

 Technical Report

© Broadband Forum. All rights reserved.

TR-469
Conformance Test Plan for User Services

Platform Agents

Issue 1

Approval Date: October 2019

© Broadband Forum. All rights reserved.

Notice

The Broadband Forum is a non-profit corporation organized to create guidelines for
broadband network system development and deployment. This Technical Report has been
approved by members of the Forum. This Technical Report is subject to change. This
Technical Report is copyrighted by the Broadband Forum, and all rights are reserved.
Portions of this Technical Report may be copyrighted by Broadband Forum members.

Intellectual Property

Recipients of this Technical Report are requested to submit, with their comments,
notification of any relevant patent claims or other intellectual property rights of which they
may be aware that might be infringed by any implementation of this Technical Report, or
use of any software code normatively referenced in this Technical Report, and to provide
supporting documentation.

Terms of Use

1. License

Broadband Forum hereby grants you the right, without charge, on a perpetual, non-
exclusive and worldwide basis, to utilize the Technical Report for the purpose of
developing, making, having made, using, marketing, importing, offering to sell or license,
and selling or licensing, and to otherwise distribute, products complying with the Technical
Report, in all cases subject to the conditions set forth in this notice and any relevant patent
and other intellectual property rights of third parties (which may include members of
Broadband Forum). This license grant does not include the right to sublicense, modify or
create derivative works based upon the Technical Report except to the extent this
Technical Report includes text implementable in computer code, in which case your right
under this License to create and modify derivative works is limited to modifying and
creating derivative works of such code. For the avoidance of doubt, except as qualified by
the preceding sentence, products implementing this Technical Report are not deemed to be
derivative works of the Technical Report.

2. NO WARRANTIES

THIS TECHNICAL REPORT IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER,
AND IN PARTICULAR, ANY WARRANTY OF NONINFRINGEMENT IS EXPRESSLY
DISCLAIMED. ANY USE OF THIS TECHNICAL REPORT SHALL BE MADE ENTIRELY AT THE
IMPLEMENTER'S OWN RISK, AND NEITHER THE BROADBAND FORUM, NOR ANY OF ITS
MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY
IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER,
DIRECTLY OR INDIRECTLY, ARISING FROM THE USE OF THIS TECHNICAL REPORT.

© Broadband Forum. All rights reserved.

3. THIRD PARTY RIGHTS
Without limiting the generality of Section 2 above, BROADBAND FORUM ASSUMES NO
RESPONSIBILITY TO COMPILE, CONFIRM, UPDATE OR MAKE PUBLIC ANY THIRD PARTY
ASSERTIONS OF PATENT OR OTHER INTELLECTUAL PROPERTY RIGHTS THAT MIGHT
NOW OR IN THE FUTURE BE INFRINGED BY AN IMPLEMENTATION OF THE TECHNICAL
REPORT IN ITS CURRENT, OR IN ANY FUTURE FORM. IF ANY SUCH RIGHTS ARE
DESCRIBED ON THE TECHNICAL REPORT, BROADBAND FORUM TAKES NO POSITION AS
TO THE VALIDITY OR INVALIDITY OF SUCH ASSERTIONS, OR THAT ALL SUCH
ASSERTIONS THAT HAVE OR MAY BE MADE ARE SO LISTED.

The text of this notice must be included in all copies of this Technical Report.

Revision History

Release 1.0
• First release of this test plan, containing test cases for basic compliance with TR-

369/USP.

Editors
Name Company Email Role
Jason Walls QA Cafe, LLC jason@qacafe.com Editor

Work Area Directors
Name Company Email Role
Jason Walls QA Cafe,

LLC
jason@qacafe.com Broadband User Services Work

Area Director
John
Blackford

Arris john.blackford@arris.com Broadband User Services Work
Area Director

© Broadband Forum. All rights reserved.

Table of Contents
Revision History ...3

Release 1.0..3

Editors ...3

Work Area Directors ..3

Introduction ... 11

Executive Summary ... 11

Purpose .. 11

Scope ... 11

Test Equipment.. 11

Test Setup and Execution .. 12

Basic Test Setup .. 12

Mandatory vs. Conditional Mandatory Tests ... 12

Endpoint Requirements and Metadata Collection ... 12

Clean-Up Procedures.. 15

Universal Test Metrics .. 15

Notes about test case descriptions ... 15

Use of examples .. 16

USP Agent Test Cases ... 16

1 Messages and Path Names .. 16

1.1 Add message with allow partial false, single object, required parameters succeed 16

1.2 Add message with allow partial true, single object, required parameters succeed 18

1.3 Add message with allow partial false, single object, required parameters fail 20

1.4 Add message with allow partial false, single invalid object .. 22

1.5 Add message with allow partial false, multiple objects ... 23

1.6 Add message with allow partial false, multiple objects with an invalid object.......... 26

1.7 Add message with allow partial false, multiple objects, required parameters fail in
single object .. 27

1.8 Add message with allow partial true, required parameters fail, invalid value, single
object ... 29

1.9 Add message with allow partial true, required parameters fail, multiple objects ... 30

1.10 Add message with unique key addressing in path .. 33

1.11 Set message with allow partial false, required parameters pass 35

1.12 Set message with allow partial true, required parameters pass 37

© Broadband Forum. All rights reserved.

1.13 Set message with allow partial false, multiple objects .. 38

1.14 Set message with allow partial false, required parameters fail 40

1.15 Set message with allow partial false, multiple objects, required parameters fail in
single object .. 41

1.16 Set message with allow partial true, required parameter fails, multiple objects .. 42

1.17 Set message with allow partial true, non-required parameter fails, multiple
parameters .. 44

1.18 Set message with unique key addressing in path .. 46

1.19 Set message with wildcard search path, allow partial false, required parameters
pass ... 48

1.20 Set message with wildcard search path, allow partial false, required parameters
fail .. 49

1.21 Set message with wildcard search path, allow partial true, required parameters
fail .. 50

1.22 Set message with search expression search path .. 52

1.23 Set message with invalid path ... 53

1.24 Delete message with allow partial false, valid object instance 54

1.25 Delete message with allow partial false, object instance doesn’t exist 55

1.26 Delete message with allow partial false, invalid object .. 56

1.27 Delete message with allow partial false, multiple objects ... 57

1.28 Delete message with allow partial false, multiple objects, invalid object 58

1.29 Delete message with allow partial true, object instance doesn’t exist 59

1.30 Delete message with allow partial true, invalid object ... 60

1.31 Delete message with allow partial true, multiple objects, invalid object 61

1.32 Delete message with allow partial true, multiple objects, object doesn’t exist 62

1.33 Delete message with unique key addressing ... 63

1.34 Delete message with wildcard search path, valid objects ... 64

1.35 Delete message with search expression search path ... 65

1.36 Get message with full parameter path .. 66

1.37 Get message with multiple full parameter paths, same object .. 67

1.38 Get message with multiple full parameter paths, different objects 68

1.39 Get message with object path .. 69

1.40 Get message with object instance path ... 70

1.41 Get message with invalid parameter ... 71

1.42 Get message with invalid parameter and valid parameter ... 71

© Broadband Forum. All rights reserved.

1.43 Get message using unique key addressing .. 72

1.44 Get message using wildcard search path on full parameter ... 73

1.45 Get message using wildcard search path on object path.. 74

1.46 Get message using search expression search path (equivalence) 75

1.47 Get message using search expression search path (non-equivelance) 76

1.48 Get message using search expression search path (exclusive greater comparison)
... 77

1.49 Get message using search expression search path (exclusive lesser comparison)
... 78

1.50 Get message using search expression search path (inclusive greater comparison)
... 79

1.51 Get message using search expression search path (inclusive lesser comparison) 81

1.52 Notify - Subscription creation using Value Change ... 82

1.53 Notify - Subscription Deletion Using Value Change .. 84

1.54 Notification Retry using Value Change ... 86

1.55 Subscription Expiration using Value Change ... 89

1.56 Notification Retry Expiration using Value Change .. 91

1.57 ObjectCreation Notification .. 93

1.58 ObjectDeletion Notification .. 96

1.59 Event Notification using Periodic!... 97

Test Setup .. 98

Test Procedure .. 98

Test Metrics .. 99

1.60 OnBoardRequest Notification ... 99

1.61 Operate message using Reboot() with send_resp true .. 100

1.62 Operate message using Reboot() with send_resp false ... 101

1.63 Operate message using input arguments ... 102

1.64 Asynchronous operation with send_resp true ... 103

1.65 Asynchronous operation with send_resp false .. 104

1.66 GetInstances using a single object, first_level_only true.. 105

1.67 GetInstances using a single object, first_level_only false... 106

1.68 GetInstances with multiple objects.. 106

1.69 GetInstances with root object... 107

1.70 GetInstances with wildcard search path ... 108

1.71 GetInstances with search expression search path ... 109

© Broadband Forum. All rights reserved.

1.72 GetSupportedDM using a single object, first_level_only false, all options............... 109

1.73 GetSupportedDM using a single object, first_level_only true, all options 110

1.74 GetSupportedDM using a single object, first_level_only true, no options 111

1.75 GetSupportedDM using multiple objects, first_level_only true, all options 112

1.76 GetSupportedDM on root object, all options ... 113

1.77 GetSupportedDM on unsupported object ... 113

2 Authentication and Access Control Test Cases .. 114

2.1 Agent does not accept messages from its own Endpoint ID... 114

2.2 Agent rejects messages that do not contain its to_id in the USP Record 115

2.3 Agent does not process messages without ’s certificate information.......................... 115

2.4 Agent rejects messages from Endpoint IDs that are not in subjectAltName 116

2.5 Agent use of self-signed certificates ... 117

2.6 Connecting without absolute time .. 117

2.7 Agent ignores unsigned or invalid Record signatures .. 118

2.8 Agent ignores invalid TLS certificate ... 119

2.9 Use of the Untrusted role .. 119

2.10 Adding a Role .. 120

2.11 Permissions - Object Creation Allowed ... 121

2.12 Permissions - Object Creation Not Allowed... 122

2.13 Permissions - Object Deletion Allowed.. 124

2.14 Permissions - Object Deletion Not Allowed ... 125

2.15 Permissions - Parameter Update Allowed ... 127

2.16 Permissions - Parameter Update Not Allowed... 128

2.17 Permissions - Operation Allowed ... 130

2.18 Permissions - Operation Not Allowed .. 131

2.19 Permissions - Value Change Notification Allowed on Parameter 133

2.20 Permissions - Value Change Notification Not Allowed on Parameter 135

2.21 Permissions - Overlapping Permissions.. 137

2.22 Using Get when no read permissions are available on some parameters 139

3 USP Record Test Cases .. 140

3.1 Bad request outside a session context .. 140

3.2 Agent Verifies Non-Payload Field Integrity .. 141

3.3 Agent rejects invalid signature starting a session context .. 141

3.4 Using TLS for USP Record Integrity.. 142

© Broadband Forum. All rights reserved.

3.5 Failure to Establish TLS ... 142

3.6 Agent ignores TLS renegotiation for E2E message exchange .. 143

3.7 Use of X.509 Certificates .. 144

3.8 Establishing a Session Context ... 145

3.9 Receipt of a Record out of a Session Context ... 146

3.10 Session Context Expiration .. 147

3.11 Use of Sequence ID and Expected ID ... 149

3.12 Preservation of USP Records .. 149

3.13 Agent Rejects Records with Different Payload Security than the Established
Context ... 150

3.14 Use of retransmit_id .. 151

3.15 Handling Duplicate Records .. 152

4 General MTP Test Cases .. 152

4.1 Use of X.509 certificates at the MTP layer ... 152

5 CoAP Test Cases .. 154

5.1 Mapping a USP Record to a CoAP message ... 154

5.2 USP Records that exceed CoAP message size .. 155

5.3 Successful CoAP exchange .. 156

5.4 Failed CoAP exchange - timeout... 157

5.5 Failed CoAP Exchange - Invalid Method... 157

5.6 Failed CoAP Exchange - Invalid Content-Format ... 158

5.7 Failed CoAP Exchange - Invalid USP Record .. 158

5.8 Use of DTLS .. 159

6 STOMP Test Cases .. 160

6.1 Support of Required Profiles ... 160

6.2 STOMP session establishment .. 161

6.3 STOMP Connection Retry .. 161

6.4 Successful USP message over STOMP with required headers... 162

6.5 STOMP destination - provided in subscribe-dest .. 163

6.6 STOMP destination - configured in USP data model .. 164

6.7 STOMP Destination - terminates unconfigured session ... 165

6.8 Use of STOMP heartbeat mechanism ... 166

6.9 Error Handling - Unprocessed Record .. 167

6.10 Agent’s STOMP destination is changed .. 168

© Broadband Forum. All rights reserved.

6.11 STOMP - Use of TLS ... 169

7 WebSocket Test Cases ... 170

7.1 Session Establishment .. 170

7.2 Use of only one session... 170

7.3 Agent session acceptance from Controller ... 171

7.4 Closing a WebSocket Connection .. 172

7.5 Rejection of Session Establishment .. 172

7.6 Error Handling - Unprocessed Records.. 173

7.7 Use of Ping and Pong frames ... 173

7.8 WebSocket Session Retry .. 174

7.9 Use of TLS.. 175

8 Discovery Test Cases .. 176

8.1 DHCP Discovery - Agent Request Requirements ... 176

8.2 DHCP Discovery - Agent handling of received options ... 176

8.3 DHCP Discovery - FQDN Leads to DNS Query ... 177

8.4 mDNS... 178

8.5 mDNS and Message Transfer Protocols ... 178

8.6 DNS - DNS Record Requirements .. 179

8.7 mDNS request response... 179

9 Functionality Test Cases ... 180

9.1 Use of the Timer! Event .. 180

9.2 Use of Device.LocalAgent.AddCertificate() ... 181

9.3 Upgraded the Agent’s Firmware - Autoactivate enabled ... 182

9.4 Upgrading the Agent’s Firmware - Using TimeWindow, Immediate 183

9.5 Upgrading the Agent’s Firmware - Using TimeWindow, AnyTime 185

9.6 Upgrading the Agent’s Firmware - Validated Firmware .. 186

9.7 Upgrading the Agent’s Firmware - Download to Active Bank ... 187

9.8 Upgrading the Agent’s Firmware - Cancelling a request using the Cancel()
command .. 188

9.9 Adding a New Controller - OnBoardRequest ... 190

9.10 Use of the Boot! event and BootParameters ... 192

© Broadband Forum. All rights reserved.

© Broadband Forum. All rights reserved.

Introduction

Executive Summary
Testing is crucial to promoting the interoperability and adoption of standards. To meet this,
the Broadband Forum regularly produces test suites that validate the conformance of
implementations of their standards. This specification defines the test setup, test
procedures, and test metrics to validate Agent and implementations of the User Services
Platform (USP), published as BBF TR-369.

Purpose
This purpose of this document is to provide a definitive guide for validating the compliance
of USP Agents in accordance with the specification.

Scope
The tests defined below are intended to validate the specific requirements outlined in the
USP specification, as well as those requirements defined in the Device:2 Data Model for USP
Agents for objects, parameters, commands, and events necessary for the operation of
USP.Test Setup

Test Equipment
There are a number of components necessary to the implementation of this test suite.

Traffic Generator - One or more traffic generators are necessary in order to transmit the
required traffic to execute the test procedures. Traffic generation can be done with script-
able, real implementations of DHCP servers, mDNS endpoints, and USP endpoints (for
example), or can be simulated through other means. For tests that exercise the presence of
multiple Controllers or agents, the traffic generators can each represent a single endpoint,
or multiple endpoints, depending on its capabilities, as long as the traffic can be
differentiated by the Endpoint Under Test.

Analyzer - One or more traffic analyzers are necessary to confirm the receipt of messages
and evaluate the test metrics outlined in the tests below. This analyzer may exist at the
traffic generator source, in-line, or accessed through a replicated interface that will push
traffic to the analyzer.

Test Network - The tests below require IP layer connectivity between the Traffic
Generator and the Endpoint Under Test (EUT). Steps SHOULD be taken to unsure that the
underlying network does not interfere with the test procedures or test metrics.

https://usp.technology/
https://usp.technology/

© Broadband Forum. All rights reserved.

Test Setup and Execution

Basic Test Setup

Figure 1

Mandatory vs. Conditional Mandatory Tests

USP contains both required and optional functionality. To ensure that all different classes
of device can exercise this test suite, tests are divided into “Mandatory” and “Conditional
Mandatory”. Mandatory tests MUST be passed by any EUT in order to be considered
compliant. Conditional Mandatory tests MUST be passed by an EUT that implements the
feature outlined in the test case. This is indicated in each individual test case under the
“Functionality Tag”.

Tests that are conditional mandatory and have a particular parameter, command, event, or
profile requirement, a different subject can be substituted that meets the needs of the test.
For example, if an EUT does not support the Reboot:1 profile, another synchronous
operation can be substituted for tests 1.61 and 1.62.

Endpoint Requirements and Metadata Collection

Required Profiles

The Device:2 Data Model for USP Agents outlines several profiles that contain data model
objects, parameters, commands, and events necessary to the operation of USP. In order to
be able to perform the tests below, a USP Agent MUST implement, at minimum, the
following profiles:

• LocalAgent:1

• Subscriptions:1

Conditional mandatory tests may require the implementation of additional profiles.

Additional Test Cases Required by Profile and Option Support

Those seeking to utilize this test plan can use the following feature IDs to specify their
support for conditional mandatory test cases.

Feature ID Feature name Test Cases Notes

© Broadband Forum. All rights reserved.

1 At least one command 1.61, 1.62

2 At least one command with input
arguments

1.63

3 At least one asynchronous
command

1.64, 1.65

4 Subscription.{i}.NotifExpiration
parameter

1.56 An extension to
the
Subscription:1
profile

5 Controller:1 profile 1.59

7 Controller:1 profile (writeable) 9.9 EUT allows the
creation of
Device.LocalAgen
t.Controller.{i}.
objects

8 Device.LocalAgent.Controller.{i}.S
endOnBoardRequest()

1.60

9 Device.LocalAgent.Controller.{i}.S
cheduleTimer()

1.64, 1.65, 9.1

10 Reboot:1 profile 1.61, 1.62, 9.10

11 TraceRoute:1 profile 1.64, 1.65

12 ControllerTrust:1 profile 2.9, 2.10

13 ControllerTrust:1 profile
(writeable)

2.4, 2.11, 2.12,
2.13, 2.14, 2.15,
2.16, 2.17, 2.18,
2.19, 2.20, 2.21,
2.22

Additionally
supports at least
one role that
allows object
creation, or
supports writable
parameters in
Device.LocalAgen
t.ControllerTrust.
{i}.Role.{i}.

14 Self-signed controller certificates 2.5

15 TLS at the MTP Layer 4.1

16 CoAP MTP 5.*, 8.5

17 STOMP MTP 6.* Excludes 6.8
unless option 18
is supported

© Broadband Forum. All rights reserved.

18 STOMPHeartbeat:1 profile 6.8

19 WebSocket MTP 7.* Excludes 7.3
unless option 20
is supported

20 TR-369 requirement R-WS.6 7.3

21 Discovery via DHCP Options 8.1, 8.2, 8.3

22 Discovery via mDNS 8.4, 8.5, 8.6

23 Secure Message Exchange (TLS
for USP Record Integrity)

3.2, 3.3, 3.4, 3.5,
3.6, 3.7

24 USP session context 3.8, 3.9, 3.10, 3.11,
3.12, 3.13, 3.14

25 Device.LocalAgent.AddCertificate
()

9.2

26 Firmware:1 profile 9.3, 9.6, 9.7

27 Firmware:1 profile (Activate) 9.4 Supports
Firmware:1
profile and
additionally
supports the
Activate()
operation

28 Device.LocalAgent.Request.{i}.Ca
ncel()

9.8 Applies only if
option 26 is
supported

29 UntrustedRole disabled 2.3 The use of
UntrustedRole
must be either
unsupported, or
capable of being
disabled, to run
this test

30 Device.LocalAgent.Subscription.{i
}.TimeToLive

1.55

Elements Specified in the Test Procedure

Many of the mandatory and conditional mandatory tests specify the objects, parameters, or
operations to be used for the test. If the specific elements are not supported by the EUT,
other elements that will satisfy the test criteria MAY be used instead. If so, the test report
MUST include the alternate elements used.

© Broadband Forum. All rights reserved.

Required EUT Information and Resources

In order to be able to perform the tests and create a report of the results, the following
must be provided concerning the Endpoint Under Test:

1. The software and/or firmware version of the EUT.
2. The number of firmware banks available if the Firmware:1 profile is supported.
3. A list of the features supported in section 4.2.2.1.1.
4. If the service elements specified in the tests are not supported, provide a list of

alternate elements used in the testing.

Clean-Up Procedures

A number of tests that make changes to the EUT have procedures that are not part of the
validation portion of the test case. These procedures are intended to “clean up” any
changes that were made during the test to ensure that the EUT is in a relatively known
state from one test case to the next. The most obvious example is using the Delete message
to remove any objects that were added as part of the procedure, but the clean-up
procedure may include any number of steps.

Universal Test Metrics
Due to the nature of performative testing of protocol messages, certain requirements in the
specification are effectively tested every time. Writing additional test cases for these
metrics is unnecessary, but the requirements must still be met by endpoint
implementations.

1. The Endpoint ID of the Endpoint Under Test is valid (ARC.3, ARC.4, ARC.5, and the
requirements outlined in the authority-scheme table).

2. The USP records and USP messages of the Endpoint Under Test are valid according to
the usp-record.proto and usp-msg.proto schemas (ENC.0, ENC.1).

3. The Path Names and Search Paths used in messages sent by the Endpoint Under Test
are valid according to Data Model Path Grammar and TR-106 (ARC.7).

4. Path Names in messages originating from the EUT use instance number addressing (R-
MSG.3).

Notes about test case descriptions
Each of the test cases below have the following sections:

Purpose - The purpose describes the reasoning for the test case, based on the normative
requirements defined in USP.

Functionality Tag - The functionality tag indicates whether the test is mandatory or
conditional mandatory. If it is the latter, this section will list any additional Device:2
profiles necessary to the performance of the test case.

http://usp.technology/specification/architecture/#endpoint_identifier
http://usp.technology/specification/architecture/#data_model_path_grammar

© Broadband Forum. All rights reserved.

Test Setup - The test setup section indicates any special prior conditions that must be
configured before performing the test.

Test Procedure - The procedure indicates the steps, in order, taken to perform the test.

Test Metrics - The metrics indicate the required behavior that must be observed to
consider the test passed.

Use of examples

The test setup, procedure, and metrics in each test case may contain examples of the data
to be sent to or received from the EUT. In these examples, elements that are to be filled
with a known value dependent on the protocol’s behavior are indicated with greater-
than/less-than brackets (<for example>), to indicate a variable. These examples should not
be taken literally.

USP Agent Test Cases

1 Messages and Path Names

1.1 Add message with allow partial false, single object, required parameters
succeed

Purpose

The purpose of this test is to validate that the EUT properly handles an Add message when
the allow_partial element is set to false, and all required parameters to be set upon Object
Creation succeed.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. If the EUT has a limit on the number of instances of the Subscription object, ensure
that the number of existing Subscription object instances is less than the maximum
supported.

Test Procedure
1. Send an Add message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: ADD
}

© Broadband Forum. All rights reserved.

body {
 request {
 add {
 allow_partial: false
 create_objs {
 obj_path: "Device.LocalAgent.Subscription."
 param_settings {

 {
 param: "Enable"
 value: "true"}
 {
 param: "ID"
 value: "add1"}
 {
 param: "NotifType"
 value: "ValueChange"}
 {
 param: "ReferenceList"
 value: "Device.LocalAgent.SoftwareVersion"
 required: true}
 }
 }
 }
 }
}

2. Allow the EUT to send an AddResp.

3. Record the instance identifier of the created object as reported by the EUT.

4. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: "Device.LocalAgent.Subscription.<instance identifier>.
"
 }
 }
}

5. Allow the EUT to send a GetResp.

6. Clean-up: Send a Delete message to the EUT with the following structure:

© Broadband Forum. All rights reserved.

 header {
 msg_id: "<msg_id>"
 msg_type: DELETE
}
body {
 request {
 delete {
 allow_partial: false
 obj_paths:
 "Device.LocalAgent.Subscription.<instance identifier>."
 }
 }
}

7. Allow the EUT to send a DeleteResp

Test Metrics
1. The EUT’s sends an AddResp.

2. The AddResp contains a single CreatedObjectResult that has an OperationStatus that is
an element of type OperationSuccess. The OperationSuccess contains no parameter
errors and 3 elements in the unique key map: Alias, Recipient, and ID. Alternatively,
the OperationSuccess contains 2 elements in the unique key map if the Alias
parameter is not supported: Recipient, and ID.

3. The EUT creates the Subscription object.

4. The Subscription object’s values match the values set in the param_settings element.

1.2 Add message with allow partial true, single object, required parameters
succeed

Purpose

The purpose of this test is to validate that the EUT properly handles an Add message when
the allow_partial element is set to true, and all required parameters to be set upon Object
Creation succeed.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. If the EUT has a limit on the number of instances of the Subscription object, ensure
that the number of existing Subscription object instances is less than the maximum
supported.

© Broadband Forum. All rights reserved.

Test Procedure
1. Send an Add message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: ADD
}

body {
 request {
 add {
 allow_partial: true
 create_objs {
 obj_path: "Device.LocalAgent.Subscription."
 param_settings {

 {
 param: "Enable"
 value: "true"}
 {
 param: "ID"
 value: "add2"}
 {
 param: "NotifType"
 value: "ValueChange"}
 {
 param: "ReferenceList"
 value: "Device.LocalAgent.SoftwareVersion"
 required: true}
 }
 }
 }
 }
}

2. Allow the EUT to send an AddResp.

3. Record the instance identifier of the created object as reported by the EUT.

4. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: "Device.LocalAgent.Subscription.<instance identifier>.
"

© Broadband Forum. All rights reserved.

