
literate
Moderated by

Christopher J. Van Wyk programming
I n May and June 1986, Programming

Pearls took up literate programming, an
approach to programming espoused by

Donald Knuth. Knuth’s premise is that the
best programs are meant for people as well as
machines; they are meant to be read as well
as run. He built a system, WEB, that scans
specially structured technical reports to
extract Pascal statements interwoven
with the text, forming from them
an executable program. Pascal is
not essential; WEB can work as
well with any other programming
language, such as Fortran.

A literate program contains
not only the needed state-
ments in a programming
language, but also a precise
problem statement, a summary
of the background needed to
understand the solution, an
evaluation of alternatives,
assessments of trade-offs
between the runnin
time and space,
or between run-
ning time and

1

programming
time, and sugges-
tions on how to modify the
program. Program code segments
are inserted in the text at points logical to
the intellectual development of the algorithm.
A literate program pays careful attention to
lucidity of presentation and presents all argu-
ments needed to understand why the pro-
gram will actually work as intended. To

worth an experiment to see whether interest
among readers, authors, and critics would be
sustained. With his help, we commissioned
Christopher Van Wyk of AT&T Bell Laborato-
ries to be the moderator of a new column on
literate programming, inaugurated with
this issue. Van Wyk received his Ph.D. from
Stanford University in 1980 and has spent

the intervening years at Bell Labs
working on programming lan-

guages for graphics and algo-
rithms for computational

As moderator, Van Wyk
will pose the problems to be

considered, solicit and
receive literate pro-
grams, obtain cri-

tiques, and publish
the results within

constraints of a
magazine-all
tasks that will use

renewal. This experiment can succeed only
with your full support. If you are interested
in being the author of a literate program, or
acting as the literary critic, contact Van Wyk
at the address listed in the masthead:

emphasize the literary side, the second Pearl
included a critique of Knuth’s program that
evaluated it on these points.

The response to both Pearls was strong
and positive. Jon Bentley proposed that
Communications renularlv devote snace to
interesting, literate programs andtheir well-
written critiques. I agreed that it would be

Christopher J. Van Wyk
AT&T Bell Laboratories
Room 2C-457
600 Mountain Avenue
Murray Hill, NJ 07974

Peter J. Denning
Editor-in-Chief

July 1987 Volume 30 Number 7 Communications of the ACM 593

literate
Moderated by
Christopher J. Van Wyk programming
PRINTING COMMON WORDS

Moderator’s Introduction to Column 1
Two Programming Pearls columns in 1986 presented
literate programs by Donald Knuth. The May 1986 col-
umn contained a WEB program to generate a sorted list
of M distinct numbers randomly chosen from 1 through
N. Programming Pearls of April 1987 contained readers’
comments on Knuth’s literate program, as well as an
unimplemented solution to the problem by David Gries.
The June 1986 Programming Pearls presented Knuth’s
WEB program to print the k most common words in a
file, in decreasing order by frequency. That column
also elicited comments from many readers.

Several readers wondered how well a small example
can serve to illustrate the features of a system for liter-
ate programming. The issue arose in two very different
ways: One reader who thought WEB worked acceptably
in the small doubted that it would serve a large project
well; another suggested that the WEB solution’s appar-
ent clumsiness in the small could be attributed to its
being designed for larger, more complex programs.

A couple of readers very much appreciated Doug
McIlroy’s addition of a figure to the documentation.
They also thought that trie-sorting in Sections 37-39
needed more comments than “The restructuring opera-
tions are slightly subtle here.”

One sharp-eyed reader noticed that, although
Section 38 uses “the fact that count [01 = 0,”
count [01 is never initialized. Although some Pascal
compilers detect references to uninitialized variables,
apparently the compiler that Knuth used at SAIL does
not.

