-
ecution of arbitrary source code might take an unpredictable
amount of time or might not finish at all. Therefore, our
server immediately cancels execution when it has reached
the desired position in the source code and we have collected
the needed runtime information. Additionally, executions
are canceled if they do not finish in a configurable amount
of time. In case of a timeout, no runtime information can be
provided to enhance our code completion.

Truffle’s instrumentation framework allows our language
server to observer coverage of statements. If the user has
defined multiple unit test entry points, we plan to use cover-
age information to determine which tests to (re-)run in order
to gather runtime information. This helps reduce the time
required to produce results for the LSP client.

Caching Runtime Information Lag is in important fac-
tor in interactive code editors. Our approach for gathering
information relies heavily on the runtime required for exe-
cuting the tests. Since the server already initializes the lan-
guages and the Just-in-time (JIT) compiler optimizes unit
test executions to some extent, the execution times get better
over time, but in our examples, we frequently had to wait
1-2 seconds to run the relevant test and get a result. We have
yet to gather experience with larger test suites with more
than a few hundred lines of code.
When runtime information has been collected once e.g.

for a function and the developer continues editing the func-
tion body, we can still use information about parameters
gathered in previous runs. For this we keep a mapping from
cached runtime information to source locations on the path
to the execution where we gather the information. We only
invalidate if any of those locations change.

3.2 Implementation of LSP Features
We will initially use SL as a running example to show how
our approach was implemented for that language, and then
extend it to other Truffle languages. SL is Truffle’s exemplary
language implementation, it has first class functions, floating-
point numbers and strings as primitive types, and a single
object type. Objects are implemented as simple key-value
stores.

Like other Truffle tools, the LSP server is implemented as
a TruffleInstrument. Figure 1 gives an overview of how it
interacts with the Truffle framework. Instruments can ask

83

Language-Independent Development Environment Support for Dynamic Runtimes DLS ’19, October 20, 2019, Athens, Greece

for notifications in response to various events such as the
creation of AST entry points (call targets) or the pending
execution of an AST Node via one of its execute* methods.
An instrument can also trigger parsing or execution via a
TruffleLanguage instance, change the execution flow, and
interact with any TruffleObject that flows through the AST.
Finally, an instrument can influence the environment from
which languages get access to OS-level facilities including
files and thus inject a custom FileSystem to serve requests
for file access from a sandboxed implementation rather than
the real system.
Specific to our instrument is that it launches an HTTP

server on creation. This LSPServer handles the client’s LSP
requests. The handlers for the various requests are where the
features we describe in this section are implemented. When-
ever a file is touched, the didOpen and didChange callback
uses the languages to parse the source. This immediately
provides syntax errors and records any created AST nodes.
These recorded nodes are then used in subsequent requests
to map from editing locations to the AST, by filtering on the
results of getSourceSection.

Navigational Features

Querying Symbols The documentSymbol and symbol re-
quests of the LSP ask for known names and their locations
in the source code. For functions, this already works for all
file-based Truffle languages. After parsing, our instrument
was notified of any root node (e.g. of a function) and can use
its getSourceSection method. The language developer has
to implement this method, but this is already required for
other Truffle tools and thus did not need additional support.

We have extended the list of tags that Truffle uses to iden-
tify the purpose of AST nodes with a DeclarationTag. For
SL, we needed to extend the hasTag method in those nodes
that introduce variables to respond true for that tag to have
them show up in the list of symbols. For additional informa-
tion, we also made use of the getNodeObject API provided
by Truffle nodes. The convention we chose is that, if the
language developer returns an object from this method for
a node tagged as a declaration, that object can respond to
the kind message with more detailed information about the
declared variable. This allows languages to communicate
statically known types if possible. For SL, we here return the
primitive type or object if the RHS of the assignment is a
constant.

Go to Definition When the user selects a function name and
asks for the definition location, we attempt to provide a static
location or a dynamic one. In the static case, we only need
to search the AST for a node representing the function call.
These are already tagged in SL with the CallTag to support
the Chrome debugger. From that node we match the name
of the function call to function definitions that have been
parsed to show a list of candidates. Similarly, given our newly

introduced DeclarationTag, we can also query the definition
locations of variables with a certain name.