 }
 }
}

5. Allow the EUT to send a GetResp.

6. Clean-up: Send a Delete message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: DELETE
}
body {
 request {
 delete {
 allow_partial: false
 obj_paths: "Device.LocalAgent.Subscription.<instance identifier>."
 }
 }
}

7. Allow the EUT to send a DeleteResp

Test Metrics
1. The EUT’s AddResp is valid.

2. The AddResp contains a single CreatedObjectResult that has an OperationStatus of
OperationSuccess. The OperationSuccess contains no parameter errors and 3 elements
in the unique key map: Alias, Recipient, and ID. Alternatively, the OperationSuccess
contains 2 elements in the unique key map if the Alias parameter is not supported:
Recipient, and ID.

3. The EUT creates the Subscription object.

4. The Subscription object’s values match the values set in the param_settings element.

1.3 Add message with allow partial false, single object, required parameters fail

Purpose

The purpose of this test is to validate that the EUT properly handles an Add message when
the allow_partial element is set to false, and at least one required parameter fails, and only
a single object is set.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

© Broadband Forum. All rights reserved.

2. If the EUT has a limit on the number of instances of the Subscription object, ensure
that the number of existing Subscription object instances is less than the maximum
supported.

Test Procedure
1. Send an Add message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: ADD
}

body {
 request {
 add {
 allow_partial: false
 create_objs {
 obj_path: "Device.LocalAgent.Subscription."
 param_settings {

 {
 param: "Enable"
 value: "true"}
 {
 param: "ID"
 value: "add3"}
 {
 param: "NotifType"
 value: "ValueChange"}
 {
 param: "ReferenceList"
 value: "Device.LocalAgent.SoftwareVersion"}

 {
 param: "InvalidParameter"
 value: "IrrelevantValue"
 required: true}
 }
 }
 }
 }
}

2. Allow the EUT to send an Error message.

Test Metrics
1. The EUT sends an Error message.

© Broadband Forum. All rights reserved.

2. The Error message contains an err_code of 7004, “Invalid arguments”, with the
param_errs element containing a single error with a param_path of
“Device.LocalAgent.Subscription.”, and an err_code of 7010, “Unsupported Parameter”.

1.4 Add message with allow partial false, single invalid object

Purpose

The purpose of this test is to validate that the EUT properly handles an Add message when
the allow_partial element is set to false, and a single invalid object is set.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. If the EUT has a limit on the number of instances of the Subscription object, ensure
that the number of existing Subscription object instances is less than the maximum
supported.

Test Procedure
1. Send an Add message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: ADD
}

body {
 request {
 add {
 allow_partial: false
 create_objs {
 obj_path: "Device.LocalAgent.InvalidObject."
 param_settings {

 {
 param: "Enable"
 value: "true"}
 {
 param: "ID"
 value: "add3"}
 {
 param: "NotifType"
 value: "ValueChange"}
 {
 param: "ReferenceList"

© Broadband Forum. All rights reserved.

 value: "Device.LocalAgent.SoftwareVersion"}

 }
 }
 }
 }
}

2. Allow the EUT to send an Error message.

Test Metrics
1. The EUT sends an Error message.

2. The Error message contains an err_code of 7004, “Invalid arguments”, with the
param_errs element containing a single error with a param_path of
“Device.LocalAgent.InvalidObject.”, and an err_code of 7016, “Object does not exist”.

1.5 Add message with allow partial false, multiple objects

Purpose

The purpose of this test is to validate that the EUT properly handles an Add message when
the allow_partial element is set to false, multiple objects are attempted, and all required
parameters to be set upon Object Creation succeed.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. If the EUT has a limit on the number of instances of the Subscription object, ensure
that the number of existing Subscription object instances is less than the maximum
supported.

Test Procedure
1. Send an Add message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: ADD
}

body {
 request {
 add {
 allow_partial: false
 create_objs {

© Broadband Forum. All rights reserved.

 obj_path: "Device.LocalAgent.Subscription."
 param_settings {

 {
 param: "Enable"
 value: "true"}
 {
 param: "ID"
 value: "add41"}
 {
 param: "NotifType"
 value: "ValueChange"}
 {
 param: "ReferenceList"
 value: "Device.LocalAgent.SoftwareVersion"
 required: true}
 }

 obj_path: "Device.LocalAgent.Subscription."
 param_settings {

 {
 param: "Enable"
 value: "true"}
 {
 param: "ID"
 value: "add42"}
 {
 param: "NotifType"
 value: "ValueChange"}
 {
 param: "ReferenceList"
 value: "Device.LocalAgent.EndpointID"
 required: true}
 }
 }
 }
 }
}

2. Allow the EUT to send an AddResp.

3. Record the instance identifiers of the created objects as reported by the EUT.

4. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
}

© Broadband Forum. All rights reserved.

body {
 request {
 get {
 param_paths:
 "Device.LocalAgent.Subscription.<instance identifier 1>."
 "Device.LocalAgent.Subscription.<instance identifier 2>."
 }
 }
}

5. Allow the EUT to send a GetResp.

6. Clean-up: Send a Delete message to the EUT with the following structure:

header {
 msg_id: "<msg_id>"
 msg_type: DELETE
 }
 body {
 request {
 delete {
 allow_partial: false
 obj_paths:
 "Device.LocalAgent.Subscription.<instance identifier 1>."
 "Device.LocalAgent.Subscription.<instance identifier 2>."
 }
 }
 }

7. Allow the EUT to send a DeleteResp.

Test Metrics
1. The EUT’s AddResp is valid.

2. The AddResp contains two CreatedObjectResults that each have an OperationStatus of
OperationSuccess. The OperationSuccess elements contains no parameter errors and 3
elements in the unique key map: Alias, Recipient, and ID. Alternatively, the
OperationSuccess contains 2 elements in the unique key map if the Alias parameter is
not supported: Recipient, and ID.

3. The EUT creates the Subscription objects.

4. The first Subscription object’s values match the values set in the param_settings
element.

5. The second Subscription object’s values match the values set in the param_settings
element.

© Broadband Forum. All rights reserved.

1.6 Add message with allow partial false, multiple objects with an invalid object

Purpose

The purpose of this test is to validate that the EUT properly handles an Add message when
the allow_partial element is set to false, multiple objects are attempted, and one of the
objects are invalid.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. If the EUT has a limit on the number of instances of the Subscription object, ensure
that the number of existing Subscription object instances is less than the maximum
supported.

Test Procedure
1. Send an Add message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: ADD
}

body {
 request {
 add {
 allow_partial: false
 create_objs {
 obj_path: "Device.LocalAgent.Subscription."
 param_settings {

 {
 param: "Enable"
 value: "true"}
 {
 param: "ID"
 value: "add51"}
 {
 param: "NotifType"
 value: "ValueChange"}
 {
 param: "ReferenceList"
 value: "Device.LocalAgent.SoftwareVersion"
 required: true}
 }

© Broadband Forum. All rights reserved.

 obj_path: "Device.LocalAgent.InvalidObject."
 param_settings {

 {
 param: "Enable"
 value: "true"}
 {
 param: "ID"
 value: "add52"}
 {
 param: "NotifType"
 value: "ValueChange"}
 {
 param: "ReferenceList"
 value: "Device.LocalAgent.EndpointID"
 required: true}
 }
 }
 }
 }
}

2. Allow the EUT to send an Error.

Test Metrics
1. The EUT sends an Error message.

2. The Error message contains an err_code of 7004, “Invalid arguments”, with the
param_errs element containing a single error with a param_path of
“Device.LocalAgent.InvalidObject.”, and an err_code of 7016, “Object does not exist”.

1.7 Add message with allow partial false, multiple objects, required parameters
fail in single object

Purpose

The purpose of this test is to validate that the EUT properly handles an Add message when
the allow_partial element is set to false, and at least one required parameter fails in one of
multiple objects.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

© Broadband Forum. All rights reserved.

2. If the EUT has a limit on the number of instances of the Subscription object, ensure
that the number of existing Subscription object instances is less than the maximum
supported.

Test Procedure
1. Send an Add message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: ADD
}

body {
 request {
 add {
 allow_partial: false
 create_objs {
 obj_path: "Device.LocalAgent.Subscription."
 param_settings {

 {
 param: "Enable"
 value: "true"}
 {
 param: "ID"
 value: "add61"}
 {
 param: "NotifType"
 value: "ValueChange"}
 {
 param: "ReferenceList"
 value: "Device.LocalAgent.SoftwareVersion"
 required: true}
 }

 obj_path: "Device.LocalAgent.Subscription."
 param_settings {

 {
 param: "Enable"
 value: "true"}
 {
 param: "ID"
 value: "add62"}
 {
 param: "NotifType"
 value: "ValueChange"}
 {
 param: "InvalidParameter"

© Broadband Forum. All rights reserved.

 value: "IrrelevantValue"
 required: true}
 }
 }
 }
 }
}

2. Allow the EUT to send an Error.

Test Metrics
1. The EUT sends an Error message.

2. The Error message contains an err_code of 7004, “Invalid arguments”, with the
param_errs element containing a single error with a param_path of
“Device.LocalAgent.Subscription.{i}.InvalidParameter”, and an err_code of 7010,
“Unsupported Parameter”.

1.8 Add message with allow partial true, required parameters fail, invalid value,
single object

Purpose

The purpose of this test is to validate that the EUT properly handles an Add message when
the allow_partial element is set to true, and at least one required parameter fails (with an
invalid value) in a single object.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. If the EUT has a limit on the number of instances of the Subscription object, ensure
that the number of existing Subscription object instances is less than the maximum
supported.

Test Procedure
1. Send an Add message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: ADD
}

body {
 request {
 add {

© Broadband Forum. All rights reserved.

 allow_partial: true
 create_objs {
 obj_path: "Device.LocalAgent.Subscription."
 param_settings {

 {
 param: "Enable"
 value: "InvalidValue"
 required: true}
 {
 param: "ID"
 value: "add7"}
 {
 param: "NotifType"
 value: "ValueChange"}
 {
 param: "ReferenceList"
 value: "Device.LocalAgent.SoftwareVersion"
 required: true}
 }

 }
 }
 }
}

2. Allow the EUT to send an AddResp.

Test Metrics
1. The EUT sends an AddResp message.

2. The AddResp contains a single CreatedObjectResult that has an OperationStatus that is
an element of type OperationFailure. The OperationFailure element contains an
err_code of “7017”, “Object could not be created”.

1.9 Add message with allow partial true, required parameters fail, multiple
objects

Purpose

The purpose of this test is to validate that the EUT properly handles an Add message when
the allow_partial element is set to true, and at least one required parameter fails in one of
multiple objects.

Functionality Tag

Mandatory

© Broadband Forum. All rights reserved.

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. If the EUT has a limit on the number of instances of the Subscription object, ensure
that the number of existing Subscription object instances is less than the maximum
supported.

Test Procedure
1. Send an Add message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: ADD
}

body {
 request {
 add {
 allow_partial: true
 create_objs {
 obj_path: "Device.LocalAgent.Subscription."
 param_settings {

 {
 param: "Enable"
 value: "true"}
 {
 param: "ID"
 value: "add81"}
 {
 param: "NotifType"
 value: "ValueChange"}
 {
 param: "ReferenceList"
 value: "Device.LocalAgent.SoftwareVersion"}
 }

 obj_path: "Device.LocalAgent.Subscription."
 param_settings {
 {
 param: "Enable"
 value: "true"}
 {
 param: "ID"
 value: "add81"}
 {
 param: "NotifType"
 value: "ValueChange"}

© Broadband Forum. All rights reserved.

 {
 param: "ReferenceList"
 value: "Device.LocalAgent.SoftwareVersion"}

 {
 param: "InvalidParameter"
 value: "IrrelevantValue"
 required: true}

 }

 }
 }
 }
}

2. Allow the EUT to send an AddResp.

3. Record the instance identifier of the created object as reported by the EUT.

4. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: "Device.LocalAgent.Subscription.<instance identifier>.
"
 }
 }
}

5. Allow the EUT to send a GetResp.

6. Clean-up: Send a Delete message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: DELETE
}
body {
 request {
 delete {
 allow_partial: false
 obj_paths:
 "Device.LocalAgent.Subscription.<instance identifier>."
 }

© Broadband Forum. All rights reserved.

 }
}

7. Allow the EUT to send a DeleteResp.

Test Metrics
1. The EUT sends an AddResp message.

2. The AddResp contains two CreatedObjectResults.

a. The first CreateObjectResult is an element of type OperationSuccess. The
OperationSuccess elements contains no parameter errors and 3 elements in the
unique key map: Alias, Recipient, and ID. Alternatively, the OperationSuccess
contains 2 elements in the unique key map if the Alias parameter is not
supported: Recipient, and ID.

b. The second CreateObjectResult is an element of type OperationFailure. The
OperationFailure element contains an err_code of “7017”, “Object could not be
created”.

3. The EUT creates the first Subcription object, and does not create the second
Subscription object.

4. The Subscription object’s values match the values set in the param_settings element.

1.10 Add message with unique key addressing in path

Purpose

The purpose of this test is to validate that the EUT properly handles an Add message when
the uses unique key addressing.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. If the EUT has a limit on the number of instances of the Subscription object, ensure
that the number of existing Subscription object instances is less than the maximum
supported.

3. Obtain the unique key values of the Device.LocalAgent. object that correlates with the
that equates to the source of the test USP messages.

Test Procedure
1. Send an Add message to the EUT with the following structure:

© Broadband Forum. All rights reserved.

 header {
 msg_id: "<msg_id>"
 msg_type: ADD
}

body {
 request {
 add {
 allow_partial: false
 create_objs {
 obj_path: "Device.LocalAgent.Controller.[EndpointID=="< EndpointI
D>"&&Alias=="<Alias if supported>"].BootParameter.
 param_settings {
 {
 param: "Enable"
 value: "true"}
 {
 param: "ParameterName"
 value: "Device.LocalAgent.SoftwareVersion"}
 }
 }
 }
 }
}

2. Allow the EUT to send an AddResp.

3. Record the instance identifier of the created object as reported by the EUT.

4. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: "Device.LocalAgent.Controller.<instance identifier of
Controller>.BootParameter.<instance identifier>."
 }
 }
}

5. Allow the EUT to send a GetResp.

6. Clean-up: Send a Delete message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: DELETE

© Broadband Forum. All rights reserved.

}
body {
 request {
 delete {
 allow_partial: false
 obj_paths:
 "Device.LocalAgent.Controller.<instance identifier of Controller>.B
ootParameter.<instance identifier>."
 }
 }
}

7. Allow the EUT to send a DeleteResp.

Test Metrics
1. The EUT’s sends an AddResp.

2. The AddResp contains a single CreatedObjectResult that has an OperationStatus that is
an element of type OperationSuccess. The OperationSuccess contains no parameter
errors and 2 elements in the unique key map: Alias and ParameterName. Alternatively,
the OperationSuccess contains one element in the unique key map if the Alias
parameter is not supported: ParameterName.

3. The EUT creates the BootParameter object.

4. The BootParameter object’s values match the values set in the param_settings element.

1.11 Set message with allow partial false, required parameters pass

Purpose

The purpose of this test is to validate that the EUT properly handles a Set message when
the allow_partial element is set to false, and all required parameters to be updated succeed.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least one Subscription object exists on the EUT, and the instance
identifier is known by the traffic generator.

Test Procedure
1. Send a Set message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"

© Broadband Forum. All rights reserved.

 msg_type: SET
}

body {
 request {

 set {
 allow_partial: false
 update_objs {
 obj_path: "Device.LocalAgent.Subscription.<instance identifier fr
om test setup>."

 param_settings {
 param: "NotifRetry"
 value: "<Valid Value>"
 required: true
 }
 }
 }
 }
}

2. Allow the EUT to send a SetResp.

3. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: "Device.LocalAgent.Subscription.<instance identifier f
rom test setup>.NotifRetry"
 }
 }
}

4. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a SetResp.

2. The SetResp contains a single UpdatedObjectResult that has an OperationStatus that is
an element of type OperationSuccess. The OperationSuccess contains a single
UpdateInstanceResult, with the affected_path equal to
“Device.LocalAgent.Subscription.<instance number>.”, and a single entry in the
updated_params map containing “NotifRetry” as the key and “true” as the value.

© Broadband Forum. All rights reserved.

3. The retrieved value matches the value set in the param_settings element.

1.12 Set message with allow partial true, required parameters pass

Purpose

The purpose of this test is to validate that the EUT properly handles a Set message when
the allow_partial element is set to true, and all required parameters to be updated succeed.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least one Subscription object exists on the EUT, and the instance
identifier is known by the traffic generator.

Test Procedure
1. Send a Set message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: SET
}

body {
 request {

 set {
 allow_partial: true
 update_objs {
 obj_path: "Device.LocalAgent.Subscription.<instance identifier fr
om test setup>."

 param_settings {
 param: "NotifRetry"
 value: "<Valid Value>"
 required: true
 }
 }
 }
 }
}

2. Allow the EUT to send a SetResp.

3. Send a Get message to the EUT with the following structure:

© Broadband Forum. All rights reserved.

 header {
 msg_id: "<msg_id>"
 msg_type: GET
}
 body {
 request {
 get {
 param_paths: "Device.LocalAgent.Subscription.<instance identifier
from test setup>.NotifRetry"
 }
 }
}

4. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a SetResp.

2. The SetResp contains a single UpdatedObjectResult that has an OperationStatus that is
an element of type OperationSuccess. The OperationSuccess contains a single
UpdateInstanceResult, with the affected_path equal to
“Device.LocalAgent.Subscription..”, and a single entry in the updated_params map
containing “NotifRetry” as the key and “true” as the value.

3. The retrieved value matches the value set in the param_settings element.

1.13 Set message with allow partial false, multiple objects

Purpose

The purpose of this test is to validate that the EUT properly handles a Set message when
the allow_partial element is set to false, and all required parameters to be updated succeed.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least two Subscription objects exist on the EUT, and the instance
identifiers are known by the traffic generator.

Test Procedure
1. Send a Set message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: SET

© Broadband Forum. All rights reserved.

}

body {
 request {

 set {
 allow_partial: false
 update_objs {
 obj_path: "Device.LocalAgent.Subscription.<first instance identif
ier from test setup>."

 param_settings {
 param: "NotifRetry"
 value: "<Valid Value>"
 required: true

 obj_path: "Device.LocalAgent.Subscription.<second instance identi
fier from test setup>."

 param_settings {
 param: "NotifRetry"
 value: "<Valid Value>"
 required: true}

 }
 }
 }
 }
}

2. Allow the EUT to send a SetResp.

3. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: "Device.LocalAgent.Subscription.<first instance identi
fier from test setup>.NotifRetry"
 param_paths: "Device.LocalAgent.Subscription.<second instance ident
ifier from test setup>.NotifRetry"
 }
 }
}

4. Allow the EUT to send a GetResp.

© Broadband Forum. All rights reserved.

Test Metrics
1. The EUT’s sends a SetResp.

2. The SetResp contains two UpdatedObjectResults that each have an OperationStatus
that is an element of type OperationSuccess. The OperationSuccess contains a single
UpdateInstanceResult, with the affected_path equal to
“Device.LocalAgent.Subscription.<instance number>.”, and a single entry in the
updated_params map containing “NotifRetry” as the key and “true” as the value.

3. The retrieved value matches the value set in the param_settings element for each
object.

1.14 Set message with allow partial false, required parameters fail

Purpose

The purpose of this test is to validate that the EUT properly handles a Set message when
the allow_partial element is set to false, and a required parameter fails.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least one Subscription object exists on the EUT, and the instance
identifier is known by the traffic generator.

Test Procedure
1. Send a Set message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: SET
}

body {
 request {

 set {
 allow_partial: false
 update_objs {
 obj_path: "Device.LocalAgent.Subscription.<instance identifier fr
om test setup>."

 param_settings {
 param: "InvalidParameter"
 value: "IrrelevantValue"

© Broadband Forum. All rights reserved.

 required: true
 }
 }
 }
 }
}

2. Allow the EUT to send a Error.

Test Metrics
1. The EUT’s sends an Error.

2. The Error contains err_code “7004”, “Invalid Arguments”, and a single ParamError
element. The ParameError element contains a param_path of
“Device.LocalAgent.Subscription.<instance identifier>.InvalidParameter” and an
err_code of “7010”, “Unsupported Parameter”.

1.15 Set message with allow partial false, multiple objects, required parameters
fail in single object

Purpose

The purpose of this test is to validate that the EUT properly handles a Set message when
the allow_partial element is set to false, and required parameters in one of multiple objects
fail.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least two Subscription objects exist on the EUT, and the instance
identifiers are known by the traffic generator.

Test Procedure
1. Send a Set message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: SET
}

body {
 request {

 set {
 allow_partial: false

© Broadband Forum. All rights reserved.

 update_objs {
 obj_path: "Device.LocalAgent.Subscription.<first instance identif
ier from test setup>."

 param_settings {
 param: "NotifRetry"
 value: "<Valid Value>"
 required: true

 obj_path: "Device.LocalAgent.Subscription.<second instance identi
fier from test setup>."

 param_settings {
 param: "InvalidParameter"
 value: "IrrelevantValue"
 required: true}

 }
 }
 }
 }
}

2. Allow the EUT to send an Error.

Test Metrics
1. The EUT’s sends an Error.

2. The Error contains err_code “7004”, “Invalid Arguments”, and a single ParamError
element. The ParameError element contains a param_path of
“Device.LocalAgent.Subscription.<instance identifier>.InvalidParameter” and an
err_code of “7010”, “Unsupported Parameter”.

1.16 Set message with allow partial true, required parameter fails, multiple
objects

Purpose

The purpose of this test is to validate that the EUT properly handles a Set message when
the allow_partial element is set to true, and a required parameter on one of multiple objects
fails.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

© Broadband Forum. All rights reserved.

2. Ensure that at least two Subscription objects exist on the EUT, and the instance
identifiers are known by the traffic generator.

Test Procedure
1. Send a Set message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: SET
}

body {
 request {

 set {
 allow_partial: true
 update_objs {
 obj_path: "Device.LocalAgent.Subscription.<first instance identif
ier from test setup>."

 param_settings {
 param: "NotifRetry"
 value: "<Valid Value>"
 required: true

 obj_path: "Device.LocalAgent.Subscription.<second instance identi
fier from test setup>."

 param_settings {
 param: "InvalidParameter"
 value: "IrrelevantValue"
 required: true}

 }
 }
 }
 }
}

2. Allow the EUT to send a SetResp.

3. Send a Get message to the EUT with the following structure:

header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {

© Broadband Forum. All rights reserved.

 param_paths: "Device.LocalAgent.Subscription.<first instance identifier
from test setup>.NotifRetry"
 }
 }
}

4. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a SetResp.

2. The SetResp contains two UpdatedObjectResults.

a. The first UpdatedObjectResult has an OperationStatus that is an element of
type OperationSuccess. The OperationSuccess contains a single
UpdatedInstanceResult, with the affected_path equal to
“Device.LocalAgent.Subscription.<instance number>.”, and a single entry in the
updated_params map containing “NotifRetry” as the key and “true” as the value.

b. The second UpdatedObjectResult has an OperationStatus that is an element of
type OperationFailure. The OperationFailure contains an err_code of “7020”,
“Object could not be updated”, and a single UpdatedInstanceFailure element.
The UpdatedInstanceFailure has an affected_path with a value of
“Device.LocalAgent.Subscription.<instance identifier>.”, and a single
ParameterError element.

c. The ParameterError has a param element with a value of “NotifRetry”, an
err_code of “7010”, “Unsupported parameter”

3. The retrieved value matches the value set in the param_settings element for the first
object.

1.17 Set message with allow partial true, non-required parameter fails, multiple
parameters

Purpose

The purpose of this test is to validate that the EUT properly handles a Set message when
the allow_partial element is set to true, and one of multiple non-required parameters fail.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least one Subscription object exists on the EUT, and the instance
identifier is known by the traffic generator.

© Broadband Forum. All rights reserved.

Test Procedure
1. Send a Set message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: SET
}

body {
 request {

 set {
 allow_partial: true
 update_objs {
 obj_path: "Device.LocalAgent.Subscription.<first instance
identifier from test setup>."

 param_settings {
 param: "NotifRetry"
 value: "<Valid Value>"}

 param_settings {

 param: "InvalidParameter"
 value: "IrrelevantValue"}

 }
 }
 }
 }
}

2. Allow the EUT to send a SetResp.

3. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: "Device.LocalAgent.Subscription.<first instance identi
fier from test setup>.NotifRetry"
 }
 }
}

4. Allow the EUT to send a GetResp.

© Broadband Forum. All rights reserved.

Test Metrics
1. The EUT’s sends a SetResp.

2. The SetResp contains a single UpdatedObjectResult with an OperationStatus that is an
element of type OperationSuccess. The OperationSuccess contains a single
UpdatedInstanceResult element.

a. The UpdatedInstanceResult affected_path is equal to
“Device.LocalAgent.Subscription..”.

b. The UpdatedInstanceResult has a single entry in the updated_params map
containing “NotifRetry” as the key and “true” as the value.

c. The UpdatedInstanceResult has a single ParameterError element, with the
“param” field set to “InvalidParameter”, and an err_code of “7010”,
“Unsupported parameter”.

3. The retrieved value of NotifRetry matches the value set in the param_settings element.

1.18 Set message with unique key addressing in path

Purpose

The purpose of this test is to validate that the EUT properly handles a Set message when
the uses unique key addressing.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least one Subscription object exists on the EUT, and the unique keys and
their values are known by the traffic generator.