In this inaugural column, we present another solu-
tion to the problem of printing the k most common
words in a file. The author of this solution is David
Hanson, a professor of computer science at Princeton
University and an editor of the journal Software-Prac-
tice 6 Experience. Hanson’s program illustrates nicely
the use of abstract data types on the way to the solution
of a problem. It discusses the role of profiles of execu-
tion in the design of good programs, a topic that is also
discussed in this month’s Programming Pearls. Han-
son’s solution shows how one can design a system for

0 1987 ACM OOOl-0782/137/0700-0594 $1.50

literate programming that involves much less machin-
ery than WEB. Finally, note that Hanson solved a
slightly different problem than Knuth; although that
makes little difference to our discussion of literate pro-
grams, it highlights the importance of careful problem
specification in the design of large systems.

Printing Common Words

1. Introduction. In describing Don Knuth’s WEB sys-
tem in one of his “Programming Pearls” [Communi-
cations of the ACM 29, 5 (May 1986), 364-3691, Jon
Bentley “aSsigned” the following programming problem:
“Given a text file and an integer k, you are to print the k
most common words in the file (and the number of their
occurrences) in decreasing frequency.”

It is unclear from this problem statement what to do
with ‘%ies,” that is, does k refer to words or word fre-
quencies? For example, in the problem statement, “the”
occurs three times “k ” “in ” “and ” and “file” each oc-
curs twice, and td rek of t6e wor& each occurs once. If
the program is invoked with the statement as input and
k = 2, which word should be output as the second most
common word? A rephrasing of the problem removes the
ambiguity: “Given a text file and an integer k, you are
to print the words (and their frequencies of occurrence)
whose frequencies of occurrence are among the k largest
in order of decreasing frequency.”

Using this problem statement, the output of ,the pro-
gram with the original problem statement as input and
with k = 2 is

3 the
2 file
2and
2 in
2k

Tkii work WBB supported in part by the National Science Foundatian under
Grant MCM2398.

594 Communications of the ACM luly 1987 Volume 30 Number 7

Literate Programming

Bentley posed this problem to present a “real” exam-
ple of WEB usage. For more information about WEB, see
Knuth’s “Literate Programming,” The Computer Journal
67, 2 (May 1984), 97-111. Knuth’s solution appears in
Communications of the ACM 29, 6 (June 1986), 471-483,
along with a review by Doug McIlroy.

/* initialize k */
/* initialize word table */
while (getwordcbuf , MAXWORD) != EOF)

addword (buf > ;
printwords (k) ;

The solution given here is writ,ten in the C program-
ming language and presented using the loom system to
generate the printed program and its explanation. loom
is a preprocessor whose input is a text file with embed-
ded references to fragments of the program. loom re-
trieves these fragments, optionally pushes them through
arbitrary filters, and integrates the result into the out-
put.

where buf is a character array of MAXWORB characters,
and getword places the next word in the input in buf
and returns its length, or EOF at the end’of file. MAXWORD
is defined to be 101 to allow room for a terminating null
character. addword adds the word in buf to the table of
words, and printwords prints the words with the k
largest frequencies.

loom’s output is usually input to a document format-
ter, such as troff or ‘I&X. loom was originally written by
Janet Incerpi and Robert Sedgewick and used in prepa-
ration of Sedgewick’s book Algorithms (Addison-Wesley,
Reading, Mass., 1983). Starting from their program, I
rewrote loom for use in writing a book and several pa-
pers.

Getting program arguments and environment vari-
ables, such as k and PAGESIZE, is a common feature of
many UNIX0 programs and the code is idiomatic. Exam-
ples can be found in The UNIX Programming Environ-
ment by B. W. Kernighsn and R. Pike (Prentice-Hall,
Englewood Cliffs, N.J., 1984).

loom is not as ambitious or as comprehensive as WEB.
It does, however, have the virtue of independence from
both formatting and programming languages. It does
not, for example, provide the comprehensive indexing,
cross-referencing, or pretty printing facilities of WEB. With
help from its associated filters, loom does provide index-
ing of the identifiers used in the program fragments, al-
though the index is omitted here for brevity. And since
it is not necessary to present the whole program, irrel-
evant details can be omitted permitting the documen-
tation to concentrate on the important aspects of the
programs. I have formatted this program description in
a style similar to WEB for comparison purposes, but the
formatting of loom’s output is not constrained to any one
style. Using loom also has an effect similar to WEB: De-
veloping and writing about programs concurrently affect
both activities dramatically.

