
The Static DPF Simulator (v.2)∗

Ali A. Selçuk Kihong Park Heejo Lee

Network Systems Lab
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907

{selcuk,park,hlee}@cs.purdue.edu

CSD-TR 02-008
September 7, 2002

Abstract

The Static DPF Simulator is a tool for evaluating the performance of the Route-
Based Distributed Packet Filtering (DPF) protocol [4, 3] in a static network envi-
ronment. In this document, we describe the operation of the DPF simulator and
the structure of the programs in the package, and discuss certain issues related to
installing and running the DPF simulator tool suite.

∗This work was supported in part by grants from DARPA ATO FTN (AFRL F30602-01-2-0539) and
CERIAS.

Contents

1 Introduction 3

1.1 Changes in the Second Version . 3

2 General Structure of the Simulator 3

3 Data Structures 5

4 Directory Structure 6

5 Using the Simulator 7

5.1 Installation . 7

5.2 Preparation of the Simulation Input . 7

5.3 Running the Simulator . 8

5.4 Analysis of the Output . 10

6 Algorithms of the Simulator 10

6.1 Maximal Filtering . 15

7 System Requirements 16

7.1 Space Complexity . 16

7.2 Time Complexity . 16

A Multi-Path Routing 17

A.1 Data Structures . 17

A.2 The Program Structure . 17

A.3 Running the Simulator . 18

B Example Gnuplot Templates 19

B.1 Template for Φ2(1) . 19

B.2 Template for Ψ1 . 19

1 Introduction

The Static DPF Simulator is a tool for evaluating the performance of the Route-Based
Distributed Packet Filtering (DPF) protocol [4, 3] in a static network environment where
the nodes and edges do not change and transient time dynamics of protocols—e.g., route
table convergence—are ignored. Given a network topology with a list of nodes and edges,
and also given a list of the filter nodes in the network, the DPF simulator first calculates,
or uploads, the routing tables for pairwise routes in the network; then sets the DPF filters
to allow only the source addresses that are legitimate according to these routes; and finally
computes according to these filters which nodes are able to launch an attack on which nodes
using which spoofable addresses, and it outputs the results. The proactive and reactive
performance measures computed by the Static DPF Simulator are exact for a given input.
Hence, in this sense, it is different from a typical “simulator” where approximate solutions
are the norm.

In this document, we describe the operation of the DPF simulator and the structure of
the programs in the package, and discuss certain issues related to installing and running
the DPF simulator tool suite. The static DPF simulator is written in C, and runs on
Linux and Unix operating systems. It can be easily ported to Windows platforms.

1.1 Changes in the Second Version

The main differences of the second version of the simulator from the first version are as
follows:

• Egress filtering. In the first version of the simulator, if egress filtering was to be per-
formed, it was performed by all the DPF filter nodes in the network. In the current
version, the egress and DPF filtering functionalities are completely decoupled. The
list of nodes to perform egress filtering must be supplied as a separate file.

• Trace option. A new binary command-line argument is added which specifies whether
a trace file will be generated which contains a summary of the distribution of the
nodes that can launch spoofed attacks.

• New auxiliary tools. Two new auxiliary tools are included in the package: One
tool collects various statistics over the paths in the network, the other executes a
randomized routing algorithm which can be used as an alternative to the shortest-
path routing.

2 General Structure of the Simulator

The operation of the DPF simulator consists of the following stages:

3

1. Input The input files are read in, the nodes and edges are created, and the filters
and routing tables are allocated. The input files are a file specifying the network
graph topology in adjacency list format, another file that lists the filter nodes on the
network, and a third file that lists the transit nodes.

The function that is in charge of the input stage is GetInputGraph in the init.c file.

2. Route Computation Pairwise routes are computed and the route tables are filled.
By default, the routes are shortest path routes computed by Dijkstra’s algorithm,
where Dijkstra’s algorithm is run starting at the destinations rather than the more
common way of starting at the sources. This is necessary to guarantee that the
path from the next hop to a destination is a sub-path of the original path from the
original source.