Test Procedure
1. Send a Set message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: SET
}

body {
 request {

 set {
 allow_partial: false

© Broadband Forum. All rights reserved.

 update_objs {
 obj_path: "Device.LocalAgent.Subscription.<instance identifier fr
om test setup>."

 param_settings {
 param: "NotifRetry"
 value: "<Valid Value>"
 required: true
 }
 }
 }
 }
}

2. Allow the EUT to send a SetResp.

3. Send a Get message to the EUT with the following structure:

header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: "Device.LocalAgent.Subscription.<instance identifier from
test setup>.NotifRetry"
 }
 }
}

4. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a SetResp.

2. The SetResp contains a single UpdatedObjectResult that has an OperationStatus that is
an element of type OperationSuccess. The OperationSuccess contains a single
UpdateInstanceResult, with the affected_path equal to
“Device.LocalAgent.Subscription.<instance number>.”, and a single entry in the
updated_params map containing “NotifRetry” as the key and “true” as the value.

3. The retrieved value matches the value set in the param_settings element.

© Broadband Forum. All rights reserved.

1.19 Set message with wildcard search path, allow partial false, required
parameters pass

Purpose

The purpose of this test is to validate that the EUT properly handles a Set message when
the uses a wildcard search path and the requested updates succeed.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least two Subscription objects exist on the EUT.

Test Procedure
1. Send a Set message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: SET
}

body {
 request {

 set {
 allow_partial: false
 update_objs {
 obj_path: "Device.LocalAgent.Subscription.*."

 param_settings {
 param: "NotifRetry"
 value: "<Valid Value>"
 required: true

 }
 }
 }
 }
}

2. Allow the EUT to send a SetResp.

3. Send a Get message to the EUT with the following structure:

© Broadband Forum. All rights reserved.

 header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: "Device.LocalAgent.Subscription.<first instance identi
fier from test setup>.NotifRetry"
 param_paths: "Device.LocalAgent.Subscription.<second instance ident
ifier from test setup>.NotifRetry"
 }
 }
}

4. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a SetResp.

2. The SetResp contains two UpdatedObjectResults that each have an OperationStatus
that is an element of type OperationSuccess. The OperationSuccess contains a single
UpdateInstanceResult, with the affected_path equal to
“Device.LocalAgent.Subscription.<instance number>.”, and a single entry in the
updated_params map containing “NotifRetry” as the key and “true” as the value.

3. The retrieved value matches the value set in the param_settings element for each
object.

1.20 Set message with wildcard search path, allow partial false, required
parameters fail

Purpose

The purpose of this test is to validate that the EUT properly handles a Set message when
the uses a wildcard search path, allow_partial element is set to false, and required
parameters multiple objects fail.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least two Subscription objects exist on the EUT.

Test Procedure
1. Send a Set message to the EUT with the following structure:

© Broadband Forum. All rights reserved.

 header {
 msg_id: "<msg_id>"
 msg_type: SET
}

body {
 request {

 set {
 allow_partial: false
 update_objs {

 obj_path: "Device.LocalAgent.Subscription.*."

 param_settings {
 param: "InvalidParameter"
 value: "IrrelevantValue"
 required: true}

 }
 }
 }
 }
}

2. Allow the EUT to send an Error.

Test Metrics
1. The EUT’s sends an Error.

2. The Error contains err_code “7004”, “Invalid Arguments”, and at least two ParamError
elements. The ParameError elements contains a param_path of
“Device.LocalAgent.Subscription.<instance identifier of relevant
object>.InvalidParameter” and an err_code of “7010”, “Unsupported Parameter”.

1.21 Set message with wildcard search path, allow partial true, required
parameters fail

Purpose

The purpose of this test is to validate that the EUT properly handles a Set message when
the uses a wildcard search path, the allow_partial element is set to true, and a required
parameter on multiple objects fails.

Functionality Tag

Mandatory

© Broadband Forum. All rights reserved.

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least two Subscription objects exist on the EUT.

Test Procedure
1. Send a Set message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: SET
}

body {
 request {

 set {
 allow_partial: true
 update_objs {

 obj_path: "Device.LocalAgent.Subscription.*."

 param_settings {
 param: "InvalidParameter"
 value: "IrrelevantValue"
 required: true}

 }
 }
 }
 }
}

2. Allow the EUT to send a SetResp.

Test Metrics
1. The EUT’s sends a SetResp.

2. The SetResp contains at least two UpdatedObjectResults.

a. The UpdatedObjectResults have an OperationStatus that is an element of type
OperationFailure. The OperationFailure contains an err_code of “7020”, “Object
could not be updated”, and a single UpdatedInstanceFailure element. The
UpdatedInstanceFailure has an affected_path with a value of
“Device.LocalAgent.Subscription.<instance identifier>.”, and a single
ParameterError element. The ParameterError has a param element with a
value of “InvalidParameter”, and an err_code of “7010”, “Unsupported
parameter”

© Broadband Forum. All rights reserved.

1.22 Set message with search expression search path

Purpose

The purpose of this test is to validate that the EUT properly handles a Set message when
the uses a search path.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least one Subscription object exists on the EUT with a value for the
NotifExpiration that is greater than 0.

Test Procedure
1. Send a Set message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: SET
}

body {
 request {

 set {
 allow_partial: false
 update_objs {
 obj_path: "Device.LocalAgent.Subscription.[NotifExpiration>0]."

 param_settings {
 param: "NotifRetry"
 value: "<Valid Value>"
 required: true
 }
 }
 }
 }
}

2. Allow the EUT to send a SetResp.

3. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"

© Broadband Forum. All rights reserved.

 msg_type: GET
}
body {
 request {
 get {
 param_paths: "Device.LocalAgent.Subscription.<instance identifier f
rom test setup>.NotifRetry"
 }
 }
}

4. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a SetResp.

2. The SetResp contains a single UpdatedObjectResult that has an OperationStatus that is
an element of type OperationSuccess. The OperationSuccess contains a single
UpdateInstanceResult, with the affected_path equal to
“Device.LocalAgent.Subscription.<instance number>.”, and a single entry in the
updated_params map containing “NotifRetry” as the key and “true” as the value.

3. The retrieved value matches the value set in the param_settings element.

1.23 Set message with invalid path

Purpose

The purpose of this test is to validate that the EUT properly handles a Set message when
the requested path is invalid.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a Set message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: SET
}

body {
 request {

© Broadband Forum. All rights reserved.

 set {
 allow_partial: true
 update_objs {
 obj_path: "Device.LocalAgent.Subscription.[Recipient=="InvalidVal
ue"]."

 param_settings {
 param: "NotifRetry"
 value: "<Valid Value>"
 required: true

 }

 }
 }
 }
}

2. Allow the EUT to send a SetResp.

Test Metrics
1. The EUT’s sends a SetResp.

2. The SetResp contains one UpdatedObjectResult. UpdatedObjectResult have an
OperationStatus that is an element of type OperationFailure. The OperationFailure
contains an err_code of “7016”, “Object does not exist”.

1.24 Delete message with allow partial false, valid object instance

Purpose

The purpose of this test is to validate that the EUT properly handles a Delete message when
the allow_partial element is set to false, and the object to be deleted is valid.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least two Subscription objects exist on the EUT, and the instance
identifiers are known by the traffic generator.

Test Procedure
1. Send a Delete message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"

© Broadband Forum. All rights reserved.

 msg_type: DELETE
}
body {
 request {
 delete {
 allow_partial: false
 obj_paths {
 "Device.LocalAgent.Subscription.<instance identifier>."
 }
 }
 }
}

2. Allow the EUT to send a DeleteResp.

Test Metrics
1. The EUT’s sends a DeleteResp.

2. The DeleteResp contains a single deleted_obj_response with a requested_path equal to
“Device.LocalAgent.Subscription.<instance identifier>.” and an oper_success element,
with one affected_path element equal to the path name of the Deleted object.

1.25 Delete message with allow partial false, object instance doesn’t exist

Purpose

The purpose of this test is to validate that the EUT properly handles a Delete message when
the allow_partial element is set to false, and the object instance to be deleted does not exist.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that the traffic generator has learned any existing Subscription objects and
their instance identifiers.

Test Procedure
1. Send a Delete message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: DELETE
 }

 body {
 request {

© Broadband Forum. All rights reserved.

 delete {
 allow_partial: false
 obj_paths {
 "Device.LocalAgent.Subscription.<invalid instance
 identifier>."
 }
 }
 }
 }

2. Allow the EUT to send an Error message.

Test Metrics
1. The EUT’s sends an Error message.

2. The Error contains an err_code of 7004, “Invalid arguments”, with the param_errs
element containing a single error with a param_path of
“Device.LocalAgent.Subscription.<instance identifier>.”, and an err_code of 7016,
“Object does not exist”.

1.26 Delete message with allow partial false, invalid object

Purpose

The purpose of this test is to validate that the EUT properly handles a Delete message when
the allow_partial element is set to false, and the object to be deleted is invalid.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a Delete message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: DELETE
 }

 body {
 request {
 delete {
 allow_partial: false
 obj_paths {
 "Device.LocalAgent.InvalidObject."
 }

© Broadband Forum. All rights reserved.

 }
 }
 }

2. Allow the EUT to send an Error message.

Test Metrics
1. The EUT’s sends an Error message.

2. The Error contains an err_code of 7004, “Invalid arguments”, with the param_errs
element containing a single error with a param_path of
“Device.LocalAgent.InvalidObject.”, and an err_code of 7026, “InvalidPath”.

1.27 Delete message with allow partial false, multiple objects

Purpose

The purpose of this test is to validate that the EUT properly handles a Delete message when
the allow_partial element is set to false, with multiple valid objects.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least two Subscription objects exist on the EUT, and the instance
identifiers are known by the traffic generator.

Test Procedure
1. Send a Delete message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: DELETE
 }

 body {
 request {
 delete {
 allow_partial: false
 obj_paths {
 {
 "Device.LocalAgent.Subscription.<first instance identifier>."
 }
 {
 "Device.LocalAgent.Subscription.<second instance identifier>."
 }

© Broadband Forum. All rights reserved.

 }
 }
 }
 }

2. Allow the EUT to send a DeleteResp.

Test Metrics
1. The EUT’s sends a DeleteResp.

2. The DeleteResp contains two deleted_obj_results, each with a requested_path equal to
the obj_paths of the Delete message, and an oper_success element containing an
affected_path element equal to the path name of the deleted object.

1.28 Delete message with allow partial false, multiple objects, invalid object

Purpose

The purpose of this test is to validate that the EUT properly handles a Delete message when
the allow_partial element is set to false, and one of the objects to be deleted is invalid.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least one Subscription object exists on the EUT, and the instance
identifier is known by the traffic generator.

Test Procedure
1. Send a Delete message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: DELETE
 }

 body {
 request {
 delete {
 allow_partial: false
 obj_paths {
 {
 "Device.LocalAgent.Subscription.<instance identifier.>"
 }
 {
 "Device.LocalAgent.InvalidObject."

© Broadband Forum. All rights reserved.

 }
 }
 }
 }
 }

2. Allow the EUT to send an Error message.

Test Metrics
1. The EUT’s sends an Error message.

2. The Error contains an err_code of 7004, “Invalid arguments”, with the param_errs
element containing a single error with a param_path of
“Device.LocalAgent.InvalidObject.”, and an err_code of 7026, “InvalidPath”.

1.29 Delete message with allow partial true, object instance doesn’t exist

Purpose

The purpose of this test is to validate that the EUT properly handles a Delete message when
the allow_partial element is set to true, and the object instance to be deleted does not exist.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a Delete message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: DELETE
 }

 body {
 request {
 delete {
 allow_partial: true
 obj_paths {
 "Device.LocalAgent.Subscription.<invalid instance identifier>."
 }
 }
 }
 }

2. Allow the EUT to send a DeleteResp.

© Broadband Forum. All rights reserved.

Test Metrics
1. The EUT’s sends a DeleteResp.

2. The DeleteResp contains a single deleted_obj_result message with a requested_path of
“Device.LocalAgent.Subscription.<instance identifier>.” and an oper_failure element,
with err_code “7016”, “Object does not exist”.

1.30 Delete message with allow partial true, invalid object

Purpose

The purpose of this test is to validate that the EUT properly handles a Delete message when
the allow_partial element is set to true, and the object is not valid in the Agent’s supported
data model.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a Delete message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: DELETE
 }

 body {
 request {
 delete {
 allow_partial: true
 obj_paths {
 "Device.LocalAgent.InvalidObject."
 }
 }
 }
 }

2. Allow the EUT to send a DeleteResp.

Test Metrics
1. The EUT’s sends a DeleteResp.

2. The DeleteResp contains a single deleted_obj_result message with a requested_path of
“Device.LocalAgent.InvalidObject.” and an oper_failure element, with err_code “7026”,
“Invalid Path”.

© Broadband Forum. All rights reserved.

1.31 Delete message with allow partial true, multiple objects, invalid object

Purpose

The purpose of this test is to validate that the EUT properly handles a Delete message when
the allow_partial element is set to true, and one of multiple objects is invalid.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least one Subscription object exists on the EUT, and the instance
identifier is known by the traffic generator.

Test Procedure
1. Send a Delete message to the EUT with the following structure:
 header {
 msg_id: "<msg_id>"
 msg_type: DELETE
 }

 body {
 request {
 delete {
 allow_partial: true
 obj_paths {
 {
 "Device.LocalAgent.Subscription.<instance identifier>."
 }
 {
 "Device.LocalAgent.InvalidObject."
 }
 }
 }
 }
 }

2. Allow the EUT to send a DeleteResp.

Test Metrics
1. The EUT’s sends a DeleteResp.

2. The DeleteResp contains two deleted_obj_results elements, one with an oper_success
element, containing an affected_path element with the value
Device.LocalAgent.Subscription.<instance identifier>.“, and the other with an
oper_failure element containing an err_code of”7026“,”InvalidPath".

© Broadband Forum. All rights reserved.

1.32 Delete message with allow partial true, multiple objects, object doesn’t
exist

Purpose

The purpose of this test is to validate that the EUT properly handles a Delete message when
the allow_partial element is set to true, and one of multiple objects does not exist in the
Agent’s instantiated data model.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least one Subscription object exists on the EUT, and the instance
identifier is known by the traffic generator.

Test Procedure
1. Send a Delete message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: DELETE
 }
body {
 request {
 delete {
 allow_partial: true
 obj_paths {
 {
 "Device.LocalAgent.Subscription.<instance identifier>."
 }
 {
 "Device.LocalAgent.Subscription.<invalid instance identif
ier>."
 }
 }
 }
 }
 }

2. Allow the EUT to send a DeleteResp.

Test Metrics
1. The EUT’s sends a DeleteResp.

© Broadband Forum. All rights reserved.

2. The DeleteResp contains two deleted_obj_results elements, one with an oper_success
element, containing an affected_path element with the value
Device.LocalAgent.Subscription.<instance identifier>.“, and the other with an
oper_failure element containing an err_code of”7016“,”Object does not exist".

1.33 Delete message with unique key addressing

Purpose

The purpose of this test is to validate that the EUT properly handles a Delete message when
the uses unique key addressing.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Obtain the unique key values of the Device.LocalAgent. object that correlates with the
that equates to the source of the test USP messages.

3. Ensure that at least one Device.LocalAgent.Controller.{i}.BootParameter. object exists
on the EUT, and the instance identifier of the object is known by the traffic generator.

Test Procedure
1. Send a Delete message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: DELETE
}

body {
 request {

 delete {
 allow_partial: false
 obj_paths {
 "Device.LocalAgent.Controller.[EndpointID=="< EndpointID>"&&Alias
=="<Alias if supported>"].BootParameter.<instance identifier>."
 }
 }
 }
 }

2. Allow the EUT to send a DeleteResp.

© Broadband Forum. All rights reserved.

Test Metrics
1. The EUT’s sends a DeleteResp.

2. The DeleteResp contains a single deleted_obj_result with a requested path equal to the
path specified in the obj_path of the Delete message, containing an oper_success
element, with one affected_path element equal to the path name of the Deleted object.

3. The affected_path element uses instance number addressing.

1.34 Delete message with wildcard search path, valid objects

Purpose

The purpose of this test is to validate that the EUT properly handles a Delete message when
the uses a wildcard search to delete multiple valid objects.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least two Subscription objects exist on the EUT.

Test Procedure
1. Send a Delete message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: DELETE
}

body {
 request {

 delete {
 allow_partial: false
 obj_paths {
 "Device.LocalAgent.Subscription.*."
 }
 }
 }
 }

2. Allow the EUT to send a DeleteResp.

Test Metrics
1. The EUT’s sends a DeleteResp.

© Broadband Forum. All rights reserved.

2. The DeleteResp contains a single deleted_obj_result with a requested path equal to
“Device.LocalAgent.Subscription.*.” and an oper_success element with one or more
affected_path elements equal to the path names of the Deleted objects.

1.35 Delete message with search expression search path

Purpose

The purpose of this test is to validate that the EUT properly handles a Delete message when
the uses a search expression to delete one or more valid objects.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that the instance identifier of the object that represents the traffic generator is
known by the traffic generator.

3. Ensure that at least two Device.LocalAgent.Controller..BootParameter. objects exist on
the EUT. At least one of these BootParameter objects has a value of “false” for its
“Enable” parameter, and at least one of these BootParameter objects has a value of
“true” for its “Enable” parameter.

Test Procedure
1. Send a Delete message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: DELETE
}

body {
 request {

 set {
 allow_partial: false
 obj_paths {
 Device.LocalAgent.Controller.<instance identifier>.BootParamete
r.[Enable=="true"]
 }
 }
 }
 }

2. Allow the EUT to send a DeleteResp.

© Broadband Forum. All rights reserved.

Test Metrics
1. The EUT’s sends a DeleteResp.

2. The DeleteResp contains a single deleted_obj_results element, with a requested path
equal to “Device.LocalAgent.Controller..BootParameter.[Enable=="true"]” and
an oper_success element with the affected_path elements equal to the path names of
the successfully Deleted objects.

3. The BootParameter whose Enable parameter was equal to “false” was not deleted.

1.36 Get message with full parameter path

Purpose

The purpose of this test is to ensure the can retrieve the values of parameters in the Agent’s
Instantiated Data Model when a single full parameter path is specified.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
 }
 body {
 request {
 get {
 param_paths: "Device.LocalAgent.EndpointID"
 }
 }
 }

2. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a GetResp.

2. The GetResp contains a single req_path_results element. The requested_path_results
has no errors, and contains a single resolved_path_results element. The
resolved_path_results element contains a requested_path equal to
“Device.LocalAgent.EndpointID”, a single resolved_path equal to “Device.LocalAgent.”,

© Broadband Forum. All rights reserved.

and a single result_params element with a key of “EndpointID” and a value equal to the
EUT’s EndpointID.

1.37 Get message with multiple full parameter paths, same object

Purpose

The purpose of this test is to ensure the can retrieve the values of parameters in the Agent’s
Instantiated Data Model when multiple full parameter paths are specified within the same
object.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
 }
 body {
 request {
 get {
 param_paths: "Device.LocalAgent.EndpointID"
 param_paths: "Device.LocalAgent.SoftwareVersion"
 }
 }
 }

2. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a GetResp.

2. The GetResp contains two req_path_results elements. The requested_path_results have
no errors. Each contains a single resolved_path_results element. One
resolved_path_result element contains a requested_path equal to
“Device.LocalAgent.EndpointID”, a single resolved_path equal to “Device.LocalAgent.”,
and a single result_params element with a key of “EndpointID” and a value equal to the
EUT’s EndpointID. The other resolved_path_result element contains a requested_path
equal to “Device.LocalAgent.SoftwareVersion”, a single resolved_path equal to
“Device.LocalAgent.”, and a single result_params element with a key of
“SoftwareVersion” with a valid value.

© Broadband Forum. All rights reserved.

1.38 Get message with multiple full parameter paths, different objects

Purpose

The purpose of this test is to ensure the can retrieve the values of parameters in the Agent’s
Instantiated Data Model when multiple full parameter paths are specified within multiple
objects.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least one Subscription object exists on the EUT, and its instance
identifier is known by the traffic generator.

Test Procedure
1. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
 }
 body {
 request {
 get {
 param_paths: "Device.LocalAgent.EndpointID"
 param_paths: "Device.LocalAgent.Subscription.<instance identifier>.
Enable"
 }
 }
 }

2. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a GetResp.

2. The GetResp contains two req_path_results elements. The requested_path_results have
no errors. Each contains a single resolved_path_results element. One
resolved_path_result element contains a requested_path equal to
“Device.LocalAgent.EndpointID”, a single resolved_path equal to “Device.LocalAgent.”,
and a single result_params element with a key of “EndpointID” and a value equal to the
EUT’s EndpointID. The other resolved_path_result element contains a requested_path
equal to “Device.LocalAgent.Subscription..Enable”, a single resolved_path equal to

© Broadband Forum. All rights reserved.

“Device.LocalAgent.Subscription..”, and a single result_params element with a key of
“Enable” with a valid value.

1.39 Get message with object path

Purpose

The purpose of this test is to ensure the can retrieve the values of parameters in the Agent’s
Instantiated Data Model when an object path is specified.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
 }
 body {
 request {
 get {
 param_paths: "Device.LocalAgent."
 }
 }
 }

2. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a GetResp.

2. The GetResp contains a single req_path_results element. The requested_path_results
has no errors, has a requested_path equal to “Device.LocalAgent.”, and a set of
resolved_path_results elements. One containins a resolved_path of
“Device.LocalAgent.”, and a number result_params elements contain keys and values of
the parameters of “Device.LocalAgent.”. Additional resolved_path_results exist for each
of the sub-objects of Device.LocalAgent., with result_params containing the keys and
values of each sub-object’s parameters.

3. The keys of all result_params elements are relative paths.

© Broadband Forum. All rights reserved.

1.40 Get message with object instance path

Purpose

The purpose of this test is to ensure the can retrieve the values of parameters in the Agent’s
Instantiated Data Model when a path to an object instance is specified.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least one Subscription object exists on the EUT, and its instance
identifier is known by the traffic generator.

Test Procedure
1. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
 }
 body {
 request {
 get {
 param_paths: "Device.LocalAgent.Subscription.<instance identifier>.
"
 }
 }
 }

2. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a GetResp.

2. The GetResp contains a single req_path_results element. The requested_path_results
has no errors, has a requested_path equal to “Device.LocalAgent.Subscription..”, and a
single resolved_path_results element, with a resolved_path of
“Device.LocalAgent.Subscription..”, and a number result_params elements contain keys
and values of the parameters of “Device.LocalAgent.Subscription..”.

3. The keys of all result_params elements are relative paths.

© Broadband Forum. All rights reserved.

1.41 Get message with invalid parameter

Purpose

The purpose of this test is to ensure the can retrieve the values of parameters in the Agent’s
Instantiated Data Model when a single invalid parameter is requested.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
 }
 body {
 request {
 get {
 param_paths: "Device.LocalAgent.InvalidParameter"
 }
 }
 }

2. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a GetResp.

2. The GetResp contains a single req_path_results element. The requested_path_results
has a requested_path equal to “Device.LocalAgent.InvalidParameter”, and an err_code
of “7010”, “Unsupported Parameter”.

1.42 Get message with invalid parameter and valid parameter

Purpose

The purpose of this test is to ensure the can retrieve the values of parameters in the Agent’s
Instantiated Data Model when both a valid and invalid parameter are requested.

Functionality Tag

Mandatory

© Broadband Forum. All rights reserved.

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
 }
 body {
 request {
 get {
 param_paths: "Device.LocalAgent.EndpointID"
 param_paths: "Device.LocalAgent.InvalidParameter"
 }
 }
 }

2. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a GetResp.

2. The GetResp contains two req_path_results elements. One requested_path_results has
no errors, and contains a single resolved_path_results element. The
resolved_path_results element contains a requested_path equal to
“Device.LocalAgent.EndpointID”, a single resolved_path equal to “Device.LocalAgent.”,
and a single result_params element with a key of “EndpointID” and a value equal to the
EUT’s EndpointID. The other requested_path_results has a requested_path equal to
“Device.LocalAgent.InvalidParameter”, and an err_code of “7010”, “Unsupported
Parameter”.

1.43 Get message using unique key addressing

Purpose

The purpose of this test is to ensure the can retrieve the values of parameters in the Agent’s
Instantiated Data Model when the requested path uses unique key addressing.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

© Broadband Forum. All rights reserved.

2. Ensure that at least one Subscription object exists on the EUT, and the unique keys and
their values are known by the traffic generator.

Test Procedure
1. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
 }
 body {
 request {
 get {
 param_paths: "Device.LocalAgent.Subscription.<unique key identifier
>.Enable"
 }
 }
 }

2. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a GetResp.

2. The GetResp contains a single req_path_results element. The requested_path_results
has no errors, has a requested_path equal to “Device.LocalAgent.Subscription..Enable”,
and a single resolved_path_results element, with a resolved_path of
“Device.LocalAgent.Subscription..”, and a result_params element contain with a key of
“Enable” and a valid value.

1.44 Get message using wildcard search path on full parameter

Purpose

The purpose of this test is to ensure the can retrieve the values of parameters in the Agent’s
Instantiated Data Model when the requested path uses a wildcard to retrieve a single
parameter from multiple objects.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least two Subscription objects exist on the EUT.

Test Procedure
1. Send a Get message to the EUT with the following structure:

© Broadband Forum. All rights reserved.

 header {
 msg_id: "<msg_id>"
 msg_type: GET
 }
 body {
 request {
 get {
 param_paths: "Device.LocalAgent.Subscription.*.Enable"
 }
 }
 }

2. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a GetResp.

2. The GetResp contains a single req_path_results element. The requested_path_results
has no errors, has a requested_path equal to
“Device.LocalAgent.Subscription.*.Enable”, and at least two resolved_path_results
elements, each with a resolved_path of “Device.LocalAgent.Subscription..”, and a
result_params element contain with a key of “Enable” and a valid value.

1.45 Get message using wildcard search path on object path

Purpose

The purpose of this test is to ensure the can retrieve the values of parameters in the Agent’s
Instantiated Data Model when the requested path uses a wildcard to retrieve all
parameters from multiple object instances.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least two Subscription objects exist on the EUT.