4. Reading words. getword reads the next word from
the input. This is accomplished by discarding characters
up to the next occurrence of a letter, then gathering up
the letters into the argument buffer:

int getwordcbuf, size)
char *buf;
int size;
c

char *p;
int c;

p = buf;

2. Definitions. The problem statement does not give
a precise definition of a “Word” or of the details of pro-
gram invocation. Words are given by the set {w / w =
oa* and [WI 5 lOO} where a E {a...z,A...Z}; that
is, a word is a sequence of one or more upper- or lower-
csse letters, up to a maximum of 100 letters. Only the
first 100 characters are considered for words longer than
100 characters.

while ((c = getchar != EOF)
if (isletter(<

do C
if (size > 1) C

*p++ = c;
size--;
1

c = getcharo;
) while (isletter(c.1) ;

*p = ‘\O’;
return p - buf;
1

return EOF;
>

The program, called common, is invoked with a single
optional argument that gives the value of k and reads
its input from the standard input file. If the argument is
omitted, the value of the environment variable PAGESIZE
is used; the default is 22.

size is compared with 1 to ensure that there is room for
the terminating null character. isletter is a macro that
tests for upper- or lowercase letters:

#define isletter (c >= ‘a’ && c <= ‘z’ II \
c >= ‘A’ && c <= ‘Z’)

3. The main program. As suggested in Software
Tools by Kernighan and Plauger (Addison-Wesley, Read-
ing, Mass., 1976), the structure of the program can often
be derived from the structure of the input data. The in-
put to common is a sequence of zero or more words, which
suggests the following structure for the main program:

5. Storing the words. The words must be stored in
a table along with the number of times they occur in the
input. This table must handle two kinds of access: While
the input is being read, the table is “indexed” with a
word in order to increment its frequency count. After the
input has been read, the entries with the k largest fre-

UNIX is a registered trademark of AT&T Bell Laboratories.

]uly 1987 Volume 30 Number 7 Communications of the ACM 595

Literate Programming

quency counts must be located and printed in decreasing
order of those counts.

These two kinds of access are disjoint; that is, initially,
all accesses to the table are of the first kind, followed by
only accesses of the second kind. Consequently, the table
representation can be designed to facilitate the first kind
of access, and then changed to facilitate the second.

A hash table is appropriate for indexing the table with
words. Since the size of the input is unknown, a hash ta-
ble in which collisions are resolved by chaining is used.
Space for both the word and the table entry can be allo-
cated dynamically. The hash table itself, hashtable, is
an array of pointers to word structures:

#define HASHSIZE 07777 /* hash table size */
struct word (

char *word; /* the word */
int count; /* frequency count */
struct w,ord *next; /* link to next entry */

) *haehtable [HASHSIZE+l] ;

addword also increments a global integer, total., which
counts the number of distinct words in the table. This
number is required in the second phase of the program.
strcmp is a C library function that returns 0 if its two
arguments point to identical strings, and strcpy is a C
library function that copies the characters in its second
argument into its first.

allot (n, size) allocates space for n contiguous ob-
jects of size bytes each by calling calloc, a C library
function that does the actual allocation and clears the
allocated space. allot’s primary purpose is to catch allo-
cation failures. Many C programmers erroneously assume
that calloc cannot fail. On machines like the VAX, al-
location rarely fails, but on smaller machines, failure is
common.

The bounds of hashtable are 0 to 2” - 1, where n is 12
here. Using a power of two facilitates rapid computation
of the index into hashtable given a hash number: If h is
a hash number, the index is h&HASHSIZE. hashtable is
initialized in main to NULL pointers.

