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ABSTRACT
We question the widely adopted view of in-network caches
acting as temporary storage for the most popular content in
Information-Centric Networks (ICN). Instead, we propose
that in-network storage is used as a place of temporary cus-
tody for incoming content in a store and forward man-
ner. Given this functionality of in-network storage, senders
push content into the network in an open-loop manner to
take advantage of underutilised links. When content hits
the bottleneck link it gets re-routed through alternative un-
congested paths. If alternative paths do not exist, incoming
content is temporarily stored in in-network caches, while the
system enters a closed-loop, back-pressure mode of opera-
tion to avoid congestive collapse.
Our proposal follows in spirit the resource pooling prin-

ciple, which, however, is restricted to end-to-end resources
and paths. We extend this principle to also take advantage
of in-network resources, in terms of multiplicity of avail-
able sub-paths (as compared to multihomed users only) and
in-network cache space. We call the proposed principle In-
Network Resource Pooling Principle (INRPP). Using the
INRPP, congestion, or increased contention over a link, is
dealt with locally in a hop-by-hop manner, instead of end-to-
end. INRPP utilises resources throughout the network more
efficiently and opens up new directions for research in the
multipath routing and congestion control areas.

Categories and Subject Descriptors
C2.1 [Computer-Communication Networks]: Net-
work Architecture and Design- Distributed Networks
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1. INTRODUCTION
Information-Centric Networking (ICN) dismantles the

(e2e) host-to-host communication model and proposes
direct communication between the end-user and the con-
tent or information itself [2], [25].
A fundamental feature of ICNs is native content nam-

ing ([2], [10], [25], [30]), which in turn enables in-network
caching [25]: since the network is not content-agnostic,
but it is transferring explicitly named objects, data can
be temporarily cached in routers (instead of being mere-
ly buffered) and be later re-sent to one or multiple
requesting users. Furthermore, the receiver-oriented
request-response model of ICN (contrary to the sender-
driven DATA-ACK model of traditional TCP) gives the
opportunity to approximate the expected incoming link
load on a given router interface per unit time (i.e., every
request is asking for one chunk of data in the opposite
direction) [55]. In-network caching has received consid-
erable attention lately in the context of ICN, but solely
in the direction of improving cache hit performance by
optimising cache [9], [44] and content [40] placement,
request-to-cache routing [16], [46] and cache router de-
sign [4], [51].
In this paper, we look at in-network router caching

from a different angle and question whether caches can
take on alternative roles and assist with the control of
network congestion and in-network resource manage-
ment. We propose that routers act as temporary cus-
todians1 for incoming content along a given path from
source(s) to destination(s). We work to integrate this
design foundation into the recently proposed resource
1The term “custodians” is used in disconnected networks in
a similar way to guarantee that nodes accepting data will
make sure to deliver the data to its destination (or to a next
hop towards the destination) [49].
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pooling principle (RPP) [52], according to which “a
collection of networked resources behave as though they
make up a single pooled resource. The general method
of resource pooling is to build mechanisms for shifting
load between various parts of the network” [52]. Re-
source pooling, as proposed in [52] and further investi-
gated in [22] and [53] has so far focused on shifting load
between outgoing links of end-users only, making use
of Multipath TCP [53]. RPP in its current form ([22],
[53]) is restricted to end-to-end bandwidth resources (see
Fig. 2(ii)). For this reason we refer to the above defini-
tion as e2eRPP and investigate the possibility of com-
plementing e2eRPP with an In-Network Resource Pool-
ing Principle (INRPP) (see Fig. 1), largely defined as
a group of mechanisms based on which load is shifted
along the entire delivery path in a hop-by-hop manner,
utilising all available subpaths and in-network caches
(see Fig. 2(iii)).

Figure 1: Network Resource Pooling

In-Network Resource Pooling (INRP) is based on the
concept of dealing with increased demand for network
resources locally and not only in an end-to-end manner.
The INRP paradigm comprises three different phases:
i) push-data: content is pushed as far in the path
as possible in an open-loop, processor sharing manner
[14], based on the path’s hop-by-hop bandwidth re-
sources and not on acknowledged data from the end-
user; pushed data consists of both requested and an-
ticipated data (data not explicitly requested yet) to
take advantage of underutilised links; ii) detour: when
pushed data reaches the bottleneck link, it is split in
flowlets [50], which are then detoured through alterna-
tive paths towards the destination [20], [27]; iii) back-
pressure: if alternative paths do not exist, data gets
cached at the bottleneck router and the system enters
a closed-loop, back-pressure mode of operation [48] to
avoid extensive caching and congestion [39].

