
Technical Report

TR-369
The User Services Platform
Issue: 1 Amendment 3 Corrigendum 1

October 2023

© The Broadband Forum. All rights reserved

The User Services Platform TR-369

Notice

The Broadband Forum is a non-profit corporation organized to create guidelines for broadband
network system development and deployment. This Technical Report has been approved by
members of the Forum. This Technical Report is subject to change. This Technical Report is
owned and copyrighted by the Broadband Forum, and all rights are reserved. Portions of this
Technical Report may be owned and/or copyrighted by Broadband Forum members.

Intellectual Property

Recipients of this Technical Report are requested to submit, with their comments, notification
of any relevant patent claims or other intellectual property rights of which they may be aware
that might be infringed by any implementation of this Technical Report, or use of any software
code normatively referenced in this Technical Report, and to provide supporting documenta-
tion.

Terms of Use

1. License

Broadband Forum hereby grants you the right, without charge, on a perpetual, non-exclusive
and worldwide basis, to utilize the Technical Report for the purpose of developing, making,
having made, using, marketing, importing, offering to sell or license, and selling or licensing,
and to otherwise distribute, products complying with the Technical Report, in all cases subject
to the conditions set forth in this notice and any relevant patent and other intellectual property
rights of third parties (which may include members of Broadband Forum). This license grant
does not include the right to sublicense, modify or create derivative works based upon the
Technical Report except to the extent this Technical Report includes text implementable in com-
puter code, in which case your right under this License to create and modify derivative works is
limited to modifying and creating derivative works of such code. For the avoidance of doubt,
except as qualified by the preceding sentence, products implementing this Technical Report are
not deemed to be derivative works of the Technical Report.

2. NO WARRANTIES

THIS TECHNICAL REPORT IS BEING OFFERED WITHOUT ANY WARRANTY WHATSO-
EVER, AND IN PARTICULAR, ANY WARRANTY OF NONINFRINGEMENT AND ANY IM-
PLIED WARRANTIES ARE EXPRESSLY DISCLAIMED. ANY USE OF THIS TECHNICAL RE-
PORT SHALL BE MADE ENTIRELY AT THE USER’S OR IMPLEMENTER’S OWN RISK, AND
NEITHER THE BROADBAND FORUM, NOR ANY OF ITS MEMBERS OR SUBMITTERS,
SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY USER, IMPLEMENTER, OR THIRD
PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER, DIRECTLY OR INDIRECTLY,
ARISING FROM THE USE OF THIS TECHNICAL REPORT, INCLUDING BUT NOT LIMITED
TO, ANY CONSEQUENTIAL, SPECIAL, PUNITIVE, INCIDENTAL, AND INDIRECT DAM-
AGES.

3. THIRD PARTY RIGHTS

October 2023 © The Broadband Forum. All rights reserved 2 of 275

The User Services Platform TR-369

Without limiting the generality of Section 2 above, BROADBAND FORUM ASSUMES NO RE-
SPONSIBILITY TO COMPILE, CONFIRM, UPDATE OR MAKE PUBLIC ANY THIRD PARTY
ASSERTIONS OF PATENT OR OTHER INTELLECTUAL PROPERTY RIGHTS THAT MIGHT
NOW OR IN THE FUTURE BE INFRINGED BY AN IMPLEMENTATION OF THE TECHNICAL
REPORT IN ITS CURRENT, OR IN ANY FUTURE FORM. IF ANY SUCH RIGHTS ARE DE-
SCRIBED ON THE TECHNICAL REPORT, BROADBAND FORUM TAKES NO POSITION AS
TO THE VALIDITY OR INVALIDITY OF SUCH ASSERTIONS, OR THAT ALL SUCH ASSER-
TIONS THAT HAVE OR MAY BE MADE ARE SO LISTED.

All copies of this Technical Report (or any portion hereof) must include the notices, legends,
and other provisions set forth on this page.

October 2023 © The Broadband Forum. All rights reserved 3 of 275

The User Services Platform TR-369

Issue History

Issue Number Approval Date Changes
Release 1.0 April 2018 Release contains specification for the User Services Plat-

form 1.0

Corresponds to TR-181 Issue 2 Amendment 12
Release 1.0.1 August 2018 • Added examples and clarifications to end-to-end mes-

saging, use of endpoint ID, typographical fixes
Release 1.0.2 November 2018 • Typographical and example fixes
Release 1.1 October 2019 Release contains specification for the User Services Plat-

form 1.1

• Adds MQTT support as a Message Transfer Protocol
• Adds a theory of operations for IoT control using USP

Agents
• Clarifications on protocol functions, error messages,

and updates to examples

Corresponds to TR-181 Issue 2 Amendment 13
Release 1.1.1 April 2020 Regenerated data model HTML using fixed version of the

BBF report tool
Release 1.1.2 August 2020 Clarifies several examples, requirements, and error types
Release 1.1.3 November 2020 Corresponds to TR-106 Amendment 10 and TR-181 Issue

2 Amendment 14
Release 1.1.4 November 2020 Corresponds to TR-181 Issue 2 Amendment 14

Corrigendum 1
Release 1.2 January 2022 Release contains specification for the User Services Plat-

form 1.2

• Clarify the expected responses in result of an Operate
message (R-OPR.4)

• Deprecates the use of COAP as an MTP
• GetSupportedDM

• now provides the data types for parameter values
• now allows the Agent to provide information about

whether or not it will ignore ValueChange subscrip-
tions on a given parameter

• now provides information about whether a command
is synchronous vs. asynchronous

• now allows requests on specific object instances and
handles divergent data models

October 2023 © The Broadband Forum. All rights reserved 4 of 275

https://www.broadband-forum.org/download/TR-369_Issue-1.pdf
https://github.com/BroadbandForum/usp-data-models/releases/tag/v1.0.0
https://www.broadband-forum.org/download/TR-369_Corrigendum-1.pdf
https://www.broadband-forum.org/download/TR-369_Corrigendum-2.pdf
https://www.broadband-forum.org/download/TR-369_Amendment-1.pdf
https://github.com/BroadbandForum/usp-data-models/releases/tag/v1.1.0
https://github.com/BroadbandForum/data-model-template/releases/tag/v1.10.0
https://github.com/BroadbandForum/usp-data-models/releases/tag/v1.1.3
https://github.com/BroadbandForum/usp-data-models/releases/tag/v1.1.3
https://github.com/BroadbandForum/usp-data-models/releases/tag/v1.1.4
https://github.com/BroadbandForum/usp-data-models/releases/tag/v1.1.4
https://www.broadband-forum.org/download/TR-369_Amendment-2.pdf

The User Services Platform TR-369

• Defines discovery mechanisms for Endpoints connected
to STOMP and MQTT brokers

• Clarifies the use of search paths vs. unique key address-
ing in the Add message

• Clarifies the use of required parameters and defaults for
unique keys in the Add message

• Annex A

• now provides a theory of operations for use of the
USPEventNotif mechanism for bulk data collection
using the Push! event

• defines a new bulk data collection over MQTT mech-
anism

• DHCP discovery mechanism now provides a Controller
Endpoint ID to the Agent

• Enhances ease of use and clarifies requirements for use
of TLS in USP Record integrity

• New USP records

• adds USP connect and disconnect records for use in-
dependent of MTP

• adds USP Record specific error mechanism and error
codes

• MQTT and STOMP no longer silently drop errors;
they now report errors in the USP Record.

• USP Records can now include an empty payload
• Get requests

• can now include a max_depth flag to limit response
size

• Get response format has been clarified to return sepa-
rate elements for sub-object

• Clarifies the requirements around processing an entire
message in the event of a failed operation when allow_-
partial is true vs. false

• Clarifies the response behavior for Get, Set, and Delete
when using a path that matches no instances

• Fixes and enhances the use of error codes for the Oper-
ate message

• Clarifies and updates Controller credential/authentica-
tion theory of operations and flow diagrams

• Clarifies the use of subjectAltName in certificates
• Clarifies R-E2E.4

October 2023 © The Broadband Forum. All rights reserved 5 of 275

The User Services Platform TR-369

• Deprecated and Obsolete terms are now defined in the
References and Terminology section

• Updated R-E3E.43
• Deprecates R-MSG.2
• Deprecates R-E2E.2
• R-E2E.42 now makes TLS renegotiation forbidden
• Modifies R-NOT.9 and adds R-NOT.10 adjusting how

the Agent and Controller should handle the subscrip-
tion_id field

Corresponds to TR-106 Amendment 11 and TR-181 Issue
2 Amendment 15

Release 1.3 June 2023 Release contains the specification for the User Services
Platform 1.3

• Adds Appendix VI, “Software Modularization and USP-
Enabled Applications Theory of Operation”

• Adds new Unix Domain Socket MTP
• Adds two new messages, “Register” and “Deregister”,

and associated error codes (primarily for use with Ap-
pendix VI but can be used in many scenarios)

• Adds new Software Module Management features
• Adds a note about the use of the new TriggerAction pa-

rameter in Subscription objects
• Updates “Authentication and Authorization” to include

the use of new SecuredRole
• Updates the Add message to allow for Search Paths and

clarifies the application of permissions during Add mes-
sages

• Obsoletes CoAP as an MTP
• Adds two new requirements regarding Unique Key im-

mutability
• Clarifies how Set should respond when using a Search

Path where one or more objects fail to update
• Updates the use of EndpointID in WebSocket argu-

ments and adds an fqdn authority scheme
• Addesses a potential attack vector with using MQTT,

and updates other MQTT behavior
• Updates Annex A to explain use of the “Exclude” para-

meter
• Updates Discovery to include the use of DHCP options

for agent-device association

October 2023 © The Broadband Forum. All rights reserved 6 of 275

https://github.com/BroadbandForum/data-model-template/releases/tag/v1.11.0
https://github.com/BroadbandForum/usp-data-models/releases/tag/v1.2.0
https://github.com/BroadbandForum/usp-data-models/releases/tag/v1.2.0
https://www.broadband-forum.org/download/TR-369_Amendment-3.pdf

The User Services Platform TR-369

• Adds a note about USP protocol versioning and Con-
troller/Agent behavior

• Clarifies and updates the use of certain error codes
• Clarifies the behavior of Get messages when asking for

specific Multi-Instance Objects that don’t exist
• Clarifies some behavior when responding via USP

Records
• Updates message flow diagrams to remove the implica-

tion of ordered responses
• Adds new requirement R-SEC.4b for Trusted Brokers

Release 1.3.1 October 2023 This Corrigendum has the following fixes

• Fix example by populating the empty UNIX Domain
Socket references

• Small fixes to UDS example images
• Fix UnixDomainSocket path in example

Editors

Name Company Email Role
Barbara Stark AT&T barbara.stark@att.com Editor/USP Project Lead
Tim Spets Assia tspets@assia-inc.com Editor/USP Project Lead
Jason Walls QA Cafe, LLC jason@qacafe.com Editor/Broadband User Ser-

vices Work Area Director
John Blackford Commscope john.blackford@comm-

scope.com
Editor/Broadband User Ser-
vices Work Area Director

Acknowledgments

Name Company Email
Jean-Didier Ott Orange jeandidier.ott@orange.com
Timothy Carey Nokia timothy.carey@nokia.com
Steven Nicolai Arris Steven.Nicolai@arris.com
Apostolos Papageorgiou NEC apostolos.Papageorgiou@neclab.eu
Mark Tabry Google mtab@google.com
Klaus Wich Huawei klaus.wich@huawei.com
Daniel Egger Axiros daniel.egger@axiros.com
Bahadir Danisik Nokia bahadir.danisik@nokia.com
William Lupton Broadband Forum wlupton@broadband-forum.org
Matthieu Anne Orange matthieu.anne@orange.com

October 2023 © The Broadband Forum. All rights reserved 7 of 275

https://www.broadband-forum.org/download/TR-369_Amendment-3_Corrigendum-1.pdf

The User Services Platform TR-369

Thales Fragoso Axiros thales.fragoso@axiros.com

October 2023 © The Broadband Forum. All rights reserved 8 of 275

The User Services Platform TR-369

Table of Contents
1 Introduction .. 17

1.1 Executive Summary .. 17
1.2 Purpose and Scope .. 17

1.2.1 Purpose .. 18
1.2.2 Scope .. 18

1.3 References and Terminology .. 18
1.3.1 Conventions .. 18
1.3.2 References ... 19

1.4 Definitions .. 21
1.5 Abbreviations ... 26
1.6 Specification Impact ... 28

1.6.1 Energy efficiency ... 28
1.6.2 Security .. 28
1.6.3 Privacy ... 28

2 Architecture .. 28
2.1 Endpoints .. 29

2.1.1 Agents .. 31
2.1.2 Controllers .. 31

2.2 Endpoint Identifier ... 31
2.2.1 Use of authority-scheme and authority-id .. 31
2.2.2 Use of instance-id .. 34

2.3 Service Elements ... 34
2.4 Data Models ... 35

2.4.1 Instantiated Data Model .. 35
2.4.2 Supported Data Model ... 35
2.4.3 Objects ... 35
2.4.4 Parameters .. 36
2.4.5 Commands .. 36
2.4.6 Events ... 36

2.5 Path Names ... 36
2.5.1 Relative Paths ... 37
2.5.2 Using Instance Identifiers in Path Names ... 38
2.5.3 Searching ... 39
2.5.4 Searching with Expressions .. 39
2.5.5 Searching by Wildcard ... 41

2.6 Other Path Decorators ... 41
2.6.1 Reference Following ... 41
2.6.2 Operations and Command Path Names ... 43
2.6.3 Event Path Names ... 44

2.7 Data Model Path Grammar ... 44

October 2023 © The Broadband Forum. All rights reserved 9 of 275

The User Services Platform TR-369

2.7.1 BNF Diagrams for Instantiated Data Model ... 44
2.7.2 BNF Diagrams for Supported Data Model .. 51

3 Discovery and Advertisement .. 52
3.1 Controller Information .. 52
3.2 Required Agent Information .. 53
3.3 Use of DHCP for Acquiring Controller Information .. 53

3.3.1 DHCP Options for Controller Discovery ... 53
3.4 Use of DHCP for Exchanging GatewayInfo ... 54

3.4.1 Exchanging DHCP Options .. 54
3.4.2 DHCP Encapsulated Vendor-Specific Option-Data fields for ... 54
3.4.3 DHCP Encapsulated Vendor-Specific Option-Data fields for ... 55

3.5 Using mDNS ... 56
3.6 Using DNS .. 56
3.7 DNS-SD Records ... 56

3.7.1 IANA-Registered USP Service Names .. 57
3.7.2 Example Controller Unicast DNS-SD Resource Records ... 58
3.7.3 Example Agent Multicast DNS-SD Resource Records .. 58
3.7.4 Example Controller Multicast DNS-SD Resource Records .. 58

3.8 Using the SendOnBoardRequest() operation and OnBoardRequest 59

4 Message Transfer Protocols .. 59
4.1 Generic Requirements ... 59

4.1.1 Supporting Multiple MTPs .. 59
4.1.2 Securing MTPs ... 59
4.1.3 USP Record Encapsulation .. 62
4.1.4 USP Record Errors ... 65
4.1.5 Connect and Disconnect Record Types ... 66

4.2 CoAP Binding (OBSOLETED) .. 67
4.2.1 Mapping USP Endpoints to CoAP URIs ... 68
4.2.2 Mapping USP Records to CoAP Messages ... 69
4.2.3 MTP Message Encryption ... 70

4.3 WebSocket Binding ... 71
4.3.1 Mapping USP Endpoints to WebSocket URIs ... 71
4.3.2 Handling of the WebSocket Session ... 71
4.3.3 Handling of WebSocket Frames ... 74
4.3.4 MTP Message Encryption ... 76

4.4 STOMP Binding ... 76
4.4.1 Handling of the STOMP Session ... 77
4.4.2 Mapping USP Endpoints to STOMP Destinations ... 79
4.4.3 Mapping USP Records to STOMP Frames ... 80
4.4.4 Discovery Requirements .. 82
4.4.5 STOMP Server Requirements ... 83
4.4.6 MTP Message Encryption ... 83

October 2023 © The Broadband Forum. All rights reserved 10 of 275

The User Services Platform TR-369

4.5 MQTT Binding .. 83
4.5.1 Connecting a USP Endpoint to the MQTT Server .. 86
4.5.2 Subscribing to MQTT Topics .. 88
4.5.3 Sending the USP Record in a PUBLISH Packet Payload .. 90
4.5.4 Handling Errors ... 91
4.5.5 Handling Other MQTT Packets ... 93
4.5.6 Discovery Requirements .. 93
4.5.7 MQTT Server Requirements ... 93
4.5.8 MTP Message Encryption ... 94

4.6 UNIX Domain Socket Binding ... 94
4.6.1 Handling UNIX Domain Socket Connections .. 95
4.6.2 Handshaking with UNIX Domain Sockets .. 97
4.6.3 Sending USP Records across UNIX Domain Sockets .. 99
4.6.4 MTP Message Encryption ... 99
4.6.5 Handling Other UNIX Domain Socket Failures ... 100
4.6.6 Error Handling ... 100

5 Message Encoding ... 100
5.1 Parameter and Argument Value Encoding ... 101

6 End to End Message Exchange ... 101
6.1 Exchange of USP Records within an E2E Session Context ... 102

6.1.1 Establishing an E2E Session Context ... 102
6.1.2 USP Record Exchange .. 105
6.1.3 Guidelines for Handling Session Context Restarts ... 108
6.1.4 Segmented Message Exchange ... 109
6.1.5 Handling Duplicate USP Records .. 115

6.2 Exchange of USP Records without an E2E Session Context ... 116
6.2.1 Failure Handling of Received USP Records Without a Session 116

6.3 Validating the Integrity of the USP Record .. 116
6.3.1 Using the Signature Method to Validate the Integrity of USP .. 117
6.3.2 Using TLS to Validate the Integrity of USP Records ... 118

6.4 Secure Message Exchange .. 119
6.4.1 TLS Payload Encapsulation .. 119

7 Messages .. 121
7.1 Encapsulation in a USP Record ... 121
7.2 Requests, Responses and Errors .. 121

7.2.1 Handling Duplicate Messages .. 122
7.2.2 Handling Search Expressions ... 122
7.2.3 Example Message Flows .. 122

7.3 Message Structure ... 124
7.3.1 The USP Message .. 124
7.3.2 Message Header ... 124
7.3.3 Message Body .. 125

October 2023 © The Broadband Forum. All rights reserved 11 of 275

The User Services Platform TR-369

7.4 Creating, Updating, and Deleting Objects .. 127
7.4.1 Selecting Objects and Parameters ... 127
7.4.2 Unique Key Immutability .. 128
7.4.3 Using Allow Partial and Required Parameters ... 128
7.4.4 The Add Message .. 130
7.4.5 The Set Message .. 134
7.4.6 The Delete Message .. 138

7.5 Reading an Agent’s State and Capabilities ... 141
7.5.1 The Get Message .. 141
7.5.2 The GetInstances Message .. 148
7.5.3 The GetSupportedDM Message ... 151
7.5.4 GetSupportedProtocol .. 159
7.5.5 The Register Message ... 159
7.5.6 The Deregister Message ... 163

7.6 Notifications and Subscription Mechanism .. 165
7.6.1 Using Subscription Objects ... 165
7.6.2 Responses to Notifications and Notification Retry ... 166
7.6.3 Notification Types ... 167
7.6.4 The Notify Message .. 169

7.7 Defined Operations Mechanism .. 173
7.7.1 Synchronous Operations ... 173
7.7.2 Asynchronous Operations .. 173
7.7.3 Operate Requests on Multiple Objects ... 175
7.7.4 Event Notifications for Operations ... 175
7.7.5 Concurrent Operations .. 175
7.7.6 Operate Examples ... 175
7.7.7 The Operate Message ... 176

7.8 Error Codes .. 178
7.8.1 Vendor Defined Error Codes .. 182

8 Authentication and Authorization .. 182
8.1 Authentication ... 182
8.2 Role Based Access Control (RBAC) .. 183
8.3 Trusted Certificate Authorities .. 184
8.4 Trusted Brokers ... 185
8.5 Self-Signed Certificates ... 185
8.6 Agent Authentication .. 186
8.7 Challenge Strings and Images .. 187
8.8 Analysis of Controller Certificates ... 188

8.8.1 Receiving a USP Record ... 188
8.8.2 Sending a USP Record .. 190
8.8.3 Checking a Certificate .. 191
8.8.4 Using a Trusted Broker .. 193

October 2023 © The Broadband Forum. All rights reserved 12 of 275

The User Services Platform TR-369

8.9 Theory of Operations ... 196
8.9.1 Data Model Elements ... 196
8.9.2 Roles (Access Control) ... 196
8.9.3 Assigning Controller Roles ... 199
8.9.4 Controller Certificates and Certificate Validation ... 200
8.9.5 Challenges ... 200
8.9.6 Certificate Management .. 201
8.9.7 Application of Modified Parameters ... 201

Annex A: Bulk Data Collection ... 202
A.1 Introduction .. 202
A.2 HTTP Bulk Data Collection .. 203

A.2.1 Enabling HTTP/HTTPS Bulk Data Communication ... 203
A.2.2 Use of the URI Query Parameters .. 204
A.2.3 Use of HTTP Status Codes ... 204
A.2.4 Use of TLS and TCP ... 206
A.2.5 Bulk Data Encoding Requirements .. 207

A.3 MQTT Bulk Data Collection ... 208
A.3.1 Enabling MQTT Bulk Data Communication ... 208
A.3.2 Determining Successful Transmission .. 208
A.3.3 Bulk Data Encoding Requirements .. 209

A.4 USPEventNotif Bulk Data Collection .. 209
A.4.1 Enabling USPEventNotif Bulk Data Communication .. 210
A.4.2 Determining Successful Transmission .. 210
A.4.3 Bulk Data Encoding Requirements .. 210

A.5 Using Wildcards to Reference Object Instances in the Report ... 211
A.6 Using Alternative Names in the Report ... 211
A.7 Encoding of Bulk Data .. 213

A.7.1 Encoding of CSV Bulk Data ... 213
A.7.2 Encoding of JSON Bulk Data ... 216

Appendix I: Software Module Management ... 220
I.1 Lifecycle Management ... 220
I.2 Software Modules .. 220

I.2.1 Deployment Units .. 221
I.2.2 Execution Units .. 225

I.3 Execution Environment Concepts ... 228
I.3.1 Managing Execution Environments .. 230
I.3.2 Application Data Volumes ... 231
I.3.3 Signing Deployment Units ... 231

I.4 Fault Model ... 232
I.4.1 DU Faults ... 232
I.4.2 EU Faults .. 235

October 2023 © The Broadband Forum. All rights reserved 13 of 275

The User Services Platform TR-369

Appendix II: Firmware Management of Devices with USP Agents 237
II.1 Getting the firmware image onto the device ... 237
II.2 Using multiple firmware images .. 238

II.2.1 Switching firmware images .. 238
II.2.2 Performing a delayed firmware upgrade .. 238
II.2.3 Recovering from a failed upgrade ... 238

Appendix III: Device Proxy .. 240

Appendix IV: Communications Proxying .. 241
IV.1 Proxying Building Block Functions .. 241
IV.2 Discovery Proxy .. 242
IV.3 Connectivity Proxy ... 242
IV.4 Message Transfer Protocol (MTP) Proxy .. 243

IV.4.1 MTP Header Translation Algorithms ... 243
IV.4.2 CoAP / STOMP MTP Proxy Example Message Flow .. 246

IV.5 USP to Non-USP Proxy .. 249

Appendix V: IoT Data Model Theory of Operation ... 250
V.1 Introduction ... 250
V.2 IoT data model overview .. 250

V.2.1 IoT Capability table .. 251
V.2.2 Node Object table ... 251

V.3 Architecture mappings .. 251
V.3.1 Individual IoT devices .. 251
V.3.2 Proxied IoT devices .. 252

V.4 IoT data model Object details .. 252
V.4.1 Common capability Parameters .. 252
V.4.2 Control Objects ... 253
V.4.3 Sensor Objects ... 255

V.5 Examples .. 260
V.5.1 Example: A/C Thermostat ... 260
V.5.2 Example: Light with a dimmer and switch ... 261
V.5.3 Example: Fan .. 262
V.5.4 Example: Multi-Sensor strip with a common battery. ... 262
V.5.5 Example: Ceiling Fan with integrated light .. 263
V.5.6 Example: Power strip ... 264
V.5.7 Example: Battery powered radiator thermostat .. 265

Appendix VI: Software Modularization and USP-Enabled .. 267
VI.1 Background .. 267
VI.2 Basic Solution Concepts .. 267
VI.3 USP Service Use Cases ... 268
VI.4 USP Broker Responsibilities ... 269
VI.5 Data Model Implications for USP Brokers and USP Services ... 270

October 2023 © The Broadband Forum. All rights reserved 14 of 275

The User Services Platform TR-369

VI.5.1 UNIX Domain Socket Data Model Table and the UDS MTP .. 270
VI.5.2 USPService Data Model Table .. 271
VI.5.3 Example Data Models for a USP Broker and USP Services ... 271

VI.6 Startup and Shutdown Procedures ... 272
VI.6.1 Device Boot Procedures ... 272
VI.6.2 USP Service Startup Procedures .. 272
VI.6.3 USP Service Shutdown Procedures ... 274

VI.7 USP Services and Software Modules .. 274
VI.7.1 Installing a Software Module ... 275
VI.7.2 Updating a Software Module .. 275
VI.7.3 Deleting a Software Module ... 275

List of Figures
Figure 1: USP Agent and Controller Architecture ... 30
Figure 2: Receiving a X.509 Certificate ... 61
Figure 3: Example: USP Request/Response over the CoAP MTP ... 68
Figure 4: WebSocket Session Handshake ... 72
Figure 5: USP Request using a WebSocket Session .. 74
Figure 6: USP over STOMP Architecture ... 77
Figure 7: USP over MQTT Architecture ... 84
Figure 8: MQTT Packets ... 85
Figure 9: Unix Domain Socket Binding .. 95
Figure 10: UNIX Domain Socket Frame with Handshake Message ... 98
Figure 11: UNIX Domain Socket Frame with USP Record Message .. 99
Figure 12: Processing of Received USP Records ... 107
Figure 13: E2E Segmentation and Reassembly ... 110
Figure 14: TLS Session Handshake .. 120
Figure 15: A successful request/response sequence .. 123
Figure 16: A failed request/response sequence ... 123
Figure 17: Operate Message Flow for Synchronous Operations .. 173
Figure 18: Operate Message Flow for Asynchronous Operations .. 174
Figure 19: Receiving a USP Record .. 189
Figure 20: USP Record without USP Layer Secure Message Exchange ... 190
Figure 21: Sending a USP Record ... 191
Figure 22: Checking a Certificate ... 192
Figure 23: Determining the Role .. 193
Figure 24: Trusted Broker with Received Record ... 194
Figure 25: Trusted Broker Sending a Record ... 195
Figure 26: Deployment Unit State Diagram .. 222
Figure 27: Execution Unit State Diagram ... 226
Figure 28: Possible Multi-Execution Environment Implementation .. 229

October 2023 © The Broadband Forum. All rights reserved 15 of 275

The User Services Platform TR-369

Figure 29: Execution Environment State Diagram .. 230
Figure 30: Example of MTP Proxy in LAN with WAN Controller ... 246
Figure 31: CoAP-STOMP MTP Proxy Example Flow .. 247
Figure 32: IoT Data Model ... 250
Figure 33: IoT individual device models ... 252
Figure 34: IoT proxied device model ... 252
Figure 35: IoT threshold trigger sensitivity ... 256
Figure 36: IoT threshold trigger hold time ... 256
Figure 37: IoT threshold trigger rest time .. 257
Figure 38: IoT threshold trigger minimum duration ... 257
Figure 39: Software Modularization Use Cases ... 269

List of Tables
Table 1: Proxy Building Block Functions ... 241
Table 2: Possible MTP Proxy Methods .. 244

October 2023 © The Broadband Forum. All rights reserved 16 of 275

The User Services Platform TR-369

1 Introduction
1.1 Executive Summary
This document describes the architecture, protocol, and data model that build an intelligent
User Services Platform. It is targeted towards application developers, application service
providers, vendors, consumer electronics manufacturers, and broadband and mobile network
providers who want to expand the value of the end user’s network connection and their con-
nected devices.

The term “connected device” is a broad one, applying to the vast array of network connected de-
vices, consumer electronics, and computing resources that today’s consumers are using at an
increasing rate. With the advent of “smart” platforms (phones, tablets, and wearables) plus the
emerging Internet of Things, the number of connected devices the average user or household
contains is growing by several orders of magnitude.

In addition, users of the fixed and mobile broadband network are hungry for advanced broad-
band and intelligent cloud services. As this desire increases, users are turning towards over-the-
top providers to consume the security, entertainment, productivity, and storage applications
they want.

These realities have created an opportunity for consumer electronics vendors, application devel-
opers, and broadband and mobile network providers. These connected devices and services need
to be managed, monitored, troubleshot, and controlled in an easy to develop and interoperable
way. A unified framework for these is attractive if we want to enable providers, developers, and
vendors to create value for the end user. The goal should be to create a system for developing,
deploying, and supporting these services for end users on the platform created by their connec-
tivity and components, that is, to be able to treat the connected user herself as a platform for
applications.

To address this opportunity, use cases supported by USP include:

• Management of IoT devices through re-usable data model objects.
• Allowing the user to interact with their devices and services using customer portals or con-

trol points on their own smart devices.
• The ability to deploy and manage containerized microservices for end-users via software

modulization and USP-enabled applications.”
• The ability to have both the application and network service provider manage, troubleshoot,

and control different aspects of the services they are responsible for, and enabling provider
partnerships.

• Providing a consistent user experience from mobile to home.
• Simple migration from the CPE WAN Management Protocol [1] (CWMP) – commonly known

by its document number, “TR-069” – through use of the same data model and data modeling
tools.

1.2 Purpose and Scope

October 2023 © The Broadband Forum. All rights reserved 17 of 275

The User Services Platform TR-369

1.2.1 Purpose
This document provides the normative requirements and operational description of the User
Services Platform (USP). USP is designed for consumer electronics/IoT, home network/gate-
ways, smart Wi-Fi systems, and deploying and managing other value-added services and appli-
cations. It is targeted towards developers, application providers, and network service providers
looking to deploy those products.

1.2.2 Scope
This document identifies the USP:

• Architecture
• Data model interaction
• Record structure, syntax, and rules
• Message structure, syntax, and rules
• Bindings that allow specific protocols to carry USP Records in their payloads
• Discovery and advertisement mechanisms
• Extensions for proxying, software module management, device modularization, firmware life-

cycle management, bulk data collection, device-agent association, and an IoT theory of opera-
tions.

• Security credentials and logic
• Encryption mechanisms

Lastly, USP makes use of and expands the Device:2 Data Model [3]. While particular Objects
and Parameters necessary to the function of USP are mentioned here, their normative descrip-
tion can be found in that document.

1.3 References and Terminology

1.3.1 Conventions
In this specification, several words are used to signify the requirements of the specification.
These words are always capitalized. More information can be found in RFC 2119 [9] for key
words defined there. Additional key words defined in the context of this specification are DEP-
RECATED and OBSOLETED.

MUST

This word, or the term “REQUIRED”, means that the definition is an absolute requirement of the
specification.

MUST NOT

This phrase means that the definition is an absolute prohibition of the specification.

SHOULD

This word, or the term “RECOMMENDED”, means that there could exist valid reasons in partic-
ular circumstances to ignore this item, but the full implications need to be understood and care-
fully weighed before choosing a different course.

October 2023 © The Broadband Forum. All rights reserved 18 of 275

The User Services Platform TR-369

SHOULD NOT

This phrase, or the phrase “NOT RECOMMENDED” means that there could exist valid reasons
in particular circumstances when the particular behavior is acceptable or even useful, but the
full implications need to be understood and the case carefully weighed before implementing
any behavior described with this label.

MAY

This word, or the term “OPTIONAL”, means that this item is one of an allowed set of alterna-
tives. An implementation that does not include this option MUST be prepared to inter-operate
with another implementation that does include the option.

DEPRECATED

This word refers to a requirement or section of this specification that is defined and valid in the
current version of this specification but is not strictly necessary. This may be done for various
reasons, such as irreparable problems being discovered or another more useful method being
defined to accomplish the same purpose. When this word is applied to a requirement, it takes
precedence over any normative language in the DEPRECATED requirement. DEPRECATED re-
quirements SHOULD NOT be implemented. When this word is used on a section, it means the
entirety of the section SHOULD NOT be implemented – but if it is implemented the require-
ments in the section are to be implemented as written. Note that DEPRECATED requirements
and sections might be removed from the next major version of this specification.

OBSOLETED

This word refers to a requirement or section of this specification that meets the definition of
DEPRECATED, but which has also been declared obsolete. Such requirements or entire sections
MUST NOT be implemented; they might be removed from a later minor version of this specifi-
cation.

1.3.2 References
The following references are of relevance to this Technical Report. At the time of publication,
the editions indicated were valid. All references are subject to revision; users of this Technical
Report are therefore encouraged to investigate the possibility of applying the most recent edi-
tion of the references listed below.

A list of currently valid Broadband Forum Technical Reports is published at www.broadband-
forum.org.

[1] TR-069 Amendment 6, CPE WAN Management Protocol, Broadband Forum, 2018
[2] TR-106, Data Model Template for CWMP Endpoints and USP Agents, Broadband Forum
[3] TR-181 Issue 2, Device Data Model, Broadband Forum
[4] Protocol Buffers v3, Protocol Buffers Mechanism for Serializing Structured Data Version 3,

Google
[5] IMEI Database, International Mobile Equipment Identity, GSMA

October 2023 © The Broadband Forum. All rights reserved 19 of 275

https://www.broadband-forum.org
https://www.broadband-forum.org
https://www.broadband-forum.org/technical/download/TR-069.pdf
https://data-model-template.broadband-forum.org
https://usp-data-models.broadband-forum.org#Device:2
https://developers.google.com/protocol-buffers/docs/proto3
https://imeidb.gsma.com/imei/index#

The User Services Platform TR-369

[6] IANA, Internet Assigned Numbers Authority, IANA
[7] Assignments, IEEE Registration Authority, IEEE
[8] RFC 1035, Domain Names - Implementation and Specification, IETF, 1987
[9] RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, IETF, 1997
[10] RFC 2141, URN Syntax, IETF, 1997
[11] RFC 2234, Augmented BNF for Syntax Specifications: ABNF, IETF, 1997
[12] RFC 3279, Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure

Certificate and Certificate Revocation List (CRL) Profile, IETF, 2002
[13] RFC 3315, Dynamic Host Configuration Protocol for IPv6 (DHCPv6), IETF, 2003
[14] RFC 3925, Vendor-Identifying Vendor Options for Dynamic Host Configuration Protocol

version 4 (DHCPv4), IETF, 2004
[15] RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, IETF, 2005
[16] RFC 5705, Keying Material Exporters for Transport Layer Security (TLS), IETF, 2010
[17] RFC 6066, Transport Layer Security (TLS) Extensions: Extension Definitions, IETF, 2011
[18] RFC 6125, Representation and Verification of Domain-Based Application Service Identity

within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of
Transport Layer Security (TLS), IETF, 2011

[19] RFC 6455, The WebSocket Protocol, IETF, 2011
[20] RFC 6762, Multicast DNS, IETF, 2013
[21] RFC 6763, DNS-Based Service Discovery, IETF, 2013
[22] RFC 6818, Updates to the Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile, IETF, 2013
[23] RFC 6979, Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve

Digital Signature Algorithm (ECDSA), IETF, 2013
[24] RFC 8446, The Transport Layer Security (TLS) Protocol Version 1.3, IETF, 2018
[25]

FIPS PUB 180-4, Secure Hash Standard (SHS), NIST

[26] FIPS PUB 186-4, Digital Signature Standard (DSS), NIST
[27] MQTT 3.1.1, MQ Telemetry Transport 3.1.1, OASIS
[28] MQTT 5.0, MQ Telemetry Transport 5.0, OASIS
[29] SOAP 1.1, Simple Object Access Protocol (SOAP) 1.1, W3C, 2000
[30] XML Schema Part 2, XML Schema Part 2: Datatypes Second Edition, W3C, 2004
[31] RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace, 2005
[32] RFC 4180, Common Format and MIME Type for Comma-Separated Values (CSV) Files, 2005
[33] RFC 5246, The Transport Layer Security (TLS) Protocol Version 1.2, 2008
[34] RFC 5280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation

List (CRL) Profile, 2008

October 2023 © The Broadband Forum. All rights reserved 20 of 275

https://www.iana.org/
https://regauth.standards.ieee.org
https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2141
https://tools.ietf.org/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc3279
https://datatracker.ietf.org/doc/html/rfc3279
https://tools.ietf.org/html/rfc3315
https://tools.ietf.org/html/rfc3925
https://tools.ietf.org/html/rfc3925
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc5705
https://tools.ietf.org/html/rfc6066
https://tools.ietf.org/html/rfc6125
https://tools.ietf.org/html/rfc6125
https://tools.ietf.org/html/rfc6125
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6762
https://tools.ietf.org/html/rfc6763
https://tools.ietf.org/html/rfc6818
https://tools.ietf.org/html/rfc6818
https://tools.ietf.org/html/rfc6979
https://tools.ietf.org/html/rfc6979
https://tools.ietf.org/html/rfc8446
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/xmlschema-2/
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4180
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

The User Services Platform TR-369

[35] RFC 7159, The JavaScript Object Notation (JSON) Data Interchange Format, 2014
[36] RFC 7252, The Constrained Application Protocol (CoAP), 2014
[37] RFC 7925, Transport Layer Security (TLS) / Datagram Transport Layer Security (DTLS)

Profiles for the Internet of Things, 2016
[38] RFC 7959, Block-Wise Transfers in the Constrained Application Protocol (CoAP), 2016
[39] RFC 8766, Discovery Proxy for Multicast DNS-Based Service Discovery, 2020
[40] STOMP-1-2, Simple Text Oriented Message Protocol

1.4 Definitions
The following terminology is used throughout this specification.

Agent

An Agent is an Endpoint that exposes Service Elements to one or more Controllers.

Binding

A Binding is a means of sending Messages across an underlying Message Transfer Protocol.

Command

The term used to define and refer to an Object-specific Operation in the Agent’s Instantiated or
Supported Data Model.

Connection Capabilities

Connection Capabilities are information related to an Endpoint that describe how to communi-
cate with that Endpoint, and provide a very basic idea of what sort of function the Endpoint
serves.

Controller

A Controller is an Endpoint that manipulates Service Elements through one or more Agents.

Discovery

Discovery is the process by which Controllers become aware of Agents and Agents become
aware of Controllers.

Endpoint

An Endpoint is a termination point for a Message.

Endpoint Identifier

The Endpoint Identifier is a globally unique USP layer identifier of an Endpoint.

End to End Message Exchange

USP feature that allows for message integrity protection through the creation of a session con-
text.

October 2023 © The Broadband Forum. All rights reserved 21 of 275

https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7925
https://tools.ietf.org/html/rfc7925
https://tools.ietf.org/html/rfc7959
https://tools.ietf.org/html/rfc8766
https://stomp.github.io/stomp-specification-1.2.html

The User Services Platform TR-369

Error

An Error is a Message that contains failure information associated with a Request.

Event

An Event is a set of conditions that, when met, triggers the sending of a Notification.

Expression

See also Search Expression.

Expression Component

An Expression Component is the part of a Search Expression that gives the matching Parameter
criteria for the search. It is comprised of an Expression Parameter followed by an Expression
Operator followed by an Expression Constant.

Expression Constant

The Expression Constant is the value used to compare against the Expression Component to de-
termine if a search matches a given Object.

Expression Operator

The Expression Operator is the operator used to determine how the Expression Component will
be evaluated against the Expression Constant, i.e., equals (==), not equals (!=), contains (~=), less
than (<), greater than (>), less than or equal (<=) and greater than or equal (>=).

Expression Parameter

The Expression Parameter is a Parameter relative to the Path Name where an Expression Vari-
able occurs that will be used with the Expression Constant to evaluate the Expression Compo-
nent.

Expression Variable

The Expression Variable is an identifier used to allow relative addressing when building an Ex-
pression Component.

Instantiated Data Model

The Instantiated Data Model of an Agent represents the current set of Service Elements (and
their state) that are exposed to one or more Controllers.

Instance Identifier

A term used to identify an Instance of a Multi-Instance Object (also called a Row of a Table).
While all Multi-Instance Objects have an Instance Number that can be used as an Instance Iden-
tifier, an Object Instance can also be referenced using any of that Object’s Unique Keys.

Instance Number

An Instance Number is a numeric Instance Identifier assigned by the Agent to instances of
Multi-Instance Objects in an Agent’s Instantiated Data Model.

October 2023 © The Broadband Forum. All rights reserved 22 of 275

The User Services Platform TR-369

Message

A Message refers to the contents of a USP layer communication including exactly one Message
Header and exactly one Message Body.

Message Body

The Message Body is the portion of a Message that contains one of the following: Request, Re-
sponse, or Error.

Message Header

The portion of a Message that contains elements that provide information about the Message,
including the Message type, and Message ID elements.

Message ID

A Message ID is an identifier used to associate a Response or Error with a Request.

Message Transfer Protocol

A Message Transfer Protocol (MTP) is the protocol at a layer below USP that carries a Message,
e.g., WebSocket.

Multi-Instance Object

A Multi-Instance Object refers to an Object that can be created or deleted in the Agent’s Instan-
tiated Data Model. Also called a Table.

Notification

A Notification is a Request from an Agent that conveys information about an Event to a Con-
troller that has a Subscription to that event.

Object

An Object refers to a defined type that an Agent represents and exposes. A Service Element
may be comprised of one or more Objects and Sub-Objects.

Object Instance

An Object Instance refers to a single instance Object of a type defined by a Multi-Instance Ob-
ject in the Agent’s Instantiated Data Model. Also called a Row of a Table.

Object Instance Path

An Object Instance Path is a Path Name that addresses an Instance of a Multi-Instance Object
(also called a Row of a Table). It includes the Object Path followed by an Instance Identifier. See
Path Names.

Object Path

An Object Path is a Path Name that addresses an Object. In the case of Multi-Instance Objects,
an Object Path addresses the Object type itself rather than instances of that Object, which are
addressed by Object Instance Paths. See Path Names.

October 2023 © The Broadband Forum. All rights reserved 23 of 275

The User Services Platform TR-369

Operation

A method defined for a particular Service Element that can be invoked with the Operate Mes-
sage.

Parameter

A Parameter is a variable or attribute of an Object. Parameters have both type and value.

Parameter Path

A Parameter Path is a Path Name that addresses a Parameter of an Object or Object Instance.
See Path Names.

Path Name

A Path Name is a fully qualified reference to an Object, Object Instance, or Parameter in an
Agent’s Instantiated or Supported Data Model. See Path Names.

Path Reference

A Path Reference is a Parameter data type that contains a Path Name to an Object or Parameter
that may be automatically followed by using certain Path Name syntax.

Record

The Record is defined as the Message Transfer Protocol (MTP) payload, encapsulating a se-
quence of datagrams that comprise of the Message as well as essential protocol information
such as the USP version, the source Endpoint ID, and the target Endpoint ID. It can also contain
additional metadata needed for providing integrity protection, payload protection and delivery
of fragmented Messages.

Register

To Register means to use the Register message to inform a Controller of Service Elements that
this Agent represents.

Registered

Registered Service Elements are those elements represented by an Agent that have been the
subject of a Register message.

Relative Path

A Relative Path is the remaining Path Name information necessary to form a Path Name given
a parent Object Path. It is used for message efficiency when addressing Path Names.

Request

A Request is a type of Message that either requests the Agent perform some action (create, up-
date, delete, operate, etc.), requests information about an Agent or one or more Service Ele-
ments, or acts as a means to deliver Notifications and Register Messages from the Agent to the
Controller. A Request usually requires a Response.

October 2023 © The Broadband Forum. All rights reserved 24 of 275

The User Services Platform TR-369

Response

A Response is a type of Message that provides return information about the successful process-
ing of a Request.

Role

A Role refers to the set of permissions (i.e., an access control list) that a Controller is granted by
an Agent to interact with objects in its Instantiated Data Model.

Row

The term Row refers to an Instance of a Multi-Instance Object in the Agent’s Instantiated Data
Model.

Search Expression

A Search Expression is used in a Search Path to apply specified search criteria to address a set
of Multi-Instance Objects and/or their Parameters.

Search Path

A Search Path is a Path Name that contains search criteria for addressing a set of Multi-Instance
Objects and/or their Parameters. A Search Path may contain a Search Expression or Wildcard.

Service Element

A Service Element represents a piece of service functionality that is exposed by an Agent, usu-
ally represented by one or more Objects.

Source Endpoint

The Endpoint that was the sender of a message.

Subscription

A Subscription is a set of logic that tells an Agent which Notifications to send to a particular
Controller.

Supported Data Model

The Supported Data Model of an Agent represents the complete set of Service Elements it is ca-
pable of exposing to a Controller. It is defined by the union of all of the Device Type Definitions
the Agent exposes to the Controller.

Table

The term Table refers to a Multi-Instance Object in an Agent’s Instantiated or Supported Data
Model.

Target Endpoint

The Endpoint that was the intended receiver of a message.

Trusted Broker

October 2023 © The Broadband Forum. All rights reserved 25 of 275

The User Services Platform TR-369

An intermediary that either (1) ensures the Endpoint ID in all brokered Endpoint’s USP Record
from_id matches the Endpoint ID of those Endpoint’s certificates or credentials, before sending
on a USP Record to another Endpoint, or (2) is part of a closed ecosystem that “knows” (certain)
Endpoints can be trusted not to spoof the Endpoint ID.

Unique Key

A Unique Key of a Multi-Instance Object is a set of one or more Parameters that uniquely iden-
tify the instance of an Object in the Agent’s Instantiated Data Model and can therefore be used
as an Instance Identifier.

Unique Key Parameter

A Parameter that is a member of any of a Multi-Instance Object’s Unique Keys.

User Services Platform

The User Services Platform consists of a data model, architecture, and communications protocol
to transform consumer broadband networks into a platform for the development, deployment,
and support of broadband enabled applications and services.

USP Domain

The USP Domain is a set of all Controllers and Agents that are likely to communicate with each
other in a given network or internetwork with the goal of supporting a specific application or
set of applications.

USP Relationship

A Controller and Agent are considered to have a USP Relationship when they are capable of
sending and accepting messages to/from each other. This usually means the Controller is added
to the Agent’s Controller table in its Instantiated Data Model.

Wildcard

A Wildcard is used in a Search Path to address all Object Instances of a Multi-Instance Object.

1.5 Abbreviations
This specification uses the following abbreviations:

abbreviation term
ABNF Augmented Backus-Naur Form
CID Company Identifier
CSV Comma-Separated Values
CWMP CPE WAN Management Protocol
DNS Domain Name Service
DNS-SD Domain Name Service - Service Discovery
DU Deployment Unit

October 2023 © The Broadband Forum. All rights reserved 26 of 275

The User Services Platform TR-369

E2E End to End (Message Exchange)
EE Execution Environment
EU Execution Unit
FIFO First-In-First-Out
FQDN Fully-Qualified Domain Name
GSDM Get Supported Data Model (informal of GetSupportedDM message)
HMAC Hash Message Authentication Code
HTTP Hypertext Transport Protocol
IPv4/v6 Internet Protocol (version 4 or version 6)
JSON Java Script Object Notation
LAN Local Area Network
MAC Message Authentication Code
mDNS Multicast Domain Name Service
MTP Message Transfer Protocol
MQTT Message Queue Telemetry Transport
OUI Organizationally Unique Identifier
PEN Private Enterprise Number
Protobuf Protocol Buffers
PSS Probabilistic Signature Scheme
SAR Segmentation And Reassembly
SMM Software Module Management
SOAP Simple Object Access Protocol
SSID Service Set Identifier
STOMP Simple Text-Oriented Messaging Protocol
TLS Tranport Layer Security
TLV Type-Length-Value
TOFU Trust on First Use
TR Technical Report
UDS UNIX Domain Socket
URI Uniform Resource Identifier
URL Uniform Resource Locator
USP User Services Platform
UUID Universally Unique Identifier
WAN Wide Area Network
XML eXtensible Markup Language

October 2023 © The Broadband Forum. All rights reserved 27 of 275

The User Services Platform TR-369

1.6 Specification Impact

1.6.1 Energy efficiency
The User Services Platform reaches into more and newer connected devices, and expands on the
management of physical hardware, including power management. In addition, USP directly en-
ables smart home, smart building, and other smart energy applications.

1.6.2 Security
Any solution that provides a mechanism to manage, monitor, diagnose, and control a connected
user’s network, devices, and applications must prioritize security to protect user data and pre-
vent malicious use of the system. This is especially important with certain high-risk smart ap-
plications like medicine or emergency services.

However reliable the security of communications protocols, in a platform that enables interop-
erable components that may or may not be connected with protocols outside the scope of the
specification, security must be considered from end-to-end. To realize this, USP contains its
own security mechanisms.

1.6.3 Privacy
Privacy is the right of an individual or group to control or influence what information related
to them may be collected, processed, and stored and by whom, and to whom that information
may be disclosed.

Assurance of privacy depends on whether stakeholders expect, or are legally required, to
have information protected or controlled from certain uses. As with security, the ability for
users to control who has access to their data is of primary importance in the world of the con-
nected user, made clear by users as well as regulators.

USP contains rigorous access control and authorization mechanisms to ensure that data is only
used by those that have been enabled by the user.

2 Architecture
The User Services Platform consists of a collection of Endpoints (Agents and Controllers) that
allow applications to manipulate Service Elements. These Service Elements are made up of a set
of Objects and Parameters that model a given service, such as network interfaces, software
modules, device firmware, remote elements proxied through another interface, virtual elements,
or other managed services.

USP is made up of several architectural components:

• Mechanisms for discovery and trust establishment
• A method for encoding messages for transport
• A system for end-to-end confidentiality, integrity and identity authentication
• Transport of messages over one or more Message Transfer Protocols (MTPs) with associated

MTP security

October 2023 © The Broadband Forum. All rights reserved 28 of 275

The User Services Platform TR-369

• A set of standardized messages based on the CRUD model (create, read, update, delete), plus
an Object defined operations mechanism and a notification mechanism (CRUD-ON)

• Authorization and access control on a per element basis
• A method for modeling service elements using a set of Objects, Parameters, operations, and

events (supported and instantiated data models)

2.1 Endpoints
A USP Endpoint can act as Agent or a Controller. Controllers only send messages to Agents,
and Agents send messages to Controllers. A USP Endpoint communicates with other Endpoints
over one or more Message Transfer Protocols (MTP). This communication is secured by the
MTP, or by the use of a USP Session Context, or both.

October 2023 © The Broadband Forum. All rights reserved 29 of 275

The User Services Platform TR-369

Figure 1: USP Agent and Controller Architecture

October 2023 © The Broadband Forum. All rights reserved 30 of 275

The User Services Platform TR-369

2.1.1 Agents
A USP Agent exposes (to Controllers) one or more Service Elements that are represented in its
data model. It contains or references both an Instantiated Data Model (representing the current
state of Service Elements it represents) and a Supported Data Model.