6. addword (buf) adds the null-terminated string in buf
to hashtable, if necessary, and increments its count
field. To compute the index into hashtable, the contents
of buf must be “hashed” to yield a hash number h, from
which the index is computed as described above. A sim-
ple yet effective hash function is to sum the codes of the
characters in buf. This function also yields the length of
the word, which is needed to add new words to the table.
Putting this all together produces addword:

7. Printing the words. As suggested in the outline
for main, given above, printwords prints th.e desired
output. To print the k most common words as specified,
printwords must sort the contents of the table in de-
creasing order of the count values, and print the first k

entries. Since the frequencies range between 1 and N,
where N is the number of words, sorting them can be
accomplished in time proportional to N (assuming every-
thing fits into memory) by allocating an array of pointers
to words that is indexed by the frequency of occurrence.
Each element in the array points to the list of words with
the same count values; that is, list [il points to the list
of words with count fields equal to i.

printwords (k)
int k;
{

int i, mw:
struct word *wp, **list, *q;

addword(buf)
char *buf;
c

unsigned int h;
int len;
char *s. *alloc() ;
struct word *wp;

h = 0; /* compute hash number of buf [I. .I
s = buf;
for (len = 0; *a; len++)

h += *s++;
for (wp = hashtable[h&HASHSIZE] ; wp;

wP = wp->next)
if (strcmp(wp->word, buf > == 0)

break ;

list = (struct word **> alloc(tota1, sizeof wp)
max = 0;
for (i = 0; i <= HASHSIZE; i++)

for (wp = hashtable[il ; wp; wp = q> {
q = wp->next;
wp->next = list [wp-Xountl ;
list [wp->count] = wp;
if (wp->count > max)

max = wp->count ;
*/ 3

for (i = max; i >= 0 && k > 0; i-->
if ((wp = list[i]) && k-- > 0)

for (; wp; wp = wp->next)
printf (“%d %s\n** , wp->count , wp->word) ;

3

if (wp == NULL) { /* a new word */
wp = (struct word *) alloc(1, sizeof *wp) ;
wp->word = alloc(len + 1, sizeof (char)) ;
strcpy(wp->word, buf);
wp-Xount = 0;
wp->next = hashtable [h&J+ASHSIZE] ;
hashtable [h&HASHSIZE] = wp;
total++ ;
3

wp->count++;
3

max keeps track of the largest frequency count, which is
usually much less than N, and provides a starting point
for the reverse scan of list.

8. Performance. Bentley did not give specific perfor-
mance criteria for common, but he did say that “a user
should be able to find the QIKYI most frequent words in a
twenty-page technical papei without undue emotional
trauma.” To test common I concatenated seven of the
documents from volume 2 of the UNIX Programmer’s
Manual from the Berkeley 4.2 UNIX system to form a

596 Communications of the ACM July 1987 Volume 30 Number 7

I
;̂ ------ “,I, -

Literate Programming

test file with 11,786 lines, 47,878 words (by common’s
definition of “‘word”), 4,149 of which are unique, and
275,516 characters. (The documents were the descrip-
tions of awk, ef 1, the UNIX implementation, the UNIX
i/o system, lax, acts, and aed.)

common with k = 0 and this test file as input took
4.6 s on a VAX 8606 running Berkeley 4.3 UNIX. By way
of comparison, consider the following program, called
charcount:

main0
i

int c, n = 0;

while ((c = getchar != EOF)
n++ ;

printf (“%d\n” , n> ;
>

charcount is about the minimum “interesting” program
in this class of programs, and its execution time gives a
measure of the cost of simply reading the input. With
the test file as input, charcount ran in 0.9 s. The ra-
tio of the speed of common to charcount, which is in-
dependent of machine dependencies such as CPU speed
and I/O costs, is 5.11. Thus, using the implementation
of common described above, finding the k most common
words costs approximately five times as much as just
counting the characters.

9. Improvements. To investigate the propects for im-
proving the execution speed of common, I profiled its ex-
ecution with gprof [S. L. Graham, P. B. Kessler, and
M. K. McKusick, “An Execution Profiler for Modular
Programs,” Software-Practice d Experience 13, 8 (Aug.
1983), 671685). gprof takes profiling data produced by
executing the program and generates a report detailing
the cost of each function and its dynamic descendants.

These measurements revealed that addword and its
descendants accounted for 62 percent of the execution
time. For example, strcmp was called 144,219 times and
accounted for 21 percent of the total execution time.
strcmp was the most frequently called function. getword
accounted for 32 percent of the execution time, and the
other functions accounted for the remaining 6 percent.