In addition to shortest path routing, the DPF simulation tool supports routes com-
puted by any other algorithm through a route upload option. If this option is se-
lected, first the routes are uploaded from a specified file and checked for cycles. If the
routes are cycle-free, the simulation proceeds to Step 3, optionally after complement-
ing the routing tables with shortest path routes for any missing source-destination
pairs in the uploaded file. The usage of routing options is discussed further in Sec-
tion 5.3

The main function in charge of the route computation stage is the ComputeRoutes
function in the route.c file.

3. Filter Computation The filters at the edges of the DPF filter nodes are constructed
to allow only the source addresses that can traverse that edge according to the routes
computed in stage 2. This is done by sending a filter update packet between every
source-destination pair and updating all the filters on the path to allow that source
address.

This operation is performed by the TraverseRoute SetFilters function in the fil-
ter.c file.

4. Set Computation An Sa,t set is the set of spoofable addresses that can be sent from
the attack source a to the target t escaping filtering. The fourth stage of the program
computes the Sa,t sets for all (a, t) pairs. The set computation algorithm is based
on the recursive property that, for a 6= t and b denoting the next hop from a to t,

Sa,t =

{
Sb,t, if b is not a filter node

Fa,b ∩ Sb,t, if b is a filter node

where Fa,b is the set of permissible source addresses on the filter edge on b coming
from a.

Given the property above, the algorithm starts with St,t = V , V denoting the set
of all nodes, and computes the Sa,t, a 6= t, sets in a recursive fashion. At the end,

4

St,t is set to ∅ since t is not considered an attack node on itself. Similarly, if egress
filtering is in effect, Sa,t is set to {a} at the end for all filter nodes a.

The main function in charge of this stage is ComputeSets in the filter.c file.

5. Output Once the Sa,t sets are computed for a given t, their cardinalities |Sa,t|, a ∈ V ,
are written out to a specific file.1 At the same time, the dual sets Cs,t—which
list the possibilities for the actual source of a packet received at target t with the
apparent source address s—are derived from the Sa,t sets and their cardinalities are
also written out. The outputting is done for a target t as soon as the computation is
completed for that target in order to reduce the space requirement of the program.

The function in charge of computing and writing out the cardinalities is SaveStats
in the output.c file.

3 Data Structures

The main data structures in the simulator are the nodes, edges, routing tables, and filter
tables.

The nodes are represented by the NODE data structure which consists of a list of the
edges incident on the node and a routing table. The definition of the NODE structure is as
follows:

typedef struct {
EDGE *edge;
RTABLE_ENTRY *rtable;

} NODE;

The edges of a node are represented as an EDGE array of size equal to the degree of the
node; the degree of the nodes are stored in the central array Degree. An EDGE structure
includes the node ID of the neighbor node. It also includes a pointer to the filter on the
neighbor, if the neighbor node is a filter node.2 If the neighbor is not a filter node, this
pointer is set to nil. The definition of the EDGE structure is as follows:

typedef struct {
NODE_ID to;
FTR_ID ftr;

} EDGE;
1Optionally, the explicit Sa,t and Cs,t sets can be written out instead of just their cardinalities, as

explained in the discussion of the sets argument variable in Section 5.3.
2Keeping a pointer to the next filter is in order to speed up the filter discovery process during the filter

and Sa,t computations.

5

The other component of a node is its routing table, which is an array of EDGE IDs
indexed by the destination address. That is, the ith entry of the route table gives the edge
to be taken to reach the AS node with node ID i.

The last major data structure in the DPF simulator is the filter table. A filter table
includes the list of source addresses that are permissible at the edge where it is located.
There are two different representations of a filter table utilized in the program:

1. A bit array representation, where a 1 at the ith entry denotes that the source address
i is allowed to pass this filter and a 0 denotes that it is not allowed.

2. A dynamic table representation, which includes only the allowed source addresses.

The bit array representation has the advantage of enabling direct access to the filtering
value of a certain address. The dynamic table representation has the advantage of enabling
fast enumeration of the allowable addresses where the bit array representation would be too
sparse. The simulator program performs both of these operations quite often. Therefore
the filters are maintained in both formats, as a bit array and as a dynamic table, at the
same time.

