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Abstract

WE present our preliminary work that develops a new
approach to hybrid packet/analytic network sim-

ulations for improved network simulation fidelity, scale,
and simulation efficiency. Much work in the literature ad-
dresses this topic, including [10] [11] [8] [12] [13] and others.
Current approaches rely upon models, which we refer to in
this paper as Deterministic Fluid Models [9] [12], to address
the analytic modeling aspects of these hybrid simulations.
Instead we draw upon an extensive literature on stochas-
tic models of queues and (eventually) networks of queues
to implement a hybrid stochastic model/packet network
simulation. We will refer to our approach as Stochastic
Fluid Models throughout this paper. We outline our ap-
proach, present test cases, and present simulation results
comparing the measured queue metrics from our approach
for hybrid simulation to those of a deterministic fluid model
hybrid simulation and a full packet–level simulation. We
also discuss plans for future areas of research on this ap-
proach.

I. Introduction

Consider a network model as found in Figure 1. The
network model is comprised of nodes and communica-
tions links. Associated with each communications link is a
queue. Traffic can arrive and depart the network model at
each node in the network. Each node also carries internal
traffic which is forwarded throughout the network between
the traffic source and destination nodes.

In hybrid simulation models, some of the traffic is han-
dled via analytic methods and some of the traffic is han-
dled via more CPU and memory intensive discrete-event,
packet-level handling. The more traffic modelled analyt-
ically, the more efficient the simulation becomes (in the
general case), and thus the simulation can scale to larger
networks. Typically, there is a distinction drawn between
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Fig. 1. An example network of queues with internal and external
arrival and departure traffic.

foreground traffic, which is of primary interest, and back-
ground traffic, which exists solely to provide competition
to the foreground traffic being measured. In the hybrid
approach discussed here, analytic models are used is to es-
timate the impact of the background traffic on the fore-
ground traffic, which is handled explicitly via discrete-
event handling with full packet–level detail. In the re-
mainder of this paper, we will assume that the analytically
modeled traffic represents, in some sense, background traf-
fic and that the explicitly handled packet traffic is fore-
ground traffic. We will use the terms background traffic
and foreground traffic to distinguish between the analyt-
ically modeled versus the explicitly handled event packet
traffic. Of course other ways to divide up the analytically
modeled and packet handled traffic are possible.

There are two interesting aspects of the analytic model-
ing in the context of a network of queues. One relates to
the allocation and estimation of the intermediate load gen-
erated by the traffic at the nodes within the network based
upon the assumed routing patterns, total estimated exter-
nal traffic loads, finite queue sizes and associated network
internal packet losses. The other aspect relates to meth-
ods of mixing, at a given queue, the analytically modeled
background traffic with the explicitly handled foreground
traffic. Our focus in this paper is the later; hence we con-
centrate on methods to mix the analytically modeled traffic
with the event-driven, packet-level traffic at a given queue.
A future paper will concentrate on the network equations.

The remainder of this paper is organized as follows: In
the next section we discuss previous methods for hybrid
network simulation which rely upon deterministic fluid
model approximations to queue dynamics. In Section III
we present our approach based upon methods in stochas-
tic queue dynamics. In Section IV we develop our hy-
brid equations for a specific instance of a stochastic queue
model, i.e., a Brownian Motion model based upon solutions
to the Fokker-Planck Equation. In Section V we report on
our initial simulations investigations comparing three test
cases; one based upon pure event-driven packet-level sim-
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ulations, one based upon hybrid deterministic fluid/packet
simulation and one based upon our hybrid stochastic pro-
cess/packet simulation. In Section VI we discuss conclu-
sions and future investigations.

II. Deterministic Models

Most current approaches to performance speedup for
network simulations involving hybrid event-analytic sim-
ulation rely on analytic models based upon deterministic
Fluid Flow Approximations (FFAs), e.g., [7] [4] [10] [11] [8]
[13]. We refer to these approaches as Deterministic Mod-
els because the evolution of the queue dynamics modeling
the background analytic traffic is assumed to be a deter-
ministic process captured in the form of differential equa-
tions. The fluid dynamics is derived from the integration
of these equations. In some cases the differential equations
are solvable, e.g., fixed arrival rate models, and numeri-
cal integration of the differential equations is not neces-
sary. Both cases address variable mean arrival rates; one
through time dependent variables in the differential equa-
tions [9] [13] and one through discrete event fluid models
where rate changes are propagated throughout the network
via events [4] [11] [7].

