
An Extensible Programrning Environment for Modula-3% 

Mick Jordan’ 

Abstract 

This paper describes the design and implementation of 
a practical programming environment for the Modula-3 
programming language. The environment is organised 
around an extensible intermediate representation of pro- 
grams and makes extensive use of reusable components. 
The environment is implemented in Modula-3 and exploits 
some of the novel features of the language. 

1 Introduction 

The success of a programming language owes much to its 
associated programming environment, especially to the set 
of tools which enable the construction and modification of 
programs. W5th a new language there is trade-off between 
producing an implementation quickly and in providing a 
rich and powerful set of tools. Choosing the first approach 
typically results in low quality, poorly integrated tools. 
The second approach can result in an unacceptable delay 
before the language can be used. This paper describes 
the design and implementation of a toolset for M,odula-3 
[G&39], a new programming language that adds threads, 
objects, exceptions and garbage collection to Msodula-2 
mr83]. Our aim was to steer between the two extremes 
noted above and produce a basic set of tools designed 
around an open, extensible framework, to which new 
tools could be added incrementally. 

*This work was carried out at Olivetti Software Technolog:y Labora- 
tory, Menlo Park, CA 94025, USA. 

+Author’s current address: Digital Systems Research Center, 130 
Lytton Avc, Palo Alto, CA 9430 1, USA 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the ACM copyright notic’s and the 
title of the publication and its date appear, and notice is given 
that copying is by permission of the Association for Computing 
Machinery. To copy otherwise, or to republish, requires a fee 
and/or specific permission. 
@ 1990 ACM O-89791-41 8-X/90/001 2-0066...$1.50 

2 Goals 

The long term objective was to build a practical envi- 
ronment to support large scale software development in 
Modula-3. Initially, the environment would contain only a 
basic set of well integrated tools such as a compiler, linker 
and debugger, but would be capable of supporting real 
projects on a variety of systems. In the longer term ad- 
ditional tools such as code browsers, code analysers, and 
improvements like smart recompilation would be added, 
building on the basic environment. In this paper, we 
are more concerned with how tools are constructed and 
combined than with the exact details of their functionality 
or interface to users of the environment. The idea is that, 
if the construction of new tools is made easy enough, 
new and powerful tools will appear routinely. Important 
sub-goals for the environment were as follows: 

A Framework for Program Analysis and 
Wansformation 

There is a large class of tools which engage in program 
analysis or transformation, for example, browsers, com- 
pilers, pretty-printers. These tools require access to an 
intermediate representation of program source, and sup- 
port mechanisms to facilitate the analysis. It is important 
not to prejudice the addition of such tools by choosing an 
overly restrictive framework. 

Extensibility 

In order to make effective use of the framework, adding a 
new tool must be straightforward. Detailed knowledge of 
other tools shouIdnot be necessary. New tools should have 
equal status with the initial set. Note that the extensibility 
is aimed at tool developers rather than at users of the 
environment, although the design does not preclude the 
latter as a subsequent enhancement. 

66 



Portability and Availability 

The system must be portable to a wide range of systems 
and execute on stock hardware, typically 3 Mip worksta- 
tions with 8-16 Mb of main memory. This placed some 
constraints on the system design and on the degree to 
which we could incorporate external tools. 

Implernent in Modula-3 

The implementation of a programming environment ex- 
tends from low-level (unsafe) programming through to 
application-level programming. This is precisely the 
area to which Modula-3 is targeted and we believe that 
Modula-3 offers a better set of facilities for this area than 
its competitors. Implementing the compiler for a (sys- 
tems) language in itself is also a good baseline test of an 
implementation, and lends credibility to a new language. 

3 Design 

The two key features needed to achieve the goals are: 

l A well defined and extensible intermediate represen- 
tation of program text. 

l A system design that encourages the reuse of com- 
ponents. 

The foremost requirement of the intermediate representa- 
tion (IR) is that it be information preserving. That is, with 
the possible exception of lexical details, all information 
present in the source text must be represented in the IR. 
The second requirement is that the IR be capable of record- 
ing additional information, perhaps implicit in the source 
text, that is generated by other tools in the environment. 
In short the IR must be extensible. One such iR that sat- 
isfies these requirements is an attributed Abstract Syntax 
Tree (AST), which is well established in the literature as 
a sound basis for compiler development [Aho86, Bor88, 
Don84, Goo83, Rep89]. An extensible AST provides an 
excellent integrationmechanism for the toolset. However, 
for extensibility to really work well, new tool developers 
must be able to compose existing tools in order to generate 
suitable AST instances for their task. They must also be 
provided with a rich set of packages or tool fragments that 
can be invoked to simplify their task. 

4 The Modula-3 Abstract Syntax 
Tree 

4.1 Background 

A detailed discussion of the merits of an AST as the inter- 
mediate representation for programs is beyond the scope of 

this paper. The DIANA reference manual [Goo83], which 
defines an AST for Ada1 POD83], contains an excellent 
analysis of the fundamental issues and has many useful 
recommendations for AST designers. Indeed the design 
of the Modula-3 AST (M3AST) was strongly influenced 
by DIANA and several techniques and conventions were 
adopted directly. Where M3AST differs from DIANA is 
in the explicit use of an object-type hierarchy to capture 
commonality and in the separation of the spetication 
into pieces that correspond to individual tool fragments. 
Also the notion of M3AST as the output from a com- 
piler front-end is de-emphasised in favour of support for 
a wider collection of tools. These techniques contribute 
to the readability and maintainability of the specification 
and aid in supporting extensible tool development. To 
illustrate the confusion that can arise with the monolithic 
approach consider our previous experience with an AST 
for Modula-2+. This AST was defined in a single iuter- 
face as a collection of variant record types. It was rather 
complex, and it was not always clear when a given node 
or attribute was set, by which phase (or tool) and whether 
an attribute was temporary or (usefully) persistent. This 
confusion did not facilitate extensibility, which demands 
some form of incremental&y in the specfication. 