2.1.2 Controllers
A USP Controller manipulates (through Agents) a set of Service Elements that are represented
in Agent data models. It may maintain a database of Agents, their capabilities, and their states,
in any combination. A Controller usually acts as an interface to a user application or policy en-
gine that uses the User Services Platform to address particular use cases.

2.2 Endpoint Identifier
Endpoints are identified by an Endpoint Identifier.

The Endpoint Identifier is a locally or globally unique USP layer identifier of an Endpoint.
Whether it is globally or locally unique depends on the scheme used for assignment.

The Endpoint Identifier (ID) is used in the USP Record and various Parameters in a USP Mes-
sage to uniquely identify Controller and Agent Endpoints. It can be globally or locally unique,
either among all Endpoints or among all Controllers or all Agents, depending on the scheme
used for assignment.

The Endpoint ID is comprised of two mandatory and one optionally mandatory components:
authority-scheme, authority-id, and instance-id.

These three components are combined as:

authority-scheme ":" [authority-id] ":" instance-id

The format of the authority-id is dictated by the authority-scheme. The format of the instance-
id is dictated either by the authority-scheme or by the entity identified by the authority-id.

When used in a certificate, an Endpoint ID is expressed as a urn in the bbf namespace as:

"urn:bbf:usp:id:" authority-scheme ":" [authority-id] ":" instance-id

When used anywhere else (e.g. in the to_id and from_id of a USP Record), the namespace in-
formation is omitted, and the Endpoint ID is expressed as:

authority-scheme ":" [authority-id] ":" instance-id

2.2.1 Use of authority-scheme and authority-id
The authority-scheme follows the following syntax:

authority-scheme = "oui" | "cid" | "pen" | "self" | "user" | "os" | "ops" |
"uuid" | "imei" | "proto" | "doc" | "fqdn"

How these authority-scheme values impact the format and values of authority-id and instance-
id is described below.

The authority defined by an OUI, CID, Private Enterprise Number (including OUI used in “ops”
and “os” authority scheme), or fully qualified domain name is responsible for ensuring the

October 2023 © The Broadband Forum. All rights reserved 31 of 275

The User Services Platform TR-369

uniqueness of the resulting Endpoint ID. Uniqueness can be global, local, unique across all End-
points, or unique among all Controllers or all Agents. For the “user” authority scheme, the as-
signing user or machine is responsible for ensuring uniqueness. For the “self” authority scheme,
the Endpoint is responsible for ensuring uniqueness.

R-ARC.0 - A Controller and Agent within the same USP Domain MAY use the same Endpoint
ID.

R-ARC.1 - Endpoints MUST tolerate the same Endpoint ID being used by an Agent and a Con-
troller in the same USP Domain.

R-ARC.2 - Endpoints that share the same Endpoint ID MUST NOT communicate with each
other via USP.

No conflict identification or resolution process is defined in USP to deal with a situation where
an Endpoint ID is not unique among either all Agents or all Controllers in whatever USP Do-
main it operates. Therefore, a non-unique Endpoint ID will result in unpredictable behavior. An
Endpoint ID that changes after having been used to identify an Endpoint can also result in un-
predictable behavior.

Unless the authority responsible for assigning an Endpoint ID assigns meaning to an Agent and
Controller having the same Endpoint ID, no meaning can be construed. That is, unless the as-
signing authority specifically states that an Agent and Controller with the same Endpoint ID
are somehow related, no relationship can be assumed to exist.

R-ARC.2a - Endpoints MUST follow the authority-scheme requirements outlined in the follow-
ing table:

authority-scheme usage and rules for authority-id and instance-id
oui authority-id MUST be an OUI (now called “MAC Address Block

Large” or “MA-L”) assigned and registered by the IEEE Registration Au-
thority [7] to the entity responsible for this Endpoint. authority-id
MUST use hex encoding of the 24-bit ID (resulting in 6 hex characters).
instance-id syntax is defined by this entity, who is also responsible for
determining instance-id assignment mechanisms and for ensuring
uniqueness of the instance-id within the context of the OUI. Exam-
ple:oui:00256D:my-unique-bbf-id-42

cid authority-id MUST be a CID assigned and registered by the IEEE Reg-
istration Authority [7] to the entity responsible for this Endpoint.
authority-id MUST use hex encoding of the 24-bit ID (resulting in 6
hex characters).
instance-id syntax is defined by this entity, who is also responsible for
determining instance-id assignment mechanisms and for ensuring
uniqueness of the instance-id within the context of the CID.
Example: cid:3AA3F8:my-unique-usp-id-42

October 2023 © The Broadband Forum. All rights reserved 32 of 275

The User Services Platform TR-369

pen authority-id MUST be a Private Enterprise Number assigned and reg-
istered by IANA [6] to the entity responsible for this Endpoint.
authority-id MUST use decimal encoding of the IANA-assigned num-
ber.
instance-id syntax is defined by this entity, who is also responsible for
determining instance-id assignment mechanisms and for ensuring
uniqueness of the instance-id within the context of the Private Enter-
prise Number.
Example: pen:3561:my-unique-bbf-id-42

self When present, an authority-id for “self” MUST be between 1 and 6
non-reserved characters in length. When present, it is generated by the
Endpoint. It is not required to have an authority-id for “self”.
The Endpoint ID, including instance-id, is generated by the Endpoint.
The Endpoint MUST change its Endpoint ID if it ever encounters an-
other Endpoint using the identical Endpoint ID.
Example: self::my-Agent

user An authority-id for “user” MUST be between 0 and 6 non-reserved
characters in length.
The Endpoint ID, including instance-id, is assigned to the Endpoint
via a user or management interface.

os authority-id MUST be zero-length.
instance-idis <OUI> "-" <SerialNumber>, as defined in TR-069 [1]
Section 3.4.4.
Example: os::00256D-0123456789

ops authority-id MUST be zero-length.
instance-id is <OUI> "-" <ProductClass> "-" <SerialNumber>, as
defined in TR-069 [1] Section 3.4.4.
Example: ops::00256D-STB-0123456789

uuid authority-id MUST be zero-length.
instance-id is a UUID [31]
Example:uuid::f81d4fae-7dec-11d0-a765-00a0c91e6bf6

imei authority-id MUST be zero-length.
instance-id is an IMEI [5] as defined by GSMA.
Example: imei::990000862471854

proto authority-id MUST be between 0 and 6 non-reserved characters (ex-
cept “.”) in length.
“proto” is used for prototyping purposes only. Any authority-id and
instance-id value (or scheme for creating the value) is left to the pro-
totyper.
Example: proto::my-Agent

October 2023 © The Broadband Forum. All rights reserved 33 of 275

The User Services Platform TR-369

doc authority-id MUST be between 0 and 6 non-reserved characters in
length.
“doc” is used for documentation purposes only (for creating examples
in slide decks, tutorials, and other explanatory documents). Any
authority-id and instance-id value (or scheme for creating the
value) is left to the document creator.

fqdn authority-id MUST be zero-length.
instance-id is a valid fully qualified domain name, wildcards are not
permitted.
Example:fqdn::www.example.org

R-ARC.3 - BBF OUI (00256D) and Private Enterprise Number (3561) are reserved for use in BBF
documentation and BBF prototyping and MUST NOT be used by any entity other than BBF.

R-ARC.4 - The “proto” and “doc” authority-scheme values MUST NOT be used in production
environments.

The “proto” and “doc” values are intended only for prototyping and documentation (tutorials,
examples, etc.), respectively.

R-ARC.4a - If the authority-scheme fqdn is specified, the TLS certificates presented by this
endpoint MUST contain a subjectAltName extension, allowing the use of the FQDN specified
by the instance-id value.

2.2.2 Use of instance-id
R-ARC.5 - instance-id MUST be encoded using only the following characters:

 instance-id = unreserved / pct-encoded
 unreserved = ALPHA / DIGIT / "-" / "." / "_"
 pct-encoded = "%" HEXDIG HEXDIG

The above expression uses the Augmented Backus-Naur Form (ABNF) notation of RFC 2234
[11], including the following core ABNF syntax rules defined by that specification: ALPHA (let-
ters), DIGIT (decimal digits), HEXDIG (hexadecimal). It is taken from RFC 3986 [15] as the set of
unreserved characters and percent-encoded characters that are acceptable for all components of
a URI. This set is also allowed for use in URNs RFC 2141 [10], and all MTP headers.

R-ARC.6 - An instance-id value MUST be no more than 50 characters in length.

Shorter values are preferred, as end users could be exposed to Endpoint IDs. Long values tend
to create a poor user experience when users are exposed to them.

2.3 Service Elements
“Service Element” is a general term referring to the set of Objects, Sub-Objects, Commands,
Events, and Parameters that comprise a set of functionality that is manipulated by a Controller
on an Agent. An Agent’s Service Elements are represented in a Data Model - the data model
representing an Agent’s current state is referred to as its Instantiated Data Model, and the data

October 2023 © The Broadband Forum. All rights reserved 34 of 275

The User Services Platform TR-369

model representing the Service Elements it supports is called its Supported Data Model. An
Agent’s Data Model is referenced using Path Names.

2.4 Data Models
USP is designed to allow a Controller to manipulate Service Elements on an Agent using a stan-
dardized description of those Service Elements. This standardized description is known as an in-
formation model, and an information model that is further specified for use in a particular pro-
tocol is known as a “Data Model”.

Note: This should be understood by those familiar with CWMP. For those unfamiliar with that pro-
tocol, a Data Model is similar to a Management Information Base (MIB) used in the Simple Net-
work Management Protocol (SNMP) or YANG definitions used in NETCONF.

This version of the specification defines support for the following Data Model(s):

• The Device:2 Data Model [3]

This Data Model is specified in XML. The schema and normative requirements for defining Ob-
jects, Parameters, Events, and Commands for the Device:2 Data Model [3] are defined in Broad-
band Forum TR-106 [2].

The use of USP with any of the above data models creates some dependencies on specific Ob-
jects and Parameters that must be included for base functionality.

2.4.1 Instantiated Data Model
An Agent’s Instantiated Data Model represents the Service Elements (and their state) that are
currently represented by the Agent. The Instantiated Data Model includes a set of Objects, and
the Sub-Objects (“children”), Parameters, Events, and Commands associated with those Objects.

2.4.2 Supported Data Model
An Agent’s Supported Data Model represents the Service Elements that an Agent understands.
It includes references to the Data Model(s) that define the Objects, Parameters, Events, and
Commands implemented by the Service Elements the Agent represents.

2.4.3 Objects
Objects are data structures that are defined by their Sub-Objects, Parameters, Events, Com-
mands, and creation criteria. They are used to model resources represented by the Agent. Ob-
jects may be Single-Instance or Multi-Instance (also called a “Table”).

2.4.3.1 Single-Instance Objects
Single-Instance Objects are not tables and do not have more than one instance of them in the
Agent. They are usually used to group Service Element functionality together to allow for easy
definition and addressing.

2.4.3.2 Multi-Instance Objects
Multi-Instance” Objects are those Objects that can be the subject of “create” and “delete” opera-
tions (using the Add and Delete Messages, respectively), with each instance of the Object repre-

October 2023 © The Broadband Forum. All rights reserved 35 of 275

The User Services Platform TR-369

sented in the Instantiated Data Model with an Instance Identifier (see below). A Multi-Instance
Object is also referred to as a “Table”, with each instance of the Object referred to as a “Row”.
Multi-Instance Objects can be also the subject of a search.

2.4.4 Parameters
Parameters define the attributes or variables of an Object. They are retrieved by a Controller us-
ing the read operations of USP and configured using the update operations of USP (the Get and
Set Messages, respectively). Parameters have data types and are used to store values.

2.4.5 Commands
Commands define Object specific methods within the Data Model. A Controller can invoke
these methods using the Operate Message (see Defined Operations Mechanism. Commands
have associated input and output arguments that are defined in the Data Model and used when
the method is invoked and returned.

2.4.6 Events
Events define Object specific notifications within the Data Model. A Controller can subscribe to
these events by creating instances of the Subscription table, which are then sent in a Notify re-
quest by the Agent (see Notifications and Subscription Mechanism). Events may also have in-
formation associated with them that are delivered in the Notify Request - this information is de-
fined with the Event in the Data Model.

2.5 Path Names
A Path Name is a fully qualified reference to an Object, Object Instance, or Parameter in an
Agent’s instantiated or Supported Data Model. The syntax for Path Names is defined in TR-106
[2].

R-ARC.7 - All USP Endpoints MUST support the Path Name syntax as defined in TR-106 [2].

Path Names are represented by a hierarchy of Objects (“parents”) and Sub-Objects (“children”),
separated by the dot “.” character, ending with a Parameter if referencing a Parameter Path.
There are six different types of Path Names used to address the data model of an Agent:

1. Object Path - This is a Path Name of either a Single-Instance Object, or the Path Name to a
Multi-Instance Object (i.e., a Data Model Table). An Object Path ends in a “.” Character (as
specified in TR-106 [2]), except when used in a reference Parameter (see Reference
Following). When addressing a Table in the Agent’s Supported Data Model that contains one
or more Multi-Instance Objects in the Path Name, the sequence “{i}” is used as a placeholder
(see The GetSupportedDM Message).

2. Object Instance Path - This is a Path Name to a Row in a Table in the Agent’s Instantiated
Data Model (i.e., an Instance of a Multi-Instance Object). It uses an Instance Identifier to ad-
dress a particular Instance of the Object. An Object Instance Path ends in a “.” Character (as
specified in TR-106 [2]), except when used in a reference Parameter (see Reference
Following).

3. Parameter Path - This is a Path Name of a particular Parameter of an Object.

October 2023 © The Broadband Forum. All rights reserved 36 of 275

The User Services Platform TR-369

4. Command Path - This is a Path Name of an Object defined Operation.
5. Event Path - This is a Path Name of an Object defined Event.
6. Search Path - This is a Path Name that contains search criteria for addressing a set of Multi-

Instance Objects and/or their Parameters. A Search Path may contain a Search Expression or
Wildcard.

This creates two functions of Path Names: Addressing and Searching. The first five Path Names
are used for addressing a particular Object, Parameter, Command, or Event. A Search Path uses
Searching to return a set of Object Instances and/or their Parameters. When addressing, the ex-
pectation is that the Path Name will resolve to either 0 or 1 instance (and depending on the con-
text, 0 instances could be an error). When searching, the expectation is that the Search Path will
resolve to 0, 1, or many instances (and depending on the context, 0 instances is often not an er-
ror).

Note: When resolving a Path Name, the Agent is expected to use locally cached information and/or
information that can be obtained rapidly and cheaply. Specifically, there is no expectation that the
Agent would issue a network request in order to resolve a Path Name.

Note: Obviously only one form of addressing or searching can be used for a given Instance Identifier
in a Path Name, but different forms of addressing can be used if more than one Instance Identifier
needs to be specified in a Path Name.

For example, the following Path Name uses Unique Key Addressing for the Interface table but a
Search Expression for the IPv4Address table to select Enabled IPv4 Addresses associated with
the “eth0” IP Interface:

Device.IP.Interface.[Name=="eth0"].IPv4Address.[Status=="Enabled"].IPAddress

2.5.1 Relative Paths
Several USP Messages make use of Relative Paths to address Objects or Parameters. A Relative
Path is used to address the child Objects and Parameters of a given Object Path or Object In-
stance Path. To build a Path Name using a Relative Path, a USP Endpoint uses a specified Object
Path or Object Instance Path, and concatenates the Relative Path. This allows some efficiency in
Requests and Responses when passing large numbers of repetitive Path Names. This Relative
Path may include instance identifiers to Multi-Instance Objects.

For example, for an Object Path of:

Device.WiFi.Radio.1.

Relative Paths would include Parameters:

Status
SupportedStandards
OperatingStandards

Etc., as well as the following Sub-Object and its Parameters:

Stats.BytesSent
Stats.BytesReceived

Etc.

October 2023 © The Broadband Forum. All rights reserved 37 of 275

The User Services Platform TR-369

2.5.2 Using Instance Identifiers in Path Names

2.5.2.1 Addressing by Instance Number
Instance Number Addressing allows an Object Instance to be addressed by using its Instance
Number in the Path Name. An Instance Number is expressed in the Path Name as a positive in-
teger (>=1) with no additional surrounding characters. The Instance Number assigned by the
Agent is arbitrary.

R-ARC.8 - The assigned Instance Number MUST persist unchanged until the Object Instance is
subsequently deleted (either by the USP Delete Message or through some external mechanism).
This implies that the Instance Number MUST persist across a reboot of the Agent, and that the
Agent MUST NOT allow the Instance Number of an existing Object Instance to be modified by
an external source.

For example, the Device.IP.Interface table entry with an Instance Number of 3 would be ad-
dressed with the following Path Name: Device.IP.Interface.3.

2.5.2.2 Addressing by Unique Key
Key-based addressing allows an Object Instance to be addressed by using a Unique Key (as de-
fined in the Device:2 Data Model [3]) in the Path Name.

Note: Controller and Agent interoperability is greatly affected by an Agent’s implementation of
Unique Keys. While this specification does not aim to overlap its requirements to those of TR-181
[3], it is imperative that an Agent implements Unique Keys for every Multi-Instance object in its
Supported Data Model.

Unique Keys used for addressing are expressed in the Path Name by using square brackets sur-
rounding a string that contains the name and value of the Unique Key Parameter using the
equality operator (==).

For example, the Device.IP.Interface table has two separate unique keys: Name and Alias. It
could be addressed with the following Path Names:

Device.IP.Interface.[Name=="eth0"]
Device.IP.Interface.[Alias=="WAN"]

If an Object has a multi-parameter unique key, then the Instance Identifier specifies all of the
key’s Parameters using the AND (&&) logical operator (the Parameter order is not significant).

For example, the Device.NAT.PortMapping table has a multi-parameter unique key consisting
of RemoteHost, ExternalPort, and Protocol. It could be addressed with the following Path Name:

Device.NAT.PortMapping.[RemoteHost==""&&ExternalPort==0&&Protocol=="TCP"].

Note: Addressing by Unique Key uses the same syntax as Searching with Expressions. If a multi-pa-
rameter unique key expression omits any of the key’s Parameters then it’s a search (which might
match multiple instances) rather than an address (which can’t match multiple instances).

October 2023 © The Broadband Forum. All rights reserved 38 of 275

The User Services Platform TR-369

2.5.3 Searching
Searching is a means of matching 0, 1 or many instances of a Multi-Instance Object by using the
properties of Object. Searching can be done with Expressions or Wildcards.

2.5.4 Searching with Expressions
Search Paths that use expressions are enclosed in square brackets as the Instance Identifier
within a Path Name.

R-ARC.9 - An Agent MUST return Path Names that include all Object Instances that match the
criteria of a given Search Path.

The basic format of a Search Path is:

Device.IP.Interface.[<expression>].Status

An Expression consists of one or more Expression Components that are concatenated by the
AND (&&) logical operator (Note: the OR logical operator is not supported).

The basic format of a Search Path with the Expression element expanded is:

Device.IP.Interface.[<expression component>&&<expression component>].Status

An Expression Component is a combination of an Expression Parameter followed by an Expres-
sion Operator followed by an Expression Constant.

The basic format of a Search Path with the Expression Component element expanded is:

Device.IP.Interface.[<expression parameter><expression operator><expression
constant>].Status

Further, this Relative Path can’t include any child tables. (Note: this is never necessary because
any child tables that need to be referenced in the Search Path can and should have their own Ex-
pression)

An Expression Operator dictates how the Expression Component will be evaluated. The sup-
ported operators are equals (==), not equals (!=), contains (~=), less than (<), greater than (>),
less than or equal (<=) and greater than or equal (>=).

An Expression Parameter will always be of the type defined in the data model. Expression oper-
ators will only evaluate for appropriate data types. The literal value representations for all data
types are found in TR-106 [2]. For string and boolean types, and also the Unknown Time
dateTime value (cf. TR-106 Section 3.2.1 [2]), only the ‘==’ and ‘!=’ operators are valid.

The ‘~=’ operator is only valid for comma-separated lists. It is used to check whether a list con-
tains a certain element using an exact match of the element. The Expression Constant used in
the Search Expression must be of the same type as the values in the list. For example, for a list
of integers, the Expression Constant must also be an integer.

Note: Literal values are conceptually converted to a suitable internal representation before compari-
son. For example, int values 123, +123 and 0123 all represent the same value, and so do boolean
values 1 and true.

October 2023 © The Broadband Forum. All rights reserved 39 of 275

The User Services Platform TR-369

The Expression Constant is the value that the Expression Parameter is being evaluated against;
Expression Parameters must match the type as defined for the associated Parameter in the De-
vice:2 Data Model [3].

Note: String values are enclosed in double quotes. In order to allow a string value to contain double
quotes, quote characters can be percent-escaped as %22 (double quote). Therefore, a literal percent
character has to be quoted as %25.

The use of whitespace on either side of an Expression Operator is allowed, but its support is not
required. Controllers cannot assume that an Agent tolerates whitespace. An example of an Ex-
pression with whitespace would be [Type == "Normal"] (which would be [Type=="Normal"]
without whitespace).

R-ARC.9a - Agents SHOULD tolerate whitespace on either side of an Expression Operator.

R-ARC.9b - Controllers SHOULD NOT include whitespace on either side of an Expression Op-
erator.

2.5.4.0.1 Search Expression Examples
Valid Searches:

• Status for all IP Interfaces with a “Normal” type:

Device.IP.Interface.[Type=="Normal"].Status
• IPv4 Addresses for all IP Interfaces with a Normal type and a Static addressing type:

Device.IP.Interface.[Type=="Normal"].IPv4Address.
[AddressingType=="Static"].IPAddress

• IPv4 Addresses for all IP Interfaces with a Normal type and Static addressing type that have at
least 1 Error Sent:

Device.IP.Interface.[Type=="Normal"&&Stats.ErrorsSent>0].IPv4Address.
[AddressingType=="Static"].IPAddress

• Current profiles used by all DSL lines which are enabled:

Device.DSL.Line.[Enable==true].CurrentProfile

or

Device.DSL.Line.[Enable==1].CurrentProfile
• All IPv6 Addresses of all interfaces with a lifetime expiring before 2021-06-06 08:00 UTC:

Device.IP.Interface.*.IPv6Address.
[ValidLifetime<2021-06-06T08:00:00Z].IPAddress

• All Parameters of all connected USB devices of class 0x08 (Mass Storage Device):

Device.USB.USBHosts.Host.*.Device.[DeviceClass==08].
• All Parameters of all PCP servers with IPv6Firewall capabilities:

Device.PCP.Client.*.Server.[Capabilities~="IPv6Firewall"].
• All Parameters of all PeriodicStatistics SampleSets that collected data for 5 seconds:

Device.PeriodicStatistics.SampleSet.[SampleSeconds~=5].

October 2023 © The Broadband Forum. All rights reserved 40 of 275

The User Services Platform TR-369

Searches that are NOT VALID:

• Invalid because the Expression is empty:

Device.IP.Interface.[].
• Invalid because the Expression Component has an Expression Parameter that descends into a

child table (always need to use a separate Expression Variable for each child table instance):

Device.IP.Interface.
[Type=="Normal"&&IPv4Address.*.AddressingType=="Static"].Status

• Invalid because the search expression uses curly brackets:

Device.IP.Interface.{Type=="Normal"}.Status
• Invalid because the Enable Parameter is of type boolean and not a string or derived from
string:

Device.DSL.Line.[Enable=="true"].CurrentProfile

2.5.5 Searching by Wildcard
Wildcard-based searching is a means of matching all currently existing Instances (whether that
be 0, 1 or many instances) of a Multi-Instance Object by using a wildcard character “*” in place
of the Instance Identifier.

R-ARC.10 - An Agent MUST return Path Names that include all Object Instances that are
matched by the use of a Wildcard.

Examples:

All Parameters for all IP Interfaces that currently exist

Device.IP.Interface.*.

Type of each IP Interface that currently exists

Device.IP.Interface.*.Type

2.6 Other Path Decorators

2.6.1 Reference Following
The Device:2 Data Model [3] contains Parameters that reference other Parameters or Objects.
The Reference Following mechanism allows references to Objects (not Parameters) to be fol-
lowed from inside a single Path Name. Reference Following is indicated by a “+” character after
the Parameter Path, referencing the Object followed by a “.”, optionally followed by a Relative
Object or Parameter Path that are children of the Referenced Object.

For example, Device.NAT.PortMapping.{i}.Interface references an IP Interface Object
(Device.IP.Interface.{i}.) and that Object has a Parameter called “Name”. With Reference
Following, a Path Name of Device.NAT.PortMapping.1.Interface+.Name references the “Name”
Parameter of the Interface Object that the PortMapping is associated with (i.e. it is the equiva-
lent of using Device.IP.Interface.1.Name as the Path Name).

October 2023 © The Broadband Forum. All rights reserved 41 of 275

The User Services Platform TR-369

The steps that are executed by the Agent when following the reference in this example would
be:

1. Retrieve the appropriate instance of the PortMapping Object based on the Instance Number
Addressing information

2. Retrieve the value of the reference Parameter that contains the reference, Interface, which in
this case has the value “Device.IP.Interface.1”

3. Replace the preceding Path Name (Device.NAT.PortMapping.1.Interface+) with the value
retrieved in Step 2

4. Append the remainder of the Path Name (.Name), which builds the Path Name:
Device.IP.Interface.1.Name

5. Use Device.IP.Interface.1.Name as the Path Name for the action

Note: It should be noted that according to the Device:2 Schema [2], reference Parameters:

• Always contain Path Names (not Search Expressions)
• When configured, can be configured using Path Names using Instance Number Addressing or

Unique-Key Addressing, however:
• When the value of a reference Parameter is read, all Instance Identifiers are returned as Instance

Numbers.

R-ARC.11 - A USP Agent MUST support the ability to use Key-based addressing in reference
values.

For example, the following Path Names might illustrate a reference to the same Object (defined
as having the Parameter named KeyParam as unique key) instance using an Instance Number
and then a key value:

• Object.SomeReferenceParameter = “Object.FooObject.5”
• Object.SomeReferenceParameter = ‘Object.FooObject.[KeyParam=="KeyValueForInstance5”]’

In the first example, the reference points to the FooObject with Instance Number 5. In the sec-
ond example, the reference points to the FooObject with a KeyParam value of “KeyValueForIn-
stance5”.

R-ARC.12 - The following requirements relate to reference types and the associated Agent be-
havior:

• An Agent MUST reject an attempt to set a strong reference Parameter if the new value does
not reference an existing Parameter or Object.

• An Agent MUST NOT reject an attempt to set a weak reference Parameter because the new
value does not reference an existing Parameter or Object.

• An Agent MUST change the value of a non-list-valued strong reference Parameter to a null
reference when a referenced Parameter or Object is deleted.

• An Agent MUST remove the corresponding list item from a list-valued strong reference Para-
meter when a referenced Parameter or Object is deleted.

• An Agent MUST NOT change the value of a weak reference Parameter when a referenced Pa-
rameter or Object is deleted.

October 2023 © The Broadband Forum. All rights reserved 42 of 275

The User Services Platform TR-369

2.6.1.1 List of References
The USP data models have Parameters whose values contain a list of references to other Para-
meters or Objects. This section explains how the Reference Following mechanism allows those
references to be followed from inside a single Path Name. The Reference Following syntax as
defined above still applies, but the “+” character is preceded by a means of referencing a list
item or items.

• The additional syntax consists of a “#” character followed by a list item number (1-indexed),
which is placed between the Parameter name and the “+” character.

• The “#” and list item number are optional. If they are omitted, the first list item is used, i.e.,
“ReferenceParameter+” means the same as “ReferenceParameter#1+”.

• To follow all references in the list, use a wildcard (“*”) character instead of a list item number,
i.e., “ReferenceParameter#*+”.

For example, Device.WiFi.SSID.{i}.LowerLayers references a list of Wi-Fi Radio Object (de-
fined as Device.WiFi.Radio.{i}.) Instances that are associated with the SSID. This Object has
a Name Parameter; so when following the first reference in the list of references a Path Name of
Device.WiFi.SSID.1.LowerLayers#1+.Name references the Name of the Wi-Fi Radio associated
with this SSID Object Instance.

The steps that are executed by the Agent when following the reference in this example would
be:

1. Retrieve the appropriate Device.WiFi.SSID.{i} instance based on the Instance Number Ad-
dressing information

2. Retrieve the value of the LowerLayers Parameter, which in this case has a value of
“Device.WiFi.Radio.1, Device.WiFi.Radio.2”

3. Retrieve the first list item within the value retrieved in Step 2 (i.e., “Device.WiFi.Radio.1”)
4. Replace the preceding Path Name (Device.WiFi.SSID.1.LowerLayers#1+) with the value re-

trieved in Step 3
5. Append the remainder of the Path Name (.Name), resulting in a Path Name of:

Device.WiFi.Radio.1.Name
6. Use Device.WiFi.Radio.1.Name as the Path Name for the action

2.6.1.2 Search Expressions and Reference Following
The Reference Following and Search Expression mechanisms can be combined.

For example, reference the Signal Strength of all Wi-Fi Associated Devices using the “ac” Oper-
ating Standard on the “MyHome” SSID, you would use the Path Name:

Device.WiFi.AccessPoint.[SSIDReference+.SSID=="MyHome"].AssociatedDevice.
[OperatingStandard=="ac"].SignalStrength

2.6.2 Operations and Command Path Names
The Operate Message allows a USP Controller to execute Commands defined in the USP data
models. Commands are synchronous or asynchronous operations that don’t fall into the typical

October 2023 © The Broadband Forum. All rights reserved 43 of 275

The User Services Platform TR-369

REST-based concepts of CRUD-N that have been incorporated into the protocol as specific Mes-
sages. Commands are addressed like Parameter Paths that end with parentheses “()” to symbol-
ize that it is a Command.

For example: Device.IP.Interface.[Name=="eth0"].Reset()

2.6.3 Event Path Names
The Notify request allows a type of generic event (called Event) message that allows a USP
Agent to emit events defined in the USP data models. Events are defined in and related to Ob-
jects in the USP data models like commands. Events are addressed like Parameter Paths that end
with an exclamation point “!” to symbolize that it is an Event.

For example: Device.Boot!

2.7 Data Model Path Grammar
Expressed as a Backus-Naur Form (BNF) for context-free grammars, the Path Name lexical rules
for referencing the Instantiated Data Model are:

idmpath ::= objpath | parampath | cmdpath | evntpath
objpath ::= name '.' (name (('.' inst)|(reffollow '.' name))? '.')*
parampath ::= objpath name
cmdpath ::= objpath name '()'
evntpath ::= objpath name '!'
inst ::= posnum | expr | '*'
expr ::= '[' (exprcomp ('&&' exprcomp)*) ']'
exprcomp ::= relpath oper value
relpath ::= name (reffollow? '.' name)*
reffollow ::= ('#' (posnum | '*') '+')| '+'
oper ::= '==' | '!=' | '~=' | '<' | '>' | '<=' | '>='
value ::= literal | number
name ::= [A-Za-z_] [A-Za-z_0-9]*
literal ::= '"' [^"]* '"'
posnum ::= [1-9] [0-9]*
number ::= '0' | ('-'? posnum)

The Path Name lexical rules for referencing the Supported Data Model are:

sdmpath ::= name '.' (name '.' ((posnum | '{i}') '.')?)* name?
name ::= [A-Za-z_] [A-Za-z_0-9]*
posnum ::= [1-9] [0-9]*

2.7.1 BNF Diagrams for Instantiated Data Model
idmpath :

October 2023 © The Broadband Forum. All rights reserved 44 of 275

https://en.wikipedia.org/wiki/Backus-Naur_form

The User Services Platform TR-369

idmpath ::= objpath | parampath | cmdpath | evntpath

objpath :

objpath ::= name ‘.’ (name (‘.’ inst | reffollow ‘.’ name)? ‘.’)*

referenced by:

• cmdpath
• evntpath
• idmpath
• parampath

parampath :

parampath ::= objpath name

referenced by:

October 2023 © The Broadband Forum. All rights reserved 45 of 275

The User Services Platform TR-369

• idmpath

cmdpath :

cmdpath ::= objpath name ‘()’

referenced by:

• idmpath

evntpath :

evntpath ::= objpath name ‘!’

referenced by:

• idmpath

inst :

inst ::= posnum | expr | ’*’

referenced by:

• objpath

expr :

October 2023 © The Broadband Forum. All rights reserved 46 of 275

The User Services Platform TR-369

expr ::= ‘[’ exprcomp (’&&’ exprcomp)* ’]’

referenced by:

• inst

exprcomp :

exprcomp ::= relpath oper value

referenced by:

• expr

relpath :

relpath ::= name (reffollow? ‘.’ name)*

referenced by:

• exprcomp

reffollow :

October 2023 © The Broadband Forum. All rights reserved 47 of 275

The User Services Platform TR-369

reffollow ::= (‘#’ (posnum | ’*’))? ‘+’

referenced by:

• objpath
• relpath

oper :

oper ::= ‘==’ | ‘!=’ | ‘~=’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’

referenced by:

• exprcomp

October 2023 © The Broadband Forum. All rights reserved 48 of 275

The User Services Platform TR-369

value :

value ::= literal | number

referenced by:

• exprcomp

name :

name ::= [A-Za-z_] [A-Za-z_0-9]*

referenced by:

• cmdpath
• evntpath
• objpath

October 2023 © The Broadband Forum. All rights reserved 49 of 275

The User Services Platform TR-369

• parampath
• relpath

literal :

literal ::= ‘“’ [^"]* ‘“’

referenced by:

• value

number :

number ::= ‘0’ | ‘-’? posnum

referenced by:

• value

posnum :

posnum ::= [1-9] [0-9]*

referenced by:

• inst

October 2023 © The Broadband Forum. All rights reserved 50 of 275

The User Services Platform TR-369

• number
• reffollow

2.7.2 BNF Diagrams for Supported Data Model
sdmpath :

sdmpath ::= name ‘.’ (name ‘.’ ((posnum | ‘{i}’) ‘.’)?)* name?

name :

name ::= [A-Za-z_] [A-Za-z_0-9]*

referenced by:

• sdmpath

October 2023 © The Broadband Forum. All rights reserved 51 of 275

The User Services Platform TR-369

posnum :

posnum ::= [1-9] [0-9]*

referenced by:

• sdmpath

3 Discovery and Advertisement
Discovery is the process by which USP Endpoints learn the USP properties and MTP connection
details of another Endpoint, either for sending USP Messages in the context of an existing rela-
tionship (where the Controller’s USP Endpoint Identifier, credentials, and authorized Role are
all known to the Agent) or for the establishment of a new relationship.

Advertisement is the process by which USP Endpoints make their presence known (or USP End-
point presence is made known) to other USP Endpoints.

3.1 Controller Information
An Agent that has a USP relationship with a Controller needs to know that Controller’s End-
point Identifier, credentials, and authorized Role.

An Agent that has a USP relationship with a Controller needs to obtain information that allows
it to determine at least one MTP, IP address, port, and resource path (if required by the MTP) of
the Controller. This may be a URL with all of these components, a FQDN that resolves to pro-
vide all of these components via DNS-SD records, or mDNS discovery in the LAN.

Example mechanisms for configuration include but are not limited to:

• Pre-configured in firmware
• Configured by an already-known-and-trusted Controller
• Configured through a separate bootstrap mechanism such as a user interface or other man-

agement interface.
• DHCP, DNS, or mDNS.

R-DIS.0 - An Agent that supports USP configuration of Controllers MUST implement the
Device.LocalAgent.Controller Object as defined in the Device:2 Data Model [3].

The Agent can be pre-configured with trusted root certificates or trusted certificates to allow
authentication of Controllers. Other trust models are also possible, where an Agent without a
current Controller association will trust the first discovered Controller, or where the Agent has

October 2023 © The Broadband Forum. All rights reserved 52 of 275

The User Services Platform TR-369

a UI that allows a User to indicate whether a discovered Controller is authorized to configure
that Agent.

3.2 Required Agent Information
A Controller that has a relationship with an Agent needs to know the Agent’s Endpoint Identi-
fier, connectivity information for the Agent’s MTP(s), and credentials.

Controllers acquire this information upon initial connection by an Agent, though a LAN based
Controller may acquire an Agent’s MTP information through mDNS Discovery. It is each Con-
troller’s responsibility to maintain a record of known Agents.

3.3 Use of DHCP for Acquiring Controller Information
DHCP can be employed as a method for Agents to discover Controllers. The DHCPv4 Vendor-
Identifying Vendor-Specific Information Option [14] (option code 125) and DHCPv6 Vendor-
specific Information Option [13] (option code 17) can be used to provide information to Agents
about a single Controller. The options that may be returned by DNS are shown below. Descrip-
tion of these options can be found in the Device:2 Data Model [3].

R-DIS.1 - If an Agent is configured to request Controller DHCP information, the Agent MUST
include in its DHCPv4 requests a DHCPv4 V-I Vendor Class Option (option 124) and in its
DHCPv6 requests a DHCPv6 Vendor Class (option 16). This option MUST include the Broad-
band Forum Enterprise Number (3561 decimal, 0x0DE9 hex) as an enterprise-number, and the
string “usp” (all lower case) in a vendor-class-data instance associated with this enterprise-num-
ber.

R-DIS.1a - The Agent MUST decode all received options as strings (provisioning code, wait in-
terval, and interval multiplier are not decoded as numeric fields).

R-DIS.1b - The Agent MUST interpret a received URL or FQDN of the Controller as either an
absolute URL or FQDN.

R-DIS.1c - If the Agent receives an encapsulated option value that is null terminated, the Agent
MUST accept the value provided, and MUST NOT interpret the null character as part of the
value.

The Role to associate with a DHCP-discovered Controller is programmatically determined (see
Authentication and Authorization).

Note: Requirement R-DIS.2 was removed in USP 1.2.

See Using DNS for requirements on resolving URLs and FQDNs provided by DHCP.

ISPs are advised to limit the use of DHCP for configuration of a Controller to situations in
which the security of the link between the DHCP server and the Agent can be assured by the
service provider. Since DHCP does not itself incorporate a security mechanism, it is a good idea
to use pre-configured certificates or other means of establishing trust between the Agent and a
Controller discovered by DHCP.

3.3.1 DHCP Options for Controller Discovery

October 2023 © The Broadband Forum. All rights reserved 53 of 275

The User Services Platform TR-369

Encapsulated Op-
tion

DHCPv4 Option
125

DHCPv6 Option 17 Parameter in the
Device:2 Data
Model [3]

URL or FQDN of the
Controller

25 25 Dependent on MTP

Provisioning code 26 26 Device.LocalAgent.Controller.
{i}.ProvisioningCode

USP retry minimum
wait interval

27 27 Device.LocalAgent.Controller.
{i}.USPNotifRetryMinimumWaitInterval

USP retry interval
multiplier

28 28 Device.LocalAgent.Controller.
{i}.USPNotifRetryIntervalMultiplier

Endpoint ID of the
Controller

29 29 Device.LocalAgent.Controller.
{i}.EndpointID

3.4 Use of DHCP for Exchanging GatewayInfo
This section contains a set of USP requirements related to a mechanism that was originally de-
fined in the CPE WAN Management Protocol [1] (CWMP), which provides a way for a CWMP
Gateway and an End Device to exchange information via DHCP options to populate data model
objects with their reciprocal information. The purpose of populating this information is to pro-
vides an ACS or USP Controller with the ability to determine whether the Gateway and Device
are on the same LAN. The USP requirements defined in this section identify what USP-enabled
devices (Gateways and End Devices) need to do to interoperate with CWMP-enabled devices
without changing any CWMP functionality, so it is mostly a replication of those CWMP re-
quirements from a USP-enabled device perspective.

3.4.1 Exchanging DHCP Options
This section outlines the DHCP information USP Agents exchange to provide details about the
devices on the LAN, as well as the Service Elements that are updated. This allows a USP Agent
to recognize a CWMP Client that supports the Device-Gateway Association within the LAN,
and a CWMP Client to recognize a USP Agent.

R-DIS.2a - When an Agent sends a DHCPv4 requests (DHCPDISCOVER, DHCPREQUEST, and
DHCPINFORM) or DHCPv6 requests (SOLICIT, REQUEST, RENEW, and INFORMATION-RE-
QUEST) it MUST include the Encapsulation Options for requests below.

3.4.2 DHCP Encapsulated Vendor-Specific Option-Data fields for
DHCP requests

Encapsulated Op-
tion

DHCPv4 Option
125

DHCPv6 Option 17 Parameter in the
Device:2 Data
Model [3]

October 2023 © The Broadband Forum. All rights reserved 54 of 275

The User Services Platform TR-369

DeviceManufac-
turerOUI

1 11 Device.DeviceInfo.ManufacturerOUI

DeviceSerialNumber 2 12 Device.DeviceInfo.SerialNumber

DeviceProductClass 3 13 Device.DeviceInfo.ProductClass

These Encapsulated Options are carried in DHCPv4 V-I Vendor Class Option (option 125) or
DHCPv6 V-I Vendor Class Option (option 17) with an element identified with the IANA Enter-
prise Number for the Broadband Forum that follows the format defined below. The IANA Enter-
prise Number for the Broadband Forum is 3561 in decimal (the ADSL Forum entry in the IANA
Private Enterprise Numbers registry).

R-DIS.2b - If an Agent recieves the encapsulation options for requests above, then it MUST re-
spond with the Encapsulated Options for a response in the DHCPv4 responses (DHCPOFFER
and DHCPACK) and DHCPv6 responses (ADVERTISE and REPLY) below. The responses are
only included if the request options are recieved.

3.4.3 DHCP Encapsulated Vendor-Specific Option-Data fields for
Agent

Encapsulated Op-
tion

DHCPv4 Option
125

DHCPv6 Option 17 Parameter in the
Device:2 Data
Model [3]

DeviceManufac-
turerOUI

4 14 Device.DeviceInfo.ManufacturerOUI

DeviceSerialNumber 5 15 Device.DeviceInfo.SerialNumber

DeviceProductClass 6 16 Device.DeviceInfo.ProductClass

These Encapsulated Options are carried in DHCPv4 V-I Vendor Class Option (option 125) or
DHCPv6 V-I Vendor Class Option (option 17) with an element identified with the IANA Enter-
prise Number for the Broadband Forum that follows the format defined below. The IANA Enter-
prise Number for the Broadband Forum is 3561 in decimal (the ADSL Forum entry in the IANA
Private Enterprise Numbers registry).

R-DIS.2c - When an Agent receives a DHCPv4 response (DHCPOFFER or DHCPACK) or a
DHCPv6 response (ADVERTISE or REPLY) with this information, it MUST populate the
Device.GatewayInfo Object as defined in the Device:2 Data Model [3]. Specifically, it MUST set
the the parameters ManufacturerOUI, ProductClass and SerialNumber, if present and
ManagementProtocol MUST be set to “CWMP”. If any of the parameters are not present then
they MUST be set to an empty string. If the DHCP release expires, or the USP Endpoint doesnt
recieve this information, the Parameters in the Device.GatewayInfo Object MUST be set to an
empty strings.

R-DIS.2d - When an Agent performs mDNS discovery (see Discovery and Advertisement) and
recieves a PTR record (see DNS-SD Records) that match the same IP address as the DHCP re-

October 2023 © The Broadband Forum. All rights reserved 55 of 275

The User Services Platform TR-369

sponse from (R-DIS.2c), it MUST also set the Device.GatewayInfo.ManagementProtocol Para-
meter to “USP”, and Device.GatewayInfo.EndpointID Parameter to the USP EndpointID re-
ceived in the PTR record.

3.5 Using mDNS
R-DIS.3 - If mDNS discovery is supported by a USP Endpoint, the USP Endpoint MUST imple-
ment mDNS client and server functionality as defined in RFC 6762 [20].

R-DIS.4 - If mDNS advertisement for a MTP is enabled on an Endpoint, the Endpoint MUST lis-
ten for messages using that MTP from other Endpoints requesting establishment of USP com-
munication over that MTP.

R-DIS.5 - If mDNS is enabled, a USP Endpoint MUST use mDNS to resolve a FQDN with do-
main “.local.”.

In general, the expectation is that Agents will advertise themselves so they will be discoverable
by Controllers. Controllers are not expected to advertise themselves, but are expected to dis-
cover Agents and respond to applicable mDNS requests from Agents. Agents will use mDNS to
resolve a Controller “.local.” FQDN (and get DNS-SD records) when the Agent needs to send
a Notification to that Controller.

3.6 Using DNS
Requirements for implementation of a DNS client and configuration of the DNS client with DNS
server address(es) (through static configuration, DHCPv4, DHCPv6, or Router Solicitation) are
not provided. These are sufficiently well-known that they were not considered necessary for
this specification. If the Agent knows of no DNS Server, it cannot do DNS resolution.

R-DIS.6 - If DNS is enabled, an Endpoint MUST use DNS to request IP address(es) (A and/or
AAAA records, depending on confiured IP stacks) for a FQDN with domain other than ones
used for mDNS (R-DIS.5).

If the Endpoint is programmatically set to request other resource records, it will request those,
too.

R-DIS.7 - If the Agent is resolving an FQDN for a Controller, and the MTP or resource path are
unknown, the Agent MUST request DNS-SD information (PTR, SRV and TXT resource records)
in addition to A, AAAA or other resource records it is programmatically set to request.

3.7 DNS-SD Records
DNS Service Discovery (DNS-SD) RFC 6763 [21] is a mechanism for naming and structuring
DNS resource records to facilitate service discovery. It can be used to create DNS records for
USP Endpoints, so they can be discoverable via DNS PTR queries RFC 1035 [8] or Multicast
DNS (mDNS) RFC 6762 [20]. DNS-SD uses DNS SRV and TXT records to express information
about “services”, and DNS PTR records to help locate the SRV and TXT records. To discover
these DNS records, DNS or mDNS queries can be used. RFC 6762 [20] recommends using the
query type PTR to get both the SRV and TXT records. A and AAAA records will also be re-
turned, for address resolution.

October 2023 © The Broadband Forum. All rights reserved 56 of 275

The User Services Platform TR-369

The format of a DNS-SD Service Instance Name (which is the resource record (RR) Name of the
DNS SRV and TXT records) is “<Instance>.<Service>.<Domain>”. <Instance> will be the USP
Endpoint Identifier of the USP Endpoint.

R-DIS.8 - USP Endpoint DNS-SD records MUST include the USP Endpoint Identifier of the USP
Endpoint as the DNS-SD Service Instance Name.

Service Name values registered by BBF with IANA used by USP are shown below. As described
in RFC 6763 [21], the <Service> part of a Service Instance Name is constructed from these val-
ues as “_<Service Name>._<Transport Protocol>” (e.g., “_usp-agt-ws._tcp”).

3.7.1 IANA-Registered USP Service Names

Service Name Transport Protocol MTP Type of USP Endpoint
usp-agt-coap udp CoAP Agent
usp-agt-mqtt tcp MQTT Agent

usp-agt-stomp tcp STOMP Agent
usp-agt-ws tcp WebSocket Agent

usp-ctr-coap udp CoAP Controller
usp-ctr-mqtt tcp MQTT Controller

usp-ctr-stomp tcp STOMP Controller
usp-ctr-ws tcp WebSocket Controller

DNS PTR records with a service subtype identifier (e.g., ._<subtype>._usp-agt-
ws._tcp.<Domain>) in the RR can be used to provide searchable simple (single layer) functional
groupings of USP Agents. The registry of subtypes for Service Names registered by BBF is listed
at www.broadband-forum.org/assignments. DNS SRV and TXT records can be pointed to by
multiple PTR records, which allow a USP Endpoint to potentially be discoverable as belonging
to various functional groupings.

DNS TXT records allow for a small set of additional information to be included in the reply sent
to the querier. This information cannot be used as search criteria. The registry of TXT record at-
tributes for BBF Service Names are listed at www.broadband-forum.org/assignments.

R-DIS.9 - Agent DNS-SD records MUST include a TXT record with the “path” and “name” at-
tributes.

R-DIS.10 - The “name” attribute included in the Agent DNS-SD records MUST be identical to
the FriendlyName Parameter defined in the Device:2 Data Model [3], if the FriendlyName Para-
meter is implemented.

R-DIS.11 - Controller DNS-SD records MUST include a TXT record with the “path” attribute.

The “path” attribute is dependent on each MTP.

R-DIS.11a - If a USP Endpoint requires MTP encryption to be used when connecting to its ad-
vertised service, it MUST include the “encrypt” parameter in the TXT record.

October 2023 © The Broadband Forum. All rights reserved 57 of 275

http://www.broadband-forum.org/assignments
http://www.broadband-forum.org/assignments
http://www.broadband-forum.org/assignments

The User Services Platform TR-369

The “encrypt” parameter is Boolean and does not require a value to be specified. Its presence
means MTP encryption is required when connecting to the advertised service. Its absence
means MTP encryption is not required when connecting to the advertised service.

The TXT record can include other attributes defined in the TXT record attribute registry, as
well.

Whether a particular USP Endpoint responds to DNS or mDNS queries or populates (through
configuration or mDNS advertisement) their information in a local DNS-SD server can be a con-
figured option that can be enabled/disabled, depending on the intended deployment usage sce-
nario.

3.7.2 Example Controller Unicast DNS-SD Resource Records
 ; One PTR record for each supported MTP
 _usp-ctr-ws._tcp.host.example.com PTR <USP ID>._usp-ctr-ws._tcp.example.com.

 ; One SRV+TXT (DNS-SD Service Instance) record for each supported MTP
 <USP ID>._usp-ctr-ws._tcp.example.com. SRV 0 1 5684 host.example.com.
 <USP ID>._usp-ctr-ws._tcp.example.com. TXT "<length byte>path=<pathname><length
byte>encrypt"

 ; Controller A and AAAA records
 host.example.com. A 192.0.2.200
 host.example.com. AAAA 2001:db8::200

3.7.3 Example Agent Multicast DNS-SD Resource Records
 ; One PTR record (DNS-SD Service) for each supported MTP
 _usp-agt-ws._tcp PTR <USP ID>._usp-agt-ws._tcp.local.

 ; One PTR record (DNS-SD Service Subtype) for each supported MTP per device type
 _iot-device._sub._usp-agt-ws._tcp PTR <USP ID>._usp-agt-ws._tcp.local.
 _gateway._sub._usp-agt-ws._tcp PTR <USP ID>._usp-agt-ws._tcp.local.

 ; One SRV+TXT record (DNS-SD Service Instance) for each supported MTP
 <USP ID>._usp-agt-ws._tcp.local. SRV 0 1 5684 <USP ID>.local.
 <USP ID>._usp-agt-ws._tcp.local. TXT "<length byte>path=<pathname><length
byte>name=kitchen light<length byte>encrypt"

 ; Agent A and AAAA records
 <USP ID>.local. A 192.0.2.100
 <USP ID>.local. AAAA 2001:db8::100

3.7.4 Example Controller Multicast DNS-SD Resource Records
LAN Controllers do not need to have PTR records, as they will only be queried using the DNS-
SD instance identifier of the Controller.