10. The cost of strcmp can be reduced two ways: do-
ing fewer comparisons and putting the code in-line. To
do the string comparison in-line, the if statement in
addword in which strcmp is called is replaced by

for (sl = buf, s2 = wp->word; *sl == *s2; s2++)
if (*sl++ == ‘\O’) {

wp->count++;
return;
1

and the remainder of addword is revised accordingly.
This change reduced the running time by 10.8 percent
to 4.56 charcounts (4.1 s).

The number of string comparisons can be reduced
by storing additional information with each word that

July 1987 Volume 30 Number 7

- I,, ,,s. _.

is checked before the string comparison is undertaken.
For example, the hash number for each word can be
stored in a hash field, and only those words for which
wp->hash is equal to h are actually compared to buf.
I tried this improvement, and it increased the running
time to 5 charcounts. I also tried storing and comparing
the lengths instead of the hash numbers, and the result
was the same.

11. The test input has 4,149 different words, which is
slightly larger than the size of hashtable (4,996). With
a hash table size of 512 and the improvements described
above, the running time increased to 5.56 charcounts
(5 s). gprof showed that 66 percent of the time was
spent in addword, 29 percent in getword, and 5 percent
elsewhere.

The time spent searching the hash chains would be
reduced if the most common words were near the front
of the chains. This effect can be accomplished by using
the “move-to-front” heuristic: Each time a word is found,
it is moved to the front of its hash chain. This heuristic
can be incorporated into addword by adding a pointer
that “follows” wp down the chain:

addword (buf)
char *buf;
c

unsigned int h;
int len;
char *s. *sl, *s2, *alloc();
struct word *wp. **q, **t;

h = 0; /* compute hash number of buf[l..] */
s = buf;
for (len = 0; *s; len++)

h += es++;
t=q = &hashtable [h&HASHSIZE] ;
for (wp = *q; up; q = &wp->next. wp = wp->next)

for (sl = buf, s2 = wp->word; *sl == *s2; s2++)
if (*sl++ == ‘\O’> {

wp->count++;
if (wp != *t> C

*q = wp->next ;
wp->next = *t;
*t = wp;
1

return;
1

WP = (struct word *> alloc(1, sizeof *wp) ;
wp->word = allot (len + I, sizeof (char)) ;
strcpycwp->word, buf);
wp-xount = 1;
*q = wp;
total++ ;

This change reduced the running time with a hash table
size of 512 to 4.56 charcounts (4.1 $)-equal to that of
the time for a hash table size of 4,096 without the heuris-
tic. Using a hash table size of 4,696 and the move-to-
front heuristic, the running time was 4.5 charcounts
(4 s). This last measurement verifies that the heuristic
does not impair performance when the size of the input
is less than the hash table size. which is not obvious from

Communications of the ACM 597

Literate Programming

the code. For other applications of the move-to-front
heuristic, see J. L. Bentley, D. D. Sleator, R. E. Tarjan,
and V. K. Wei, “A Locally Adaptive Data Compression
Scheme,” Communications of the ACM 29, 4 (Apr. 1986),
320-330, and the references therein.

12. Identifying the common words in a 47,878-word file
in 4.5 charcounts seemed fast enough to avoid “undue
trauma.” Nevertheless, I wondered if the standard UNIX
macros for testing character classes were significantly
faster than the isletter macro above. The standard
macros use table lookup and bit testing, which could be
faster than the explicit comparisons used in isletter.

This change reduced the running time by 8 percent to
4.1 charcounts (3.7 s). I made the change by including
the standard header file and by defining isletter to be
isalpha. On UNIX systems where EOF is not a valid ar-
gument to the isalpha, isletter should be defined as
(c != EOF && isalpha(c Both definitions gave the
same timings.

gprof indicated that in this final version of common,
addword and its descendants took 54 percent of the time,
getword took 39 percent, and everything else took the
remaining 7 percent. On behalf of addword, allot and
its descendants accounted for 11 percent of the time, so
allocation accounts for about 20 percent of the cost of
addword. By preallocating some space at compile time,
this cost might be reduced by half, but this change would
yield only a 5 percent speedup, so it was not attempted.