4.2 AST Structure 

The AST is modeled as an attributed tree. Following 
the terminology used in DlANA, the tree contains named 
nodes that correspond to non-terminals in an abstract 
version of the Modula-3 grammar. Members of the right- 
hand side of the production rule for a non-terminal are 
denoted by typed attributes of the node. Non-terminals 
with alternative productions, for example, Expression, 
are modeled as classes whose members are the associated 
set of nodes. In other systems, for example the Synthesiser 
Generator [Rep89], classes are referred to as phlyu and 
the subtree rooted at a node is called a term. Attribute 
types may be basic types such as INTEGER, user-specified 
abstract types, such as might be used to denote an identifier 
name, or a node or class type. The repetitive constructs 
in grammar productions are represented by an attribute of 
type sequence. The set of nodes, classes and attributes 
corresponding to the language syntax form the backbone of 
the extensible AST and comprise the lexical and syntactic 
views. A new view is created by adding extra attributes 
to existing nodes and perhaps by defining new node 
and class types. An example is the semantic view, where 
attributes to denote identifier bindings are introduced. The 
views form a hierarchy that initially reflects the traditional 
sequence of phases in a compiler. An important kind 
of view is one which contains nodes and classes that 
represent an embedded language with its own syntax and 

‘Ada is a registered trademark of the U.S. Government 

67 



semantics, for example a specification language such as Pre-Linker This view supports the pre-linker tool, de- 
Larch [Gut85]. The ability to share a single formalism scribed in section 5.4, and detines attributes of a more 
and to establish interconnects between the two ASTs is global nature, for example the depends-on relation 
very useful. In the basic toolset there are the following for a module, which is used in determinin g Program 
AST views: initialisation order. 

Lexical This view is very simple, defining only the basic 
types needed to denote identifiers, numbers, com- 
ments etc. These are used as attribute types in the 
syntactic view. 

4.3 Mapping the AST into a Programming 
Language 

Syntactic The syntactic view defines the backbone of 
the AST, which other views decorate with additional 
attributes. There is a very close relationship between 
the syntactic view and the Modula-3 grammar. 

Pragmas The revised language provides a pragma mech- 
anism, in the style of comments, which is sufliciently 
general to support small-scale language extensions or 
embedded languages. The pragma view defines new 
nodes to represent the standard set of pragmas and 
adds additional attributes to the appropriate. nodes in 
the syntactic view. 

Semantic This view adds the additional attributes that 
result from semantic analysis, for example, denoting 
the binding between a used identifier and its defining 
occurrence. At this level the AST becomes a graph 
rather than a tree. 

Semantic Temporaries This view factors out those at- 
tributes that are used during semantic analysis but 
that have no (interesting) long term value, or are 
too costly to maintain in persistent form. One role 
of this view is to provide attributes that avoid the 
source-level bias of the syntactic view, for (example, 
normalising identifier declarations within a block and 
adding symbol tables that provide fast lookup. The 
lack of such features in DIANA has been criticised 
by compiler designers [ZorSS]. 

Front-End This view defines attributes to record the sta- 
tus of the compilation, the mapping between an AST 
instance and an external tie, and a mechanism for 
separating COMeCted ASTs into individual instances. 

Inliie Procedure inlining is implemented as an indepen- 
dent tool. Some additional nodes are defined to 
support the process, for example, a node to describe 
an inlined function procedure in an expression. 

C-Code Generator This view defines attributes used dur- 
ing the code generation phase. Most of these at- 
tributes are temporary but some are exported to other 
views, for example, information on the initialisation 
requirements of a module. 

The above discussion treats the AST in an abstract manner, 
but ultimately this abstraction must be mapped into some 
programming language. This can be achieved in many 
ways and involves several classic space/time/flexibility 
trade-offs. In making these decisions we believe that it 
is very important to maintain the strongly-typed nature of 
the abstract AST. This is easy to achieve for any tied 
set of AST views, but it should also hold for additional 
views, in order that new tools added by extension have 
equal status and protection. The key issue is how to 
support the addition of new attributes on existing node 
types. There are essentially two approaches. Either aug- 
ment the AST directly with new attributes or construct 
auxiliary data structures which refer back to the AST as 
necessary. The latter approach is tedious, inconsistent 
with using the AST as a tool integration mechanism, and 
can waste space because structural aspects of the AST, for 
example block structure, may have to be repeated. So we 
are led to direct augmentation. Unfortunately, the ability 
to define aggregate data-types incrementally is typically 
not found in strongly-typed programming languages. The 
Interface Defnrition Language (IDL) [Sno89], used to 
define DIANA, supports this feature, and therefore the 
view model, through structure derivation. A new (data) 
structure, or view, is derived from one or more previous 
structures by specifying additional new attributes, nodes 
and classes. Since the information about any one node 
may be scattered among several specifications, global 
knowledge is required to compile a client of any single 
strncture. IDL is further disadvantaged by containing 
no operational capability, It contains a powerful asser- 
tion language but the generation and manipulation of the 
structures must be carried out in a separate programming 
language. Not suprisingly much of the benefit of the rich 
type system is lost when it is mapped into a language like 
C Ker78] or Ada. An obvious and traditional approach to 
attribute storage is to attach a property list to every node 
and resort to run-time type-checking on attribute access. 
This is very flexible but it is wasteful of space, much less 
efficient than direct access and considerably more tedious 
to program (thus leading to less maintainable code). For- 
tunately, the object types available in Modula-3 offer an 
alternative solution, and this is discussed in section 4.5. 