 ; One SRV+TXT record (DNS-SD Service Instance) for each supported MTP
 <USP ID>._usp-ctr-ws._tcp.local. SRV 0 1 5683 <USP ID>.local.
 <USP ID>._usp-ctr-ws._tcp.local. TXT "<length byte>path=<pathname>"

 ; Controller A and AAAA records

October 2023 © The Broadband Forum. All rights reserved 58 of 275

The User Services Platform TR-369

 <USP ID>.local. A 192.0.2.200
 <USP ID>.local. AAAA 2001:db8::200

3.8 Using the SendOnBoardRequest() operation and OnBoardRequest
notification

An “OnBoardRequest” notification can be sent by an Agent to a Controller to begin an on-
boarding process (for example, when the Agent first comes online and discovers a Controller
using DHCP). Its use is largely driven by policy, but there is a mechanism other Controllers can
use to ask an Agent to send “OnBoardRequest” to another Controller: the SendOnBoard-
Request() command is defined in the Device:2 Data Model [3]. See Notification Types for addi-
tional information about the OnBoardRequest notification.

4 Message Transfer Protocols
USP messages are sent between Endpoints over one or more Message Transfer Protocols.

Note: Message Transfer Protocol was a term adopted to avoid confusion with the term “Transport”,
which is often overloaded to include both application layer (e.g. WebSocket) and the actual OSI
Transport layer (e.g. TCP). Throughout this document, Message Transfer Protocol (MTP) refers to
application layer transport.

4.1 Generic Requirements
The requirements in this section are common to all MTPs.

4.1.1 Supporting Multiple MTPs
Agents and Controllers may support more than one MTP. When an Agent supports multiple
MTPs, the Agent may be configured with Parameters for reaching a particular Controller across
more than one MTP. When an Agent needs to send a Notification to such a Controller, the
Agent can be designed (or possibly configured) to select a particular MTP, to try sending the
Notification to the Controller on all MTPs simultaneously, or to try MTPs sequentially. USP has
been designed to allow Endpoints to recognize when they receive a duplicate Message and to
discard any duplicates. Endpoints will always send responses on the same MTP where the Mes-
sage was received.

4.1.2 Securing MTPs
This specification places the following requirement for encrypting MTP headers and payloads
on USP implementations that are intended to be used in environments where USP Messages
will be transported across the Internet:

R-MTP.0 – The Message Transfer Protocol MUST use secure transport when USP Messages
cross inter-network boundaries.

For example, it may not be necessary to use MTP layer security when within an end-user’s local
area network (LAN). It is necessary to secure transport to and from the Internet, however. If the
device implementer can reasonably expect Messages to be transported across the Internet when

October 2023 © The Broadband Forum. All rights reserved 59 of 275

The User Services Platform TR-369

the device is deployed, then the implementer needs to ensure the device supports encryption of
all MTP protocols.

MTPs that operate over TCP will be expected to implement, at least, TLS 1.2 as defined in [33].

Specific requirements for implementing these are provided in the individual MTP sections.

R-MTP.1 – When TLS is used to secure an MTP, an Agent MUST require the MTP peer to pro-
vide an X.509 certificate.

R-MTP.2 - An Agent capable of obtaining absolute time SHOULD wait until it has accurate ab-
solute time before establishing TLS encryption to secure MTP communication. If an Agent for
any reason is unable to obtain absolute time, it can establish TLS without waiting for accurate
absolute time. If an Agent chooses to establish TLS before it has accurate absolute time (or if it
does not support absolute time), it MUST ignore those components of the received X.509 certifi-
cate that involve absolute time, e.g. not-valid-before and not-valid-after certificate restrictions.

R-MTP.3 - An Agent that has obtained an accurate absolute time MUST validate those compo-
nents of the received X.509 certificate that involve absolute time.

R-MTP.4 - When an Agent receives an X.509 certificate while establishing TLS encryption of
the MTP, the Agent MUST execute logic that achieves the same results as in the mandatory de-
cision flow elements (identified with “MUST”) from Figure 2.

R-MTP.4a - When an Agent receives an X.509 certificate while establishing TLS encryption of
the MTP, the Agent SHOULD execute logic that achieves the same results as in the optional de-
cision flow elements (identified with “OPT”) from Figure 2.

October 2023 © The Broadband Forum. All rights reserved 60 of 275

The User Services Platform TR-369

Figure 2: Receiving a X.509 Certificate

Note: The .local and .home.arpa domains are defined by the IETF as “Special-Use Domains” for use
inside any LAN. It is not possible for an external Certificate Authority (CA) to vouch for whether a

October 2023 © The Broadband Forum. All rights reserved 61 of 275

The User Services Platform TR-369

LAN device “owns” a particular name in one of these domains (inside a particular LAN) and these
LAN networks have no internal CA. Therefore, it is not possible to validate FQDNs within these do-
mains. The Internet Assigned Numbers Authority (IANA) maintains a registry of Special Use
Domains.

4.1.3 USP Record Encapsulation
The USP Record is defined as the Message Transfer Protocol (MTP) payload, encapsulating a se-
quence of datagrams that comprise the USP Message as well as providing additional metadata
needed for integrity protection, payload protection and delivery of fragmented USP Messages.
Additional metadata fields are used to identify the E2E session context, determine the state of
the segmentation and reassembly function, acknowledge received datagrams, request retrans-
missions, and determine the type of encoding and security mechanism used to encode the USP
Message.

When not explicitly set or included in a USP Record or USP Message, the fields have a default
value based on the type of field:

• For strings, the default value is the empty string.
• For bytes, the default value is empty bytes.
• For bools, the default value is false.
• For numeric types, the default value is zero.
• For enums, the default value is the first defined enum value, which must be 0.
• For a oneof field, none of the allowed values are assumed if the field is absent.
• repeated fields can be included any number of times, including zero.

If there is no requirement stating a field must be present, it is not necessary to include the field
in a sent Record or Message. The receiving Endpoint will use default values for fields not in-
cluded in a received Record or Message.

R-MTP.4b - Any field that is noted as “Required” in its description MUST be sent.

A Record or Message without a required field will fail to be processed by a receiving Endpoint.
For additional information, default values (when fields are missing) are described in the “De-
fault Values” section of Protocol Buffers [4].

4.1.3.1 Record Definition
Note: This version of the specification defines the USP Record in Protocol Buffers v3. This part of the
specification may change to a more generic description (normative and non-normative) if further
encodings are specified in future versions.

string version

Required. Version (Major.Minor) of the USP Protocol (e.g., “1.3”).

Note: The version field is used for USP Endpoints to set expectations about their behavior for other
USP Endpoints. A USP Endpoint that receives a Record indicating a version higher than it
supports can expect to receive messages it may not understand or encounter other unex-

October 2023 © The Broadband Forum. All rights reserved 62 of 275

https://www.iana.org/assignments/special-use-domain-names/special-use-domain-names.xhtml
https://www.iana.org/assignments/special-use-domain-names/special-use-domain-names.xhtml

The User Services Platform TR-369

pected behavior. USP Endpoints are expected to handle these inconsistencies gracefully (For exam-
ple, using the 7001 Message Not Supported Error).

string to_id

Required. Receiving/Target USP Endpoint Identifier.

string from_id

Required. Originating/Source USP Endpoint Identifier.

enum PayloadSecurity payload_security

Optional. An enumeration of type PayloadSecurity. When the payload is present, this indicates
the protocol or mechanism used to secure the payload (if any) of the USP Message. The value of
TLS12 means TLS 1.2 or later (with backward compatibility to TLS 1.2) will be used to secure
the payload (see TLS Payload Encapsulation for more information).

Valid values are:

PLAINTEXT (0)
TLS12 (1)

bytes mac_signature

Optional. When integrity protection of non-payload fields is performed, this is the message au-
thentication code or signature used to ensure the integrity of the non-payload fields of the USP
Record.

bytes sender_cert

Optional. The PEM encoded certificate, or certificate chain, of the sending USP Endpoint used to
provide the signature in the mac_signature field, when integrity protection is used and the
payload security mechanism doesn’t provide the mechanism to generate the mac_signature.

oneof record_type

Required. This field contains one of the types given below:

NoSessionContextRecord no_session_context

SessionContextRecord session_context

WebSocketConnectRecord websocket_connect

MQTTConnectRecord mqtt_connect

STOMPConnectRecord stomp_connect

UDSConnectRecord uds_connect

DisconnectRecord disconnect

4.1.3.1.1 NoSessionContextRecord fields
The following describe the fields included if record_type is no_session_context.

bytes payload

Required. The USP Message.

October 2023 © The Broadband Forum. All rights reserved 63 of 275

The User Services Platform TR-369

4.1.3.1.2 SessionContextRecord fields
The following describe the fields included if record_type is session_context.

uint64 session_id

Required. This field is the Session Context identifier.

uint64 sequence_id

Required. Datagram sequence identifier. Used only for exchange of USP Records with an E2E
Session Context. The field is initialized to 1 when starting a new Session Context and incre-
mented after each sent USP Record.

Note: Endpoints maintain independent values for received and sent sequence_id for a Session Con-
text, based respectively on the number of received and sent Records.

uint64 expected_id

Required. This field contains the next sequence_id the sender is expecting to receive, which im-
plicitly acknowledges to the recipient all transmitted datagrams less than expected_id. Used
only for exchange of USP Records with an E2E Session Context.

uint64 retransmit_id

Optional. Used to request a USP Record retransmission by a USP Endpoint to request a missing
USP Record using the missing USP Record’s anticipated sequence_id. Used only for exchange
of USP Records with an E2E Session Context. Will be received as 0 when no retransmission is
requested.

enum PayloadSARState payload_sar_state

Optional. An enumeration of type PayloadSARState. When payload is present, indicates the
segmentation and reassembly state represented by the USP Record. Valid values are:

NONE (0)
BEGIN (1)
INPROCESS (2)
COMPLETE (3)

enum PayloadSARState payloadrec_sar_state

Optional. An enumeration of type PayloadSARState. When payload segmentation is being per-
formed, indicates the segmentation and reassembly state represented by an instance of the pay-
load datagram. If payload_sar_state = 0 (or is not included or not set), then
payloadrec_sar_state will be 0 (or not included or not set). Valid values are:

NONE (0)
BEGIN (1)
INPROCESS (2)
COMPLETE (3)

repeated bytes payload

Optional. This repeated field is a sequence of zero, one, or multiple datagrams. It contains the
Message, in either PLAINTEXT or encrypted format. When using TLS12 payload security, this
contains the encrypted TLS records, either sequentially in a single payload field, or divided into

October 2023 © The Broadband Forum. All rights reserved 64 of 275

The User Services Platform TR-369

multiple payload fields. When using PLAINTEXT payload security there will be a single payload
field for any Message being sent.

4.1.3.1.3 WebSocketConnectRecord fields
This Record type has no fields.

4.1.3.1.4 MQTTConnectRecord fields
The following describe the fields included if record_type is mqtt_connect.

enum MQTTVersion version

Required. The MQTT protocol version used by the USP Endpoint to send this Record. Valid val-
ues are:

V3_1_1 (0)
V5 (1)

string subscribed_topic

Required. A MQTT Topic where the USP Endpoint sending this Record can be reached (i.e. a
non-wildcarded MQTT Topic it is subscribed to).

4.1.3.1.5 STOMPConnectRecord fields
The following describe the fields included if record_type is stomp_connect.

enum STOMPVersion version

Required. The STOMP protocol version used by the USP Endpoint to send this Record. Valid val-
ues are:

V1_2 (0)

string subscribed_destination

Required. A STOMP Destination where the USP Endpoint sending this Record can be reached
(i.e. a STOMP Destination it is subscribed to).

4.1.3.1.6 UDSConnectRecord fields
This Record type has no fields.

4.1.3.1.7 DisconnectRecord fields
The following describe the fields included if record_type is disconnect.

fixed32 reason_code

Optional. A code identifying the reason of the disconnect.

string reason

Optional. A string describing the reason of the disconnect.

4.1.4 USP Record Errors
A variety of errors can occur while establishing and during a USP communication flow. In order
to signal such problems to the other Endpoint while processing an incoming E2E Session Con-
text Record or a Record containing a Message of the type Request, an Endpoint encountering

October 2023 © The Broadband Forum. All rights reserved 65 of 275

The User Services Platform TR-369

such a problem can create a USP Record containing a Message of type Error and transmit it over
the same MTP and connection which was used when the error was encountered.

For this mechanism to work and to prevent information leakage, the sender causing the prob-
lem needs to be able to create a valid USP Record containing a valid source Endpoint ID and a
correct destination Endpoint ID. In addition a MTP specific return path needs to be known so
the error can be delivered.

R-MTP.5 - A recipient of an erroneous USP Record MUST create a Record with a Message of
type Error and deliver it to sender if the source Endpoint ID is valid, the destination Endpoint
ID is its own, the Record contains a USP Message of type Request, the Message ID can be ex-
tracted, and a MTP-specific return path is known. If any of those criteria on the erroneous
Record are not met, it MUST be ignored.

The following error codes (in the range 7100-7199) are defined to allow the Error to be more
specifically indicated. Additional requirements for these error codes are included in the specific
MTP definition, where appropriate.

Code Name Description
7100 Record could not be parsed This error indicates the received USP

Record could not be parsed.
7101 Secure session required This error indicates USP layer Secure

Message Exchange is required.
7102 Secure session not supported This error indicates USP layer Secure

Message Exchange was indicated in the
received Record but is not supported by
the receiving Endpoint.

7103 Segmentation and reassembly not sup-
ported

This error indicates segmentation and re-
assembly was indicated in the received
Record but is not supported by the re-
ceiving Endpoint.

7104 Invalid Record value This error indicates the value of at least
one Record field was invalid.

7105 Session Context terminated This error indicates an existing Session
Context Establishing an E2E Session
Context is being terminated.

7106 Session Context not allowed This error indicates use of Session Con-
text Establishing an E2E Session Context
is not allowed or not supported.

4.1.5 Connect and Disconnect Record Types
A Connect Record is a subgroup of Record types (record_type), there is one Record type per
USP MTP in this subgroup. These Records are used to assert the USP Agent presence and ex-

October 2023 © The Broadband Forum. All rights reserved 66 of 275

The User Services Platform TR-369

change needed information for proper start of communication between Agent and Controller,
the presence information is specifically useful when using brokered MTPs.

R-MTP.6 - If a USP Agent has the necessary information to create a Connect Record, it MUST
send the associated Connect Record, specific for the MTP in use, after it has successfully estab-
lished an MTP communications channel to a USP Controller.

The DisconnectRecord is a Record type used by a USP Agent to indicate it wishes to end an on-
going communication with a USP Controller. It can be used for presence information, for send-
ing supplemental information about the disconnect event and to force the remote USP Endpoint
to purge some cached information about the current session.

R-MTP.7 - The USP Agent SHOULD send a DisconnectRecord to the USP Controller before
disconnecting from an MTP communications channel. Upon receiving a DisconnectRecord, a
USP Controller MUST clear all cached information relative to an existing E2E Session Context
with that Endpoint, including the information that a previous E2E Session Context was estab-
lished.

It is not mandatory for a USP Endpoint to close its MTP connection after sending or receiving a
DisconnectRecord.

R-MTP.8 - After sending or receiving a DisconnectRecord and maintaining the underlying
MTP communications channel or after establishing a new MTP communications channel, the
USP Endpoint MUST send or receive the correct Connect Record type before exchanging any
other USP Records.

R-MTP.9 - A DisconnectRecord SHOULD include the reason_code and reason fields with an
applicable code from USP Record Errors.

4.2 CoAP Binding (OBSOLETED)
Note: The CoAP MTP was deprecated in USP 1.2. Due to the way it is specified this MTP can only be
used in local area networks under narrow conditions. Please see Section 4.3 for a suitable alterna-
tive.

Note: The CoAP MTP was obsoleted in USP 1.3 as a natural progression from being deprecated in
USP 1.2.

The Constrained Application Protocol (CoAP) MTP transfers USP Records between USP End-
points using the CoAP protocol as defined in RFC 7252 [36]. Messages that are transferred be-
tween CoAP clients and servers utilize a request/response messaging interaction based on
RESTful architectural principles. The following figure depicts the transfer of the USP Records
between USP Endpoints.

October 2023 © The Broadband Forum. All rights reserved 67 of 275

The User Services Platform TR-369

Figure 3: Example: USP Request/Response over the CoAP MTP

In this example, a USP Request is encoded within a USP Record and encapsulated within a
CoAP request message. When a USP Endpoint receives the CoAP request message the USP End-
point immediately sends a CoAP response message (with no USP Record) to indicate receipt of
the message. A USP Response encoded within a USP Record is encapsulated in a new CoAP re-
quest message. When the USP Endpoint receives the USP Response, it sends a CoAP response
message that indicates receipt of the message. Therefore, all Endpoints supporting CoAP will
implement both CoAP client and server.

As noted in the definition of a USP Request, this USP Record either requests the Agent perform
some action (create, update, delete, operate, etc.), requests information about an Agent or one or
more Service Elements, or acts as a means to deliver Notifications from the Agent to the Con-
troller. Notifications will only cause a USP Response to be generated if specified in the Notifica-
tion Request. However, the CoAP response will always be sent.

4.2.1 Mapping USP Endpoints to CoAP URIs
Section 6 of RFC 7262 [36] discusses the URI schemes for identifying CoAP resources and pro-
vides a means of locating the resource. These resources are organized hierarchically and gov-
erned by a CoAP server listening for CoAP requests on a given port. USP Endpoints are one
type of CoAP resource that is identified and discovered.

R-COAP.0 - As the USP Endpoint is a resource governed by a CoAP server, the CoAP server
MUST also be identified as defined in section 6 of RFC 7262 [36].

R-COAP.1 - A USP Endpoint MUST be represented as a CoAP resource with the following re-
source attributes:

• Identifier within the CoAP server (uri-path)
• Resource type (rt): “bbf.usp.endpoint”
• Interface (if): “bbf.usp.c” for USP Controller or “bbf.usp.a” for USP Agent

The identifier within the CoAP server is used to deliver messages to the USP Endpoint. When
this identifier is used to deliver messages to the USP Endpoint, this identifier is a uri-path that
represents the USP Endpoint.

October 2023 © The Broadband Forum. All rights reserved 68 of 275

The User Services Platform TR-369

R-COAP.2 - A CoAP request message MUST include a Uri-Query option that supplies the
CoAP server URI of the Endpoint that is the source of the CoAP request, formatted as ?reply-
to=<coap or coaps uri>. The coap and coaps URIs are defined in sections 6.1 and 6.2 of RFC
7262 [36]. The URI MUST NOT include any optional queries at the end.

R-COAP.2a - When a USP Endpoint receives a CoAP request message it MUST use the reply-to
Uri-Query option included in the CoAP request as the CoAP URI for the USP Response (if a re-
sponse is required by the incoming USP Request).

R-COAP.3 - When creating DNS-SD records (see DNS-SD Records), an Endpoint MUST set the
DNS-SD TXT record “path” attribute equal to the value of the CoAP server identifier (uri-path).

4.2.2 Mapping USP Records to CoAP Messages
R-COAP.4 - In order for USP Records to be transferred between a USP Controller and Agent
using CoAP, the USP Record MUST be encapsulated within the CoAP message as defined in
RFC 7262 [36].

R-COAP.5 – USP Records that exceed the CoAP message size MUST be block encapsulated in
accordance with [38].

USP Records are transferred using the CoAP resource that represents the receiving USP End-
point using the CoAP POST method as defined in RFC
7252.

R-COAP.6 - The CoAP Content-Format for USP Records MUST be application/octet-stream
(ID=42) for Message Encoding.

R-COAP.7 - Upon successful reception of the CoAP message using POST, the CoAP server
MUST respond with a response code of 2.04 (Changed).

4.2.2.1 Handling CoAP Request Failures
At times CoAP requests fail to complete due to problems in the underlying transport (e.g., time-
out) or a failure response code received from the CoAP server due to problems in the CoAP re-
quest sent by the CoAP client (4.xx) or problems with the CoAP server implementation (5.xx).

R-COAP.8 - CoAP clients and servers MUST implement the required CoAP response codes de-
fined in section 5.9 of RFC 7262 [36].

R-COAP.9 - When a CoAP client receives a failure indication (e.g., timeout) from the underly-
ing transport layer, the CoAP client MUST indicate a timeout to the USP Endpoint.

R-COAP.10 - When a CoAP client receives a response code of 4.xx or 5.xx, the CoAP client
MUST indicate a CoAP failure to the USP Endpoint.

When a CoAP client sends a CoAP request, the CoAP client can provide incorrect or missing in-
formation in the CoAP request. For example, a CoAP client can send a CoAP request with an:

• Invalid CoAP method: The CoAP server responds with a 4.05
• Invalid Content-Format options: The CoAP server responds with a 4.15
• Invalid or not understandable payload: The CoAP server responds with a 4.00

October 2023 © The Broadband Forum. All rights reserved 69 of 275

The User Services Platform TR-369

R-COAP.11 - When a CoAP server receives a CoAP request with an invalid CoAP method, the
CoAP server MUST respond with a 4.05 response code.

R-COAP.12 - When a CoAP server receives a CoAP request with an invalid CoAP Content-For-
mat option, the CoAP server MUST respond with a 4.15 response code.

R-COAP.13 - When a CoAP server receives a CoAP request and the receiving USP Endpoint
cannot interpret or decode the USP Record for processing, the CoAP server MUST respond with
a 4.00 response code.

4.2.3 MTP Message Encryption
CoAP MTP message encryption is provided using DTLS as described in Section 9 of RFC 7262
[36].

In section 9 of RFC 7262 [36], CoAP messages are secured using one of three modes:

• NoSec: DTLS is disabled
• PreSharedKey: DTLS is enabled and the MTP endpoint uses pre-shared keys that are used to

validate the identity of CoAP endpoints involved in the message exchange
• RawPublicKey: DTLS is enabled and the MTP endpoint has an asymmetric key pair without a

certificate. The MTP endpoint has an identity calculated from the public key and a list of
other MTP endpoints to which it can communicate

• Certificate: DTLS is enabled and the MTP endpoint has an asymmetric key pair with an X.509
certificate.

R-COAP.14 - CoAP clients and servers MUST implement the NoSec and Certificate modes of
CoAP security as defined in RFC 7262 [36].

While section 9 of RFC 7262 [36] provides guidance on securing CoAP, further guidance related
to DTLS implementations for the Internet of Things is provided by RFC 7925 [37].

R-COAP.15 - CoAP clients and servers MUST implement the mandatory statements of RFC
7925 [37] with the exception that:

• Section 4.4.1 USP Controller certificates can contain domain names with wildcard characters
per RFC 6125 [18] guidance.

• Section 4.4.2 Client certificate identifiers do not use EUI-64 identifier but instead use the iden-
tifier defined for Client certificates in this Working Text.

• Section 4.4.5 Client Certificate URLs are not required to be implemented.

As USP Endpoints play the role of both CoAP client and server; when the MTP is secured using
the Certificate mode of CoAP Security, the USP Endpoint provides a X.509 certificate to the
MTP peer.

R-COAP.16 – When the Certificate mode of CoAP is used to secure an MTP, a USP Endpoint
MUST provide an X.509 certificate to the MTP peer.

Note that DTLS sessions established for an Endpoint’s CoAP client and CoAP server are dis-
tinct. Therefore, it is possible for CoAP to be encrypted in one direction and not the other. If this

October 2023 © The Broadband Forum. All rights reserved 70 of 275

The User Services Platform TR-369

happens, the requirements and flows in Authentication and Authorization will dictate that
Secure Message Exchange be used.

4.3 WebSocket Binding
The WebSockets MTP transfers USP Records between USP Endpoints using the WebSocket pro-
tocol as defined in RFC 6455 [19]. Messages that are transferred between WebSocket clients and
servers utilize a request/response messaging interaction across an established WebSocket ses-
sion.

4.3.1 Mapping USP Endpoints to WebSocket URIs
Section 3 of RFC 6455 discusses the URI schemes for identifying WebSocket origin servers and
their target resources. These resources are organized hierarchically and governed by a Web-
Socket origin server listening for WebSocket messages on a given port. USP Endpoints are one
type of WebSocket resource that is identified and discovered.

R-WS.1 - As the USP Endpoint is a resource governed by a WebSocket origin server, the Web-
Socket server MUST also be identified as defined in section 3 of RFC 6455 [19].

R-WS.2 - A USP Endpoint MUST be represented as a WebSocket resource using the path com-
ponent as defined in section 3 of RFC 6455 [19].

R-WS.3 - When creating DNS-SD records (see Discovery), an Endpoint MUST set the DNS-SD
TXT record “path” attribute equal to the value of the Websocket resource using the path compo-
nent as defined in section 3 of RFC 6455 [19].

4.3.2 Handling of the WebSocket Session
When exchanging the USP Records across WebSockets MTPs, the two USP Endpoints establish
a WebSocket session. These WebSocket sessions are expected to be long lived and are reused for
subsequent USP Record exchange. A WebSocket session is established using a handshake proce-
dure described in section 4 of RFC 6455. When a WebSocket connection is not longer necessary,
the WebSocket connection is closed according to section 7 of RFC 6455. The following figure de-
picts a WebSocket session handshake that is originated by an Agent.

October 2023 © The Broadband Forum. All rights reserved 71 of 275

The User Services Platform TR-369

Figure 4: WebSocket Session Handshake

While WebSocket sessions can be established by either USP Controllers or USP Agents in many
deployment scenarios (e.g. communication between USP Endpoints across the Internet), in gen-
eral, USP Agents will establish the WebSocket session and not expose an open port toward the
Internet for security reasons. Regardless of which entity establishes the WebSocket session, at
most one (1) open WebSocket session is utilized between the USP Endpoints.

R-WS.4 - USP Endpoints that exchange USP Records MUST utilize at most one (1) open Web-
Socket session.

R-WS.5 - USP Agent MUST provide the capability to originate the establishment of a Web-
Socket session.

R-WS.6 - USP Agent MUST provide the capability to accept the establishment of a WebSocket
session from a USP Controller.

Note: Requirement R-WS.6 was altered from a MAY to a MUST in USP 1.2 to ensure that the Web-
Socket MTP is suitable for the in-home communications use case.

R-WS.7 - A USP Endpoint MUST implement the WebSocket handshake protocol to establish a
WebSocket connection as defined in section 4 of RFC 6455 [19].

R-WS.8 - A USP Endpoint MUST implement the procedures to close a WebSocket connection as
defined in section 7 of RFC 6455 [19].

4.3.2.1 Mapping USP Records to WebSocket Messages
During the establishment of the WebSocket session, the WebSocket client informs the Web-
Socket server in the Sec-WebSocket-Protocol header about the type of USP Records that will

October 2023 © The Broadband Forum. All rights reserved 72 of 275

The User Services Platform TR-369

be exchanged across the established WebSocket connection. For USP Records, the Sec-
WebSocket-Protocol header contains the value v1.usp. When presented with a Sec-
WebSocket-Protocol header containing v1.usp, the WebSocket Server serving a USP Endpoint
returns v1.usp in the response’s Sec-WebSocket-Protocol header. If the WebSocket client does-
n’t receive a Sec-WebSocket-Protocol header with a value of v1.usp, the WebSocket client
does not establish the WebSocket session.

When a WebSocket connection is being initiated with TLS, no USP Record is sent until the TLS
negotiation is complete. The WebSocket server will be unable to identify the Endpoint ID of the
client unless it looks inside the certificate. To make it easier for the server to identify the client,
the request URI of the opening handshake contains a key=value pair in its query component to
provide the Endpoint ID of the client. eid is used as the key to the pair, while the value is the
Endpoint ID of the client, e.g. eid=doc::agent.

R-WS.9 - The WebSocket’s handshake Sec-WebSocket-Protocol header for exchange of USP
Records using the protocol-buffers encoding mechanism MUST be v1.usp.

R-WS.10 - A WebSocket client MUST include the Sec-WebSocket-Protocol header for ex-
change of USP Records when initiating a WebSocket session.

R-WS.10a (DEPRECATED) - A WebSocket client MUST include the Sec-WebSocket-
Extensions header with bbf-usp-protocol WebSocket Extension and extension parameter eid
equal to the client’s Endpoint ID when initiating a WebSocket session.

Note: Requirement R-WS.10a was removed in USP 1.3, due to the impossibility of setting WebSocket
Extensions in some environments.

R-WS.10b - A WebSocket client MUST include its Endpoint ID, via a key=value pair, in the
query component of the request URI in its opening handshake, defined in section 1.3 of RFC
6455 [19]. The key part of the pair MUST have a value of eid and the value part MUST be the
client’s Endpoint ID. This pair MUST be separated from other query data by the & character.

R-WS.11 - A WebSocket server that supports USP Endpoints MUST include the Sec-
WebSocket-Protocol header for exchange of USP Records when responding to an initiation of a
WebSocket session.

R-WS.11a - A WebSocket server SHOULD include the Sec-WebSocket-Extensions header with
bbf-usp-protocol WebSocket Extension and extension parameter eid equal to the server’s
Endpoint ID when responding to an initiation of a WebSocket session that includes the bbf-
usp-protocol extension.

R-WS.11b - WebSocket clients MUST NOT consider WebSocket responses that do not include
the bbf-usp-protocol WebSocket Extension to be an error.

R-WS.11c - WebSocket servers MUST NOT consider WebSocket session initiation requests that
do not include the bbf-usp-protocol WebSocket Extension to be an error.

October 2023 © The Broadband Forum. All rights reserved 73 of 275

The User Services Platform TR-369

R-WS.12 - A WebSocket client MUST NOT establish a WebSocket session if the response to a
WebSocket session initiation request does not include the Sec-WebSocket-Protocol header for
exchange of USP Records in response to an initiation of a WebSocket session.

R-WS.12a - A WebSocket server MUST NOT establish a WebSocket session if the WebSocket
session initiation request does not include the Sec-WebSocket-Protocol header.

4.3.3 Handling of WebSocket Frames
RFC 6455 defines a number of type of WebSocket control frames (e.g., Ping, Pong, Close) and as-
sociated condition codes in order to maintain a WebSocket connection. In addition messages are
transferred in WebSocket Data control frame.

R-WS.13 - A USP Endpoint MUST implement the WebSocket control frames defined in section
5.5 of RFC 6455 [19].

USP Records can be transferred between USP Controllers and USP Agents over an established
WebSocket session. These USP Records are encapsulated within a binary WebSocket data frame
as depicted by the figure below.

Figure 5: USP Request using a WebSocket Session

R-WS.14 - In order for USP Records to be transferred between a USP Controller and Agent us-
ing WebSockets MUST be encapsulated within as a binary WebSocket data frame as defined in
section 5.6 of RFC 6455 [19].

R-WS.15 - USP Records are transferred between USP Endpoints using message body proce-
dures as defined in section 6 of RFC 6455 [19].

October 2023 © The Broadband Forum. All rights reserved 74 of 275

The User Services Platform TR-369

4.3.3.1 Handling Failures to Deliver USP Records
If a USP Endpoint receives a WebSocket frame containing a USP Record that cannot be ex-
tracted for processing (e.g., text frame instead of a binary frame, malformed USP Record or USP
Record, bad encoding), the receiving USP Endpoint notifies the originating USP Endpoint that
an error occurred by closing the WebSocket connection with a 1003 Status Code with the Web-
Socket Close frame.

R-WS.16 - A USP Endpoint that receives a WebSocket frame containing a USP Record that can-
not be extracted for processing, the receiving USP Endpoint MUST terminate the connection us-
ing a WebSocket Close frame with a Status Code of 1003.

4.3.3.2 Keeping the WebSocket Session Alive
Once a WebSocket session is established, the WebSocket session is expected to remain open for
future exchanges of USP Records. The WebSocket protocol uses Ping and Pong control frames
as a keep-alive session. Section 5.5 of RFC 6455 discusses the handling of Ping and Pong control
frames.

R-WS.17 - A USP Agent MUST implement a WebSocket keep-alive mechanism by periodically
sending Ping control frames and responding to received Ping control frames with Pong control
frames as described in section 5.5 of RFC 6455 [19].

R-WS.18 - A USP Agent MUST provide the capability to assign a keep-alive interval in order to
send Ping control frames to the remote USP Endpoint.

4.3.3.3 WebSocket Session Retry
If for any reason a WebSocket Session is closed, the USP Endpoint will attempt to re-establish
the WebSocket Session according to its session retry policy. For Controllers, this session retry
policy is implementation specific.

R-WS.19 – When retrying to establish a WebSocket Session, the Agent MUST use the following
retry algorithm to manage the WebSocket Session establishment procedure:

For Agents, the retry interval range is controlled by two variables (described in the table below):
the minimum wait interval and the interval multiplier. The corresponding data model Parame-
ter MAY be implemented to allow a USP Controller to change the values of these variables. The
factory default values of these variables MUST be the default values listed in the Default col-
umn of the table below.

Descriptive Name Symbol Default Data Model Parameter Name
Minimum wait interval m 5 seconds Device.LocalAgent.Controller.{i}.MTP.

{i}.WebSocket.SessionRetryMinimumWaitInterval

Interval multiplier k 2000 Device.LocalAgent.Controller.{i}.MTP.
{i}.WebSocket.SessionRetryIntervalMultiplier

Retry Count Default Wait Interval Range
(min-max seconds)

Actual Wait Interval Range
(min-max seconds)

October 2023 © The Broadband Forum. All rights reserved 75 of 275

The User Services Platform TR-369

#1 5-10 m - m.(k/1000)
#2 10-20 m.(k/1000) - m.(k/1000)^2
#3 20-40 m.(k/1000)^2 - m.(k/1000)^3
#4 40-80 m.(k/1000)^3 - m.(k/1000)^4
#5 80-160 m.(k/1000)^4 - m.(k/1000)^5
#6 160-320 m.(k/1000)^5 - m.(k/1000)^6
#7 320-640 m.(k/1000)^6 - m.(k/1000)^7
#8 640-1280 m.(k/1000)^7 - m.(k/1000)^8
#9 1280-2560 m.(k/1000)^8 - m.(k/1000)^9

#10 and subsequent 2560-5120 m.(k/1000)^9 - m.(k/1000)^10

R-WS.20 – Once a WebSocket session is established between the Agent and the Controller, the
Agent MUST reset the WebSocket MTP’s retry count to zero for the next WebSocket Session es-
tablishment.

R-WS.21 – If a reboot of the Agent occurs, the Agent MUST reset the WebSocket MTP’s retry
count to zero for the next WebSocket Session establishment.

4.3.4 MTP Message Encryption
WebSocket MTP message encryption is provided using certificates in TLS as described in sec-
tion 10.5 and section 10.6 of RFC 6455 [19].

R-WS.22 - USP Endpoints utilizing WebSockets clients and servers for message transport
MUST implement the Certificate modes of TLS security as defined in sections 10.5 and 10.6 of
RFC 6455 [19].

R-WS.23 - USP Endpoints capable of obtaining absolute time SHOULD wait until it has accu-
rate absolute time before contacting the peer USP Endpoint. If a USP Endpoint for any reason is
unable to obtain absolute time, it can contact the peer USP Endpoint without waiting for accu-
rate absolute time. If a USP Endpoint chooses to contact the peer USP Endpoint before it has ac-
curate absolute time (or if it does not support absolute time), it MUST ignore those components
of the peer USP Endpoint’s WebScoket MTP certificate that involve absolute time, e.g. not-valid-
before and not-valid-after certificate restrictions.

R-WS.24 - USP Controller certificates MAY contain domain names with wildcard characters per
RFC 6125 [18] guidance.

4.4 STOMP Binding
The STOMP MTP transfers USP Records between USP endpoints using version 1.2 of the
STOMP protocol [40], further referred to as “STOMP Specification”, or the Simple Text Oriented
Message Protocol. Messages that are transferred between STOMP clients utilize a message bus
interaction model where the STOMP server is the messaging broker that routes and delivers
messages based on the destination included in the STOMP header.

October 2023 © The Broadband Forum. All rights reserved 76 of 275

The User Services Platform TR-369

The following figure depicts the transfer of the USP Records between USP Agents and Con-
trollers.

Figure 6: USP over STOMP Architecture

The basic steps for any USP Endpoint that utilizes a STOMP MTP are:

1. Negotiate TLS (if required/configured)
2. Connect to the STOMP Server
3. Maintain Heart Beats (if configured)
4. Subscribe to a Destination
5. Send USP Records

R-STOMP.0 - USP Agents utilizing STOMP clients for message transport MUST support the
STOMPConn:1 and STOMPController:1 data model profiles.

R-STOMP.1 - USP Agents utilizing STOMP clients for message transport SHOULD support the
STOMPAgent:1 and STOMPHeartbeat:1 data model profile.

4.4.1 Handling of the STOMP Session
When exchanging USP Records across STOMP MTPs, each USP Endpoint establishes a commu-
nications session with a STOMP server. These STOMP communications sessions are expected to
be long lived and are reused for subsequent exchange of USP Records. A STOMP communica-
tions session is established using a handshake procedure as described in “Connecting a USP
Endpoint to the STOMP Server” section below. A STOMP communications session is intended
to be established as soon as the USP Endpoint becomes network-aware and is capable of send-
ing TCP/IP messages.

October 2023 © The Broadband Forum. All rights reserved 77 of 275

The User Services Platform TR-369

When a STOMP communications session is no longer necessary, the STOMP connection is
closed by the STOMP client, preferably by sending a DISCONNECT frame (see “Handling Other
STOMP Frames” section below).

4.4.1.1 Connecting a USP Endpoint to the STOMP Server
R-STOMP.2 - USP Endpoints utilizing STOMP clients for message transport MUST send a
STOMP frame to the STOMP server to initiate the STOMP communications session as defined in
the “Connecting” section of the STOMP Specification.

R-STOMP.3 - USP Endpoints that DO NOT utilize client certificate authentication MUST in-
clude the login and passcode STOMP headers in the STOMP frame. For a USP Agent, if
the .STOMP.Connection.{i}.Username Parameter is implemented then its value will be the
source for the login STOMP header, and if the .STOMP.Connection.{i}.Password Parameter is
implemented then its value will be the source for the passcode STOMP header.

R-STOMP.4 - USP Endpoints sending a STOMP frame MUST include (in addition to other
mandatory STOMP headers) an endpoint-id STOMP header containing the Endpoint ID of the
USP Endpoint sending the frame. Note: According to the STOMP Specification, the STOMP frame
requires that “C style literal escapes” need to be used to encode any carriage return, line feed, or
colon characters that are found within the UTF-8 encoded headers, and R-STOMP.4 requires the
Endpoint ID to be included in those headers. Since the Endpoint ID always contains colon charac-
ters, those will need to be escaped.

R-STOMP.5 - USP Endpoints sending a STOMP frame MUST include a host STOMP header, if
configured to do so. For a USP Agent the value MUST contain the value from the appropri-
ate .STOMP.Connection.{i}.VirtualHost Parameter if supported and not empty.

R-STOMP.6 - If the USP Endpoint receives a subscribe-dest STOMP header in the CONNECTED
frame, it MUST use the associated value when Subscribing to its destination (see “Subscribing a
USP Endpoint to a STOMP Destination” section for more details).

R-STOMP.7 - If the connection to the STOMP server is NOT successful then the USP Endpoint
MUST enter a connection retry state. For a USP Agent the retry mechanism is based on the
STOMP.Connection.{i}. retry Parameters: ServerRetryInitialInterval,
ServerRetryIntervalMultiplier, and ServerRetryMaxInterval.

4.4.1.2 Handling the STOMP Heart Beat Mechanism
The STOMP Heart Beat mechanism can be used to periodically send data between a STOMP
client and a STOMP server to ensure that the underlying TCP connection is still available. This
is an optional STOMP mechanism and is negotiated when establishing the STOMP connection.

R-STOMP.8 - If the STOMP.Connection instance’s EnableHeartbeats Parameter value is true
then the USP Agent MUST negotiate the STOMP Heart Beat mechanism within the STOMP frame
during the process of establishing the STOMP connection as is defined in the “Heart-beating”
section of the STOMP Specification.

October 2023 © The Broadband Forum. All rights reserved 78 of 275

The User Services Platform TR-369

R-STOMP.9 - If the STOMP.Connection instance’s EnableHeartbeats Parameter value is either
false or not implemented then the USP Agent MUST either not send the heart-beat STOMP
header in the STOMP frame or send “0,0” as the value of the heart-beat STOMP header in the
STOMP frame.

R-STOMP.10 - USP Agents negotiating the STOMP Heart Beat mechanism MUST use the
STOMP.Connection.{i}.OutgoingHeartbeat and STOMP.Connection.{i}.IncomingHeartbeat
Parameter values within the heart-beat STOMP header as defined in the “Heart-beating” sec-
tion of the STOMP Specification.

R-STOMP.11 - USP Agents that have negotiated a STOMP Heart Beat mechanism with a
STOMP server MUST adhere to the heart beat values (as defined in the “Heart-beating” section
of the STOMP Specification) as returned in the CONNECTED frame.

4.4.2 Mapping USP Endpoints to STOMP Destinations
USP Agents will have one STOMP destination per STOMP MTP independent of whether those
STOMP MTPs use the same STOMP.Connection instance or a different one. The STOMP destina-
tion is either configured by the STOMP server via the USP custom subscribe-dest STOMP
Header received in the CONNECTED frame (exposed in the Device.LocalAgent.MTP.
{i}.STOMP.DestinationFromServer Parameter) or taken from the Device.LocalAgent.MTP.
{i}.STOMP.Destination Parameter if there wasn’t a subscribe-dest STOMP Header received
in the CONNECTED frame. The USP custom subscribe-dest STOMP Header is helpful in scenar-
ios where the USP Agent doesn’t have a pre-configured destination as it allows the USP Agent
to discover the destination.

A USP Controller will subscribe to a STOMP destination for each STOMP server that it is asso-
ciated with. The USP Controller’s STOMP destination needs to be known by the USP Agent
(this is configured in the Device.LocalAgent.Controller.{i}.MTP.{i}.STOMP.Destination
Parameter) as it is used when sending a USP Record containing a Notification.

4.4.2.1 Subscribing a USP Endpoint to a STOMP Destination
R-STOMP.12 - USP Endpoints utilizing STOMP clients for message transport MUST subscribe
to their assigned STOMP destination by sending a SUBSCRIBE frame to the STOMP server as de-
fined in the “SUBSCRIBE” section of the STOMP Specification.

R-STOMP.13 - USP Endpoints sending a SUBSCRIBE frame MUST include (in addition to other
mandatory STOMP headers) a destination STOMP header containing the STOMP destination
associated with the USP Endpoint sending the frame.

R-STOMP.14 - USP Agents that receive a subscribe-dest STOMP Header in the CONNECTED
frame MUST use that STOMP destination in the destination STOMP header when sending a
SUBSCRIBE frame.

R-STOMP.15 - USP Agents that have NOT received a subscribe-dest STOMP Header in the
CONNECTED frame MUST use the STOMP destination found in the Device.LocalAgent.MTP.
{i}.STOMP.Destination Parameter in the destination STOMP header when sending a
SUBSCRIBE frame.

October 2023 © The Broadband Forum. All rights reserved 79 of 275

The User Services Platform TR-369

R-STOMP.16 - USP Agents that have NOT received a subscribe-dest STOMP Header in the
CONNECTED frame and do NOT have a value in the Device.LocalAgent.MTP.
{i}.STOMP.Destination Parameter MUST terminate the STOMP communications session
(preferably via the DISCONNECT frame) and enter a connection retry state following R-STOMP.7.

R-STOMP.17 - USP Endpoints sending a SUBSCRIBE frame MUST use an ack value of “auto”.

4.4.3 Mapping USP Records to STOMP Frames
A USP Record is sent from a USP Endpoint to a STOMP Server within a SEND frame. The
STOMP Server delivers that USP Record to the destination STOMP Endpoint within a MESSAGE
frame. When a USP Endpoint responds to the USP request, the USP Endpoint sends the USP
Record to the STOMP Server within a SEND frame, and the STOMP Server delivers that USP
Record to the destination USP Endpoint within a MESSAGE frame.

R-STOMP.18 - USP Endpoints utilizing STOMP clients for message transport MUST send USP
Records in a SEND frame to the STOMP server as defined in the “SEND” section of the STOMP
Specification.

R-STOMP.19 - USP Endpoints sending a SEND frame MUST include (in addition to other
mandatory STOMP headers) a content-length STOMP header containing the length of the
body included in the SEND frame.

R-STOMP.20 - USP Endpoints sending a SEND frame MUST include (in addition to other
mandatory STOMP headers) a content-type STOMP header with a value of “application/
vnd.bbf.usp.msg”, which signifies that the body included in the SEND frame contains a Protocol
Buffer [4] binary encoding message.

R-STOMP.21 - USP Endpoints sending a SEND frame with content-type of application/
vnd.bbf.usp.msg MUST include (in addition to other mandatory STOMP headers) a reply-to-
dest STOMP header containing the STOMP destination that indicates where the USP Endpoint
that receives the USP Record should send any response (if required).

R-STOMP.22 - USP Endpoints sending a SEND frame with content-type of application/
vnd.bbf.usp.msg MUST include the Protocol Buffer [4] binary encoding of the USP Record as
the body of the SEND frame.

R-STOMP.23 - When a USP Endpoint receives a MESSAGE frame it MUST use the reply-to-
dest included in the STOMP headers as the STOMP destination of the USP response (if a re-
sponse is required by the incoming USP request).

4.4.3.1 Handling Errors
If a STOMP USP Endpoint receives a MESSAGE frame containing a USP Record that cannot be ex-
tracted for processing (e.g., text frame instead of a binary frame, malformed USP Record, bad
encoding), it will silently drop the unprocessed USP Record. If the requirements according to
USP Record Errors are fulfilled, for the STOMP MTP specifically this means that the reply-to-
dest information has to be available, then a USP Record with an appropriate Error Message
must be created and transmitted via STOMP SEND frame.

October 2023 © The Broadband Forum. All rights reserved 80 of 275

The User Services Platform TR-369

Note: Error handling was unified between MTPs in USP 1.2 by using USP Records instead of MTP
specific messages, deprecating most of this section, specifically the requirements R-STOMP.23a, R-
STOMP.23b, R-STOMP.24, R-STOMP.24a and R-STOMP.24b. Please see USP Record Errors for
details.

R-STOMP.23a (DEPRECATED) - USP Endpoints MUST support STOMP content-type header
value of application/vnd.bbf.usp.error.

Note: Requirement R-STOMP.23a was removed in USP 1.2

R-STOMP.23b (DEPRECATED) - A USP Endpoint MUST include a usp-err-id STOMP header
in SEND frames of content-type application/vnd.bbf.usp.msg. The value of this header is:
<USP Record to_id> + "/" + <USP Message msg_id>, the <USP Message msg_id> field can be
left blank if the Record does not contain a USP Message. Since the colon “:” is a reserved char-
acter in STOMP headers, all instances of “:” in the USP Record to_id MUST be expressed using
an encoding of \c.

Note: Requirement R-STOMP.23b was removed in USP 1.2

R-STOMP.24 (DEPRECATED) - When a USP Endpoint receives a MESSAGE frame containing a
USP Record or an encapsulated USP Message within a USP Record that cannot be extracted for
processing, the receiving USP Endpoint MUST ignore the USP Record if the received STOMP
MESSAGE frame did not include a usp-err-id header.

Note: Requirement R-STOMP.24 was removed in USP 1.2

R-STOMP.24a (DEPRECATED) - When a USP Endpoint receives a MESSAGE frame containing
a USP Record or an encapsulated USP Message within a USP Record that cannot be extracted
for processing, the receiving USP Endpoint MUST send a STOMP SEND frame with an
application/vnd.bbf.usp.error content-type header value if the received STOMP MESSAGE
frame included a usp-err-id header.

Note: Requirement R-STOMP.24a was removed in USP 1.2

R-STOMP.24b (DEPRECATED) - A STOMP SEND frame with application/
vnd.bbf.usp.error content-type MUST contain the received usp-err-id header, the destina-
tion header value set to the received reply-to-dest header, and a message body (formatted us-
ing UTF-8 encoding) with the following 2 lines:

• err_code:<numeric code indicating the type of error that caused the overall
message to fail>

• err_msg:<additional information about the reason behind the error>

The specific error codes are listed in the MTP USP Record Errors section.

The following is an example message. This example uses “^@” to represent the NULL octet that
follows a STOMP body.

SEND
destination:/usp/the-reply-to-dest
content-type:application/vnd.bbf.usp.error

October 2023 © The Broadband Forum. All rights reserved 81 of 275

The User Services Platform TR-369

usp-err-id:cid\c3AA3F8\cusp-id-42/683

err_code:7100
err_msg:Field n is not recognized.^@

Note: Requirement R-STOMP.24b was removed in USP 1.2

R-STOMP.25 - If an ERROR frame is received by the USP Endpoint, the STOMP server will ter-
minate the connection. In this case the USP Endpoint MUST enter a connection retry state. For
a USP Agent the retry mechanism is based on the STOMP.Connection.{i}. retry Parameters:
ServerRetryInitialInterval, ServerRetryIntervalMultiplier, and
ServerRetryMaxInterval.

4.4.3.2 Handling Other STOMP Frames
R-STOMP.26 - USP Endpoints utilizing STOMP clients for message transport MUST NOT send
the transactional STOMP frames including: BEGIN, COMMIT, and ABORT.

R-STOMP.27 - USP Endpoints utilizing STOMP clients for message transport MUST NOT send
the acknowledgement STOMP frames including: ACK and NACK.

R-STOMP.28 - USP Endpoints utilizing STOMP clients for message transport MAY send the
following STOMP frames when shutting down a STOMP connection: UNSUBSCRIBE (according
to the rules defined in the UNSUBSCRIBE section of the STOMP Specification) and DISCONNECT
(according to the rules defined in the DISCONNECT section of the STOMP Specification).

R-STOMP.29 - USP Endpoints utilizing STOMP clients for message transport that DID NOT re-
ceive a subscribe-dest STOMP Header in the CONNECTED frame when establishing the STOMP
communications session MUST update their STOMP subscription when their destination is al-
tered by sending the UNSUBSCRIBE STOMP frame (according to the rules defined in the UNSUB-
SCRIBE section of the STOMP Specification) and then re-subscribing as detailed in the “Sub-
scribing a USP Endpoint to a STOMP Destination” section.

R-STOMP.30 - USP Endpoints utilizing STOMP clients for message transport MAY receive a
RECEIPT frame in which case the STOMP server is acknowledging that the corresponding client
frame has been processed by the server.

4.4.4 Discovery Requirements
The USP Discovery section details requirements about the general usage of DNS, mDNS, and
DNS-SD records as it pertains to the USP protocol. This section provides further requirements
as to how a USP Endpoint advertises discovery information when a STOMP MTP is being uti-
lized.

R-STOMP.31 - When creating a DNS-SD record, an Endpoint MUST set the DNS-SD “path” at-
tribute equal to the value of the destination that it has subscribed to.

R-STOMP.32 - When creating a DNS-SD record, an Endpoint MUST utilize the STOMP
server’s address information in the A and AAAA records instead of the USP Endpoint’s address
information.

October 2023 © The Broadband Forum. All rights reserved 82 of 275

The User Services Platform TR-369

4.4.5 STOMP Server Requirements
R-STOMP.33 - A STOMP server implementation MUST adhere to the requirements defined in
the STOMP Specification.

R-STOMP.34 - A STOMP server implementation MUST perform authentication of the STOMP
client and ensure that a Remote USP Endpoint is only allowed to subscribe to the destination
that is associated with the USP Endpoint.

R-STOMP.35 - A STOMP server implementation SHOULD support both Client Certification
Authentication and Username/Password Authentication mechanisms.