If we are able to gather runtime information, we can pro-
vide more accurate information. To gather runtime data, we
send another parse request to the language and execute the
resulting call target. This parse request either contains a unit
test or some other entry point declared by the user, or just
the current source file as described in subsection 3.1. With-
out runtime data, we fall back to calling findTopScopes and
looking for the name there.
We use the TruffleLanguage\#findSourceLocation API,

which language developers can implement to provide the
definition location of objects where it is convenient to pro-
vide. For most languages including SL, function objects are
supported by this API and we can thus unambiguously de-
termine the definition of a function call even when there are
multiple functions with the same name.

Finding References For the documentHighlight and references
LSP messages, we re-use the CallTag and DeclarationTag an-
notations to find nodes with the names we are interested in.
Furthermore, we have added twomore tags, ReadVariableTag
and WriteVariableTag, which we have added to nodes rep-
resenting local variable accesses in SL. Together, these allow
us to return references for variables and functions.

To take scopes into account, we make use of another Truf-
fle API that is already implemented in SL, findLocalScopes,
which enumerates scopes from the inside out. If, for exam-
ple, the client asks to highlight all references to a variable in
a closure, the local scope API will enumerate surrounding
scopes up to the top scope. Our server can then search for
the same names in those scopes and find the correspond-
ingly tagged nodes. This API can be used statically or with a
run-time Frame object, and returns lexical scope or dynamic
scope nesting, respectively.

Informational Features

Detecting Syntax Errors Language runtime parsers are not
usually built to support incremental parsing or detection of
more than one syntax error. SL, like other Truffle languages,
fails parsing at the first syntax error, so that only one error
per file can be sent to the client. By convention, a language
syntax error is supposed to implement the TruffleException
interface (not shown in the diagram), which provides a
getSourceLocation method. Figure 2 displays how such a
diagnostics notification is visualized in SL.

Documentation and Signature Help The signatureHelp re-
quest is auto-activated at client-side, like code completion,
if the server includes trigger characters for signature help in
the initialize response. A signatureHelp response consists of a
list of signatures, because there might be different variants, if
the language implementation supports function overloading.

If we can gather runtime information to access the object
representing the function on the Truffle level, we have added

84

DLS ’19, October 20, 2019, Athens, Greece Daniel Stolpe, Tim Felgentreff, Christian Humer, Fabio Niephaus, and Robert Hirschfeld

Figure 1. Simplified class diagram of LSP components, Truffle, and SL.

Figure 2. Diagnostics used to display a syntax error in SL.

two API messages that the language developer needs to im-
plement: GetDocumentation and GetSignature. These should
return a documentation string or all parameter names and
their documentation, respectively. The formatting of these
is language-specific and left to the language developer.

If we either cannot gather runtime information or the ad-
ditional API is not implemented by the language, we fall back
to trying to find the definition of the function (as described
above) and show the surrounding source code as a hint to
the developer.
SL does not keep track of documentation strings in its

parser, and neither does the parser keep parameter names
separate from local variables. Implementing these two mes-
sages will require more work in the parser of SL.

Hover Information We can support the hover request to
show information for variables and callables with type in-
formation, provided there is runtime information available.
If we have found an AST node representing a variable or
callable at the requested position, we use parseInline and
evaluate the resulting node. With the result, we build the
hover response. Most Truffle languages including SL already
implement the findMetaObject API. We use it on the result
to show the type here in addition to the concrete value.

Completion

We distinguish two kinds of code completions which need

different levels of support by the language: completion of
globals or locals and completion of properties.