The filter tables are maintained in two global arrays, Filter1 and Filter2. The
former holds the filter tables in bit array format; the latter holds them in dynamic table
format. The filter tables are pointed to by the ftr field of the EDGE data structure.

4 Directory Structure

The DPF simulator’s home directory includes a number of subdirectories. These subdi-
rectories and their contents are as follows:

dpf/ This is the directory that includes the simulator code. All files discussed so far are
located in this directory.

cover/ This directory includes an auxiliary tool which computes a filter cover on a given
graph. The computed cover can be either a vertex cover or a cover with a specified
size. Vertex cover is shown to be an effective choice for the placement of the filter
nodes [4, 3].

measure/ This directory also includes an auxiliary part of the simulator package. It
provides the programs to compute the two main performance measures of the DPF
tool, Φ2 and Ψ1, as discussed in [4, 3].

examples/ This directory includes a sample set of the simulator’s input and output files,
discussed in Section 5, with ID = 19971108. The data are based on the Route Views

6

Project’s BGP dump file for November 8, 1997; ASmap.19971108.879009857.gz at
http://moat.nlanr.net/Routing/rawdata/ .

misc/ This directory includes the auxiliary tools which are not directly related to the
simulator but can be useful for experimentation. Currently two tools are included:
One for generating randomized routes, included in the random rt subdirectory; the
other for collecting various statistics about the paths in the network, included in the
path stat subdirectory. Further information on these tools are provided in README
files in the respective directories.

5 Using the Simulator

5.1 Installation

Running make at the simulator’s home directory will generate all the executables for the
simulator as well as for the auxiliary tools.

One point that needs care is the path information on the first line of the script files.
Currently, the perl script files start with the line

#!/usr/bin/perl

The path for perl may be different on different systems. It is the user’s responsibility
to make sure that the path information at the beginning of the script files is updated
according to the host system.

5.2 Preparation of the Simulation Input

The DPF simulator takes four files as input:3 One file specifying the AS graph topology
in an adjacency list representation, one file listing the transit nodes in the network4, one
file listing the DPF filter nodes, and a fourth file listing the nodes which perform egress
filtering5. The following four-step procedure describes a basic way of preparing these input
files. These steps are not an integral part of the DPF tool and can be skipped if the input
files are obtained by other means.

3Optionally, a fifth file that includes the pre-computed routing entries is needed if route uploading is
chosen. This option is specified by the route argument variable, discussed in Section 5.3.

4It is possible to run the simulator without making any distinction between stub and transit nodes
by simply including all AS numbers of the network in the file specifying the transit nodes. The file
examples/AStrans.all, which lists all numbers x, 0 ≤ x ≤ 65535, can be used for this purpose.

5The egress nodes may be taken to be the same as the DPF filter nodes.

7

Before executing the following procedure, a BGP dump table in the format of the
Oregon Route Views6 Project’s dump tables must be present in the simulator’s home
directory. The name of this file must be in the form of “ASmap.ID”, where ID is the
identifier of the data, usually the date of the dump, such as 19990101.

Step 1: Extracting the AS paths from the BGP dump file
Command: % get ASpaths.pl ID
Product: ASpaths.ID

Step 2: Deducing the graph topology from the AS paths
Command: % get ASgraph.pl ID
Product: ASgraph.ID

Step 3: Identifying the transit nodes
Command: % get AStrans.pl ID
Product: AStrans.ID

Step 4: Computing a vertex cover for the filter placement
Command: % cover/vc ASgraph.ID AStrans.ID > ASfilter.ID
Product: ASfilter.ID

By default we assume that the filters will be placed at the transit nodes only, hence
the VC selection is restricted to the transit nodes. If all nodes are to be allowed in the
VC selection, the cover/vc program must be run with the examples/AStrans.all file.
When non-transit nodes are allowed in the selection process, the cover is usually slightly
smaller but the effectiveness of the filtering tends to decrease as well.