4.4.6 MTP Message Encryption
STOMP MTP message encryption is provided using TLS certificates.

R-STOMP.36 - USP Endpoints utilizing STOMP clients for message transport MUST implement
TLS 1.2 RFC 5246 [33] or later with backward compatibility to TLS 1.2.

R-STOMP.37 - STOMP server certificates MAY contain domain names and those domain
names MAY contain domain names with wildcard characters per RFC 6125 [18] guidance.

4.5 MQTT Binding
The Message Queuing Telemetry Transport (MQTT) MTP transfers USP Records between USP
Endpoints using the MQTT protocol. Messages that are transferred between MQTT clients uti-
lize a message bus interaction model where the MQTT server is the messaging broker that
routes and delivers messages based on the Topic Name included in the MQTT Publish packet
variable header.

The following figure depicts the transfer of the USP Records between USP Agents and Con-
trollers.

October 2023 © The Broadband Forum. All rights reserved 83 of 275

The User Services Platform TR-369

Figure 7: USP over MQTT Architecture

The basic steps for any USP Endpoint that utilizes an MQTT MTP are:

• Negotiate TLS (if required/configured)
• Connect to the MQTT Server (server may require Authentication)
• Subscribe to a Topic
• Publish USP Records
• Optionally send PINGREQ messages to keep the connection alive

The following figure shows the MQTT packets that have requirements in this section for their
use when MQTT is a USP MTP.

October 2023 © The Broadband Forum. All rights reserved 84 of 275

The User Services Platform TR-369

Figure 8: MQTT Packets

R-MQTT.1 - USP Endpoints utilizing MQTT clients for message transport MUST implement
MQTT 5.0 [28].

R-MQTT.2 - USP Endpoints utilizing MQTT clients for message transport MAY implement
MQTT 3.1.1 [27].

Requirements in this MQTT MTP specification are common to both the MQTT 3.1.1 and MQTT
5.0 specifications unless an MQTT version is named.

The MQTT specifications are very complete and comprehensive in describing syntax and usage
requirements of MQTT packets and behaviors. Therefore, none of those requirements are re-it-
erated in this specification. This specification only contains requirements unique to use of

October 2023 © The Broadband Forum. All rights reserved 85 of 275

The User Services Platform TR-369

MQTT as a USP MTP. The above two requirements for compliance with the MQTT specifica-
tions are critical in developing an implementation compliant with this MQTT Binding specifica-
tion. Wherever an MQTT packet or other functionality is mentioned in the requirements in this
MQTT Binding specification, the requirement for compliance with the MQTT specification (R-
MQTT.1 and R-MQTT.2) apply.

R-MQTT.3 - USP Agents utilizing MQTT clients for message transport MUST support MQTT
over TCP transport protocol.

The MQTT specification also describes how MQTT can run over WebSockets. Deployments can
choose to use MQTT over WebSockets, if they use MQTT clients and servers with support for
this option. The TCP option is required to ensure interoperability.

R-MQTT.4 - USP Agents utilizing MQTT clients for message transport MUST support the
MQTTClientCon:1, MQTTClientSubscribe:1, MQTTAgent:1, and MQTTController:1 data model
profiles.

R-MQTT.5 - USP Agents utilizing MQTT clients for message transport SHOULD support the
MQTTClientExtended:1 data model profile.

4.5.1 Connecting a USP Endpoint to the MQTT Server
When exchanging USP Records across MQTT MTPs, each USP Endpoint establishes a commu-
nications session with an MQTT server. These MQTT communications sessions are expected to
be long-lived and are re-used for subsequent exchange of USP Records. An MQTT communica-
tions session is established using the procedure in this section. An MQTT communications ses-
sion is intended to be established as soon as the USP Endpoint becomes network-aware and can
send TCP/IP messages.

When an MQTT communications session is no longer necessary or expires (see “Keep Alive”
section below), the MQTT connection is closed by the MQTT client, preferably by sending a
DISCONNECT packet (see Handling Other MQTT Packets section below).

R-MQTT.1 and R-MQTT.2 require that all MQTT capabilities referenced in this section and its
sub-sections are compliant with the MQTT specifications. Reading the MQTT specification is
highly recommended to ensure the correct syntax and usage of MQTT packets and properties
(CONNECT, CONNACK, User Name, Password, ClientId, User Property, Keep Alive, PINGREQ,
PINGRESP, etc.).

R-MQTT.6 - USP Endpoints utilizing MQTT clients for message transport MUST send a
CONNECT packet to the MQTT server to initiate the MQTT communications session.

R-MQTT.7 - USP Endpoints with a configured MQTT User Name and Password for use with
this MQTT server MUST include these in the MQTT CONNECT packet. The .MQTT.Client.
{i}.Username and .MQTT.Client.{i}.Password Parameter values (associated with this MQTT
server) will be used for User Name and Password.

R-MQTT.8 - USP Endpoints MUST set the value of the CONNECT packet Client Identifier (Clien-
tId) as follows:

October 2023 © The Broadband Forum. All rights reserved 86 of 275

The User Services Platform TR-369

• If a non-empty, non-null ClientId value exists for use with this MQTT server, this MUST be
used. The data model Parameter for the ClientId is .MQTT.Client.{i}.ClientID.

• If an MQTT 5.0 client has no configured ClientId (null or empty string) the USP Endpoint
MUST send an empty string in the Client Identifier property.

• If an MQTT 3.1.1 client has no configured ClientId, the USP Endpoint SHOULD attempt to
use its USP Endpoint ID as the ClientId.

R-MQTT.9 - An MQTT 5.0 client MUST save (in the .MQTT.Client.{i}.ClientID Parameter)
an Assigned Client Identifier included in a CONNACK packet as its configured ClientId for future
connections to the MQTT server.

R-MQTT.10 - If the connection to the MQTT server is NOT successful then the USP Endpoint
MUST enter a connection retry state. For a USP Agent the retry mechanism is based on the
MQTT.Client.{i}. retry Parameters: ConnectRetryTime, ConnectRetryIntervalMultiplier,
and ConnectRetryMaxInterval.

R-MQTT.11 - Once a USP Endpoint has successfully connected to an MQTT server, it MUST
use the same ClientId for all subsequent connections with that server.

4.5.1.1 CONNECT Flags and Properties
The MQTT CONNECT packet has a number of flags and properties that can be set. The User Name
and Password flags are set to 1 if these parameters are included. The use of the Will Retain, Will
QoS, and Will Flag are left up to the deployment. They are not needed in order to use MQTT as
a USP MTP and can be “0” if there is no deployment-specified need for them. The Clean Start
flag can also be used according to deployment-specified needs. Configured values for these flags
can be provided through the related .MQTT.Client.{i}. Parameters.

MQTT 3.1.1 does not provide a simple mechanism for a USP MQTT client to provide its End-
point ID to the MQTT server. But the server does have other options, such as:

1. Support Endpoint ID as ClientId.
2. Get Endpoint ID from client TLS certificate.

MQTT 3.1.1 also does not provide a mechanism for the MQTT server to tell a client what Topic
other Endpoints should use to send the client a message (the “reply to” Topic). This information
would need to be pre-configured or provided in some manner not specified here.

MQTT 5.0 includes additional properties that deployments can choose to use.

R-MQTT.12 - An MQTT 5.0 USP Endpoint MUST support setting the Request Response Infor-
mation property to 1, and MUST support receiving the corresponding Response Information in
the CONNACK packet.

The Response Information property is used by an MQTT 5.0 client as the Response Topic
(which is the MQTT 5.0 PUBLISH packet property identifying the Topic to send a USP response
to). The Response Information property requirements for use of the received Response Informa-
tion are below in Sending the USP Record in a PUBLISH Packet Payload. Ensuring the client is

October 2023 © The Broadband Forum. All rights reserved 87 of 275

The User Services Platform TR-369

subscribed to this Topic or a Topic Filter that includes this Topic is described in Subscribing to
MQTT Topics.

R-MQTT.13 - An MQTT 5.0 USP Endpoint MUST include a User Property name-value pair in
the CONNECT packet with name of “usp-endpoint-id” and value of this Endpoint’s USP Endpoint
ID.

4.5.1.2 Keep Alive
The MQTT Keep Alive mechanism has several components:

• The CONNECT packet Keep Alive field tells the server to disconnect the client if the server does
not receive a packet from the client before the Keep Alive time (in seconds) has elapsed since
the prior received packet.

• The MQTT 5.0 CONNACK packet Keep Alive field allows the server to inform the client the
maximum interval the server will allow to elapse between received packets before it discon-
nects the client due to inactivity.

• PINGREQ and PINGRESP packets can be used to keep the connection up if the timer is nearing
expiry and there is no need for another type of message. PINGREQ can also be used by the
client at any time to check on the status of the connection.

The client can indicate the Server is not required to disconnect the Client on the grounds of in-
activity by setting the CONNECT Keep Alive to zero (0). Note that WebSockets mechanisms can be
used to keep the connection alive if MQTT is being run over WebSockets. Also note the server
is allowed to disconnect the client at any time, regardless of Keep Alive value.

R-MQTT.14 - USP Endpoints with a configured Keep Alive value MUST include this in the
MQTT CONNECT packet. The .MQTT.Client.{i}.KeepAliveTime Parameter value (associated
with this MQTT server) will be used for the Keep Alive value.

Use of PINGREQ and PINGRESP for keeping sessions alive (or determining session aliveness) is as
described in the MQTT specification. No additional requirements are provided for use of these
packets in a USP context.

4.5.2 Subscribing to MQTT Topics
The SUBSCRIBE packet is sent by the MQTT client to subscribe to one or more Topics or Topic
Filters. These are needed to allow the MQTT client to receive application messages. The MQTT
client will receive all application messages published by other clients that are sent to a Topic
that matches (either exactly or within a wildcarded Topic Filter) a subscribed-to Topic or Topic
Filter. The MQTT server indicates in the SUBACK response packet whether the client has suc-
ceeded or failed to subscribe to each Topic or Topic Filter sent in the SUBSCRIBE packet.

USP Endpoints can be configured with one or more specific MQTT Topics or Topic Filters to
subscribe to for each MQTT server they are associated with. In MQTT 5.0, a CONNACK User
Property named “subscribe-topic” can be used to provide the client with Topic or Topic Filter
values for the client to subscribe to. There is no similar capability in MQTT 3.1.1. This means
configuration or some out-of-band mechanism are the only means of supplying subscription
Topics or Topic Filters to an MQTT 3.1.1 client. An Agent will need to be configured with a

October 2023 © The Broadband Forum. All rights reserved 88 of 275

The User Services Platform TR-369

Controller’s MQTT Topic (the Device.LocalAgent.Controller.{i}.MTP.{i}.MQTT.Topic Pa-
rameter is used to configure this), to send a Notification to that Controller.

R-MQTT.1 and R-MQTT.2 require that all MQTT capabilities referenced in this section and its
sub-sections are compliant with the MQTT specifications. Reading the MQTT specification is
highly recommended to ensure the correct syntax and usage of MQTT packets and properties
(SUBSCRIBE, Topic Filter, QoS 0, QoS 1, QoS 2, etc.).

R-MQTT.15 - USP Endpoints that successfully connect to an MQTT server MUST send a
SUBSCRIBE packet with all Topic Filters identified in the following list:

• All configured Topic Filter values for use with this MQTT server MUST be included in a
SUBSCRIBE packet. For a USP Agent, the .MQTT.Client.{i}.Subscription.{i}. table can be
used to configure Topic Filter values.

• If an MQTT 5.0 USP Endpoint received one or more User Property in the CONNACK packet
where the name of the name-value pair is “subscribe-topic”, the USP Endpoint MUST include
the value of all such name-value pairs in its SUBSCRIBE packet as a Topic Filter.

• If an MQTT 5.0 Endpoint received a Response Information property in the CONNACK packet,
and the topic from that Response Information property is not included (directly or as a subset
of a Topic Filter) among the Topic Filters of the previous 2 bullets, the Endpoint MUST in-
clude the value of the Response Information property in its SUBSCRIBE packet.

• If a USP Agent has a ResponseTopicConfigured value and did not receive a Response Infor-
mation property in the CONNACK packet, and the topic in the ResponseTopicConfigured Para-
meter is not included (directly or as a subset of a Topic Filter) among the Topic Filters of the
first 2 bullets, the Agent MUST include the value of the ResponseTopicConfigured in its
SUBSCRIBE packet. For MQTT 5.0 clients, the subscription topic is set to the value of
ResponseTopicConfigured. For MQTT 3.1.1 clients, the subscription topic is set to a wild-
carded topic filter based on the value of ResponseTopicConfigured.

R-MQTT.16 - USP Agents that have NOT received any Subscriptions outlined in R-MQTT.15
“subscribe-topic” User Property in the CONNACK and do NOT have a configured Topic Filter
(Device.MQTT.Client.{i}.Subscription.{i}.Topic Parameter for this Client instance in the
data model) MUST terminate the MQTT communications session (via the DISCONNECT packet)
and consider the MTP disabled.

R-MQTT.17 - If a USP Endpoint does not successfully subscribe to at least one Topic, it MUST
NOT publish a packet with a USP Record in its Application Message, and MUST disconnect
from the MQTT server.

For each Topic listed in a SUBSCRIBE packet, the client will also provide a desired QoS level. See
the MQTT specification (MQTT 3.1.1 [27] or MQTT 5.0 [28], Section 4.3) for description of the
three QoS levels (QoS 0, QoS 1, QoS 2). The usefulness of these QoS levels in the context of USP
depends on the particulars of the MQTT deployment. It is therefore up to the implementer / de-
ployer to decide which QoS setting to use. In order to ensure deployments have the ability to
use at least QoS 1, MQTT clients and servers are required to implement at least QoS 1 (see re-

October 2023 © The Broadband Forum. All rights reserved 89 of 275

The User Services Platform TR-369

quirements in Sending the USP Record in a PUBLISH Packet Payload and MQTT Server
Requirements).

4.5.3 Sending the USP Record in a PUBLISH Packet Payload
A USP Record is sent from a USP Endpoint to an MQTT Server within a PUBLISH packet pay-
load. The MQTT Server delivers that PUBLISH packet to the destination MQTT client USP End-
point. This is true of all USP Message types.

R-MQTT.1 and R-MQTT.2 require that all MQTT capabilities referenced in this section and its
sub-sections are compliant with the MQTT specifications. Reading the MQTT specification is
highly recommended to ensure the correct syntax and usage of MQTT packets and properties
(PUBLISH, Content Type, Response Topic, etc.).

R-MQTT.18 - USP Endpoints utilizing MQTT clients for message transport MUST send the
USP Record in the payload of a PUBLISH packet.

R-MQTT.19 - USP Endpoints MUST send USP Records using the Protocol Buffer [4] binary en-
coding of the USP Record.

R-MQTT.20 - USP Endpoints utilizing MQTT clients for message transport MUST support
MQTT QoS 0 and QoS 1.

The USP Controller’s MQTT Topic needs to be known by any USP Agent expected to send a
Notify message to the Controller.

The USP Agent will also need to know an exact Topic where it can be reached (and not just a
Topic Filter) in order to provide a Controller with the Agent’s “reply to” Topic.

R-MQTT.21 - An MQTT 5.0 USP Endpoint that receives Response Information in the CONNACK
packet MUST use this as its “reply to” Topic.

Note: By using a single “reply to” Topic for all USP connections, an Agent on the MQTT server may
become a DoS attack vector and cannot be unsubscribed from because this would cause the Agent to
lose all “reply to” traffic.

R-MQTT.22 - USP Endpoints MUST include a “reply to” Topic in all PUBLISH packets transport-
ing USP Records.

R-MQTT.23 - USP Endpoints using MQTT 5.0 MUST include their “reply to” Topic in the
PUBLISH Response Topic property.

R-MQTT.24 - USP Endpoints using MQTT 3.1.1 MUST include their “reply to” Topic after “/re-
ply-to=” at the end of the PUBLISH Topic Name, with any “/” character in the Topic replaced by
“%2F”.

For example, if a Controller’s “reply to” Topic is “usp/controllers/oui:00256D:my-unique-bbf-
id-42”, and it is sending to an Agent whose Topic is “usp/agents/cid:3AA3F8:my-unique-usp-
id-42”, the PUBLISH Topic Name for a USP Controller using an MQTT 3.1.1 client will be “usp/
agents/cid:3AA3F8:my-unique-usp-id-42/reply-to= usp%2Fcontrollers%2Foui:00256D:my-
unique-bbf-id-42”.

October 2023 © The Broadband Forum. All rights reserved 90 of 275

The User Services Platform TR-369

USP Endpoints that need to send a response to a received USP Record will need to determine
the Topic Name to use in the responding PUBLISH packet.

R-MQTT.25 - USP Endpoints using MQTT 3.1.1 MUST interpret the portion of the received
PUBLISH Topic Name following the last forward slash “/reply-to=” as the response Topic Name.
Any instance of “%2F” in this received string MUST be replaced with “/”.

R-MQTT.26 - USP Endpoints using MQTT 5.0 MUST use the received PUBLISH Response Topic
property as the response Topic Name.

When an USP Endpoint receives a MQTT 3.1.1 PUBLISH packet without “reply to” Topic or a
USP Connect Record with a different MQTT version indicated in the version field of the
mqtt_connect Record type, then a MQTT version mismatch between brokers involved in the
MQTT communication has occurred.

R-MQTT.26a - If a MQTT version mismatch is encountered and the sender “reply to” Topic is
known, the receiving Endpoint MUST handle this error according to Handling Errors and cease
communication until the mismatch has been addressed by the sender.

R-MQTT.27 - USP Endpoints sending a USP Record using MQTT 5.0 MUST have “usp.msg” in
the Content Type property.

MQTT clients using MQTT 3.1.1 will need to know to pass the payload to the USP Agent for
handling. There is no indication in MQTT 3.1.1 of the payload application or encoding. an
MQTT 3.1.1 deployment could choose to dedicate the MQTT connection to USP, or put some-
thing in the syntax of PUBLISH packet Topic Names that would indicate the payload is a USP
Record.

R-MQTT.27a - USP Endpoints receiving a MQTT 5.0 PUBLISH packet MUST interpret the Con-
tent Type property of “usp.msg” or “application/vnd.bbf.usp.msg” (the registered USP Record
MIME type) as indicating the packet contains a USP Record.

4.5.4 Handling Errors
The MQTT specification requires servers and clients to disconnect if there is a violation at the
MQTT protocol layer.

If a MQTT USP Endpoint receives a PUBLISH packet containing a USP Record that cannot be ex-
tracted for processing (e.g. malformed USP Record or bad encoding), it will silently drop the un-
processed USP Record. If the requirements according to USP Record Errors are fulfilled, then a
USP Record with an appropriate Error Message will be created and published.

Note: Error handling was unified between MTPs in USP 1.2 by using USP Records instead of MTP
specific messages, deprecating most of this section, specifically R-MQTT.28, R-MQTT.29, R-
MQTT.30, R-MQTT.31, R-MQTT.31a and R-MQTT.32. Please see USP Record Errors for details.

R-MQTT.28 (DEPRECATED) - MQTT 5.0 Endpoints MUST support PUBLISH Content Type
value of “usp.error”.

Note: Requirement R-MQTT.28 was removed in USP 1.2

October 2023 © The Broadband Forum. All rights reserved 91 of 275

The User Services Platform TR-369

R-MQTT.29 (DEPRECATED) - MQTT 5.0 Endpoints MUST include a usp-err-id MQTT User
Property in PUBLISH packets of content-type “usp.msg”. The value of this User Property is: <USP
Record to_id> + "/" + <USP Message msg_id>, the <USP Message msg_id> field can be left
blank if the Record does not contain a USP Message.

Note: Requirement R-MQTT.29 was removed in USP 1.2

R-MQTT.30 (DEPRECATED) - When an MQTT 3.1.1 USP Endpoint receives a PUBLISH packet
containing a USP Record or an encapsulated USP Message within a USP Record that cannot be
extracted for processing, the receiving USP Endpoint MUST silently drop the USP Record.

Note: Requirement R-MQTT.30 was removed in USP 1.2

R-MQTT.31 (DEPRECATED) - When an MQTT 5.0 USP Endpoint receives a PUBLISH packet
containing a USP Record or an encapsulated USP Message within a USP Record that cannot be
extracted for processing and the PUBLISH packet contains a usp-err-id header, the receiving
USP Endpoint MUST send a PUBLISH packet with Content Type “usp.error”, a User Property set
to the received usp-err-id User Property, the Topic Name set to the received Response Topic,
and a PUBLISH Payload (formatted using UTF-8 encoding) with the following 2 lines:

• err_code:<numeric code indicating the type of error that caused the overall message to fail>
• err_msg:<additional information about the reason behind the error>

The specific error codes are listed in the MTP USP Record Errors section.

MQTT 5.0 includes a Reason Code that is used to respond to PUBLISH packets when QoS 1 or
QoS 2 is used.

Note: Requirement R-MQTT.31 was removed in USP 1.2

R-MQTT.31a (DEPRECATED) - USP Endpoints receiving a MQTT 5.0 PUBLISH packet MUST
interpret the Content Type property of “usp.error” or “application/vnd.bbf.usp.error” (the regis-
tered USP error message MIME type) as indicating the packet contains a USP error message and
code.

Note: Requirement R-MQTT.31a was removed in USP 1.2

R-MQTT.32 (DEPRECATED) - When a USP Endpoint using MQTT 5.0 receives a PUBLISH
packet with QoS 1 or QoS 2 containing a USP Record or an encapsulated USP Message within a
USP Record that cannot be extracted for processing, the receiving USP Endpoint MUST include
Reason Code 153 (0x99) identifying “Payload format invalid” in any PUBACK or PUBREC packet.

Note these packets will be received by the MQTT server and will not be forwarded to the USP
Endpoint that originally sent the USP Record.

Note: Requirement R-MQTT.32 was removed in USP 1.2

R-MQTT.33 - If the MQTT server terminates the connection, the USP Endpoint MUST enter a
connection retry state. For a USP Agent the retry mechanism is based on the MQTT.Client.{i}.
ConnectRetryTime Parameter.

October 2023 © The Broadband Forum. All rights reserved 92 of 275

The User Services Platform TR-369

4.5.5 Handling Other MQTT Packets
Use of PUBREL, and PUBCOMP depends on the QoS level being used for the subscribed Topic. No
additional requirements are provided for use of these packets in a USP context.

Use of PINGREQ and PINGRESP for keeping sessions alive (or determining session aliveness) is as
described in the MQTT specification. No additional requirements are provided for use of these
packets in a USP context.

Use of UNSUBSCRIBE and UNSUBACK is as described in the MQTT specification. If an Agent’s con-
figured Topics are disabled by a Controller (by setting Device.MQTT.Client.{i}.Subscription.
{i}.Enable to “false”), UNSUBSCRIBE is used to unsubscribe from them.

R-MQTT.34 - USP Endpoints utilizing MQTT clients for message transport SHOULD send an
UNSUBSCRIBE packet when a subscribed Topic or Topic Filter is no longer indicated but the
MQTT connection is expected to stay up.

R-MQTT.1 and R-MQTT.2 require that all MQTT capabilities referenced in this section and its
sub-sections are compliant with the MQTT specifications. Reading the MQTT specification is
highly recommended to ensure the correct syntax and usage of MQTT packets and properties
(DISCONNECT, etc.).

R-MQTT.35 - USP Endpoints utilizing MQTT clients for message transport SHOULD send a
DISCONNECT packet when shutting down an MQTT connection.

MQTT 5.0 specifies the AUTH packet to use for extended authentication. Implementations can
make use of extended authentication but should only do so if they are sure that all clients and
servers will support the same authentication mechanisms.

4.5.6 Discovery Requirements
The USP discovery section details requirements about the general usage of DNS, mDNS, and
DNS-SD records as it pertains to the USP protocol. This section provides further requirements
as to how a USP Endpoint advertises discovery information when an MQTT MTP is being uti-
lized.

R-MQTT.36 - When creating a DNS-SD record (DNS-SD Records), an Agent MUST set the
DNS-SD “path” attribute equal to the value of its “reply to” Topic.

R-MQTT.37 - When creating a DNS-SD record (DNS-SD Records), a Controller MUST set the
DNS-SD “path” attribute equal to a value that is included among the Controller’s subscribed
Topics and Topic Filters.

R-MQTT.38 - When creating a DNS-SD record, an Endpoint MUST utilize the MQTT server’s
address information in the A and AAAA records instead of the USP Endpoint’s address infor-
mation.

4.5.7 MQTT Server Requirements
R-MQTT.39 - MQTT servers MUST implement MQTT 5.0 [28].

R-MQTT.40 - MQTT servers SHOULD implement MQTT 3.1.1 [27].

October 2023 © The Broadband Forum. All rights reserved 93 of 275

The User Services Platform TR-369

R-MQTT.41 - MQTT servers MUST implement MQTT over TCP transport protocol.

R-MQTT.42 - An MQTT server MUST support authentication of the MQTT client through at
least one of the mechanisms described in Section 5.4.1 of the MQTT specification, and support
an Access Control List mechanism that can restrict the topics an authenticated MQTT client
can subscribe or publish to.

R-MQTT.43 - An MQTT server SHOULD support both Client Certification Authentication and
User Name / Password Authentication mechanisms.

R-MQTT.44 - An MQTT server SHOULD support sending Topic or Topic Filter values in a
“subscribe-topic” User Property in the CONNACK packet.

R-MQTT.45 - If an MQTT server supports subscriptions from unconfigured Agents, it MUST
support wildcarded Topic Filters.

This will allow support for Agents that try to subscribe to “+/<Endpoint ID>/#” and “+/+/<End-
point ID>/#” Topic Filters.

R-MQTT.46 - An MQTT server MUST support at least MQTT QoS 1 level.

R-MQTT.47 - An MQTT server SHOULD support a ClientId value that is a USP Endpoint ID.
This includes supporting all Endpoint ID characters (includes “-”, “.”, “_”, “%”, and “:”) and at least
64 characters length.

4.5.8 MTP Message Encryption
MQTT MTP message encryption is provided using TLS certificates.

R-MQTT.48 - USP Endpoints utilizing MQTT clients for message transport MUST implement
TLS 1.2 [33] or later with backward compatibility to TLS 1.2.

R-MQTT.49 - MQTT server certificates MAY contain domain names and those domain names
MAY contain domain names with wildcard characters per RFC 6125 [18] guidance.

4.6 UNIX Domain Socket Binding
This is an internal Message Transfer Protocol (MTP) for communicating between a USP Agent
and a USP Controller that reside on separate processes within a single device. This MTP uses
UNIX domain sockets to send Frames between the UNIX domain socket clients and servers. The
Frame contains a Header field and one or more Type-Length-Value (TLV) fields to transport
USP Records and other information related to the use of this transport as a USP MTP.

October 2023 © The Broadband Forum. All rights reserved 94 of 275

The User Services Platform TR-369

Figure 9: Unix Domain Socket Binding

4.6.1 Handling UNIX Domain Socket Connections
UNIX domain socket concepts are broken down into two key aspects: server and client. A UNIX
domain socket server is responsible for listening on an UNIX domain socket for incoming con-
nections and then accepting those connections such that the server can then send and receive
messages over the connection. A UNIX domain socket client is responsible for establishing a
connection to a server such that the client can then send and receive messages over the estab-
lished communications session.

UNIX domain sockets are different than other sockets as they aren’t governed by a host and
port. Instead, the UNIX domain socket is associated to a local file path (and its internal file de-
scriptor).

A USP Agent communicating over UNIX domain sockets as the USP MTP can act as either a
UNIX domain socket server or a UNIX domain socket client, but not both.

A USP Controller communicating over UNIX domain sockets as the USP MTP can act as either
a UNIX domain socket server or a UNIX domain socket client, but not both.

Since UNIX domain sockets and this type of internal MTP is completely contained within the
device itself, there is no need to advertise the USP Agent or USP Controller details via mDNS.

R-UDS.1 - USP Agents utilizing UNIX domain socket servers or clients for message transport
MUST support the UDSAgent:1 and UDSController:1 data model profiles.

October 2023 © The Broadband Forum. All rights reserved 95 of 275

The User Services Platform TR-369

4.6.1.1 Establishing a UNIX Domain Socket Connection
This section contains requirements related to setting up a UNIX domain socket connection be-
tween a USP Agent and a USP Controller that reside on two separate processes within the same
device.

R-UDS.2 - A USP Endpoint acting as a UNIX domain socket server MUST bind to a UNIX do-
main socket and listen for incoming connections.

R-UDS.3 - A USP Endpoint acting as a UNIX domain socket server MUST accept incoming con-
nections from UNIX domain socket clients.

To get to this point, a connection to the server’s listen socket must be made from the USP End-
point acting as a UNIX domain socket client.

R-UDS.4 - A USP Endpoint acting as a UNIX domain socket client MUST connect to a known
UNIX domain socket server.

At this point we have a bidirectional UNIX domain socket connection, which can be used to
send USP Records between a USP Agent and a USP Controller.

4.6.1.2 Retrying a UNIX Domain Socket Connection
UNIX domain sockets don’t often get disconnected after the connection has been established on
both ends, but there are cases where a retry algorithm is valuable:

• Many UNIX domain socket clients are simultaneously attempting to establish a connection
with the UNIX domain socket server, and that limit exceeds the “backlog” value that the
UNIX domain socket server used when calling the “listen” system call.

• A UNIX domain socket is terminated by the USP Agent or USP Controller due to some failure
to deliver or handle a frame message (see Section 4.6.2.1 Handling Failures to Handshake, Sec-
tion 4.6.3.1 Handling Failures to Deliver USP Records, Section 4.6.5 Handling Other UNIX Do-
main Socket Failures, and Section 4.6.6 Error Handling)

If for any reason a UNIX domain socket connection fails to be established or is closed, the USP
Endpoint acting as a client will attempt to re-establish the UNIX domain socket connection.

R-UDS.5 - When a UNIX domain socket connection is closed or fails to be established, the USP
Endpoint acting as a client MUST attempt to re-establish the UNIX domain socket within a ran-
dom amount of time between 1 and 5 seconds.

4.6.1.3 Sending a Message over a UNIX Domain Socket
This MTP uses UNIX domain sockets to send Frames between the UNIX domain socket clients
and servers. The UNIX domain socket Frame contains a Header field and one or more Type-
Length-Value (TLV) fields to transport the information related to the use of this transport as a
USP MTP. The Header field contains a Synchronization part (which includes the hexadecimal
version of “_USP”) and a Length part that contains the length of the remainder of the Frame
(i.e. the length of the entire Frame excluding the size of the Header). The Type part of the TLV
field will always be 1 byte, the Length part of the TLV field will always be 4 bytes, and the
Value part of the TLV field is based on the Type.

October 2023 © The Broadband Forum. All rights reserved 96 of 275

The User Services Platform TR-369

R-UDS.6 - A Frame sent across a UNIX domain socket that is being used as an MTP MUST
have a Header field and one or more TLV fields.

R-UDS.7 - The Header of a Frame sent across a UNIX domain socket that is being used as an
MTP MUST have a synchronization part and a length part.

R-UDS.8 - The synchronization portion of the Frame’s Header MUST contain the following 4
bytes: 0x5f 0x55 0x53 0x50 (the hexadecimal version of “_USP”).

R-UDS.9 - The length portion of the Frame’s Header MUST contain the length of the remainder
of the Frame (i.e. the length of the entire Frame excluding the size of the Header) as a 4 byte un-
signed integer in network byte order.

R-UDS.10 - A TLV field contained in a Frame sent across a UNIX domain socket that is being
used as an MTP MUST have a 1 byte Type.

R-UDS.11 - A TLV field contained in a Frame sent across a UNIX domain socket that is being
used as an MTP MUST have a 4 byte Length in network byte order.

The following set of Types are defined as allowable types in the TLV fields:

Type Name Description of Value
1 Handshake The Handshake contains a UTF-8 string that represents the Endpoint ID

of the USP Endpoint sending the message.
2 Error The Error contains a UTF-8 string that provides the error message re-

lated to the communications failure.
3 USP Record The USP Record contains the Google Protocol Buffer binary-encoded

USP Record being sent between a USP Agent and USP Controller.

R-UDS.12 - A Frame sent across a UNIX domain socket that is being used as an MTP MUST
contain a TLV with Type 1 for any Handshake negotiation messages

R-UDS.13 - A Frame sent across a UNIX domain socket that is being used as an MTP MUST
contain a TLV with Type 2 for any Error messages

R-UDS.14 - A Frame sent across a UNIX domain socket that is being used as an MTP MUST
contain a TLV with Type 3 for any USP Record messages

R-UDS.15 - A Frame sent across a UNIX domain socket that is being used as an MTP MUST ig-
nore any TLVs that have unexpected Types

4.6.2 Handshaking with UNIX Domain Sockets
After a UNIX domain socket is established between a server (either a USP Agent acting as a
server or a USP Controller acting as a server) and a client (either a USP Agent acting as a client
or a USP Controller acting as a client), the USP Endpoints need to exchange Handshake Frames
to provide each other with their identities because every USP Record contains the from and to
Endpoint ID. This means that both the USP Agent and USP Controller will send a Frame with a

October 2023 © The Broadband Forum. All rights reserved 97 of 275

The User Services Platform TR-369

Type 1 TLV and their own Endpoint ID before sending any USP Record across the newly estab-
lished UNIX domain socket connection.

R-UDS.16 - A USP Endpoint acting as a UNIX domain socket client MUST send a Unix domain
socket Frame containing a Type 1 (Handshake) TLV field once it establishes a UNIX domain
socket connection. This message MUST contain the Endpoint ID of the USP Endpoint sending
the message.

R-UDS.17 - A USP Endpoint acting as a UNIX domain socket server MUST send a Unix domain
socket Frame containing a Type 1 (Handshake) TLV field once it receives a Unix domain socket
Frame containing a Type 1 (Handshake) TLV field from a USP Endpoint acting as a UNIX do-
main socket client. This message MUST contain the Endpoint ID of the USP Endpoint sending
the message.

R-UDS.18 - A USP Endpoint acting as a UNIX domain socket client MUST terminate the UNIX
domain socket connection if it doesn’t receive a Unix domain socket Frame containing a Type 1
(Handshake) TLV field within 30 seconds of when it sent its own Unix domain socket Frame
containing a Type 1 (Handshake) TLV field.

Once both sides of the UNIX domain socket have successfully completed the handshake
process, which is done by the USP Agent and the USP Controller exchanging Unix domain
socket Frames that contain a Type 1 (Handshake) TLV field, then either the USP Agent or USP
Controller may begin sending USP Record messages.

R-UDS.19 - A USP Endpoint acting as a UNIX domain socket client or server MUST ignore an
unexpected UNIX domain socket Frame that contains a Type 2 (Handshake) TLV field.

R-UDS.20 - A USP Endpoint acting as a UNIX domain socket client or server MUST ignore any
UNIX domain socket Frames that contain a Type 3 (USP Record) TLV field until it has success-
fully completed the handshake process.

The following image shows an example of a UNIX domain socket Frame that contains a Type 1
(Handshake) TLV field used for handshaking between a USP Agent and USP Controller. In this
example, the Endpoint ID being used is “os::00256D-0123456789”.

Figure 10: UNIX Domain Socket Frame with Handshake Message

4.6.2.1 Handling Failures to Handshake
If for any reason the handshake process fails on one side of the UNIX domain socket or the
other, then the side that fails the handshake process is responsible for sending a UNIX domain
socket Frame containing an Error (using a Type 2 TLV field) that explains why the handshake
process has failed .

October 2023 © The Broadband Forum. All rights reserved 98 of 275

The User Services Platform TR-369

R-UDS.21 - A USP Endpoint acting as a UNIX domain socket client or server MUST send a
UNIX domain socket Frame containing a Type 2 (Error) TLV field if it can not process an in-
coming UNIX domain socket Frame that contains a Type 1 (Handshake) TLV field.

4.6.3 Sending USP Records across UNIX Domain Sockets
Once a UNIX domain socket is established between a server (either a USP Agent acting as a
server or a USP Controller acting as a server) and a client (either a USP Agent acting as a client
or a USP Controller acting as a client), and the USP Endpoints have successfully completed the
handshake process, then either the USP Agent or USP Controller may begin sending UNIX do-
main socket Frames that contain a USP Record. A USP Endpoint sends a USP Record by sending
a UNIX domain socket Frame with a Type 3 (USP Record) TLV field that contains the Google
Protocol Buffer binary-encoded USP Record across the established UNIX domain socket connec-
tion.

R-UDS.22 - A USP Endpoint MUST send Google Protocol Buffer binary-encoded USP Records
by utilizing a UNIX domain socket Frame that contains a Type 3 (USP Record) TLV field.

The following image shows an example of a UNIX domain socket Frame that contains a Type 3
(USP Record) TLV field, which is used for sending a USP Record between a USP Agent and USP
Controller.

Figure 11: UNIX Domain Socket Frame with USP Record Message

4.6.3.1 Handling Failures to Deliver USP Records
If a USP Endpoint acting as a UNIX domain socket client or server receives a UNIX domain
socket Frame that contains a USP Record that cannot be extracted for processing (e.g., a UNIX
domain socket Frame that includes a Type 3 TLV with text instead of a binary data, a mal-
formed USP Record), a UNIX domain socket Frame containing a Type 2 (Error) TLV field is sent
in response and the UNIX domain socket connection gets closed.

R-UDS.23 - A USP Endpoint acting as a UNIX domain socket client or server MUST send a
UNIX domain socket Frame containing a Type 2 (Error) TLV field and terminate the UNIX Do-
main Socket connection, if it receives an incoming UNIX domain socket Frame containing a
USP Record that cannot be extracted for processing.

Other USP Record processing failures (where the USP Record can be extracted, but other issues
exist) are handled by R-MTP.5.

4.6.4 MTP Message Encryption
Encryption is not required for the UNIX domain socket MTP as all messages are exchanged be-
tween processes that reside internally within the device.

October 2023 © The Broadband Forum. All rights reserved 99 of 275

The User Services Platform TR-369

4.6.5 Handling Other UNIX Domain Socket Failures
If a USP Endpoint acting as a UNIX domain socket client or server receives a TLV Message that
cannot be parsed, a UNIX domain socket Frame containing a Type 2 (Error) TLV field is sent in
response and the UNIX domain socket connection gets closed.

R-UDS.24 - A USP Endpoint acting as a UNIX domain socket client or server MUST send a
UNIX domain socket Frame containing a Type 2 (Error) TLV field and terminate the UNIX Do-
main Socket connection, if it can not parse an incoming UNIX domain socket Frame.

4.6.6 Error Handling
If a USP Endpoint receives a UNIX domain socket Frame containing a Type 2 (Error) TLV field,
then it closes the UNIX domain socket connection.

R-UDS.25 - A USP Endpoint acting as a UNIX domain socket client or server that receives a
UNIX domain socket Frame containing a Type 2 (Error) TLV field MUST terminate the UNIX
domain socket connection.

5 Message Encoding
USP requires a mechanism to serialize data to be sent over a Message Transfer Protocol. The de-
scription of each individual Message and the USP Record encoding scheme is covered in a sec-
tion of this document and/or in the referenced specification. This version of the specification in-
cludes support for:

• Protocol Buffers Version 3 [4]

R-ENC.0 - An implementation using protocol buffers encoding to encode USP Messages (Re-
quests, Responses, and Errors) MUST conform to the schema defined in usp-msg-1-3.proto.

R-ENC.1 - An implementation using protocol buffers encoding to encode USP Records MUST
conform to the schema defined in usp-record-1-3.proto.

Protocol Buffers Version 3 uses a set of enumerated elements to coordinate encoding and decod-
ing during transmission. It is intended that these remain backwards compatible, but new ver-
sions of the schema may contain new enumerated elements.

R-ENC.2 - If an Endpoint receives a USP payload containing an unknown enumeration value
for a known field, the Endpoint MUST report the failure as described in R-MTP.5.

Protocol Buffers uses a datatype called oneof. This means that the element contains elements of
one or more varying types.

R-ENC.3 - USP Records and USP Messages that contain an element of type oneof MUST in-
clude 1 and only 1 instance of the element, which MUST contain one of the possible elements.

R-ENC.4 - A USP Record that violates R-ENC.3 MUST be discarded.

R-ENC.5 - A USP Message that violates R-ENC.3 SHOULD return an error of type 7004 (Invalid
Arguments).

October 2023 © The Broadband Forum. All rights reserved 100 of 275

../specification/usp-msg-1-3.proto
../specification/usp-record-1-3.proto

The User Services Platform TR-369

5.1 Parameter and Argument Value Encoding
usp-msg-1-3.proto specifies that Parameter and argument values in USP Messages are repre-
sented as Protocol Buffers Version 3 strings (which are UTF-8-encoded).

This section specifies how Parameter and argument values are converted to and from Protocol
Buffers Version 3 strings.

R-ENC.6 - Parameter and argument values MUST be converted to and from Protocol Buffers
Version 3 strings using the string representations of the TR-106 Appendix I.4 [2] data types.

TR-106 Appendix I.4 states that “Parameters make use of a limited subset of the default SOAP
data types”. The SOAP 1.1 specification [29] states that all SOAP simple types are defined by the
XML Schema Part 2: Datatypes specification [30], and this is the ultimate reference.

In practice there should be few surprises, e.g., XML Schema Part 2, Section 3.3.22 [30] states
that it has a lexical representation consisting of a finite-length sequence of decimal digits (#x30-
#x39).

Some of the encoding rules are quite complicated, e.g. SOAP 1.1, Section 5.2.3 [29] states that
base64 line length restrictions don’t apply to SOAP, and XML Schema Part 2, Section 3.2.7 [30]
has a lot of detail about which aspects of ISO 8601 are and are not supported by the dateTime
data type.

6 End to End Message Exchange
USP Messages are exchanged between Controllers and Agents. In some deployment scenarios,
the Controller and Agent have a direct connection. In other deployment scenarios, the messages
exchanged by the Controller and Agent traverse multiple intermediate MTP Proxies. The latter
deployment scenario typically occurs when the Agent or Controller is deployed outside the
proximal or Local Area Network. In both types of scenarios, the End-to-End (E2E) message ex-
change capabilities of USP permit the:

• Exchange of USP Records within an E2E Session Context that allows for:

• Integrity protection for non-payload fields
• Protected and unprotected payloads
• Segmentation and reassembly of E2E Messages that would be too large to transfer through

the intermediate MTP Proxies.
• Exchange of USP Records without an E2E Session Context that allows for:

• Integrity protection for non-payload fields
• Unprotected payloads or protected payloads where the payload protection security mecha-

nism doesn’t require a concept of a session (e.g., COSE)

Protected payloads provide a secure message exchange (confidentiality, integrity and identity
authentication) through exchange of USP Messages that are secured by the originating and re-
ceiving USP Endpoints.

October 2023 © The Broadband Forum. All rights reserved 101 of 275

../specification/usp-msg-1-3.proto

The User Services Platform TR-369

USP makes use of USP Records to exchange USP Messages between Endpoints, see Record
Definition for a description of the USP Record fields.

R-E2E.1 - A receiving USP Endpoint MUST ignore any Record that does not contain its own
Endpoint Identifier as the to_id field of the Record.

R-E2E.2 – A USP Record with record_type = session_context MUST contain at least one
payload field, or a non-zero retransmit_id. (DEPRECATED)

Note: the R-E2E.2 requirement was deprecated in USP 1.2, because sending a Session Context Record
without a payload is useful for restarting a Session Context

Note: the requirements below reference Objects and Parameters used to manage the E2E Session.
These are specified in the Device:2 Data Model [3].

Note: The USP Record Encapsulation section was moved to USP Record Encapsulation in USP 1.2.

6.1 Exchange of USP Records within an E2E Session Context
When exchanging USP Records within an E2E Session Context, record_type of
session_context is used, and all required parameters for record_type of session_context are
supplied.

When a USP Record that is received within an E2E Session Context contains a USP Message re-
quest, its associated response or error message is sent within an E2E Session Context, unless
otherwise specified (see Requests, Responses and Errors).

6.1.1 Establishing an E2E Session Context
For the exchange of USP Records within an E2E Session Context to happen between two USP
Endpoints, an E2E Session Context (Session Context) is established between the participating
USP Endpoints. The Session Context is uniquely identified within the USP Endpoint by the com-
bination of the Session Identifier and remote USP Endpoint’s Identifier.

In USP, either a Controller or an Agent can begin the process of establishing a Session Context.
This is done by the Controller or Agent sending a USP Record with a session_id field that is
not currently associated with the Agent/Controller combination and a sequence_id field value
of 1. Note that a Record with an empty payload can be used to establish a new Session Context.

R-E2E.3 – Session Context identifiers MUST be generated by the USP Endpoint that originates
the session such that it is greater than 1 and scoped to the remote USP Endpoint.

When a Session Context had been previously established between an Agent and Controller and
the remote USP Endpoint receives a USP Record with a different session_id field, the remote
USP Endpoint will restart the Session Context using the new session_id field.

R-E2E.4 – When a USP Endpoint receives a USP Record from another USP Endpoint where
there is no established Session Context, and the USP Record includes a Session Context identi-
fier, and the USP Endpoint is configured to allow Session Context to be used with the other
Endpoint, the USP Endpoint MUST start a new Session Context for the remote USP Endpoint,
and initialize the sequence_id field to 1.

October 2023 © The Broadband Forum. All rights reserved 102 of 275

The User Services Platform TR-369

R-E2E.5 – At most one (1) Session Context is established between an Agent and Controller.

R-E2E.6 – When a USP Endpoint receives a USP Record from a remote USP Endpoint with a
different Session Context identifier than was previously established, the receiving USP Endpoint
MUST start a new Session Context for the remote USP Endpoint, using the session_id from
the received USP Record, and initialize the sequence_id field to 1.

Note: Implementations need to consider if outstanding USP Messages that have not been transmit-
ted to the remote USP Endpoint need to be transmitted within the newly established Session Con-
text.

R-E2E.6a – When an Agent is configured not to allow Session Context or does not support Ses-
sion Context and receives a USP Record initiating Session Context, the Agent MUST reply with
a Disconnect Record and MUST include reason_code and reason fields indicating Session Con-
text is not allowed (code 7106 from USP Record Errors).

When a Controller is configured to require Session Context and receives a Disconnect Record
indicating Session Context is not allowed or supported by the Agent, the Controller is expected
to terminate the MTP session.

R-E2E.6b – If an Agent needs to terminate a Session Context without terminating an existing
MTP connection where Session Context is being used, it MUST send a Disconnect Record and
MUST include reason_code and reason indicating Session Context is being terminated (code
7105 from USP Record Errors).

6.1.1.1 Session Context Expiration
Sessions Contexts have a lifetime and can expire. The expiration of the Session Context is han-
dled by the Device.LocalAgent.Controller.{i}.E2ESession.SessionExpiration Parameter
in the Agent. If the Agent does not see activity (an exchange of USP Records) within the Session
Context, the Agent considers the Session Context expired and for the next interaction with the
Controller a new Session Context is established.

R-E2E.7 – When a Session Context between a Controller or Agent expires the Agent MUST ini-
tiate a new Session Context upon the next interaction with the remote USP Endpoint or from a
Session Context request by the remote USP Endpoint.

6.1.1.2 Exhaustion of Sequence Identifiers
USP Endpoints identify the USP Record using the sequence_id field. When the sequence_id
field for a USP Record that is received or transmitted by a USP Endpoint nears the maximum
value that can be handled by the USP Endpoint, the USP Endpoint will attempt to establish a
new Session Context in order to avoid a rollover of the sequence_id field.

R-E2E.8 – When a USP Endpoint receives a USP Record with a value of the sequence_id field
that is within 10,000 of the maximum size for the data type of the sequence_id field, the USP
Endpoint MUST establish a new Session Context with the remote USP Endpoint.

R-E2E.9 – When a USP Endpoint transmits a USP Record with a value of the sequence_id field
that is within 10,000 of the maximum size for the data type of the sequence_id field, the USP

October 2023 © The Broadband Forum. All rights reserved 103 of 275

The User Services Platform TR-369

Endpoint MUST establish a new Session Context with the remote USP Endpoint upon its next
contact with the remote USP Endpoint.

6.1.1.3 Failure Handling in the Session Context
In some situations, (e.g., TLS negotiation handshake) the failure to handle a received USP
Record is persistent, causing an infinite cycle of “receive failure/request->session/establish-
>session/receive->failure” to occur. In these situations, the Agent enforces a policy as defined in
this section regarding establishment of failed Session Contexts or failed interactions within a
Session Context. The policy is controlled by the Device.LocalAgent.Controller.
{i}.E2ESession.Enable Parameter.

R-E2E.10 – When retrying USP Records, the Agent MUST use the following retry algorithm to
manage the retransmission Session Context establishment procedure:

The retry interval range is controlled by two Parameters, the minimum wait interval and the in-
terval multiplier, each of which corresponds to a data model Parameter, and which are de-
scribed in the table below. The factory default values of these Parameters MUST be the default
values listed in the Default column. They MAY be changed by a Controller with the appropriate
permissions at any time.

Descriptive Name Symbol Default Data Model Parameter Name
Minimum wait interval m 5 seconds Device.LocalAgent.Controller.

{i}.E2ESession.SessionRetryMinimumWaitInterval

Interval multiplier k 2000 Device.LocalAgent.Controller.
{i}.E2ESession.SessionRetryIntervalMultiplier

Retry Count Default Wait Interval Range
(min-max seconds)

Actual Wait Interval Range
(min-max seconds)

#1 5-10 m - m.(k/1000)
#2 10-20 m.(k/1000) - m.(k/1000)^2
#3 20-40 m.(k/1000)^2 - m.(k/1000)^3
#4 40-80 m.(k/1000)^3 - m.(k/1000)^4
#5 80-160 m.(k/1000)^4 - m.(k/1000)^5
#6 160-320 m.(k/1000)^5 - m.(k/1000)^6
#7 320-640 m.(k/1000)^6 - m.(k/1000)^7
#8 640-1280 m.(k/1000)^7 - m.(k/1000)^8
#9 1280-2560 m.(k/1000)^8 - m.(k/1000)^9

#10 and subsequent 2560-5120 m.(k/1000)^9 - m.(k/1000)^10

R-E2E.11 - Beginning with the tenth retry attempt, the Agent MUST choose from the fixed
maximum range. The Agent will continue to retry a failed session establishment until a USP
Message is successfully received by the Agent or until the SessionExpiration time is reached.

October 2023 © The Broadband Forum. All rights reserved 104 of 275

The User Services Platform TR-369

R-E2E.12 – Once a USP Record is successfully received, the Agent MUST reset the Session
Context retry count to zero for the next Session Context establishment.

R-E2E.13 – If a reboot of the Agent occurs, the Agent MUST reset the Session Context retry
count to zero for the next Session Context establishment.

6.1.2 USP Record Exchange
Once a Session Context is established, USP Records are created to exchange payloads in the Ses-
sion Context. USP Records are uniquely identified by their originating USP Endpoint Identifier
(from_id), Session Context identifier (session_id) and USP Record sequence identifier
(sequence_id).

6.1.2.1 USP Record Transmission
When an originating USP Endpoint transmits a USP Record, it creates the USP Record with a
monotonically increasing sequence identifier (sequence_id).

R-E2E.14 – When an originating USP Endpoint transmits a USP Record, it MUST set the se-
quence identifier of the first transmitted USP Record in the Session Context to 1.