Globals and Locals We use the code snippet in Listing 1
to illustrate how to support code completion of globals and
locals. With the caret on line 3, a completion request is sent to
the server for line 3 at character offset 4. The server searches
parsed nodes for the one with the nearest SourceSection and
uses it to call findTopScopes and findLocalScopes. We would
expect a completion result to include items for all SL globals
(e.g. built-in functions) and the locals param1, param2, and x.
The variable y should not be included, because no value is
assigned to it until line 4.
Statically, we get the names and values of SL built-ins in

the top scopes. The values are SLObjects, so we can use the
normal TruffleObjectmessages to query if they are callable,
instantiable, and so on and return appropriate flags to the
client. In languages that respond to documentation and sig-
nature messages for their objects, we show that here as well,
but there is no such support for SL. For findLocalScopes, SL
statically returns the names of all variables defined.
In this case, we can just execute the entire file to gather

run-time data. As soon as the execution reaches the node
we are interested in, we stop and use the current live Frame

in the findLocalScopes method. Now we get the local scope
including live locals, we can show the types for x and the
parameters and we reject y, because it is null at this point.

Property Completion Listing 2 shows a code snippet where
we define a Natural object with with a variable n and a
method next. In the second-to-last line, we assume that the
dot was the last character inserted and thus a code com-
pletion request was triggered. A completion result should

85

Language-Independent Development Environment Support for Dynamic Runtimes DLS ’19, October 20, 2019, Athens, Greece

Listing 1. Completions in SL code.
1 function foo(param1 , param2) {

2 x = 42;

3 _

4 y = param1 + param2;

5 }

6 function main() { foo("1", "2"); }

Listing 2. SL code snippet stopped at property completion.
1 function next(self) {

2 r = self.n;

3 self.n = self.n + 1;

4 return r;

5 }

6 function Natural () {

7 newobj = new ();
8 newobj.n = 2;

9 newobj.next = next;

10 return newobj;

11 }

12 function main() {

13 natural = Natural ();

14 natural.

15 }

include n and next as properties of the object referenced by
the symbol natural.

To support this kind of code completion, we need runtime
information. We also have to detect that an object property
completion is needed instead of a completion of globals and
locals. Second, the source code will typically contain a syntax
error, when this kind of completion request is sent. Third, we
have to identify the AST element for which the completion
of properties is desired. Fourth, we have to obtain the actual
object associated with that AST-element, which might be
available only at run-time. Finally, we need to get the object’s
properties to create the completion items.
As prerequisite for completion of properties, we need

to query the language implementation for its com-
pletion trigger characters. We have added the method
getCompletionTriggerCharacters and language developers
need to return a list of strings which should trigger comple-
tions. For SL, this is only the dot.
When a completion request arrives, the location is pre-

ceded by a completion character. This often means that the
source is not parseable. Our current approach is to track
the most recent modifications the client sent us since the
last parseable state and use this state to execute the code.
In many cases, this will simply be the state before the com-
pletion trigger character was inserted. In our example, just
removing the last dot makes the code parseable again and
we end up with the correct object to provide completion for.
However, in some cases multiple edits have taken place in
different parts of the source, and no parseable state can be
reached this way that also leads to the desired code location.
(We regard this problem as orthogonal to our approach, but
it needs further investigation.)

Figure 3. Completion of properties for a foreign SL object
in Python source code.

We search for a matching AST node in front of the (re-
moved) completion trigger character position by checking
the source sections. We are only interested in the last node
which represents an expression, because we want to obtain
its result. Truffle’s node tagging allows use to query for the
ExpressionTag class to obtain only the expression natural

in our example.
For literals, the AST nodes can return the literal object

directly for static completion via the getNodeObject method,
where they should return a Truffle object with a member
named literal. In our example, natural is not a literal, so
we evaluate the expression node using parseInline in the
current frame. If no run-time data is available, we attempt to
evaluate in the global scope using parse. This way, at least
completions on scope-independent objects can be satisfied.
Finally, if the returned object is not a TruffleObject but

a primitive type, we need to box it to read the members
the language assigns to these types, if any. We defined the
API method boxPrimitive and implemented it in SLLanguage.
Now we get a SLObject representing the primitive value and
can query it for members.
Polyglot Code Editing Using SL code embedded in Python,
we want to highlight how Truffle’s support for polyglot pro-
gramming works naturally with the features described above.
Figure 3 shows Python code evaluating a SL code snippet
which creates and returns a SL object. In the last line, we
get completions of properties for the foreign SL object. This
demonstrates how the language-agnostic approach of our
server does not depend on the language an object originates
from. After implementing our approach for SL, this example
worked immediately after only adding the completion trigger
character API to Python.