5.3 Running the Simulator

The dpf program has seven command-line arguments:

% dpf/dpf graph trans cover egress max route sets trace

graph: This variable is the name of the file that contains an input AS graph topology in
adjacency list format. (In Section 5.2, this file is named ASgraph.ID, generated in
Step 2.) Every line of the file includes an AS node and the list of its neighbors. An
example line from an input graph file is as follows:7

22 -> 5 :668:7170:5855:5303:5881
6For information on the Route Views Project, see http://www.routeviews.org/. The BGP dump files

can be obtained through http://archive.routeviews.org/.
7More examples of these files can be found as the ASconnlist.* files at the

http://moat.nlanr.net/Routing/rawdata/ site.

8

In this example, “22” is the AS number of the node which this adjacency list refers
to. The second entry on this line, “5”, is the degree of AS 22. The five numbers
that follow are the neighbors of this AS.

trans: This file lists the transit nodes in the network, one node per line. In Section 5.2,
this file is named AStrans.ID, generated in Step 3. If the user wishes to include
all nodes in the routing process without stub-transit categorization, he can use the
AStrans.all file for trans, which is provided in the examples/ directory.

cover: This file lists the filter nodes in the network, one node per line. In Section 5.2,
this file is named ASfilter.ID, generated in Step 4.

egress: This file lists the nodes that perform egress filtering. Typically, it can be taken
as the same as the cover file.

max: This variable determines whether maximal or semi-maximal filtering is to be per-
formed. A value of 1 shows the filtering to be performed is maximal, a 0 shows it is
semi-maximal. A maximal route-based filter performs the filtering based on both the
destination and the source addresses in a packet. (see [4, 3] for additional details.)

route: This variable determines the type of routing to be carried out. A 0 means that
shortest-path routing will be used. A 1 or 2 means that pre-computed routes will be
uploaded and used. If route = 1, the uploaded routes will be completed by running
Dijkstra’s algorithm for the source-destination pairs missing from the uploaded data.
If route = 2, no completion is done and only the pre-computed routes are used. In
both cases, a graph.rt file must be present in the directory of the graph file. This file
must include the source-destination-hop triplets of unsigned short in binary for
the pre-routed source-destination pairs. An example program that generates a route
file of this format can be seen at the DownloadRoutes function in the preroute.c
file.

sets: This variable determines whether the output will be the cardinality of the Sa,t and
Cs,t sets or the sets themselves explicitly. If sets = 0, the output includes the set
cardinalities only; if sets = 1, explicit sets are written out. In either case, the
simulator outputs two files; graph.Sta and graph.Cts. With sets = 0, these files are
binary files starting with the integer N , the number of nodes in the input graph,
followed by an N × N matrix, where the (i, j)th entry of the matrix is |Sa,t|, t =
i, a = j, in graph.Sta, and |Cs,t|, t = i, s = j, in graph.Cts. With sets = 1, these files
are ASCII files listing the Sa,t and Cs,t sets, respectively, one set per line.

Performance analysis of the DPF protocol typically deals with the size of the Sa,t

and Cs,t sets; hence outputting the cardinality of these sets usually suffices. The
analysis tools provided with this package, described in Section 5.4, work with the
set cardinalities and require that the dpf tool be run with sets = 0.

9

trace: This variable determines whether a trace file named graph.tr will be generated
which contains the relative location8 of the nodes that can launch spoofed attacks.
A 1 shows the trace file will be generated; a 0 shows it will not.