Two approaches to using deterministic analytic models
for hybrid simulations are found in the literature. One
approach, used in [13], divides the network into a hierarchy
consisting of a high speed core and a lower speed edge.
In the core, all traffic is modeled analytically and in the
edge all traffic is modeled via packet-level, event-driven
simulation. Packet traffic traversing the core is converted
to fluid load on the core and is then converted back to
packet-level traffic at the far edge.

Another approach, used in [4] [11] and [8], is to treat
some of the traffic throughout the network analytically.
Then develop methods to explicitly mix both analytic and
packet traffic at each multiplexing point throughout the
network. Our interests are in this later approach.

A. Deterministic/Packet Mixing Equations

Here, we develop the simplest, least assuming method
to mix deterministic traffic with packet traffic. There exist
methods to improve the fidelity of our example determinis-
tic model, e.g., [4] [11] [8], but these improvements require
a priori knowledge of the behavior of the foreground traf-
fic, which in general is not known. This choice is made
here for several reasons. First, we wish to make an equiva-
lent comparison to our stochastic models presented below
in order to access its ability to negate a reliance on a priori
traffic knowledge. Second, our main focus in this paper is
to access aspects of the viability of the stochastic modeling
and mixing approach against full packet level simulations.

Assume that λd is the average deterministically modeled
traffic rate into the queue over a time averaging interval δ.
We assume that δ is large compared to a typical packet
transmission time but small compared to the total sim-
ulated time. Note that we assume that the parameters
describing the arrival processes, both deterministic and
stochastic, in this paper to be fixed. Let µ be the server
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Fig. 2. An illustration of the hybrid deterministic modeling approach
for mixing traffic at a queue.

rate at the queue, i.e., the inverse of the link bandwidth.
Let w(t) be the total workload in the queue at time t, and
w−(ti) and w+(ti) be the total workload in the queue just
prior to and just following (respectively) a distinguished
time event, e.g., the arrival of packet i at time ti. Let wi
be the work carried by the ith packet to the queue. Finally,
let wmax be the maximum amount of work (or backlog) in
the queue due to its finite size.

Figure 2 gives a pictorial representation of the method
used to mix analytically modeled background traffic with
explicitly handled packet traffic. Individual packet arrival
events are indicated along the bottom axis of the figure.
These packets carry with them a given workload which is a
function of their packet size and the link bandwidth serv-
ing the queue in question. If the packet is allowed to enter
the queue, then the workload in queue jumps from w−(ti)
to w+(ti) where the difference is the workload, wi, carried
by the packet. In between packet arrivals, the workload
evolves deterministically. As mentioned, we assume the
queue dynamics evolve at a constant rate between packet
arrivals (as long as the workload does not exceed the max-
imum wmax or drops below the minimum of zero) given by
the difference λd−µ which is fixed over the averaging time
interval δ.

Then the explicit handling of the packet traffic and the
process for updating the impact of the background traffic
are as follows:
• If, during the current δ time averaging period, λd < µ,

i.e., the background traffic does not overflow the server
rate. For each packet arrival bringing wi work to the
queue, do the following tasks:

– Increment the packet arrival counter i at the queue.
– Update the queue backlog just prior to the packet

arrival time ti, as

w−(ti)← max[w+(ti−1)+(λd−µ)(ti−ti−1), 0] (1)

– If wi < wmax −w−(ti), then accept the packet, up-
date queue workload as w+(ti) = w−(ti) +wi and
schedule the packet departure event at time

tservicei = w−(ti)/µ+ ti (2)

– Else, discard the packet and set w+(ti) = w−(ti).
• Else λd ≥ µ. Here, the background fluid (which is as-

sumed constant) is continually overflowing the queue.
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Hence, we have that w(t) = wmax and no packet traf-
fic is allowed into the queue. Therefore, the model has
the foreground traffic experiencing 100% packet loss.
As mentioned, there are ways to overcome this effect,
see, e.g., [4], but they rely on having an estimate of
the foreground traffic rate.