Figure 2: Single-/Multi-Path Resource Utilisation

This alternative view of in-network caching contra-
dicts the closed feedback loop of TCP, as well as the
resource probing nature of TCP’s AIMD [24]. We ques-

tion this common design principle of closed-loop control
and investigate whether alternative, ICN-based concepts,
can move traffic faster without causing packet drops.
We base our design on generic conventions for ICN

operations, such as the request-response transmission
cycle, but do not restrict the applicability of INRP to
any of the existing ICN architectures (e.g., [8], [12], [25],
[54], or assumptions therein, e.g., symmetric forward-
return paths). We believe that with the required modi-
fications INRP could apply to most ICN approaches, ei-
ther native or future, evolutionary, IP-based ones. The
design considerations discussed here should be consid-
ered as foundations for efficient resource management,
which require further research in order to be made op-
erational.
The distinct concepts that form the In-Network Re-

source Pooling Principle have been investigated in the
past in different disciplines and with different objec-
tives. Rate-based congestion control has been proposed
in [34], [43] and has been shown to achieve promising
results. Furthermore, detour mechanisms, multipath
routing and traffic engineering are well-investigated top-
ics [20], [21], [27]. Finally, there exists a fair amount
of work on back-pressure techniques to better control
sending rates [39], [48]. We discuss each of those items
next, identify reasons why their applicability to date is
limited and finally, attempt to put those different pieces
together in an In-Network Resource Pooling framework.

2. BACKGROUND ANDMOTIVATION

2.1 Congestion: A Network-layer Problem
Congestion is generally defined as the event upon

which the link is fully utilised and the buffer cannot
accommodate any more incoming packets, hence starts
dropping them [19]. That said, congestion is by defini-
tion a network-layer phenomenon (i.e., packets are be-
ing dropped), but has traditionally been dealt with at
the transport-layer, in a closed-loop, end-to-end fash-
ion (i.e., only the end points can regulate the traffic
inserted in the network). In a road network, this is
similar to controlling the departure times of travellers
depending on their routes, rather than the actual traffic
itself along the route using traffic lights. The goal of a
transport protocol is to fully utilise path resources from
a sender to a receiver in a fair manner among all pairs
of end-hosts sharing (part of) the same path [11].
The end-point driven control of network congestion,

however, inevitably relies on probing algorithms to es-
timate the available resources down the delivery path
and respond to congestion events in a reactive way (i.e.,
after packets have been dropped). The ultimate goal
of AIMD (and TCP) is to estimate the capacity of
the lowest-throughput link along the delivery path and
transmit traffic according to that. In essence, TCP
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senders have to speculate on the conditions of the end-
to-end path (Fig. 2(i)).
Although probing in the form of AIMD is shown to

achieve fairness and stability, it comes with several draw-
backs, which have concerned the research community
for decades. These include reactive response to conges-
tion, burstiness, RTT-unfairness, slow flow completion
time, flow-synchronisation and inherent ability to clog
the network with data and cause congestion [15], [43].
As a result, several techniques have been proposed

to tackle these issues, from smoother transmission pat-
terns [5], to rate-based (e.g., RCP [14]) and hop-by-
hop rate controllers [34], but also network layer, Ac-
tive Queue Management (AQM) approaches [1]. All of
those alternatives targeted explicit and/or faster feed-
back to the sender regarding network conditions in order
to overcome the slow, end-to-end feedback loop [42].

Take-away I: The end-point-based closed-loop con-
gestion control of TCP is bound to inefficient perfor-
mance due to decisions made at the two ends of the
TCP connection (i.e., far from the congested area).