Test Procedure
1. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
 }
 body {
 request {

© Broadband Forum. All rights reserved.

 get {
 param_paths: "Device.LocalAgent.Subscription.*."
 }
 }
 }

2. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a GetResp.

2. The GetResp contains a single req_path_results element. The requested_path_results
has no errors, has a requested_path equal to “Device.LocalAgent.Subscription.*.”, and a
set of resolved_path_results elements. Each containins a resolved_path of
“Device.LocalAgent.Subscription.<instance identifier>.”, and a number of
result_params elements containing keys and values of the parameters of each
Subscription object.

3. The keys of all result_params elements are relative paths.

1.46 Get message using search expression search path (equivalence)

Purpose

The purpose of this test is to ensure the can retrieve the values of parameters in the Agent’s
Instantiated Data Model when the requested path uses a search path to retrieve objects
that that parameters that match a particular value.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least two Subscription objects exist on the EUT. At least one of these
Subscription objects should have a value of “true” for its Enable parameter, and at
least one should have a value of “false” for its Enable parameter.

Test Procedure
1. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
 }
 body {
 request {
 get {

© Broadband Forum. All rights reserved.

 param_paths: "Device.LocalAgent.Subscription.[Enable=="true"]."
 }
 }
 }

2. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a GetResp.

2. The GetResp contains a single req_path_results element. The requested_path_results
has no errors, has a requested_path equal to
“Device.LocalAgent.Subscription.[Enable=="true"].”, and a set of resolved_path_results
elements. Each containins a resolved_path of
“Device.LocalAgent.Subscription.<instance identifier>.”, and a number of
result_params elements containing keys and values of the parameters of each
Subscription object where the Enable parameter is “true”.

3. The keys of all result_params elements are relative paths.

4. The EUT does not return any parameters from Subscription objects whose Enable
parameter is “false”.

1.47 Get message using search expression search path (non-equivelance)

Purpose

The purpose of this test is to ensure the can retrieve the values of parameters in the Agent’s
Instantiated Data Model when the requested path uses a search path to retrieve objects
that that parameters that do not match a particular value.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least two Subscription objects exist on the EUT. At least one of these
Subscription objects should have a value of “true” for its Enable parameter, and at
least one should have a value of “false” for its Enable parameter.

Test Procedure
1. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
 }

© Broadband Forum. All rights reserved.

 body {
 request {
 get {
 param_paths: "Device.LocalAgent.Subscription.[Enable!="true"]."
 }
 }
 }

2. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a GetResp.

2. The GetResp contains a single req_path_results element. The requested_path_results
has no errors, has a requested_path equal to
“Device.LocalAgent.Subscription.[Enable=="true"].”, and a set of resolved_path_results
elements. Each containins a resolved_path of
“Device.LocalAgent.Subscription.<instance identifier>.”, and a number of
result_params elements containing keys and values of the parameters of each
Subscription object where the Enable parameter is “true”.

3. The keys of all result_params elements are relative paths.

4. The EUT does not return any parameters from Subscription objects whose Enable
parameter is “false”.

1.48 Get message using search expression search path (exclusive greater
comparison)

Purpose

The purpose of this test is to ensure the can retrieve the values of parameters in the Agent’s
Instantiated Data Model when the requested path uses a search path to retrieve objects
that that parameters that are greater than a particular value.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least two Subscription objects exist on the EUT. At least one of these
Subscription objects should have a value of “10” for its NotifExpiration parameter, and
at least one with a value of “20” for its NotifExpiration parameter.

Test Procedure
1. Send a Get message to the EUT with the following structure:

© Broadband Forum. All rights reserved.

 header {
 msg_id: "<msg_id>"
 msg_type: GET
 }
 body {
 request {
 get {
 param_paths: "Device.LocalAgent.Subscription.[NotifExpiration>10]."
 }
 }
 }

2. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a GetResp.

2. The GetResp contains a single req_path_results element. The requested_path_results
has no errors, has a requested_path equal to
“Device.LocalAgent.Subscription.[NotifExpiration>10].”, and a set of
resolved_path_results elements. Each containins a resolved_path of
“Device.LocalAgent.Subscription.<instance identifier>.”, and a number of
result_params elements containing keys and values of the parameters of each
Subscription object where the NotifExpiration parameter is greater than 10.

3. The keys of all result_params elements are relative paths.

4. The EUT does not return any parameters from Subscription objects whose
NotifExpiration parameter is equal to or less than 10.

1.49 Get message using search expression search path (exclusive lesser
comparison)

Purpose

The purpose of this test is to ensure the can retrieve the values of parameters in the Agent’s
Instantiated Data Model when the requested path uses a search path to retrieve objects
that that parameters that are less than a particular value.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

© Broadband Forum. All rights reserved.

2. Ensure that at least two Subscription objects exist on the EUT. At least one of these
Subscription objects should have a value of “10” for its NotifExpiration parameter, and
at least one with a value of “5” for its NotifExpiration parameter.

Test Procedure
1. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
 }
 body {
 request {
 get {
 param_paths: "Device.LocalAgent.Subscription.[NotifExpiration<10]."
 }
 }
 }

2. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a GetResp.

2. The GetResp contains a single req_path_results element. The requested_path_results
has no errors, has a requested_path equal to
“Device.LocalAgent.Subscription.[NotifExpiration<10].”, and a set of
resolved_path_results elements. Each containins a resolved_path of
“Device.LocalAgent.Subscription.<instance identifier>.”, and a number result_params
elements contain keys and values of the parameters of each Subscription object where
the NotifExpiration parameter is less than 10.

3. The keys of all result_params elements are relative paths.

4. The EUT does not return any parameters from Subscription objects whose
NotifExpiration parameter is equal to or greater than 10.

1.50 Get message using search expression search path (inclusive greater
comparison)

Purpose

The purpose of this test is to ensure the can retrieve the values of parameters in the Agent’s
Instantiated Data Model when the requested path uses a search path to retrieve objects
that that parameters that are greater than or equal to a particular value.

Functionality Tag

Mandatory

© Broadband Forum. All rights reserved.

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least two Subscription objects exist on the EUT. At least one of these
Subscription objects should have a value of “10” for its NotifExpiration parameter, and
at least one with a value of “20” for its NotifExpiration parameter.

Test Procedure
1. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
 }
 body {
 request {
 get {
 param_paths: "Device.LocalAgent.Subscription.[NotifExpiration>=10].
"
 }
 }
 }

2. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a GetResp.

2. The GetResp contains a single req_path_results element. The requested_path_results
has no errors, has a requested_path equal to
“Device.LocalAgent.Subscription.[NotifExpiration>=10].”, and a set of
resolved_path_results elements. Each containins a resolved_path of
“Device.LocalAgent.Subscription.<instance identifier>.”, and a number of
result_params elements containing keys and values of the parameters of each
Subscription object where the NotifExpiration parameter is greater than or equal to
10.

3. The keys of all result_params elements are relative paths.

4. The EUT does not return any parameters from Subscription objects whose
NotifExpiration parameter is less than 10.

© Broadband Forum. All rights reserved.

1.51 Get message using search expression search path (inclusive lesser
comparison)

Purpose

The purpose of this test is to ensure the can retrieve the values of parameters in the Agent’s
Instantiated Data Model when the requested path uses a search path to retrieve objects
that that parameters that are less than or equal to a particular value.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least two Subscription objects exist on the EUT. At least one of these
Subscription objects should have a value of “10” for its NotifExpiration parameter, and
at least one with a value of “5” for its NotifExpiration parameter.

Test Procedure
1. Send a Get message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET
 }
 body {
 request {
 get {
 param_paths: "Device.LocalAgent.Subscription.[NotifExpiration<=10].
"
 }
 }
 }

2. Allow the EUT to send a GetResp.

Test Metrics
1. The EUT’s sends a GetResp.

2. The GetResp contains a single req_path_results element. The requested_path_results
has no errors, has a requested_path equal to
“Device.LocalAgent.Subscription.[NotifExpiration<=10].”, and a set of
resolved_path_results elements. Each containins a resolved_path of
“Device.LocalAgent.Subscription.<instance identifier>.”, and a number of
result_params elements containing keys and values of the parameters of each
Subscription object where the NotifExpiration parameter is less than or equal to 10.

© Broadband Forum. All rights reserved.

3. The keys of all result_params elements are relative paths.

4. The EUT does not return any parameters from Subscription objects whose
NotifExpiration parameter is greater than 10.

1.52 Notify - Subscription creation using Value Change

Purpose

The purpose of this test is to ensure that the Agent will create and acknowledge
Subscriptions requested by the , and notifies the when the conditions of the subscription
are triggered. This test uses the ValueChange event to exercise these functions, validating
the behavior of ValueChange in the process.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that the traffic generator has learned the instance identifier of the
Device.LocalAgent.Controller. object that represents the Controller simulated by the
traffic generator.

3. Set the Device.LocalAgent.Controller..ProvisioningCode to an arbitrary value that is
not “TestValue52”.

Test Procedure
1. Send an Add message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: ADD
}

body {
 request {
 add {
 allow_partial: false
 create_objs {
 obj_path: "Device.LocalAgent.Subscription."
 param_settings {

 {
 param: "Enable"
 value: "true"}
 {
 param: "ID"

© Broadband Forum. All rights reserved.

 value: "notify52"}
 {
 param: "NotifType"
 value: "ValueChange"}
 {
 param: "ReferenceList"
 value: "Device.LocalAgent.Controller.<instance identifier>.Pr
ovisioningCode"
 required: true}

 {
 param: "NotifRetry"
 value: "True"}
 }
 }
 }
 }
}

2. Allow the EUT to send an AddResp

3. Send a Set message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: SET
}
body {
 request {
 set {
 allow_partial: false
 update_objs {
 obj_path: "Device.LocalAgent.Controller.<instance identifier>."
 param_settings {
 param: "ProvisioningCode"
 value: "TestValue52"
 required: true}
 }
 }
 }
 }
}

4. Allow the EUT to send a Notify message.

5. Send a NotifyResp to the EUT.

Test Metrics
1. The EUT sends a successful AddResp.

© Broadband Forum. All rights reserved.

2. The EUT sends a Notify message with a subscription_id field equal to “Notify52”, and
an event element of value_change with a param_path of
“Device.LocalAgent.Controller..ProvisioningCode” and a param_value of “TestValue52”.

1.53 Notify - Subscription Deletion Using Value Change

Purpose

The purpose of this test is to ensure that the Agent will remove and terminate a
Subscription when the uses the Delete message.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that the traffic generator has learned the instance identifier of the
Device.LocalAgent.Controller. object that represents the Controller simulated by the
traffic generator.

3. Set the Device.LocalAgent.Controller..ProvisioningCode to an arbitrary value that is
not “TestValue53”.

Test Procedure
1. Send an Add message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: ADD
}
body {
 request {
 add {
 allow_partial: false
 create_objs {
 obj_path: "Device.LocalAgent.Subscription."
 param_settings {
 {
 param: "Enable"
 value: "true"}
 {
 param: "ID"
 value: "notify53"}
 {
 param: "NotifType"
 value: "ValueChange"}
 {

© Broadband Forum. All rights reserved.

 param: "ReferenceList"
 value: "Device.LocalAgent.Controller.<instance identifier>.Pr
ovisioningCode"
 required: true}
 {
 param: "NotifRetry"
 value: "True"}
 }
 }
 }
 }
}

2. Allow the EUT to send an AddResp, and store the instance identifier of the
Subscription object.

3. Send a Set message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: SET
}

body {
 request {

 set {
 allow_partial: false
 update_objs {

 obj_path: "Device.LocalAgent.Controller.<instance identifier>."

 param_settings {
 param: "ProvisioningCode"
 value: "TestValue53"
 required: true}

 }
 }
 }
 }
}

4. Allow the EUT to send a Notify message.

5. Send a NotifyResp to the EUT.

6. Send a Delete message with the following structure:

© Broadband Forum. All rights reserved.

 header {
 msg_id: "<msg_id>"
 msg_type: DELETE
}

body {
 request {

 set {
 allow_partial: false
 obj_paths {
 "Device.LocalAgent.Subscription.<instance identifier>."
 }
 }
 }
 }

7. Allow the EUT to send a DeleteResp.

8. Repeat step 3, changing the value of ProvisioningCode to “notify53-2”.

9. Wait 20 seconds.

Test Metrics
1. The EUT sends a successful DeleteResp.

2. The EUT does not send a Notify message based on the activity in the ProvisioningCode
parameter.

1.54 Notification Retry using Value Change

Purpose

The purpose of this test is to ensure that the Agent will attempt to resend Notify messages
when the NotifRetry parameter in a Subscription object is set to true and the does not send
a NotifyResp.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that the traffic generator has learned the instance identifier of the
Device.LocalAgent.Controller. object that represents the Controller simulated by the
traffic generator.

© Broadband Forum. All rights reserved.

3. Set the Device.LocalAgent.Controller.<instance identifier>.ProvisioningCode to an
arbitrary value that is not “TestValue54”.

4. Ensure that the Device.LocalAgent.Controller.<instance
identifier>.USPNotifRetryMinimumWaitInterval is set to its default value (5).

Test Procedure
1. Send an Add message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: ADD
}

body {
 request {
 add {
 allow_partial: false
 create_objs {
 obj_path: "Device.LocalAgent.Subscription."
 param_settings {

 {
 param: "Enable"
 value: "true"}
 {
 param: "ID"
 value: "notify54"}
 {
 param: "NotifType"
 value: "ValueChange"}
 {
 param: "ReferenceList"
 value: "Device.LocalAgent.Controller.<instance identifier>.Pr
ovisioningCode"
 required: true}

 {
 param: "NotifRetry"
 value: "True"}
 }
 }
 }
 }
}

2. Allow the EUT to send an AddResp

3. Send a Set message to the EUT with the following structure:

© Broadband Forum. All rights reserved.

 header {
 msg_id: "<msg_id>"
 msg_type: SET
}

body {
 request {

 set {
 allow_partial: false
 update_objs {

 obj_path: "Device.LocalAgent.Controller.<instance identifier>."

 param_settings {
 param: "ProvisioningCode"
 value: "TestValue54"
 required: true}

 }
 }
 }
 }
}

4. Allow the EUT to send a Notify message.

5. Do not send a NotifyResp to the EUT.

6. Wait 10 seconds to allow the EUT to send a Notify message.

7. Do not send a NotifyResp to the EUT.

8. Wait 20 seconds to allow the EUT to send a Notify message.

9. Send a NotifyResp to the EUT.

Test Metrics
1. The EUT retries the Notify message.

2. The first retry occurs within 5-10 seconds. The second retry occurs within 10-20
seconds.

© Broadband Forum. All rights reserved.

1.55 Subscription Expiration using Value Change

Purpose

The purpose of this test is to ensure that the Agent removes a Subscription from the
Subscription table after its TimeToLive has expired.

Functionality Tag

Conditionally Mandatory (Supports TimeToLive in Device.LocalAgent.Subscription.)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that the traffic generator has learned the instance identifier of the
Device.LocalAgent.Controller. object that represents the Controller simulated by the
traffic generator.

3. Set the Device.LocalAgent.Controller.<instance identifier>.ProvisioningCode to an
arbitrary value that is not “TestValue55”.

Test Procedure
1. Send an Add message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: ADD
}

body {
 request {
 add {
 allow_partial: false
 create_objs {
 obj_path: "Device.LocalAgent.Subscription."
 param_settings {

 {
 param: "Enable"
 value: "true"}
 {
 param: "ID"
 value: "notify55"}
 {
 param: "NotifType"
 value: "ValueChange"}
 {
 param: "ReferenceList"
 value: "Device.LocalAgent.Controller.<instance identifier>.Pr

© Broadband Forum. All rights reserved.

ovisioningCode"
 required: true}

 {
 param: "NotifRetry"
 value: "True"}

 {
 param: "TimeToLive"
 value: "20"}
 }
 }
 }
 }
}

2. Allow the EUT to send an AddResp

3. Send a Set message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: SET
}
body {
 request {
 set {
 allow_partial: false
 update_objs {
 obj_path: "Device.LocalAgent.Controller.<instance identifier>."
 param_settings {
 param: "ProvisioningCode"
 value: "TestValue55"
 required: true}
 }
 }
 }
 }
}

4. Allow the EUT to send a Notify message.

5. Send a NotifyResp to the EUT.

6. Wait 20 seconds.

7. Send a GetInstances message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: GET_INSTANCES

© Broadband Forum. All rights reserved.

 }
body {
 request {
 get_instances {
 obj_paths: "Device.LocalAgent.Subscription."
 }
 }
 }

8. Allow the EUT to send a GetInstancesResponse.

9. Repeat step 3 with a value of “TestValue55-2”.

10. Wait 10 seconds.

Test Metrics
1. The EUT sends a Notify message after step 3.

2. The GetInstancesReponse does not list the instance of the Subscription object created
in step 1.

3. The EUT does not send a Notify message after step 9.

1.56 Notification Retry Expiration using Value Change

Purpose

The purpose of this test is to ensure that the Agent will cease attempts to retry Notify
messages after an amount of time specified in value of the NotifExpiration parameter in the
Subscription object has passed.

Functionality Tag

Conditional Mandatory (supports Subscription.{i}.NotifExpiration parameter).

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that the traffic generator has learned the instance identifier of the
Device.LocalAgent.Controller. object that represents the Controller simulated by the
traffic generator.

3. Set the Device.LocalAgent.Controller.<instance identifier>.ProvisioningCode to an
arbitrary value that is not “TestValue56”.

4. Ensure that the Device.LocalAgent.Controller.<instance
identifier>.USPNotifRetryMinimumWaitInterval is set to its default value (5).

Test Procedure
1. Send an Add message to the EUT with the following structure:

© Broadband Forum. All rights reserved.

 header {
 msg_id: "<msg_id>"
 msg_type: ADD
}

body {
 request {
 add {
 allow_partial: false
 create_objs {
 obj_path: "Device.LocalAgent.Subscription."
 param_settings {

 {
 param: "Enable"
 value: "true"}
 {
 param: "ID"
 value: "notify56"}
 {
 param: "NotifType"
 value: "ValueChange"}
 {
 param: "ReferenceList"
 value: "Device.LocalAgent.Controller.<instance identifier>.Pr
ovisioningCode"
 required: true}

 {
 param: "NotifRetry"
 value: "True"}

 {
 param: "NotifExpiration"
 value: "20"}
 }
 }
 }
 }
}

2. Allow the EUT to send an AddResp

3. Send a Set message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: SET
}

© Broadband Forum. All rights reserved.

body {
 request {
 set {
 allow_partial: false
 update_objs {
 obj_path: "Device.LocalAgent.Controller.<instance identifier>."
 param_settings {
 param: "ProvisioningCode"
 value: "TestValue56"
 required: true}
 }
 }
 }
 }
}

4. Allow the EUT to send a Notify message.

5. Do not send a NotifyResp to the EUT.

6. Wait 10 seconds to allow the EUT to send a Notify message.

7. Do not send a NotifyResp to the EUT.

8. Wait 20 seconds to allow the EUT to send a Notify message.

9. Do not send a Notify Response to the EUT.

10. Wait 30 seconds.

Test Metrics
1. The EUT retries the Notify message within 20 seconds.

2. The EUT does not retry the Notify message after 20 seconds.

1.57 ObjectCreation Notification

Purpose

The purpose of this test is to ensure that the Agent will send a Notify message to the when
the is Subscribed to the ObjectCreation event.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

© Broadband Forum. All rights reserved.

Test Procedure
1. Send an Add message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: ADD
}

body {
 request {
 add {
 allow_partial: false
 create_objs {
 obj_path: "Device.LocalAgent.Subscription."
 param_settings {

 {
 param: "Enable"
 value: "true"}
 {
 param: "ID"
 value: "notify57"}
 {
 param: "NotifType"
 value: "ObjectCreation"}
 {
 param: "ReferenceList"
 value: "Device.LocalAgent.Subscription."
 required: true}

 {
 param: "NotifRetry"
 value: "True"}
 }
 }
 }
 }
}

2. Allow the EUT to send an AddResp

3. Send an Add message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: ADD
}

body {
 request {

© Broadband Forum. All rights reserved.

 add {
 allow_partial: false
 create_objs {
 obj_path: "Device.LocalAgent.Subscription."
 param_settings {

 {
 param: "Enable"
 value: "true"}
 {
 param: "ID"
 value: "notify57-2"}
 {
 param: "NotifType"
 value: "ValueChange"}
 {
 param: "ReferenceList"
 value: "Device.LocalAgent.Controller.<instance identifier>.Pr
ovisioningCode"
 required: true}

 {
 param: "NotifRetry"
 value: "True"}
 }
 }
 }
 }
}

4. Allow the EUT to send an AddResp

5. Allow the EUT to send a Notify message.

6. Send a NotifyResp to the EUT.

Test Metrics
1. The EUT sends a successful AddResp.

2. The EUT sends a Notify message with a subscription_id field equal to “Notify57”, and
an event element of obj_creation with a obj_path of
“Device.LocalAgent.Subscription.<instance number>.” and a map element of
unique_keys with values of “ID,”Notify57-2" and
“Recipient, Device.LocalAgent.Controller.<instance identifier>.”.

© Broadband Forum. All rights reserved.

1.58 ObjectDeletion Notification

Purpose

The purpose of this test is to ensure that the Agent will send a Notify message to the when
the is Subscribed to the ObjectDeletion event.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure that at least one Subscription object exists on the EUT, and the unique keys and
their values are known by the traffic generator.

Test Procedure
1. Send an Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: ADD
}

body {
 request {
 add {
 allow_partial: false
 create_objs {
 obj_path: "Device.LocalAgent.Subscription."
 param_settings {

 {
 param: "Enable"
 value: "true"}
 {
 param: "ID"
 value: "notify58"}
 {
 param: "NotifType"
 value: "ObjectDeletion"}
 {
 param: "ReferenceList"
 value: "Device.LocalAgent.Subscription."
 required: true}

 {
 param: "NotifRetry"

© Broadband Forum. All rights reserved.

 value: "True"}
 }
 }
 }
 }
}

2. Allow the EUT to send an AddResp

3. Send a Delete message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: DELETE
}

body {
 request {

 delete {
 allow_partial: false
 obj_paths {
 "Device.LocalAgent.Subscription.<instance identifier from test se
tup 2>."
 }
 }
 }
 }

4. Allow the EUT to send a DeleteResp

5. Allow the EUT to send a Notify message.

6. Send a NotifyResp to the EUT.

Test Metrics
1. The EUT sends a successful AddResp.

2. The EUT sends a Notify message with a subscription_id field equal to “Notify58”, and
an event element of obj_deletion with a obj_path of
“Device.LocalAgent.Subscription.<instance number>.”

1.59 Event Notification using Periodic!

Purpose

The purpose of this test is to ensure that the Agent will send a Notify message to the when
the is Subscribed to an Event notification that correlates with an event defined in its
supported data model.

© Broadband Forum. All rights reserved.

Functionality Tag

Conditional Mandatory (supports Controller:1 profile and
Device.LocalAgent.Controller.{i}.PeriodicNotifTime parameter)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a Set message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: SET
}
body {
 request {
 set {
 allow_partial: true
 update_objs: [
 {
 obj_path: Device.LocalAgent.Controller.<Controller ID>.
 param_settings: [
 {
 param: PeriodicNotifInterval
 value: 60
 },
 {
 param: PeriodicNotifTime
 value: "2019-01-01T00:00:00Z"
 }
]
 }
]
 }
 }
}

2. Send an Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: ADD
}
body {
 request {
 add {
 allow_partial: true
 create_objs: [
 {

© Broadband Forum. All rights reserved.

 obj_path: Device.LocalAgent.Subscription.
 param_settings: [
 {
 param: Enable
 value: true
 },
 {
 param: ID
 value: "sub-103"
 },
 {
 param: NotifType
 value: Event
 },
 {
 param: ReferenceList
 value: Device.LocalAgent.Periodic!
 }
]
 }
]
 }
 }
}

3. Wait for a Notification from the EUT.
4. Wait for a Notification from the EUT.

Test Metrics
1. The EUT sends a SetResponse with an oper_success after step 1.
2. The EUT sends an AddResponse with an oper_success after step 2.
3. The EUT sends a Notification with an Periodic! event element.
4. A second Periodic event is sent by the EUT 60 (+/- 4) seconds after the first.

1.60 OnBoardRequest Notification

Purpose

The purpose of this test is to ensure that the Agent will send a Notify message to the when
the initiates a SendOnBoardRequest() operation.

Functionality Tag

Conditional Mandatory (supports Device.LocalAgent.Controller.{i}.SendOnBoardRequest()
command)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

© Broadband Forum. All rights reserved.

Test Procedure
1. Send an Operate message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: OPERATE
}

body {
 request {
 operate {
 command: "Device.LocalAgent.Controller.<instance identifier of traf
fic generator>.SendOnBoardRequest()"
 command_key: "test60"
 send_resp: false
 }
 }
}

2. Allow the EUT to send a Notify message.

3. Send a NotifyResp to the EUT.

Test Metrics
1. The EUT sends a Notify message with (at minimum) a subscription_id field equal to

“Notify60”, and an event element of on_board_req with a obj_path of
“Device.LocalAgent.Controller.<instance identifier of traffic generator>.”, and
appropriate values for the oui, product_class, serial_number, and
agent_supported_protocol_versions fields.

1.61 Operate message using Reboot() with send_resp true

Purpose

The purpose of this test is to ensure that the Agent will correctly process an Operate
message using the Reboot() operation as a trigger when send_resp is true.