Without a priori knowledge of the foreground traffic be-
havior, the deterministic model will deny the foreground
traffic access to the buffer. This situation can be addressed
by estimating foreground traffic load based on previous be-
havior, as has been done elsewhere.

III. Stochastic Models

In this section we present our approach to hybrid net-
work simulations which relies upon stochastic models of the
background traffic and explicit handling of packet events
for the foreground traffic. As discussed previously, two as-
pects of this level of integration need consideration, i.e.,
methods to mix the analytic background traffic with the
explicit event handling of the foreground traffic at a com-
mon queue, and methods to estimate the arrival processes
of the background traffic at the intermediate queues in the
network based upon network routing and external arrival
processes. We concentrate on the former in this paper.

A. Stochastic/Packet Mixing Equations

Here we describe our method to mix the stochastic mod-
eled background traffic and the packet traffic at a given
queue within the network. In some sense, our approach
defines a natural extension to the deterministic/packet hy-
brid approach described above. However, our approach
eliminates the need for ad-hoc methods and assumptions
to mixing analytic and packet traffic at common queues,
does not require a priori knowledge of foreground packet
behavior and applies independent of whether the overall
load on the server is under or exceeds its capacity.

As above, assume that λs is the average background traf-
fic (now treated as a stochastic process, hence the subscript
“s”) rate into the queue over a time averaging interval δ.
This will represent the average rate of traffic associated
with the analytically modeled traffic. However, we also
characterize the variation in the background arrival pro-
cess through its Coefficient of Variation (CoV) function,
Cv [1]. The CoV is defined as Cv = σs/λ

−1
s where σs is the

standard deviation of the inter-arrival times for the incom-
ing stochastic background traffic. Here, λ−1

s is the mean
inter-arrival time for the incoming stochastic background
traffic. We assume the characterization of the background
traffic is known, i.e., (λs,Cv), at each node (queue) in the
network. Let µ be the server rate at the queue, i.e., the
inverse of the link bandwidth. Let w(t) be the total work-
load in the queue at time t, and w−(ti) and w+(ti) be the
total workload in the queue just prior to and just following
(respectively) a distinguished time event, e.g., the arrival
of packet i. Let wi be the work carried by the ith packet
to the queue. Finally, let wmax be the maximum amount
of work (or backlog) in the queue due to its finite size.
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Fig. 3. An illustration of the hybrid stochastic modeling approach
for mixing traffic at a queue.

The algorithm to determine a specific w−(ti) given a
value of w+(ti−1) is based upon the knowledge of the
temporal evolution of the Cumulative Distribution Func-
tion (CDF) of the stochastic process. The CDF is de-
fined as F (w, t|w0, t0) = Pr[Xt < wt|X0 = w0] and satis-
fies

∫∞
0
dwF (w, t|w0, t0) = 1 and limt→toF (w, t|w0, t0) =

δ(w − w0), the Dirac Delta Function. Our method ap-
plies for any chosen model of the CDF of the stochastic
processes. Here we outline the mixing algorithm and in
Section IV we give an example of one particular stochastic
process, e.g., a Brownian Motion process from heavy traffic
approximations of queues [3]. We use a CDF to determine
probabilistically the evolution of w−(ti) given w+(ti−1).

Figure 3 gives a pictorial representation of the method
used for mixing analytically modeled stochastic traffic with
explicitly handled packet traffic. Individual packet arrival
events are indicated along the bottom axis of the figure.
These packets carry with them a given workload which is a
function of their packet size and the link bandwidth serving
the queue in question. If the packet is allowed to enter the
queue, then the workload in queue jumps from w−(ti) to
w+(ti) where the difference is the workload carried by the
packet. In between packet arrivals, the workload evolves
according to a given stochastic process based upon load
parameters which characterize the associated arrival pro-
cess, i.e., λs and the coefficient of variation, Cv. Given the
stochastic process and its Cumulative Probability Distri-
bution, we can determine an appropriate w−(ti+1) given
w+(ti). We accomplish this by sampling against the given
CDF for each packet interarrival.