3.3 Application to Other Languages
In this section, we show by means of the Truffle language
implementations Python, FastR, and GraalSqueak that basic
support of some LSP features can be achieved with minimal
implementation effort in real languages. Furthermore, we
explain which LSP features cannot be easily supported in
some language implementations and other limitations of our
approach.

86

DLS ’19, October 20, 2019, Athens, Greece Daniel Stolpe, Tim Felgentreff, Christian Humer, Fabio Niephaus, and Robert Hirschfeld

Figure 4. Symbol overview over the current Python docu-
ment. The selected entry’s source section is highlighted in
the editor.

Evaluated Truffle Languages The Python implementa-
tion for GraalVM was modified to implement all API calls we
proposed. For FastR, the implementation of the R5 language,
we have only implemented support for completion trig-
ger characters, so the implementation is nearly unchanged.
This demonstrates that we can provide some support even
with the least amount of language developer effort. Graal-
Squeak [9], a Squeak/Smalltalk [6] implementation, is image-
based rather than file-based and executes bytecodes rather
than a Smalltalk AST. Therefore, it is difficult to map con-
cepts of GraalSqueak to LSP. We have chosen it to show
that at least some features can be supported with reasonable
effort. We treat every opened st file as an isolated Squeak/S-
malltalk scope.
Navigational Features Both Python and FastR automat-
ically support querying global symbols and navigating to
them. For Smalltalk, this feature is not available, because the
global symbols are not defined in any source file, but are
part of the image. Thus, while we can list global symbols, we
cannot offer a source location for them, which is required
for the highlighting that LSP clients want to support, as seen
in Figure 4.
To jump to definitions, we implemented the new

DeclarationTag in Python to support jumping to the defi-
nition of local variables. For FastR, we did not change any-
thing, but since the language supports returning the source
location for functions, jumping to the definition of functions
when runtime information is available worked immediately.
In GraalSqueak, the DeclarationTag could enable jumping to
the definition of local variables, but it is unclear how to im-
plement jumping to function definitions at all. Furthermore,
GraalSqueakworks on bytecode, yet in Smalltalk source code,
variables are declared explicitly at the beginning of blocks
or methods. These declarations, however, are not available
in the bytecode, where variables are only referenced by in-
dex. Thus, the Smalltalk implementation would have to do
significant work to map back from AST nodes representing
bytecode locations to source locations.

5https://www.r-project.org (accessed 2018-12-17)

Figure 5. Signature help for Python.

Figure 6. Displaying information on mouse hover for FastR
source code using cached runtime information.

To fully support references, we had to add the
Write/ReadVariableTag in appropriate places to Python.
While FastR uses the CallTag, and thus we can provide ref-
erences and highlights for functions, we cannot do the same
for local variables. Additionally, scoping information in R
relies on the dynamic execution extent, and thus we cannot
properly support these features on FastR without both the
tags and runtime information.
Informational Features All languages except FastR fail
parsing at the first syntax error, so that only one error
per file can be sent to the client. FastR does not throw a
TruffleException in case of a syntax error, so that Graal-
lsp cannot report any syntax errors for FastR. However, this
is arguably a bug in the FastR implementation, as it also
affects other tools such as the debugger.

Signature help and documentation requests are only fully
implemented in Python. These use our newly introduced
GetSignature and GetDocumentation messages. In Python,
these were easy to implement since functions already store
and expose their documentation to user code (Figure 5). For
the implementation of these messages we thus just had to
map them to the appropriate Python code. For Smalltalk
classes and functions, we implemented the GetDocumentation
message to show the last modified date, category, and author;
these are stored as meta-data on these Smalltalk objects
anyway.