68 



4.4 An Overview of Object Types in 
Modula3 

An understanding of Modula-3 object types is helpful in 
understanding the next section. Object types in Modula-3 
are similar to those found in other strongly-typed, object- 
oriented languages, such as C+c [Str86], Eiffel [Mey88] 
and Object Pascal @s&5]. However, the notions of 
intelface aud clas.s are kept distinct. An object type is 
simply another kind of type-constructor and is similar to 
a reference to a record of data fields, except that an object 
type may contain methods and may also inherit fields and 
methods from a statically designated supertype (ancestor). 
Methods encapsulate the operations that are permitted on 
an object; a method always receives the invoking object 
as its tit parameter. Modula-3 supports information 
hiding through opaque objects and also permits different 
degrees of opacity by a mechanism called a raelotion. 
For example: 
TYPE 

ST = OBJECT s: INTEGER END; 
T = ST OBJECT t : INTEGER END; 
U <: T; 

The type T is an object with field ‘t ’ plus those fields 
inherited from ST, which has no ancestor. T is a concrete 
typeandaninstancecanbecreatedbyacalltoNEW(T).The 
type U is an opaque object type, introduced by the subtype 
operator ‘ < : ‘. The interpretation of this declaration is 
that, in its concrete form, U will be some subtype of T, that 
is, it will have the fields and methods of T and perhaps 
additional ones. Typically these will be the private data 
needed to support the abstraction that U represents. A 
client of the above declaration for U cannot create an 
instance with NEW; this is only possible in the scope of a 
concrete defjnition of U ‘, To distinguish a declaration of 
a new type from its concrete definition, Modula-3 uses a 
revelation, thus: 

REVEAL U = T BRANDED OBJECT u: INTEGER END; 

The BRANDED keyword ensures that the opaque type is 
unique and is required because Modula-3 compares types 
using structural equivalence. A variation of REVEAL 
permits information on an opaque object to be revealed in 
differing amounts to different clients. For example: 

REVEAL U <: T OBJECT u: INTEGER END; 

This provides as much information as the previous reve- 
lation, but does not preclude U fTom containing yet further 
fields and methods. AU revelations are checked for con- 
sistency before a program is executed. 

2The interface declaring U will typically export a procedure to create 
an instance. 

4.5 The AST in Modula-3 

The AST is specified as a collection of interfaces based 
around the views described in section 4.2. Nodes and 
classes are both represented as object types. All node 
types are members (subtypes) of a given class. An AST 
instance consists of a collection of connected nodes; there 
are never any instances of class types. To make the 
distinction between a class and a node clear we follow the 
DIANA convention and use all capitals for class names. 
The base interface, M3AST, de&es a single class, NODE, of 
which all nodes in the AST are subtypes. The interface 
M3AST-AS defines the collection of classes and nodes in 
the syntactic view. At this level of abstraction only the 
subtype relationship is revealed, e.g. Integer-lit era1 
<: EXP <: NODE. The attributes of a node or class, and 
the way in which they are accessed, is left to other 
interfaces, in order to allow flexibility in representation. 
One might choose to expose the attributes as fields of 
an object, or to require access via methods, or even to 
use a conventional procedural interface. To date we have 
stuck with fields, preferring to trade AST size for speed of 
access 3. The interface M3AST-AS-F defines the view that 
provides node and class attributes as object fields. The 
technique for defining a view fragment is to define a local 
type that contains the attributes and then to reveal that 
the abstract type is some subtype of this fragment. For 
example: 

INTERFACE M3AST-AS-F; 
IMPORT MSAST, M3AST-AS; 

TYPE UNIT = MSAST.NODE OBJECT 
as-id: M3AST-AS .UNIT-ID; (* etc. *) 

END ; 
REVEAL M3AST-AS.UNIT <: UNIT; 

The UNIT class contains two members, Interface and 
Module, which differ only slighly. Many of the attributes 
are common to both members and are thus attached to 
the class and inherited. If a subsequent view wishes to 
add additional attributes to a UNIT 4 , it does so in a 
similar way. The example below is an extract from the 
C-code generator view, which adds an attribute to record 
whether a unit requires specific initialisation on program 
start-up. This is an example of an attribute that is exported 
to another tool, in this case the program linker. 

INTERFACE M3AST-CG-F; 
IMPORT M3AST-AS, M3AST-AS-F; 

3Represcnting node references as, say, small indices into a node table, 
is one way to reduce the size of the AST. 

40~r convention is to reuse the name of the abstract type for the 
fragment. Since Mod&-3 supports qualified naming, which we use 
consistently, no confusion should result. 

69 



TYPE UNIT = M3AST-AS-F.UNIT OBJECT 
cg-init -status : INTEGER 

END ; 
REVEAL M3AST-AS.UNIT <: UNIT; 

The supertype of a view fragment is always either the true 
parent of the abstract type, as specified in the initial subtype 
hierarchy, or a fragment in a previous view. M[odula-3 
forces this linearisation of the view hierarchy because 
it insists that all revelations for a type be consistent at 
compile time, rather than at link time. Thus, when 
defining a new view, one must know which view last 
added attributes to the node. Fortunately this information 
is contained in the interface that binds all the views 
together. This interface makes concrete revelations for 
all the abstract node and class types in the system, for 
example: 

INTERFACE M3AST-all; 
IMPORT M3AST, MBAST-AS; 
IMPORT M3AST-AS-F, M3AST-CG-F; 

REVEAL M3AST.UNIT = 
M3ASTXG-F .UNIT BRANDED OBJECT END; 

(* and so on for all nodes and cLasses in 
all views to be included. *) 

Aside from the nuisance of the enforced linearisation, 
which has not proved a problem in practice, the above 
mechanism has three important features, which contribute 
greatly to extensibility: 

l Code compiled against a given set of views need not 
be recompiled when a new view is added. 

l Only the attributes in explicitly imported views are 
visible to a tool 5. 

l It is possible to build tools that contain a subset 
of the views, subject to the constraints imposed by 
the view linearisation. For example, one can build 
a compiler front-end that uses an AST without the 
code-generator attributes. All that is required is to 
edit the configuration file, recompile it and relink the 
tool. 