The explicit handling of the packet traffic and the pro-
cess for updating the impact of the stochastic traffic are as
follows: For each packet arrival, do the following tasks:
• Increment the packet arrival counter i at the queue.
• Update the queue backlog just prior to the

packet arrival time ti, by sampling against the
Cumulative Probability Distribution Function,
F (w, ti|w+(ti−1), ti−1). Specifically, given a Distri-
bution Function F (X) = Pr[X < w], and a random
variable Y uniformly distributed between 0 and
1, then we sample against the distribution by the
formula w = F−1(Y ). This yields a specific value for



4 ACM/IEEE PADS 2008

w−(ti).
• If wi <wmax−w−(ti), then accept the packet, update

queue workload as w+(ti) = w−(ti) +wi and schedule
the packet departure event at time

tservicei = w−(ti)/µ+ ti (3)

• Else, discard the packet and set w+(ti) = w−(ti).
The approach outlined above leads to a few observations.

First, this approach is a natural extension to the meth-
ods previously discussed. Second, this approach explic-
itly accounts for background traffic loss and event packet
loss for all arrival load conditions, not just for background
loads less than the line rate. Specifically, the impact of
background traffic on the packet traffic is handled at each
packet arrival, while the impact of packet traffic on back-
ground traffic (and hence background traffic loss) is han-
dled by resetting the initial queue state following each
packet arrival. Third, unlike for deterministic background
models where it is often necessary to know a priori the fore-
ground load in order to get good estimates of foreground
packet loss, this approach requires no such information or
estimation. Instead, the foreground packet loss is a natu-
ral result of the fluctuations in the background traffic and
the current load placed on the system by the foreground
traffic.

The above procedure provides a better estimation of as-
pects of the foreground and background losses and their
cross interactions.

IV. An Example Stochastic Model

Our approach to analytic/packet level mixing at a given
queue within the network was described independently
of the underlying stochastic process describing the back-
ground traffic. Hence, it is possible to rely upon a number
of potential stochastic processes. We describe one here and
rely upon it in our simulation results in Section V. Further,
it is certainly possible to use several stochastic processes
to model the background traffic based upon which model
best represents the results as a function of system load
and other aspects of the system model. This is a topic for
future research.

The stochastic model we investigate here plays a promi-
nent role in the work on heavy traffic limits in queuing
models and is based upon the Brownian Motion stochastic
process [3].

A. Brownian Motion Model

For our initial investigations, we assume that the
stochastic process is well approximated by a Brownian Mo-
tion model which is strictly appropriate for heavy traffic
limits, see, e.g., [3]. Given this, and assuming a GI/G/1/K
queueing system, we then have that the Cumulative Dis-
tribution Function, F (wi, ti|w+(ti−1), ti−1) satisfies the
Fokker-Planck Equation [3] with appropriate boundary
conditions to be discussed below, i.e.,

∂

∂t
F = −m∂F

∂w
+

1
2
σ2 ∂

2F

∂w2
(4)

where m = λs−µ, σ2 = λs×C2
v +µ×C2

v,µ, F (w,t = 0) =
H(w−w0), and H(x) is the Heavy-side Function. For the
purpose of this paper, we assume that all packets have the
same size, hence we model a GI/D/1/K queueing system
and have that the CoV for the service process is zero. This
assumption implies that σ2 = λs×C2

v .
The Fokker-Planck equation has an analytic solution de-

rived in [3]

F (w,t|w0, t= 0) = α×Φ(
w−w0−mt

σ
√
t

)

+ β× e2mw/σ
2
Φ(
−w−w0−mt

σ
√
t

) (5)

F (w, t = 0) = H(w − w0) (6)

Φ(
±w − w0 −mt

σ
√
t

) =
1√
2π

∫ ±w−w0−mt
σ
√
t

−∞
e−x

2/2dx (7)

The multipliers, α and β, are determined by Boundary
Conditions (BCs) of the system.