2.2 Multipath Congestion Control
Several studies have investigated the benefits of util-

ising multiple paths to send traffic from a source to a
destination [28]. Multipath TCP (MPTCP) [53] has
received wide attention recently, since by making use
of its resource pooling principle, it can exploit available
resources along multiple paths.
MPTCP, similarly to any other multipath conges-

tion control approach (e.g., mTCP [56]), requires that
sources of data are multihomed, a straightforward re-
quirement to exploit multiple paths in an end-to-end
fashion [32]. Given that currently multihoming is not
common among residential users, MPTCP seems to be
finding more space for deployment in data-center envi-
ronments [41]. Recent trends, however, reveal that mul-
tihomed stub domains increase rapidly, and that with
IPv6, multihoming becomes even easier [36]. This fact
is interesting for one more reason: the common prac-
tice among ISPs to move the bottleneck to the edge of
the network (i.e., DSLAM to user) restricts users from
taking up as much bandwidth as possible. In a multi-
homed, or FTTH environment, however, the bottleneck
will inevitably move to the core of the network causing
more severe congestion events.
Indeed, the ever increasing rate of TCP’s AIMD is

set to clog the network and its buffers no matter how
fast the link is.
Take-away II:Multipath congestion control based on

TCP/AIMD gives the opportunity to exploit more avail-
able resources, according to the resource-pooling princi-
ple. Multipath congestion control is still, however, re-
stricted to utilise e2e paths only, hence exhibits the same
inefficiencies as normal TCP.

2.3 Multipath Routing
Pushing the bottleneck at the edge of the network, as

discussed in the previous section, results in relatively
stable aggregate rates in the core, despite the bursty,
saw-tooth behaviour of TCP/AIMD. Multipath rout-
ing has therefore been used in the core (as opposed to
multipath congestion control, which applies to the edge
only) for traffic engineering and load-balancing reasons
[27], [33]. Several techniques have been proposed for
forwarding on multiple paths both at the intra- and the
inter-domain level [20], [32]. Flexible forwarding can be
applied either per packet or per flow (see ECMP [23],
flowlet cache [20], or flowlet switching [50]).
Detour techniques on the other hand have been pro-

posed for overlay networks [29], mainly at the AS level
[21] to bypass the IP/BGP routing instructions which
do not take into account latency or bandwidth charac-
teristics of paths [3]. In all cases, however, and although
network routers have a better view of both the network
conditions and the (intra-domain) topology [20], it is
still left to the end-points to regulate the sending rates
or choose which of the available paths to follow [35].
Take-away III: Despite extensive studies on multi-

path routing and multipath congestion control, these two
arguably complementary areas remain remarkably de-
coupled. There has been no previous attempt to combine
the benefits of multipath routing and congestion control
into a common resource pooling principle in order to
improve overall resource utilisation.

3. IN-NETWORK RESOURCE POOLING

3.1 Framework Overview
Fundamentally, there exists a very tight relationship

between the end-to-end, closed-loop feedback system of
TCP and the size of the system’s buffers [13]: the end-
to-end, closed-loop feedback necessitates small buffers
along the delivery path. This relationship is in turn
bound to move traffic along a path as fast as the path’s
slowest link. Given the single-path nature of TCP, mov-
ing traffic according to the path’s slowest link guaran-
tees global stability (i.e., stability along the e2e path
through e2e rate-adaptation). Fairness on the other
hand, is guaranteed locally (i.e., based on the capacity
of the bottleneck link).
We argue against this relationship and in the spirit of

INRPP propose that: i) stability should be local, and ii)
fairness should be global. Local stability demands that
the node before the bottleneck link takes appropriate
action when conditions deteriorate. Global fairness on
the other hand requires that all resources (both band-
width and cache) up until the bottleneck link are shared
equally among participating flows.
Consider two flows in the topology of Fig. 3. Accord-

ing to the e2e flow control of TCP (left part), the flow
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that traverses the bottleneck link (2-4) would achieve
2Mbps throughput (global stability), while the second
flow would dominate the shared link (1-2) and achieve
8Mbps throughput. According to Jain’s Fairness In-

dex [11], given by F =
∑

(T )2

n
∑

(T 2) , where T is each flow’s
throughput and n is the total number of flows, the sys-
tem fairness in this case is 0.73. In case more than
one flows traverse the bottleneck link (2-4), they would
share equally the available bandwidth (local fairness).
In contrast, according to the In-Network Resource

Pooling Principle introduced here (right part of Fig. 3),
the shared link (1-2) is split equally among the two flows
(global fairness). Node 2 has two options in this case:
i) find alternative routes to reach node 4 (local stabil-
ity), or ii) enter backpressure mode and notify node 1
to reduce its sending rate (closed-loop system to avoid
extensive caching at node 2). In the topology of Fig. 3,
node 3 can accommodate the extra 3Mbps. In this case,
Jain’s index indicates perfect system fairness.