R-E2E.15 – When an originating USP Endpoint transmits additional USP Records, the originat-
ing USP Endpoint MUST monotonically increase the sequence identifier from the last transmit-
ted USP Record in the Session Context by one (1).

To communicate the sequence identifier of the last USP Record received by a receiving USP
Endpoint to the originating USP Endpoint, whenever a USP Endpoint transmits a USP Record
the originating USP Endpoint communicates the next sequence identifier of a USP Record it ex-
pects to receive in the expected_id field. The receiving USP Endpoint uses this information to
maintain its buffer of outgoing (transmitted) USP Records such that any USP Records with a se-
quence identifier less than the expected_id can be removed from the receiving USP Endpoints
buffer of transmitted USP Records for this Session Context.

R-E2E.16 – When an originating USP Endpoint transmits a USP Record, the originating USP
Endpoint MUST preserve it in an outgoing buffer, for fulfilling retransmit requests, until the
originating USP Endpoint receives a USP Record from the receiving USP Endpoint with a
greater expected_id.

R-E2E.17 – When an originating USP Endpoint transmits a USP Record, the originating USP
Endpoint MUST inform the receiving USP Endpoint of the next sequence identifier in the Ses-
sion Context for a USP Record it expects to receive.

6.1.2.2 Payload Security within the Session Context
The value of the payload_security field defines the type of payload security that is performed
in the Session Context. Once a Session Context is established the payload security stays the
same throughout the lifetime of the Session Context.

R-E2E.18 – The originating USP Endpoint MUST use the same value in the payload_security
field for all USP Records within a Session Context.

October 2023 © The Broadband Forum. All rights reserved 105 of 275

The User Services Platform TR-369

6.1.2.3 USP Record Reception
USP Records received by a USP Endpoint have information that is used by the receiving USP
Endpoint to process:

1. The payload contained within the USP Record,
2. A request to retransmit a USP Record, and
3. The contents of the outgoing buffer to clear the USP Records that the originating USP End-

point has indicated it has received from the receiving USP Endpoint.

As USP Records can be received out of order or not at all, the receiving USP Endpoint only be-
gins to process a USP Record when the sequence_id field of the USP Record in the Session Con-
text is the sequence_id field that the receiving USP Endpoint expects to receive. The following
figure depicts the high-level processing for USP Endpoints that receive a USP Record.

October 2023 © The Broadband Forum. All rights reserved 106 of 275

The User Services Platform TR-369

Figure 12: Processing of Received USP Records

R-E2E.19 – The receiving USP Endpoint MUST ensure that the value in the payload_security
field for all USP Records within a Session Context is the same and fail the USP Record if the
value of the payload_security field is different.

R-E2E.20 – Incoming USP Records MUST be processed per the following rules:

1. If the USP Record contains a sequence_id field larger than the next expected_id value, the
USP Record is added to an incoming buffer of unprocessed USP Records.

2. If the sequence_id is less that the next expected_id, the Endpoint MUST gracefully ignore
the USP Record.

October 2023 © The Broadband Forum. All rights reserved 107 of 275

The User Services Platform TR-369

3. If the sequence_id matches the expected_id, for the USP Record and any sequential USP
Records in the incoming buffer:

1. If the payload is not empty, it is passed to the implementation for processing based on the
type of payload in the payload_security field and if the payload requires reassembly ac-
cording to the values of the payload_sar_state and payloadrec_sar_state fields.

2. If a retransmit_id field is non-zero, the USP Record with the sequence identifier of the
retransmit_id field is resent from the outgoing buffer.

4. The expected_id field for new outgoing Records is set to sequence_id field + 1 of this USP
Record.

6.1.2.3.1 Failure Handling of Received USP Records Within a
Session Context

When a receiving USP Endpoint fails to either buffer or successfully process a USP Record, the
receiving USP Endpoint initiates a new Session Context.

R-E2E.21 – When a USP Endpoint that receives a USP Record within a Session Context that
fails to buffer or successfully process (e.g., decode, decrypt, retransmit) the USP Endpoint MUST
start a new Session Context.

6.1.2.4 USP Record Retransmission
An Agent or Controller can request to receive USP Records that it deems as missing at any time
within the Session Context. The originating USP Endpoint requests a USP Record from the re-
ceiving USP Endpoint by placing the sequence identifier of the requested USP Record in the
retransmit_id field of the USP Record to be transmitted.

The receiving USP Endpoint will determine if USP Record exists and then re-send the USP
Record to the originating USP Endpoint.

If the USP Record doesn’t exist, the USP Endpoint that received the USP Record will consider
the USP Record as failed and perform the failure processing as defined in section Failure Han-
dling of Received USP Records.

To guard against excessive requests to retransmit a specific USP Record, the USP Endpoint
checks to see if the number of times the USP Record has been retransmitted is greater than or
equal to maximum times a USP Record can be retransmitted as defined in the
Device.LocalAgent.Controller.{i}.E2ESession.MaxRetransmitTries Parameter. If this con-
dition is met, then the USP Endpoint that received the USP Record with the retransmit request
will consider the USP Record as failed and perform the failure processing as defined in section
Failure Handling of Received USP Records.

6.1.3 Guidelines for Handling Session Context Restarts
A Session Context can be restarted for a number of reasons (e.g., sequence id exhaustion, errors,
manual request). When a Session Context is restarted, the USP Endpoints could have USP
Records that have not been transmitted, received or processed. This section provides guidance
for USP Endpoints when the Session Context is restarted.

October 2023 © The Broadband Forum. All rights reserved 108 of 275

The User Services Platform TR-369

The originating Endpoint is responsible for determining the policy for recovering from USP
Records that were not transmitted. For example, the policy could be to resend the USP Message
conveyed through the USP Record, or to simply discard the USP Message.

R-E2E.22 – The receiving USP Endpoint MUST successfully process the USP Record through
the expected_id field that it last transmitted in the previous session.

When a USP Endpoint receives a USP Record that cannot pass an integrity check or that has an
incorrect value in the session_id field, the Session Context is restarted.

R-E2E.23 – USP Records that do not pass integrity checks MUST be silently ignored and the re-
ceiving USP Endpoint MUST restart the Session Context.

This allows keys to be distributed and enabled under the old session keys and then request a
session restarted under the new keys.

R-E2E.24 – USP Records that pass the integrity check but have an invalid value in the
session_id field MUST be silently ignored and the receiving USP Endpoint MUST restart the
Session Context.

6.1.4 Segmented Message Exchange
Since USP can use different types of MTPs, some MTPs place a constraint on the size of the USP
Record that it can transport. To handle this, USP has a Segmentation and Reassembly function.
When this Segmentation and Reassembly function is performed by Controller and Agent, it re-
moves the possibly that the message may be blocked (and typically) dropped by the intermedi-
ate transport servers. A Segmentation and Reassembly example is shown in the figure below
where the ACS Controller segments the USP Message within the USP Record of 64K bytes be-
cause the STOMP MTP Endpoint (in this example) can only handle frame body up to 64K bytes.

While the sequence_id field identifies the USP Record sequence identifier within the context of
a Session Context and the retransmit_id field provides a means of a receiving USP Endpoint to
indicate to the transmitting USP Endpoint that it needs a specific USP Record to ensure infor-
mation fields are processed in a first-in-first-out (FIFO) manner, the Segmentation and Reassem-
bly function allows multiple payloads to be segmented by the transmitting USP Endpoint and
reassembled by the receiving USP Endpoint by augmenting the USP Record with additional in-
formation fields without changing the current semantics of the USP Record’s field definitions.
This is done using the payload_sar_state and payloadrec_sar_state fields in the USP Record
to indicate status of the segmentation and reassembly procedure. This status along with the ex-
isting sequence_id, expected_id and retransmit_id fields and the foreknowledge of the maxi-
mum allowed USP Record size (configurable by the Device.LocalAgent.Controller.
{i}.E2ESession.MaxUSPRecordSize parameter) provide the information needed for two USP
Endpoints to perform segmentation and reassembly of payloads conveyed by USP Records. In
doing so, the constraint imposed by MTP Endpoints (that could be intermediate MTP End-
points) that do not have segmentation and reassembly capabilities are alleviated. USP Messages
of any size can now be conveyed across any USP MTP Endpoint as depicted below:

October 2023 © The Broadband Forum. All rights reserved 109 of 275

The User Services Platform TR-369

Figure 13: E2E Segmentation and Reassembly

Note: the 64k size limit is not inherent to the STOMP protocol. It is merely provided here as an ex-
ample.

Note: for other protocols (e.g., MQTT), the maximum allowed size by the MTP may also include its
own header size, not only the conveyed payload (e.g., MQTT packet size). In this case, the
MaxUSPRecordSize value must be a smaller value than the maximal size of the MTP.

6.1.4.1 SAR function algorithm
The following algorithm is used to provide the SAR function.

6.1.4.1.1 Originating USP Endpoint
For each USP Message segment the Payload:

1. Compose the USP Message.

October 2023 © The Broadband Forum. All rights reserved 110 of 275

The User Services Platform TR-369

2. If payload_security is TLS12, encrypt the USP Message. TLS will segment the encrypted
Message per the maximum allowed TLS record size.

1. If all TLS records + Record header fields are less than the maximum allowed USP Record
size, then a single USP Record is sent.

2. Otherwise segmentation of the USP Record will need to be done.

1. If the record size of a single TLS record + USP Record header fields is less than the
maximum allowed USP Record size, exactly one TLS record can be included in a USP
Record.

2. If the TLS record size + Record header fields is greater than the maximum allowed USP
Record size, the TLS record is segmented across multiple USP Records.

3. If the Message is transmitted using PLAINTEXT and the Message + Record header fields are
greater than the maximum allowed USP Record size, the USP Record is segmented.

4. Set the payload_sar_state field for each transmitted Record.

1. If there is only one Record, payload_sar_state = NONE (0).
2. If there is more than one USP Record, the payload_sar_state field is set to BEGIN (1) on

the first Record, COMPLETE (3) on the last Record, and INPROCESS (2) on all Records be-
tween the two.

5. Set the payloadrec_sar_state field for each transmitted Record.

1. If there is only one Record or one Secure Message Exchange TLS record per USP Record,
payloadrec_sar_state = NONE (0).

2. If Secure Message Exchange TLS records or a PLAINTEXT payload are segmented across
multiple USP Records, payloadrec_sar_state = BEGIN (1) on a Record that contains the
initial segment of a TLS record or PLAINTEXT payload, COMPLETE (3) on a Record that
contains the final segment of a TLS record or PLAINTEXT payload, and INPROCESS (2) on
all Records containing segments between initial and final segments of a TLS record or
PLAINTEXT payload.

6. Each Record is sent (within a Session Context) using the procedures defined in the USP
Record Message Exchange section above.

The effect of the above rules for PLAINTEXT payloads or for Secure Message Exchange with a
single TLS record is that payloadrec_sar_state will be the same as payload_sar_state for all
Records used to communicate the USP Message.

Note: The maximum allowed USP Record size can be exposed via the data model using the
Device.LocalAgent.Controller.{i}.E2ESession.MaxUSPRecordSize Parameter.

6.1.4.1.2 Receiving Endpoint
For each USP Message reassemble the segmented payload:

1. When a USP Record that indicates segmentation has started, store the USP Records until a
USP Record is indicated to be complete. A completed segmentation is where the USP
Record’s payload_sar_state and payloadrec_sar_state have a value of COMPLETE (3).

October 2023 © The Broadband Forum. All rights reserved 111 of 275

The User Services Platform TR-369

2. Follow the procedures in USP Record Retransmission to retransmit any USP Records that
were not received.

3. Once the USP Record is received that indicates that the segmentation is complete, reassemble
the payload by appending the payloads using the monotonically increasing sequence_id
field’s value from the smaller number to larger sequence numbers. The reassembly keeps the
integrity of the instances of the payload field’s payload records. To keep the integrity of the
payload record, the payload record is reassembled using the payloadrec_sar_state values.

4. Reassembly of the payload that represents the USP Message is complete.

If the segmentation and reassembly fails for any reason, the USP Endpoint that received the
segmented USP Records will consider the last received USP Record as failed and perform the
failure processing as defined in section Failure Handling of Received USP Records.

6.1.4.2 Segmentation Examples
The following examples show the values assigned to payload_sar_state and
payloadrec_sar_state fields for various permutations of payload_security, and maximum
USP Record size and Secure Message Exchange maximum TLS record size relative to the size of
the USP Message. The examples are not exhaustive.

Case 1: payload_security = PLAINTEXT, single USP Record

Conditions:

1. Maximum USP Record size > size of (USP Message + USP Record header)

Case 2: payload_security = PLAINTEXT, fragmented across multiple USP Records

Conditions:

1. Maximum USP Record size < size of (USP Message + USP Record header)

October 2023 © The Broadband Forum. All rights reserved 112 of 275

The User Services Platform TR-369

Case 3: payload_security = TLS12, single TLS record, single USP Record

Conditions:

1. Maximum TLS record size > size of (USP Message + TLS record header)
2. Maximum USP Record size > size of USP Message + size of TLS record header + size of USP

Record header

Case 4: Payload_security = TLS12, all TLS records in a single USP Record

Conditions:

1. Maximum TLS record size < size of (USP Message + TLS record header)
2. Maximum USP Record size > size of all TLS records + size of USP Record header

October 2023 © The Broadband Forum. All rights reserved 113 of 275

The User Services Platform TR-369

Case 5: Payload_security = TLS12, single TLS record fragmented across multiple USP
Records

Conditions:

1. Maximum TLS record size > size of (USP Message + TLS record header)
2. Maximum USP Record size < size of (TLS record + USP Record header)

Case 6: Payload_security = TLS12, multiple TLS records, one TLS record per USP
Record

October 2023 © The Broadband Forum. All rights reserved 114 of 275

The User Services Platform TR-369

Conditions:

1. Maximum TLS record size < size of (USP Message + TLS record header)
2. Maximum USP Record size > maximum TLS record size + size of USP Record header
3. Maximum USP Record size < size of USP Message + size of TLS record header + size of USP

Record header

Case 7: Payload_security = TLS12, multiple TLS records, some TLS records fragmented
across multiple USP Records

Conditions:

1. Maximum TLS record size < size of (USP Message + TLS record header)
2. Maximum USP Record size < size of (some TLS records + USP Record header)

6.1.5 Handling Duplicate USP Records
Circumstances may arise (such as multiple Message Transfer Protocols, retransmission re-
quests) that cause duplicate USP Records (those with an identical sequence_id and session_id
fields from the same USP Endpoint) to arrive at the target USP Endpoint.

R-E2E.25 - When exchanging USP Records with an E2E Session Context, if a target USP End-
point receives a USP Record with duplicate sequence_id and session_id fields from the same
originating USP Endpoint, it MUST gracefully ignore the duplicate USP Record.

October 2023 © The Broadband Forum. All rights reserved 115 of 275

The User Services Platform TR-369

6.2 Exchange of USP Records without an E2E Session Context
When the exchange of USP Records without an E2E Session Context is used, the record_type is
set to no_session_context.

When a USP Record that is received without an E2E Session Context contains a USP Message
request, its associated response or error message is sent without an E2E Session Context, unless
otherwise specified (see Requests, Responses and Errors).

R-E2E.26 - A record_type of no_session_context MUST be used for exchange of USP
Records without an E2E Session Context. A non-zero payload MUST be included.

6.2.1 Failure Handling of Received USP Records Without a Session
Context

When a receiving USP Endpoint fails to either buffer or successfully process a USP Record, the
receiving USP Endpoint reports a failure.

R-E2E.27 (DEPRECATED) - When a USP Endpoint that receives a USP Record without a Ses-
sion Context that fails to buffer or successfully process (e.g., decode, decrypt, retransmit) the
USP Endpoint SHOULD send a DisconnectRecord (as described in R-MTP.7 for Agents).

Note: Requirement R-E2E.27 was removed in USP 1.3, replaced by the behavior defined in R-MTP.5

Note that R-MTP.7 says Agents should send a DisconnectRecord when terminating an MTP.
Controllers can also send a DisconnectRecord in this case. The MTP can stay connected. Bro-
kered MTP sessions are expected to remain but other MTP connections could be closed.

6.3 Validating the Integrity of the USP Record
When a USP Record is transmitted to a USP Endpoint, the transmitting USP Endpoint has the
capability to protect the integrity of the non-payload fields of the USP Record. The payload field
is not part of the generation or verification process, as the expectation is that this element will
be secured using an E2E security protection mechanism (payload_security other than PLAIN-
TEXT).

The integrity of the USP Record is required to be validated when the USP Record cannot be pro-
tected by the underlying MTP.

R-E2E.28 - When a USP Record is received or transmitted the following conditions MUST ap-
ply for the USP Record to be considered protected by the underlying MTP:

• The MTP is encrypted per requirements in the applicable MTP section
• The peer MTP certificate contains an Endpoint ID and this Endpoint ID is the same as the USP

Record from_id field OR the peer MTP certificate is directly associated (e.g., referenced from
a Device.LocalAgent.Controller.{i}.Credential Parameter) with a Controller whose
Endpoint ID matches the USP Record from_id field.

• The peer MTP certificate is that of a Trusted Broker.

October 2023 © The Broadband Forum. All rights reserved 116 of 275

The User Services Platform TR-369

R-E2E.29 – Unless protected by the underlying MTP, when a USP Endpoint transmits a USP
Record, the USP Endpoint MUST protect the integrity of the non-payload portion of the USP
Record.

R-E2E.30 – When a USP Endpoint receives a USP Record, the USP Endpoint MUST verify the
integrity of the non-payload portion of the USP Record when the USP Record contains the
mac_signature field or the USP Endpoint is not protected by the underlying MTP.

The integrity of the non-payload fields is accomplished by the transmitting USP Endpoint gen-
erating a Message Authentication Code (MAC) or signature of the non-payload fields which is
then placed into the mac_signature field where the receiving USP Endpoint then verifies the
MAC or signature as appropriate. The method to generate and validate MAC or signature de-
pends on the value of the payload_security field. If the value of the payload_security field is
PLAINTEXT then the integrity validation method always uses the signature method described in
section Using the Signature Method to Validate the Integrity of USP Records. If the value of the
payload_security field is TLS12 then the validation method that is used is dependent on
whether the TLS handshake has been completed. If the TLS handshake has not been completed,
the signature method described in section Using the Signature Method to Validate the Integrity
of USP Records is used otherwise the MAC method described in section Using TLS to Validate
the Integrity of USP Records is used.

6.3.1 Using the Signature Method to Validate the Integrity of USP
Records

When the transmitting USP Endpoint protects the integrity of the non-payload fields of the USP
Record using the signature method in this section, the non-payload fields are protected by sign-
ing a hash of the non-payload fields using the private key of the sending USP Endpoint’s certifi-
cate. The receiving USP Endpoint then verifies the integrity using either the public key of the
certificate in the USP Record sender_cert field or of the certificate used for Secure Message Ex-
change.

This signature method uses the SHA-256 hash algorithm, as defined in FIPS PUB 180-4 Secure
Hash Standard (SHS) [25], and the NIST P-256 curve that generates a signature for the hash us-
ing the Digital Signature Standard (DSS) scheme as defined in FIPS PUB 186-4 Digital Signature
Standard (DSS) [26]. To reduce the burden of requiring a strong source of randomness, the sig-
nature algorithm may apply the method described in RFC 6979 [23] to deterministically derive
encryption parameters. The signature must be ASN.1 DER-encoded as described in RFC 3279
[12], we will refer to this signature scheme as ECDSA_P256_SHA256_ASN1 in this specification.

R-E2E.31 – When using the signature method to protect the integrity of the non-payload por-
tion of the USP Record, the transmitting USP Endpoint MUST protect the integrity using the
ECDSA_P256_SHA256_ASN1 signature scheme, as defined in this specification, to sign and verify
the protection. The transmitting USP Endpoint MUST create the signature using the private key
of the transmitting USP Endpoint’s certificate. The receiving USP Endpoint MUST verify the
signature using the public key of the transmitted sender’s certificate.

October 2023 © The Broadband Forum. All rights reserved 117 of 275

The User Services Platform TR-369

6.3.2 Using TLS to Validate the Integrity of USP Records
When the transmitting and receiving USP Endpoints have established a TLS session, the trans-
mitting USP Endpoint no longer needs to generate a signature or transmit the sender’s certifi-
cate with the USP Record. Instead the transmitting USP Endpoint generates a MAC that is veri-
fied by the receiving USP Endpoint. The MAC ensures the integrity of the non-payload fields of
the USP Record. The MAC mechanism used in USP for this purpose is the SHA-256 keyed-Hash
Message Authentication Code (HMAC) algorithm. The keys used for the HMAC algorithm are
derived in accordance with RFC 5705 [16] when using TLS 1.2 or in accordance with the up-
dated version found in RFC 8446 [24] when using TLS 1.3. These procedures require the follow-
ing inputs: a label, a context and the length of the output keying material. The label used must
be “EXPORTER-BBF-USP-Record”, the context must be empty (note that, for TLS 1.2, an empty
context, i.e. zero length, is different than no context at all) and the output length must be 64
octets, where the first 32 octets will be used as the client key and the other 32 octets as the
server key (in TLS terms). When using TLS 1.2, the PRF used must be the one defined in RFC
5246 [33] with SHA-256 Hash.

R-E2E.32 – When generating or validating the MAC or signature to protect the integrity of the
USP Record, the sequence of the non-payload fields MUST use the field identifier of the USP
Record’s protobuf specification proceeding from lowest to highest. The non-payload fields in
the Record definition (other than the mac_signature field itself) MUST be used first and then
the fields of the SessionContextRecord if applicable.

R-E2E.32 .1 – When generating or validating the MAC or signature, all non-payload fields
MUST be appended as byte arrays and fed into the MAC or signature generation function with
the following conditions:

• uint64 types MUST be passed as 8 bytes in big endian ordering
• uint32 types MUST be passed as 4 bytes in big endian ordering
• enum types MUST be treated as uint32
• string types MUST be passed as UTF-8 encoded byte array
• bytes types MUST be passed as is

R-E2E.33 – If using the TLS MAC method to protect the integrity of a USP Record, and a USP
Endpoint receives a USP Record, the USP Endpoint MUST verify the MAC using the SHA-256
HMAC algorithm for the non-payload portion of the USP Record.

R-E2E.34 – If using the TLS MAC method to protect the integrity of a USP Record, when gen-
erating or validating the MAC of the USP Record, the sequence of the non-payload fields MUST
use the field identifier of the USP Record’s protobuf specification proceeding from lowest to
highest.

R-E2E.35 – If using the TLS MAC method to protect the integrity of a USP Record, when gen-
erating or validating the MAC of the USP Record, the USP Endpoint MUST derive the keys in
accordance with RFC 5705 [16] when using TLS 1.2 or with accordance with RFC 8446 [24]
when using TLS 1.3.

October 2023 © The Broadband Forum. All rights reserved 118 of 275

The User Services Platform TR-369

R-E2E.36 – If using the TLS MAC method to protect the integrity of a USP Record, when gen-
erating or validating the MAC of the USP Record, the USP Endpoint MUST use a label value of
“EXPORTER-BBF-USP-Record” and a zero length context.

R-E2E.37 – If using the TLS MAC method to protect the integrity of a USP Record, when gen-
erating or validating the MAC of the USP Record, the USP Endpoint MUST generate 64 octets of
keying material.

R-E2E.38 – If using the TLS MAC method to protect the integrity of a USP Record, when gen-
erating or validating the MAC of the USP Record, the USP Endpoint MUST use the TLS PRF de-
fined in RFC 5246 [33] with SHA-256 Hash when using TLS 1.2 for End-to-End security.

R-E2E.39 – If using the TLS MAC method to protect the integrity of a USP Record, when gen-
erating the MAC of the USP Record, the USP Endpoint MUST use the first 32 octets of the key-
ing material as the client key and the other 32 octets as the server key.

6.4 Secure Message Exchange
While message transport bindings implement point-to-point security, the existence of broker-
based message transports and transport proxies creates a need for end-to-end security within
the USP protocol. End-to-end security is established by securing the payloads prior to segmen-
tation and transmission by the originating USP Endpoint and the decryption of reassembled
payloads by the receiving USP Endpoint. The indication whether and how the USP Message has
been secured is via the payload_security field. This field defines the security protocol or mech-
anism applied to the USP payload, if any. This section describes the payload security protocols
supported by USP.

6.4.1 TLS Payload Encapsulation
USP employs TLS as one security mechanism for protection of USP payloads in Agent-Con-
troller message exchanges.

While traditionally deployed over reliable streams, TLS is a record-based protocol that can be
carried over datagrams, with considerations taken for reliable and in-order delivery. To aid in-
teroperability, USP Endpoints are initially limited to a single cipher specification, though future
revisions of the protocol may choose to expand cipher support.

R-E2E.40 – When using TLS to protect USP payloads in USP Records, USP Endpoints MUST
implement TLS 1.2 or later (with backward compatibility to TLS 1.2) with the ECDHE-ECDSA-
AES128-GCM-SHA256 cipher for TLS 1.2 and the TLS-AES128-GCM-SHA256 cipher for TLS 1.3.

R-E2E.40a - When using TLS to protect USP payloads in USP Records, USP Endpoints MUST
use ECDHE for key exchange and MUST support the named group secp256r1 (NIST P-256
curve) for use in ECDHE.

R-E2E.40b - When using TLS to protect USP payloads in USP Records, USP Endpoints MUST
use the ECDSA signature scheme with the NIST P-256 curve and SHA-256.

Note: The requirements listed above require a USP Endpoint to use X.509 certificates with an Ellip-
tic-curve public key compatible with the NIST P-256 curve.

October 2023 © The Broadband Forum. All rights reserved 119 of 275

The User Services Platform TR-369

6.4.1.1 Session Handshake
When TLS is used as a payload protection mechanism for USP Message, TLS requires the use of
the Session Context to negotiate its TLS session. The USP Endpoint that initiated the Session
Context will act in the TLS client role when establishing the security layer. The security layer is
constructed using a standard TLS handshake, encapsulated within one or more of the above-de-
fined USP Record payload datagrams. Per the TLS protocol, establishment of a new TLS session
requires two round-trips.

Figure 14: TLS Session Handshake

R-E2E.41 – USP Endpoints that specify TLS12 in the payload_security field MUST exchange
USP Records within an E2E Session Context.

If the TLS session cannot be established for any reason, the USP Endpoint that received the USP
Record will consider the USP Record as failed and perform the failure processing as defined in
section Failure Handling of Received USP Records.

TLS provides a mechanism to renegotiate the keys of a TLS session without tearing down the
existing session called TLS renegotiation. However, for E2E Message exchange in USP, TLS
renegotiation is forbidden.

R-E2E.42 – USP Endpoints MUST NOT accept requests for TLS renegotiation when used for
E2E Message exchange. USP Endpoints MAY send a TLS no_renegotiation alert in response to
a request for renegotiation.

October 2023 © The Broadband Forum. All rights reserved 120 of 275

The User Services Platform TR-369

6.4.1.2 Authentication
USP relies upon peer authentication using X.509 certificates, as provided by TLS. Each USP End-
point identifier is identified within an X.509 certificate. The rules for authentication are pro-
vided in Authentication and Authorization.

R-E2E.43 – USP Endpoints MUST be mutually authenticated using X.509 certificates.

Agents will authenticate Controllers according to rules for analysis of Controller certificates re-
quirements in Analysis of Controller Certificates. Controllers will authenticate Agents using the
USP Endpoint identifier encoded in the Agent’s certificate as per Agent Authentication

7 Messages
USP contains messages to create, read, update, and delete Objects, perform Object-defined oper-
ations, and allow Agents to notify controllers of events. This is often referred to as CRUD with
the addition of O (operate) and N (notify), or CRUD-ON.

Note: This version of the specification defines its Messages in Protocol Buffers v3. This part of the
specification may change to a more generic description (normative and non-normative) if further
encodings are specified in future versions.

These sections describe the types of USP Messages and the normative requirements for their
flow and operation. USP Messages are described in a protocol buffers schema, and the norma-
tive requirements for the individual fields of the schema are outlined below.

7.1 Encapsulation in a USP Record
All USP Messages are encapsulated by a USP Record. The definition of the USP Record portion
of a USP Message can be found in Record Definition, and the rules for managing transactional
integrity are described in End to End Message Exchange.

7.2 Requests, Responses and Errors
The three types of USP Messages are Request, Response, and Error.

A request is a Message sent from a source USP Endpoint to a target USP Endpoint that includes
fields to be processed and returns a response or error. Unless otherwise specified, all requests
have an associated response. Though the majority of requests are made from a Controller to an
Agent, the Notify and Register Messages follow the same format as a request but is sent from an
Agent to a Controller.

R-MSG.0 - The target USP Endpoint MUST respond to a request Message from the source USP
Endpoint with either a response Message or Error Message, unless otherwise specified (see The
Operate Message and The Notify Message).

R-MSG.0a - The associated response or error Message MUST be sent through the same type of
USP Record (i.e. A record_type of session_context or no_session_context) used along the
associated request Message.

October 2023 © The Broadband Forum. All rights reserved 121 of 275

The User Services Platform TR-369

R-MSG.1 - The target USP Endpoint MUST ignore or send an Error Message in response to
Messages it does not understand.

Note: Requirement R-MSG.2 was removed in USP 1.2, because it did not align with the concept of
brokered MTPs and long-lived connections in general.

R-MSG.3 - In any USP Message originating from an Agent, unless otherwise specified, Path
Names reported from the Agent’s Instantiated Data Model MUST use Instance Number Ad-
dressing.

7.2.1 Handling Duplicate Messages
Circumstances may arise (such as multiple Message Transfer Protocols) that cause duplicate
Messages (those with an identical Message ID) to arrive at the target USP Endpoint.

R-MSG.4 - If a target USP Endpoint receives a Message with a duplicate Message ID before it
has processed and sent a Response or Error to the original Message, it MUST gracefully ignore
the duplicate Message.

For Messages that require no response, it is up to the target Endpoint implementation when to
allow the same Message ID to be re-used by the same source USP Endpoint.

7.2.2 Handling Search Expressions
Many USP Messages allow for search expressions to be used in the request. To help make Con-
troller requests more flexible, it is desired that requests using search expressions that match
zero Objects should receive a successful response. In these cases, the Agent is in the desired
state the Controller intends, and the result should not interrupt the Controller’s application.

In the Messages below, this requirement is sometimes explicit, but it is stated here as a general
requirement.

R-MSG.4a - Unless otherwise specified, if a Request contains a Search Path, the associated Re-
sponse MUST result in a successful operation with an empty element (i.e. oper_success{}) if
the Search Path matches zero Objects in the Agent’s Instantiated Data Model.

7.2.3 Example Message Flows
Successful request/response: In this successful Message sequence, a Controller sends an Agent a
request. The Message header and body are parsed, the Message is understood, and the Agent
sends a response with the relevant information in the body.

Note: this is not meant to imply that all request/response operations will be synchronous. Con-
trollers can and should expect that Responses may be received in a different order than that in
which Requests were made.

October 2023 © The Broadband Forum. All rights reserved 122 of 275

The User Services Platform TR-369

Figure 15: A successful request/response sequence

Failed request/response: In this failed Message sequence, a Controller sends an Agent a request.
The Message header and body are parsed, but the Agent throws an error. The error arguments
are generated and sent in an Error Message.

Figure 16: A failed request/response sequence

October 2023 © The Broadband Forum. All rights reserved 123 of 275

The User Services Platform TR-369

7.3 Message Structure
A Message consists of a header and body. When using Protocol Buffers [4], the fields of the
header and body for different Messages are defined in a schema and sent in an encoded format
from one USP Endpoint to another.

R-MSG.5 - A Message MUST conform to the schemas defined in usp-msg-1-3.proto.

See the section on USP Record Encapsulation for information about Protocol Buffers default behav-
ior and required fields.

Every USP Message contains a header and a body. The header contains basic destination and co-
ordination information, and is separated to allow security and discovery mechanisms to oper-
ate. The body contains the message itself and its arguments.

Each of the Message types and fields below are described with the field type according to Proto-
col Buffers [4], followed by its name.

7.3.1 The USP Message
Header header

R-MSG.6 - A Message MUST contain exactly one header field.

Body body

The Message Body that must be present in every Message. The Body field contains either a Re-
quest, Response, or Error field.

R-MSG.7 - A Message MUST contain exactly one body field.

7.3.2 Message Header
The Message Header includes a Message ID to associate Requests with Responses or Errors, and
a field indicating the type of Message.

The purpose of the Message Header is to provide basic information necessary for the target
Endpoint to process the message.

7.3.2.1 Message Header Fields
string msg_id

A locally unique opaque identifier assigned by the Endpoint that generated this Message.

R-MSG.8 - The msg_id field MUST be present in every Header.

R-MSG.9 - The msg_id field in the Message Header for a Response or Error that is associated
with a Request MUST contain the Message ID of the associated request. If the msg_id field in
the Response or Error does not contain the Message ID of the associated Request, the response
or error MUST be ignored.

enum MsgType msg_type

This field contains an enumeration indicating the type of message contained in the Message
body. It is an enumeration of:

October 2023 © The Broadband Forum. All rights reserved 124 of 275

../specification/usp-msg-1-3.proto

The User Services Platform TR-369

 ERROR (0)
 GET (1)
 GET_RESP (2)
 NOTIFY (3)
 SET (4)
 SET_RESP (5)
 OPERATE (6)
 OPERATE_RESP (7)
 ADD (8)
 ADD_RESP (9)
 DELETE (10)
 DELETE_RESP (11)
 GET_SUPPORTED_DM (12)
 GET_SUPPORTED_DM_RESP (13)
 GET_INSTANCES (14)
 GET_INSTANCES_RESP (15)
 NOTIFY_RESP (16)
 GET_SUPPORTED_PROTO (17)
 GET_SUPPORTED_PROTO_RESP (18)
 REGISTER (19)
 REGISTER_RESP (20)
 DEREGISTER (21)
 DEREGISTER_RESP (22)

R-MSG.10 - The msg_type field MUST be present in every Header. Though required, it is meant
for information only. In the event this field differs from the req_type or resp_type in the Mes-
sage body (respectively), the type given in either of those elements SHOULD be regarded as
correct.

7.3.3 Message Body
The Message body contains the intended message and the appropriate fields for the Message
type.

Every Message body contains exactly one message and its fields. When an Agent is the target
Endpoint, these messages can be used to create, read, update, and delete Objects, or execute Ob-
ject-defined operations. When a Controller is the target Endpoint, the Message will contain a
notification, response, or an error.

7.3.3.1 Message Body Fields
oneof msg_body

This field contains one of the types given below:

Request request

This field indicates that the Message contains a request of a type given in the Request Message.

Response response

This field indicates that the Message contains a response of a type given in the Response Mes-
sage.

Error error

This field indicates that the Message contains an Error Message.

October 2023 © The Broadband Forum. All rights reserved 125 of 275

The User Services Platform TR-369

7.3.3.2 Request Fields
oneof req_type

This field contains one of the types given below. Each indicates that the Message contains a
Message of the given type.

 Get get
 GetSupportedDM get_supported_dm
 GetInstances get_instances
 Set set
 Add add
 Delete delete
 Operate operate
 Notify notify
 GetSupportedProtocol get_supported_protocol
 Register register
 Deregister deregister

7.3.3.3 Response Fields
oneof resp_type

This field contains one of the types given below. Each indicates that the Message contains a
Message of the given type.

 GetResp get_resp
 GetSupportedDMResp get_supported_dm_resp
 GetInstancesResp get_instances_resp
 SetResp set_resp
 AddResp add_resp
 DeleteResp delete_resp
 OperateResp operate_resp
 NotifyResp notify_resp
 GetSupportedProtocolResp get_supported_protocol_resp
 RegisterResp register_resp
 DeregisterResp deregister_resp

7.3.3.4 Error Fields
fixed32 err_code

This field contains a numeric code (see Error Codes) indicating the type of error that caused the
overall Message to fail.

string err_msg

This field contains additional information about the reason behind the error.

repeated ParamError param_errs

This field is present in an Error Message in response to an Add, Set, or Delete Message when
the allow_partial field is false and detailed error information is available for each Object or
Parameter that have caused the Message to report an Error.

7.3.3.4.1 ParamError Fields
string param_path

October 2023 © The Broadband Forum. All rights reserved 126 of 275

The User Services Platform TR-369

This field contains a Path Name to the Object or Parameter that caused the error.

fixed32 err_code

This field contains a numeric code (see Error Codes) indicating the type of error that caused the
Message to fail.

string err_msg

This field contains additional information about the reason behind the error.

7.4 Creating, Updating, and Deleting Objects
The Add, Set, and Delete requests are used to create, configure and remove Objects that com-
prise Service fields.

7.4.1 Selecting Objects and Parameters
Each Add, Set, and Delete request operates on one or more Path Names. For the Add request,
these Path Names are references to Multi-Instance Objects. For all other requests, these Path
Names can contain either addressing based identifiers that match zero or one Object or search
based identifiers that matches one or more Objects.

For Add and Set requests, each Object address or search is conveyed in a field that also contains
a sub-field listing the Parameters to update in the matched Objects.

The Add response contains details about the success or failure of the creation of the Object and
the Parameters set during its creation. In addition, it also returns those Parameters that were set
by the Agent upon creation of the Object.

Note: The order of the data on the wire is not guaranteed to be in the order an implementation
may require to process a Message piece by piece. Some common scenarios which an Agent will
need to handle:

• In Objects containing a union Object, the union member Object will only exist after the dis-
criminator Parameter was set to the associated value

• Key Parameters need only to have unique values after the whole Message has been processed
• All explicit and hidden data dependencies need to be accounted for, so if related Parameters

are changed, the order in which they occur in the Message do not make any difference to the
outcome

For example, a Controller wants to create a new Wi-Fi network on an Agent. It could use an
Add Message with the following fields:

 add {
 allow_partial: false
 create_objs {
 obj_path: "Device.WiFi.SSID."
 param_settings {
 param: "LowerLayers"
 value: "Device.WiFi.Radio.1."
 required: true
 }

October 2023 © The Broadband Forum. All rights reserved 127 of 275

The User Services Platform TR-369

 param_settings {
 param: "SSID"
 value: "NewSSIDName"
 required: true
 }
 }
 }

The Agent’s response would include the Object created (with its instance identifier) and the
Unique Key Parameters of the created Object as defined in the Device:2 Data Model [3]:

 add_resp {
 created_obj_results {
 requested_path: "Device.WiFi.SSID."
 oper_status {
 oper_success {
 instantiated_path: "Device.WiFi.SSID.4."
 unique_keys {
 key: "BSSID"
 value: "112233445566"
 }
 unique_keys {
 key: "Name"
 value: "GuestNetwork1"
 }
 unique_keys {
 key: "Alias"
 value: "cpe-alias-1"
 }
 }
 }
 }
 }

7.4.2 Unique Key Immutability
In order to maintain addressing integrity of Multi-Instance Objects, the following prescriptions
are made on the use of Unique Keys.

R-KEY.1 - Non-functional Unique Keys (as defined in TR-106 [2]) MUST NOT change in the
Agent’s Instantiated Data Model after creation, as defined in R-ADD.5.

R-KEY.2 - Functional Unique Keys (as defined in TR-106 [2]) MAY change incidentally as part
of normal operation, but any change MUST abide by the uniqueness rules (i.e., no conflict with
other instances).

7.4.3 Using Allow Partial and Required Parameters
The Add, Set, and Delete requests contain a field called “allow_partial”. This field determines
whether or not the Message should be treated as one complete configuration change, or a set of
individual changes, with regards to the success or failure of that configuration.

For Delete, this is straightforward - if allow_partial is true, the Agent returns a Response
Message with affected_paths and unaffected_path_errs containing the successfully deleted

October 2023 © The Broadband Forum. All rights reserved 128 of 275

The User Services Platform TR-369

Objects and unsuccessfully deleted Objects, respectively. If allow_partial is false, the Agent
will return an Error Message if any Objects fail to be deleted.

For the Add and Set Messages, Parameter updates contain a field called “required”. This details
whether or not the update or creation of the Object should fail if a required Parameter fails.

This creates a hierarchy of error conditions for the Add and Set requests, such as:

Parameter Error -> Object Error -> Message Error

If allow_partial is true, but one or more required Parameters fail to be updated or configured,
the creation or update of a requested Path Name fails. This results in an oper_failure in the
oper_status field and updated_obj_result or created_obj_result returned in the Add or Set
response.

If allow_partial is false, the failure of any required Parameters will cause the update or cre-
ation of the Object to fail, which will cause the entire Message to fail. In this case, the Agent re-
turns an Error Message rather than a response Message.

Note: It is up to the individual implementation whether to abort and return an Error Message after
the first error, or provide information about multiple failures.

If the Message was at least partially successful, the response will make use of the oper_success
field to indicate the successfully affected Objects.

The oper_failure and oper_success fields as well as Error Messages contain a field called
param_errs, which contains fields of type ParameterError or ParamError. This is so that the
Controller will receive the details of failed Parameter updates regardless of whether or not the
Agent returned a Response or Error Message.

The logic can be described as follows:

allow_partial Required
Parame-

ters

Required
Parame-

ter Failed

Other Pa-
rameter
Failed

Response/
Error

Oper_sta-
tus of Ob-

ject

Contains
param_errs

true/false No - No Response oper_success No
true/false No - Yes Response oper_success Yes
true/false Yes No No Response oper_success No
true/false Yes No Yes Response oper_success Yes

true Yes Yes - Response oper_failure Yes
false Yes Yes - Error N/A Yes

7.4.3.1 Search Paths and allow_partial in Set
In a Set Request that specifies a Search Path that matches multiple objects, it is intended that
the Agent treats the requested path holistically regardless of the value of allow_partial. This
represents a special case. Information about the failure reason for any one or more objects that
failed to be created or updated is still desired, but would be lost if an Error message was re-

October 2023 © The Broadband Forum. All rights reserved 129 of 275

The User Services Platform TR-369

turned rather than a Response message containing OperationFailure elements. See R-SET.2a and
R-SET.2b for the specific requirements.

7.4.4 The Add Message
The Add Message is used to create new Instances of Multi-Instance Objects in the Agent’s In-
stantiated Data Model.

7.4.4.1 Add Example
In this example, the Controller requests that the Agent create a new instance in the
Device.LocalAgent.Controller table.

header {
 msg_id: "52867"
 msg_type: ADD
}
body {
 request {
 add {
 allow_partial: true
 create_objs {
 obj_path: "Device.LocalAgent.Controller."
 param_settings {
 param: "Enable"
 value: "true"
 required: false
 }
 param_settings {
 param: "EndpointID"
 value: "controller-temp"
 required: false
 }
 }
 }
 }
}

header {
 msg_id: "52867"
 msg_type: ADD_RESP
}
body {
 response {
 add_resp {
 created_obj_results {
 requested_path: "Device.LocalAgent.Controller."
 oper_status {
 oper_success {
 instantiated_path: "Device.LocalAgent.Controller.3."
 unique_keys {
 key: "EndpointID"
 value: "controller-temp"
 }
 unique_keys {
 key: "Alias"

October 2023 © The Broadband Forum. All rights reserved 130 of 275

The User Services Platform TR-369

 value: "cpe-alias-3"
 }
 }
 }
 }
 }
 }
}

7.4.4.2 Add Request Fields
bool allow_partial

This field tells the Agent how to process the Message in the event that one or more of the Ob-
jects specified in the create_objs argument fails creation.

R-ADD.0 - If the allow_partial field is set to true, and no other exceptions are encountered,
the Agent treats each Object matched in obj_path independently. The Agent MUST complete
the creation of valid Objects regardless of the inability to create or update one or more Objects
(see Using Allow Partial and Required Parameters).

R-ADD.1 - If the allow_partial field is set to false, and no other exceptions are encountered,
the Agent treats each Object matched in obj_path holistically. A failure to create any one Ob-
ject MUST cause the Add Message to fail and return an Error Message (see Using Allow Partial
and Required Parameters).

repeated CreateObject create_objs

This field contains a repeated set of CreateObject fields.

7.4.4.2.1 CreateObject Fields
string obj_path

This field contains an Object Path to a writeable Table in the Agent’s Instantiated Data Model.

R-ADD.2 - The obj_path field in the CreateObject Message of an Add Request MUST specify
or match exactly one Object Path. (DEPRECATED)

Note: The R-ADD.2 requirement was deprecated in USP 1.3 because previous USP versions too nar-
rowly restricted the usage of various paths in the obj_path field. If multiple paths are impacted,
then the AddResp can contain multiple CreatedObjectResult instances that include the same re-
quested_path.

repeated CreateParamSetting param_settings

This field contains a repeated set of CreateParamSetting fields.

7.4.4.2.1.1 CreateParamSetting Fields
string param

This field contains a Relative Path to a Parameter of the Object specified in obj_path, or any
Parameter in a nested tree of single instance Sub-Objects of the Object specified in obj_path.

October 2023 © The Broadband Forum. All rights reserved 131 of 275

The User Services Platform TR-369

Note: The Parameters that can be set in an Add Message are still governed by the permissions al-
lowed to the Controller. Should a Controller attempt to create an Object when it does not have per-
mission on one or more Parameters of that Object, the expected behavior is as follows:

• If the Add Message omits Parameters for which the Controller does not have write permission,
those parameters will be set to their default (if any) by the Agent, and the Add Message succeeds.

• If the Add Message includes Parameters for which the Controller does not have write permission,
the Message proceeds in accordance with the rules for allow_partial and required parameters.

string value

This field contains the value of the Parameter specified in the param field that the Controller
would like to configure as part of the creation of this Object. Refer to Parameter and Argument
Value Encoding for details of how Parameter values are encoded as Protocol Buffers v3 strings.

bool required

This field specifies whether the Agent should treat the creation of the Object specified in
obj_path as conditional upon the successful configuration of this Parameter (see Using Allow
Partial and Required Parameters).

Note: Any Unique Key Parameter contained in the Add Message will be considered as required re-
gardless of how this field is set. This is to ensure that Unique Key constraints are met when creating
the instance of the Object.

R-ADD.2a - If the allow_partial field is set to false and and the obj_path field contains a
Search Expression, a failure in any of the Paths matched by the Search Expression MUST result
in a failure and the state of the Data Model MUST NOT change.

R-ADD.3 - If the required field is set to true, a failure to update this Parameter MUST result in
a failure to create the Object.

7.4.4.3 Add Response Fields
repeated CreatedObjectResult created_obj_results

A repeated set of CreatedObjectResult fields for each CreateObject field in the Add Message.

7.4.4.3.1 CreatedObjectResult Fields
string requested_path

This field returns the value of obj_paths in the CreateObject Message associated with this
CreatedObjectResult.

OperationStatus oper_status

The field contains a Message of type OperationStatus that specifies the overall status for the
creation of the Object specified in requested_path.

7.4.4.3.1.1 OperationStatus Fields
oneof oper_status

October 2023 © The Broadband Forum. All rights reserved 132 of 275

The User Services Platform TR-369

This field contains one of the types given below. Each indicates that the field contains a Mes-
sage of the given type.

OperationFailure oper_failure

Used when the Object given in requested_path failed to be created.

OperationSuccess oper_success

Used when the Add Message was (at least partially) successful.

7.4.4.3.1.2 OperationFailure Fields
fixed32 err_code

This field contains a numeric code (Error Codes) indicating the type of error that caused the Ob-
ject creation to fail.

string err_msg

This field contains additional information about the reason behind the error.

7.4.4.3.1.3 Operation Success Fields
string instantiated_path

This field contains the Object Instance Path of the created Object.

repeated ParameterError param_errs

This field returns a repeated set of ParameterError messages.

R-ADD.4 - If any of the Parameters and values specified in the param_settings field fail to
configure upon creation, this set MUST include one field describing each of the failed Parame-
ters and the reason for their failure.

map<string, string> unique_keys

This field contains a map of the Relative Path and value for all of this Object’s Unique Key Para-
meters that are supported by the Agent.

R-ADD.5 - If the Controller did not include some or all of the Unique Key Parameters that are
supported by the Agent in the param_settings field, the Agent MUST assign values to these
Parameters and return them in the unique_keys field.

R-ADD.6 - If the Controller does not have Read permission on any of the Parameters returned
in unique_keys, these Parameters MUST NOT be returned in this field.

7.4.4.3.1.4 ParameterError Fields
string param

This field contains the Relative Parameter Path to the Parameter that failed to be set.

fixed32 err_code

This field contains the numeric code (Error Codes) of the error that caused the Parameter set to
fail.

string err_msg

October 2023 © The Broadband Forum. All rights reserved 133 of 275

The User Services Platform TR-369

This field contains text related to the error specified by err_code.

7.4.4.4 Add Message Supported Error Codes
Appropriate error codes for the Add Message include 7000-7019, 7026, and 7800-7999.

7.4.5 The Set Message
The Set Message is used to update the Parameters of existing Objects in the Agent’s Instantiated
Data Model.

7.4.5.1 Set Example
In this example the Controller requests that the Agent change the value of the FriendlyName
Parameter in the Device.DeviceInfo. Object.

header {
 msg_id: "19220"
 msg_type: SET
}
body {
 request {
 set {
 allow_partial: true
 update_objs {
 obj_path: "Device.DeviceInfo."
 param_settings {
 param: "FriendlyName"
 value: "MyDevicesFriendlyName"
 required: true
 }
 }
 }
 }
}

header {
 msg_id: "19220"
 msg_type: SET_RESP
}
body {
 response {
 set_resp {
 updated_obj_results {
 requested_path: "Device.DeviceInfo."
 oper_status {
 oper_success {
 updated_inst_results {
 affected_path: "Device.DeviceInfo."
 updated_params {
 key: "FriendlyName"
 value: "MyDevicesFriendlyName"
 }
 }
 }
 }
 }

October 2023 © The Broadband Forum. All rights reserved 134 of 275

The User Services Platform TR-369

 }
 }
}

7.4.5.2 Set Request Fields
bool allow_partial

This field tells the Agent how to process the Message in the event that one or more of the Ob-
jects matched in the obj_path fails to update.

R-SET.0 - If the allow_partial field is set to true, and no other exceptions are encountered, the
Agent treats each UpdateObject message obj_path independently. The Agent MUST complete
the update of valid Objects regardless of the inability to update one or more Objects (see Using
Allow Partial and Required Parameters).

Note: This may cause some counterintuitive behavior if there are no required Parameters to be up-
dated. The Set Request can still result in a Set Response (rather than an Error Message) if
allow_partial is set to true.

R-SET.1 - If the allow_partial field is set to false, and no other exceptions are encountered,
the Agent treats each UpdateObject message obj_path holistically. A failure to update any one
Object MUST cause the Set Message to fail and return an Error Message (see Using Allow
Partial and Required Parameters).

repeated UpdateObject update_objs

This field contains a repeated set of UpdateObject messages.

7.4.5.2.1 UpdateObject Fields
string obj_path

This field contains an Object Path, Object Instance Path, or Search Path to Objects or Object In-
stances in the Agent’s Instantiated Data Model.

repeated UpdateParamSetting param_settings

The field contains a repeated set of UpdatedParamSetting messages.

7.4.5.2.1.1 UpdateParamSetting Fields
string param

This field contains the Relative Path of a Parameter of the Object specified in obj_path.

string value

This field contains the value of the Parameter specified in the param field that the Controller
would like to configure. Refer to Parameter and Argument Value Encoding for details of how
Parameter values are encoded as Protocol Buffers v3 strings.

bool required

This field specifies whether the Agent should treat the update of the Object specified in
obj_path as conditional upon the successful configuration of this Parameter.