The most natural BCs found in the literature are

lim
w→0

F (w, t|w0, t = 0) = 0 (8)

and
lim

w→wmax
F (w, t|w0, t = 0) = 1 (9)

where the first BC addresses the lower limit of zero on the
work in the system and the later BC ensures that the finite
size queue limits the work in the system to the maximum
work allowed. Solving for α and β using these BCs, we get

α−1 = Φ(wmax,+)− e2mwmax/σ
2
Φ(wmax,−) (10)

and
β = −α (11)

where we have used the abbreviations

Φ(wmax,±) = Φ(
±wmax − w0 −mt

σ
√
t

) (12)

We also investigate the use of alternative BCs. Consider
the system starting out with a very large initial value for
the work, w0. If we are interested in the predicted work
in the system after a very short time interval, we would
expect that a lower limit on the work in queue would be
given by w0−µt. Hence, an alternative set of BCs, which
we refer to BCs with a moving lower BC, is

lim
w→max[0,w0−µt]

F (w, t|w0, t = 0) = 0 (13)

and
lim

w→wmax
F (w, t|w0, t = 0) = 1 (14)

Solving for α and β using these BCs, we get

α−1 = Φ(wmax,+)

−Φ(wmax,+)Φ(wmax,−)e2m(wmax−wmin)/σ2

Φ(wmin,−)
(15)
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Fig. 4. Evolution of the CDF for two cases of load equal to 0.98
(left) and 1.02 (right).

and

β =
−αΦ(wmin,+)e2mwmin/σ

2

Φ(wmin,−
(16)

where wmin(t) =max[0,w0−µt] and we have used the fur-
ther abbreviations

Φ(wmin,±) = Φ(
±wmin − w0 −mt

σ
√
t

) (17)

These sets of equations for the CDF completely deter-
mine the time evolution of the stochastic system. The CDF
with BCs at w = 0 and w = wmax are well studied and are
discussed in [5] and [6]. In Figure 4 we present some results
for the shape of the CDF for the moving lower BCs, for
two server utilization of 0.98 and 1.02 and various times.
For these examples we used a buffer size of 50 packets of
560 Bytes each, an initial queue workload of 179200 Bytes
representing a buffer at 80% occupancy and a server rate of
500 Kbps. We see that for both the cases, where loads are
less than and greater than server capacity, there is a finite
probability that the buffer is not fully occupied. This fact
allows the packet level traffic access to the buffer even in
server overload conditions, unlike the deterministic case.

V. Results

In this section we present the results for our investiga-
tions into the accuracy of the stochastic models in predict-
ing queuing behavior in a single queue system. We com-
pare the results of this method to the comparable event
driven simulation model of the equivalent queuing sys-
tem and of the equivalent deterministic background traffic
model as described above. We use the Georgia Tech Sim-
ulation tool (GTNetS) [2] for our simulation studies of the
base case (packet–level detail only) as well as the hybrid
cases. For our simulation results, we developed two new
modules within GTNetS. The two modules developed are
a) A Hybrid Interface Module (HIM) which handled the
mixing of the analytic background traffic with the fore-
ground packet traffic, and b) A new traffic generation ap-
plication, the Hyper-Exponential Arrival (HEA) module,
which generates application level UDP packets according
to a Hyper-Exponential Process [1]. This process models a
source which alternates between a high rate and a low rate
traffic source, where each rate period is exponentially dis-
tributed. Hence, by setting the rates equal, we reproduce a
simple and relatively smooth Poisson traffic pattern. Our

�
�
�
�

�
�
�
�

100 Mbps 500 Kbps

Buffer

C1 R1 S1

SinksSources

Foreground

Background

Fig. 5. The reference connection used for the simulation runs.

use of the Hyper-Exponential Process allows us to model
bursty traffic sources, which are well known to exist in the
Internet, by setting the rates to different values.