There are some disadvantages which can cause perfor- 
mance problems: 

l The real type hierarchy is made artificially deeper by 
the view supertypes. 

l The compiled code for attribute (field) access must 
use link-time addressing. 

5Atiributcs in view supcrtypes are invisible since Modula-3 does not 
propagate revelations through more than one level of import. 

Both these issues can be resolved by appropriate global 
optimisations, since the problems only result from com- 
piling with partial knowledge. Indeed, one tool that we 
would like to add to the environment is such a global 
optimiser. An alternative approach is to exploit the en- 
vironment and build a tool that automatically generates a 
single monolithic interface from the views, by flattening 
out the view supertype list into a single object type. We 
have implemented this tool and by virtue of the reusable 
components described in section 5, it is only 150 lines of 
Modula-3. Using this approach results in a development 
environment rather similar to that afforded by lDL, where 
global recompilation is necessary after a change to any 
view. 

4.6 The Cost of Extensibility 

Node attributes are either basic (abstract) types or ref- 
erences to other nodes and classes (object types). The 
extensibility of the AST is based on using object types 
wherever possible, since only these types can be subtyped 
to add new attributes. It is tempting to immediately op- 
timise some AST classes into basic types; for example 
binary operators can be represented as an enumeration 
type. This is tempting because, on stock workstations, 
the large size of AS% remains a concern. However, 
such optimisations hinder extensibility and may force 
tools to construct more complex auxiliary data structures. 
Extensibility has a price but we believe that premature 
optimisation is wrong. Our experience is that new tools 
typically attach attributes to a small subset of the existing 
node types, and this only results in a small percentage 
increase in the size of the AST. To understand this issue 
better, we are carrying out measurements of the AS% 
that result in practice. One observation so far is that 
AST sequences tend to be rather short, averaging slightly 
less that two members, with about half of all sequences 
having length one. This information can be used to pick 
a sequence representation that reduces the overall space 
requirements [Jor90]. 

4.7 Persistent ASTs 

One purpose of an extensible AST is to allow one tool 
to compute and store information for use by another 
tool. With current computer workstations, it is not always 
practical or desirable to integrate all the tools into a 
single program. For example, the AS’l3 for the Modula-3 
compiler itself occupy about 16Mb of virtual memory. 
Hence, there needs to be a mechanism for making an AST 
persistent. There are other reasons, such as precompiling 
frequently used interfaces for direct loading in AST form. 
The general problem of making complex data structures 
persistent has been addressed by several groups, e.g. 

70 



[H&2], [N&B], often in the context of remote procedure 
call. IDL also provides powerful mechanisms that include 
support for automatic data type translation, although we 
found these to be rather inflexible. 

The term pickling Pir87] has been coined to detie 
the transfer of data between an executing program and 
an external store, in a way that preserves type safety and 
storage manager invariants. Given sufficient type infor- 
mation at run-time, a pickling system cau be implemented 
that requires no extra effort on the part of au application 
programmer. However, it can also be implemented by a 
tool which, operating from the AST, generates stub code 
to process an explicit set of data structures. Since this is a 
compile-time solution, its performance can be better than 
the run-time version. We chose the stub-based approach 
and our design and implementation is based on a thorough 
study of the issue, especially relating to object types, by 
Craft fCra89] for C-I-t. 

Pickling ASl% is complicated by their highly intercon- 
nected stmcture, which results from the import of one unit 
by another in the source text. Naively pickling an AST will 
save the entire connected set of AXI%, resulting in massive 
duplication in the persistent store. Our solution to this 
problem is similar to others [Har89], WSS], involving 
surrogate nodes, but the interaction with automated pick- 
ling is new. First, by design, we restrict external references 
to just two classes of nodes in the AST, defining-identifiers 
and type-specifications. This occasionally causes an extra 
level of attribute indirection but overall provides signif- 
icant simplification. We replace references to external 
nodes by surrogate nodes, that are new subtypes of these 
classes, which remember how to locate the external node. 
The generation of the surrogate nodes is done on the fly 
as the AST is pickled and so is non-destructive. This 
kind of dynamic intervention is impossible using the static 
transformation mechanisms provided by IDL. The recom- 
bination of the ASTs is integrated with the consistent 
compilation checking of Modula-3, which ensures that 
mismatched ASI% are not erroneously recombined. In our 
present system unpickling is not handled lazily - to do so 
would require a residency check on every access to an 
attribute of the external classes, and this would demand a 
procedural style of access. 

5 Reusable Components 

5.1 Introduction 

The ability for one tool to reuse components that were 
developed initiahy for other tools is crucial to the extensi- 
bility of the environment. It is also a difficult engineering 
problem requiring discipline and the resolve to redesign 
and restructure existing components if foresight was lack- 
ing. Reusability is encouraged by focussing a component 

on a small, well-defined task, by clearly specifying the pre 
and post conditions and by avoiding the use of static or 
global state. The inherent complexity of many program- 
ming environment components makes this a tall order. 
The extensible AST is of significant help since it is often 
possible to capture the inputs, outputs and temporary state 
directly in the AST. The design of a reusable compo- 
nent is made much harder if explicit storage deallocation 
is required, so using a language, like Modula-3, which 
provides garbage collection, is an advantage. 

5.2 Packages and Tools 

The environment components divide into two groups: 
packages such as the tree walker described below, and 
tools which carry out some action on behalf of a user, for 
example a browser. A tool is akiu to a UNIXs process, 
but is integrated with other tools by the AST and auxiliary 
data structures, rather than by pipes and files. Since the 
AST can be made persistent, tools can be built stand-alone 
or bundled together. 