Finally, hover information is available to the same extent
as for SL in all three other languages, since they each support
dynamic evaluation of source code in a given runtime frame.
An example for FastR is shown in Figure 6.
Completion Figure 7 shows a code completion for globals
and locals in Python. Completion items have different icons
for classes, methods, and variables in the list of suggestions.
For the selected item of a built-in class, a string representa-
tion of the corresponding meta-object is displayed, together
with a documentation, if available. The same support is avail-
able for FastR and GraalSqueak (Figure 8).
The code completion of properties is supported to dif-

ferent extents in these languages. Runtime information are

87

https://www.r-project.org

Language-Independent Development Environment Support for Dynamic Runtimes DLS ’19, October 20, 2019, Athens, Greece

Figure 7. Completion of globals with documentation in
Python.

Figure 8. Code completion of globals in GraalSqueak.

always required due to the dynamic nature of the languages.
For FastR and GraalSqueak, we were not able to provide a
completion of properties yet, although the Truffle API allows
it. These languages are missing an expression annotation on
their AST nodes. Implementing it will not only help the LSP
support, but also add support for column breakpoints in the
Chrome debugger, for example.
In Python, triggering a completion of properties for the

code snippet anObject.nestedObject, by inserting a dot at
the end, will yield completion items for all properties of
the object referenced by anObject.nestedObject, because the
nearest node tagged as expression is the one representing
the whole source section. In SL, however, inserting a dot be-
fore the semicolon in the expression anObject.nestedObject;

to trigger code completion, will yield no results, because
the nearest node tagged as expression represents just the
nestedObject string, and not anObject.nestedObject. This
highlights that the developer has to take a bit of care design-
ing their AST for optimal developer experience.

4 Related Work
Our approach focuses on enabling performance-focused lan-
guage implementation frameworks to provide their imple-
mented dynamic languages with IDE-like tooling support
with minimal effort. Another major part of our approach is
based on collecting and using runtime information to en-
hance certain LSP features.
IDE-frameworks such as Eclipse6, Visual Studio7, or

IntelliJ8 provide extension points to develop IDE-specific
plugins for new languages or can be used as language clients
if they implement the LSP. But as they do not support lan-
guage developers in implementing programming languages

6https://www.eclipse.org/ (accessed 2018-12-17)
7https://visualstudio.microsoft.com (accessed 2018-12-17)
8https://www.jetbrains.com/idea (accessed 2018-12-17)

in the first place and writing IDE-specific plugins or a lan-
guage server still requires a lot of work, we do not further
discuss them here. Furthermore, there are lots of language-
and editor-specific tooling solutions for dynamic languages,
which are also not our focus.

LanguageWorkbenches such as like Spoofax [7], Xtext [3],
or MPS [20] focus foremost on the efficient definition, reuse,
and composition of languages and their IDEs [2]. In contrast
to the work presented here, performance and generality of
the resulting languages is a secondary concern.

Visser et al. described an approach using the Spoofax lan-
guage workbench [7] and the DynSem language [18] to sys-
tematically generate Truffle languages, i.e. AST interpreters,
fromDynSem specifications [19]. However, Spoofax provides
plugins for the Eclipse IDE only. It would be interesting to
see if LSP support can easily be enabled for Truffle languages
generated in this way.
Two approaches that focus on reusing existing tools of

a live programming environment and the overall program-
ming experience, are the Smalltalk-based IDEs Helvetia [12]
and Squimera [10]. Helvetia enables embedding DSLs into
Smalltalk, by adding hooks into the Smalltalk compiler chain.
This way, the DSLs can be translated on demand into Small-
talk code, so that existing tools of the environment still work,
without the need to generate and start a new IDE. Squimera
is based on a multi-language runtime and allows reuse of the
Smalltalk tools across all supported languages. In contrast
to this work, these approaches focus on Squeak/Smalltalk as
the DE.
Part of our approach focuses on collecting and utilizing

runtime information to answer LSP requests. There are a
number of prior approaches towards this idea.
The Hermion IDE [14] collects run-time information to

enhance program comprehension by improving static source
code navigation and browsing in Squeak/Smalltalk. Hermion
builds upon partial behavioral reflection [15] to restrict the
collection of runtime information to certain source code parts
and detail levels. However, users need to manually specify
which classes shall be instrumented to keep the cost of instru-
mentation and reflective operations at an acceptable level. In
Graal-lsp, the set of instrumented AST nodes is implicitly
defined by the LSP workspace, i.e. all parsed source code
files. As Hermion continuously observes the instrumented
classes, it can collect different types for a variable, which the
current Graal-lsp implementation does not do.