October 2023 © The Broadband Forum. All rights reserved 135 of 275

The User Services Platform TR-369

R-SET.2 - If the required field is set to true, a failure to update this Parameter MUST result in
a failure to update the Object (see Using Allow Partial and Required Parameters).

R-SET.2a - If the obj_path field in the UpdateObject message of a Set Request contains a
Search Path matching more than one object, the Agent MUST treat the results of that obj_path
holistically, regardless of the value of the allow_partial field. That is, if any object that
matches the Search Path fails to be updated due to an error, the Agent MUST undo any changes
that were already processed due to this obj_path, and the Agent MUST return a Set Response
with an UpdatedObjectResult containing:

• A requested_path equal to the obj_path in the request.
• An oper_status field containing an OperationFailure message.
• At least one UpdatedInstanceFailure message with an affected_path that reflects the object

that failed to update.

R-SET.2b - The Agent MAY terminate processing a Set Request with an obj_path field in the
UpdateObject message that contains a Search Path matching more than one object after en-
countering any number of errors.

7.4.5.3 Set Response
repeated UpdatedObjectResult updated_obj_results

This field contains a repeated set of UpdatedObjectResult messages for each UpdateObject
message in the associated Set Request.

7.4.5.3.1 UpdatedObjectResult Fields
string requested_path

This field returns the value of updated_obj_results in the UpdateObject message associated
with this UpdatedObjectResult.

OperationStatus oper_status

The field contains a message of type OperationStatus that specifies the overall status for the
update of the Object specified in requested_path.

7.4.5.3.1.1 OperationStatus Fields
oneof oper_status

This field contains a message of one of the following types.

OperationFailure oper_failure

Used when the Object specified in requested_path failed to be updated.

OperationSuccess oper_success

Used when the Set message was (at least partially) successful.

7.4.5.3.1.2 OperationFailure Fields
fixed32 err_code

October 2023 © The Broadband Forum. All rights reserved 136 of 275

The User Services Platform TR-369

This field contains a numeric code (Error Codes) indicating the type of error that caused the Ob-
ject update to fail.

string err_msg

This field contains additional information about the reason behind the error.

repeated UpdatedInstanceFailure updated_inst_failures

This field contains a repeated set of messages of type UpdatedInstanceFailure.

7.4.5.3.1.3 UpdatedInstanceFailure Fields
string affected_path

This field returns the Object Path or Object Instance Path of the Object that failed to update.

repeated ParameterError param_errs

This field contains a repeated set of ParameterError messages.

7.4.5.3.1.4 ParameterError Fields
string param

This field contains the Relative Parameter Path to the Parameter that failed to be set.

fixed32 err_code

This field contains a numeric code (Error Codes) indicating the type of error that caused the Pa-
rameter set to fail.

string err_msg

This field contains text related to the error specified by err_code.

7.4.5.3.1.5 OperationSuccess Fields
repeated UpdatedInstanceResult updated_inst_results

This field contains a repeated set of UpdatedInstanceResult messages.

7.4.5.3.1.6 UpdatedInstanceResult Fields
string affected_path

This field returns the Object Path or Object Instance Path of the updated Object.

repeated ParameterError param_errs

This field contains a repeated set of ParameterError messages.

map<string, string> updated_params

This field returns a set of key/value pairs containing a Relative Parameter Path (relative to the
affected_path) to each of the Parameters updated by the Set Request and its value after the up-
date. Refer to Parameter and Argument Value Encoding for details of how Parameter values are
encoded as Protocol Buffers v3 strings.

R-SET.3 - If the Controller does not have Read permission on any of the Parameters specified
in updated_params, these Parameters MUST NOT be returned in this field.

October 2023 © The Broadband Forum. All rights reserved 137 of 275

The User Services Platform TR-369

Note: If the Set Request configured a Parameter to the same value it already had, this Parameter is
still returned in the updated_params.

7.4.5.3.1.7 ParameterError Fields
string param

This field contains the Parameter Path to the Parameter that failed to be set.

fixed32 err_code

This field contains a numeric code (Error Codes) indicating the type of error that caused the Pa-
rameter set to fail.

string err_msg

This field contains text related to the error specified by err_code.

7.4.5.4 Set Message Supported Error Codes
Appropriate error codes for the Set Message include 7000-7016, 7020, 7021, 7026, and
7800-7999.

7.4.6 The Delete Message
The Delete Message is used to remove Instances of Multi-Instance Objects in the Agent’s Instan-
tiated Data Model.

7.4.6.1 Delete Example
In this example, the Controller requests that the Agent remove the instance in
Device.LocalAgent.Controller table that has the EndpointID value of “controller-temp”.

header {
 msg_id: "24799"
 msg_type: DELETE
}
body {
 request {
 delete {
 allow_partial: false
 obj_paths: 'Device.LocalAgent.Controller.[EndpointID=="controller-temp"].'
 }
 }
}

header {
 msg_id: "24799"
 msg_type: DELETE_RESP
}
body {
 response {
 delete_resp {
 deleted_obj_results {
 requested_path: 'Device.LocalAgent.Controller.[EndpointID=="controller-temp"].'
 oper_status {
 oper_success {
 affected_paths: "Device.LocalAgent.Controller.31185."

October 2023 © The Broadband Forum. All rights reserved 138 of 275

The User Services Platform TR-369

 }
 }
 }
 }
 }
}

7.4.6.2 Delete Request Fields
bool allow_partial

This field tells the Agent how to process the Message in the event that one or more of the Ob-
jects specified in the obj_path argument fails deletion.

R-DEL.0 - If the allow_partial field is set to true, and no other exceptions are encountered,
the Agent treats each entry in obj_path independently. The Agent MUST complete the deletion
of valid Objects regardless of the inability to delete one or more Objects (see Using Allow
Partial and Required Parameters).

R-DEL.1 - If the allow_partial field is set to false, the Agent treats each entry in obj_path
holistically. Any entry referring to an Object which is non-deletable or doesn’t exist in the sup-
ported data model MUST cause the Delete Message to fail and return an Error Message.

repeated string obj_paths

This field contains a repeated set of Object Instance Paths or Search Paths.

7.4.6.3 Delete Response Fields
repeated DeletedObjectResult deleted_obj_results

This field contains a repeated set of DeletedObjectResult messages.

7.4.6.3.1 DeletedObjectResult Fields
string requested_path

This field returns the value of the entry of obj_paths (in the Delete Request) associated with
this DeleteObjectResult.

OperationStatus oper_status

This field contains a message of type OperationStatus.

7.4.6.3.1.1 OperationStatus Fields
oneof oper_status

This field contains a message of one of the following types.

OperationFailure oper_failure

Used when the Object specified in requested_path failed to be deleted.

OperationSuccess oper_success

Used when the Delete Message was (at least partially) successful.

October 2023 © The Broadband Forum. All rights reserved 139 of 275

The User Services Platform TR-369

7.4.6.3.1.2 OperationFailure Fields
fixed32 err_code

This field contains a numeric code (Error Codes) indicating the type of error that caused the
delete to fail.

string err_msg

This field contains additional information about the reason behind the error.

7.4.6.3.1.3 OperationSuccess Fields
repeated string affected_paths

This field returns a repeated set of Path Names to Object Instances.

R-DEL.2 - If the Controller does not have Read permission on any of the Objects specified in
affected_paths, these Objects MUST NOT be returned in this field.

R-DEL.2a - If the requested_path was valid (i.e., properly formatted and in the Agent’s sup-
ported data model) but did not resolve to any Objects in the Agent’s instantiated data model,
the Agent MUST return an OperationSuccess for this requested_path, and include an empty set
for affected_path.

repeated UnaffectedPathError unaffected_path_errs

This field contains a repeated set of messages of type UnaffectedPathError.

R-DEL.3 - This set MUST include one UnaffectedPathError message for each Object Instance
that exists in the Agent’s instantiated data model and were matched by the Path Name specified
in obj_path and failed to delete.

R-DEL.4 - If the Controller does not have Read permission on any of the Objects specified in
unaffected_paths, these Objects MUST NOT be returned in this field.

7.4.6.3.1.4 UnaffectedPathError Fields
string unaffected_path

This field returns the Path Name to the Object Instance that failed to be deleted.

fixed32 err_code

This field contains a numeric code (Error Codes) indicating the type of the error that caused the
deletion of this Object to fail.

string err_msg

This field contains text related to the error specified by err_code.

7.4.6.4 Delete Message Supported Error Codes
Appropriate error codes for the Delete Message include 7000-7008, 7015, 7016, 7018, 7024, 7026
and 7800-7999.

October 2023 © The Broadband Forum. All rights reserved 140 of 275

The User Services Platform TR-369

7.5 Reading an Agent’s State and Capabilities
An Agent’s current state and capabilities are represented in its data model. The current state is
referred to as its Instantiated Data Model, while the data model that represents its set of capa-
bilities is referred to as its Supported Data Model. Messages exist to retrieve data from both the
instantiated and Supported Data Models.

7.5.1 The Get Message
The basic Get Message is used to retrieve the values of a set of Object’s Parameters in order to
learn an Agent’s current state. It takes a set of Path Names as an input and returns the complete
tree of all Objects and Sub-Objects of any Object matched by the specified expressions, along
with each Object’s Parameters and their values. The Search Paths specified in a Get request can
also target individual Parameters within Objects to be returned.

Note: Those familiar with Broadband Forum TR-069 [1] will recognize this behavior as the differ-
ence between “Partial Paths” and “Complete Paths”. This behavior is replicated in USP for the Get
Message for each Path Name that is matched by the expression(s) supplied in the request.

Note: Each Search Path is intended to be evaluated separately, and the results from a given Search
Path are returned in a field dedicated to that Path Name. As such, it is possible that the same infor-
mation may be returned from more than one Search Path. This is intended, and the Agent should
treat each Search Path atomically.

The response returns a req_path_results entry for each Path Name given in param_paths. If a
Path expression specified in the request does not match any valid Parameters or Objects, the re-
sponse will indicate that this expression was an “Invalid Path”, indicating that the Object or Pa-
rameter does not currently exist in the Agent’s Supported Data Model.

Each req_path_results message given in the response contains a set of
resolved_path_results messages for each Object and Sub-Object relative to the Path resolved
by the param_paths element. Each results is followed by a list of Parameters (result_params)
and their values. If there are no Parameters, result_params may be empty. These Parameter
Paths are Relative Paths to the resolved_path. Note: This behavior has been clarified as of USP
1.2. Previous versions implied that Sub-Object Parameters be returned as Relative Paths to the origi-
nal resolved_path in a single result_params list. In USP 1.2, each Sub-Object is returned in its
own resolved_path.

The tree depth of a Get response can be limited by specifying a non-zero value for the
max_depth field in Get request. If max_depth field is present and not 0 then the Agent will limit
the maximum depth of each returned req_path_results to a tree rooted in requested_path
with a depth specified by max_depth value.

Note: The max_depth field was introduced in USP 1.2. If this field is not present in a Get request or
has a value of 0, the Agent returns the complete tree of all Objects and Sub-Objects of all the Path
Names mentioned in param_paths. This is the same as the behavior specified for prior USP versions.
An Agent implementing a prior version of the USP specification will ignore the field and behave as
if the max_depth field was set to 0.

October 2023 © The Broadband Forum. All rights reserved 141 of 275

The User Services Platform TR-369

7.5.1.1 Get Examples
The following table illustrates the result params for one of the Path Names mentioned in
param_paths is Device.DeviceInfo. and example values of the max_depth Get request field.

max_depth param_paths result_params

0 Device.DeviceInfo. All the Parameters of Device.DeviceInfo. and all of its
Sub-Objects (like
Device.DeviceInfo.TemperatureStatus. and
Device.DeviceInfo.TemperatureStatus.TemperatureSensor.
{i}.) along with their values

1 Device.DeviceInfo. All the Parameters of Device.DeviceInfo. and their val-
ues only

2 Device.DeviceInfo. All the Parameters of Device.DeviceInfo. and its first
level Sub-Objects(like
Device.DeviceInfo.TemperatureStatus.) along with
their values

3 Device.DeviceInfo. All the Parameters of Device.DeviceInfo. and its first
and second level Sub-Objects (like
Device.DeviceInfo.TemperatureStatus. and
Device.DeviceInfo.TemperatureStatus.TemperatureSensor.
{i}.) along with their values

For example, a Controller wants to read the data model to learn the settings and Stats of a sin-
gle Wi-Fi SSID, “HomeNetwork” with a BSSID of “00:11:22:33:44:55”. It could use a Get request
with the following fields:

 get {
 param_paths: 'Device.WiFi.SSID.[SSID=="HomeNetwork"&&BSSID=="00:11:22:33:44:55"].'
 max_depth: 2
 }

In response to this request the Agent returns all Parameters, plus the Parameters of any Sub-
Objects, of the addressed instance. Had max_depth been set to 1 then all of the SSID Parameters
and their values would have been returned, but the Stats Sub-Object and its Parameters would
have been omitted. The Agent returns this data in the Get response using a field for each of the
requested Path Names. In this case:

 get_resp {
 req_path_results {
 requested_path: 'Device.WiFi.SSID.
[SSID=="HomeNetwork"&&BSSID=="00:11:22:33:44:55"].'
 resolved_path_results {
 resolved_path: "Device.WiFi.SSID.1."
 result_params {
 key: "Enable"
 value: "true"
 }

October 2023 © The Broadband Forum. All rights reserved 142 of 275

The User Services Platform TR-369

 result_params {
 key: "Status"
 value: "Up"
 }
 result_params {
 key: "Alias"
 value: "cpe-alias-1"
 }
 result_params {
 key: "Name"
 value: "Home Network"
 }
 result_params {
 key: "LastChange"
 value: "864000"
 }
 result_params {
 key: "BSSID"
 value: "00:11:22:33:44:55"
 }
 result_params {
 key: "SSID"
 value: "HomeNetwork"
 }
 }

 resolved_path_results {
 resolved_path: "Device.WiFi.SSID.1.Stats."
 result_params {
 key: "BytesSent"
 value: "24901567"
 }
 result_params {
 key: "BytesReceived"
 value: "892806908296"
 }

(etc.)

 }
 }
 }

In another example, the Controller only wants to read the current status of the Wi-Fi network
with the SSID “HomeNetwork” with the BSSID of 00:11:22:33:44:55. It could use a Get request
with the following fields:

 get {
 param_paths: 'Device.WiFi.SSID.
[SSID=="HomeNetwork"&&BSSID=="00:11:22:33:44:55"].Status'
 }

In response to this request the Agent returns only the Status Parameter and its value.

October 2023 © The Broadband Forum. All rights reserved 143 of 275

The User Services Platform TR-369

 get_resp {
 req_path_results {
 requested_path: 'Device.WiFi.SSID.
[SSID=="HomeNetwork"&&BSSID=="00:11:22:33:44:55"].Status'
 resolved_path_results {
 resolved_path: "Device.WiFi.SSID.1."
 result_params {
 key: "Status"
 value: "Up"
 }
 }
 }
 }

Lastly, using wildcards or another Search Path, the requested Path Name may resolve to more
than one resolved Path Names. For example for a Request sent to an Agent with two WiFi.SSID
instances:

 get {
 param_paths: "Device.WiFi.SSID.*.Status"
 }

The Agent’s response would be:

 get_resp {
 req_path_results {
 requested_path: "Device.WiFi.SSID.*.Status"
 resolved_path_results {
 resolved_path: "Device.WiFi.SSID.1."
 result_params {
 key: "Status"
 value: "Up"
 }
 }
 resolved_path_results {
 resolved_path: "Device.WiFi.SSID.2."
 result_params {
 key: "Status"
 value: "Up"
 }
 }
 }
 }

In an example with full USP Message header and body, the Controller requests all Parameters of
the MTP table entry that contains the Alias value “WS-MTP1”, and the value of the Enable Pa-
rameter of the Subscription table where the value of the Parameter ID is “boot-1” and the
Recipient Parameter has a value of “Device.LocalAgent.Controller.1”:

header {
 msg_id: "5721"
 msg_type: GET
}
body {
 request {
 get {

October 2023 © The Broadband Forum. All rights reserved 144 of 275

The User Services Platform TR-369

 param_paths: 'Device.LocalAgent.MTP.[Alias=="WS-MTP1"].'
 param_paths: 'Device.LocalAgent.Subscription.
[ID=="boot-1"&&Recipient=="Device.LocalAgent.Controller.1"].Enable'
 }
 }
}

header {
 msg_id: "5721"
 msg_type: GET_RESP
}
body {
 response {
 get_resp {
 req_path_results {
 requested_path: 'Device.LocalAgent.MTP.[Alias=="WS-MTP1"].'
 resolved_path_results {
 resolved_path: "Device.LocalAgent.MTP.5156."
 result_params {
 key: "Alias"
 value: "WS-MTP1"
 }
 result_params {
 key: "Enable"
 value: "true"
 }
 result_params {
 key: "Status"
 value: "Up"
 }
 result_params {
 key: "Protocol"
 value: "WebSocket"
 }
 result_params {
 key: "EnableMDNS"
 value: "false"
 }
 }
 resolved_path_results {
 resolved_path: "Device.LocalAgent.MTP.5156.WebSocket."
 result_params {
 key: "Interfaces"
 value: "Device.IP.Interface.1."
 }
 result_params {
 key: "Port"
 value: "5684"
 }
 result_params {
 key: "Path"
 value: "usp-controller"
 }
 result_params {
 key: "EnableEncryption"

October 2023 © The Broadband Forum. All rights reserved 145 of 275

The User Services Platform TR-369

 value: "true"
 }
 }
 }

 req_path_results {
 requested_path: 'Device.LocalAgent.Subscription.
[ID=="boot-1"&&Recipient=="Device.LocalAgent.Controller.1"].Enable'
 err_code: 0
 err_msg: ""
 resolved_path_results {
 resolved_path: "Device.LocalAgent.Subscription.6629."
 result_params {
 key: "Enable"
 value: "true"
 }
 }
 }
 }
 }
}

7.5.1.2 Get Request Fields
repeated string param_paths

This field is a set of Object Paths, Object Instance Paths, Parameter Paths, or Search Paths to
Objects and Parameters in an Agent’s Instantiated Data Model.

fixed32 max_depth

This field limits the maximum depth of each returned result_params tree to the depth specified
by max_depth value. A value of 0 returns the complete tree of all Objects and Sub-Objects of all
the Path Names mentioned in param_paths.

R-GET.5 - If the max_depth field is present and contains a value other than 0, then the Agent
MUST limit the tree depth of the resolved Sub-Objects included in the resolved_path_results
field of the Response to the specified value.

7.5.1.3 Get Response Fields
repeated RequestedPathResult req_path_results

A repeated set of RequestedPathResult messages for each of the Path Names given in the asso-
ciated Get request.

7.5.1.3.1 RequestedPathResult Field
string requested_path

This field contains one of the Path Names or Search Paths given in the param_path field of the
associated Get Request.

fixed32 err_code

This field contains a numeric code (Error Codes) indicating the type of error that caused the Get
to fail on this Path Names. A value of 0 indicates the Path Name could be read successfully.

October 2023 © The Broadband Forum. All rights reserved 146 of 275

The User Services Platform TR-369

R-GET.0 - If requested_path contains a Path Name (that is not a Search Path) that does not
match any Object or Parameter in the Agent’s Instantiated Data Model, or requested_path
contains a Search Path that does not match any Object or Parameter in the Agent’s Supported
Data Model, the Agent MUST use the 7026 - Invalid Path error in this
RequestedPathResult.

R-GET.1 - If the Controller making the Request does not have Read permission on an Object or
Parameter matched through the requested_path field, the Object or Parameter MUST be
treated as if it is not present in the Agent’s Supported data model.

string err_msg

This field contains additional information about the reason behind the error.

repeated ResolvedPathResult resolved_path_results

This field contains one message of type ResolvedPathResult for each Path Name resolved by the
Path Name or Search Path given by requested_path.

R-GET.1a - If the requested_path is a valid Search Path (i.e., properly formatted and in the
Agent’s supported data model) but did not resolve to any Objects in the Agent’s Instantiated
Data Model, the resolved_path_results set MUST be empty and is not considered an error.

R-GET.1b - If the requested_path is a valid Object Path (i.e., properly formatted and in the
Agent’s supported data model), which is not a Search Path, but the Object does not have any
Sub-Objects or Parameters, the resolved_path_results set MUST be empty and is not consid-
ered an error.

7.5.1.3.1.1 ResolvedPathResult Fields
string resolved_path

This field contains a Path Name to an Object or Object Instance that was resolved from the Path
Name or Search Path given in requested_path.

R-GET.2 - If the requested_path included a Path Name to a Parameter, the resolved_path
MUST contain only the Path Name to the parent Object or Object Instance of that Parameter.

map<string, string> result_params

This field contains a set of mapped key/value pairs listing a Parameter Path (relative to the Path
Name in resolved_path) to each of the Parameters and their values of the Object given in
resolved_path. Refer to Parameter and Argument Value Encoding for details of how Parameter
values are encoded as Protocol Buffers v3 strings.

R-GET.3 - If the requested_path included a Path Name to a Parameter, result_params MUST
contain only the Parameter included in that Path Name.

R-GET.4 - If the Controller does not have Read permission on any of the Parameters specified
in result_params, these Parameters MUST NOT be returned in this field. This MAY result in
this field being empty.

October 2023 © The Broadband Forum. All rights reserved 147 of 275

The User Services Platform TR-369

7.5.1.4 Get Message Supported Error Codes
Appropriate error codes for the Get Message include 7000-7006, 7008, 7010, 7016, 7026 and
7800-7999.

7.5.2 The GetInstances Message
The GetInstances Message takes a Path Name to an Object and requests that the Agent return
the Instances of that Object that exist and possibly any Multi-Instance Sub-Objects that exist as
well as their Instances. This is used for getting a quick map of the Multi-Instance Objects (i.e.,
Tables) the Agent currently represents, and their Unique Key Parameters, so that they can be
addressed and manipulated later.

GetInstances takes one or more Path Names to Multi-Instance Objects in a Request to an Agent.
In addition, both GetInstances and GetSupportedDM (below) make use of a flag called
first_level_only, which determines whether or not the Response should include all of the
Sub-Objects that are children of the Object specified in obj_path. A value of true means that
the Response returns data only for the Object specified. A value of false means that all Sub-Ob-
jects will be resolved and returned.

7.5.2.1 GetInstances Examples
For example, if a Controller wanted to know only the current instances of Wi-Fi SSID Objects
that exist on an Agent (that has 2 SSIDs), it would send a GetInstances Request as:

 get_instances {
 obj_paths: "Device.WiFi.SSID."
 first_level_only: true
 }

The Agent’s Response would contain:

 get_instances_resp {
 req_path_results {
 requested_path: "Device.WiFi.SSID."
 curr_insts {
 instantiated_obj_path: "Device.WiFi.SSID.1."
 unique_keys {
 key: "Alias"
 value: "UserWiFi1"
 }
 unique_keys {
 key: "Name"
 value: "UserWiFi1"
 }
 unique_keys {
 key: "BSSID"
 value: "00:11:22:33:44:55"
 }
 }

 curr_insts {
 instantiated_obj_path: "Device.WiFi.SSID.2."
 unique_keys {

October 2023 © The Broadband Forum. All rights reserved 148 of 275

The User Services Platform TR-369

 key: "Alias"
 value: "UserWiFi2"
 }
 unique_keys {
 key: "Name"
 value: "UserWiFi2"
 }
 unique_keys {
 key: "BSSID"
 value: "11:22:33:44:55:66"
 }
 }
 }
 }

In another example, the Controller wants to get all of the Instances of the
Device.WiFi.AccessPoint table, plus all of the instances of the AssociatedDevice Object and
AC Object (Sub-Objects of AccessPoint). It would issue a GetInstances Request with the follow-
ing:

 get_instances {
 obj_paths: "Device.WiFi.AccessPoint."
 first_level_only: false
 }

The Agent’s Response will contain an entry in curr_insts for all of the Instances of the
Device.WiFi.AccessPoint table, plus the Instances of the Multi-Instance Sub-Object-
s .AssociatedDevice. and .AC.:

 get_instances_resp {
 req_path_results {
 requested_path: "Device.WiFi.AccessPoint."
 curr_insts {
 instantiated_obj_path: "Device.WiFi.AccessPoint.1."
 unique_keys {
 key: "Alias"
 value: "cpe-alias-1"
 }
 unique_keys {
 key: "SSIDReference"
 value: "Device.WiFi.SSID.1"
 }
 }
 curr_insts {
 instantiated_obj_path: "Device.WiFi.AccessPoint.1.AssociatedDevice.1."
 unique_keys {
 key: "MACAddress"
 value: "11:22:33:44:55:66"
 }
 }
 curr_insts {
 instantiated_obj_path: "Device.WiFi.AccessPoint.1.AC.1."
 unique_keys {
 key: "AccessCategory"
 value: "BE"

October 2023 © The Broadband Forum. All rights reserved 149 of 275

The User Services Platform TR-369

 }
 }

 curr_insts {
 instantiated_obj_path: "Device.WiFi.AccessPoint.2."
 unique_keys {
 key: "Alias"
 value: "cpe-alias-2"
 }
 unique_keys {
 key: "SSIDReference"
 value: "Device.WiFi.SSID.2"
 }
 }
 curr_insts {
 instantiated_obj_path: "Device.WiFi.AccessPoint.2.AssociatedDevice.1."
 unique_keys {
 key: "MACAddress"
 value: "11:22:33:44:55:66"
 }
 }
 curr_insts {
 instantiated_obj_path: "Device.WiFi.AccessPoint.2.AC.1."
 unique_keys {
 key: "AccessCategory"
 value: "BE"
 }
 }
 }
 }

Or more, if more Object Instances exist.

7.5.2.2 GetInstances Request Fields
repeated string obj_paths

This field contains a repeated set of Path Names or Search Paths to Multi-Instance Objects in
the Agent’s Instantiated Data Model.

bool first_level_only

This field, if true, indicates that the Agent returns only those instances in the Object(s) matched
by the Path Name or Search Path in obj_path, and not return any child Objects.

7.5.2.3 GetInstances Response Fields
repeated RequestedPathResult req_path_results

This field contains a RequestedPathResult message for each Path Name or Search

string requested_path

This field contains one of the Path Names or Search Paths given in obj_path of the associated
GetInstances Request.

fixed32 err_code

October 2023 © The Broadband Forum. All rights reserved 150 of 275

The User Services Platform TR-369

This field contains a numeric code (Error Codes) indicating the type of error that caused the
GetInstances to fail on this Path Name. A value of 0 indicates the Path Name could be read suc-
cessfully.

R-GIN.0 - If the Controller making the Request does not have Read permission on an Object or
Parameter used for matching through the requested_path field, any otherwise matched Object
MUST be treated as if it is not present in the Agent’s Instantiated Data Model

string err_msg

This field contains additional information about the reason behind the error.

repeated CurrInstance curr_insts

This field contains a message of type CurrInstance for each Instance of all of the Objects
matched by requested_path that exists in the Agent’s Instantiated Data Model.

7.5.2.3.0.1 CurrInstance Fields
string instantiated_obj_path

This field contains the Object Instance Path of the Object.

map<string, string> unique_keys

This field contains a map of key/value pairs for all of this Object’s Unique Key Parameters that
are supported by the Agent.

R-GIN.1 - If the Controller does not have Read permission on any of the Parameters specified
in unique_keys, these Parameters MUST NOT be returned in this field.

7.5.2.4 GetInstances Error Codes
Appropriate error codes for the GetInstances Message include 7000-7006, 7008, 7016, 7018,
7026 and 7800-7999.

7.5.3 The GetSupportedDM Message
GetSupportedDM (referred to informally as GSDM) is used to retrieve the Objects, Parameters,
Events, and Commands in the Agent’s Supported Data Model. This allows a Controller to learn
what an Agent understands, rather than its current state.

The GetSupportedDM Message is different from other USP Messages in that it only returns in-
formation about the Agent’s Supported Data Model. This means that Path Names to Multi-In-
stance Objects only address the Object itself, rather than Instances of the Object, and those Path
Names that contain Multi-Instance Objects in the Path Name use the {i} identifier to indicate
their place in the Path Name as specified in TR-106 [2].

The obj_paths field takes a list of Object Paths, either from the Supported Data Model or the
Instantiated Data Model.

For example, a Path Name to the AssociatedDevice Object (a child of the .WiFi.AccessPoint
Object) could be addressed in the Supported Data Model as Device.WiFi.AccessPoint.
{i}.AssociatedDevice.{i}. but in addition to this notation the omission of the final {i}. is

October 2023 © The Broadband Forum. All rights reserved 151 of 275

The User Services Platform TR-369

also allowed, such as Device.WiFi.AccessPoint.{i}.AssociatedDevice.. Both of these syn-
taxes are supported and equivalent.

Alternatively an Instantiated Data Model Object Path can be used as long as the Object exists,
such as Device.WiFi.AccessPoint.1.AssociatedDevice.. The Agent will use the Supported
Data Model pertaining to this particular Object when processing the Message.

If the Agent encounters a diverging Supported Data Model, e.g. due to the use of different
Mounted Objects underneath a Mountpoint, the Agent will skip the traversal of the children
Objects, populate the Response’s divergent_paths element with all divergent Object Instance
Paths, and continue processing with the next unambiguous Object. The Supported Data Model
of such divergent Objects can only be obtained by specifically using Object Instance Paths in
the obj_paths field of a GetSupportedDM request.

The Agent’s Response returns all Path Names in the supported_obj_path field according to its
Supported Data Model.

To clarify the difference between an Instantiated Data Model Object Path and a Supported Data
Model Object Path:

• If a {i} is encountered in the Object Path, it cannot be followed by an Instance Identifier.
• If the Object Path ends with an Instance Identifier, it is treated as an Instantiated Data Model

Object Path.
• If the Object Path contains a {i}, it is a Supported Data Model Object Path.

7.5.3.1 GetSupportedDM Examples
For example, the Controller wishes to learn the Wi-Fi capabilities the Agent represents. It could
issue a GetSupportedDM Request as:

 get_supported_dm {
 obj_paths : "Device.WiFi."
 first_level_only : false
 return_commands : false
 return_events : false
 return_params : false
 }

The Agent’s Response would be:

 get_supported_dm_resp {
 req_obj_results {
 req_obj_path: "Device.WiFi."
 data_model_inst_uri: "urn:broadband-forum-org:tr-181-2-12-0"
 supported_objs {
 supported_obj_path: "Device.WiFi."
 access: OBJ_READ_ONLY
 is_multi_instance: false
 }
 supported_objs {
 supported_obj_path: "Device.WiFi.Radio.{i}."
 access: OBJ_READ_ONLY
 is_multi_instance: true

October 2023 © The Broadband Forum. All rights reserved 152 of 275

The User Services Platform TR-369

 }
 supported_objs {
 supported_obj_path: "Device.WiFi.Radio.{i}.Stats"
 access: OBJ_READ_ONLY
 is_multi_instance: false
 }
 supported_objs {
 supported_obj_path: "Device.WiFi.SSID.{i}."
 access: OBJ_ADD_DELETE
 is_multi_instance: true
 }
 supported_objs {
 supported_obj_path: "Device.WiFi.SSID.{i}.Stats"
 access: OBJ_READ_ONLY
 is_multi_instance: false
 }
 supported_objs {
 supported_obj_path: "Device.WiFi.AccessPoint.{i}."
 access: OBJ_ADD_DELETE
 is_multi_instance: true
 }
 supported_objs {
 supported_obj_path: "Device.WiFi.AccessPoint.{i}.Security."
 access: OBJ_READ_ONLY
 is_multi_instance: false
 }
 supported_objs {
 supported_obj_path: "Device.WiFi.AccessPoint.{i}.WPS."
 access: OBJ_READ_ONLY
 is_multi_instance: false
 }
 supported_objs {
 supported_obj_path: "Device.WiFi.AccessPoint.{i}.AssociatedDevice.{i}."
 access: OBJ_READ_ONLY
 is_multi_instance: true
 }
 supported_objs {
 supported_obj_path: "Device.WiFi.AccessPoint.{i}.AssociatedDevice.{i}.Stats."
 access: OBJ_READ_ONLY
 is_multi_instance: false
 }
 supported_objs {
 supported_obj_path: "Device.WiFi.AccessPoint.{i}.AC.{i}."
 access: OBJ_READ_ONLY
 is_multi_instance: true
 }
 supported_objs {
 supported_obj_path: "Device.WiFi.AccessPoint.{i}.AC.{i}.Stats."
 access: OBJ_READ_ONLY
 is_multi_instance: false
 }
 supported_objs {
 supported_obj_path: "Device.WiFi.AccessPoint.{i}.Accounting."
 access: OBJ_READ_ONLY
 is_multi_instance: false

October 2023 © The Broadband Forum. All rights reserved 153 of 275

The User Services Platform TR-369

 }
 supported_objs {
 supported_obj_path: "Device.WiFi.EndPoint.{i}."
 access: OBJ_ADD_DELETE
 is_multi_instance: true
 }

 ## And continued, for Device.WiFi.EndPoint.{i}. Sub-Objects such as
Device.WiFi.EndPoint.{i}.Stats., Device.WiFi.EndPoint.{i}/// .Security., etc.

 }
 }

In another example request:

 get_supported_dm {
 obj_paths : "Device.WiFi."
 first_level_only : true
 return_commands : true
 return_events : true
 return_params : true
 }

The Agent’s response would be:

 get_supported_dm_resp {
 req_obj_results {
 req_obj_path: "Device.WiFi."
 data_model_inst_uri: "urn:broadband-forum-org:tr-181-2-12-0"
 supported_objs {
 supported_obj_path: "Device.WiFi."
 access: OBJ_READ_ONLY
 is_multi_instance: false
 supported_params {
 param_name: "RadioNumberOfEntries"
 access: PARAM_READ_ONLY
 value_type : PARAM_UNSIGNED_INT
 value_change : VALUE_CHANGE_ALLOWED
 }
 supported_params {
 param_name: "SSIDNumberOfEntries"
 access: PARAM_READ_ONLY
 value_type : PARAM_UNSIGNED_INT
 value_change : VALUE_CHANGE_ALLOWED
 }

 ## Continued for all Device.WiFi. Parameters

 supported_commands {
 command_name: "NeighboringWiFiDiagnostic()"
 output_arg_names: "Status"
 output_arg_names: "Result.{i}.Radio"
 output_arg_names: "Result.{i}.SSID"
 output_arg_names: "Result.{i}.BSSID"
 output_arg_names: "Result.{i}.Mode"
 output_arg_names: "Result.{i}.Channel"

October 2023 © The Broadband Forum. All rights reserved 154 of 275

The User Services Platform TR-369

 ## Continued for other NeighboringWiFiDiagnostic() output arguments

 command_type : CMD_ASYNC
 }
 }

 ## followed by its immediate child objects with no details

 supported_objs {
 supported_obj_path: "Device.WiFi.Radio.{i}."
 access: OBJ_READ_ONLY
 is_multi_instance: true
 }
 supported_objs {
 supported_obj_path: "Device.WiFi.SSID.{i}."
 access: OBJ_ADD_DELETE
 is_multi_instance: true
 }
 supported_objs {
 supported_obj_path: "Device.WiFi.AccessPoint.{i}."
 access: OBJ_ADD_DELETE
 is_multi_instance: true
 }
 supported_objs {
 supported_obj_path: "Device.WiFi.EndPoint.{i}."
 access: OBJ_ADD_DELETE
 is_multi_instance: true
 }
 }
 }

7.5.3.2 GetSupportedDM Request Fields
repeated obj_paths

This field contains a repeated set of Path Names to Objects in the Agent’s Supported or Instanti-
ated Data Model. For Path Names from the Supported Data Model the omission of the final {i}.
is allowed.

bool first_level_only

This field, if true, indicates that the Agent returns only those objects matched by the Path
Name or Search Path in obj_path and its immediate (i.e., next level) child objects. The list of
child objects does not include commands, events, or Parameters of the child objects regardless
of the values of the following elements:

bool return_commands

This field, if true, indicates that, in the supported_objs, the Agent should include a
supported_commands field containing Commands supported by the reported Object(s).

bool return_events

This field, if true, indicates that, in the supported_objs, the Agent should include a
supported_events field containing Events supported by the reported Object(s).

October 2023 © The Broadband Forum. All rights reserved 155 of 275

The User Services Platform TR-369

bool return_params

This field, if true, indicates that, in the supported_objs, the Agent should include a
supported_params field containing Parameters supported by the reported Object(s).

7.5.3.3 GetSupportedDMResp Fields
repeated RequestedObjectResult req_obj_results

This field contains a repeated set of messages of type RequestedObjectResult.

7.5.3.3.1 RequestedObjectResult Fields
string req_obj_path

This field contains one of the Path Names given in obj_path of the associated GetSupportedDM
Request.

fixed32 err_code

This field contains a numeric code (Error Codes) indicating the type of error that caused the
GetSupportedDM to fail on this Path Name. A value of 0 indicates the Path Name could be read
successfully.

R-GSP.0 - If the Controller making the Request does not have Read permission on an Object or
Parameter matched through the requested_path field, the Object or Parameter MUST be
treated as if it is not present in the Agent’s Supported Data Model.

string err_msg

This field contains additional information about the reason behind the error.

string data_model_inst_uri

This field contains a Uniform Resource Identifier (URI) to the Data Model associated with the
Object specified in obj_path.

repeated SupportedObjectResult supported_objs

The field contains a message of type SupportedObjectResult for each reported Object.

7.5.3.3.1.1 SupportedObjectResult Fields
In the case of a diverging Supported Data Model, only the supported_obj_path, access,
is_multi_instance, and divergent_paths fields will be populated for the divergent Object.

string supported_obj_path

This field contains the Full Object Path Name of the reported Object in Supported Data Model
notation.

ObjAccessType access

The field contains an enumeration of type ObjAccessType specifying the access permissions
that are specified for this Object in the Agent’s Supported Data Model. This usually only applies
to Multi-Instance Objects. This may be further restricted to the Controller based on rules de-
fined in the Agent’s Access Control List. It is an enumeration of:

October 2023 © The Broadband Forum. All rights reserved 156 of 275

The User Services Platform TR-369

 OBJ_READ_ONLY (0)
 OBJ_ADD_DELETE (1)
 OBJ_ADD_ONLY (2)
 OBJ_DELETE_ONLY (3)

bool is_multi_instance

This field, if true, indicates that the reported Object is a Multi-Instance Object.

repeated SupportedParamResult supported_params

The field contains a message of type SupportedParamResult for each Parameter supported by
the reported Object. If there are no Parameters in the Object, this should be an empty list.

repeated SupportedCommandResult supported_commands

The field contains a message of type SupportedCommandResult for each Command supported by
the reported Object. If there are no Parameters in the Object, this should be an empty list.

repeated SupportedEventResult supported_events

The field contains a message of type SupportedEventResult for each Event supported by the
reported Object. If there are no Parameters in the Object, this should be an empty list.

repeated string divergent_paths

The field contains an Object Instance Path for each divergent Path Name.

Note: The divergent_paths field was added in USP 1.2. An Agent that supports versions before USP
1.2 would not know to send the divergent_paths field and thus an empty list will be seen by the
Controller.

7.5.3.3.1.2 SupportedParamResult Fields
string param_name

This field contains the Relative Path of the Parameter.

ParamAccessType access

The field contains an enumeration of type ParamAccessType specifying the access permissions
that are specified for this Parameter in the Agent’s Supported Data Model. This may be further
restricted to the Controller based on rules defined in the Agent’s Access Control List. It is an
enumeration of:

 PARAM_READ_ONLY (0)
 PARAM_READ_WRITE (1)
 PARAM_WRITE_ONLY (2)

ParamValueType value_type

This field contains an enumeration of type ParamValueType specifying the primitive (or base)
data type of this Parameter in the Agent’s Supported Data Model. It is an enumeration of:

 PARAM_UNKNOWN (0)
 PARAM_BASE_64 (1)
 PARAM_BOOLEAN (2)
 PARAM_DATE_TIME (3)
 PARAM_DECIMAL (4)

October 2023 © The Broadband Forum. All rights reserved 157 of 275

The User Services Platform TR-369

 PARAM_HEX_BINARY (5)
 PARAM_INT (6)
 PARAM_LONG (7)
 PARAM_STRING (8)
 PARAM_UNSIGNED_INT (9)
 PARAM_UNSIGNED_LONG (10)

Note: The value_type field was added in USP 1.2, and the PARAM_UNKNOWN enumerated value is
present for backwards compatibility purposes. An Agent that supports versions before USP 1.2
would not know to send the value_type and thus a 0 value (PARAM_UNKNOWN) will be seen by
the Controller.

Note: This refers to the data type of the Parameter as implemented on the device, even though the
value itself is transmitted as a Protocol Buffers string.

ValueChangeType value_change

This field contains an enumeration of type ValueChangeType specifying whether or not the
Agent will honor or ignore a ValueChange Subscription for this Parameter. The value of this
field does not impact the ability for a Controller to create a ValueChange Subscription that ref-
erences the associated Parameter, it only impacts how the Agent handles the Subscription. It is
an enumeration of:

 VALUE_CHANGE_UNKNOWN (0)
 VALUE_CHANGE_ALLOWED (1)
 VALUE_CHANGE_WILL_IGNORE (2)

Note: The value_change field was added in USP 1.2, and the VALUE_CHANGE_UNKNOWN enu-
merated value is present for backwards compatibility purposes. An Agent that supports versions be-
fore USP 1.2 would not know to send the value_change and thus a 0 value (VALUE_CHANGE_UN-
KNOWN) will be seen by the Controller.

7.5.3.3.1.3 SupportedCommandResult Fields
string command_name

This field contains the Relative Path of the Command.

repeated string input_arg_names

This field contains a repeated set of Relative Paths for the input arguments of the Command,
which can include Objects and Object Instances where the names are represented in Supported
Data Model notation.

Note: This field only contains the Path Name of the supported Input arguments without details
about the supported number of instances, mandatory arguments or expected data types. Those de-
tails are implementation specific and not detailed as part of the SupportedCommandResult.

repeated string output_arg_names

This field contains a repeated set of Relative Paths for the output arguments of the Command,
which can include Objects and Object Instances where the names are represented in Supported
Data Model notation.

CmdType command_type

October 2023 © The Broadband Forum. All rights reserved 158 of 275

The User Services Platform TR-369

This field contains an enumeration of type CmdType specifying the type of execution for the
Command. It is an enumeration of:

 CMD_UNKNOWN (0)
 CMD_SYNC (1)
 CMD_ASYNC (2)

Note: The command_type field was added in USP 1.2, and the CMD_UNKNOWN enumerated value
is present for backwards compatibility purposes. An Agent that supports versions before USP 1.2
would not know to send the command_type and thus a 0 value (CMD_UNKNOWN) will be seen by
the Controller.

7.5.3.3.1.4 SupportedEventResult
string event_name

This field contains the Relative Path of the Event.

repeated string arg_names

This field contains a repeated set of Relative Paths for the arguments of the Event.

7.5.3.4 GetSupportedDM Error Codes
Appropriate error codes for the GetSupportedDM Message include 7000-7006, 7008, 7016, 7026,
and 7800-7999.

Note: when using error 7026 (Invalid path), it is important to note that in the context of GetSup-
portedDM this applies to the Agent’s Supported Data Model.

7.5.4 GetSupportedProtocol
The GetSupportedProtocol Message is used as a simple way for the Controller and Agent to
learn which versions of USP each supports to aid in interoperability and backwards compatibil-
ity.

7.5.4.1 GetSupportedProtocol Request Fields
string controller_supported_protocol_versions

A comma separated list of USP Protocol Versions (major.minor) supported by this Controller.

7.5.4.2 GetSupportedProtocolResponse Fields
string agent_supported_protocol_versions

A comma separated list of USP Protocol Versions (major.minor) supported by this Agent.

7.5.5 The Register Message
The Register message is an Agent to Controller message used to register new Service Elements.

See Software Modularization and USP-Enabled Applications Theory of Operation appendix for
more information on when to use the Register message.

7.5.5.1 Register Examples
A USP Agent can register several Service Elements with one or multiple Register Request mes-
sages.

October 2023 © The Broadband Forum. All rights reserved 159 of 275

The User Services Platform TR-369

header {
 msg_id: "94521"
 msg_type: REGISTER
}
body {
 request {
 register {
 allow_partial: true
 reg_paths {
 path: "Device.Time."
 }
 reg_paths {
 path: "Device.WiFi.DataElements."
 }
 }
 }
}

In case the registration was successful, the USP Controller will respond with a Register Re-
sponse message.

header {
 msg_id: "94521"
 msg_type: REGISTER_RESP
}
body {
 response {
 register_resp {
 registered_path_results {
 requested_path: "Device.Time."
 oper_status {
 oper_success {
 registered_path: "Device.Time."
 }
 }
 }

 registered_path_results {
 requested_path: "Device.WiFi.DataElements."
 oper_status {
 oper_success {
 registered_path: "Device.WiFi.DataElements."
 }
 }
 }
 }
 }
}

In case the registration failed partially, because the “Device.WiFi.DataElements.” object was al-
ready registered, the USP Controller will respond with the following Register Response mes-
sage.

header {
 msg_id: "94521"

October 2023 © The Broadband Forum. All rights reserved 160 of 275

The User Services Platform TR-369

 msg_type: REGISTER_RESP
}
body {
 response {
 register_resp {
 registered_path_results {
 requested_path: "Device.Time."
 oper_status {
 oper_success {
 registered_path: "Device.Time."
 }
 }
 }

 registered_path_results {
 requested_path: "Device.WiFi.DataElements."
 oper_status {
 oper_failure {
 err_code: 7029
 err_msg: "Device.WiFi.DataElements. object path has already been registered"
 }
 }
 }
 }
 }
}

If allow_partial was set to false in the Register Request and the registration failed, the USP
Controller would instead respond with a USP Error message.

header {
 msg_id: "94521"
 msg_type: ERROR
}
body {
 error {
 err_code: 7029
 err_msg: "Device.WiFi.DataElements. object path has already been registered"
 }
}

7.5.5.2 Register Request Fields
bool allow_partial

The Register message contains a boolean allow_partial to indicate whether the registration
must succeed completely or is allowed to fail partially. If allow_partial is false, nothing will
be registered if one of the provided paths fails to be registered (e.g. due to an already existing
registration) and the USP Controller will respond with a USP Error message. If allow_partial
is true, the USP Controller will try to register every path individually and will always respond
with a RegisterResp message, even if none of the requested paths can be registered.

October 2023 © The Broadband Forum. All rights reserved 161 of 275

The User Services Platform TR-369

R-REG.0 - If the allow_partial field is set to true and no other exceptions are encountered,
the Controller treats each of the reg_paths independently. The Controller MUST complete the
registration of each reg_path regardless of the inability to register one of the others.

R-REG.1 - If the allow_partial field is set to false, and no other exceptions are encountered,
the Controller treats each of the reg_paths holistically. A failure to handle one of the reg_paths
will cause the Register Message to fail and return an Error Message.

repeated RegistrationPath reg_paths

This field contains a repeated set of RegistrationPaths for each path the USP Agent wants to
register.

7.5.5.2.1 RegistrationPath Fields
string path

This field contains the Object Path the USP Agent wants to register.

R-REG.2 - The path field MUST contain an Object Path without any instance numbers. This
path MUST NOT not use the Supported Data Model notation (with {i}), meaning that it is not al-
lowed to register a sub-object to a multi-instance object.

7.5.5.3 Register Response Fields
repeated RegisteredPathResult registered_path_results

This field contains a repeated set of RegisteredPathResults for each path the USP Agent tried to
register.

7.5.5.4 RegisteredPathResult Fields
string requested_path

This field contains the value of the entry of the path (in the Register Request) associated with
this RegisteredPathResult.

OperationStatus oper_status

This field contains a message of type OperationStatus.

7.5.5.4.1 OperationStatus Fields
oneof oper_status

This field contains a message of one of the following types.

OperationFailure oper_failure

Used when the path specified in requested_path failed to be registered.

OperationSuccess oper_success

Used when the path specified in requested_path was successfully registered.

7.5.5.4.2 OperationFailure Fields
fixed32 err_code

October 2023 © The Broadband Forum. All rights reserved 162 of 275

The User Services Platform TR-369

This field contains a numeric code (Error Codes) indicating the type of error that caused the
registration to fail.

string err_msg

This field contains additional information about the reason behind the error.

7.5.5.4.3 OperationSuccess Fields
string registered_path

This field returns the path that was registered.

7.5.5.5 Register Message Supported Error Codes
Appropriate error codes for the Register Message include 7000-7008, 7016, 7028-7029 and
7800-7999.

7.5.6 The Deregister Message
The Deregister message is an Agent to Controller message used to deregister a previously regis-
tered data model at the USP Controller. When a USP Agent terminates, all Services elements
will be deregistered automatically by the USP Controller.

A USP Agent can choose to deregister its Service Elements during normal operation or when it
terminates.

Note: A Deregister Request does not contain a boolean allow_partial, but the Controller will han-
dle each path in the Deregister Request individually. In other words, allow_partial is implicitly
set to true during the deregistration. The USP Controller will provide information about the success
or failure to deregister each requested path in the Deregister Response message.

7.5.6.1 Deregister Examples
A USP Agent can deregister several Service Elements with a Deregister Request message.

header {
 msg_id: "94522"
 msg_type: DEREGISTER
}
body {
 request {
 deregister {
 paths: "Device.Time."
 paths: "Device.WiFi.DataElements."
 }
 }
}

In case the deregistration was successful, the USP Controller will respond with a Deregister Re-
sponse message.

header {
 msg_id: "94522"
 msg_type: DEREGISTER_RESP
}
body {

October 2023 © The Broadband Forum. All rights reserved 163 of 275

The User Services Platform TR-369

 response {
 deregister_resp {
 deregistered_path_results {
 requested_path: "Device.Time."
 oper_status {
 oper_success {
 deregistered_path: "Device.Time."
 }
 }
 }

 deregistered_path_results {
 requested_path: "Device.WiFi.DataElements."
 oper_status {
 oper_success {
 deregistered_path: "Device.WiFi.DataElements."
 }
 }
 }
 }
 }
}

7.5.6.2 Deregister Request Fields
repeated string paths

This field contains a set of paths that the USP Agent wants to deregister.

R-DEREG.1 - A USP Agent MUST only deregister Service Elements that it registered with a
previous Register message.

R-DEREG.2 - An empty path field MUST be interpreted to deregister all Service Elements be-
longing to the USP Agent.

R-DEREG.3 - A USP Agent MAY deregister one or more Service Elements with one Deregister
Request message containing multiple path fields.

Note: The path field contains an Object Path without any instance numbers. This path doesn’t con-
tain any sub-objects to a multi-instance object.

7.5.6.3 Deregister Response Fields
repeated DeregisteredPathResult deregistered_path_results

This field contains a repeated set of DeregisteredPathResults for each path the USP Agent tried
to deregister.

R-DEREG.4 - A USP Controller MUST always respond with a Deregister Response message to
a Deregister Request. USP Error messages are not used.

7.5.6.4 DeregisteredPathResult Fields
string requested_path

This field contains the value of the entry of the path (in the Deregister Request) associated with
this DeregisteredPathResult.