5.4 Analysis of the Output

There are numerous ways to measure the effectiveness of the filtering protocol. We provide
the tools for calculating four of the measures discussed in [4, 3]: Φ1, Φ2, Φ3, and Ψ1. The
call structure for these functions is

% measure/function x graph

where function is one of phi1, phi2, phi3, psi1, x is the value of the function to be
computed, and graph is the name of the graph file whose output is to be used. For example,
to compute Φ2(1) on the simulation output of graph, the command is

% measure/phi2 1 graph

and the command for computing Ψ1(5) is

% measure/psi1 5 graph

All of the analysis tools discussed here work on the binary cardinality files and require
that the dpf tool be run with sets = 0. The phi1 program works on the graph.Sta file
and the psi1 program works on the graph.Cts file. The phi2 and phi3 programs work on
graph.Sat which contains the transpose of the cardinality matrix in the graph.Sta file. The
graph.Sat file can be obtained by the transpose program in the measure directory, as

% measure/transpose graph.Sta graph.Sat

The transpose program transposes the cardinality matrix in the first file and writes the
output to the second file.

6 Algorithms of the Simulator

In this section, we give a high level pseudo-code of the major functions in the simulator
program and an asymptotic analysis of its run time. V denotes the set of nodes, E denotes
the set of edges, and F denotes the set of filter nodes.

8The relative location of an attack node “a” according to the spoofed address “s” and the target node
“t” is taken as the distance of “a” to the point of intersection between the paths (s, t) and (a, t).

10

The Main Function

The simulator program consists of the five stages discussed in Section 2. The structure of
the main function is as follows:

main()

/* Initialization Stage */
GetInputGraph()
OpenOutputFiles()

/* Route Computation Stage */
if (route = 1) or (route = 2)

UploadRoutes()
if (route = 0) or (route = 1)

for all d ∈ V
Dijkstra(d)

/* Filter Computation Stage */
for all s, d ∈ V

TraverseRoute SetFilters(s, d)

/* Set Computation & Output Stages */
for all t ∈ V

ComputeSets(t)
SaveStats(t)

return

Initialization Stage

The input graph is read and the nodes, edges, routing tables and filters are created.
The node creation takes O(|V |) time. Creation of edges and filters takes O(|E|) time.
Creation and initialization of the route tables takes O(|V |2) time. The overall runtime of
the initialization stage is therefore O(|V |2).

Route Computation Stage

Pairwise shortest path routes are computed by Dijkstra’s algorithm, where the algorithm
is run starting at the destination nodes, as discussed in Section 2.

Our Dijkstra implementation achieves a very efficient realization of the priority queue
structure by assuming a constant limit on the maximum length of the paths in the AS

11

graph, denoted by MAXHOP.9 The priority queue is implemented as an array of linked
lists, indexed by the distance, with range [0...MAXHOP+1]. The list at the ith entry of
the array includes the nodes with distance i to the destination. Initially, the destination
node d is located in list 0 and all other nodes are in list MAXHOP+1 (practically∞). As
the edges are “relaxed” by Dijkstra’s algorithm, the nodes are moved into the appropriate
lists.

The DECREASE KEY priority queue routine in Dijkstra’s algorithm [1] is realized by
cutting the node whose key is to be decreased from its current list and appending it to its
new list according to the decreased key value. This operation takes O(1) time. Similarly,
the EXTRACT MIN routine is also realized in O(1) time per node. For extracting the
minimum-distance unfinished node, the program begins at list 0 and proceeds through
the lists by picking up one node at a time till it reaches the end of list MAXHOP. This
operation is completed in O(|V |) time in total, and in O(1) time on average per node.

In this implementation of Dijkstra’s algorithm, initialization takes O(|V |) time, re-
laxation of edges takes O(|E|) time, and processing of the nodes, not including the edge
relaxations, takes O(|V |) time; giving a total runtime of O(|V |+ |E|). Running the algo-
rithm for all source-destination pairs takes O(|V |2 + |V ||E|) in total.

The Internet AS graphs are typically sparse and the average degree of the nodes tends
to remain constant around 4.3 [2]. Hence |E| ≈ O(|V |) and the route computation time
for the AS graphs is O(|V |2) time.

Filter Computation Stage

The filters are computed by calling the TraverseRoute SetFilters function, given below,
for all source-destination pairs. The runtime of this stage is O(c · |V |2), for c denoting
the average AS path length. The average path length in the AS graphs over the past few
years is observed to be relatively stable around 3.7 [2], which may be taken as a constant
factor in the asymptotic notation. Hence, the runtime of the filter computation stage is
practically O(|V |2).