Holmes and Notkin [5] described an approach to improve
the static find-references feature of the Eclipse IDE using
collected runtime information. Only executed methods are
included in the search results, so that users benefit from
a limited result set related to their current application. To
collect the required runtime information, they instrument
the application’s tests with AspectJ [8]. This is comparable
to the case when run-time data is available in our approach.

88

https://www.eclipse.org/
https://visualstudio.microsoft.com
https://www.jetbrains.com/idea

DLS ’19, October 20, 2019, Athens, Greece Daniel Stolpe, Tim Felgentreff, Christian Humer, Fabio Niephaus, and Robert Hirschfeld

Type harvesting is another approach to collect type infor-
mation for dynamic programming languages [4]. The solu-
tion is based on observing the types of variables during test
execution. A similar feature exists in PyCharm9 which can
collect runtime information during a debug session. Graal-
lsp has the advantage of running with the JIT even when
instrumented, yielding better performance than these ap-
proaches.

5 Conclusion and Future Work
Wedescribed the problem of language implementation frame-
works lacking tooling support for code editing, especially
for implementations of dynamic programming languages.
Language developers that use such frameworks to create and
maintain programming languages with reasonable effort and
good performance currently get at most some run-time tool-
ing.We propose an approach to have IDE-like code assistance
with minimal work required from the language developers.
Our approach is based on a language-agnostic LSP server
and the collection and utilization of runtime information.
As proof of concept, we have implemented Graal-lsp, a
language server for the GraalVM.
There are three limitations of our approach to consider

especially: First, since most runtime parsers stop on the first
syntax error, we cannot report more than one syntax error
per file to the client. Second, all LSP features rely on the
availability parseable source. Third, when our sandboxing
prevents some kind of access or triggers a timeout, some
source sections of interest may not be covered and thus no
or only incomplete information is available.

Future work is two-fold: the main work will be to address
the above limitations and find ways around them for realistic
scenarios. This includes measuring how much time we can
afford to spent executing code before the user gives up wait-
ing for a result. The other is to cover more LSP features in
our approach. Part of this means to investigate further how
languages such as Squeak/Smalltalk, which use bytecodes
as part of the execution model and do not map to files, can
be made to work with LSP.
Despite these limitations, we already feel that our ap-

proach leads to a quickly usable code editor for the language
user. Since we use the instrumentation API of the Truffle
framework to parse and execute source code and answer LSP
requests, no separate parser or inference engine is required.
Sandboxing avoids unwanted side-effects when executing
arbitrary source code. As by-product of using the Truffle
framework, Graal-lsp supports polyglot editing assistance.
With only few API extensions for Truffle languages to im-
plement we demonstrated that a basic set of important LSP
features can be supported with minimal implementation ef-
fort and we are confident that a similar approach can work

9https://www.jetbrains.com/pycharm/ (accessed 2018-12-17)

with reasonable effort in other, similar frameworks such as
RPython.

Acknowledgments
We gratefully acknowledge the financial support of Oracle
Labs10, HPI’s Research School11, and the Hasso Plattner De-
sign Thinking Research Program12.