Figure 3: Left: e2e Flow Control: Bandwidth is split according
to the slowest link on the path. Right: INRPP: Bandwidth is
split equally up to the bottleneck link (global fairness). Detour
applies to guarantee local stability.

The current system would fail to achieve the above
goals, as: i) caches cannot be operational in a content-
agnostic network, where data containers (i.e., IP pack-
ets) are buffered, forwarded based on the destination
IP address and then discarded (as they are of no use
any longer), and ii) end-points have to approximate the
available resources along the whole path (according to
a closed-loop, ever-increasing, probing manner).2

3.2 End-Point Node Model
Under an ICN environment, we assume Request Pack-

ets and Data or Content Chunks generated by receivers
and senders, respectively.
Data Receivers request data at the application rate.

For bulk data transfers (i.e., ftp), an initial rate will
have to be set, similar to the initial window of TCP.
After receiving the first few chunks of data, the receiver
continuously adjusts its requesting rate to the incoming
data rate.

2A workaround for local stability and global fairness could
be for every node in the network to run a separate instance
of TCP for every flow it is serving and keep per flow queues
(similarly to Split-TCP). This, however, would be rather
expensive in terms of processing delays.

Applications request for the immediate next chunk
of data plus some anticipated data that the application
is going to request in the near future. The format of
the Request Packet is: 〈Nc, ACKc, Ac〉, where Nc is the
next chunk requested by the application, ACKc is an
acknowledgment for the latest chunk received and Ac is
the number of the last anticipated chunk. Ac, similarly
to the initial request rate, is also a constant parameter
set globally.
For our discussion here, we do not consider lost chunks,

or out of order delivery of chunks and rather focus on
how to engineer global fairness and local stability. Tech-
niques to overcome out-of-order packets in TCP have
been proposed in [22] and [50] and could also be used in
the context of INRP. Note, however, that out-of-order
delivery in our case is not a sign of congestion. Instead
lost packets are identified by explicit timers or NACKS.
Data Senders keep state for each flow (similar to

TCP senders) and operate in one of two modes. In the
push-data mode, the objective of senders is to send as
much data as their outgoing links can carry according
to the Nc and Ac values of the requests. In this phase,
senders multiplex flows in a simple processor sharing
fashion [14]. In the back-pressure mode, data senders
slow down their sending rate and enter a closed-loop
mode of operation, where they send data at the rate
with which they receive requests (1-to-1 flow balance).

3.3 Network Router Functionality
Intermediate routers have two main functionalities,

namely, routing/forwarding and caching. Routers do
not maintain per-flow queues, but have a scheduler which
multiplexes data from incoming to outgoing interfaces
in a round-robin fashion. Routers forward data to their
outgoing interfaces according to the interface’s speed,
therefore links always remain fully utilised.3

Each interface of the router keeps track of the re-
quests that it has forwarded upstream (towards the
source) for all other interfaces, per unit time. That
is, each interface calculates the following ratio for each
of the rest of the interfaces of the router:

yi−→i =
Reqs for Ii

Reqs for
∑

Ii−
(1)

where Ii is interface i and Ii− are the rest of the in-
terfaces. According to this value each interface knows
the amount of traffic that it will receive for each of the
rest of the interfaces in the next time interval Ti.4 A
3The forwarding speed can be set to a value smaller than
the outgoing interface’s maximum speed to avoid operating
at full capacity and be able to accommodate bursts.
4Setting the time interval Ti is not trivial (similarly to Td

in TeXCP [27]), as this value will have to take into account
diverse RTT paths. To avoid keeping per flow state at each
router, a reasonable setting for Ti would be the average RTT
of data chunks. This can be sampled from the timestamp
that data chunks carry on them.
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central management entity of the router is collecting all
values from all interfaces and calculates (sums up) the
amounts of traffic that each of the interfaces will have
to forward in the next Ti. We call this value Antici-
pated Rate for Interface i, or r(a)i and the actual rate
with which interface i can forward traffic (i.e., the link
capacity/speed) is denoted by ri. Each interface can be
in one of the following three phases:

Push-data Phase: If r(a)i < ri, demand does not
exceed supply and therefore, the link can deal with the
expected amount of traffic.