TraverseRoute SetFilters(s, d)

for every hop x on the path from s to d
if x ∈ F

Update filter on x to allow source address s
return

9Currently, MAXHOP is set to 250 which is actually many times larger than the maximum distance in
the January 2002 AS network, which is 12 hops [2].

12

To set the filter on x’s link where it received a packet from s, the bit corresponding
to s in the bit array representation of that filter is set to 1. Moreover, s is added to the
dynamic table representation of the filter if it is not already there.

Set Computation Stage

The computation of the Sa,t sets for a given target t is achieved by a call to the Com-
puteSets function, in which the ComputeSta function is called for every attacker a exactly
once. The pseudo-codes for these two functions are as follows:

ComputeSets(t)

for all a ∈ V − {t}
S[a, t]← ∅
Done[a]← 0

S[t, t]← V
Done[t]← 1

/* The main set computation part */
for all a ∈ V

if Done[a] = 0
ComputeSta(t, a)

if egress filtering is on
for all a ∈ F

S[a, t]← {a}
S[t, t]← ∅
return

ComputeSta(t, a)

Done[a]← 1
if a = t or there is no path from a to t

return
b← next hop from a to t
if Done[b] = 0

ComputeSta(t, b)

/* The S[a,t] computation */
if b ∈ F

S[a, t]← S[b, t] ∩ Filter[b, a]
else

S[a, t]← S[b, t]

return

13

Regarding the runtime of these algorithms, the following can be said:

• One run of the ComputeSets function, not including the time spent in the Com-
puteSta calls, takes O(|V |) time.

• During a call to ComputeSets, the ComputeSta function is called exactly |V | − 1
times.

• Not counting the time spent in the recursive call to ComputeSta, the runtime of
one call of ComputeSta is dominated by the time spent in the set copying operation
S[a, t]← S[b, t] or the set intersection operation S[a, t]← S[b, t] ∩ Filter[b, a].

• The set copying operation takes time proportional to the size of the set copied. The
intersection operation takes time proportional to the filter density (i.e., the number
of allowed addresses in the filter).

• In general both the set size and the filter density are O(|V |). Nevertheless, on the
Internet AS graph with vertex cover filter placement, both tend to grow much less
than linear in |V |.

Therefore, the overall set computation runtime is O(|V |3) and Ω(|V |2). For the special
case of the Internet AS graph with vertex cover filter placement, the runtime empirically
tends to be much less than Θ(|V |3) and actually closer to Θ(|V |2).

Output Stage

The SaveStats function computes and saves the cardinalities of the Sa,t and Cs,t sets. The
general structure of this function is as follows:

SaveStats(t)

for all x ∈ V
n St[x]← 0
n Ct[x]← 0

for all a ∈ V
for all s ∈ S[a, t]

n St[a]++
n Ct[s]++

write n St, n Ct arrays
return

14

The runtime of this function for one target t is O(c · |V |), for c denoting the average
size of the Sa,t sets, and O(c · |V |2) over all targets. In general, c is O(|V |) and the overall
runtime of this stage is O(|V |3). Nevertheless, for the Internet AS graphs between 1997-
2002 with vertex cover filter placement, c remains quite stable in the interval (4.5, 4.8),
giving a runtime of O(|V |2) for the output stage.

Total Runtime

In general, the overall runtime of the simulator is O(|V |3). For the Internet AS graphs
with vertex cover filter placement, the runtime tends to be closer to Θ(V 2). We present
the experimental timing results in Section 7.