Our reference topology used for the simulation runs is
shown in Figure 5. Here node C1 is the source for two dif-
ferent applications; one which is a 50Kbps Poisson packet
stream representing our foreground UDP traffic case and
one representing our Hyper-Exponential background UDP
packet stream which can run at different rates and bursti-
ness factors. Both application traffic, foreground and back-
ground, travel to node R1 over a 100 Mbps link and then
onto node S1 over a 500 Kbps link. The link between R1
and S1 represents the queueing point, or bottleneck in our
simulations. For each reference case studied, we ran three
different simulation models; first is the base case which is
a full event-driven packet level simulation of both the fore-
ground and the background traffic, second is the determin-
istic hybrid case where the foreground traffic is treated at
the packet level while the background traffic is treated an-
alytically as a fixed rate fluid, and third is the stochastic
hybrid case where the foreground traffic is treated at the
packet level while the background traffic is treated analyti-
cally as a stochastic fluid with fixed mean and variance. To
investigate impacts of different foreground packet flows on
the hybrid systems, we also ran these three cases when the
foreground traffic is a TCP-Reno stream from nodes C1 to
S1 through R1, where we set the slow-start threshold to 20
KBytes.

For each of the above cases, we varied the mean and the
CoV of the background Hyper-Exponential UDP stream to
cover a range of traffic loads and loss rates. Table V lists
the various mean background rates and example param-
eters representing the extreme CoV investigated for each
mean rate. For all the results presented, we averaged the
metric values over ten independent simulation runs with
different random generator seedings for each. Each simu-
lation run consisted of an initialization period of 50 seconds
where just the background traffic processes run (in order
to allow the system to equalibriate) and then we initiated
the foreground process. We continued each simulation run
for an additional 1000 seconds.

We first present our results for the case of a UDP fore-
ground packet-based stream. For this foreground process
we measure the packet level delay and loss. In Figure
6 we show the results for mean delay estimates for the
three cases of base, deterministic and stochastic traffic for
a background stream with a CoV equal to unity. The rates
simulated in the plots are 300, 350, 400, 450 and 500 Kbps.
Note, however, that these are the application-level rates
and due to packet overhead of 48 bytes per packet, the
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TABLE I

Parameters for the Hyper-Exponential background process.

λ
−1
s Cv tH rH tL rl

(Kbps) (msec) (Kbps) (msec) (Kbps)

300 1.000 200 300 200 300
300 1.511 200 500 200 100

400 1.000 200 400 200 400
400 1.753 200 700 200 100

410 1.000 200 410 200 410
410 1.753 200 710 200 110

420 1.000 200 420 200 420
420 1.753 200 720 200 120

430 1.000 200 430 200 430
430 1.753 200 730 200 130

440 1.000 200 440 200 440
440 1.753 200 740 200 140

450 1.000 200 450 200 450
450 1.340 200 700 200 200

500 1.000 200 500 200 500
500 1.413 200 700 200 300

respective line rates are 328, 383, 438, 492 and 530 Kbps.
Here we see mean delay of the foreground stream increas-
ing as the mean rate of the background traffic increases for
all three cases. However, the stochastic case does a better
job at tracking the delays recorded for the base simulation
case, while the deterministic case underestimates the de-
lays at lower loads and overestimates the delay at higher
loads.
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Fig. 6. Results for the UDP foreground delay versus background
traffic rate.

Figure 7 presents results on the foreground packet loss
probability for the different background traffic rates where
the CoV is unity. The loss metric is a much more sensitive
and challenging test of models due to its dependence upon
the high percentiles of the work-in-queue probability dis-
tributions. We see extremely low packet losses for all cases
for rates less than 400 Kbps, as expected. Above 400 Kbps,
where the link is approaching a load near unity, the loss
begin to increase. The losses for the deterministic model
rapidly approach unity, because it has no mechanism to
allow packet traffic entry into the buffer when the fluid in-
put rate equals or exceeds the service rate of the system.
While the results for the stochastic model are quite close
to the base case loss results. As mentioned previously, the
stochastic model explicitly accounts for the fluctuations in
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Fig. 7. Results for the UDP foreground loss probability versus back-
ground traffic rate.

the background traffic and this is what allows the packet
traffic lossy entry into the buffer.