Detour Phase: When r(a)i ! ri, or r(a)i > ri, then
demand is expected to exceed supply (within Ti) and
alternative techniques have to be applied to avoid ex-
tensive congestion. We note that demand will exceed
supply because of increased demand from end-users to-
wards this part of the network and not because of trans-
port protocol’s increasing rates, i.e., senders are for-
warding data according to the available capacity at their
outgoing interfaces [14].
In the detour phase the router will have to seek al-

ternative paths to forward data towards its destination.
Note, however, that the router estimates the expected
traffic at the request phase, and therefore, has a time
window of approximately Ti/2 (i.e., Ti ≈ avgRTT , de-
pending on the distance ratio of the router between
source and destination) to assign traffic to paths before
the actual traffic arrives.
Our initial approach here suggests intra-domain de-

touring at the router level. Indeed, we find that real
network topologies can on average provide one-hop de-
tour paths on more than 50% of links (reaching up to
92% for Level-3), two-hop detour paths on 30% of links,
and three-plus hop detour paths on less than 5% of links
(see Table 1). In our sample of nine topologies detour
is not available for approximately 13% of links only. To
detour through a specific path, the router would have to
spoof the destination router’s identifier with that of the
node back on the original path (effectively tunnelling
through the detour node [29]).

Table 1: Available Detour Paths in Real Topologies

ISP 1 hop 2 hops 3+ hops N/A

Exodus (US) 49.77% 35.48% 6.68% 8.06%
VSNL (IN) 25.00% 33.33% 0.00% 41.67%
Level 3 92.22% 6.55% 0.68% 0.55%
Sprint (US) 56.66% 37.08% 1.81% 4.45%
AT&T (US) 34.84% 61.69% 0.72% 2.74%
EBONE (EU) 50.66% 36.22% 6.30% 6.82%
Telstra (AUS) 70.05% 10.42% 1.06% 18.47%
Tiscali (EU) 24.50% 39.85% 10.15% 25.50%
Verio (US) 71.50% 17.09% 1.74% 9.68%

Average 52.80% 30.86% 3.24% 13.10%

Upon detouring and without any extra information
on the load of the links on the detour path, data may

find itself before another congested link. We plan to
investigate two approaches to deal with this issue: i)
nodes periodically communicate their average link util-
isation between their one-hop neighbours (see similar
techniques in [27], [29], [31]), or ii) nodes on the detour
path also have the option to further detour if they see
that the immediate path to the destination is also con-
gested. The first approach suggests that routers keep
state per outgoing interface of their one-hop neighbours.
This is needed in order to forward towards this detour
direction exactly as much traffic as this detour path can
accommodate. In the example of Fig. 3, node 2 would
know the available free capacity of the interface 3-4.
Although this inevitably introduces extra overhead it
would help make informed decisions in the detour phase.
We have evaluated the performance of the push-data

and detour mechanisms of INRP in a simple flow-level
simulator, where flows arrive Poisson distributed. Rout-
ers exploit up to 1-hop detours and nodes on the detour
path can further detour, but for one extra hop only. If
senders see extra available bandwidth they insert more
data in the network. We compare the performance of
the above abstraction of INRP against single-, shortest-
path routing (SP) and Equal-Cost Multipath (ECMP)
in three real topologies. Fig. 4a shows that INRP
achieves between 9-15% extra bandwidth utilisation,
compared to SP. We expect this to translate to faster
flow completion time by the same proportion. ECMP
also performs better than SP, as we do not consider
bottlenecks at the edges of the network, which would
result in stable aggregates at the core of the network.
In Fig. 4b we observe that this is achieved with minimal
path stretch and expect that in case of 2+ hop detours
performance will improve further. The combination of
these two results indirectly reveals that although a large
number of flows swap between paths, they do not swap
simultaneously to cause concurrent over-utilisation of
some paths and under-utilisation of others.
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Figure 4: INRP performance