Functionality Tag

Conditional Mandatory (supports Reboot:1 or any other command)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send an Operate message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"

© Broadband Forum. All rights reserved.

 msg_type: OPERATE
}

body {
 request {
 operate {
 command: "Device.Reboot()"
 command_key: "test61"
 send_resp: true
 }
 }
}

2. Allow the EUT to send an OperateResp

3. Allow the EUT to reboot.

Test Metrics
1. The EUT sends an OperateResp message with a single operation_results element

containing an executed_command of “Device.Reboot()” and a req_output_args element
containing an empty output_args element.

2. The EUT reboots and resumes connectivity with the test system.

1.62 Operate message using Reboot() with send_resp false

Purpose

The purpose of this test is to ensure that the Agent will correctly process an Operate
message using the Reboot() operation as a trigger when send_resp is false.

Functionality Tag

Conditional Mandatory (supports Reboot:1 or any other command)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send an Operate message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: OPERATE
}

body {
 request {
 operate {

© Broadband Forum. All rights reserved.

 command: "Device.Reboot()"
 command_key: "test62"
 send_resp: false
 }
 }
}

2. Allow the EUT to reboot.

Test Metrics
1. The EUT reboots and resumes connectivity with the test system.

1.63 Operate message using input arguments

Purpose

The purpose of this test is to ensure that the Agent will correctly process an Operate
message with input arguments.

Functionality Tag

Conditional Mandatory (supports Device.LocalAgent.Controller.{i}.ScheduleTimer()
command or at least one operation that contains input arguments)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure that a Subscription object exists on the EUT, subscribed to the Timer! event.

Test Procedure
1. Send an Operate message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: OPERATE
}

body {
 request {
 operate {
 command: "Device.LocalAgent.Controller.<Controller instance>.Sche
duleTimer()"
 command_key: "test63"
 send_resp: true
 input_args {
 "DelaySeconds": "30"
 }
 }
 }
}

© Broadband Forum. All rights reserved.

2. Allow the EUT to send a Timer! event.

Test Metrics
1. The EUT sends an OperateResp message with a single operation_results element

containing an executed_command of “Device.LocalAgent.Controller..ScheduleTimer()”
and a req_output_args element containing an empty output_args element.

2. The EUT sends a Notify message containing a Event message with obj_path of
“Device.LocalAgent.Controller..ScheduleTimer()”.

1.64 Asynchronous operation with send_resp true

Purpose

The purpose of this test is to ensure that the Agent will correctly process an Operate
message where the operation is asynchronous and send_resp is set to true.

Functionality Tag

Conditional Mandatory (supports the TraceRoute:1 profile or at least one other
asynchronous operation)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure that a Subscription object exists on the EUT that is subscribed to the

OperationComplete notification for TraceRoute().

Test Procedure
1. Send an Operate message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: OPERATE
}

body {
 request {
 operate {
 command: "Device.IP.Diagnostics.TraceRoute()"
 command_key: "test64"
 send_resp: "true"
 input_args {
 "Host": <remote host IP>
 }
 }
 }
}

© Broadband Forum. All rights reserved.

2. Allow the EUT to send a OperateResponse message with a req_object_path which
matches the command sent in the Operate message

3. Allow the EUT to send a Notify message with an inner OperationComplete message
with a obj_path element matching the command sent in the OperateMessage.

Test Metrics
1. The EUT sends an OperateResp message with a single operation_results element

containing an executed_command of “Device.IP.Diagnostics.TraceRoute()” and a
req_output_args element containing an empty output_args element.

2. The EUT sends a Notify message containing a OperationComplete message with
obj_path of “Device.IP.Diagnostics.TraceRoute()”.

1.65 Asynchronous operation with send_resp false

Purpose

The purpose of this test is to ensure that the Agent will correctly process an Operate
message where the operation is asynchronous and send_resp is set to false.

Functionality Tag

Conditional Mandatory (supports the TraceRoute:1 profile or at least one other
asynchronous operation)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure that a Subscription object exists on the EUT that is subscribed to the

OperationComplete notification for TraceRoute().

Test Procedure
1. Send an Operate message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: OPERATE
}

body {
 request {
 operate {
 command: "Device.IP.Diagnostics.TraceRoute()"
 command_key: "test65"
 send_resp: "false"
 input_args {
 "Host": <remote host IP>
 }
 }

© Broadband Forum. All rights reserved.

 }
}

2. Allow the EUT to send a Notify message with an inner OperationComplete message
with a obj_path element matching the command sent in the OperateMessage.

Test Metrics
1. The EUT does not send an OperateResp message.
2. The EUT sends a Notify message containing a OperationComplete message with

obj_path of “Device.IP.Diagnostics.TraceRoute()”.

1.66 GetInstances using a single object, first_level_only true

Purpose

The purpose of this test is to ensure that the Agent will correctly process a GetInstances
message on a single object when first_level_only is true.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a GetInstances message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET_INSTANCES
}

body {
 request {
 get_instances {
 obj_paths: "Device.LocalAgent.Controller."
 first_level_only: "true"
 }
 }
}

Test Metrics
1. The EUT sends a GetInstancesResp with one req_path_results elements containing a

requested_path of Device.LocalAgent.Controller. and at least one cur_insts element.
2. All instantiated_obj_path elements in the GetInstancesResp only contain

Device.LocalAgent. instances.

© Broadband Forum. All rights reserved.

1.67 GetInstances using a single object, first_level_only false

Purpose

The purpose of this test is to ensure that the Agent will correctly process a GetInstances
message on a single object when first_level_only is false.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a GetInstances message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET_INSTANCES
}

body {
 request {
 get_instances {
 obj_paths: "Device.LocalAgent.Controller."
 first_level_only: "false"
 }
 }
}

Test Metrics
1. The EUT sends a GetInstancesResp with one req_path_results elements containing a

requested_path of Device.LocalAgent.Controller., and lists all instances of the
Controller object, plus any instances of all sub-objects.

1.68 GetInstances with multiple objects

Purpose

The purpose of this test is to ensure that the Agent will correctly process a GetInstances
message on multiple objects.

Functionality Tag

Mandatory

© Broadband Forum. All rights reserved.

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a GetInstances message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET_INSTANCES
}

body {
 request {
 get_instances {
 obj_paths: [
 "Device.LocalAgent.Controller."
 "Device.LocalAgent.MTP."
]
 first_level_only: "true"
 }
 }
}

Test Metrics
1. The EUT sends a GetInstancesResp with two req_path_results elements containing a

requested_path of Device.LocalAgent.Controller. and Device.LocalAgent.MTP.
2. Both req_path_results and each having at least one cur_insts element.

1.69 GetInstances with root object

Purpose

The purpose of this test is to ensure that the Agent will correctly process a GetInstances
message on the root object.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a GetInstances message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET_INSTANCES

© Broadband Forum. All rights reserved.

}

body {
 request {
 get_instances {
 obj_paths: "Device."
 first_level_only: "false"
 }
 }
}

Test Metrics
1. The EUT sends a GetInstancesResp that lists all instances of all objects in its

instantiated data model.

1.70 GetInstances with wildcard search path

Purpose

The purpose of this test is to ensure that the Agent will correctly process a GetInstances
message when a wildcard search path is used.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a GetInstances message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET_INSTANCES
}

body {
 request {
 get_instances {
 obj_paths: "Device.LocalAgent.Controller.*.MTP."
 first_level_only: "true"
 }
 }
}

Test Metrics
1. The EUT sends a GetInstancesResp with at least one req_path_results element

containing a Device.LocalAgent.Controller.{i}.MTP. instance.

© Broadband Forum. All rights reserved.

1.71 GetInstances with search expression search path

Purpose

The purpose of this test is to ensure that the Agent will correctly process a GetInstances
message when a search expression search path is used.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure there is at least one BootParameter for the instance used for testing.
3. Ensure the Alias of the used for testing is known.

Test Procedure
1. Send a GetInstances message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET_INSTANCES
}

body {
 request {
 get_instances {
 obj_paths: "Device.LocalAgent.Controller.[Alias=="<Controller ali
as>"].BootParameter."
 first_level_only: "false"
 }
 }
}

Test Metrics
1. The EUT sends a GetInstancesResp with at least one req_path_results element

containing a Device.LocalAgent.Controller..BootParameter. instance.

1.72 GetSupportedDM using a single object, first_level_only false, all options

Purpose

The purpose of this test is to ensure that the Agent will correctly process a
GetSupportedDM message using a single object, when first_level_only is false and all
options are true.

Functionality Tag

Mandatory

© Broadband Forum. All rights reserved.

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a GetSupportedDM to the EUT with the following structure:
header {
 msg_id: "<msg id>"
 msg_type: GET_SUPPORTED_DM
}

body {
 request {
 get_supported_dm {
 obj_paths: "Device.LocalAgent."
 first_level_only: false
 return_commands: true
 return_events: true
 return_params: true
 }
 }
}

Test Metrics
1. The EUT sends a GetSupportedDMResp.
2. Every req_obj_results element contains all parameters, events, and commands below

the specified partial path, plus the supported data model information of all sub-
objects.

1.73 GetSupportedDM using a single object, first_level_only true, all options

Purpose

The purpose of this test is to ensure that the Agent will correctly process a
GetSupportedDM message using a single object, when first_level_only is true and all options
are true.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a GetSupportedDM to the EUT with the following structure:

© Broadband Forum. All rights reserved.

header {
 msg_id: "<msg id>"
 msg_type: GET_SUPPORTED_DM
}

body {
 request {
 get_supported_dm {
 obj_paths: "Device.LocalAgent."
 first_level_only: true
 return_commands: true
 return_events: true
 return_params: true
 }
 }
}

Test Metrics
1. The EUT sends a GetSupportedDMResp.
2. Every req_obj_results element contains parameters, events, and commands of only the

specified object.

1.74 GetSupportedDM using a single object, first_level_only true, no options

Purpose

The purpose of this test is to ensure that the Agent will correctly process a
GetSupportedDM message using a single object, when first_level_only is true and all options
are false.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a GetSupportedDM to the EUT with the following structure:
header {
 msg_id: "<msg id>"
 msg_type: GET_SUPPORTED_DM
}

body {
 request {
 get_supported_dm {
 obj_paths: "Device.LocalAgent."

© Broadband Forum. All rights reserved.

 first_level_only: true
 return_commands: false
 return_events: false
 return_params: false
 }
 }
}

Test Metrics
1. The EUT sends a GetSupportedDMResp.
2. Every req_obj_results element doesn’t contain any parameters, events, or params.

1.75 GetSupportedDM using multiple objects, first_level_only true, all options

Purpose

The purpose of this test is to ensure that the Agent will correctly process a
GetSupportedDM message using multiple objects, when first_level_only is true and all
options are true.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a GetSupportedDM to the EUT with the following structure:
header {
 msg_id: "<msg id>"
 msg_type: GET_SUPPORTED_DM
}

body {
 request {
 get_supported_dm {
 obj_paths: [
 "Device.LocalAgent.Controller."
 "Device.LocalAgent.MTP."
]
 first_level_only: true
 return_commands: true
 return_events: true
 return_params: true
 }
 }
}

© Broadband Forum. All rights reserved.

Test Metrics
1. The EUT sends a GetSupportedDMResp.
2. Every req_obj_results element contains parameters, events, and commands of only the

specified objects.

1.76 GetSupportedDM on root object, all options

Purpose

The purpose of this test is to ensure the Agent will correctly process a GetSupportedDM
message when the requested path is the root of the data model.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a GetSupportedDM to the EUT with the following structure:
header {
 msg_id: "<msg id>"
 msg_type: GET_SUPPORTED_DM
}

body {
 request {
 get_supported_dm {
 obj_paths:"Device."
 first_level_only: false
 return_commands: true
 return_events: true
 return_params: true
 }
 }
}

Test Metrics
1. The EUT sends a GetSupportedDMResp message with one or more req__results

specifying its entire supported data model, listing commands, parameters, and events.

1.77 GetSupportedDM on unsupported object

Procedure

The purpose of this test is to ensure the Agent will correctly process a GetSupportedDM
message when the requested path is an unsupported object.

© Broadband Forum. All rights reserved.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a GetSupportedDM to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET_SUPPORTED_DM
}

body {
 request {
 get_supported_dm {
 obj_paths:"Device.LocalAgent.UnsupportedObject"
 first_level_only: false
 return_commands: true
 return_events: true
 return_params: true
 }
 }
}

Test Metrics
1. The EUT returns a GetSupportedDMResp with a single req_obj_results with a err_code

of 7026.

2 Authentication and Access Control Test Cases

2.1 Agent does not accept messages from its own Endpoint ID

Purpose

The purpose of this test is to ensure the EUT does not respond to a USP message when the
from_id is the EUT’s endpoint ID.

Functionality Tag

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

© Broadband Forum. All rights reserved.

Test Steps
1. Send a message to the EUT with the following record structure:
Record {
 to_id: "<EUT_ID>"
 from_id: "<EUT_ID>"

 record_type: {
 ...
 }
}

Test Metrics
1. The EUT does not respond to the message.

2.2 Agent rejects messages that do not contain its to_id in the USP Record

Purpose

The purpose of this test is to ensure the EUT does not respond to a USP message when the
USP record doesn’t contain a the EUT’s to_id.

Functionality Tags

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Steps
1. Send a message to the EUT with the following record structure:
Record {
 to_id: "<invalid ID>"
 from_id: "<EUT_ID>"

 record_type: {
 ...
 }
}

Test Metrics
1. The EUT does not respond to the USP message.

2.3 Agent does not process messages without ’s certificate information

Purpose

The purpose of this test is to ensure that the EUT doesn’t process a USP message when the
EUT does not possess the Controller’s certificate information.

© Broadband Forum. All rights reserved.

Functionality Tags

Conditional Mandatory (UntrustedRole is not support, or can be disabled)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Simulate a second Controller whose credentials are signed by an untrusted certificate

authority.
3. Ensure that the UntrustedRole feature is either unsupported or disabled in the EUT.

Test Procedure
1. Send a Get message from the second simulated Controller to the EUT with the

following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}

body {
 request {
 get {
 param_paths: "Device.LocalAgent."
 }
 }
}

Test Metrics
1. Ensure the EUT does not respond to the Get message.

2.4 Agent rejects messages from Endpoint IDs that are not in subjectAltName

Purpose

The purpose of this test is to ensure that the EUT rejects a message from an Endpoint ID
that doesn’t match the subjectAltName in the provided certificate.

Functionality Tags

Conditional Mandatory (supports the ControllerTrust:1 profile with at least one role that
allows object creation, or supports writable parameters in
Device.LocalAgent.ControllerTrust.{i}.Role.{i}.)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

© Broadband Forum. All rights reserved.

Test Procedure
1. Send a Get message to the EUT using a certificate with a subjectAltName that does not

match the Controller’s Endpoint ID.

Test Metrics
1. The EUT does not respond to the Get message.

2.5 Agent use of self-signed certificates

Purpose

The purpose of this test is to ensure the EUT can handle self-signed certificates.

Functionality Tags

Conditional Mandatory (supports Self-Signed Certificates)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure the is configured to use a self-signed certificate and Endpoint ID that the EUT

has not seen.

Test Procedure
1. Send a Get message to the EUT using a self-signed cert with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: "Device.LocalAgent."
 }
 }
}

Test Metrics
1. The EUT responds to the Get with a GetResponse containing a

Device.LocalAgent.ControllerTrust.{i}.Alias parameter.

2.6 Connecting without absolute time

Purpose

The purpose of this test is to ensure the EUT can communicate with a Controller if it cannot
obtain an absolute time.

© Broadband Forum. All rights reserved.

Functionality Tags

Mandatory

Test Setup
1. The EUT is booted into a test environment where it cannot resolve absolute time.
2. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
3. Ensure the Controller is configured to use an expired certificate.

Test Procedure
1. Send a Get message to the EUT with the following structure:
header{
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: "Device.LocalAgent."
 }
 }
}

Test Metrics
1. The EUT responds to the Get message with a GetReponse, ignoring the expired dates

on the certificate.

2.7 Agent ignores unsigned or invalid Record signatures

Purpose

The purpose of this test is to ensure the EUT will ignore a USP record when the signature
field is invalid.

Functionality Tags

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a Get message to the EUT with an invalid signature value.

Test Metrics
1. The EUT does not respond to the Get message.

© Broadband Forum. All rights reserved.

2.8 Agent ignores invalid TLS certificate

Purpose

The purpose of this test is to ensure the EUT rejects TLS connections when an Endpoint’s
TLS certificate is invalid.

Functionality Tags

Mandatory

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure that the EUT has obtained an absolute time reference.

Test Procedure
1. Send a Get message to the EUT with an expire TLS certificate.

Test Metrics
1. The EUT doesn’t respond to the Get message.

2.9 Use of the Untrusted role

Purpose

The purpose of this test is to ensure the EUT correctly assigns new a Role of Untrusted.

Functionality Tags

Conditional Mandatory (supports the ControllerTrust:1 profile)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Using a secondary Controller, connect to the EUT and send an Get message.
2. Using the primary trusted Controller send a Get message to the EUT with the following

structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}

body {
 request {
 get {
 param_paths: "Device.LocalAgent.Controller."

© Broadband Forum. All rights reserved.

 }
 }
}

Test Metrics
1. Ensure the Device.LocalAgent.Controller.<secondary Controller

instance>.AssignedRole matches the value of
Device.LocalAgent.ControllerTrust.UntrustedRole.

2.10 Adding a Role

Purpose

The purpose of this test is to ensure that the Add message can be used to add new Roles to
the EUT’s data model.

Functionality Tags

Conditional Mandatory (supports the ControllerTrust:1 profile)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: ADD
}

body {
 request {
 add {
 allow_partial: false
 create_objs {
 obj_path: "Device.LocalAgent.ControllerTrust.Role."
 param_settings: [{
 param: "Enable"
 value: "true"
 }, {
 param: "Name"
 value: "Trusted"
 }]
 }
 }
 }
}

© Broadband Forum. All rights reserved.

Test Metrics
1. The EUT correctly sent an AddResponse with a new Role instance.

2.11 Permissions - Object Creation Allowed

Purpose

The purpose of this test is to ensure the EUT adheres to permissions set to allow the
creation of a particular object.

Functionality Tags

Conditional Mandatory (supports the ControllerTrust:1 profile with at least one role that
allows object creation, or supports writable parameters in
Device.LocalAgent.ControllerTrust.{i}.Role.{i}.)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure the Controller used for testing has an assigned Role that is writable.

Test Procedure
1. Send an Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: ADD
}
body {
 request {
 add {
 allow_partial: false
 create_objs: {
 obj_path: "Device.LocalAgent.ControllerTrust.Role.<Controller
's Role instance>.Permission."
 param_settings: [
 {
 param: "Enable"
 value: true
 },
 {
 param: "Target"
 value: "Device.LocalAgent.Subscription."
 },
 {
 param: "Obj"
 value: "rw--"
 }
]
 }

© Broadband Forum. All rights reserved.

 }
 }
}

2. Send an Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: ADD
}
body {
 request {
 add {
 allow_partial: false
 create_objs: {
 obj_path: "Device.LocalAgent.Subscription."
 }
 }
 }
}

Test Metrics
1. The EUT sends an AddResponse with a oper_success element containing a new

Device.LocalAgent.ControllerTrust.Role.{i}.Permission. object in step 1.
2. The EUT sends an AddResponse with a oper_success element containing a new

Device.LocalAgent.Subscription. object in step 2.

2.12 Permissions - Object Creation Not Allowed

Purpose

The purpose of this test is to ensure the EUT adheres to permissions set to restrict the
creation of a particular object.

Functionality Tags

Conditional Mandatory (supports the ControllerTrust:1 profile with at least one role that
allows object creation, or supports writable parameters in
Device.LocalAgent.ControllerTrust.{i}.Role.{i}.)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure the Controller used for testing has an assigned Role that is writable.

Test Procedure
1. Send an Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: ADD

© Broadband Forum. All rights reserved.

}
body {
 request {
 add {
 allow_partial: false
 create_objs: {
 obj_path: "Device.LocalAgent.ControllerTrust.Role.<Controller
's Role instance>.Permission."
 param_settings: [
 {
 param: "Enable"
 value: true
 },
 {
 param: "Target"
 value: "Device.LocalAgent.Subscription."
 },
 {
 param: "Obj"
 value: "r---"
 }
]
 }
 }
 }
}

2. Send an Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: ADD
}
body {
 request {
 add {
 allow_partial: false
 create_objs: {
 obj_path: "Device.LocalAgent.Subscription."
 }
 }
 }
}

Test Metrics
1. The EUT sends an AddResponse with a oper_success element containing a new

Device.LocalAgent.ControllerTrust.Role.{i}.Permission. object in step 1.
2. The EUT sends an Error containing type 7006 - Permission Denied.

© Broadband Forum. All rights reserved.

2.13 Permissions - Object Deletion Allowed

Purpose

The purpose of this test is to ensure the EUT adheres to permissions set to allow the
deletion of a particular object.

Functionality Tags

Conditional Mandatory (supports the ControllerTrust:1 profile with at least one role that
allows object creation, or supports writable parameters in
Device.LocalAgent.ControllerTrust.{i}.Role.{i}.)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

2. Ensure the Controller used for testing has an assigned Role that is writable.

3. Ensure there is one or more Subscription object that can be deleted. #### Test
Procedure

4. Send an Add message to the EUT with the following structure:

header {
 msg_id: "<msg_id>"
 msg_type: ADD
}
body {
 request {
 add {
 allow_partial: false
 create_objs: {
 obj_path: "Device.LocalAgent.ControllerTrust.Role.<Controller
's Role instance>.Permission."
 param_settings: [
 {
 param: "Enable"
 value: true
 },
 {
 param: "Target"
 value: "Device.LocalAgent.Subscription."
 },
 {
 param: "InstantiatedObj"
 value: "rw--"
 }
]
 }

© Broadband Forum. All rights reserved.

 }
 }
}

2. Send an Delete message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: DELETE
}
body {
 request {
 delete {
 allow_partial: false
 obj_paths: "Device.LocalAgent.Subscription.<subscription to delet
e>"
 }
 }
}

Test Metrics
1. The EUT sends an AddResponse with a oper_success element containing a new

Device.LocalAgent.ControllerTrust.Role.{i}.Permission. object in step 1.
2. The EUT sends an DeleteResponse with a oper_success element containing the

Device.LocalAgent.Subscription. object in step 2.

2.14 Permissions - Object Deletion Not Allowed

Purpose

The purpose of this test is to ensure the EUT adheres to permissions set to restrict the
deletion of a particular object.

Functionality Tags

Conditional Mandatory (supports the ControllerTrust:1 profile with at least one role that
allows object creation, or supports writable parameters in
Device.LocalAgent.ControllerTrust.{i}.Role.{i}.)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure the Controller used for testing has an assigned Role that is writable.
3. Ensure there is one or more Subscription object that can be deleted.

Test Procedure
1. Send an Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"

© Broadband Forum. All rights reserved.

 msg_type: ADD
}
body {
 request {
 add {
 allow_partial: false
 create_objs: {
 obj_path: "Device.LocalAgent.ControllerTrust.Role.<Controller
's Role instance>.Permission."
 param_settings: [
 {
 param: "Enable"
 value: true
 },
 {
 param: "Target"
 value: "Device.LocalAgent.Subscription."
 },
 {
 param: "InstantiatedObj"
 value: "r---"
 }
]
 }
 }
 }
}

2. Send an Delete message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: DELETE
}
body {
 request {
 delete {
 allow_partial: false
 obj_paths: "Device.LocalAgent.Subscription.<subscription to delet
e>"
 }
 }
}

Test Metrics
1. The EUT sends an AddResponse with a oper_success element containing a new

Device.LocalAgent.ControllerTrust.Role.{i}.Permission. object in step 1.
2. The EUT sends an Error containing type 7006 - Permission Denied.

© Broadband Forum. All rights reserved.

2.15 Permissions - Parameter Update Allowed

Purpose

The purpose of this test is to ensure the EUT adheres to permissions set to allow the update
of a particular object.

Functionality Tags

Conditional Mandatory (supports the ControllerTrust:1 profile with at least one role that
allows object creation, or supports writable parameters in
Device.LocalAgent.ControllerTrust.{i}.Role.{i}.)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure the Controller used for testing has an assigned Role that is writable.
3. Ensure there is one or more Subscription object that can be edited.

Test Procedure
1. Send an Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: ADD
}
body {
 request {
 add {
 allow_partial: false
 create_objs: {
 obj_path: "Device.LocalAgent.ControllerTrust.Role.<Controller
's Role instance>.Permission."
 param_settings: [
 {
 param: "Enable"
 value: true
 },
 {
 param: "Target"
 value: "Device.LocalAgent.Subscription.<instance that
can be edited>."
 },
 {
 param: "Param"
 value: "rw--"
 }
]
 }
 }

© Broadband Forum. All rights reserved.

 }
}

2. Send a Set message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: SET
}
body {
 request {
 set {
 allow_partial: false
 update_objs: [
 {
 obj_path: Device.LocalAgent.Subscription.<instance that c
an be edited>.
 param_settings: [
 {
 param: Alias
 value: <new value>
 required: true
 }
]
 }
]
 }
 }
}

Test Metrics
1. The EUT sends an AddResponse with a oper_success element containing a new

Device.LocalAgent.ControllerTrust.Role.{i}.Permission. object in step 1.
2. The EUT sends a SetResponse with a oper_success element containing

Device.LocalAgent.Subscription.{i}.Alias in step 2.

2.16 Permissions - Parameter Update Not Allowed

Purpose

The purpose of this test is to ensure the EUT adheres to permissions set to restrict the
update of a particular object.

Functionality Tags

Conditional Mandatory (supports the ControllerTrust:1 profile with at least one role that
allows object creation, or supports writable parameters in
Device.LocalAgent.ControllerTrust.{i}.Role.{i}.)

© Broadband Forum. All rights reserved.

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure the Controller used for testing has an assigned Role that is writable.
3. Ensure there is one or more Subscription object that can be edited.