5.3 Packages 

The environment provides a collection of packages for 
managing files, the user-interface, the AST, and so on, 
which are themselves built on an application indepen- 
dent Modula-3 library, We will briefly discuss the four 
packages that a new tool developer is most likely to use. 

The Ibee Walker 

The most important building block of the environment is 
the tree walker which forms the engine-room of all the 
syntax directed tools. The purpose of the tree walker 
is to factor out the structure of the AST, and how it is 
traversed, from the real job of the tool. The tree walker is 
object oriented; its main routine applies the abstract walk 
method associated with a node, which is impIemented by 
a module in the view that declares the node type. The 
tree walker provides a callback mechanism to the client 
tool allowing control to be gained as each node is visited, 
either on entry to the node, on exit, or both. The walk 
order is determined by the implementation of the walk 
method; for the syntactic view it is the obvious preorder 
traversal. In the callback there is almost always a need 
to access non-local state. Modula-3 does not provide 
full closures, but auxiliary state can be associated with a 
procedure activation using object types as shown below. 
Here is au excerpt from the tree-walk interface and an 
example client which is interested in finding procedure 
call sites. 

‘UNIX is a trademark of AT&T Bell Laboratories. 

71 



INTERFACE M3ASTWalk; 
TYPE 

VisitMode = {Entry, Exit}; 
VisitModeControl = SET Of VisitMode; 
Closure <: OBJECT METHODS 

callback(n: M3AST.NODE; 
vm := VisitMode.Entry); 

END; 

PROCEDURE VisitNodes( 
n: M3AST.NODE; 
vc: Closure); 

(* Walk tree rooted at 'n', applying method 
‘vc.callback' on entry to each node. The 
heart of this procedure is a single call 
to 'n.walk()'. 

*> 
END M3ASTWalk. 

MODULE FindCalls; 
IMPORT M3AST, M3AST-AS, M3ASTWalk; 
IMPORT IO, StdIO; 

TYPE 
StreamClosure = M3ASTWalk.Closure OBJECT 

6: IO.Stream; 
METHODS 

callback := VisitCalls 
END; 

PROCEDURE VisitCalls(c1: StreamClosure; 
n: M3AST.NODE; vm: M3ASTWalk.VisitMode); 

BEGIN 
TYPECASE n OF 
1 MJAST-AS.Call(call) => (* process *) 
ELSE (* ignore *> 
END; 

END VisitCalls; 

VAR cu: M3AST-AS.Compilation-Unit; 
BEGIN 
(* Omitted code to invoke compiler tool to 

compile the unit to tree rooted in 'cu'. 
*I 

M3ASTWalk.VisitNodes(cu, 
NEW(StreamClosure, s := StdIO.Out())); 

END FindCalls. 

Object-oriented programming purists may consilder the 
use of TYPECASE bad style. An alternative would be 
to extend the AST with a tool-specific view thal: added 
a method to each syntactic node. The only non-trivial 
implementation of this method, which would be invoked 
inVisitCalls,wouldbe for thecallnode. 

AST Display 

All node types in the tree have display methods; for the 
syntactic nodes the default implementation acts as a pretty 
printer. Any subtree of an AST can be displayed on 
a given output stream with an initial indentation. This 
package is typically used by program transformation tools 
to recreate a source file from a motied AST. 

The Context Manager 

Although the focus of attention is typically a single AST, 
all tools necessarily operate in an environment of multiple 
AS% owing to the extensive use of separate compilation 
in Modula-3. Managing this extra complexity is important 
to simplify new tool development. This is handled by the 
notion of a context, which is a simple mechanism for 
collecting together related compilation units. A tool is 
always provided with a current context so that when a 
reference to a (named) unit is encountered, for example 
as the result of an IMPORT statement, a search for the 
unit is first made in the current context. The context 
manager also provides facilities to iterate all the members 
of a context. In the current system there is no structure 
on a context, in particular any subsystem structure is not 
recorded. 

User Interface Management 

A tool always conttisauserintetiace component which 
gathers user input and perhaps generates output. The 
current state of user interface development is such that, 
although a window-based interface is often optimal, it is 
also necessary to provide one based on command lines. 
It is desirable to hide this distinction from the main body 
of a tool, and we achieve this by reducing the basic 
user interface to setting and retrieving typed name-value 
bindings. We also use extensible stream classes to hide 
input/output differences. We have implementations of 
this framework for command lines and for the X window 
system [Sch88]. 

5.4 Tools 

Any number of tools can be put together into a single 
program under the control of a master tool that coordi- 
nates their activities. Each tool registers itself and its 
argument requirements with a central manager as part of 
its initialisation code. Our current toolset includes a com- 
piler front-end, a code-generator, a dependency analyser, 
a pickle generator and a pre-linker, which can be put 
together in several combinations. Naturally some tools, 
such as the compiler front-end, are usually obligatory. 

73 



The Compiler Front-End 

This is the most complex tool in the environment and, 
since it is used by almost all the other tools, it is the most 
important to package cleanly. The tool is structured into 
three main components, a parser, a semantic analyser and 
a control module. The parser is written in Modula-3 and 
uses recursive descent. The parser can parse f&men& of 
Modula-3, for example expressions, which is useful for 
interpretation and interactive debugging, The semantic 
analyser is designed as a many-pass system, whereby each 
pass (tree-walk) typically computes a single attribute. This 
makes for a very maintainable system but has performance 
problems. Fortunately we can alleviate this since many 
attributes can be computed independently; so many tree 
walks can be collapsed into one simply by changing the 
driving code to achieve the restructuring. In a multi- 
threaded environment, many of these passes could be 
executed in parallel. The parser and semantic analyser are 
designed to handle a single unit at a time. When an import 
of another unit is found a callback is made to the driving 
module, which first tries to find the unit in the context 
that it was given initially. If that fails it tries to unpickle 
an AST form of the unit and if none is found recursively 
compiles the unit from source. 