The changes made to improve common’s performance
were made as additions to the program, and conditional
compilation is used to select the “fast” version. Thus
both the program and this document describe not only
the initial program, but also trace its evolution.

13. Development notes. Writing common and this
documentation, which was done concurrently, took about
9.5 hours. The initial 5 hours included a false start: The

Review of Hanson’s Solution
[John Gilbert is an associate professor of computer science
at Cornell University. His insightful comments on programs
have impressed me for many years; this review shows that
he has not lost his touch.]

What is a literate program, anyway? A program, like
an essay, can be written for many purposes: to teach,
to learn, to experiment with new forms, to solve an
immediate problem, to sell refrigerators, or to sell work-
stations. The solutions to Jon Bentley’s problem by
Knuth, McIlroy, and Hanson are all “literate programs,”
but they differ in style to a startling degree.

Architecture may be a better metaphor than writing
for an endeavor that closely mixes art, science, craft,
and engineering. “Put up a house on a creek near a
waterfall,” we say, and look at what each artisan does:

first version sorted the words by making list (in func-
tion printwords) an array of pointers to words and call-
ing the C library function qsort to sort them. This ver-
sion ran in 11.22 charcounts (10.1 s), and I spent an-
other 2.5 hours making measurements and improvements.
Ultimately, I reduced the running time to 4.5 charcounts
by replacing the general qsort (which calls a function
for every comparison and took over 50 percent of the
time) with one written specifically for sorting an array
of pointers to words, and by applying the improvements
described above.

Chris Fraser and I observed that the frequency counts
were in the range 1 to N, and he suggested the rather
obvious linear-time radix sort (with radii N +. 1) de-
scribed above. Indeed, final measurements show that
printwords takes only 1 percent of the time. :[spent
the other 4.5 hours revising the program and this expla-
nation and rerunning the performance measurements.

14. Typical loom usage involves the document file and
the program files (e.g., common. lo and common. c). The
document file contains references to fragments in the pro-
gram files. loom combines these into a ‘I$$ input file
(e.g., common. tex), which is typeset by ‘Ij$.

For small programs, such as common, the document
and program files can be combined into a single file; for
common both are combined into common. c. C conditional
compilation facilities are used to remove the document
part when common. c is compiled, and loom processes
comm0n.c to form common. tex, obtaining the code frag-
ments from common. c. Thus a single file conta.ins both
the program and its explanation, making loom’s usage
similar to WEB’s.

David R. Hanson
Department of Computer Science
Princeton University
Princeton, NJ 08544

The artist, Frank Lloyd Wright (or Don Knuth), designs
Fallingwater, a building beautiful within its setting,
comfortable as a dwelling, audacious in technique, and
masterful in execution.

Doug McIlroy, consummate engineer, disdains to
practice architecture at all on such a pedestrian task;
he hauls in the pieces of a prefabricated house and has
the roof up that afternoon. (After all, his firm makes the
best prefabs in the business.) David Hanson puts to-
gether a roomy and craftsmanlike cabin, probably clos-
est of the three to the spirit of the original commission.

The programs differ not only in their proportions of
art, engineering, and craftsmanship, but in their very
intent. Of course the authors wrote them to solve a set
problem, but each seems to have had a different pur-
pose in mind. Knuth’s is art and exposition. McIlroy’s
solves a one-shot problem. Hanson’s could be a piece of

599 Communications of the ACM]uly 1987 Volume 30 Number 7

Literate Programming

real-world software, perhaps inside some unusual word
processing system.

Hanson first chooses his floor plan and building ma-
terials-that is, an algorithm and data structures.
Craftsmanlike, he balances efficiency, clarity, and the
natural use of available materials. Some analysis
(which he could have made even more explicit than he
did for the benefit of the apprentice carpenter) points
the way: Say the input is n words of which d are differ-
ent, and the output is to be k words. We expect k to be
much smaller than d, and d to be much smaller than n.
The necessary abstract data type is a multiset of words,
supporting the operations “Insert” and “List” (in order
of decreasing frequency), with a sequence of Inserts
preceding the single List. Space is at a premium in large
text processing applications, so the data structure
should have size O(d) rather than O(n). Then Insert
should be as fast as possible, since Insert alone needs to
happen II times. List need only deal with d items.