Test Steps
1. Send an Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: ADD
}
body {
 request {
 add {
 allow_partial: false
 create_objs: {
 obj_path: "Device.LocalAgent.ControllerTrust.Role.<Controller
's Role instance>.Permission."
 param_settings: [
 {
 param: "Enable"
 value: true
 },
 {
 param: "Target"
 value: "Device.LocalAgent.Subscription.<instance that
can be edited>."
 },
 {
 param: "Param"
 value: "r---"
 }
]
 }
 }
 }
}

2. Send a Set message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: SET
}
body {
 request {
 set {
 allow_partial: false
 update_objs: [

© Broadband Forum. All rights reserved.

 {
 obj_path: Device.LocalAgent.Subscription.<instance that c
an be edited>.
 param_settings: [
 {
 param: Alias
 value: <new value>
 required: true
 }
]
 }
]
 }
 }
}

Test Metrics
1. The EUT sends an AddResponse with a oper_success element containing a new

Device.LocalAgent.ControllerTrust.Role.{i}.Permission. object in step 1.
2. The EUT sends an Error containing type 7006 - Permission Denied.

2.17 Permissions - Operation Allowed

Purpose

The purpose of this test is to ensure the EUT adheres to permissions set to allow the
invocation of commands on a particular object.

Functionality Tags

Conditional Mandatory (supports the ControllerTrust:1 profile with at least one role that
allows object creation, or supports writable parameters in
Device.LocalAgent.ControllerTrust.{i}.Role.{i}.)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure the Controller used for testing has an assigned Role that is writable.

Test Steps
1. Send an Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: ADD
}
body {
 request {
 add {
 allow_partial: false

© Broadband Forum. All rights reserved.

 create_objs: {
 obj_path: "Device.LocalAgent.ControllerTrust.Role.<Controller
's Role instance>.Permission."
 param_settings: [
 {
 param: "Enable"
 value: true
 },
 {
 param: "Target"
 value: "Device.Reboot()"
 },
 {
 param: "CommandEvent"
 value: "r-x-"
 }
]
 }
 }
 }
}

2. Send a Set message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: OPERATE
}
body {
 request {
 operate {
 command: Device.Reboot()
 }
 }
}

Test Metrics
1. The EUT sends an AddResponse with a oper_success element containing a new

Device.LocalAgent.ControllerTrust.Role.{i}.Permission. object in step 1.
2. The EUT sends an OperateResponse with a req_output_args element in step 2.

2.18 Permissions - Operation Not Allowed

Purpose

The purpose of this test is to ensure the EUT adheres to permissions set to restrict the
invocation of commands on a particular object.

© Broadband Forum. All rights reserved.

Functionality Tags

Conditional Mandatory (supports the ControllerTrust:1 profile with at least one role that
allows object creation, or supports writable parameters in
Device.LocalAgent.ControllerTrust.{i}.Role.{i}.)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure the Controller used for testing has an assigned Role that is writable.

Test Steps
1. Send an Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: ADD
}
body {
 request {
 add {
 allow_partial: false
 create_objs: {
 obj_path: "Device.LocalAgent.ControllerTrust.Role.<Controller
's Role instance>.Permission."
 param_settings: [
 {
 param: "Enable"
 value: true
 },
 {
 param: "Target"
 value: "Device.Reboot()"
 },
 {
 param: "CommandEvent"
 value: "r---"
 }
]
 }
 }
 }
}

2. Send a Set message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: OPERATE
}
body {

© Broadband Forum. All rights reserved.

 request {
 operate {
 command: Device.Reboot()
 }
 }
}

Test Metrics
1. The EUT sends an AddResponse with a oper_success element containing a new

Device.LocalAgent.ControllerTrust.Role.{i}.Permission. object in step 1.
2. The EUT sends an Error containing type 7006 - Permission Denied.

2.19 Permissions - Value Change Notification Allowed on Parameter

Purpose

The purpose of this test is to ensure the EUT adheres to permissions set to allow a
Controller to subscribe to the ValueChange notification of a particular parameter.

Functionality Tags

Conditional Mandatory (supports the ControllerTrust:1 profile with at least one role that
allows object creation, or supports writable parameters in
Device.LocalAgent.ControllerTrust.{i}.Role.{i}.)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure the Controller used for testing has an assigned Role that is writable.

Test Steps
1. Send an Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: ADD
}
body {
 request {
 add {
 allow_partial: false
 create_objs: {
 obj_path: "Device.LocalAgent.ControllerTrust.Role.<Controller
's Role instance>.Permission."
 param_settings: [
 {
 param: "Enable"
 value: true
 },
 {

© Broadband Forum. All rights reserved.

 param: "Target"
 value: "Device.LocalAgent.Controller.<Controller inst
ance id>.PeriodicNotifInterval"
 },
 {
 param: "CommandEvent"
 value: "rw-n"
 }
]
 }
 }
 }
}

2. Send an Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: ADD
}
body {
 request {
 add {
 allow_partial: false
 create_objs: {
 obj_path: "Device.LocalAgent.Subscription."
 param_settings: [
 {
 param: Enable
 value: true
 },
 {
 param: NotifType
 value: ValueChange
 },
 {
 param: ReferenceList
 value: Device.LocalAgent.Controller.<Controller insta
nce id>.PeriodicNotifInterval
 }
]
 }
 }
 }
]

3. Send a Set message to the EUT, setting Device.LocalAgent.Controller.<Controller
instance id>.PeriodicNotifInterval to a new value.

4. Wait for a Notification from the EUT.

© Broadband Forum. All rights reserved.

Test Metrics
1. The EUT sends an AddResponse with an oper_success element containing a new

Device.LocalAgent.ControllerTrust.Role.{i}.Permission. object in step 1.
2. The EUT sends an AddResponse with an oper_success element containing a new

Device.LocalAgent.Subscription. object in step 2.
3. The EUT sends a SetResponse with an oper_success element with the path

Device.LocalAgent.Controller.<Controller instance
id>.PeriodicNotifInterval.

4. The EUT sends a Notify message with a value_change element pointing to
Device.LocalAgent.Controller.<Controller instance>.PeriodicNotifInterval.

2.20 Permissions - Value Change Notification Not Allowed on Parameter

Purpose

The purpose of this test is to ensure the EUT adheres to permissions set to restrict a from
subscribing to the ValueChange notification of a particular parameter.

Functionality Tags

Conditional Mandatory (supports the ControllerTrust:1 profile with at least one role that
allows object creation, or supports writable parameters in
Device.LocalAgent.ControllerTrust.{i}.Role.{i}.)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure the Controller used for testing has an assigned Role that is writable.

Test Steps
1. Send an Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: ADD
}
body {
 request {
 add {
 allow_partial: false
 create_objs: {
 obj_path: "Device.LocalAgent.ControllerTrust.Role.<Controller
's Role instance>.Permission."
 param_settings: [
 {
 param: "Enable"
 value: true
 },
 {

© Broadband Forum. All rights reserved.

 param: "Target"
 value: "Device.LocalAgent.Controller.<Controller inst
ance id>.PeriodicNotifInterval"
 },
 {
 param: "CommandEvent"
 value: "r---"
 }
]
 }
 }
 }
}

2. Send an Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: ADD
}
body {
 request {
 add {
 allow_partial: false
 create_objs: {
 obj_path: "Device.LocalAgent.Subscription."
 param_settings: [
 {
 param: Enable
 value: true
 },
 {
 param: NotifType
 value: ValueChange
 },
 {
 param: ReferenceList
 value: Device.LocalAgent.Controller.<Controller insta
nce id>.PeriodicNotifInterval
 }
]
 }
 }
 }
]

Test Metrics
1. The EUT sends an AddResponse with an oper_success element containing a new

Device.LocalAgent.ControllerTrust.Role.{i}.Permission. object in step 1.
2. The EUT sends an Error containing type 7006 - Permission Denied.

© Broadband Forum. All rights reserved.

2.21 Permissions - Overlapping Permissions

Purpose

The purpose of this test is to ensure the EUT allows for the creation of Permission
instances, and when Permissions overlap the EUT behaves correctly.

Functionality Tags

Conditional Mandatory (supports the ControllerTrust:1 profile with at least one role that
allows object creation, or supports writable parameters in
Device.LocalAgent.ControllerTrust.{i}.Role.{i}.)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure the Controller used for testing has an assigned Role that is writable.
3. Ensure there is at least one BootParameter configured.

Test Procedure
1. Send an Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: ADD
}
body {
 request {
 add {
 allow_partial: false
 create_objs: [
 {
 obj_path: Device.LocalAgent.ControllerTrust.<Controller id>.R
ole.Permission.
 param_settings: [
 {
 param: Enable
 value: true
 },
 {
 param: Targets
 value: Device.LocalAgent.Controller.<Controller insta
nce id>.BootParameter.<boot parameter instance>.
 },
 {
 param: Param
 value: "----"
 }
]
 },

© Broadband Forum. All rights reserved.

 {
 obj_path: Device.LocalAgent.ControllerTrust.<Controller id>.R
ole.Permission.
 param_settings: [
 {
 param: Enable
 value: true
 },
 {
 param: Targets
 value: Device.LocalAgent.Controller.<Controller insta
nce id>.BootParameter.<boot parameter instance>.
 },
 {
 param: Param
 value: "rw--"
 },
 {
 param: Order
 value: 1
 }
]
 }
]
 }
 }
}

2. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: Device.LocalAgent.Controller.<Controller instance ID
>.BootParameter.
 }
 }
}

Test Metrics
1. The EUT sends an AddResponse message after step 1. The message contains two

oper_success elements, one for each added permission.
2. The EUT sends a GetResponse with a result_params element containing parameters of

the specified BootParameter instance.

© Broadband Forum. All rights reserved.

2.22 Using Get when no read permissions are available on some parameters

Purpose

The purpose of this test is to ensure the EUT correctly returns parameters that are
readable while ignoring parameters that do not have read permissions.

Functionality Tags

Conditional Mandatory (supports the ControllerTrust:1 profile with at least one role that
allows object creation, or supports writable parameters in
Device.LocalAgent.ControllerTrust.{i}.Role.{i}.)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure the Controller used for testing has an assigned Role that is writable.
3. Ensure there is at least one BootParameter configured.

Test Procedure
1. Send an Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: ADD
}
body {
 request {
 add {
 allow_partial: false
 create_objs: [
 {
 obj_path: Device.LocalAgent.ControllerTrust.Role.<Control
ler trust instance>.Permission.
 param_settings: [
 {
 param: Enable
 value: true
 },
 {
 param: Targets
 value: Device.LocalAgent.Controller.<Controller i
nstance ID>.BootParameter.<known instance>.ParameterName
 },
 {
 param: Param
 value: "----"
 }
]
 }

© Broadband Forum. All rights reserved.

]
 }
 }
}

2. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: Device.LocalAgent.Controller.<Controller instance ID
>.BootParameter.<known instance>.
 }
 }
}

Test Metrics
1. The EUT sends an AddResponse message after step 1. The message contains a

oper_success element for the added Permission.
2. The EUT sends a GetResponse with a result_params element containing parameters of

the specified BootParameter instance, with the exception of the ParameterName
parameter.

3 USP Record Test Cases

3.1 Bad request outside a session context

Purpose

The purpose of this test is to ensure the EUT correctly responds to a bad request outside a
session context.

Functionality Tags

Mandatory

Test Setup
1. Ensure the EUT is configured to not use a session context.
2. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send a malformed USP Record to the EUT.

© Broadband Forum. All rights reserved.

Test Metrics
1. After the EUT receives the malformed USP record, it exibits the expected “bad request”

behavior for the applicable MTP.

3.2 Agent Verifies Non-Payload Field Integrity

Purpose

The purpose of this test is to ensure the EUT verifies the integrity of the non-payload fields
in a USP record.

Functionality Tags

“Conditional Mandatory (supports Secure Message Exchange using TLS for USP Record
Integrity)”

Test Setup
1. Ensure the relevant equipment are configured to NOT provide integrity protection at

the MTP layer.
2. Ensure that the EUT and test equipment have the necessary information to send and

receive USP records to each other.

Test Procedure
1. Send a Get message to the EUT with a payload_security of PLAINTEXT.

Test Metrics
1. After the EUT receives the USP record, it exhibits the expected “bad request” behavior

for the applicable MTP.

3.3 Agent rejects invalid signature starting a session context

Purpose

The purpose of this test is to ensure the EUT handles an attempt to start a session context
with an invalid mac_signature.

Functionality Tags

“Conditional Mandatory (supports Secure Message Exchange using TLS for USP Record
Integrity)”

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP records to each other.

Test Procedure
1. Send a TLS “client hello” to the EUT to begin a session context as described in “End to

End Message Exchange” in TR-369 with an invalid mac_signature.

https://usp.technology/specification/e2e-message-exchange/
https://usp.technology/specification/e2e-message-exchange/

© Broadband Forum. All rights reserved.

Test Metrics
1. After the EUT receives the USP record, it exhibits the expected “bad request” behavior

for the applicable MTP.

3.4 Using TLS for USP Record Integrity

Purpose

The purpose of this test is to ensure the EUT uses TLS to validate the integrity of USP
records when the payload_security is TLS and the TLS handshake has completed.

Functionality Tags

“Conditional Mandatory (supports Secure Message Exchange using TLS for USP Record
Integrity)”

Test Setup
1. Ensure the EUT and controller are configured to secure the USP record payload with

TLS.

Test Procedure
1. Start a E2E session with the EUT using TLS to secure the payload.
2. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: Device.LocalAgent.
 }
 }
}

Test Metrics
1. In the GetResponse sent by the EUT, the mac_signature in the USP Record secures the

non-payload fields via the MAC mechanism.
2. The mac_signature in the USP record sent by the EUT validates the integrity of the

non-payload fields.

3.5 Failure to Establish TLS

Purpose

The purpose of this test is to ensure the EUT behaves correctly when the TLS session used
to encapsulate the payload cannot be established.

© Broadband Forum. All rights reserved.

Functionality Tags

“Conditional Mandatory (supports Secure Message Exchange using TLS for USP Record
Integrity)”

Test Setup
1. Configure the controller to use TLS12 as a payload_security.
2. Ensure PeriodicNotifInterval is 60, and the controller used for testing is subscribed

to Periodic Event Notification.

Test Procedure
1. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: Device.LocalAgent.Controller.<controller instance>.E
2ESession.
 }
 }
}

2. Attempt to establish a new secure session with the EUT using TLS payload
encapsulation.

3. Configure the controller to send TLS alerts during the TLS handshake process.
4. Wait for the EUT to attempt to start a session with the controller.
5. Allow the controller to send a TLS alert to the EUT and for the session to terminate.
6. Configure the controller to not send a TLS alert.
7. Wait for the EUT to retry establishing a E2E session.

Test Metrics
1. After sending the client certificate to the EUT, the EUT sends a TLS alert, terminating

the session.
2. After step 5, the EUT waits before retrying the session in accordance with the

SessionRetry parameters found in step 1.

3.6 Agent ignores TLS renegotiation for E2E message exchange

Purpose

The purpose of this test is to ensure the EUT correctly ignores TLS renegotiation frames
during a E2E message exchange.

© Broadband Forum. All rights reserved.

Functionality Tags

“Conditional Mandatory (supports Secure Message Exchange using TLS for USP Record
Integrity)”

Test Setup
1. Ensure both the EUT and the controller are configured to use TLS payload security.

Test Procedure
1. Establish a E2E session with the EUT.
2. Send a request to renegotiate TLS in place of the payload.
3. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: Device.DeviceInfo.
 }
 }
}

4. Wait for a GetResponse from the EUT.

Test Metrics
1. Between sending the TLS renegotiation request and receiving the GetResponse, the

EUT does not send any USP records.

3.7 Use of X.509 Certificates

Purpose

The purpose of this test is to ensure the EUT correctly uses X.509 certificates to
authenticate other endpoints, and in turn provides a X.509 certificate for the purpose of
authentication.

Functionality Tags

“Conditional Mandatory (supports Secure Message Exchange using TLS for USP Record
Integrity)”

Test Setup
1. Ensure the EUT and controller are configured to use TLS payload security.

Test Procedure
1. Configure the controller to provide a X.509 certificate with a subjectAltName that

does not match the controller’s USP endpoint ID.

© Broadband Forum. All rights reserved.

2. Attempt to start a session with the EUT and send a Get message with the following
structure:

header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: Device.DeviceInfo.
 }
 }
}

Test Metrics
1. During the TLS handshake the EUT provides a X.509 certificate with a subjectAltName

that matches the endpoint ID of the EUT.
2. During the TLS handshake the EUT requests a X.509 certificate from the controller.
3. The EUT rejects the controller’s certificate.

3.8 Establishing a Session Context

Purpose

The purpose of this test is to ensure the EUT can use a session context to exchange USP
messages.

Functionality Tag

Conditional Mandatory (supports USP session context)

Test Setup
1. Ensure the EUT and controller have the nessesary information to establish a

connection and exchange USP messages.
2. Ensure at the start of the test there is no existing session context between the EUT and

controller.

Test Procedure
1. Start a session context with the EUT and send a Get message with the following

structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: Device.DeviceInfo.

© Broadband Forum. All rights reserved.

 }
 }
}

Test Metrics
1. After step 1, the EUT responds with a USP record containing a session context, a

sequence_number of 1 and a session_id that matched the session identifier sent to the
EUT.

3.9 Receipt of a Record out of a Session Context

Purpose

The purpose of this test is to ensure the EUT correctly handles the receieving of a USP
record outside of a session context.

Functionality Tags

Conditional Mandatory (supports USP session context)

Test Setup
1. Ensure the EUT and controller have the nessesary information to establish a session

and exchange USP messages.

Test Procedure
1. Start a session with the EUT using a session context.
2. Send a Get message to the EUT for Device.DeviceInfo. using a USP Record with the

following structure:
Record {
 record_type {
 session_context {
 session_id: "<new session_id>"
 sequence_id: "<expected sequence_id>"
 expected_id: "<expected expected_id>"
 payload {
 ...
 }
 }
 }
}

Test Metrics
1. The EUT sends the GetResponse in a USP Record using the new session_id and a

sequence_id of 1.

© Broadband Forum. All rights reserved.

3.10 Session Context Expiration

Purpose

The purpose of this test is to ensure the EUT correctly adheres to the SessionExpiration
parameter.

Fuctionality Tags

Conditional Mandatory (supports USP session context)

Test Setup
1. Ensure the EUT and controller have the nessesary information required to start a

session and exchange USP records.
2. Ensure the controller is subscribed to Periodic! event.

Test Procedure
1. Send a Set message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: SET
}
body {
 request {
 set {
 update_objs: [
 {
 obj_path: Device.LocalAgent.Controller.<controller instan
ce>.E2ESession.
 param_settings: [
 {
 param: SessionExpiration
 value: 60
 }
]
 },
 {
 obj_path: Device.LocalAgent.Controller.<controller instan
ce>.
 param_settings: [
 {
 param: PeriodicNotifInterval
 value: 10
 }
]
 }
]
 }

© Broadband Forum. All rights reserved.

 }
}

2. Wait for 3 Notify messages from the EUT containing a Periodic! event.
3. Send a Set message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: SET
}
body {
 request {
 set {
 update_objs: [
 {
 obj_path: Device.LocalAgent.Controller.<controller instan
ce>.E2ESession.
 param_settings: [
 {
 param: SessionExpiration
 value: 5
 }
]
 },
 {
 obj_path: Device.LocalAgent.Controller.<controller instan
ce>.
 param_settings: [
 {
 param: PeriodicNotifInterval
 value: 10
 }
]
 }
]
 }
 }
}

4. Wait for 3 Notify messages from the EUT containing a Periodic! event.

Test Metrics
1. All three Notify messages recieved in step 2 use the same session context.
2. None of the three Notify messages recieved in step 4 shared the same session context.

© Broadband Forum. All rights reserved.

3.11 Use of Sequence ID and Expected ID

Purpose

The purpose of this test is to ensure the EUT correctly uses the sequence_id and
expected_id attributes found in a session context.

Functionality Tags

Conditional Mandatory (supports USP session context)

Test Setup
1. Ensure the EUT and controller have the nessesary information to start a session and

exchange USP messages.
2. Ensure the controller is not subscribed to any events on the EUT.

Test Procedure
1. Start a session with the EUT.
2. Send a Get message to the EUT with the expected sequence_id and expected_id for

Device.DeviceInfo.ModelNumber.
3. Send a Get message to the EUT with the sequence_id set to the expected value plus 2

for Device.DeviceInfo.SoftwareVersion.
4. Send a Get message to the EUT with the sequence_id set to 2 less than the expected

value for Device.DeviceInfo.HardwareVersion.
5. Send a Get message to the EUT with the expected sequence_id and expected_id for

Device.DeviceInfo.HardwareVersion.

Test Metrics
1. After step 1 the EUT returns a GetResponse with a sequence_id that matches the

expected_id in the record that was sent.
2. After step 3 the EUT returns a GetResponse with a sequence_id that matches the

expected_id in the record that was sent in step 4.
3. The EUT never sends a GetResponse with a sequence_id that matches the

expected_id in the record sent in step 3.
4. After step 5 the EUT returns a GetResponse with a sequence_id that matches the

expected_id in the record that was sent.
5. After step 5 The EUT sends a GetResponse containing the parameter

Device.DeviceInfo.SoftwareVersion.

3.12 Preservation of USP Records

The purpose of this test is to ensure the EUT preserves a sent record in the event the
receiving endpoint requests a retransmission.

Functionality Tags

Conditional Mandatory (supports USP session context)

© Broadband Forum. All rights reserved.

Test Setup
1. Ensure the EUT and controller have the nessesary information to start a session an

exchange USP messages.

Test Procedures
1. Start a new session.
2. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: Device.DeviceInfo.
 }
 }
}

3. Wait 60 seconds.
4. Send a USP record to the EUT with a retransmit_id set to the expected_id value in

the record sent in step 1.

Test Metrics
1. The EUT sends the same GetResponse twice, once after step 2 and once after step 4.

3.13 Agent Rejects Records with Different Payload Security than the Established
Context

Purpose

The purpose of this test is to ensure the EUT does not accept USP Records that have a
different payload_security value than the that of the established session context.

Functionality Tags

Conditional Mandatory (supports USP session context)

Test Setup
1. Ensure the EUT and controller have the nessesary information to start a session and

exchange USP messages.
2. Ensure the EUT and controller have the nessesary information to secure the USP

record payload using TLS.

Test Procedure
1. Starts a session with the EUT using payload_security TLS12.

© Broadband Forum. All rights reserved.

2. After the session is established, send the following Get message for any valid
parameter using payload_security PLAINTEXT and a plaintext.

Test Metrics
1. The EUT does not send a GetResponse.
2. The EUT starts a new session after step 2.

3.14 Use of retransmit_id

Purpose

The purpose of this test is to ensure the EUT correctly uses the retransmit_id value in a
USP record and adheres to the related parameters in the data model.

Functionality Tags

Conditionality Mandatory (supports session context)

Test Setup
1. Ensure the EUT and controller have the nessesary information to start a session and

exchange USP messages.

Test Procedure
1. Send a Set message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: SET
}
body {
 request {
 set {
 update_objs: [
 {
 obj_path: Device.LocalAgent.Controller.<controller instan
ce>.E2ESession.
 param_settings: [
 {
 param: MaxRetransmitTries
 value: 2
 }
]
 }
]
 }
 }
}

2. Wait for a SetResponse

© Broadband Forum. All rights reserved.

3. Send a USP record with a retransmit_id set to the value of the sequence_id found in
the SetResponse in step 2.

4. Repeat steps 2 and 3 twice more.

Test Metrics
1. The first three SetResponse messages are sent in the same session context.
2. On the third retransmit request, the EUT doesn’t send a SetResponse and instead

starts a new session with the controller.

3.15 Handling Duplicate Records

Purpose

The purpose of this test is to ensure the EUT can correctly handle receiving duplicate
records.

Functionality Tags

Conditional Mandatory (supports USP session context)

Test Setup
1. Ensure the EUT and controller have the nessesary information to start session and

exchange USP messages.

Test Procedure
1. Start a session with the EUT.
2. Send a Get message to the EUT requesting a parameter that is known to exist.
3. Retransmit the same USP record sent in step 2 to the EUT, using the same non-payload

USP record field values.
4. Repeat step 3 twice more.

Test Metrics
1. The EUT send only one GetResponse.

4 General MTP Test Cases

4.1 Use of X.509 certificates at the MTP layer

Purpose

The purpose of this test is to ensure the EUT can use X.509 certificates to secure
communication at the MTP layer.

Functionality Tags

Conditional Mandatory (supports encryption at the MTP layer)

© Broadband Forum. All rights reserved.

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Configure a secondary Controller outside the network boundary of the EUT.

Test Procedure
1. Send an Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: ADD
}
body {
 request {
 add {
 create_objs: [
 {
 obj_path: Device.LocalAgent.Controller.
 param_settings: [
 {
 param: Alias
 value: usp-113-Controller
 },
 {
 param: EndpointID
 value: <new Controller endpoint ID>
 },
 {
 param: Enable
 value: true
 },
 {
 param: AssignedRole
 value: <valid role instance>
 }
]
 }
]
 }
 }
}

2. Send an Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: ADD
}
body {
 request {
 add {

© Broadband Forum. All rights reserved.

 obj_path: Device.LocalAgent.Controller.<new instance>.MTP.
 param_settings: [
 {
 param: Enable
 value: true
 },
 {
 param: Protocol
 value: <support MTP>
 }
 .
 .
 <Supported MTP configuration>
 .
 .
]
 }
 }
}

3. Send an Operate message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: OPERATE
}
body {
 request {
 operate {
 command: Device.LocalAgent.Controller.<new instance>.SendOnBoardR
equest()
 }
 }
}

Test Metrics
1. The EUT contacts the secondary EUT and establishes a secure MTP layer connection

by employing X.509 certificates.