Back-pressure Phase: Finally, if the detour phase
finds that there is no alternative path to forward the
data in excess, either because no link exists, or because
detour links are congested as well, the interface gets into
the backpressure phase. In this phase, the congested
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node: i) caches incoming data, and ii) explicitly informs
its one-hop upstream neighbour to forward data at a
slower requested rate. Effectively, the system enters a
closed feedback loop in order to avoid excessive caching
at the congested node.
The rate of caching of incoming data depends on

the incoming link’s speed (see [4] and [40] for repre-
sentative figures). Values reported there indicate that
a 10GB cache after a 40Gbps link can hold incoming
traffic for 2 seconds - much more than the average RTT
(and timeout) in the Internet today. Note that caching
here does not replace buffering (incurring huge queu-
ing delays), as during the push-data and detour phases,
the senders forward more data than the client has re-
quested. Effectively, intermediate nodes temporarily
store future/anticipated data that the user has not re-
quested yet.
In turn, the upstream neighbour node that has been

informed of the congested link has two options: i) find
more-than-one-hop detour to bypass the congested node,
or ii) forward the explicit backpressure notification fur-
ther back the path to reach the data sender. In the first
case, the node gets into the detour mode, as if one of
its own interfaces was congested.5 In the second case,
where the notification is sent all the way back to the
sender, the latter is entering a closed-feedback loop for
this flow. This further implies that the sender will have
to re-divide the available bandwidth between the rest
of the flows (again in a processor sharing manner) on
its outgoing interface to utilise all available resources.

4. SUMMARY AND CONCLUSIONS
Existing proposals for an ICN Internet require sub-

stantial modifications to the current architecture, both
from a conceptual perspective and from an infrastruc-
ture one (e.g., extra layers in CCN/NDN [25], topology
managers in PURSUIT [54], DHT-based name resolu-
tion in NetInf [12], mediation planes in COMET [8],
[38]). We believe that although these changes require
investment both in capital and in research terms, the
exercise is worth taking, given the benefits of an ICN-
based Internet. We also believe that if the exercise is
to be undertaken, the full potential of the shift should
be considered. The feasibility of the In-Network Re-
source Pooling Principle provides a good first step on
this direction.

5Again here, keeping state of the outgoing interfaces of the
one-hop neighbours would help nodes exploit bandwidth for
the non-congested interfaces of their neighbor nodes. For
example, in Fig. 3, if node 2 sends a back-pressure message
to node 1 (e.g., the detour through node 3 is not available),
then node 1 would either slow down the traffic for both flows
(if it doesn’t know which outgoing interface of node 2 is
congested), or would slow down traffic for the flow that goes
through the bottleneck only (if it keeps state per outgoing
interface of node 2).

Recent efforts in the ICN transport-layer area have
mainly focused on adjusting the main mechanisms of
TCP and AIMD to fit to an ICN environment (e.g., [6],
[7], [26], [37], [45], [47], [55]). Closer to our work are
[26], [45] and [55]. Although the protocol in [55] uses
detours to find less utilised links (similar to the con-
cept of INRP), it then deploys AIMD over single paths
to regulate the sending rates, hence, adopts the draw-
backs of TCP discussed above. Furthermore, detouring
in [55] takes place at the Interest phase (instead of the
data phase), hence, its accuracy is bound to be out-
dated by approximately RTT/2. The work in [45] on
the other hand, is based on hop-by-hop rates to shape
the rate of interests and therefore, data as well (sim-
ilarly to [34]). This would inevitably require per-flow
queues to regulate the rate of each flow according to
the path it is traversing and transmit traffic based on
the path’s slowest link (in a global stability fashion).
Instead, INRP would require (at most) state per out-
going interface of neighbour nodes. Note that none of
the above ICN-oriented transports has been evaluated
together with caches, something that completely rules
out the benefits of in-network storage and limits the full
potential of the ICN paradigm.
The open issues of INRPP outnumber the resolved

ones, but our initial investigations show that it indeed
achieves the objectives of local stability and global fair-
ness. Deployment issues [17] and co-existence with TCP/
IP will have to be investigated [18]; out-of-order delivery
will need to be dealt with [50]; and monitoring mecha-
nisms at the interface level will need to be finalised to
enable stable detouring and avoid extensive link swap-
ping [27]. These are some of the immediate future di-
rections to assess the full potential of INRPP.
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