Given these constraints, hashing for Insert and
sorting for List are appropriate choices of well-tried
materials. Hanson’s linear-time bucket sort for the
frequencies in List is an elegant final touch. Notice
the different trade-offs in the three programs: Knuth
expends a good deal of effort to introduce a novel data
structure for efficiency; McIlroy uses the fastest and
most easily built Insert of all, namely, appending to a
sequence, but the cost is a data structure of size O(n).

After these basic choices are made, the house is well
laid out, and the rooms are planned harmoniously-the
program is cleanly divided into manageable bites of
code and documentation. The word processor’s main-
tainer will be glad the architect has found a “balance
between formal and informal exposition so that a
reader can grasp what is happening without being over-
whelmed by detail” [l]. Here the loom system seems to
provide considerable support, though Hanson has too
little space to show us as much about it as we might
wish.

Inside the individual rooms, the architect is surpris-
ingly careless in his choice of floors and moldings.
Many variable names are misleading or uninformative:
The parameter “size” to getword is used locally to
measure space left in a buffer, “total” violates the
rule that a global variable should have the most de-
scriptive name possible (it’s the total number of differ-
ent words encountered), and the names “p” and “cl’ in
getword, “h” and “s” and “wp” in adaword, and “i”
and “q” in printwords are content free and some-
times undocumented. The text contains no mention of
either the fact or the reason that getword returns the
length of the word as its value; I suspect this window
frame was borrowed from another house without being
planed to fit properly. (It also requires that EOF not
happen to be a positive integer smaller than size.) The
eight English words of comments within the C code
should either have been expanded into a reasonable
commenting style or left out on the grounds that the

textual documentation makes them unnecessary.
To Hanson’s credit, these stylistic infelicities are all

confined to pieces of code small enough to be puzzled
out without too much trouble, but they would keep me
from using the program as an example of style in a
beginning computer science course. The move-to-front
version of addword in Section 11 goes farthest over the
line between the concise and the cryptic.

A program to solve the common-words problem must
read its input from someplace and convert the resulting
string of characters into a sequence of words. This is
the plumbing of a text processing program-usually
ugly, never interesting to discuss, and always the first
thing that clogs up. (Unclogging the plumbing took half
the effort I spent on my solution to this problem,
though that’s partly because I was learning Common
Lisp at the time.) McIlroy’s plumbing is my favorite,
since the natural idiom for transforming a stream of
data from one type to another is a coroutine rather than
a subroutine, and UNIX filters and pipes do that per-
fectly. (The ugly part is the quote marks on two adja-
cent lines that mean a newline character.) Hanson’s
plumbing is not beautiful, but he does a good job of
isolating it from the rest of the program. The owner can
ignore the plumbing until it needs work, and then fix it
without tearing down the walls.

Literacy in programming means different things in
different circumstances. It’s not a matter of artistry or
efficiency alone; it’s more a question of suitability in
context. Knuth’s expository gem will teach future read-
ers about programming style and data structures,
whether they use the code or not. McIlroy’s six liner is
not itself an enduring piece of work, but it is a clear
example of how to use an enduring set of tools. Han-
son’s real-world code, then, must be evaluated accord-
ing to whether it is robust, flexibIe, and easy to main-
tain. Despite roughness in low-level style, the program
meets these goals well. Hanson demonstrates that “lit-
erate programming” is a viable approach to creating
works of craft as well as works of art.

REFERENCE
1. Knuth, D.E. Literate programming. Comput. J 27, 2 (1984], 97-111.

john Gilbert
Computer Science Department
Upson Hall
Cornell University
Ithaca, NY 14853

For Correspondence: Christopher J. Van Wyk, AT&T Bell Laboratories,
Room Z-457, 600 Mountain Avenue, Murray Hill, NJ 07974.

Permission to cow without fee all or oart of this material is wanted
provided that thecopies are not made’ or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

]uly 1987 Volume 30 Number 7 Communications of the ACM 599