5 CoAP Test Cases

5.1 Mapping a USP Record to a CoAP message

Purpose

The purpose of this test is to ensure the EUT can properly use CoAP to transport USP
Records.

Functionality Tags

Conditional Mandatory (supports the CoAP MTP)

© Broadband Forum. All rights reserved.

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. The EUT and Controller are configured to communicate over CoAP.

Test Procedure
1. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: Device.LocalAgent.
 }
 }
}

2. Wait for a GetResponse

Test Metrics
1. The GetResponse is encapsulated in a CoAP message.
2. The CoAP message used transport the GetResponse uses application/octet-stream for

Content-Format.

5.2 USP Records that exceed CoAP message size

Purpose

The purpose of this test is to ensure the EUT properly segments large USP records and
transports them using block encapsulation.

Funtionality Tags

Conditional Mandatory (supports the CoAP MTP)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. The EUT and Controller are configured to communicate over CoAP.

Test Procedure
1. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}

© Broadband Forum. All rights reserved.

body {
 request {
 get {
 param_path: Device.
 }
 }
}

2. Wait for a GetResponse

Test Metrics
1. The EUT sends the GetResponse message using multiple block encapsulated CoAP

messages.

5.3 Successful CoAP exchange

Purpose

The purpose of this test is to ensure the EUT correctly sends a 2.04 Changed response to
CoAP messages.

Functionality Tags

Conditional Mandatory (supports the CoAP MTP)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. The EUT and Controller are configured to communicate over CoAP.

Test Procedure
1. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: Device.LocalAgent.
 }
 }
}

Test Metrics
1. After the transmission of the Get message the EUT sends a 2.04 Changed message.

© Broadband Forum. All rights reserved.

5.4 Failed CoAP exchange - timeout

Purpose

The purpose of this test is to ensure the EUT behaves correctly when a timeout occurs at
the MTP layer when using CoAP.

Functionality Tags

Conditional Mandatory (supports the CoAP MTP)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. The EUT and Controller are configured to communicate over CoAP.

Test Procedure
1. Configure the to not send 2.04 Changed responses to CoAP messages
2. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_path: Device.LocalAgent.
 }
 }
}

3. Wait for a GetResponse message from the EUT.
4. Prevent the Controller from sending a 2.04 Changed CoAP response.
5. Wait for EUT to retry sending the GetResponse.
6. Allow the Controller to send a 2.04 Changed CoAP response.

Test Metrics
1. The EUT attempts to retransmit the GetResponse message after not receieving a 2.04

Changed from the Controller.

5.5 Failed CoAP Exchange - Invalid Method

Purpose

The purpose of this test is to ensure the EUT correctly responds when it receives a CoAP
message with an invalid method.

© Broadband Forum. All rights reserved.

Functionality Tags

Conditional Mandatory (supports the CoAP MTP)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP records to each other.
2. The EUT the Controller are configured to communicate over CoAP.

Test Procedure
1. Send a USP record to the EUT using a CoAP message with method code 0x06.
2. Wait up to 60 seconds for the EUT to send a CoAP response.

Test Metrics
1. The EUT sends a reply to the CoAP message with an invalid method code.
2. The EUT’s CoAP response uses code 4.05 to indicate an invalid CoAP method.

5.6 Failed CoAP Exchange - Invalid Content-Format

Purpose

The purpose of this test is to ensure the EUT properly responds to CoAP messages that
feature invalid Content-Format options.

Functionality Tags

Conditional Mandatory (supports the CoAP MTP)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP records to each other.
2. The EUT and Controller are configured to communicate over CoAP.

Test Procedure
1. Send a USP record to the EUT using a CoAP message with Content-Format option

0x113a.
2. Wait up to 60 second for the EUT to respond.

Test Metrics
1. The EUT sends a reply to the CoAP message with an invalid Content-Format.
2. The EUT’s CoAP response uses code 4.15 to indicate an invalid Content-Format.

5.7 Failed CoAP Exchange - Invalid USP Record

Purpose

The purpose of this is to ensure the EUT properly responds to a CoAP message containing a
malformed USP record.

© Broadband Forum. All rights reserved.

Functionality Tags

Conditional Mandatory (supports the CoAP MTP)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP records to each other.
2. The EUT and Controller are configured to communicate over CoAP.

Test Procedure
1. Send a malformed USP record to the EUT in a CoAP message.
2. Wait up to 60 seconds for the EUT to send a CoAP reply.

Test Metrics
1. The EUT sends a reply to the CoAP message with the malformed USP record.
2. The EUT’s CoAP response uses code 4.00 to indicate the USP record is invalid or not

understandable.

5.8 Use of DTLS

Purpose

The purpose of this test is to ensure the EUT can secure communication with another CoAP
endpoint at the CoAP layer.

Functionality Tags

Conditional Mandatory (supports the CoAP MTP)

Test Setup
1. Ensure that the EUT and test equiment have the nessesary information to send and

receive USP records to each other.
2. The EUT and Controller are configured to communicate over CoAP using DTLS.
3. The EUT and Controller have the necessary information about one another to establish

an encrypted channel of communication.

Test Procedure
1. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: Device.LocalAgent.
 }

© Broadband Forum. All rights reserved.

 }
}

2. Wait for the EUT to send a GetReponse.

Test Metrics
1. The Controller is able to establish a DTLS session with the EUT.
2. The EUT established a DTLS session and sends a GetResponse.

6 STOMP Test Cases

6.1 Support of Required Profiles

Purpose

The purpose of this test is to ensure the EUT supports the required STOMP profiles.

Functionality Tags

Conditional Mandatory (supports the STOMP MTP)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP records to each other.

Test Procedure
1. Send a GetSupportedDM message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET_SUPPORTED_DM
}
body {
 request {
 get_supported_dm {
 obj_paths: [
 "Device.STOMP."
 "Device.LocalAgent."
]
 return_param: true
 first_level_only: false
 }
 }
}

2. Wait for the GetSupportedDMResponse.

Test Metrics
1. The EUT sends a GetSupportedDMResponse.

© Broadband Forum. All rights reserved.

2. The GetSupportedDMReponse from the EUT contains the following parameters:
Device.LocalAgent.Controller.{i}.MTP.{i}.STOMP.Reference
Device.LocalAgent.Controller.{i}.MTP.{i}.STOMP.Destination
Device.STOMP.ConnectionNumberOfEntries Device.STOMP.Connection.{i}.Alias
Device.STOMP.Connection.{i}.Enable Device.STOMP.Connection.{i}.Status
Device.STOMP.Connection.{i}.Host Device.STOMP.Connection.{i}.Port
Device.STOMP.Connection.{i}.VirtualHost
Device.STOMP.Connection.{i}.ServerRetryInitialInterval
Device.STOMP.Connection.{i}.ServerRetryInitialMultiplier
Device.STOMP.Connection.{i}.ServerRetryMaxInterval

6.2 STOMP session establishment

Purpose

The purpose of this test is to ensure the EUT can properly start a STOMP session.

Functionality Tags

Conditional Mandatory (supports the STOMP MTP)

Test Setup
1. Ensure that the EUT is configured to use a STOMP server that exists in the test

environment.

Test Procedure
1. Reboot the EUT.
2. Wait for the EUT to reconnect to the STOMP server and subscribe to a destination.

Test Metrics
1. The EUT sends a STOMP frame to the STOMP server to initiate the STOMP session.

6.3 STOMP Connection Retry

Purpose

The purpose of this test is to ensure the EUT properly enters a retry state when it fails to
connect to the STOMP server.

Functionality Tags

Conditional Mandatory (supports the STOMP MTP)

Test Setup
1. Ensure that the EUT is configured to use a STOMP server that exists in the test

environment.

Test Procedure
1. Send a Get message to the EUT with the following structure

© Broadband Forum. All rights reserved.

header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: Device.STOMP.Connection.
 }
 }
}

2. Send an Operate message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: OPERATE
}
body {
 request {
 operate {
 command: Device.Reboot()
 }
 }
}

3. Disable the STOMP server.
4. Allow the EUT to attempt to start a STOMP session with the STOMP server.
5. Reenable the STOMP server after the EUT fails to connect to the STOMP server twice.

Test Metrics
1. The EUT retries connecting to the STOMP server within the

ServerRetryInitialInterval of the connection instance.
2. The EUT retries a second time in accordance with ServerRetryInitialInterval and

ServerRetryIntervalMultiplier.

6.4 Successful USP message over STOMP with required headers

Purpose

The purpose of this test is to ensure the EUT can communicate over STOMP using the
correct headers.

Functionality Tags

Conditional Mandatory (supports the STOMP MTP)

Test Setup
1. Ensure that the EUT is configured to use a STOMP server that exists in the test

environment.

© Broadband Forum. All rights reserved.

Test Procedure
1. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: Device.DeviceInfo.
 }
 }
}

2. Allow the EUT to send a GetResponse.

Test Metrics
1. In the STOMP frame transporting the GetResponse the content-length header is

present and contains the length of the included body of the message.
2. In the STOMP frame transporting the GetResponse the content-type header is

present and contains application/vnd.bbf.usp.msg.
3. In the STOMP frame transporting the GetReponse the reply-to-dest header is

present and contains the STOMP destination of the EUT.

6.5 STOMP destination - provided in subscribe-dest

Purpose

The purpose of this test is to ensure the EUT correct subscribe to a destination found in the
subscribe-dest header in a CONNECTED frame.

Functionality Tags

Conditional Mandatory (supports the STOMP MTP)

Test Setup
1. Ensure the EUT is configured to use a STOMP server that is part of the test

environment.

Test Procedure
1. Configure the STOMP server to send an unused destination via the subscribe-dest

header in the CONNECTED frames.
2. Reboot the EUT.
3. Allow the EUT to reconnect to the STOMP server.
4. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET

© Broadband Forum. All rights reserved.

}
body {
 request {
 get {
 param_paths: Device.LocalAgent.
 }
 }
}

5. Allow the EUT to respond to the Get message.

Test Metrics
1. The EUT subscribes to the destination configured in step 1.
2. The STOMP frame containing the GetResponse has a reply-to-dest header which

matches the destination configured in step 1.

6.6 STOMP destination - configured in USP data model

Purpose

The purpose of this test is to ensure the EUT can use the
Device.LocalAgent.MTP.{i}.STOMP.Destination parameter to select a STOMP
destination.

Functionality Tags

Conditional Mandatory (supports the STOMP MTP)

Test Steps
1. Ensure the EUT is configured to use a STOMP server that is part of the test

environment.

Test Procedure
1. Send a Set message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: SET
}
body {
 request {
 set {
 update_objs {
 obj_path: Device.LocalAgent.MTP.<active MTP instance>.STOMP.
 param_settings: [
 {
 param: Destination
 value: <new unused destination>
 }
]

© Broadband Forum. All rights reserved.

 }
 }
 }
}

2. Reboot the EUT.
3. Wait for the EUT to reconnect to the STOMP server.
4. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: Device.DeviceInfo.
 }
 }
}

5. Wait for a GetResponse from the EUT.

Test Metrics
1. The EUT subscribes to the destination configured in step 1.
2. The STOMP frame containing the GetResponse has a reply-to-dest header which

contains the STOMP destination configured in step 1.

6.7 STOMP Destination - terminates unconfigured session

Purpose

The purpose of this test is to ensure the EUT terminates a STOMP session when no
destination id configured.

Functionality Tags

Conditionally Mandatory (Implements STOMP)

Test Setup
1. The EUT is configured to use a STOMP server which exists in the test environment.
2. Configure the STOMP server to not provide a subscribe-dest header in the

CONNECTED frame.

Test Procedure
1. Send a Set message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: SET
}

© Broadband Forum. All rights reserved.

body {
 request {
 set {
 update_objs: [
 {
 obj_path: Device.LocalAgent.MTP.<active MTP instance>.STO
MP.
 param_settings: [
 {
 param: Destination
 value: ""
 }
]
 }
]
 }
 }
}

2. Reboot the EUT.
3. Wait for the EUT to attempt to reconnect to the STOMP server.

Test Metrics
1. The EUT terminates the STOMP session after the STOMP server sends a CONNECTION

to the EUT.

6.8 Use of STOMP heartbeat mechanism

Purpose

The purpose of this test is to ensure the EUT can correctly implements the STOMP
heartbeat mechanism and the relavent parameters in the data model.

Functionality Tags

Conditional Mandatory (supports STOMPHeartbeat:1 profile)

Test Setup
1. The EUT is configured to use a STOMP server which exists in the test environment.
2. Ensure the STOMP server supports heartbeats.

Test Metrics
1. Send a Set message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: SET
}
body {
 request {

© Broadband Forum. All rights reserved.

 set {
 update_objs: [
 {
 obj_path: Device.STOMP.Connection.<STOMP server in use>.
 param_settings: [
 {
 param: EnableHeartbeats
 value: true
 },
 {
 param: IncomingHeartbeat
 value: 10
 },
 {
 param: OutgoingHeartbeat
 value: 15
 }
]
 }
]
 }
 }
}

2. Reboot the EUT.
3. Wait for the EUT to reconnect to the STOMP server.
4. Wait for 60 seconds

Test Metrics
1. In the STOMP frame sent to the STOMP server during step 2, the heart-beat header

sent by the EUT contains “15, 10”.
2. After the EUT is connected to the STOMP server, the EUT sends heartbeat messages

every 15 seconds.

6.9 Error Handling - Unprocessed Record

Purpose

The purpose of this test is to ensure the EUT will correctly send an ERROR STOMP frame
when a malformed USP record is received.

Functionality Tags

Conditional Mandatory (supports the STOMP MTP)

Test Setup
1. Ensure the EUT is configured to use a STOMP server that exists in the test

environment.

© Broadband Forum. All rights reserved.

Test Procedure
1. Send a malformed USP record to the EUT.
2. Wait 60 seconds for the EUT to send a response.

Test Metrics
1. The EUT does not send a response to the malformed record.

6.10 Agent’s STOMP destination is changed

Purpose

The purpose of this test is to ensure that when the EUT’s destination is altered it properly
unsubscribes and subscribes to the new destination.

Functionality Tags

Conditional Mandatory (supports the STOMP MTP)

Test Setup
1. Ensure the EUT is configured to use a STOMP server that exists in the test

environment.
2. Ensure the STOMP server is configured to not provide a destination via the

subscribe-dest header.

Test Procedure
1. Send a Set message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: SET
}
body {
 request {
 set {
 update_objs: [
 {
 obj_path: Device.LocalAgent.MTP.<active MTP instance>.STO
MP.
 param_settings: [
 {
 param: Destination
 value: <new destination>
 }
]
 }
]
 }
 }
}

© Broadband Forum. All rights reserved.

Test Metrics
1. After the STOMP destination was changed the EUT sent an UNSUBSCRIBE message

message to the STOMP server.
2. After the EUT sent an UNSUBSCRIBE to the STOMP server it sent a SUBSCRIBE

message with the new destination to the STOMP server.

6.11 STOMP - Use of TLS

Purpose

The purpose of this test is to ensure the EUT can secure STOMP communication via TLS.

Functionality Tags

Conditional Mandatory (supports the STOMP MTP)

Test Setup
1. Ensure the EUT is configured to the use a STOMP server that exists in the test

environment.
2. Ensure the EUT and STOMP server are configured with the appropriate certificates to

communicate over TLS.

Test Procedure
1. Reboot the EUT
2. Wait for the EUT to reconnect to the STOMP server
3. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: Device.DeviceInfo
 }
 }
}

4. Wait for the EUT to send a GetResponse

Test Metrics
1. All communication between the EUT and STOMP server after step 1 are encrypted

using TLS

© Broadband Forum. All rights reserved.

7 WebSocket Test Cases

7.1 Session Establishment

Purpose

The purpose of this test is to ensure the EUT can establish a session using WebSocket as the
MTP.

Functionality Tags

Conditional Mandatory (supports the WebSocket MTP)

Test Setup
1. Ensure the EUT is configured to use WebSocket and to communicate to the controller

that exists in the test environment.

Test Procedure
1. Reboot the EUT.
2. Wait for the EUT to reconnect to the controller.
3. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: Device.DeviceInfo.
 }
 }
}

4. Wait for a GetResponse from the EUT

Test Metrics
1. The EUT is able to establish a WebSocket connection to the controller
2. The EUT sends a GetResponse to the Get message sent in step 3

7.2 Use of only one session

Purpose

The purpose of this test is to ensure the EUT maintains only one WebSocket connection to a
controller at a time.

Functionality Tags

Conditional Mandatory (supports the WebSocket MTP)

© Broadband Forum. All rights reserved.

Test Setup
1. Ensure the EUT is configured to use WebSocket and to comminucate to the controller

that exists in the test environment.

Test Procedure
1. Send a Get message to the EUT using the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: Device.DeviceInfo.
 }
 }
}

2. Open a second WebSocket connection to the EUT
3. Attempt to send the same message from step 1 over the second WebSocket connection

Test Metrics
1. After the second WebSocket connection is opened the EUT closes either the first or

second WebSocket connection.

7.3 Agent session acceptance from Controller

Purpose

The purpose of this test is to ensure an EUT can accept the establishment of a WebSocket
session from a USP controller.

Functionality Tags

Conditional Mandatory (supports the WebSocket MTP with requirement R-WS.6)

Test Setup
1. Ensure the EUT is configured to use WebSockets.
2. Configure the controller to block new WebSocket connections from the EUT.

Test Procedure
1. Reboot the EUT.
2. Open a WebSocket connection to the EUT from the controller.
3. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}

© Broadband Forum. All rights reserved.

body {
 request {
 get {
 param_paths: Device.DeviceInfo.
 }
 }
}

4. Wait for a GetResponse from the EUT.

Test Metrics
1. The EUT allows a WebSocket connection from the controller.
2. The EUT sends a GetResponse.

7.4 Closing a WebSocket Connection

Purpose

The purpose of this test is to ensure the EUT correctly implements the procedure to close a
WebSocket connection.

Functionality Tags

Conditional Mandatory (supports the WebSocket MTP)

Test Setup
1. Ensure the EUT is configured to use WebSocket.
2. Ensure there is an active WebSocket connection between the EUT and the controller

that was initiated by the EUT.

Test Procedure
1. Send a Close WebSocket control frame to the EUT.
2. Wait for the EUT to close the underlying TCP session.

Test Metrics
1. The EUT closes the underlying TCP session after step 1.

7.5 Rejection of Session Establishment

Purpose

The purpose of this test is to ensure the EUT will correctly reject WebSocket sessions.

Functionality Tags

Conditional Mandatory (supports the WebSocket MTP)

Test Setup
1. Ensure the EUT is configured to use WebSocket.

© Broadband Forum. All rights reserved.

2. Configure the controller to reject WebSocket connections from the EUT.

Test Procedure
1. Configure he controller to not include the Sec-WebSocket-Protocol when opening

new WebSocket connections.
2. Reboot the EUT
3. Attempt to start a WebSocket connection to the EUT.

Test Metrics
1. The EUT rejects the WebSocket connection with the missing Sec-WebSocket-Protocol

header.

7.6 Error Handling - Unprocessed Records

Purpose

The purpose of this test is to ensure the EUT correctly closes the WebSocket connection
when a malformed USP Record is receieved.

Functionality Tags

Conditional Mandatory (supports the WebSocket MTP)

Test Setup
1. Ensure the EUT is configured to use WebSocket
2. Ensure there is an active WebSocket connection between the EUT and controller.

Test Procedure
1. Send a malformed USP record to the EUT.

Test Metrics
1. After step 1 the EUT closes the WebSocket connection with a WebSocket Close control

frame containing status code 1003.

7.7 Use of Ping and Pong frames

Purpose

The purpose of this test is to ensure the EUT correctly uses Ping and Pong control frames to
keep the WebSocket session alive.

Functionality Tags

Conditional Mandatory (supports the WebSocket MTP)

Test Setup
1. Ensure the EUT is configured to use WebSocket
2. Ensure there is an active WebSocket session between the EUT and the Controller.

© Broadband Forum. All rights reserved.

Test Procedure
1. Send a Ping control frame to the EUT.
2. Wait up to 60 seconds for a Pong control frame from the EUT.
3. Send a Pong control frame to the EUT.

Test Metrics
1. The EUT sends a Pong control frame in response to the Ping control frame.
2. The EUT doesn’t terminate the WebSocket connection after recieving an unsolicited

Pong control frame.

7.8 WebSocket Session Retry

Purpose

The purpose of this test is to ensure the EUT will correctly attempt to reestablish a
WebSocket session if a session is unexpectedly closed.

Functionality Tags

Conditional Mandatory (supports the WebSocket MTP)

Test Setup
1. Ensure the EUT is configured to use WebSocket.
2. Ensure there is an active WebSocket connection between the EUT and controller.

Test Procedure
1. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: Device.LocalAgent.Controller.<test controller instan
ce>.MTP.<active MTP instance>.
 }
 }
}

1. Configure the controller to reject new WebSocket connections.
2. Terminate the underlying TCP connection on the existing WebSocket connection.
3. Wait for the EUT to attempt to establish a WebSocket connection.
4. Configure the controlle to accept new WebSocket connections.
5. Wait for the EUT to attempt to establish a WebSocket connection.

© Broadband Forum. All rights reserved.

Test Metrics
1. The EUT attempts to start a new WebSocket connection in conformance with the

SessionRetryMinimumWaitInterval parameter.
2. The EUT makes a second attempt to start a new WebSocket connection in

confromance with the SessionRetryMinimumWaitInterval and
SessionRetryIntervalMultiplier parameters.

7.9 Use of TLS

Purpose

The purpose of this test is to ensure the EUT can establish and use a secure WebSocket
connection.

Functionality Tags

Conditional Mandatory (supports the WebSocket MTP)

Test Setup
1. Ensure the EUT is configured to use WebSocket.
2. Ensure the EUT and controller both have the required certificates to secure a

websocket connection.

Test Procedure
1. Reboot the EUT.
2. Wait for the EUT to connect to the controller.
3. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 mgs_type: GET
}
body {
 request {
 get {
 param_paths: Device.DeviceInfo.
 }
 }
}

4. Wait for GetResponse from the EUT.

Test Metrics
1. The EUT starts a WebSocket connection with the controller using TLS.
2. The EUT sends a GetReponse in step 4.

© Broadband Forum. All rights reserved.

8 Discovery Test Cases

8.1 DHCP Discovery - Agent Request Requirements

Purpose

The purpose of this test is to ensure the EUT correctly requests controller information via
DHCP. Note: this test can be run over DHCPv4 or DHCPv6, depending on the deployment
model of the EUT.

Functionality Tags

Conditional Mandatory (supports discovery via DHCP Options)

Test Setup
1. Ensure the EUT is configured to request controller DHCP information.
2. Ensure the EUT is configured to acquire an address via DHCP.

Test Procedure
1. Reboot the EUT.
2. Wait for the EUT to request an address via DHCP.

Test Metrics
1. The EUT includes a Vendor Class option with Enterprise Number 3561 and vendor-

class-data “usp” in the DHCP request.

8.2 DHCP Discovery - Agent handling of received options

Purpose

The purpose of this test is to ensure the EUT can properly handle the USP options provided
by a DHCP server.

Functionality Tags

Conditional Mandatory (supports discovery via DHCP Options)

Test Setup
1. Ensure the EUT is configured to request controller DHCP information
2. Ensure the EUT is configured to acquire an address via DHCP.
3. Ensure the EUT’s ProvisioningCode parameter is set to a value other than that which

will be set during the test procedure.

Test Procedure
1. Configure the DHCP server to provide a null terminated provisioning code.
2. Reboot the EUT.
3. Wait for the EUT to request an address via DHCP.

© Broadband Forum. All rights reserved.

4. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: Device.LocalAgent.Controller.<test controller instan
ce>.
 }
 }
}

5. Wait for the GetResponse from the EUT.

Test Metrics
1. The ProvisioningCode parameter found in the GetReponse matches the provisioning

code configured on the DHCP server.

8.3 DHCP Discovery - FQDN Leads to DNS Query

Purpose

The purpose of this test is to ensure the EUT correctly uses DNS to retrieve additonal
controller information upon receiving a FQDN of a controller.

Functionality Tags

Conditional Mandatory (supports discovery via DHCP Options)

Test Setup
1. Ensure the EUT is configured to request controller information via DHCP.
2. Ensure the EUT is configured to acquire an address via DHCP.

Test Procedure
1. Configure the DHCP server to provide a controller URL with a FQDN.
2. Reboot the EUT.
3. Wait for the EUT to request an address.
4. Wait for the EUT to query the DNS with the FQDN.
5. Wait for the EUT to connect to the controller.

Test Metrics
1. After the EUT receives a FQDN in the DHCP Offer, the EUT uses DNS to retrive

additional information about the controller.

© Broadband Forum. All rights reserved.

8.4 mDNS

Purpose

The purpose of this test is to ensure the EUT correctly implements mDNS.

Functionality Tags

Conditional Mandatory (supports discovery via mDNS, supports the Reboot:1 profile)

Test Setup
1. Ensure the EUT has mDNS enabled.
2. Ensure the controller exists on the same network as the EUT.
3. Ensure that the EUT has the Controller’s URL, which contains “.local.” is preconfigured

on the EUT.
4. Ensure that a Subscription exists for the Boot! event on the EUT with the test

Controller as the Recipient.

Test Procedure
1. Reboot the EUT.
2. Wait for the EUT to send a mDNS request for the FQDN.
3. Allow the controller to respond to the mDNS request.

Test Metrics
1. After the EUT receieves a FQDN via DHCP containing “.local.” the EUT uses mDNS to

resolve it.

8.5 mDNS and Message Transfer Protocols

Purpose

The purpose of this test is to ensure the EUT correctly advertises the MTP it supports. This
use case is exclusive to CoAP, so this test case only applies to CoAP based Endpoints.

Functionality Tags

Conditional Mandatory (supports discovery via mDNS, supports CoAP)

Test Setup
1. Ensure the EUT has mDNS enabled.
2. Ensure the Controller exists on the same network as the EUT.
3. For STOMP connections, ensure the Agent has an active connection to a STOMP

broker.