The C-Code Generator 

The principal goal for this code-generator was portability, 
in order to make Modula-3 available on as wide a range 
of machines as possible. Although we wanted the code 
to run acceptably fast, if only because the system itself 
is written in Modula-3, performance was secondary. Al- 
though others have reported favourably on using C as an 
intermediate code [AtkS8], we do not share this opinion 
and would prefer to generate an intermediate representa- 
tion with more flexibility but without losing portability. 
Certain aspects of Modula-3, particularly opaque object 
types and exception handling, are difficult to map effi- 
ciently into C. Debugging in C terms is unpleasant, and 
the mechanisms needed to map information that is only 
known to the C compiler back into Modula-3 terms are 
onerous, 

The Pre-Linker 

The pre-linker operates on the complete set of AS’& that 
make up a program. It is responsible for generating global 
information, such as the module initialisation order, and 
checking the consistent compilation rules. It usually 
operates as a stand-alone tool, but can be integrated with 
the compiler. The limiting factor is the size of the ASTs 
for an entire program; in order to limit the amount of 
virtual memory and persistent storage needed, the stand 

alone version operates with pruned ASTs which have 
unimportant information removed. 

Pickle Stub Generator 

This is the tool that generates Modula-3 code to pickle 
data structures in a type-safe manner. It is rather like 
a code generator and operates directly from the AS’& 
generated by the compiler front-end In its current form 
the tool generates type-correct Modula-3 source, which is 
then compiled by the regular compiler. There are some 
situations where it would be more convenient (and more 
efficient) to generate au AST directly, relaxing some type 
rules, and then feed this directly to the code-generator. 

Compile-Servers 

One of the problems that faces the implementor of a lan- 
guage with interfaces, like Modula-3, is how to handle the 
compilation of interfaces. It seems wasteful to continu- 
ally recompile interfaces as part of compiling a module, 
which leads designers towards compiled interfaces. Un- 
fortunately, choosing this route places restrictions on the 
compilation order, since an interface must be compiled 
before any of the units that import it. This partial ordering 
can reduce the opportunity for the pamlIe1 compilation of 
a system. We have come to believe that the best solution 
to this dilemma is to view compiled interfaces exclusively 
as a performance optimisation. Accordingly, as noted 
above, our compiler can handle either compiled interfaces 
or compile them as necessary. So, for example, one might 
compile the interfaces for the standard library since this 
is a very stable system, but not those of a system under 
development. An alternative to pre-compiled interfaces 
is afforded by a tool that we call a compile-server. As 
the name suggests this is a tool which runs for a long 
time and responds to compilation requests from a client. 
In practice it is restricted to handling requests for compi- 
lations within a single subsystem (directory), in order to 
provide a consistent compilation context. The server is 
merely a standard compiler, outfitted with a mechanism 
for gathering its arguments and sending its error messages 
on an IPC channel. The client is a very simple program 
which redirects its arguments to the channel and listens for 
replies which it displays on the standard output. A user 
invokes the client instead of the standard compiler but is 
otherwise unaware of the existence of the server, other 
than that compilations execute much faster. In particular 
it is possible to use this tool in combination with make 
Fe1791 and emacs [Sta87] to provide a fast turnround 
compilation environment. 

73 



Dependency Analyser 7 Project History and Status 

This tool contains two components, one of which builds 
a unit dependency graph and another which ge:nerates a 
Mak@Ze. Unlike its predecessors [Jor89] this tool makes 
extensive use of other tools and components. It uses the 
compiler front-end tool to generate a set of AS?3 for the 
system under consideration and then applies components 
of the semantic analyser and pi-e-linker to compute needed 
attributes, such as the depends-on attribute between mod- 
ules. The tool can also operate incrementally, monitoring 
changes to modules in the file system, and rege:nerating 
the dependency graph. Since the compiler is integrated 
with this tool, it is also possible to activate the compiler 
back-end on changed modules, thus eliminating the make 
step entirely. 

6 Related Work 

The use of an attributed AST as the basis for tool integra- 
tion is present in Gandalf [Not85], Mentor @Don841 and 
the Cornell Synthesiser Generator [Rep89]. These sys- 
tems are all distinguished by their focus on syntax-directed 
editing as the program development style, a paradigm that 
has not found widespread acceptance. They are also more 
or less closed systems with special purpose programming 
languages for programming semantic actions. The suc- 
cessor to Mentor, Centaur @3or88], is a more open. system 
and provides an extensible AST formalism called the Vir- 
tual Tree Processor. Unlike M3AST, it is based on a 
dynamically typed programming language. Another re- 
cent intermediate representation is IRIS [Bak87], a graph 
formalism in which the type of a node is itself debned as 
au IRIS structure. Much of the work on extensib1.e ASl3 
dates back to the PQCC project &ev78]. The IDL lan- 
guage captures many of the essential ideas, but as noted 
earlier, IDL suffers in the mapping into an operational 
language with an inadequate type system. Garlan took 
a very general approach to views [Gar86], and permit- 
ted alternative representations of shared data in different 
views. The idea of composite tools integrated by complex 
data structures was proposed as an extension to ILDL by 
Snodgrass [Sno86]. The idea of producing tools from tool 
frasments is advanced in [Ost86]. The evaluation of the 
Rational system in Fei88] suggests that it shares many 
characteristics with our system, although it is rather more 
ambitious aud requires special hardware and operating 
system support. Objectworks Ipar for C++ provides 
similar facilities but details of its internal structure are 
unknown. The RPDEpascat @3ar89] environment is also 
similar, but is implemented in a language with no support 
for object types. 