References
[1] Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D

Matsakis. 2007. RPython: a Step Towards Reconciling Dynamically and
Statically Typed OO Languages. In Proceedings of the 2007 Symposium
on Dynamic Languages (DLS). ACM, 53–64. https://doi.org/10.1145/
1297081.1297091

[2] Sebastian Erdweg, Tijs Van Der Storm,Markus Völter, Meinte Boersma,
Remi Bosman, William R Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, et al. 2013. The State of the Art in Language
Workbenches. In International Conference on Software Language Engi-
neering. Springer, 197–217. https://doi.org/10.1007/978-3-319-02654-
1_11

[3] Moritz Eysholdt and Heiko Behrens. 2010. Xtext: Implement your
Language Faster than the Quick and Dirty Way. In Proceedings of
the ACM International Conference on Object-Oriented Programming
Systems Languages and Applications (OOPSLA) 2010. ACM, 307–309.
https://doi.org/10.1145/1869542.1869625

[4] Michael Haupt, Michael Perscheid, and Robert Hirschfeld. 2011. Type
Harvesting: a Practical Approach to Obtaining Typing Information in
Dynamic Programming Languages. In Proceedings of the 2011 ACM
Symposium on Applied Computing. ACM, 1282–1289. https://doi.org/
10.1145/1982185.1982464

[5] Reid Holmes and David Notkin. 2010. Enhancing Static Source Code
Search with Dynamic Data. In Proceedings of 2010 ICSE Workshop on
Search-driven Development: Users, Infrastructure, Tools and Evaluation.
ACM, 13–16. https://doi.org/10.1145/1809175.1809179

[6] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.
1997. Back to the Future: the Story of Squeak, a Practical Smalltalk
Written in Itself. In SIGPLAN Notices, Vol. 32. ACM, 318–326. https:
//doi.org/10.1145/263700.263754

[7] Lennart CL Kats and Eelco Visser. 2010. The Spoofax Language Work-
bench: Rules for Declarative Specification of Languages and IDEs. In
Proceedings of the ACM International Conference on Object-Oriented Pro-
gramming Systems Languages and Applications (OOPSLA) 2010, Vol. 45.
ACM, 444–463. https://doi.org/10.1145/1869459.1869497

[8] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G Griswold. 2001. An Overview of AspectJ. In
European Conference on Object-Oriented Programming. Springer, 327–
354. https://doi.org/10.1007/3-540-45337-7_18

[9] Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. 2018. Graal-
Squeak: A Fast Smalltalk Bytecode Interpreter Written in an AST Inter-
preter Framework. In Proceedings of the 13th Workshop on Implementa-
tion, Compilation, Optimization of Object-Oriented Languages, Programs
and Systems. ACM, 30–35. https://doi.org/10.1145/3242947.3242948

[10] Fabio Niephaus, Tim Felgentreff, Tobias Pape, Robert Hirschfeld, and
Marcel Taeumel. 2018. Live Multi-language Development and Runtime
Environments. The Art, Science, and Engineering of Programming 2, 3
(mar 2018). https://doi.org/10.22152/programming-journal.org/2018/
2/8

10https://labs.oracle.com/
11https://hpi.de/en/research/research-school.html
12https://hpi.de/en/dtrp/

89

https://www.jetbrains.com/pycharm/
https://doi.org/10.1145/1297081.1297091
https://doi.org/10.1145/1297081.1297091
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1982185.1982464
https://doi.org/10.1145/1982185.1982464
https://doi.org/10.1145/1809175.1809179
https://doi.org/10.1145/263700.263754
https://doi.org/10.1145/263700.263754
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1145/3242947.3242948
https://doi.org/10.22152/programming-journal.org/2018/2/8
https://doi.org/10.22152/programming-journal.org/2018/2/8
https://labs.oracle.com/
https://hpi.de/en/research/research-school.html
https://hpi.de/en/dtrp/

Language-Independent Development Environment Support for Dynamic Runtimes DLS ’19, October 20, 2019, Athens, Greece

[11] David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert
Hirschfeld. 2019. Babylonian-style Programming: Design and Imple-
mentation of an Integration of Live Examples into General-purpose
Source Code. CoRR abs/1902.00549 (2019). arXiv:1902.00549 http:
//arxiv.org/abs/1902.00549

[12] Lukas Renggli, Tudor Gîrba, and Oscar Nierstrasz. 2010. Embedding
Languages Without Breaking Tools. In European Conference on Object-
Oriented Programming. Springer, 380–404. https://doi.org/10.1007/978-
3-642-14107-2_19