Test Procedure
1. Reboot the EUT.
2. Wait for the EUT to acquire an address.

© Broadband Forum. All rights reserved.

3. Wait for the EUT to send an unsolicited mDNS response.

Test Metrics
1. The EUT sends an unsolicated multicast DNS response containing in the answer

section a record for each supported MTP.

8.6 DNS - DNS Record Requirements

Purpose

The purpose of this test is to ensure the EUT provides valid DNS-SD records.

Functionality Tags

Conditional Mandatory (supports discovery via mDNS)

Test Setup
1. Ensure mDNS is enabled on the EUT.

Test Procedure
1. Reboot the EUT.
2. Wait for the EUT to acquire a new address.
3. Wait for to the EUT to send a multicast mDNS advertisement.

Test Metrics
1. The EUT sends a multicast mDNS advertisement containing a TXT record for every

supported MTP.
2. Every TXT record in the mDNS advertisement has a “path” and “name” attribute.

8.7 mDNS request response

Purpose

The purpose of this test is to ensure the EUT will respond to mDNS requests.

Functionality Tags

Conditional Mandatory (supports discovery via mDNS)

Test Setup
1. Ensure that the EUT is configured to listen for mDNS requests.

Test Procedure
1. Reboot the EUT.
2. Send an mDNS query to the multicast domain that includes the EUT.
3. Wait for an mDNS response from the EUT.

© Broadband Forum. All rights reserved.

Test Metrics
1. The EUT responds to the mDNS query with the proper information.

9 Functionality Test Cases

9.1 Use of the Timer! Event

Purpose

The purpose of this test is to ensure the Timer! event can be configured, and the EUT
correctly triggers the event.

Functionality Tags

Conditional Mandatory (supports Device.LocalAgent.Controller.{i}.ScheduleTimer()
command)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send an Operate message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: OPERATE
}
body {
 request {
 operate {
 command: "Device.LocalAgent.Controller.<Controller ID>.ScheduleTi
mer()"
 input_args: {
 DelaySeconds: 60
 }
 }
 }
}

2. Wait for the EUT to send a Notification.

Test Metrics
1. The EUT sends an OperateResponse with ScheduleTimer() in the executed_command

element.
2. The EUT sends a Notify message with an event element containing Timer!

© Broadband Forum. All rights reserved.

9.2 Use of Device.LocalAgent.AddCertificate()

Purpose

The purpose of this test is to ensure the AddCertificate() operation on the EUT functions
correctly.

Functionality Tags

Conditional Mandatory (supports Device.LocalAgent.AddCertificate() command)

Test Setups
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Have an alternate certificate that the EUT hasn’t seen.

Test Procedure
1. Send an Operate message to the EUT with the following structure:

 header {
 msg_id: "<msg_id>"
 msg_type: OPERATE
}
body {
 request {
 operate {
 command: Device.LocalAgent.AddCertificate()
 send_resp: true
 input_args: {
 Alias: addedCert
 Certificate: <new certificate>
 }
 }
 }
}

2. Reconfigure the Controller to use the new certificate.

3. Reestablish a connection to the EUT.

4. Send a Get message to the EUT with the following structure:

header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: "Device.LocalAgent.Certificate."

© Broadband Forum. All rights reserved.

 }
 }
}

5. Send an Operate message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: OPERATE
}
body {
 request {
 operate {
 command: Device.LocalAgent.Certificate.<cert instance>.Delete()
 }
 }
}

Test Metrics
1. The EUT sends an OperateResponse after step 1.
2. The EUT accepts the connection after the Controller has been reconfigured to use the

new certificate.
3. The EUT returns a GetResponse after step 4 which contains an instance with an Alias

which matches the certificate added in step 1.
4. The EUT sends an OperateResponse after step 5.

9.3 Upgraded the Agent’s Firmware - Autoactivate enabled

Purpose

The purpose of this test is to ensure the EUT can download firmware and automatically
activate it using the AutoActivate parameter.

Functionality Tags

Conditional Mandatory (supports Firmware:1 profile)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure that the EUT has a Subscription to the TransferComplete! and Boot! events

with the recipient being the instance used for testing.

Test Procedure
1. Send an Operate message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: OPERATE
}

© Broadband Forum. All rights reserved.

body {
 request {
 operate {
 command: Device.LocalAgent.FirmwareImage.<inactive instance>.Down
load()
 input_args: {
 AutoActivate: true
 URL: <firmware URL>
 Username: <optional username>
 Password: <optional password>
 FileSize: <file size>
 }
 }
 }
}

2. Wait for the EUT to send a Notification
3. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: Device.DeviceInfo.
 }
 }
}

Test Metrics
1. The EUT sends a Notify message after step 1 containing a oper_complete element with

a command_name of Download()
2. The EUT sends a Notify message with a TransferComplete! event.
3. The EUT sends a Notify message with a Boot! event, with the FirmwareUpdated

argument set to true.
4. The EUT sends a GetResponse message after step 3 which shows that

Device.DeviceInfo.ActiveFirmwareImage matches the FirmwareImage instance on
which the Download() operation was called; also that
Device.LocalAgent.SoftwareVersion matches the expected version.

9.4 Upgrading the Agent’s Firmware - Using TimeWindow, Immediate

Purpose

The purpose of this test is to ensure the EUT can activate a firmware image when a
TimeWindow object is used with Immediately mode.

© Broadband Forum. All rights reserved.

Functionality Tags

Conditional Mandatory (supports Firmware:1 profile with Activate() operation)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure the EUT has a FirmwareImage instance containing inactive firmware.
3. Ensure the EUT has a Subscription instance for Boot! with the used for testing set as

the Recipient.

Test Procedure
1. Send an Operate message to the EUT with the following structure:
header {
 mgs_id: "<msg_id>"
 msg_type: OPERATE
}
body {
 request {
 operate {
 command: "Device.DeviceInfo.FirmwareImage.<instance>.Activate()"
 input_args: {
 TimeWindow.1.Start: 1
 TimeWindow.1.End: 100
 TimeWindow.1.Mode: Immediately
 }
 }
 }
}

2. Wait for Notify message from the EUT.
3. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: "Device.DeviceInfo.SoftwareVersion"
 }
 }
}

Test Metrics
1. The EUT sends a Notify message within 5 seconds with an OperationComplete element

with a command_name of Activate().

© Broadband Forum. All rights reserved.

2. The EUT sends a Notify message with a Boot! event and a FirmwareUpdated argument
set to true.

3. The EUT responds to the Get message with a GetResponse containing a
SoftwareVersion element with the expected software version.

9.5 Upgrading the Agent’s Firmware - Using TimeWindow, AnyTime

Purpose

The pupose of this test is to ensure the EUT can activate a firmware image when a
TimeWindow instance used with the AnyTime mode.

Functionality Tags

Conditonally Mandatory (implements Firmware:1 and Activate() operation)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure the EUT has a FirmwareImage instance containing inactive firmware.
3. Ensure the EUT has a Subscription to the Boot! event with the Controller used for

testing set as the Recipient.

Test Procedure
1. Send an Operate message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 mdg_type: OPERATE
}
body {
 request {
 operate {
 command: "Device.DeviceInfo.FirmwareImage.<inactive instance>.Act
ivate()"
 input_args: {
 TimeWindow.1.Start: 0
 TimeWindow.1.End: 120
 TimeWindow.1.Mode: AnyTime
 }
 }
 }
}

2. Wait for a Notify message from the EUT.
3. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET

© Broadband Forum. All rights reserved.

}
body {
 request {
 get {
 param_paths: "Device.DeviceInfo.SoftwareVersion"
 }
 }
}

Test Metrics
1. The EUT sends a Notify message within 2 minutes after step 1.
2. The Notify message has a OperationComplete element.
3. The EUT sends a Notify message with a Boot! event and a FirmwareUpdated argument

set to true.
4. The EUT sends a GetResponse after step 3 with a SoftwareVersion parameter that

matches the expected version.

9.6 Upgrading the Agent’s Firmware - Validated Firmware

Purpose

The purpose of this test is to ensure the EUT can validate the integrity of downloaded
firmware.

Functionality Tags

Conditional Mandatory (supports Firmware:1 profile)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure that the EUT has a Subscription to the TransferComplete! event with the

recipient being the instance used for testing.

Test Procedure
1. Send an Operate message to the EUT with the following structure using an invalid

checksum:
header {
 msg_id: "<msg_id>"
 msg_type: OPERATE
}
body {
 request {
 operate {
 command: "Device.DeviceInfo.FirmwareImage.<inactive slot>.Downloa
d()"
 input_args: {
 URL: <firmware URL>

© Broadband Forum. All rights reserved.

 CheckSumAlgorithm: "SHA-1"
 CheckSum: "<invalid checksum>"
 }
 }
 }
}

2. Wait for a Notify message from the EUT.
3. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: "Device.DeviceInfo.FirmwareImage.<previously used in
stance>."
 }
 }
}

Test Metrics
1. The EUT sends a Notify message with an OperationComplete element.
2. The ETU sends a Notify message with a TransferComplete! event.
3. The EUT sends a Get response with a Status parameter of ValidationFailed.

9.7 Upgrading the Agent’s Firmware - Download to Active Bank

Purpose

The purpose of this test is to ensure the EUT is capable downloading and installing new
firmware for EUTs that may support only the active firmware bank.

Functionality Tags

Conditional Mandatory (supports Firmware:1 profile)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure that the EUT has a Subscription to the TransferComplete! event with the

recipient being the instance used for testing.
3. Ensure the EUT has a Subscription to the Boot! event and the Controller used for

testing is set as the Recipient.
4. Record the number of firmware banks the EUT supports.

© Broadband Forum. All rights reserved.

Test Procedure
1. Send an Operate message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: OPERATE
}
body {
 request {
 operate {
 command: "Device.DeviceInfo.FirmwareImage.<active firmware slot>.
Download()"
 input_args: {
 URL: "<firmware URL>"
 AutoActivate: true
 }
 }
 }
}

2. Wait for a Notify message from the EUT.

Test Metrics
1. The EUT sends a Notify message with an OperationComplete or, if multiple firmware

banks are supported, an error indicating that downloading to an active firmware slot
is not allowed.

2. If an OperationComplete Notification is sent, the EUT sends a Notify message with a
Boot! event and a FirmwareUpdated argument set to true.

9.8 Upgrading the Agent’s Firmware - Cancelling a request using the Cancel()
command

Purpose

The purpose of this test is to ensure the EUT can correctly cancel a Download() operation.

Functionality Tags

Conditional Mandatory (supports Firmware:1 profile and
Device.LocalAgent.Request.{i}.Cancel() operation)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. Ensure the EUT has inactive firmware in one of FirmwareImage slots.
3. Ensure the EUT has a subscription to the Boot! event with the Controller used for

testing set as the Recipient.

© Broadband Forum. All rights reserved.

Test Procedure
1. Send an Operate message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: OPERATE
}
body {
 request {
 operate {
 command: Device.DeviceInfo.FirmwareImage.<valid instance>.Activat
e()
 input_args: {
 TimeWindow.1.Start: 120
 TimeWindow.1.End: 500
 TimeWindow.1.Mode: AnyTime
 }
 send_resp: true
 }
 }
}

2. Send an message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: OPERATE
}
body {
 request {
 operate {
 command: Device.LocalAgent.Request.<returned in step 1>.Cancel()
 }
 }
}

3. Wait up to 500 seconds for a Boot! event from the EUT.
4. Send a Get message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: Device.LocalAgent.Request.
 }
 }
}

© Broadband Forum. All rights reserved.

Test Metrics
1. The EUT sends a OperationResponse after step 1 with a executed_command element

of Activate() and a req_obj_path referencing an entry in the Device.LocalAgent.Request
table.

2. The EUT never sends a Boot! event.
3. In the GetResponse from the EUT after step 4, the Request instance is either non-

existent or the Status parameter of the relevant request is either Cancelled or
Cancelling.

9.9 Adding a New Controller - OnBoardRequest

Purpose

The purpose of this test is to ensure the EUT can handle the manual adding of a new
Controller.

Functionality Tags

Conditional Mandatory (supports Controller:1 profile with the ability to create instances of
the Device.LocalAgent.Controller. object)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.
2. A valid role instance is configured on the EUT for use with the new certificate.
3. A valid certificate instance is configured on the EUT
4. A secondary Controller is configured and ready to communicate with another

endpoint.

Test Procedure
1. Send an Add message to the EUT with the following structure.
header {
 msg_id: "<msg_id>"
 msg_type: ADD
}
body {
 request {
 add {
 create_objs {
 obj_path: Device.LocalAgent.Controller.
 param_settings: [
 {
 param: Alias
 value: usp-111-Controller
 },
 {
 param: EndpointID
 value: <new Controller endpoint ID>

© Broadband Forum. All rights reserved.

 },
 {
 param: Enable
 value: true
 },
 {
 param: AssignedRole
 value: <valid role instance>
 }
]
 }
 }
 }
}

2. Send an Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: ADD
}
body {
 request {
 add {
 obj_path: Device.LocalAgent.Controller.<new Controller instance>.
MTP.
 param_setttings: [
 {
 param: Enable
 value: true
 },
 {
 param: Protocol
 value: <supported MTP>
 },
 .
 .
 <configure supported MTP>
 .
 .
]
 }
 }
}

3. Send an Operate message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: OPERATE
}
body {

© Broadband Forum. All rights reserved.

 request {
 operate {
 command: Device.LocalAgent.Controller.<new instance>.SendOnBoardR
equest()
 }
 }
}

4. Allow the secondary Controller to receive the OnBoardRequest() and send a
NotifyResponse.

Test Metrics
1. The EUT is able to start a session with the secondary Controller.
2. The EUT sends a Notify message to the secondary Controller containing an

OnBoardRequest element.

9.10 Use of the Boot! event and BootParameters

Purpose

The purpose of this test is to ensure the EUT correctly triggers the Boot! event and
correctly includes the configured BootParameters.

Functionality Tags

Conditional Mandatory (supports Reboot:1 profile)

Test Setup
1. Ensure that the EUT and test equipment have the necessary information to send and

receive USP Records to each other.

Test Procedure
1. Send an Add message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: ADD
}
body {
 request {
 add {
 create_objs: [
 {
 obj_path: Device.LocalAgent.Subscription.
 param_settings: [
 {
 param: NotifType
 value: Event
 },
 {

© Broadband Forum. All rights reserved.

 param: ReferenceList
 value: Device.Boot!
 },
 {
 param: Enable
 value: true
 }
]
 },
 {
 obj_path: Device.LocalAgent.Controller.<Controller instan
ce>.BootParameter.
 param_settings: [
 {
 param: Enable
 value: true
 },
 {
 param: ParameterName
 value: Device.DeviceInfo.BootFirmwareImage
 }
]
 }
]
 }
 }
}

2. Send an Operate message to the EUT with the following structure:
header {
 msg_id: "<msg_id>"
 msg_type: OPERATE
}
body {
 request {
 operate {
 command: Device.Reboot()
 }
 }
}

3. Wait for a Notify message from the EUT.

Test Metrics
1. After step 2 the EUT sends a Notify message with an event element containing a

ParameterMap argument with Device.LocalAgent.BootFirmwareImage

	Revision History
	Release 1.0

	Editors
	Work Area Directors
	Introduction
	Executive Summary
	Purpose
	Scope
	Test Equipment
	Test Setup and Execution
	Basic Test Setup
	Mandatory vs. Conditional Mandatory Tests
	Endpoint Requirements and Metadata Collection
	Required Profiles
	Additional Test Cases Required by Profile and Option Support

	Elements Specified in the Test Procedure
	Required EUT Information and Resources

	Clean-Up Procedures

	Universal Test Metrics
	Notes about test case descriptions
	Use of examples

	USP Agent Test Cases
	1 Messages and Path Names
	1.1 Add message with allow partial false, single object, required parameters succeed
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.2 Add message with allow partial true, single object, required parameters succeed
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.3 Add message with allow partial false, single object, required parameters fail
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.4 Add message with allow partial false, single invalid object
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.5 Add message with allow partial false, multiple objects
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.6 Add message with allow partial false, multiple objects with an invalid object
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.7 Add message with allow partial false, multiple objects, required parameters fail in single object
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.8 Add message with allow partial true, required parameters fail, invalid value, single object
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.9 Add message with allow partial true, required parameters fail, multiple objects
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.10 Add message with unique key addressing in path
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.11 Set message with allow partial false, required parameters pass
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.12 Set message with allow partial true, required parameters pass
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.13 Set message with allow partial false, multiple objects
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.14 Set message with allow partial false, required parameters fail
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.15 Set message with allow partial false, multiple objects, required parameters fail in single object
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.16 Set message with allow partial true, required parameter fails, multiple objects
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.17 Set message with allow partial true, non-required parameter fails, multiple parameters
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.18 Set message with unique key addressing in path
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.19 Set message with wildcard search path, allow partial false, required parameters pass
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.20 Set message with wildcard search path, allow partial false, required parameters fail
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.21 Set message with wildcard search path, allow partial true, required parameters fail
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.22 Set message with search expression search path
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.23 Set message with invalid path
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.24 Delete message with allow partial false, valid object instance
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.25 Delete message with allow partial false, object instance doesn’t exist
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.26 Delete message with allow partial false, invalid object
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.27 Delete message with allow partial false, multiple objects
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.28 Delete message with allow partial false, multiple objects, invalid object
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.29 Delete message with allow partial true, object instance doesn’t exist
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.30 Delete message with allow partial true, invalid object
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.31 Delete message with allow partial true, multiple objects, invalid object
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.32 Delete message with allow partial true, multiple objects, object doesn’t exist
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.33 Delete message with unique key addressing
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.34 Delete message with wildcard search path, valid objects
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.35 Delete message with search expression search path
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.36 Get message with full parameter path
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.37 Get message with multiple full parameter paths, same object
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.38 Get message with multiple full parameter paths, different objects
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.39 Get message with object path
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.40 Get message with object instance path
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.41 Get message with invalid parameter
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.42 Get message with invalid parameter and valid parameter
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.43 Get message using unique key addressing
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.44 Get message using wildcard search path on full parameter
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.45 Get message using wildcard search path on object path
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.46 Get message using search expression search path (equivalence)
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.47 Get message using search expression search path (non-equivelance)
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.48 Get message using search expression search path (exclusive greater comparison)
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.49 Get message using search expression search path (exclusive lesser comparison)
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.50 Get message using search expression search path (inclusive greater comparison)
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.51 Get message using search expression search path (inclusive lesser comparison)
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.52 Notify - Subscription creation using Value Change
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.53 Notify - Subscription Deletion Using Value Change
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.54 Notification Retry using Value Change
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.55 Subscription Expiration using Value Change
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.56 Notification Retry Expiration using Value Change
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.57 ObjectCreation Notification
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.58 ObjectDeletion Notification
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.59 Event Notification using Periodic!
	Purpose
	Functionality Tag

	Test Setup
	Test Procedure
	Test Metrics
	1.60 OnBoardRequest Notification
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.61 Operate message using Reboot() with send_resp true
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.62 Operate message using Reboot() with send_resp false
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.63 Operate message using input arguments
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.64 Asynchronous operation with send_resp true
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.65 Asynchronous operation with send_resp false
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.66 GetInstances using a single object, first_level_only true
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.67 GetInstances using a single object, first_level_only false
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.68 GetInstances with multiple objects
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.69 GetInstances with root object
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.70 GetInstances with wildcard search path
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.71 GetInstances with search expression search path
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.72 GetSupportedDM using a single object, first_level_only false, all options
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.73 GetSupportedDM using a single object, first_level_only true, all options
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.74 GetSupportedDM using a single object, first_level_only true, no options
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.75 GetSupportedDM using multiple objects, first_level_only true, all options
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.76 GetSupportedDM on root object, all options
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	1.77 GetSupportedDM on unsupported object
	Procedure
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	2 Authentication and Access Control Test Cases
	2.1 Agent does not accept messages from its own Endpoint ID
	Purpose
	Functionality Tag
	Test Setup
	Test Steps
	Test Metrics

	2.2 Agent rejects messages that do not contain its to_id in the USP Record
	Purpose
	Functionality Tags
	Test Setup
	Test Steps
	Test Metrics

	2.3 Agent does not process messages without ’s certificate information
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	2.4 Agent rejects messages from Endpoint IDs that are not in subjectAltName
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	2.5 Agent use of self-signed certificates
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	2.6 Connecting without absolute time
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	2.7 Agent ignores unsigned or invalid Record signatures
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	2.8 Agent ignores invalid TLS certificate
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	2.9 Use of the Untrusted role
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	2.10 Adding a Role
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	2.11 Permissions - Object Creation Allowed
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	2.12 Permissions - Object Creation Not Allowed
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	2.13 Permissions - Object Deletion Allowed
	Purpose
	Functionality Tags
	Test Setup
	Test Metrics

	2.14 Permissions - Object Deletion Not Allowed
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	2.15 Permissions - Parameter Update Allowed
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	2.16 Permissions - Parameter Update Not Allowed
	Purpose
	Functionality Tags
	Test Setup
	Test Steps
	Test Metrics

	2.17 Permissions - Operation Allowed
	Purpose
	Functionality Tags
	Test Setup
	Test Steps
	Test Metrics

	2.18 Permissions - Operation Not Allowed
	Purpose
	Functionality Tags
	Test Setup
	Test Steps
	Test Metrics

	2.19 Permissions - Value Change Notification Allowed on Parameter
	Purpose
	Functionality Tags
	Test Setup
	Test Steps
	Test Metrics

	2.20 Permissions - Value Change Notification Not Allowed on Parameter
	Purpose
	Functionality Tags
	Test Setup
	Test Steps
	Test Metrics

	2.21 Permissions - Overlapping Permissions
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	2.22 Using Get when no read permissions are available on some parameters
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	3 USP Record Test Cases
	3.1 Bad request outside a session context
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	3.2 Agent Verifies Non-Payload Field Integrity
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	3.3 Agent rejects invalid signature starting a session context
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	3.4 Using TLS for USP Record Integrity
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	3.5 Failure to Establish TLS
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	3.6 Agent ignores TLS renegotiation for E2E message exchange
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	3.7 Use of X.509 Certificates
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	3.8 Establishing a Session Context
	Purpose
	Functionality Tag
	Test Setup
	Test Procedure
	Test Metrics

	3.9 Receipt of a Record out of a Session Context
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	3.10 Session Context Expiration
	Purpose
	Fuctionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	3.11 Use of Sequence ID and Expected ID
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	3.12 Preservation of USP Records
	Functionality Tags
	Test Setup
	Test Procedures
	Test Metrics

	3.13 Agent Rejects Records with Different Payload Security than the Established Context
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	3.14 Use of retransmit_id
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	3.15 Handling Duplicate Records
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	4 General MTP Test Cases
	4.1 Use of X.509 certificates at the MTP layer
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	5 CoAP Test Cases
	5.1 Mapping a USP Record to a CoAP message
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	5.2 USP Records that exceed CoAP message size
	Purpose
	Funtionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	5.3 Successful CoAP exchange
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	5.4 Failed CoAP exchange - timeout
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	5.5 Failed CoAP Exchange - Invalid Method
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	5.6 Failed CoAP Exchange - Invalid Content-Format
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	5.7 Failed CoAP Exchange - Invalid USP Record
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	5.8 Use of DTLS
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	6 STOMP Test Cases
	6.1 Support of Required Profiles
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	6.2 STOMP session establishment
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	6.3 STOMP Connection Retry
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	6.4 Successful USP message over STOMP with required headers
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	6.5 STOMP destination - provided in subscribe-dest
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	6.6 STOMP destination - configured in USP data model
	Purpose
	Functionality Tags
	Test Steps
	Test Procedure
	Test Metrics

	6.7 STOMP Destination - terminates unconfigured session
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	6.8 Use of STOMP heartbeat mechanism
	Purpose
	Functionality Tags
	Test Setup
	Test Metrics
	Test Metrics

	6.9 Error Handling - Unprocessed Record
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	6.10 Agent’s STOMP destination is changed
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	6.11 STOMP - Use of TLS
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	7 WebSocket Test Cases
	7.1 Session Establishment
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	7.2 Use of only one session
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	7.3 Agent session acceptance from Controller
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	7.4 Closing a WebSocket Connection
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	7.5 Rejection of Session Establishment
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	7.6 Error Handling - Unprocessed Records
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	7.7 Use of Ping and Pong frames
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	7.8 WebSocket Session Retry
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	7.9 Use of TLS
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	8 Discovery Test Cases
	8.1 DHCP Discovery - Agent Request Requirements
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	8.2 DHCP Discovery - Agent handling of received options
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	8.3 DHCP Discovery - FQDN Leads to DNS Query
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	8.4 mDNS
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	8.5 mDNS and Message Transfer Protocols
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	8.6 DNS - DNS Record Requirements
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	8.7 mDNS request response
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	9 Functionality Test Cases
	9.1 Use of the Timer! Event
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	9.2 Use of Device.LocalAgent.AddCertificate()
	Purpose
	Functionality Tags
	Test Setups
	Test Procedure
	Test Metrics

	9.3 Upgraded the Agent’s Firmware - Autoactivate enabled
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	9.4 Upgrading the Agent’s Firmware - Using TimeWindow, Immediate
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	9.5 Upgrading the Agent’s Firmware - Using TimeWindow, AnyTime
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	9.6 Upgrading the Agent’s Firmware - Validated Firmware
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	9.7 Upgrading the Agent’s Firmware - Download to Active Bank
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	9.8 Upgrading the Agent’s Firmware - Cancelling a request using the Cancel() command
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	9.9 Adding a New Controller - OnBoardRequest
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

	9.10 Use of the Boot! event and BootParameters
	Purpose
	Functionality Tags
	Test Setup
	Test Procedure
	Test Metrics