To produce any compiler for a language like Modula-3 is 
no smaIl task and our timescales did not permit the building 
of a completely throw-away prototype. So we designed the 
prototype to support our final objective and built it in such 
a way that we could translate it into Modula-3, essentially 
automatically. Since our language of choice was then 
Modula-2+ mov85], this was a plausible approach as the 
two languages share many features. The critical design 
decision was the way in which to represent the AST. There 
is no clean way to support the extensible AST model in 
Modula-2+. Furthermore, our Modula-2+ implementation 
provided no pickling mechanism. Our goal was to design 
an abstract AST specification such that we could map 
Tom Modula-2+ to Modula-3 with the minimum of effort. 
Fortunately, as noted earlier, the IDL language [Sno89] 
satisfied these requirements very well. We chose to 
use the UNC IDL toolkit [Sno89] which translates IDL 
into C. We altered the back-end of the IDL compiler to 
generate a Modula-2+ interface to the C representation. 
We began the construction of the prototype system in June 
1988. Based on the extensible AST interface, we began 
parallel development of a compiler front-end, an AST- 
based interpreter, a debugger and the C-code generator. 
By October 1988 we could interpret simple programs. 
The back-end was actually implemented in C at another 
site and for a long time we communicated persistent 
AST instances between the two sites. We subsequently 
enhanced these tools to handle almost the entire language 
and developed some significant packages, for example an 
input/output system based on au extensible set of stream 
classes. As we had hoped, the bootstrap process was 
almost completely automated by emacs editing macros, to 
convert Tom Modula-2+ to Modula-3 and also to convert 
from the IDL form of the AST to the Modula-3 OBJECT 
form. At the time of writing, the system as described is 
complete and has been distributed to a number of external 
sites. It is capable of regenerating itself and runs on several 
different machine architectures. It comprises about 75,000 
lines of Modula-3 and 15,000 of C (the C-code generator). 

8 Future Work 

Now that the basic framework is in place there are many 
opportunities for new and improved tools. The basic 
toolset needs symbolic debugging at the Modula-3 level, 
but this is currently hampered by using C as the target 
code. Replacing the C-code generator with one targeted 
to an architecture neutral framework [Dav89], [Pee89], 
should ultimately provide the same level of portability 
without the problems posed by C. The set of ASTs for 
a subsystem or whole program supports browsing to an 

74 



arbitrary level of detail, but needs to be coupled with a 
system modeling capability to control the programming 
in the large aspects. We believe that we have adequate 
levels of abstraction in the existing environment so that 
this could be added with minimal disruption, Whole 
program optimisation, which acts to undo the levels of 
abstraction which a language like Modula-3 provides, is 
another area that can exploit the AST framework. In 
the longer term two areas seem important to pursue. 
The first is the replacement of the pickling approach to 
persistent ASTs with a more incremental approach based 
on a persistent object store, perhaps an object-oriented 
database (OODB) with its own type system. There are 
interesting issues concerned with the performance of a 
practical programming environment built in such a way 
and in handling the interaction between a fairly rich type 
system like Modula-3 and that of an OODB. Second, it 
seems important to explore how to exploit more formal 
techniques, for example, attribute grammats, in an open 
systems framework. 

9 Conclusions 

We set out to build a practical, extensible program de- 
velopment environment for Modula-3 and we succeeded 
in reaching that goaL The AST views provide an ap- 
proachable and well-structured specification and act as a 
powerful tool integration mechanism. A new too1 can be 
added quickly and easily and very little ‘boiler-plate’ code 
is needed in order to exploit other tools and components. 
The continual striving to produce reusable components 
paid dividends. Finally, our experience with Modula-3 
has been very positive. The structure and quality of the 
final system owes much to the combination of power and 
simplicity that Modula-3 provides. 

Acknowledgments 

David Chase wrote the C code-generator and associated 
run-time support. Steve Glassman wrote the interpreter 
and the pickle stub-generator. Trevor Morris wrote much 
of the compiler front-end and the run-time library. Mar- 
ion Sturtevant wrote the debugger and the dependency 
analyser. While the author was unexpectedly between 
jobs, Sun Microsystems kindly provided facilities for the 
preparation of the paper. 

References 

[Ah0861 Compilers: Principles, Techniques and Tools. 
Abo A.V., R. Sethi and J.D. Ulhnan, Addison- 
Wesley, Reading, Mass, 1986. 

[Atk88] Experiences Creating a Portable Cedar, Russ 
Atkinson, Alan Demers, Carl Hauser, Christian 
Jacobi, Peter Kessler and Mark Weiser, Proceed- 
ings of the SIGPLAN ‘89 Conference on Pro- 
gramming Language Design and Implementation. 

[Bak87] IRIS: An Internal form for Use in Integrated 
Environments, D.A. Baker, D.A. Fisher and J.C. 
Shultis, Technical Report, Incremental Systems 
Corporation, 1987. 

Dir871 A Simple and Efficient Implementation for Small 
Databases, A..D. Birrel et al., Proceedings of the 
Eleventh ACM Symposium on Operating Sys- 
tems Principles, August 1987. 

@or881 CENTAUR: the system, P. Borras, D. Clement, 
Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, 
V. Pascual, Proceedings of the ACM SIG- 
SOFT/SIGPLAN Software Engineering Sympo- 
sium on Practical Software Development Envi- 
ronments, Boston Mass, 1988. 

[Car891 The Modula-3 Report (Revised), Luca Cardelli, 
James Donahue, Lucille Glassman, Ivlick Jordan, 
Bill Kalsow, Greg Nelson. DEC Systems Re- 
search Center and Olivetti Research California, 
November 1989. 

[Cra89] A Study of Pickling Emphasizing C+t, Daniel H. 
Craft, Olivetti Software Technology Laboratory 
Technical Report STL-89-2, September 1989. 

pav89] A Proposal to the Open Software Foundation 
for an Architecture-Neutral Distribution Format, 
J.W. Davidson and T.M. Sigmon, University of 
Virginia, 1989. 