[13] Armin Rigo and Samuele Pedroni. 2006. PyPy’s Approach to Vir-
tual Machine Construction. In Companion to the 21st ACM SIGPLAN
Symposium on Object-oriented Programming Systems, Languages, and
Applications. ACM, 944–953. https://doi.org/10.1145/1176617.1176753

[14] David Röthlisberger, Orla Greevy, and Oscar Nierstrasz. 2008. Exploit-
ing Runtime Information in the IDE. In Proceedings of the 16th IEEE
International Conference on Program Comprehension, 2008. ICPC 2008.
IEEE, 63–72. https://doi.org/10.1109/ICPC.2008.32

[15] Éric Tanter, Jacques Noyé, Denis Caromel, and Pierre Cointe. 2003.
Partial Behavioral Reflection: Spatial and Temporal Selection of Reifi-
cation. ACM SIGPLAN Notices 38, 11 (2003), 27–46. https://doi.org/10.
1145/949305.949309

[16] Michael L Van De Vanter. 2015. Building Debuggers and other Tools:
We Can Have it All. In Proceedings of the 10th Workshop on Implementa-
tion, Compilation, Optimization of Object-Oriented Languages, Programs

and Systems. ACM, 2. https://doi.org/10.1145/2843915.2843917
[17] Guido van Rossum. 1995. Python Tutorial. techreport CS-R9526. Cen-

trum voor Wiskunde en Informatica (CWI).
[18] Vlad Vergu, Pierre Neron, and Eelco Visser. 2015. DynSem: A DSL

for Dynamic Semantics Specification. In 26th International Conference
on Rewriting Techniques and Applications (RTA) 2015 (Leibniz Inter-
national Proceedings in Informatics (LIPIcs)), Maribel Fernández (Ed.),
Vol. 36. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 365–378. https://doi.org/10.4230/LIPIcs.RTA.2015.365

[19] Eelco Visser, Guido Wachsmuth, Andrew Tolmach, Pierre Neron, Vlad
Vergu, Augusto Passalaqua, and Gabrieël Konat. 2014. A Language
Designer’s Workbench: A One-Stop-Shop for Implementation and
Verification of Language Designs. In Proceedings of the 2014 ACM
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software. ACM, 95–111. https://doi.org/10.1145/
2661136.2661149

[20] Markus Voelter and Vaclav Pech. 2012. Language Modularity with
the MPS Language Workbench. In Proceedings of the 34th Interna-
tional Conference on Software Engineering (ICSE), 2012. IEEE, 1449–1450.
https://doi.org/10.1109/ICSE.2012.6227070

[21] Christian Wimmer and Thomas Würthinger. 2012. Truffle: A Self-
optimizing Runtime System. In Proceedings of the 3rd Annual Confer-
ence on Systems, Programming, and Applications: Software for Humanity.
ACM, 13–14. https://doi.org/10.1145/2384716.2384723

90

http://arxiv.org/abs/1902.00549
http://arxiv.org/abs/1902.00549
http://arxiv.org/abs/1902.00549
https://doi.org/10.1007/978-3-642-14107-2_19
https://doi.org/10.1007/978-3-642-14107-2_19
https://doi.org/10.1145/1176617.1176753
https://doi.org/10.1109/ICPC.2008.32
https://doi.org/10.1145/949305.949309
https://doi.org/10.1145/949305.949309
https://doi.org/10.1145/2843915.2843917
https://doi.org/10.4230/LIPIcs.RTA.2015.365
https://doi.org/10.1145/2661136.2661149
https://doi.org/10.1145/2661136.2661149
https://doi.org/10.1109/ICSE.2012.6227070
https://doi.org/10.1145/2384716.2384723

	Abstract
	1 Introduction
	2 Context
	2.1 Tools in Language Implementation Frameworks
	2.2 Code Editors and the Language Server Protocol

	3 Approach and Implementation
	3.1 Obtaining Runtime Information
	3.2 Implementation of LSP Features
	3.3 Application to Other Languages

	4 Related Work
	5 Conclusion and Future Work
	Acknowledgments
	References