October 2023 © The Broadband Forum. All rights reserved 164 of 275

The User Services Platform TR-369

OperationStatus oper_status

This field contains a message of type OperationStatus.

7.5.6.4.1 OperationStatus Fields
oneof oper_status

This field contains a message of one of the following types.

OperationFailure oper_failure

Used when the path specified in requested_path failed to be deregistered.

OperationSuccess oper_success

Used when the path specified in requested_path was successfully deregistered.

7.5.6.4.2 OperationFailure Fields
fixed32 err_code

This field contains a numeric code (Error Codes) indicating the type of error that caused the
deregistration to fail.

string err_msg

This field contains additional information about the reason behind the error.

7.5.6.4.3 OperationSuccess Fields
string deregistered_path

This field returns the path that was deregistered.

7.5.6.5 Deregister Message Supported Error Codes
Appropriate error codes for the Deregister Message include 7000-7008, 7016, 7030 and
7800-7999.

7.6 Notifications and Subscription Mechanism
A Controller can use the Subscription mechanism to subscribe to certain events that occur on
the Agent, such as a Parameter change, Object removal, wake-up, etc. When such event condi-
tions are met, the Agent may either send a Notify Message to the Controller, update its own
configuration, or perform both actions depending on the Subscription’s configuration.

7.6.1 Using Subscription Objects
Subscriptions are maintained in instances of the Multi-Instance Subscription Object in the USP
data model. The normative requirements for these Objects are described in the data model Para-
meter descriptions for Device.LocalAgent.Subscription.{i}. in the Device:2 Data Model [3].

R-NOT.0 - The Agent and Controller MUST follow the normative requirements defined in the
Device.LocalAgent.Subscription.{i}. Object specified in the Device:2 Data Model [3].

R-NOT.0a - When considering the time needed to make a state change and trigger a Notifica-
tion, an implementation SHOULD make changes to its state and initiate a Notification with a
window no longer than 10 seconds.

October 2023 © The Broadband Forum. All rights reserved 165 of 275

The User Services Platform TR-369

Note: Those familiar with Broadband Forum TR-069 [1] will recall that a notification for a value
change caused by an Auto-Configuration Server (ACS - the CWMP equivalent of a Controller) are
not sent to the ACS. Since there is only a single ACS notifying the ACS of value changes it requested
is unnecessary. This is not the case in USP: an Agent should follow the behavior specified by a sub-
scription, regardless of the originator of that subscription.

7.6.1.1 ReferenceList Parameter
All subscriptions apply to one or more Objects or Parameters in the Agent’s Instantiated Data
Model. These are specified as Path Names or Search Paths in the ReferenceList Parameter. The
ReferenceList Parameter may have different meaning depending on the nature of the notifica-
tion subscribed to.

For example, a Controller wants to be notified when a new Wi-Fi station joins the Wi-Fi net-
work. It uses the Add Message to create an instance of a Subscription Object with
Device.WiFi.AccessPoint.1.AssociatedDevice. specified in the ReferenceList Parameter
and ObjectCreation as the NotificationType.

In another example, a Controller wants to be notified whenever an outside source changes the
SSID of a Wi-Fi network. It uses the Add Message to create an instance of a Subscription Object
with Device.WiFi.SSID.1.SSID specified in the ReferenceList and ValueChange as the
NotificationType.

7.6.1.2 TriggerAction Parameter
Subscriptions can be used to define the actions to be performed by the Agent when an event oc-
curs. This is defined in the TriggerAction Parameter. The default is for the Agent to send a
Notify Message, but it could also perform an update of its own configuration, or both sending
the Notify and performing the configuration.

For example, an Agent may be configure with a Subscription for the
Device.LocalAgent.Threshold.{i}.Triggered! event such that when it occurs the Agent
both sends a Notify message and configures the Device.BulkData.Profile.{i}.Enable to start
sending BukData reports (if defined to do so in the TriggerConfigSettings Parameter of the
Subscription).

7.6.2 Responses to Notifications and Notification Retry
The Notify request contains a flag, send_resp, that specifies whether or not the Controller
should send a response Message after receiving a Notify request. This is used in tandem with
the NotifRetry Parameter in the subscription Object - if NotifRetry is true, then the Agent
sends its Notify requests with send_resp : true, and the Agent considers the notification de-
livered when it receives a response from the Controller. If NotifRetry is false, the Agent does
not need to use the send_resp flag and should ignore the delivery state of the notification.

If NotifRetry is true, and the Agent does not receive a response from the Controller, it begins
retrying using the retry algorithm below. The subscription Object also uses a NotifExpiration
Parameter to specify when this retry should end if no success is ever achieved.

October 2023 © The Broadband Forum. All rights reserved 166 of 275

The User Services Platform TR-369

R-NOT.1 - When retrying notifications, the Agent MUST use the following retry algorithm to
manage the retransmission of the Notify request.

The retry interval range is controlled by two Parameters, the minimum wait interval and the in-
terval multiplier, each of which corresponds to a data model Parameter, and which are de-
scribed in the table below. The factory default values of these Parameters MUST be the default
values listed in the Default column. They MAY be changed by a Controller with the appropriate
permissions at any time.

Descriptive Name Symbol Default Data Model Parameter Name
Minimum wait interval m 5 seconds Device.LocalAgent.Controller.

{i}.USPNotifRetryMinimumWaitInterval

Interval multiplier k 2000 Device.LocalAgent.Controller.
{i}.USPNotifRetryIntervalMultiplier

Retry Count Default Wait Interval Range
(min-max seconds)

Actual Wait Interval Range
(min-max seconds)

#1 5-10 m - m.(k/1000)
#2 10-20 m.(k/1000) - m.(k/1000)^2
#3 20-40 m.(k/1000)^2 - m.(k/1000)^3
#4 40-80 m.(k/1000)^3 - m.(k/1000)^4
#5 80-160 m.(k/1000)^4 - m.(k/1000)^5
#6 160-320 m.(k/1000)^5 - m.(k/1000)^6
#7 320-640 m.(k/1000)^6 - m.(k/1000)^7
#8 640-1280 m.(k/1000)^7 - m.(k/1000)^8
#9 1280-2560 m.(k/1000)^8 - m.(k/1000)^9

#10 and subsequent 2560-5120 m.(k/1000)^9 - m.(k/1000)^10

R-NOT.2 - Beginning with the tenth retry attempt, the Agent MUST choose from the fixed
maximum range. The Agent will continue to retry a failed notification until it is successfully de-
livered or until the NotifExpiration time is reached.

R-NOT.3 - Once a notification is successfully delivered, the Agent MUST reset the retry count
to zero for the next notification Message.

R-NOT.4 - If a reboot of the Agent occurs, the Agent MUST reset the retry count to zero for the
next notification Message.

7.6.3 Notification Types
There are several types events that can cause a Notify request. These include those that deal
with changes to the Agent’s Instantiated Data Model (ValueChange, ObjectCreation,
ObjectDeletion), the completion of an asynchronous Object-defined operation

October 2023 © The Broadband Forum. All rights reserved 167 of 275

The User Services Platform TR-369

(OperationComplete), a policy-defined OnBoardRequest, and a generic Event for use with Ob-
ject-defined events.

7.6.3.1 ValueChange
The ValueChange notification is subscribed to by a Controller when it wants to know that the
value of a single or set of Parameters has changed from the state it was in at the time of the
subscription or to a state as described in an expression, and then each time it transitions from
then on for the life of the subscription. It is triggered when the defined change occurs, even if it
is caused by the originating Controller.

7.6.3.2 ObjectCreation and ObjectDeletion
These notifications are used for when an instance of the subscribed to Multi-Instance Objects is
added or removed from the Agent’s Instantiated Data Model. Like ValueChange, this notifica-
tion is triggered even if the subscribing Controller is the originator of the creation or deletion
or the instance was created or deleted implicitly, e.g. due to a configuration or status change or
indirectly via an unrelated USP Message.

The ObjectCreation notification also includes the Object’s Unique Key Parameters and their
values.

7.6.3.3 OperationComplete
The OperationComplete notification is used to indicate that an asynchronous Object-defined
operation finished (either successfully or unsuccessfully). These operations may also trigger
other Events defined in the data model (see below).

7.6.3.4 OnBoardRequest
An OnBoardRequest notification is used by the Agent when it is triggered by an external source
to initiate the request in order to communicate with a Controller that can provide on-boarding
procedures and communicate with that Controller (likely for the first time).

R-NOT.5 - An Agent MUST send an OnBoardRequest notify request in the following circum-
stances:

1. When the SendOnBoardRequest() command is executed. This sends the notification request
to the Controller that is the subject of that operation. The SendOnBoardRequest() operation
is defined in the Device:2 Data Model [3]. This requirement applies only to those Controller
table instances that have their Enabled Parameter set to true.

2. When instructed to do so by internal application policy (for example, when using DHCP dis-
covery defined above).

Note: as defined in the Subscription table, OnBoardRequest is not included as one of the enumerated
types of a Subscription, i.e., it is not intended to be the subject of a Subscription.

R-NOT.6 If a response is required, the OnBoardRequest MUST follow the Retry logic defined
above.

October 2023 © The Broadband Forum. All rights reserved 168 of 275

The User Services Platform TR-369

7.6.3.5 Event
The Event notification is used to indicate that an Object-defined event was triggered on the
Agent. These events are defined in the data model and include what Parameters, if any, are re-
turned as part of the notification.

7.6.4 The Notify Message

7.6.4.1 Notify Examples
In this example, a Controller has subscribed to be notified of changes in value to the
Device.DeviceInfo.FriendlyName Parameter. When it is changed, the Agent sends a Notify
Request to inform the Controller of the change.

header {
 msg_id: "33936"
 msg_type: NOTIFY
}
body {
 request {
 notify {
 subscription_id: "vc-1"
 send_resp: true
 value_change {
 param_path: "Device.DeviceInfo.FriendlyName"
 param_value: "MyDevicesFriendlyName"
 }
 }
 }
}

header {
 msg_id: "33936"
 msg_type: NOTIFY_RESP
}
body {
 response {
 notify_resp {
 subscription_id: "vc-1"
 }
 }
}

In another example, the event “Boot!”, defined in the Device. Object, is triggered. The Agent
sends a Notify Request to the Controller(s) subscribed to that event.

header {
 msg_id: "26732"
 msg_type: NOTIFY
}
body {
 request {
 notify {
 subscription_id: "boot-1"
 send_resp: true
 event {

October 2023 © The Broadband Forum. All rights reserved 169 of 275

The User Services Platform TR-369

 obj_path: "Device."
 event_name: "Boot!"
 params {
 key: "Cause"
 value: "LocalReboot"
 }
 params {
 key: "CommandKey"
 value: "controller-command-key"
 }
 params {
 key: "ParameterMap"
 value: '{"Device.LocalAgent.Controller.1.
Enable":"True","Device.LocalAgent.Controller.2.Enable":"False"}'
 }
 params {
 key: "FirmwareUpdated"
 value: "false"
 }
 }
 }
 }
}

header {
 msg_id: "26732"
 msg_type: NOTIFY_RESP
}
body {
 response {
 notify_resp {
 subscription_id: "boot-1"
 }
 }
}

7.6.4.2 Notify Request Fields
string subscription_id

This field contains the locally unique opaque identifier that was set by the Controller when it
created the Subscription on the Agent.

R-NOT.7 - The subscription_id field MUST contain the Subscription ID of the Subscription
Object that triggered this notification. If no subscription_id is available (for example, for On-
BoardRequest notifications), this field MUST be set to an empty string.

bool send_resp

This field lets the Agent indicate to the Controller whether or not it expects a response in asso-
ciation with the Notify request.

R-NOT.8 - When send_resp is set to false, the Controller SHOULD NOT send a response or er-
ror to the Agent. If a response is still sent, the responding Controller MUST expect that any
such response will be ignored.

October 2023 © The Broadband Forum. All rights reserved 170 of 275

The User Services Platform TR-369

oneof notification

Contains one of the following Notification messages:

Event event
ValueChange value_change
ObjectCreation obj_creation
ObjectDeletion obj_deletion
OperationComplete oper_complete
OnBoardRequest on_board_req

7.6.4.2.1 Event Fields
string obj_path

This field contains the Object or Object Instance Path of the Object that caused this event (for
example, Device.LocalAgent.).

string event_name

This field contains the name of the Object defined event that caused this notification (for exam-
ple, Boot!).

map<string, string> parameters

This field contains a set of key/value pairs of Parameters associated with this event. Refer to
Parameter and Argument Value Encoding for details of how Parameter values are encoded as
Protocol Buffers v3 strings.

7.6.4.2.2 ValueChange Fields
string param_path

This field contains the Path Name of the changed Parameter.

string param_value

This field contains the value of the Parameter specified in param_path. Refer to Parameter and
Argument Value Encoding for details of how Parameter values are encoded as Protocol Buffers
v3 strings.

7.6.4.2.3 ObjectCreation Fields
string obj_path

This field contains the Path Name of the created Object Instance.

map<string, string> unique_keys

This field contains a map of key/value pairs for all of this Object’s Unique Key Parameters that
are supported by the Agent.

7.6.4.2.4 ObjectDeletion Fields
string obj_path

This field contains the Path Name of the deleted Object Instance.

7.6.4.2.5 OperationComplete Fields
string command_name

October 2023 © The Broadband Forum. All rights reserved 171 of 275

The User Services Platform TR-369

This field contains the Relative Path of the Object defined command that caused this notifica-
tion (i.e., Download()).

string obj_path

This field contains the Object or Object Instance Path to the Object that contains this operation.

string command_key

This field contains the command key set during an Object defined Operation that caused this
notification.

oneof operation_resp

Contains one of the following messages:

OutputArgs req_output_args
CommandFailure cmd_failure

7.6.4.2.5.1 OutputArgs Fields
map<string, string> output_args

This field contains a map of key/value pairs indicating the output arguments (relative to the
command specified in the command_name field) returned by the method invoked in the Operate
Message. Refer to Parameter and Argument Value Encoding for details of how argument values
are encoded as Protocol Buffers v3 strings.

7.6.4.2.5.2 CommandFailure Fields
fixed32 err_code

This field contains a numeric code (see Error Codes) indicating the type of the error that caused
the operation to fail. Appropriate error codes for CommandFailure include 7002-7008, 7016,
7022, 7023, and 7800-7999. Error 7023 is reserved for asynchronous operations that were can-
celed by a Controller invoking the Cancel() command on the appropriate Request Object (see
Asynchronous Operations).

string err_msg

This field contains additional (human readable) information about the reason behind the error.

7.6.4.2.6 OnBoardRequest Fields
string oui

This field contains the Organizationally Unique Identifier associated with the Agent.

string product_class

This field contains a string used to provide additional context about the Agent.

string serial_number

This field contains a string used to provide additional context about the Agent.

string agent_supported_protocol_versions

A comma separated list of USP Protocol Versions (major.minor) supported by this Agent.

October 2023 © The Broadband Forum. All rights reserved 172 of 275

The User Services Platform TR-369

7.6.4.3 Notify Response Fields
string subscription_id

This field contains the Subscription ID that was received with the Notify Request.

R-NOT.9 -The Agent SHOULD ignore the subscription_id field.

Note: The requirement in the previous versions of the specification requiring the Agent to check this
subscription_id field has been deprecated. However for backward compatibility the Controller is
still required to send the matching subscription_id.

R-NOT.10 - The Controller MUST populate the subscription_id field with the same Subscrip-
tion ID as was presented in the Notify Request.

7.6.4.4 Notify Error Codes
Appropriate error codes for the Notify Message include 7000-7006, and 7800-7999.

7.7 Defined Operations Mechanism
Additional methods (operations) are and can be defined in the USP data model. Operations are
generally defined on an Object, using the “command” attribute, as defined in [2]. The mecha-
nism is controlled using the Operate Message in conjunction with the Multi-Instance Request
Object.

7.7.1 Synchronous Operations
A synchronous operation is intended to complete immediately following its processing. When
complete, the output arguments are sent in the Operate response. If the send_resp flag is false,
the Controller doesn’t need the returned information (if any), and the Agent does not send an
Operate Response.

Figure 17: Operate Message Flow for Synchronous Operations

7.7.2 Asynchronous Operations
An asynchronous operation expects to take some processing on the system the Agent repre-
sents and will return results at a later time. When complete, the output arguments are sent in a

October 2023 © The Broadband Forum. All rights reserved 173 of 275

The User Services Platform TR-369

Notify (OperationComplete) request to any Controllers that have an active subscription to the
operation and Object(s) to which it applies.

When a Controller using the Operate request specifies an operation that is defined as asynchro-
nous, the Agent creates an instance of the Request Object in its data model, and includes a ref-
erence to the created Object in the Operate response. If the send_resp flag is false, the Con-
troller doesn’t need the Request details, and intends to ignore it.

The lifetime of a Request Object expires when the operation is complete (either by success or
failure). An expired Request Object is removed from the Instantiated Data Model.

R-OPR.0 - When an Agent receives an Operate Request that addresses an asynchronous opera-
tion, it MUST create a Request Object in the Request table of its Instantiated Data Model (see
the Device:2 Data Model [3]). When the Operation is complete (either success or failure), it
MUST remove this Object from the Request table.

If any Controller wants a notification that an operation has completed, it creates a Subscription
Object with the NotificationType set to OperationComplete and with the ReferenceList Pa-
rameter including a Path Name to the specified command. The Agent processes this Subscrip-
tion when the operation completes and sends a Notify Message, including the command_key
value that the Controller assigned when making the Operate request.

A Controller can cancel a request that is still present in the Agent’s
Device.LocalAgent.Request. table by invoking the Device.LocalAgent.Request.
{i}.Cancel() command through another Operate Message.

Figure 18: Operate Message Flow for Asynchronous Operations

October 2023 © The Broadband Forum. All rights reserved 174 of 275

The User Services Platform TR-369

7.7.2.1 Persistance of Asynchronous Operations
Synchronous Operations do not persist across a reboot or restart of the Agent or its underlying
system. It is expected that Asynchronous Operations do not persist, and a command that is in
process when the Agent is rebooted can be expected to be removed from the Request table, and
is considered to have failed. If a command is allowed or expected to be retained across a reboot,
it will be noted in the command description.

7.7.3 Operate Requests on Multiple Objects
Since the Operate request can take a Path Name expression as a value for the command field, it
is possible to invoke the same operation on multiple valid Objects as part of a single Operate re-
quest. Responses to requests to Operate on more than one Object are handled using the
OperationResult field type, which is returned as a repeated set in the Operate Response. The
success or failure of the operation on each Object is handled separately and returned in a differ-
ent OperationResult entry. For this reason, operation failures are never conveyed in an Error
Message - in reply to an Operate request, Error is only used when the Message itself fails for
one or more reasons, rather than the operation invoked.

Note: This specification does not make any requirement on the order in which commands on multi-
ple objects selected with a Path Name expression are executed.

R-OPR.1 - When processing Operate Requests on multiple Objects, an Agent MUST NOT send
an Error Message due to a failed operation. It MUST instead include the failure in the
cmd_failure field of the Operate response.

R-OPR.2 - For asynchronous operations the Agent MUST create a separate Request Object for
each Object and associated operation matched in the command field.

7.7.4 Event Notifications for Operations
When an operation triggers an Event notification, the Agent sends the Event notification for all
subscribed recipients as described in Notifications and Subscription Mechanism.

7.7.5 Concurrent Operations
If an asynchronous operation is triggered multiple times by one or more Controllers, the Agent
has the following options:

1. Deny the new operation (with, for example, 7005 Resources Exceeded)
2. The operations are performed in parallel and independently.
3. The operations are queued and completed in order.

R-OPR.3 - When handling concurrently invoked operations, an Agent MUST NOT cancel an
operation already in progress unless explicitly told to do so by a Controller with permission to
do so (i.e., via the Device.LocalAgent.Request.{i}.Cancel() operation).

7.7.6 Operate Examples
In this example, the Controller requests that the Agent initiate the SendOnBoardRequest() oper-
ation defined in the Device.LocalAgent.Controller. Object.

October 2023 © The Broadband Forum. All rights reserved 175 of 275

The User Services Platform TR-369

header {
 msg_id: "42314"
 msg_type: OPERATE
}
body {
 request {
 operate {
 command: 'Device.LocalAgent.Controller.
[EndpointID=="controller"].SendOnBoardRequest()'
 command_key: "onboard_command_key"
 send_resp: true
 }
 }
}

header {
 msg_id: "42314"
 msg_type: OPERATE_RESP
}
body {
 response {
 operate_resp {
 operation_results {
 executed_command: "Device.SelfTestDiagnostics()"
 req_obj_path: "Device.LocalAgent.Request.1"
 }
 }
 }
}

7.7.7 The Operate Message

7.7.7.1 Operate Request Fields
string command

This field contains a Command Path or Search Path to an Object defined Operation in one or
more Objects.

string command_key

This field contains a string used as a reference by the Controller to match the operation with
notifications.

bool send_resp

This field lets the Controller indicate to Agent whether or not it expects a response in associa-
tion with the operation request.

R-OPR.4 - When send_resp is set to false, the target Endpoint SHOULD NOT send an
OperateResp Message to the source Endpoint. If an error occurs during the processing of an
Operate Message, the target Endpoint SHOULD send an Error Message to the source Endpoint.
If a response is still sent, the responding Endpoint MUST expect that any such response will be
ignored.

October 2023 © The Broadband Forum. All rights reserved 176 of 275

The User Services Platform TR-369

Note: The requirement in the previous versions of the specification also discouraged the sending of
an Error Message, however the Controller issuing the Operate might want to learn about and han-
dle errors occurring during the processing of the Operate request but still ignore execution results.

map<string, string> input_args

This field contains a map of key/value pairs indicating the input arguments (relative to the
Command Path in the command field) to be passed to the method indicated in the command
field.

R-OPR.5 - A Command can have mandatory input_args as defined in the Supported Data
Model. When a mandatory Input argument is omitted from the input_args field, the Agent
MUST respond with an Error of type 7004 Invalid arguments and stop processing the
Operate Message.

R-OPR.6 - When an unrecognized Input argument is included in the input_args field, the
Agent MUST ignore the Input argument and continue processing the Operate Message.

R-OPR.7 - When a non-mandatory Input argument is omitted from the input_args field, the
Agent MUST use a default value for the missing Input argument and continue processing the
Operate Message.

Refer to Parameter and Argument Value Encoding for details of how argument values are en-
coded as Protocol Buffers v3 strings.

7.7.7.2 Operate Response Fields
repeated OperationResult operation_results

This field contains a repeated set of OperationResult messages.

7.7.7.2.1 OperationResult Fields
string executed_command

This field contains a Command Path to the Object defined Operation that is the subject of this
OperateResp message.

oneof operate_resp

This field contains a message of one of the following types.

 string req_obj_path
 OutputArgs req_output_args
 CommandFailure cmd_failure

7.7.7.2.1.1 Using req_obj_path
The req_obj_path field, when used as the operate_resp, contains an Object Instance Path to the
Request Object created as a result of this asynchronous operation.

7.7.7.2.1.2 OutputArgs Fields
map<string, string> output_args

October 2023 © The Broadband Forum. All rights reserved 177 of 275

The User Services Platform TR-369

This field contains a map of key/value pairs indicating the output arguments (relative to the
command specified in the command field) returned by the method invoked in the Operate Mes-
sage. Refer to Parameter and Argument Value Encoding for details of how argument values are
encoded as Protocol Buffers v3 strings.

7.7.7.2.1.3 CommandFailure Fields
fixed32 err_code

This field contains a numeric code (see Error Codes) indicating the type of the error that caused
the operation to fail.

string err_msg

This field contains additional (human readable) information about the reason behind the error.

7.7.7.3 Operate Message Error Codes
Appropriate error codes for the Operate Message include 7000-7008, 7016, 7022, 7026, 7027,
and 7800-7999.

7.8 Error Codes
USP uses error codes with a range 7000-7999 for both Controller and Agent errors. The errors
appropriate for each Message (and how they must be implemented) are defined in the message
descriptions below.

Code Name Applicability Description
7000 Message failed Error Message This error indicates a gen-

eral failure that is described
in an err_msg field.

7001 Message not supported Error Message This error indicates that the
attempted message was not
understood by the target
Endpoint.

7002 Request denied (no reason
specified)

Error Message This error indicates that the
target Endpoint cannot or
will not process the mes-
sage.

7003 Internal error Error Message This error indicates that the
message failed due to inter-
nal hardware or software
reasons.

7004 Invalid arguments Error Message This error indicates that the
message failed due to in-
valid values in the USP mes-
sage.

October 2023 © The Broadband Forum. All rights reserved 178 of 275

The User Services Platform TR-369

7005 Resources exceeded Error Message This error indicates that the
message failed due to mem-
ory or processing limita-
tions on the target End-
point.

7006 Permission denied Error Message This error indicates that the
source Endpoint does not
have the authorization for
this action.

7007 Invalid configuration Error Message This error indicates that the
message failed because pro-
cessing the message would
put the target Endpoint in
an invalid or unrecoverable
state.

7008 Invalid path syntax any requested_path This error indicates that the
Path Name used was not
understood by the target
Endpoint.

7009 Parameter action failed Set This error indicates that the
Parameter failed to update
for a general reason de-
scribed in an err_msg field.

7010 Unsupported parameter Add, Set This error indicates that the
requested Path Name asso-
ciated with this ParamError
or ParameterError did not
match any instantiated Pa-
rameters.

7011 Invalid type Add, Set This error indicates that the
received string can not be
interpreted as a value of the
correct type expected for
the Parameter.

7012 Invalid value Add, Set This error indicates that the
requested value was not
within the acceptable values
for the Parameter.

7013 Attempt to update non-
writeable parameter

Add, Set This error indicates that the
source Endpoint attempted

October 2023 © The Broadband Forum. All rights reserved 179 of 275

The User Services Platform TR-369

to update a Parameter that
is not defined as a writeable
Parameter.

7014 Value conflict Add, Set This error indicates that the
requested value would re-
sult in an invalid configura-
tion based on other Parame-
ter values.

7015 Operation error Add, Set, Delete This error indicates a gen-
eral failure in the creation,
update, or deletion of an
Object that is described in
an err_msg field.

7016 Object does not exist Any This error indicates that the
requested Path Name did
not address an Object in the
Agent’s Instantiated Data
Model.

7017 Object could not be created Add This error indicates that the
operation failed to create an
instance of the specified Ob-
ject.

7018 Object is not a table Add, GetInstances This error indicates that the
requested Path Name is not
a Multi-Instance Object.

7019 Attempt to create non-cre-
atable object

Add This error indicates that the
source Endpoint attempted
to create an Object that is
not defined as able to be
created.

7020 Object could not be updated Set This error indicates that the
requested Object in a Set re-
quest failed to update.

7021 Required parameter failed Add, Set This error indicates that the
request failed on this Object
because one or more re-
quired Parameters failed to
update. Details on the failed
Parameters are included in

October 2023 © The Broadband Forum. All rights reserved 180 of 275

The User Services Platform TR-369

an associated ParamError or
ParameterError message.

7022 Command failure Operate This error indicates that an
command initiated in an
Operate Request failed to
complete for one or more
reasons explained in the er-
r_msg field.

7023 Command canceled Operate This error indicates that an
asynchronous command
initiated in an Operate Re-
quest failed to complete be-
cause it was cancelled using
the Cancel() operation.

7024 Delete failure Delete This error indicates that this
Object Instance failed to be
deleted.

7025 Object exists with duplicate
key

Add, Set This error indicates that an
Object already exists with
the Unique Keys specified in
an Add or Set Message.

7026 Invalid path Any This error indicates that the
Object, Parameter, or Com-
mand Path Name specified
does not match any Objects,
Parameters, or Commands
in the Agent’s Supported
Data Model

7027 Invalid command argu-
ments

Operate This error indicates that an
Operate Message failed due
to invalid or unknown argu-
ments specified in the com-
mand.

7028 Register failure Register This error indicates that a
path in a Register Request
failed to be registered for
one or more reasons ex-
plained in the err_msg field.

7029 Already in use Register This error indicates that a
path in a Register Request

October 2023 © The Broadband Forum. All rights reserved 181 of 275

The User Services Platform TR-369

failed to be registered, be-
cause it was registered by a
different USP Agent

7030 Deregister failure Deregister This error indicates that a
path in a Deregister Request
failed to be deregistered for
one or more reasons ex-
plained in the err_msg field.

7031 Path already registered Deregister This error indicates that a
path in a Deregister Request
failed to be deregistered, be-
cause it was registered by a
different USP Agent.

7100-7199 USP Record error codes - These errors are listed and
described in USP Record
Errors.

7200-7299 Data model defined error
codes

- These errors are described
in the data model.

7800-7999 Vendor defined error codes - These errors are described
in Vendor Defined Error
Codes.

7.8.1 Vendor Defined Error Codes
Implementations of USP MAY specify their own error codes for use with Errors and Responses.
These codes use the 7800-7999 series. There are no requirements on the content of these errors.

8 Authentication and Authorization
USP contains mechanisms for Authentication and Authorization, and Encryption. Encryption
can be provided at the MTP layer, the USP layer, or both. Where Endpoints can determine
(through Authentication) that the termination points of the MTP and USP messages are the
same, MTP encryption is sufficient to provide end-to-end encryption and security. Where the
termination points are different (because there is a proxy or other intermediate device between
the USP Endpoints), USP layer End to End Message Exchange is required, or the intermediate
device must be a trusted part of the end-to-end ecosystem.

8.1 Authentication
Authentication of Controllers is done using X.509 certificates as defined in [34] and [22]. Au-
thentication of Agents is done either by using X.509 certificates or shared secrets. X.509 certifi-
cates, at a minimum, need to be usable for Securing MTPs with TLS or DTLS protocols. It is rec-

October 2023 © The Broadband Forum. All rights reserved 182 of 275

The User Services Platform TR-369

ommended that Agents implement the ability to encrypt all MTPs using one of these two proto-
cols, enable it by default, and not implement the ability to disable it.

In order to support various authentication models (e.g., trust Endpoint identity and associated
certificate on first use; precise Endpoint identity is indicated in a certificate issued by a trusted
Certificate Authority; trust that MTP connection is being made to a member of a trusted do-
main as verified by a trusted Certificate Authority (CA)), this specification provides guidance
based on conditions under which the Endpoint is operating, and on the Endpoint’s policy for
storing certificates of other Endpoints or certificates of trusted CAs. The
Device.LocalAgent.Certificate. Object can be implemented if choosing to expose these
stored certificates through the data model. See the Theory of Operations, Certificate
Management subsection, below for additional information.

R-SEC.0 - Prior to processing a USP Message from a Controller, the Agent MUST either:

• have the Controller’s certificate information and have a cryptographically protected connec-
tion between the two Endpoints, or

• have a Trusted Broker’s certificate information and have a cryptographically protected con-
nection between the Agent and the Trusted Broker

R-SEC.0a - Whenever a X.509 certificate is used to authenticate a USP Endpoint, the certificate
MUST contain a representation of the Endpoint ID in the subjectAltName extension. This rep-
resentation MUST be either the URN form of the Endpoint ID with a type
uniformResourceIdentifier attribute OR, in the specific case where the Endpoint ID has an
authority-scheme of fqdn, the instance-id portion of the Endpoint ID with a type dNSName
attribute. When this type of authentication is used at the MTP layer, USP Endpoints MUST
check the from_id field of received USP Records and MUST NOT process Records that do not
match the Endpoint ID found in the certificate.

TLS and DTLS both have handshake mechanisms that allow for exchange of certificate informa-
tion. If the MTP connection is between the Agent and Controller (for example, without going
through any application-layer proxy or other intermediate application-layer middle-box), then a
secure MTP connection will be sufficient to ensure end-to-end protection, and the USP Record
can use payload_security “PLAINTEXT” encoding of the Message. If the middle-box is part of
a trusted end-to-end ecosystem, the MTP connection may also be considered sufficient. Other-
wise, the USP Record will use End to End Message Exchange.

Whether a Controller requires Agent certificates is left up to the Controller implementation.

8.2 Role Based Access Control (RBAC)
It is expected that Agents will have some sort of Access Control List (ACL) that will define dif-
ferent levels of authorization for interacting with the Agent’s data model. This specification
refers to different levels of authorization as “Roles”. The Agent may be so simple as to only sup-
port a single Role that gives full access to its data model; or it may have just an “untrusted” Role
and a “full access” Role. Or it may be significantly more complex with, for example, “untrusted”
Role, different Roles for parents and children in a customer household, and a different Role for

October 2023 © The Broadband Forum. All rights reserved 183 of 275

The User Services Platform TR-369

the service provider Controller. These Roles may be fully defined in the Agent’s code, or Role
definition may be allowed via the data model.

R-SEC.1 - An Agent MUST confirm a Controller has the necessary permissions to perform the
requested actions in a Message prior to performing that action.

R-SEC.1a - Agents SHOULD implement the Controller Object with the AssignedRole Para-
meter (with at least read-only data model definition) and InheritedRole Parameter (if allowed
Roles can come from a trusted CA), so users can see what Controllers have access to the Agent
and their permissions. This will help users identify rogue Controllers that may have gained ac-
cess to the Agent.

See the Theory of Operations, Roles (Access Control) and Assigning Controller Roles subsec-
tions, below for additional information on data model elements that can be implemented to ex-
pose information and allow control of Role definition and assignment.

8.3 Trusted Certificate Authorities
An Endpoint can have a configured list of trusted Certificate Authority (CA) certificates. The
Agent policy may trust the CA to authorize authenticated Controllers to have a specific default
Role, or the policy may only trust the CA to authenticate the Controller identity. The Controller
policy may require an Agent certificate to be signed by a trusted CA before the Controller ex-
changes USP Messages with the Agent.

R-SEC.2 - To confirm a certificate was signed by a trusted CA, the Endpoint MUST contain in-
formation from one or more trusted CA certificates that are either pre-loaded in the Endpoint
or provided to the Endpoint by a secure means. At a minimum, this stored information will in-
clude a certificate fingerprint and fingerprint algorithm used to generate the fingerprint. The
stored information MAY be the entire certificate.

This secure means can be accomplished through USP (see Theory of Operations), Certificate
Management subsection, making use of the Device.LocalAgent.Certificate. Object), or
through a mechanism external to USP. The stored CA certificates can be root or intermediate
CAs.

R-SEC.3 - Where a CA is trusted to authenticate Controller identity, the Agent MUST ensure
that the Controller certificate conforms with the R-SEC.0a requirement.

R-SEC.4 - Where a CA is trusted to authorize a Controller Role, the Agent MUST ensure either
that the Controller certificate matches the certificate stored in the Credential Parameter of the
Device.LocalAgent.Controller. entry specific to that Controller OR that the Controller cer-
tificate itself is suitable for authentication as per the R-SEC.0a requirement.

Note that trusting a CA to authorize a Controller Role requires the Agent to maintain an associ-
ation between a CA certificate and the Role(s) that CA is trusted to authorize. If the Agent al-
lows CAs to authorize Roles, the Agent will need to identify specific CA certificates in a Con-
troller’s chain of trust that can authorize Roles. The specific Role(s) associated with such a CA
certificate can then be inherited by the Controller. The

October 2023 © The Broadband Forum. All rights reserved 184 of 275

The User Services Platform TR-369

Device.LocalAgent.ControllerTrust.Credential. Object can be implemented to expose and
allow control over trust and authorization of CAs.

Note that if an Agent supports and has enabled a Trust on First Use (TOFU) policy, it is possible
for Controllers signed by unknown CAs to be granted the “untrusted role”. See Figure 22 and
Figure 23 and the penultimate bullet in the Assigning Controller Roles section below for more
information related to TOFU and the “untrusted” role.

8.4 Trusted Brokers
An Endpoint can have a configured list of Trusted Broker certificates. The Endpoint policy
would be to trust the broker to vouch for the identity of Endpoints it brokers – effectively au-
thenticating the from_id contained in a received USP Record. The Agent policy may trust the
broker to authorize all Controllers whose Records transit the broker to have a specific default
Role.

R-SEC.4a - To confirm a certificate belongs to a Trusted Broker, the Endpoint MUST contain
information from one or more Trusted Broker certificates that are either pre-loaded in the End-
point or provided to the Endpoint by a secure means. This stored information MUST be suffi-
cient to determine if a presented certificate is the Trusted Broker certificate.

This secure means of loading certificate information into an Agent can be accomplished
through USP (see Theory of Operations section related to Certificate Management), or through
a mechanism external to USP.

Note that trusting a broker to authorize a Controller Role requires the Agent to maintain an as-
sociation between a Trusted Broker certificate and the Role(s) that Trusted Broker is trusted to
authorize. The Device.LocalAgent.ControllerTrust.Credential. Object can be implemented
to expose and allow control over identifying Trusted Brokers. The AllowedUses Parameter is
used to indicate whether an entry is a Trusted Broker.

R-SEC.4b - A Trusted Broker MUST confirm the identity of all clients by exclusively allowing
authentication via unique client certificates that identify the USP Endpoint. Also the confiden-
tiality of all communications MUST be guaranteed by a Trusted Broker, i.e. there MUST NOT be
any possibility to forward the communication between Endpoints to another party.

R-SEC.4c - A Trusted Broker MUST guarantee that USP Records sent from clients contain the
correct value for the from_id field, tying it to the identity provided during the connection es-
tablishment. A Trusted Broker MUST NOT inspect USP payloads contained in USP Records.

8.5 Self-Signed Certificates
R-SEC.5 - An Endpoint that generates a self-signed certificate MUST ensure that the certificate
is suitable for USP authentication as per the R-SEC.0a requirement.

Self-signed certificates supplied by Controllers can only be meaningfully used in cases where a
person is in a position to provide Authorization (what Role the Controller is trusted to have).
Whether or not an Agent allows self-signed certificates from a Controller is a matter of Agent
policy.

October 2023 © The Broadband Forum. All rights reserved 185 of 275

The User Services Platform TR-369

R-SEC.6 - If an Agent allows Controllers to provide self-signed certificates, the Agent MUST
assign such Controllers an “untrusted” Role on first use.

That is, the Agent will trust the certificate for purpose of encryption, but will heavily restrict
what the Controller is authorized to do. See Figure 22 and Figure 23 and the penultimate bullet
in the Assigning Controller Roles section below for more information related to TOFU and the
“untrusted” role.

R-SEC.7 - If an Agent allows Controllers to provide self-signed certificates, the Agent MUST
have a means of allowing an external entity to change the Role of each such Controller.

Controller policy related to trust of Agent self-signed certificates is left to the Controller. Con-
trollers may be designed to refuse self-signed certificates (thereby refusing to control the
Agent), they may have a means of allowing a person to approve controlling the Agent via the
Controller, or they may automatically accept the Agent.

R-SEC.8 - An Endpoint that accepts self-signed certificates MUST maintain the association of
accepted certificate and Endpoint IDs.

Self-signed certificates require a “trust on first use” (TOFU) policy when using them to authen-
ticate an Endpoint’s identity. An external entity (a trusted Controller or user) can then autho-
rize the authenticated Endpoint to have certain permissions. Subsequent to the first use, this
same self-signed certificate can be trusted to establish the identity of that Endpoint. However,
authentication of the Endpoint can only be subsequently trusted if the association of certificate
to identity is remembered (i.e., it is known this is the same certificate that was used previously
by that Endpoint). If it is not remembered, then every use is effectively a first use and would
need to rely on an external entity to authorize permissions every time. The
Device.LocalAgent.Certificate. Object can be implemented if choosing to expose and allow
control of remembered certificates in the data model.

8.6 Agent Authentication
R-SEC.9 - Controllers MUST authenticate Agents either through X.509 certificates, a shared se-
cret, or by trusting a Trusted Broker to vouch for Agent identity.

When authentication is done using X.509 certificates, it is up to Controller policy whether to al-
low for Agents with self-signed certificates or to require Agent certificates be signed by a CA.

Note that allowing use of, method for transmitting, and procedure for handling shared secrets is
specific to the MTP used, as described in Message Transfer Protocols. Shared secrets that are
not unique per device are not recommended as they leave devices highly vulnerable to various
attacks – especially devices exposed to the Internet.

R-SEC.10 - An Agent certificate MUST be suitable for USP authentication as per the R-SEC.0a
requirement.

R-SEC.10a - The certificate subjectAltName extension MUST be used to authenticate the USP
Record from_id for any Records secured with an Agent certificate.

October 2023 © The Broadband Forum. All rights reserved 186 of 275

The User Services Platform TR-369

Agent certificates can be used to secure Records by encrypting at the MTP layer and/or en-
crypting at the USP layer.

Some Controller implementations may allow multiple Agents to share a single certificate with a
wildcarded Endpoint ID.

R-SEC.11 - If a single certificate is shared among multiple Agents, those Agents MUST include
a wild-carded instance-id in the Endpoint ID in the subjectAltName extension with identical
authority-scheme and authority-id.

Use of a shared certificate is not recommended, and which portion of the instance-id can be
wildcarded may be specific to the authorizing CA or to the authority-id and authority-
scheme values of the Endpoint ID. Wildcards can only be allowed in cases where the assigning
entity is explicitly identified. Controllers are not required to support wildcarded certificates.

R-SEC.12 - If a wildcard character is present in the instance-id of an Endpoint ID in a certifi-
cate subjectAltName extension, the authority-scheme MUST be one of “oui”, “cid”, “pen”, “os”,
or “ops”. In the case of “os” and “ops”, the portion of the instance-id that identifies the assign-
ing entity MUST NOT be wildcarded.

8.7 Challenge Strings and Images
It is possible for the Agent to allow an external entity to change a Controller Role by means of a
Challenge string or image. This Challenge string or image can take various forms, including
having a user supply a passphrase or a PIN. Such a string could be printed on the Agent pack-
aging, or supplied by means of a SMS to a phone number associated with the user account.
These Challenge strings or images can be done using USP operations. Independent of how chal-
lenges are accomplished, following are some basic requirements related to Challenge strings
and images.

R-SEC.13 - The Agent MAY have factory-default Challenge value(s) (strings or images) in its
configuration.

R-SEC.14 - A factory-default Challenge value MUST be unique to the Agent. Re-using the same
passphrase among multiple Agents is not permitted.

R-SEC.15 - A factory-default Challenge value MUST NOT be derivable from information the
Agent communicates about itself using any protocol at any layer.

R-SEC.16 - The Agent MUST limit the number of tries for the Challenge value to be supplied
successfully.

R-SEC.17 - The Agent SHOULD have policy to lock out all use of Challenge values for some
time, or indefinitely, if the number of tries limit is exceeded.

See the Theory of Operations, Challenges subsection, below for a description of data model ele-
ments that need to be implemented and are used when doing challenges through USP opera-
tions.

October 2023 © The Broadband Forum. All rights reserved 187 of 275

The User Services Platform TR-369

8.8 Analysis of Controller Certificates
An Agent will analyze Controller certificates to determine if they are valid, are appropriate for
authentication of Controllers, and to determine what permissions (Role) a Controller has. The
Agent will also determine whether MTP encryption is sufficient to provide end-to-end protec-
tion of the Record and Message, or if USP layer End to End Message Exchange is required.

The diagrams in this section use the database symbol to identify where the described informa-
tion can be represented in the data model, if an implementation chooses to expose this informa-
tion through the USP protocol.

8.8.1 Receiving a USP Record
R-SEC.19 - An Agent capable of obtaining absolute time SHOULD wait until it has accurate ab-
solute time before contacting a Controller. If an Agent for any reason is unable to obtain ab-
solute time, it can contact the Controller without waiting for accurate absolute time. If an Agent
chooses to contact a Controller before it has accurate absolute time (or if it does not support ab-
solute time), it MUST ignore those components of the Controller certificate that involve ab-
solute time, e.g. not-valid-before and not-valid-after certificate restrictions.

R-SEC.20 - An Agent that has obtained accurate absolute time MUST validate those compo-
nents of the Controller certificate that involve absolute time.

R-SEC.21 – An Agent MUST clear all cached encryption session and Role authorization infor-
mation when it reboots.

R-SEC.22 - When an Agent receives a USP Record, the Agent MUST execute logic that achieves
the same results as in the mandatory decision flow elements (identified with “MUST”) from
Figure 19 and Figure 20.

R-SEC.22a - When an Agent receives a USP Record, the Agent SHOULD execute logic that
achieves the same results as in the optional decision flow elements (identified with “OPT”) from
Figure 19 and Figure 20.

October 2023 © The Broadband Forum. All rights reserved 188 of 275

The User Services Platform TR-369

Figure 19: Receiving a USP Record

October 2023 © The Broadband Forum. All rights reserved 189 of 275

The User Services Platform TR-369

Figure 20: USP Record without USP Layer Secure Message Exchange

8.8.2 Sending a USP Record
R-SEC.23 - When an Agent sends a USP Record, the Agent MUST execute logic that achieves
the same results as in the mandatory decision flow elements (identified with “MUST”) from
Figure 21.

R-SEC.23a - When an Agent sends a USP Record, the Agent SHOULD execute logic that
achieves the same results as in the optional decision flow elements (identified with “OPT”) from
Figure 21.

October 2023 © The Broadband Forum. All rights reserved 190 of 275

The User Services Platform TR-369

Figure 21: Sending a USP Record

8.8.3 Checking a Certificate
R-SEC.24 - When an Agent analyzes a Controller certificate for authentication and determin-
ing permissions (Role), the Agent MUST execute logic that achieves the same results as in the
mandatory decision flow elements (identified with “MUST”) from Figure 22 and Figure 23.

R-SEC.24a - When an Agent analyzes a Controller certificate for authentication and determin-
ing permissions (Role), the Agent SHOULD execute logic that achieves the same results as in
the optional decision flow elements (identified with “OPT”) from Figure 22 and Figure 23.

October 2023 © The Broadband Forum. All rights reserved 191 of 275

The User Services Platform TR-369

R-SEC.25 - When determining the inherited Role to apply based on Roles associated with a
trusted CA, only the first matching CA in the chain will be used.

Figure 22: Checking a Certificate

October 2023 © The Broadband Forum. All rights reserved 192 of 275

The User Services Platform TR-369

Figure 23: Determining the Role

8.8.4 Using a Trusted Broker
Support for Trusted Broker logic is optional.

R-SEC.26 - If Trusted Brokers are supported, and a Trusted Broker is encountered (from the
optional “OPT” “Trusted Broker cert?” decision diamonds in Figure 20, Figure 21) the Agent
MUST execute logic that achieves the same results as in the mandatory decision flow elements
(identified with “MUST”) from Figure 24 for a received USP Record and Figure 25 for sending a
USP Record.

R-SEC.26a - If Trusted Brokers are supported, and a Trusted Broker is encountered (from the
optional “OPT” “Trusted Broker cert?” decision diamonds in Figure 20, Figure 21) the Agent
SHOULD execute logic that achieves the same results as in the optional decision flow elements
(identified with “OPT”) from Figure 24 for a received USP Record and Figure 25 for sending a
USP Record.

October 2023 © The Broadband Forum. All rights reserved 193 of 275

The User Services Platform TR-369

Figure 24: Trusted Broker with Received Record

October 2023 © The Broadband Forum. All rights reserved 194 of 275

The User Services Platform TR-369

Figure 25: Trusted Broker Sending a Record

October 2023 © The Broadband Forum. All rights reserved 195 of 275

The User Services Platform TR-369

8.9 Theory of Operations
The following theory of operations relies on Objects, Parameters, events, and operations from
the LocalAgent Object of the Device:2 Data Model [3].

8.9.1 Data Model Elements
These data model elements play a role in reporting on and allowing control of trusted Con-
trollers and the permissions they have to read and write parts of the Agent’s data model, and al-
lowing an Agent to establish trust with a Controller.

• LocalAgent.Controller.{i}.AssignedRole Parameter
• LocalAgent.Controller.{i}.InheritedRole Parameter
• LocalAgent.Controller.{i}.Credential Parameter

From component ControllerTrust:

• Object LocalAgent.ControllerTrust.
• Parameters UntrustedRole, BannedRole, SecuredRoles, TOFUAllowed, TOFUInactivityTimer
• Commands RequestChallenge(), ChallengeResponse()
• Object LocalAgent.ControllerTrust.Role.{i}.
• Object LocalAgent.ControllerTrust.Credential.{i}.
• Object LocalAgent.ControllerTrust.Challenge.{i}.

The Object LocalAgent.Certificate. can be used to manage Controller and CA certificates,
along with the LocalAgent.AddCertificate() and LocalAgent.Controller.
{i}.AddMyCertificate() commands.

For brevity, Device.LocalAgent. is not placed in front of all further Object references in this
Security section. However, all Objects references are under Device.LocalAgent.. This section
does not describe use of Parameters under other top level components.

8.9.2 Roles (Access Control)
Controller permissions are conveyed in the data model through Roles.

8.9.2.1 Role Definition
A Role is described in the data model through use of the ControllerTrust.Role.{i}. Object.
Each entry in this Object identifies the Role it describes, and has a Permission. Sub-Object for
the Targets (data model Path Names that the related permissions apply to), permissions related
to Parameters, Objects, instantiated Objects, and commands identified by the Targets Parame-
ter, and the relative Order of precedence among Permission. entries for the Role (the larger
value of this Parameter takes priority over an entry with a smaller value in the case of overlap-
ping Targets entries for the Role).

The permissions of a Role for the specified Target entries are described by Param, Obj,
InstantiatedObj, and CommandEvent Parameters. Each of these is expressed as a string of 4
characters where each character represents a permission (“r” for Read, “w” for Write, “x” for Ex-
ecute”, and “n” for Notify). The 4 characters are always presented in the same order in the string
(rwxn) and the lack of a permission is signified by a “-” character (e.g., r--n). How these permis-

October 2023 © The Broadband Forum. All rights reserved 196 of 275

The User Services Platform TR-369

sions are applied to Parameters, Objects, and various Messages is described in the data model
description of these Parameters.

An Agent that wants to allow Controllers to define and modify Roles will implement the
ControllerTrust.Role.{i}. Object with all of the Parameters listed in the data model. In or-
der for a Controller to define or modify Role entries, it will need to be assigned a Role that gives
it the necessary permission. Care should be taken to avoid defining this Role’s permissions such
that an Agent with this Role can modify the Role and no longer make future modifications to
the ControllerTrust.Role.{i}. Object.

A simple Agent that only wants to inform Controllers of pre-defined Roles (with no ability to
modify or define additional Roles) can implement the ControllerTrust.Role. Object with
read-only data model definition for all entries and Parameters. A simple Agent could even im-
plement the Object with read-only data model definition and just the Alias and Role Parame-
ters, and no Permission. Sub-Object; this could be sufficient in a case where the Role names
convey enough information (e.g., there are only two pre-defined Roles named "Untrusted" and
"FullAccess").

8.9.2.2 Special Roles
Three special Roles are identified by the UntrustedRole, BannedRole and SecuredRoles Para-
meters under the ControllerTrust. Object. An Agent can expose these Parameters with read-
only data model implementation if it simply wants to tell Controllers the names of these spe-
cific Roles.

The UntrustedRole is the Role the Agent will automatically assign to any Controller that has
not been authorized for a different Role. Any Agent that has a means of allowing a Controller’s
Role to be changed (by users through a Challenge string, by other Controllers through modifi-
cation of Controller.{i}.AssignedRole, or through some other external means) and that al-
lows “unknown” Controllers to attach will need to have an “untrusted” Role defined; even if the
identity of this Role is not exposed to Controllers through implementation of the
UntrustedRole Parameter.