In the plots in Figure 8 we investigate the impact of in-
creased CoV in the background stream on the foreground
packet metrics. Figure 8 present the results for mean rates
of 300, 400, 430 and 450 Kbps in the background streams.
We see that the mean delay increases as the CoV increases
for lower loads, while for higher loads the mean delay actu-
ally decreases for increasing CoV. The deterministic model
does not account for variations in the dynamics of the back-
ground stream so it is incapable of tracking these effects.
We show results for the moving lower BC discussed above
for the stochastic Brownian Motion Model. The stochas-
tic model captures the trends in the delay versus load and
CoV. However, the trends are not as pronounced as in the
base simulation case. This result will be addressed in fu-
ture studies.

We now present our results for the case where the fore-
ground traffic is a TCP packet stream. Due to TCP’s
adaptive windowing policy, the foreground traffic in these
simulation runs will attempt to utilize the remaining band-
width on the link between R1 and S1. Hence, the fore-
ground loads vary for different cases of background traffic
loads. We first show a set of results comparing the TCP
goodput versus rate for the various simulation cases. These
results are shown in Figure 9. We see that the goodput gen-
erally decreases with increasing background rate. Further,
the deterministic model underestimates the TCP goodput,
due to its over estimation of the foreground packet losses
(from previous results above). While the stochastic mod-
els do a more reasonable job in tracking TCP throughput.
Further, the estimates of the stochastic models improve
for higher loads as expected. We show the results for both
BCs discussed above. That the TCP goodput as modeled
by the stochastic hybrid case tracks well the base case is a
tribute to the models ability to estimate packet loss prob-
ability, as TCP goodput is highly non-linear with respect
to packet loss.

We show the results for background streams with in-
creasing Coefficients of Variation, where we are presenting
the average goodput of the TCP foreground process. Fig-
ure 10 show the results for a mean background traffic rate
of 300, 400, 450 and 500 Kbps. We observe that the TCP
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Fig. 8. Results for the UDP foreground delay versus CoV for various
background traffic rates.

goodput for the base case shows a weak dependence on the
CoV for lower loads and a greater, increasing dependence
on CoV at higher loads. Further, the analytic models result
in an underestimation of the TCP goodput for all cases.
We present the results for both stochastic models, i.e., the
models resulting from different lower BCs. The stochas-
tic models capture the qualitative tends shown in the base
case. However, quantitatively they underestimate the TCP
goodput. As before, we see that the deterministic model
results are independent of the CoV of the background traf-
fic stream.
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Fig. 9. Results for the TCP foreground goodput versus background
traffic rate.

VI. Conclusions and Future Studies

We have presented the initial results of an investigation
into the use of stochastic queueing models for the purpose
of developing hybrid analytic and packet level, event driven
network simulation tools. Our ultimate objective is to im-
prove the scalability of network simulations, decrease their
run-times and maintain high fidelity of their results. There
are numerous aspects of this topic which require investiga-
tions, including packet/analytic model mixing at network
queues and estimations of stochastic model parameters at
interior queues in the network. In this paper, we have
only begun investigating the initial question of how to mix
stochastic analytic fluids with packet level events and per-
formed some initial investigations into the fidelity of these
methods. However, we are encouraged by these initial re-
sults. We believe the use of stochastic background models
lead to a natural, unforced means of mixing packet and an-
alytic traffic in common queues. This is not the case when
relying upon deterministic models which force designers
to make ad-hoc assumptions and decisions with respect to
how to mix packet and analytic traffic and which often
have to rely upon a priori knowledge of foreground traffic
behavior.

There remains much work to further explore and develop
a high fidelity hybrid stochastic and packet-level network
simulation capability. Future work includes:
• Investigate the use of improved stochastic models and

approximations from the field of Heavy Traffic results
in queuing theory to improve the fidelity of the pre-
dictions.

• Extend our methods to networks of queues.
• Further explore the fidelity of these methods in the

presence of other background traffic types and loads
and their impact of other foreground application traf-
fic.

• Investigate the benefits of using hybrid stochas-
tic/packet simulation techniques when modeling pro-
cesses with long tailed distributions.
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Fig. 10. Results for the TCP foreground goodput versus Cv for
various background traffic rates.
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