6.1 Maximal Filtering

The default filtering performed by the simulator is semi-maximal—i.e., only source ad-
dresses are checked in route-based filtering—and the code discussed so far is for this type
of filtering. If maximal filtering is in effect, the filters allow or drop packets with respect
to their destination addresses as well as their source address. This effect is achieved in
the simulator by making the filter computation destination-specific, as shown in the code
below. The only change is in the main function; the rest remains the same.

main()

GetInputGraph()
OpenOutputFiles()

for all d ∈ V
Dijkstra(d)

for all t ∈ V
UnsetAllFilters()
for all s ∈ V

TraverseRoute SetFilters(s, t)
ComputeSets(t)
SaveStats(t)

return

The only overhead in maximal filtering is invoking the UnsetAllFilters function for
each node once. The number of filters in the network is O(|E|). reseting a filter in general
takes O(|V |) time, giving a runtime of O(|V ||E|) for one t and O(|V |2|E|) overall. In
Internet AS graphs, |E| = O(|V |), hence the runtime becomes O(|V |3). In the case of a
vertex cover filter placement, the average filter density tends to be approximately constant,

15

as discussed in the set computation stage above. In that case, the overall time spent in
UnsetAllFilters is approximately O(|V |2).

7 System Requirements

7.1 Space Complexity

Table 1 shows the memory usage of the simulator for the Internet AS graphs of January
1998–2002. The results suggest an O(|V |2) increase in memory usage, dominated by the
routing tables.

Year 1998 1999 2000 2001 2002
|V | 3213 4501 6582 8063 12517

Mem. (MBytes) 46 88 186 279 669

Table 1: The memory usage of the static DPF simulator for January 1998–2002 AS graphs.

7.2 Time Complexity

Table 2 shows the running time of the simulator on January 1998–2002 Internet AS graphs.
The timings are taken on a 200 MHz Ultra-2 Sparc Station with 512 megabytes of physical
memory. The results suggest a running time pattern slightly larger than O(|V |2).

Year 1998 1999 2000 2001 2002
|V | 3213 4501 6582 8063 12517

CPU Time (sec.) 97 201 449 720 1904
System Time (sec.) 1 3 6 12 59

Wall Time (sec.) 100 207 464 753 3623

Table 2: The running time of the static DPF simulator for January 1998–2002 AS graphs. All
timing data are in seconds.

In the simulation experiments summarized in Table 2, about 2% of the simulation
time is spent in the initialization stage, 14% in the route computation stage, 25% in the
filter construction stage, 53% in the set computation stage, and 6% in the output stage.
The large difference in the CPU time and the elapsed time in the 2002 data is due to the
program’s memory requirement exceeding the physical memory for the 2002 AS graph.

16

References

[1] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. MIT Press, McGraw-Hill, 1990.

[2] Z. Ge, D. R. Figueiredo, S. Jaiwal, and L. Gao. On the hierarchical structure of
the logical Internet graph. In Proc. SPIE International Conference on Scalability and
Traffic Control in IP Networks, pages 208–223, 2001.

[3] Kihong Park and Heejo Lee. A proactive approach to distributed DoS attack prevention
using route-based packet filtering. Technical Report CSD-TR 00-017, Department of
Computer Science, Purdue University, December 2000.

[4] Kihong Park and Heejo Lee. On the effectiveness of route-based packet filtering for dis-
tributed DoS attack prevention in power-law internets. In Proc. ACM SIGCOMM’01,
pages 15–26, August 2001.

A Multi-Path Routing

The routing scheme used by the dpf simulator is single-path—that is, at each node the
next hop to forward a packet for a given destination is unique—which is also the type
of routing BGP performs. Nevertheless, we provide an additional tool10 that supports
multi-path routing for those who are interested in experimenting with DPF in a multi-
path routing environment where a node may have more than one alternative next hop for
sending a packet to a destination.

In the rest of this section, we discuss the differences of the multi-path tool from the
original single-path tool.

A.1 Data Structures

The only change in the data structures is in RTABLE ENTRY, which is now a list of EDGE IDs
instead of a single EDGE ID.

A.2 The Program Structure

The outline of the multi-path program is the same as its single-path counterpart, consisting
of the five stages discussed in Section 2. The contents of these stages are quite similar

10Actually, single-path routing is just a special case of multi-path routing and it is possible to perform
single path routing with the multi-path tool. However, this would result in an increase in the runtime and
memory usage of the single-path simulations, which we chose to avoid by separating the two tools.