POD831 Reference Manual for the Ada Program- 
ming Language, ANSI/MIL-STD-1815AEditiou 
United States Department of Defense, Washing- 
ton DC, 1983. 

pon84J Program Environments based on Structure Ed- 
itors: the MENTOR experience, in Interactive 
Programming Environments, D.R. Barstow, H.E. 
Shrobe and E. Sandewall (Eds), McGraw-Hill, 
1984. 

Fe1791 Make - A Program for Maintaining Computer 
Programs, Software, Practice and Experience, 
Vol. 9,4, April 1979. 

pei88] Evaluation of the Rational Environment, P. Feiler, 
S. Dart, G. Downey, CMU/SEI Technical Report 
88-TR-15, July 1988. 

75 



[Gar86] Views for Tools in Integrated Environments, 
David Garlan, in Advanced Programming En- 
vironments, LNCS 244, Springer-Verlag, 1986. 

[Go0833 DIANA, An Intermediate Language for ADA, 
Lecture Notes in Computer Sciene, 161, 
Springer Verlag, 1983. 

[Gut851 Larch in Five Easy Pieces, J.V. Guttag, J.J. 
Horning and J.M. Wmg, Research Repon: 5, DEC 
Systems Research Center, Palo Alto, CA, 1985. 

mar891 Good News, Bad News: Experience Build- 
ing a Software Development Environment Us- 
ing the Object-Oriented Paradigm, W. Harrison, 
P. Sweeney, J. Shilling, OOPSLA Conference 
Proceedings, October 1989. 

IHer A Value Transmission Method for Abstzact Data 
Apes, M. Herlihy and B . Liskov, ACM Trans. on 
Programming Languages and Systems, ‘October 
1982. 

[Jor88] A Programming Environment for Modula-2, 
Mick Jordan and Peter Robinson, Software Engi- 
neering Journal, 3(4), July 1988, ~~119-126. 

[Jor89] Experiences in Configuration Management for 
Modula-2, Mick Jordan, Proceedings of the 2nd 
International Workshop on Configuration Man- 
agement, Princeton, New Jersey. ACM SIGSOFT 
Software Enginerering Notes, 17,7, Nov 89. 

[Jor90] A Space Efficient Representation for Sequences in 
Abstract Syntax Trees, Mick Jordan, Unpu.bIished 
Technical Report, Feb 1990. 

(xer78] The C Programming Language, B. Kemigan and 
D. Ritchie, tintice HalI, 1978. 

[Lev78] An Overview of the PQCC Project, B.W. Lev- 
erett, R.G.G. Cattell, S-0. Hobbs, J,N. New- 
comer, A.H.Reiner, B.R. Schatz and W.A. Wulf, 
Carnegie Mellon University, Pittsburgh, PA, 
1978. 

[Mey88] Object-oriented Software Construction, B. 
Meyer, Prentice Hall, 1988. 

[Neu88] C. M. Neuwirth and A. Ogura, Programmers 
Guide to the Andrew Toolkit, CMU Information 
Technology Center, January 1988. 

[Not851 Special Issue on the GANDALF Project, D. 
Notkin, R.J. ElIison, B.J. Staudt, G.E.Kaiser, 
E. Kant, N. Habermann, V. Ambriola and C. 
Montagero, Journal of Systems and Software, 5, 
2, May 1985. 

[Ost86] A Process-Object Centered View of Software 
Environment Architecture, L. Osterweil, in Ad- 
vanced Programming Environments, LNCS 244, 
Springer-Verlag, 1986. 

[par891 Objectworks, for C++, ParcPlace Systems, 
Mountain View, CA 94043,1989. 

[pee891 Ten15 Distribution Format, N. Peeling, Royal 
Signals and Radar Research Establishment, 
Malvem, Worcs, England, 1989. 

[Rep891 The Synthesizer Generator, T.W Reps and T. 
Teitelbaum, Springer-Verlag, New York, 1989. 

[Sch88] X Wmdow System: C Library and Protocol 
Reference, R. Scheifler, J. Gettys, R. Newman, 
Digital Press, Bedford, MA, 1988. 

[Sno86] Supporting Flexible and Efficient Tool Integra- 
tion, R. SnodGrass and Karen Shannon, in Ad- 
vanced Programming Environments, LNCS 244, 
Springer-Verlag, 1986. 

[Sno89] The Interface Description Language: Definition 
and Use, Richard Snodgrass, Computer Science 
Press, NY, 1989. 

[Sta87] GNU Emacs Manual, R. Stalhnan, Free Software 
Foundation, March 1987. 

[Str86] Stroustrup, B. The C* Programming Language. 
Addison-Wesley, Reading, Mass. 

@s85] Object Pascal Report, L. Tesler, Structured Lan- 
guage World, 9(3), 1985. 

mov85] On Extending Modula-2 for Building Large, 
Integrated Systems, Paul Rovner, Roy Levin, 
John Wick. DEC Systems Research Center, Palo 
Alto, January 1985. 

WilSS] PGRAPHITEz An Experiment in Persistent 
Tfiped Object Management, J.C. Wtieden, A.L. 
Wolf, C.D. Fisher, P.L Tarr, Proceedings of the 
ACM SIGSOFT/SIGPLAN Software Engineer- 
ing Symposium on Practical Software Develop 
ment Environments, Boston, 1988. 

[wir83] Programming in Modula-2, 3rd Edition, Texts 
and Monographs in Computer Science, New 
York, Springer Verlag, 1983. 

[ZorSS] Experiences with A& Code Generation. B.G. 
Zom, Technical Report UCB/CSD 85/249, Uni- 
versity of California, Berkeley, June 1985. 

76 