17

too. In particular, the input and output stages are just the same; whereas the route
computation, filter computation, and set computation stages are slightly different.

The route computation stage in multi-path dpf is different in that the only routing
option allowed is to upload and use pre-computed routes. This stage of the program is
very similar to the single-path dpf run with the route = 2 option. The main difference
between the two is that the multi-path version allows the uploaded routes to include more
than one entry per source-destination pair.

The filter computation stage works very similarly to the single-path case as well: The
path between every source-destination pair is traversed and the filters on that path are set
to allow the given source address. The main difference from the single-path case is that
the path traversal is done on multiple paths for each source-destination pair.

The set computation phase is a generalization of the single-path case: The set of
spoofable addresses is computed for each next hop and then their union is taken. That
is, if Hx,y denotes the set of next hops from x for reaching the destination y, the Sa,t sets
are computed recursively as

Sa,t =
⋃

b∈Ha,t

S
(b)
a,t

where

S
(b)
a,t =

{
Sb,t, if b is not a filter node

Fa,b ∩ Sb,t, if b is a filter node

for each b ∈ Ha,t.

A.3 Running the Simulator

The arguments of the dpf mp program are identical to those of the original dpf program
except for the route and trace variables. The route argument variable does not exist in
dpf mp since the only routing scheme supported is the uploading of pre-computed routes.
As with the original dpf program with the route-uploading option specified, a graph.rt file
must be present in the current directory which includes the source-destination-hop triplets
of unsigned short in binary for the pre-routed source-destination pairs.

The command to run the tool from the home directory of the simulator is

% dpf/MP/dpf mp graph trans cover egress max sets

where the argument variables graph, trans, cover, egress, max, sets are as explained in
Section 5.3.

18

B Example Gnuplot Templates

In this section, we give two example gnuplot templates that can be used in analyzing the
output of the DPF simulator.

B.1 Template for Φ2(1)

The following gnuplot template creates Figure 1 in file phi2.1.eps in EPS format.

set terminal postscript eps enhanced "Times-Roman" 20
set output ’phi2.1.eps’
set data style boxes
set nokey
set yrange [0:1]
set ytics 0,.1,1
set xtics 1997, 1, 2002
set xrange [1996:2003]
set ylabel ’{/Symbol F}_2(1)’
set xlabel ’Year’
set boxwidth .4
plot ’phi2.1.dat’

The contents of an example phi2.1.dat file is as follows:

1997 0.969154
1998 0.969499
1999 0.967785
2000 0.974172
2001 0.972839
2002 0.979068

The output is shown in Figure 1.

B.2 Template for Ψ1

The following gnuplot template creates Figure 2 in file psi1.eps in EPS format.

set terminal postscript eps enhanced "Times-Roman" 20
set output ’psi1.eps’
set data style linespoint

19

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1997 1998 1999 2000 2001 2002

Φ
2(

1)

Year

Figure 1: The graphics created by the gnuplot template for Φ2.

set yrange [0:1]
set xrange [0:8]
set ytics 0,.2,1
set xlabel ’{/Symbol t}’
set ylabel ’{/Symbol Y}_1({/Symbol t})’
set key right bottom box
plot ’psi1.1997.dat’ title ’1997’ \
, ’psi1.1998.dat’ title ’1998’ \
, ’psi1.1999.dat’ title ’1999’ \
, ’psi1.2000.dat’ title ’2000’ \
, ’psi1.2001.dat’ title ’2001’ \
, ’psi1.2002.dat’ title ’2002’ \

The contents of a sample datafile, psi1.1998.dat, is shown below. The other data files
must be in a similar format.

1 0.000000
2 0.791783
3 0.987862
4 0.999689
5 1.000000
6 1.000000
7 1.000000

20

8 1.000000
9 1.000000
10 1.000000

The output is shown in Figure 2.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

Ψ
1(

τ)

τ

1997
1998
1999
2000
2001
2002

Figure 2: The graphics created by the gnuplot template for Ψ1.

21