The BannedRole (if implemented) is assigned automatically by the Agent to Controllers whose
certificates have been revoked. If it is not implemented, the Agent can use the UntrustedRole
for this, as well. It is also possible to simply implement policy for treatment of invalid or re-
voked certificates (e.g., refuse to connect), rather than associate them with a specific Role. This
is left to the Agent policy implementation.

The SecuredRoles (if implemented) is the Role assigned to Controllers that are authorized to
have access to secured Parameter values. If the SecuredRoles is not assigned to a given Con-
troller, or if the SecuredRoles is not implemented, then secured Parameters are to be consid-
ered as hidden, in which case the Agent returns a null value, e.g. an empty string, to this Con-
troller, regardless of the actual value. Only Controllers with a secured Role assigned (and the
appropriate permissions set), are able to have access to secured parameter values.

October 2023 © The Broadband Forum. All rights reserved 197 of 275

The User Services Platform TR-369

8.9.2.3 A Controller’s Role
A Controller’s assigned Roles can be conveyed by the Controller.{i}.AssignedRole Parame-
ter. This Parameter is a list of all Role values assigned to the Controller through means other
than ControllerTrust.Credential.{i}.Role. A Controller’s inherited Roles (those inherited
from ControllerTrust.Credential.{i}.Role as described in the next section) need to be
maintained separately from assigned Roles and can be conveyed by the Controller.
{i}.InheritedRole Parameter. Where multiple assigned and inherited Roles have overlapping
Targets entries, the resulting permission is the union of all assigned and inherited permissions.
For example, if two Roles have the same Targets with one Role assigning the Targets Param a
value of r--- and the other Role assigning Param a value of ---n, the resulting permission will
be r--n. This is done after determining which ControllerTrust.Role.{i}.Permission.{i} en-
try to apply for each Role for specific Targets, in the case where a Role has overlapping
Permission.{i}.Targets entries for the same Role.

For example, Given the following ControllerTrust.Role.{i}. entries:

 i=1, Role = "A"; Permission.1.: Targets = "Device.LocalAgent.", Order = 3, Param =
"r---"
 i=1, Role = "A"; Permission.2.: Targets = "Device.LocalAgent.Controller.", Order = 55,
Param = "r-xn"
 i=3, Role = "B"; Permission.1: Targets = "Device.LocalAgent.", Order = 20, Param =
"r---"
 i=3, Role = "B"; Permission.5: Targets = "Device.LocalAgent.Controller.", Order = 78,
Param = "----"

and Device.LocalAgent.Controller.1.AssignedRole = “Device.LocalAgent. ControllerTrust.-
Role.1., Device.LocalAgent. ControllerTrust.Role.3.”

When determining permissions for the Device.LocalAgent.Controller. table, the Agent will
first determine that for Role A Permission.2 takes precedence over Permission.1 (55 > 3). For B,
Permission.5 takes precedence over Permission.1 (78 > 20). The union of A and B is “r-xn”
1. “—-” = “r-xn”.

8.9.2.4 Role Associated with a Credential or Challenge
The ControllerTrust.Credential.{i}.Role Parameter value is inherited by Controllers
whose credentials have been validated using the credentials in the same entry of the
ControllerTrust.Credential.{i}. table. Whenever ControllerTrust.Credential.{i}. is
used to validate a certificate, the Agent writes the current value of the associated
ControllerTrust.Credential.{i}.Role into the Controller.{i}.InheritedRole Parameter.
For more information on use of this table for assigning Controller Roles and validating creden-
tials, see the sections below.

The ControllerTrust.Challenge.{i}.Role Parameter is a Role that is assigned to Controllers
that send a successful ChallengeResponse() command. For more information on use of chal-
lenges for assigning Controller Roles, see the sections below.

October 2023 © The Broadband Forum. All rights reserved 198 of 275

The User Services Platform TR-369

8.9.3 Assigning Controller Roles
As mentioned above, the Controller.{i}.AssignedRole Parameter can be used to expose the
Controller’s assigned Role via the data model.

Note: Even if it is not exposed through the data model, the Agent is expected to maintain knowledge
of the permissions assigned to each known Controller.

Controllers can be assigned Roles through a variety of methods, depending on the data model
elements an Agent implements and the Agent’s coded policy. Note that it is possible for an
Agent to maintain trusted CA credentials with associated permissions (as described by the
ControllerTrust.Credential.{i}. Object) and various default permission definitions (as
identified by the UntrustedRole and BannedRole Parameters) without exposing these through
the data model. If the data is maintained but not exposed, the same methods can still be used.

Figure 22 and Figure 23 in the above Analysis of Controller Certificates section identify points
in the decision logic where some of the following calls to data model Parameters can be made.
The following bullets note when they are identified in one of these figures.

• Another Controller (with appropriate permission) can insert a Controller (including the
AssignedRole Parameter value) into the Controller.{i}. table, or can modify the
AssignedRole Parameter of an existing Controller.{i}. entry. The InheritedRole value
cannot be modified by another Controller.

• If credentials in an entry in a ControllerTrust.Credential.{i}.Credential Parameter with
an associated ControllerTrust.Credential.{i}.Role Parameter are used to successfully
validate the certificate presented by the Controller, the Controller inherits the Role from the
associated ControllerTrust.Credential.{i}.Role. The Agent writes this value to the
Controller.{i}.InheritedRole Parameter. This step is shown in Figure 23.

• A Controller whose associated certificate is revoked by a CA can be assigned the role in
BannedRole, if this Parameter or policy is implemented. In this case, the value of BannedRole
must be the only value in Controller.{i}.AssignedRole (all other entries are removed) and
Controller.{i}.InheritedRole must be empty (all entries are removed). This step is shown
in Figure 22. In the case of a Controller that has not previously been assigned a Role or who
has been assigned the value of UntrustedRole:

• If the Controller’s certificate is validated by credentials in a ControllerTrust.Credential.
{i}.Credential Parameter but there is no associated ControllerTrust.Credential.
{i}.Role Parameter (or the value is empty) and Controller.{i}.AssignedRole is empty,
then the Controller is assigned the role in UntrustedRole (written to the Controller.
{i}.AssignedRole Parameter). This step is shown in Figure 23. Note that assigning
UntrustedRole means there needs to be some implemented way to elevate the Controller’s
Role, either by another Controller manipulating the Role, implementing Challenges, or some
non-USP method.

• If the Controller’s certificate is self-signed or is validated by credentials not in
ControllerTrust.Credential.{i}., the Agent policy may be to assign the role in
UntrustedRole. The optional policy decision (whether or not to allow Trust on First Use

October 2023 © The Broadband Forum. All rights reserved 199 of 275

The User Services Platform TR-369

(TOFU), which can be codified in the data model with the ControllerTrust.TOFUAllowed flag)
is shown in Figure 22 Figure 23 shows the Role assignment.

• If the Agent implements the RequestChallenge() and ChallengeResponse() commands, a
Controller assigned the role in UntrustedRole can have permission to read one or more
ControllerTrust.Challenge.{i}.Alias and Description values and issue the commands.
Roles with more extensive permissions can have permission to read additional
ControllerTrust.Challenge.{i}.Alias and Description values. A successful Challenge re-
sults in the Controller being assigned the associated Role value.

8.9.4 Controller Certificates and Certificate Validation
When an Agent is presented with a Controller’s certificate, the Agent will always attempt to
validate the certificate to whatever extent possible. Figure 20, Figure 22 and Figure 23 identify
points in the decision logic where data model Parameters can be used to influence policy deci-
sions related to Controller certificate analysis.

Note that it is possible for an Agent to maintain policy of the type described by the
UntrustedRole, BannedRole, and the information described by ControllerTrust.Credential.
{i}. and Controller.{i}.Credential without exposing these through the data model. If the
policy concepts and data are maintained but not exposed, the same methods can still be used. It
is also possible for an Agent to have policy that is not described by any defined data model ele-
ment.

8.9.5 Challenges
An Agent can implement the ability to provide Controllers with challenges via USP, in order to
be trusted with certain Roles. It is also possible to use non-USP methods to issue challenges,
such as HTTP digest authentication with prompts for login and password.

To use the USP mechanism, the RequestChallenge() and ChallengeResponse() commands
and ControllerTrust.Challenge.{i}. Object with at least the Alias, Role, and Description
Parameters needs to be implemented. The functionality implied by the other
ControllerTrust.Challenge.{i}. Parameters needs to be implemented, but does not have to
be exposed through the data model.

A Controller that sends a Get Message on Device.ControllerTrust.Challenge.{i}. will re-
ceive all entries and Parameters that are allowed for its current assigned Role. In the simplest
case, this will be a single entry and only Alias and Description will be supplied for that entry. It
is important to restrict visibility to all other implemented Parameters to highly trusted Roles, if
at all.

The Controller can display the value of Description to the user and allow the user to indicate
they want to request the described challenge. If multiple entries were returned, the user can be
asked to select which challenge they want to request, based on the description. An example of a
description might be “Request administrative privileges” or “Request guest privilege”.

When the user indicates to the Controller which challenge they want, the Controller sends
RequestChallenge() with the Path Name of the Challenge Object Instance associated with the

October 2023 © The Broadband Forum. All rights reserved 200 of 275

The User Services Platform TR-369

desired Description. The Agent replies with the associated Instruction, InstructionType,
ValueType and an auto-generated ChallengeID. The Controller presents the value of
Instruction to the user (in a manner appropriate for InstructionType). Examples of an in-
struction might be “Enter passphrase printed on bottom of device” or “Enter PIN sent to regis-
tered email address”. The user enters a string per the instructions, and the Controller sends this
value together with the ChallengeID in ChallengeResponse().

If the returned value matches Value, the Agent gives a successful response - otherwise it re-
turns an unsuccessful response. If successful, the ControllerTrust.Challenge.{i}.Role re-
places an UntrustedRole in Controller.{i}.AssignedRole or is appended to any other
Controller.{i}.AssignedRole value.

The number of times a ControllerTrust.Challenge.{i}. entry can be consecutively failed
(across all Controllers, without intermediate success) is defined by Retries. Once the number
of failed consecutive attempts equals Retries, the ControllerTrust.Challenge.{i}. cannot
be retried until after LockoutPeriod has expired.

Type values other than Passphrase can be used and defined to trigger custom mechanisms,
such as requests for emailed or SMS-provided PINs.

8.9.6 Certificate Management
If an Agent wants to allow certificates associated with Controllers and CAs to be exposed
through USP, the Agent can implement the Controller.{i}.Credential and
ControllerTrust.Credential.{i}.Credential Parameters, which require implementation of
the LocalAgent.Certificate. Object. Allowing management of these certificates through USP
can be accomplished by implementing LocalAgent.AddCertificate(), Controller.
{i}.AddMyCertificate() and Certificate.{i}.Delete() commands.

To allow a Controller to check whether the Agent has correct certificates, the Certificate.
{i}.GetFingerprint() command can be implemented.

8.9.7 Application of Modified Parameters
It is possible that various Parameters related to authentication and authorization may change
that would impact cached encrypted sessions and Role permissions for Controllers. Example of
such Parameters include Controller.{i}.AssignedRole, Controller.{i}.Credential,
ControllerTrust.Role. definition of a Role, and ControllerTrust.Credential.{i}.Role.

There is no expectation that an Agent will apply these changes to cached sessions. It is up to the
Agent to determine whether or not it will detect these changes and flush cached session infor-
mation. However, it is expected that a reboot will clear all cached session information.

October 2023 © The Broadband Forum. All rights reserved 201 of 275

The User Services Platform TR-369

Annex A: Bulk Data Collection
Note: This Annex has been re-written in the 1.2 version of the USP specification to include the previ-
ously-defined USP Event Notification aspects of Bulk Data Collection and the new MQTT aspects of
Bulk Data Collection, in addition to the already defined HTTP Bulk Data Collection mechanism.

This section discusses the Theory of Operation for USP specific mechanisms related to the col-
lection and transfer of bulk data using either HTTP, MQTT, or USP Event Notifications. This in-
cludes an explanation of how the Agent can be configured to enable the collection of bulk data
using HTTP, MQTT, or USP Event Notifications via the BulkData Objects, which are defined in
the Device:2 Data Model [3].

A.1 Introduction
The general concept behind the USP Bulk Data collection mechanism is that a USP Controller
can configure an Agent to consistently deliver a bulk data report at a specific interval. For large
populations, this is a more efficient mechanism when compared to the alternative of polling
each individual Agent for the data. There are four key aspects of configuring the bulk data col-
lection mechanism on an Agent:

• What data needs to be collected :: The set of Object/Parameter Path Names that dictate the
set of Parameters that will be included in each Bulk Data report. Anything included in this set
should be considered a filter that is applied against the Instantiated Data Model at the time of
report generation, which means that the generation of the report is not contingent upon the
Path Name being present in the Instantiated Data Model at the time of report generation.

• How often does the data need to be collected :: The interval and time reference that dic-
tates the frequency and cycle of report generation. For example, the interval could be set to 15
minutes while the time reference could be set to 42 minutes past 1 AM, which would mean
that the report is generated every 15 minutes at 42 past the hour, 57 past the hour, 12 past the
hour, and 27 past the hour.

• Where does the data need to be sent :: The destination of where the report needs to be de-
livered after it has been generated. This is specific to the Bulk Data collection mechanism be-
ing used: HTTP vs MQTT vs USP Event Notification.

• How does the data get sent :: The protocol used to send the data across the wire, the encod-
ing of the data, and the format of the data. From a Protocol perspective, the HTTP Bulk Data
collection mechanism utilizes either the HTTP or HTTPS protocols, the MQTT Bulk Data
Collection mechanism utilizes the MQTT protocol, and the USPEventNotif Bulk Data collec-
tion mechanism utilizes the existing USP communications channel related to the USP Con-
troller that owns the bulk data profile. From a data encoding perspective, both Bulk Data col-
lection mechanisms support the CSV and JSON options as described later. From a data format-
ting perspective, both Bulk Data collection mechanisms support the Object Hierarchy and
Name Value Pair report formats, also described later.

The Bulk Data collection mechanism is configured within an Agent by creating a Bulk Data
Profile. A Bulk Data Profile defines the configuration of the four key aspects (as mentioned

October 2023 © The Broadband Forum. All rights reserved 202 of 275

The User Services Platform TR-369

above) for a given Bulk Data Report. Meaning, the Bulk Data Profile defines the protocol to use
(HTTP vs MQTT vs USPEventNotif), the data encoding to use (CSV vs JSON), the report format
to use (Object Hierarchy vs Name Value Pair), the destination of the report, the frequency of the
report generation, and the set of Parameters to include in the report. Furthermore, the Bulk
Data Profile has a Controller Parameter that is a read-only Parameter and is set by the Agent
based on the Controller that created the Bulk Data Profile. The Controller Parameter represents
the owner of the Profile, which is used when determining permissions. When the Agent gener-
ates the Bulk Data Report it uses the permissions associated with the referenced Controller to
determine what is included in the Report (Objects and Parameters that fail the permissions
check are simply filtered out of the Report).

Note: When a Bulk Data Collection Profile is either created or updated the Agent performs valida-
tion checks for the associated Objects and Parameters against the Supported Data Model at the time
of the operation.

Note: When a Bulk Data Collection Report is generated the Agent performs permission checks for
the associated Objects and parameters against the Instantiated Data Model, filtering out any Object
instances or Parameters that are not present at that time.

A.2 HTTP Bulk Data Collection
The Bulk Data Collection mechanism that utilizes an out-of-band HTTP/HTTPS communica-
tions mechanism for delivering the Bulk Data Report.

A.2.1 Enabling HTTP/HTTPS Bulk Data Communication

HTTP/HTTPS communication between the Agent and Bulk Data Collector is enabled by either
configuring an existing BulkData.Profile Object Instance for the HTTP/HTTPS transport pro-
tocol or adding and configuring a new BulkData.Profile Object Instance using the Add
Message. For example:

.BulkData.Profile.1

.BulkData.Profile.1.Enable=true

.BulkData.Profile.1.Protocol = "HTTP"

.BulkData.Profile.1.ReportingInterval = 300

.BulkData.Profile.1.TimeReference = "0001-01-01T00:00:00Z"

.BulkData.Profile.1.HTTP.URL = "https://bdc.acme.com/somedirectory"

.BulkData.Profile.1.HTTP.Username = "username"

.BulkData.Profile.1.HTTP.Password = "password"

.BulkData.Profile.1.HTTP.Method = "POST"

.BulkData.Profile.1.HTTP.UseDateHeader = true

The configuration above defines a profile that transfers data from the Agent to the Bulk Data
Collector using secured HTTP. In addition the Agent will provide authentication credentials
(username, password) to the Bulk Data Collector, if requested by the Bulk Data Collector. Fi-
nally, the Agent establishes a communication session with the Bulk Data Collector every 300
seconds in order to transfer the data defined by the .BulkData.Report. Object Instance.

October 2023 © The Broadband Forum. All rights reserved 203 of 275

The User Services Platform TR-369

Once the communication session is established between the Agent and Bulk Data Collector the
data is transferred from the Agent using the POST HTTP method with a HTTP Date header and
no compression.

R-BULK.0 - In many scenarios Agents will utilize “chunked” transfer encoding. As such, the
Bulk Data Collector MUST support the HTTP transfer-coding value of “chunked”.

A.2.2 Use of the URI Query Parameters

The HTTP Bulk Data transfer mechanism allows Parameters to be used as HTTP URI query pa-
rameters. This is useful when Bulk Data Collector utilizes the specific parameters that the Agent
reports for processing (e.g., logging, locating directories) without the need for the Bulk Data
Collector to parse the data being transferred.

R-BULK.1 - The Agent MUST transmit the device’s Manufacturer OUI, Product Class and Serial
Number or the USP Endpoint ID as part of the URI query parameters. The data model Parame-
ters are encoded as:

.DeviceInfo.ManufacturerOUI -> oui

.DeviceInfo.ProductClass -> pc

.DeviceInfo.SerialNumber -> sn

.LocalAgent.EndpointID -> eid

As such, the values of the device’s OUI, Serial Number and Product Class are formatted in the
HTTP request URI as follows:

POST https://<bulk data collector url>?oui=00256D&pc=Z&sn=Y

If the USP Endpoint ID is used the HTTP request URI is formatted as:

POST https://<bulk data collector url>?eid=os::000256:asdfa99384

Note: If the USP Endpoint ID should be transmitted together with the device’s Manufacturer OUI,
Product Class and Serial Number (e.g. to distinguish multiple bulk data collection instances on the
same device), then the USP Endpoint ID has to be configured as additional URI parameter in
the .BulkData.Profile.{i}.HTTP.RequestURIParameter.{i}. table.

Configuring the URI query parameters for other Parameters requires that instances of
a .BulkData.Profile.{i}.HTTP.RequestURIParameter.{i}. Object Instance be created and
configured with the requested parameters. The additional parameters are appended to the re-
quired URI query parameters.

Using the example to add the device’s current local time to the required URI parameters, the
HTTP request URI would be as follows:

POST https://<bulk data collector url>?oui=00256D&pc=Z&sn=Y&ct=2015-11-01T11:12:13Z

By setting the following Parameters using the Add Message as follows:

.BulkData.Profile.1.HTTP.RequestURIParameter 1.Name ="ct"

.BulkData.Profile.1.HTTP.RequestURIParameter.1.Reference ="Device.Time.CurrentLocalTime"

A.2.3 Use of HTTP Status Codes

October 2023 © The Broadband Forum. All rights reserved 204 of 275

The User Services Platform TR-369

The Bulk Data Collector uses standard HTTP status codes, defined in the HTTP specification, to
inform the Agent whether a bulk data transfer was successful. The HTTP status code is set in
the response header by the Bulk Data Collector. For example, “200 OK” status code indicates an
upload was processed successfully, “202 Accepted” status code indicates that the request has
been accepted for processing, but the processing has not been completed, “401 Unauthorized”
status code indicates user authentication failed and a “500 Internal Server Error” status
code indicates there is an unexpected system error.

A.2.3.1 HTTP Retry Mechanism

R-BULK.2 - When the Agent receives an unsuccessful HTTP status code and the HTTP retry
behavior is enabled, the Agent MUST try to redeliver the data. The retry mechanism employed
for the transfer of bulk data using HTTP uses the same algorithm as is used for USP Notify
retries.

The retry interval range is controlled by two Parameters, the minimum wait interval and the in-
terval multiplier, each of which corresponds to a data model Parameter, and which are de-
scribed in the table below. The factory default values of these Parameters MUST be the default
values listed in the Default column. They MAY be changed by a Controller with the appropriate
permissions at any time.

Descriptive Name Symbol Default Data Model Parameter Name
Minimum wait interval m 5 seconds Device.BulkData.Profile.

{i}.HTTP.RetryMinimumWaitInterval

Interval multiplier k 2000 Device.BulkData.Profile.
{i}.HTTP.RetryIntervalMultiplier

Retry Count Default Wait Interval Range
(min-max seconds)

Actual Wait Interval Range
(min-max seconds)

#1 5-10 m - m.(k/1000)
#2 10-20 m.(k/1000) - m.(k/1000)2
#3 20-40 m.(k/1000)2 - m.(k/1000)3
#4 40-80 m.(k/1000)3 - m.(k/1000)4
#5 80-160 m.(k/1000)4 - m.(k/1000)5
#6 160-320 m.(k/1000)5 - m.(k/1000)6
#7 320-640 m.(k/1000)6 - m.(k/1000)7
#8 640-1280 m.(k/1000)7 - m.(k/1000)8
#9 1280-2560 m.(k/1000)8 - m.(k/1000)9

#10 and subsequent 2560-5120 m.(k/1000)9 - m.(k/1000)10

R-BULK.3 - Beginning with the tenth retry attempt, the Agent MUST choose from the fixed
maximum range. The Agent will continue to retry a failed bulk data transfer until it is success-
fully delivered or until the next reporting interval for the data transfer becomes effective.

October 2023 © The Broadband Forum. All rights reserved 205 of 275

The User Services Platform TR-369

R-BULK.4 - Once a bulk data transfer is successfully delivered, the Agent MUST reset the retry
count to zero for the next reporting interval.

R-BULK.5 - If a reboot of the Agent occurs, the Agent MUST reset the retry count to zero for
the next bulk data transfer.

A.2.3.2 Processing of Content for Failed Report Transmissions

When the content (report) cannot be successfully transmitted, including retries, to the data col-
lector, the NumberOfRetainedFailedReports Parameter of the BulkData.Profile Object In-
stance defines how the content should be disposed based on the following rules:

• When the value of the NumberOfRetainedFailedReports Parameter is greater than 0, then
the report for the current reporting interval is appended to the list of failed reports. How the
content is appended is dependent on the type of encoding (e.g., CSV, JSON) and is described
further in corresponding encoding section.

• If the value of the NumberOfRetainedFailedReports Parameter is -1, then the Agent will re-
tain as many failed reports as possible.

• If the value of the NumberOfRetainedFailedReports Parameter is 0, then failed reports are not
to be retained for transmission in the next reporting interval.

• If the Agent cannot retain the number of failed reports from previous reporting intervals
while transmitting the report of the current reporting interval, then the oldest failed reports
are deleted until the Agent is able to transmit the report from the current reporting interval.

• If the value BulkData.Profile Object Instance’s EncodingType Parameter is modified any
outstanding failed reports are deleted.

A.2.4 Use of TLS and TCP

The use of TLS to transport the HTTP Bulk Data is RECOMMENDED, although the protocol
MAY be used directly over a TCP connection instead. If TLS is not used, some aspects of secu-
rity are sacrificed. Specifically, TLS provides confidentiality and data integrity, and allows cer-
tificate-based authentication in lieu of shared secret-based authentication.

R-BULK.6 - Certain restrictions on the use of TLS and TCP are defined as follows:

• The Agent MUST support TLS version 1.2 or later (with backward compatibility to TLS 1.2).
• If the Collection Server URL has been specified as an HTTPS URL, the Agent MUST establish

secure connections to the Collection Server, and MUST start the TLS session negotiation with
TLS 1.2 or later.

Note: If the Collection Server does not support TLS 1.2 or higher with a cipher suite supported by
the Agent, it may not be possible for the Agent to establish a secure connection to the Collection
Server.

Note: TLS_RSA_WITH_AES_128_CBC_SHA is the only mandatory TLS 1.2 cipher suite.

• The Agent SHOULD use the [17] Server Name TLS extension to send the host portion of the
Collection Server URL as the server name during the TLS handshake.

October 2023 © The Broadband Forum. All rights reserved 206 of 275

The User Services Platform TR-369

• If TLS 1.2 (or a later version) is used, the Agent MUST authenticate the Collection Server us-
ing the certificate provided by the Collection Server. Authentication of the Collection Server
requires that the Agent MUST validate the certificate against a root certificate. To validate
against a root certificate, the Agent MUST contain one or more trusted root certificates that
are either pre-loaded in the Agent or provided to the Agent by a secure means outside the
scope of this specification. If as a result of an HTTP redirect, the Agent is attempting to ac-
cess a Collection Server at a URL different from its pre-configured Collection Server URL, the
Agent MUST validate the Collection Server certificate using the redirected Collection Server
URL rather than the pre-configured Collection Server URL.

• If the host portion of the Collection Server URL is a DNS name, this MUST be done according
to the principles of RFC 6125 [18], using the host portion of the Collection Server URL as the
reference identifier.

• If the host portion of the Collection Server URL is an IP address, this MUST be done by com-
paring the IP address against any presented identifiers that are IP addresses.

Note: the terms “reference identifier” and “presented identifier” are defined in RFC 6125 [18].

Note: wildcard certificates are permitted as described in RFC 6125 [18].

• An Agent capable of obtaining absolute time SHOULD wait until it has accurate absolute time
before contacting the Collection Server. If a Agent for any reason is unable to obtain absolute
time, it can contact the Collection Server without waiting for accurate absolute time. If a
Agent chooses to contact the Collection Server before it has accurate absolute time (or if it
does not support absolute time), it MUST ignore those components of the Collection Server
certificate that involve absolute time, e.g. not-valid-before and not-valid-after certificate re-
strictions.

• Support for Agent authentication using client-side certificates is NOT RECOMMENDED. In-
stead, the Collection Server SHOULD authenticate the Agent using HTTP basic or digest au-
thentication to establish the identity of a specific Agent.

A.2.5 Bulk Data Encoding Requirements

When utilizing the HTTP Bulk Data collection option, the encoding type is sent as a media type
within the report. For CSV the media type is text/csv as specified in RFC 4180 [32] and for
JSON the media type is application/json as specified in RFC 7159 [35]. For example, a CSV
encoded report using charset=UTF-8 would have the following Content-Type header:

Content-Type: text/csv; charset=UTF-8

R-BULK.7 - The “media-type” field and “charset” Parameters MUST be present in the Con-
tent-Type header.

In addition the report format that was used for encoding the report is included as an HTTP cus-
tom header with the following format:

BBF-Report-Format: <ReportFormat>

The <ReportFormat> field is represented as a token.

October 2023 © The Broadband Forum. All rights reserved 207 of 275

The User Services Platform TR-369

For example a CSV encoded report using a ReportFormat for ParameterPerRow would have the
following BBF-Report-Format header:

BBF-Report-Format: "ParameterPerRow"

R-BULK.8 - The BBF-Report-Format custom header MUST be present when transferring data
to the Bulk Data Collector from the Agent using HTTP/HTTPS.

A.3 MQTT Bulk Data Collection
The Bulk Data Collection mechanism that utilizes an out-of-band MQTT communications
mechanism for delivering the Bulk Data Report.

A.3.1 Enabling MQTT Bulk Data Communication

Bulk Data communications that utilizes MQTT for transferring the Bulk Data Report between
the Agent and a Bulk Data Collector, is enabled by either configuring an existing
BulkData.Profile Object Instance for the MQTT transport protocol or adding and configuring
a new BulkData.Profile Object Instance using the Add Message. For example:

.BulkData.Profile.1

.BulkData.Profile.1.Enable = true

.BulkData.Profile.1.Name = "MQTT Profile 1"

.BulkData.Profile.1.Protocol = "MQTT"

.BulkData.Profile.1.EncodingType = "JSON"

.BulkData.Profile.1.ReportingInterval = 300

.BulkData.Profile.1.TimeReference = "0001-01-01T00:00:00Z"

.BulkData.Profile.1.MQTT.Reference = "Device.MQTT.Client.1"

.BulkData.Profile.1.MQTT.PublishTopic = "/bulkdata"

.BulkData.Profile.1.MQTT.PublishQoS = 1

.BulkData.Profile.1.MQTT.PublishRetain = false

The configuration above defines a profile that transfers data from the Agent to a Bulk Data Col-
lector via the MQTT protocol. The Agent utilizes the referenced MQTT Client instance to deter-
mine the MQTT broker for this Bulk Data Collection Profile. The Agent sends the Bulk Data Re-
port to the reference MQTT Broker by issuing an MQTT PUBLISH message to the PublishTopic
every 300 seconds (ReportingInterval). The Bulk Data Collector would subscribe to the Publish-
Topic in order to receive the Bulk Data Reports.

A.3.2 Determining Successful Transmission

Delivering a Bulk Data Collection report using MQTT means that successful transmission of the
report is tied to the successful delivery of the MQTT PUBLISH message, which is determined
by the PublishQoS configured as part of the Bulk Data Collection Profile.

A.3.2.1 Retrying Failed Transmissions

Delivering a Bulk Data Collection report using MQTT means that any failed transmissions are
retried based on the referenced MQTT Client and the associated QoS value contained within
the MQTT PUBLISH message, which is determined by the PublishQoS parmater. Furthermore,
the CleanSession (MQTT 3.1 and MQTT 3.1.1) and CleanStart (MQTT 5.0) flags determine if un-
acknowledged PUBLISH messages are re-delivered on client reconnect. For MQTT 3.1 there is

October 2023 © The Broadband Forum. All rights reserved 208 of 275

The User Services Platform TR-369

also the MessageRetryTime defined in the referenced MQTT Client that determines how fre-
quently an unacknowledged PUBLISH message should be retried.

A.3.2.2 Processing of Content for Failed Report Transmissions

When the content (report) cannot be successfully transmitted, including retries, to the MQTT
broker, the NumberOfRetainedFailedReports Parameter of the BulkData.Profile Object In-
stance defines how the content should be disposed based on the following rules:

• When the value of the NumberOfRetainedFailedReports Parameter is greater than 0, then
the report for the current reporting interval is appended to the list of failed reports. How the
content is appended is dependent on the type of encoding (e.g., CSV, JSON) and is described
further in corresponding encoding section.

• If the value of the NumberOfRetainedFailedReports Parameter is -1, then the Agent will re-
tain as many failed reports as possible.

• If the value of the NumberOfRetainedFailedReports Parameter is 0, then failed reports are not
to be retained for transmission in the next reporting interval.

• If the Agent cannot retain the number of failed reports from previous reporting intervals
while transmitting the report of the current reporting interval, then the oldest failed reports
are deleted until the Agent is able to transmit the report from the current reporting interval.

• If the value BulkData.Profile Object Instance’s EncodingType Parameter is modified any
outstanding failed reports are deleted.

A.3.3 Bulk Data Encoding Requirements

When utilizing the MQTT Bulk Data collection option with a MQTT 5.0 Client connection, the
encoding type is sent as a media type within the MQTT PUBLISH message header and the Con-
tent Type property. For CSV the media type is text/csv as specified in RFC 4180 [32] and for
JSON the media type is application/json as specified in RFC 7159 [35]. For example, a CSV
encoded report using charset=UTF-8 would have the following Content Type property:

text/csv; charset=UTF-8

R-BULK.8a - The “media-type” field and “charset” parameters MUST be present in the Con-
tent Type property when using MQTT 5.0.

When utilizing the MQTT Bulk Data collection option with a MQTT 3.1 or MQTT 3.1.1 client
connection, the encoding type is not sent in the MQTT PUBLISH message; instead the receiving
Bulk Data Collector will need to know how the .BulkData.Profile Object Instance is config-
ured.

In addition the data layout is not included in the MQTT PUBLISH message; instead the receiv-
ing Bulk Data Collector will need to know how the .BulkData.Profile.
{i}.CSVEncoding.ReportFormat or .BulkData.Profile.{i}.JSONEncoding.ReportFormat Pa-
rameter is configured.

A.4 USPEventNotif Bulk Data Collection

October 2023 © The Broadband Forum. All rights reserved 209 of 275

The User Services Platform TR-369

The Bulk Data Collection mechanism that utilizes the existing USP communications channel for
delivering the Bulk Data Report via a Notify Message that contains a Push! Event.

A.4.1 Enabling USPEventNotif Bulk Data Communication

Bulk Data communications using a USP Event notification that utilizes the Notify Message be-
tween the Agent and a Controller, acting as a Bulk Data Collector, is enabled by either configur-
ing an existing BulkData.Profile Object Instance for the USPEventNotif transport protocol or
adding and configuring a new BulkData.Profile Object Instance using the Add Message. For
example:

.BulkData.Profile.1

.BulkData.Profile.1.Enable = true

.BulkData.Profile.1.Name = "USP Notif Profile 1"

.BulkData.Profile.1.Protocol = "USPEventNotif"

.BulkData.Profile.1.EncodingType = "JSON"

.BulkData.Profile.1.ReportingInterval = 300

.BulkData.Profile.1.TimeReference = "0001-01-01T00:00:00Z"

The configuration above defines a profile that transfers data from the Agent to a Controller that
is acting as the Bulk Data Collector. The Controller that receives an Event notification is dic-
tated by the Agent’s currently defined Subscriptions Notifications and Subscription Mechanism.
The Agent utilizes the existing communications session with the Controller acting as the Bulk
Data Collector every 300 seconds in order to transfer the data defined by
the .BulkData.Profile Object Instance.

The data is transferred from the Agent using the USP Notify Message and
a .BulkData.Profile.1.Push! Event notification.

A.4.2 Determining Successful Transmission

Delivering a Bulk Data Collection report using the USP Notify Message and
a .BulkData.Profile.1.Push! Event notification means that successful transmission of the re-
port is tied to the successful delivery of the notification itself Responses to Notifications and
Notification Retry.

A.4.2.1 Retrying Failed Transmissions

Delivering a Bulk Data Collection report using the USP Notify Message and
a .BulkData.Profile.1.Push! Event notification means that any failed transmissions are re-
tried based on the notification retry requirements R-NOT.1 through R-NOT.4 Responses to
Notifications and Notification Retry.

Furthermore, the NumberOfRetainedFailedReports Parameter of the BulkData.Profile Object
Instance does not pertain to the USPEventNotif Bulk Data Collection mechanism as each report
is wholly contained within a USP Notify Message. This means that the notification retry mecha-
nism will determine the life of each individual failed report, and that each reporting interval
will generate a new report that is delivered via a new USP Notify Message.

A.4.3 Bulk Data Encoding Requirements

October 2023 © The Broadband Forum. All rights reserved 210 of 275

The User Services Platform TR-369

When utilizing the USPEventNotif Bulk Data collection option, the encoding type is not sent in
the USP Event notification; instead the receiving Controller will need to know how
the .BulkData.Profile Object Instance is configured.

In addition the data layout is not included in the USP Event notification; instead the receiving
Controller will need to know how the .BulkData.Profile.{i}.CSVEncoding.ReportFormat
or .BulkData.Profile.{i}.JSONEncoding.ReportFormat Parameter is configured.

A.5 Using Wildcards to Reference Object Instances in the Report
When the Agent supports the use of the Wildcard value “*” in place of instance identifiers for
the Reference Parameter, then all Object Instances of the referenced Parameter are encoded. For
example to encode the “BroadPktSent” Parameter for all Object Instances of the MoCA Inter-
face Object the following will be configured:

 .BulkData.Profile.1.Parameter.1.Name = ""
 .BulkData.Profile.1.Parameter.1.Reference =
"Device.MoCA.Interface.*.Stats.BroadPktSent"

A.6 Using Alternative Names in the Report
Alternative names can be defined for the Parameter name in order to shorten the name of the
Parameter. For example instead of encoding the full Parameter name “Device.MoCA.Interface.
1.Stats.BroadPktSent” could be encoded with a shorter name “BroadPktSent”. This allows the
encoded data to be represented using the shorter name. This would be configured as:

.BulkData.Profile.1.Parameter.1.Name = "BroadPktSent"

.BulkData.Profile.1.Parameter.1.Reference = "Device.MoCA.Interface.1.Stats.BroadPktSent"

In the scenario where there are multiple instances of a Parameter (e.g.,
“Device.MoCA.Interface.1.Stats.BroadPktSent”, “Device.MoCA.Interface.2.
Stats.BroadPktSent”) in a Report, the content of the Name parameter SHOULD be unique
(e.g., BroadPktSent.1, BroadPktSent.2).

A.6.0.1 Using Object Instance Wildcards and Parameter Partial
Paths with Alternative Names

Wildcards for Object Instances can be used in conjunction with the use of alternative names by
reflecting Object hierarchy of the value of the Reference Parameter in the value of the Name Pa-
rameter.

R-BULK.9 - When the value of the Reference Parameter uses a wildcard for an instance identi-
fier, the value of the Name Parameter (as used in a report) MUST reflect the wild-carded in-
stance identifiers of the Parameters being reported on. Specifically, the value of the Name Para-
meter MUST be appended with a period (.) and then the instance identifier. If the value of the
Reference Parameter uses multiple wildcard then each wild-carded instance identifier MUST be
appended in order from left to right.

For example, for a device to report the Bytes Sent for the Associated Devices of the device’s Wi-
Fi Access Points the following would be configured:

October 2023 © The Broadband Forum. All rights reserved 211 of 275

The User Services Platform TR-369

.BulkData.Profile.1.Parameter.1.Name = "WiFi_AP_Assoc_BSent"

.BulkData.Profile.1.Parameter.1.Reference =
"Device.WiFi.AccessPoint.*.AssociatedDevice.*.Stats.BytesSent"

Using this configuration a device that has 2 Wi-Fi Access Points (with instance identifiers 1 and
3) each with 2 Associated Devices (with instance identifiers 10 and 11), would contain a Report
with following Parameter names:

WiFi_AP_Assoc_BSent.1.10
WiFi_AP_Assoc_BSent.1.11
WiFi_AP_Assoc_BSent.3.10
WiFi_AP_Assoc_BSent.3.11

Object or Object Instance Paths can also be used to report all Parameters of the associated Ob-
ject.

R-BULK.10 - When the value of the Reference Parameter is an Object Path, the value of the
Name Parameter (as used in a report) MUST reflect the remainder of the Parameter Path. Specif-
ically, the value of Name Parameter MUST be appended with a “.” and then the remainder of the
Parameter Path.

For example, for a device to report the statistics of a Wi-Fi associated device Object Instance the
following would be configured:

.BulkData.Profile.1.Parameter.1.Name = "WiFi_AP1_Assoc10"

.BulkData.Profile.1.Parameter.1.Reference = "Device.WiFi.AccessPoint.1.AssociatedDevice.
10.Stats."

Using the configuration the device’s report would contain the following Parameter names:

WiFi_AP1_Assoc10.BytesSent
WiFi_AP1_Assoc10.BytesReceived
WiFi_AP1_Assoc10.PacketsSent
WiFi_AP1_Assoc10.PacketsReceived
WiFi_AP1_Assoc10.ErrorsSent
WiFi_AP1_Assoc10.RetransCount
WiFi_AP1_Assoc10.FailedRetransCount
WiFi_AP1_Assoc10.RetryCount
WiFi_AP1_Assoc10.MultipleRetryCount

It is also possible for the value of the Reference Parameter to use both wildcards for instance
identifiers and be a partial Path Name. For example, for device to report the statistics for the de-
vice’s Wi-Fi associated device, the following would be configured:

.BulkData.Profile.1.Parameter.1.Name = "WiFi_AP_Assoc"

.BulkData.Profile.1.Parameter.1.Reference =
"Device.WiFi.AccessPoint.*.AssociatedDevice.*.Stats."

Using this configuration a device that has 1 Wi-Fi Access Point (with instance identifier 1) with
2 Associated Devices (with instance identifiers 10 and 11), would contain a Report with follow-
ing Parameter names:

WiFi_AP_Assoc.1.10.BytesSent
WiFi_AP_Assoc.1.10.BytesReceived
WiFi_AP_Assoc.1.10.PacketsSent
WiFi_AP_Assoc.1.10.PacketsReceived

October 2023 © The Broadband Forum. All rights reserved 212 of 275

The User Services Platform TR-369

WiFi_AP_Assoc.1.10.ErrorsSent
WiFi_AP_Assoc.1.10.RetransCount
WiFi_AP_Assoc.1.10.FailedRetransCount
WiFi_AP_Assoc.1.10.RetryCount
WiFi_AP_Assoc.1.10.MultipleRetryCount
WiFi_AP_Assoc.1.11.BytesSent
WiFi_AP_Assoc.1.11.BytesReceived
WiFi_AP_Assoc.1.11.PacketsSent
WiFi_AP_Assoc.1.11.PacketsReceived
WiFi_AP_Assoc.1.11.ErrorsSent
WiFi_AP_Assoc.1.11.RetransCount
WiFi_AP_Assoc.1.11.FailedRetransCount
WiFi_AP_Assoc.1.11.RetryCount
WiFi_AP_Assoc.1.11.MultipleRetryCount

R-BULK.10a - When the value of the Exclude Parameter is True, the Parameter Path of the
Reference Parameter MUST be excluded from the Report.

For example, for a device to report all the objects and parameters of a Wi-Fi Data Elements de-
vice and all sub objects and their parameters EXCEPT the MultiAPDevice object, the following
would be configured:

.BulkData.Profile.1.Parameter.1.Name = "DE Device"

.BulkData.Profile.1.Parameter.1.Reference = "Device.WiFi.DataElements.Network.Device."

.BulkData.Profile.1.Parameter.2.Name = "Remove MultiapDevice"

.BulkData.Profile.1.Parameter.2.Reference =
"Device.WiFi.DataElements.Network.Device.*.MultiAPDevice."
.BulkData.Profile.1.Parameter.2.Exclude = True

A.7 Encoding of Bulk Data
A.7.1 Encoding of CSV Bulk Data

R-BULK.11 - CSV Bulk Data SHOULD be encoded as per RFC 4180 [32], MUST contain a
header line (column headers), and the media type MUST indicate the presence of the header
line.

For example: Content-Type: text/csv; charset=UTF-8; header=present

In addition, the characters used to separate fields and rows as well as identify the escape char-
acter can be configured from the characters used in RFC 4180 [32].

Using the HTTP example above, the following configures the Agent to transfer data to the Bulk
Data Collector using CSV encoding, separating the fields with a comma and the rows with a
new line character, by setting the following Parameters:

.BulkData.Profile.1.EncodingType = "CSV"

.BulkData.Profile.1 CSVEncoding.FieldSeparator = ","

.BulkData.Profile.1.CSVEncoding.RowSeparator="
"

.BulkData.Profile.1.CSVEncoding.EscapeCharacter="""

A.7.1.1 Defining the Report Layout of the Encoded Bulk Data

October 2023 © The Broadband Forum. All rights reserved 213 of 275

The User Services Platform TR-369

The layout of the data in the reports associated with the profiles allows Parameters to be for-
matted either as part of a column (ParameterPerColumn) or as a distinct row (ParameterPerRow)
as defined below. In addition, the report layout allows rows of data to be inserted with a time-
stamp stating when the data is collected.

Using the HTTP example above, the following configures the Agent to format the data using a
Parameter as a row and inserting a timestamp as the first column entry in each row using the
“Unix-Epoch” time. The information is configured by setting the following Parameters:

.BulkData.Profile.1.CSVEncoding.ReportFormat ="ParameterPerRow"

.BulkData.Profile.1.CSVEncoding.RowTimestamp ="Unix-Epoch"

R-BULK.12 - The report format of “ParameterPerRow” MUST format each Parameter using the
ParameterName, ParameterValue and ParameterType in that order.

R-BULK.13 - The ParameterType MUST be the Parameter’s base data type as described in
TR-106 [2].

A.7.1.2 Layout of Content for Failed Report Transmissions

Note: This is only relevant for the HTTP variant of Bulk Data Collection.

When the value of the NumberOfRetainedFailedReports Parameter of the BulkData.Profile
Object Instance is -1 or greater than 0, then the report of the current reporting interval is ap-
pended to the failed reports. For CSV Encoded data the content of new reporting interval is
added onto the existing content without any header data.

A.7.1.3 CSV Encoded Report Examples

A.7.1.3.1 CSV Encoded Reporting Using ParameterPerRow Report
Format

Using the configuration examples provided in the previous sections the configuration for a CSV
encoded HTTP report using the ParameterPerRow report format:

.BulkData.Profile.1

.BulkData.Profile.1.Enable=true

.BulkData.Profile.1.Protocol = "HTTP"

.BulkData.Profile.1.ReportingInterval = 300

.BulkData.Profile.1.TimeReference = "0001-01-01T00:00:00Z"

.BulkData.Profile.1.HTTP.URL = "https://bdc.acme.com/somedirectory"

.BulkData.Profile.1.HTTP.Username = "username"

.BulkData.Profile.1.HTTP.Password = "password"

.BulkData.Profile.1.HTTP.Compression = "Disabled"

.BulkData.Profile.1.HTTP.Method = "POST"

.BulkData.Profile.1.HTTP.UseDateHeader = true

.BulkData.Profile.1.EncodingType = "CSV"

.BulkData.Profile.1 CSVEncoding.FieldSeparator = ","

.BulkData.Profile.1.CSVEncoding.RowSeparator="
"

.BulkData.Profile.1.CSVEncoding.EscapeCharacter="""

.BulkData.Profile.1.CSVEncoding.ReportFormat ="ParameterPerRow"

.BulkData.Profile.1.CSVEncoding.ReportTimestamp ="Unix-Epoch"

.BulkData.Profile.1.Parameter.1.Name = ""

.BulkData.Profile.1.Parameter.1.Reference = "Device.MoCA.Interface.1.Stats.BroadPktSent"

October 2023 © The Broadband Forum. All rights reserved 214 of 275

The User Services Platform TR-369

.BulkData.Profile.1.Parameter.2.Name = ""

.BulkData.Profile.1.Parameter.2.Reference = "Device.MoCA.Interface.1.Stats.BytesReceived"

.BulkData.Profile.1.Parameter.3.Name = ""

.BulkData.Profile.1.Parameter.3.Reference = "Device.MoCA.Interface.1.Stats.BytesSent"

.BulkData.Profile.1.Parameter.4.Name = ""

.BulkData.Profile.1.Parameter.4.Reference = "Device.MoCA.Interface.1.
Stats.MultiPktReceived"

The resulting CSV encoded data would look like:

ReportTimestamp,ParameterName,ParameterValue,ParameterType
1364529149,Device.MoCA.Interface.1.Stats.BroadPktSent,25248,unsignedLong
1364529149,Device.MoCA.Interface.1.Stats.BytesReceived,200543250,unsignedLong
1364529149, Device.MoCA.Interface.1.Stats.Stats.BytesSent,7682161,unsignedLong
1364529149,Device.MoCA.Interface.1.Stats.MultiPktReceived,890682272,unsignedLong

A.7.1.3.2 CSV Encoded Reporting Using ParameterPerColumn
Report Format

Using the configuration examples provided in the previous sections the configuration for a CSV
encoded HTTP report using the ParameterPerColumn report format:

.BulkData.Profile.1

.BulkData.Profile.1.Enable=true

.BulkData.Profile.1.Protocol = "HTTP"

.BulkData.Profile.1.ReportingInterval = 300

.BulkData.Profile.1.TimeReference = "0001-01-01T00:00:00Z"

.BulkData.Profile.1.HTTP.URL = "https://bdc.acme.com/somedirectory"

.BulkData.Profile.1.HTTP.Username = "username"

.BulkData.Profile.1.HTTP.Password = "password"

.BulkData.Profile.1.HTTP.Compression = "Disabled"

.BulkData.Profile.1.HTTP.Method = "POST"

.BulkData.Profile.1.HTTP.UseDateHeader = true

.BulkData.Profile.1.EncodingType = "CSV"

.BulkData.Profile.1 CSVEncoding.FieldSeparator = ","

.BulkData.Profile.1.CSVEncoding.RowSeparator="
"

.BulkData.Profile.1.CSVEncoding.EscapeCharacter="""

.BulkData.Profile.1.CSVEncoding.ReportFormat ="ParameterPerColumn"

.BulkData.Profile.1.CSVEncoding.ReportTimestamp ="Unix-Epoch"

.BulkData.Profile.1.Parameter.1.Name = "BroadPktSent"

.BulkData.Profile.1.Parameter.1.Reference = "Device.MoCA.Interface.1.Stats.BroadPktSent"

.BulkData.Profile.1.Parameter.2.Name = "BytesReceived"

.BulkData.Profile.1.Parameter.2.Reference = "Device.MoCA.Interface.1.Stats.BytesReceived"

.BulkData.Profile.1.Parameter.3.Name = "BytesSent"

.BulkData.Profile.1.Parameter.3.Reference = "Device.MoCA.Interface.1.Stats.BytesSent"

.BulkData.Profile.1.Parameter.4.Name = "MultiPktReceived"

.BulkData.Profile.1.Parameter.4.Reference = "Device.MoCA.Interface.1.
Stats.MultiPktReceived"

The resulting CSV encoded data with transmission of the last 3 reports failed to complete would
look like:

ReportTimestamp,BroadPktSent,BytesReceived,BytesSent,MultiPktReceived
1364529149,25248,200543250,7682161,890682272
1464639150,25249,200553250,7683161,900683272

October 2023 © The Broadband Forum. All rights reserved 215 of 275

The User Services Platform TR-369

1564749151,25255,200559350,7684133,910682272
1664859152,25252,200653267,7685167,9705982277

A.7.2 Encoding of JSON Bulk Data

Using the HTTP example above, the Set Message is used to configure the Agent to transfer data
to the Bulk Data Collector using JSON encoding as follows:

.BulkData.Profile.1.EncodingType = "JSON"

A.7.2.1 Defining the Report Layout of the Encoded Bulk Data

Reports that are encoded with JSON Bulk Data are able to utilize different report format(s) de-
fined by the JSONEncoding object’s ReportFormat Parameter as defined below.

In addition, a “CollectionTime” JSON object can be inserted into the report instance that de-
fines when the data for the report was collected.

The following configures the Agent to encode the data using a Parameter as JSON Object
named “CollectionTime” using the “Unix-Epoch” time format:

.BulkData.Profile.1.JSONEncoding.ReportTimestamp ="Unix-Epoch"

Note: The encoding format of “CollectionTime” is defined as an JSON Object parameter en-
coded as: "CollectionTime":1364529149

Reports are defined as an Array of Report instances encoded as:

"Report":[{...},{...}]

Note: Multiple instances of Report instances may exist when previous reports have failed to be
transmitted.

A.7.2.2 Layout of Content for Failed Report Transmissions

Note: This is only relevant for the HTTP variant of Bulk Data Collection.

When the value of the NumberOfRetainedFailedReports Parameter of the BulkData.Profile
Object Instance is -1 or greater than 0, then the report of the current reporting interval is ap-
pended to the failed reports. For JSON Encoded data the report for the current reporting inter-
val is added onto the existing appended as a new “Data” object array instance as shown below:

"Report": [
{Report from a failed reporting interval},
{Report from the current reporting interval}
]

A.7.2.3 Using the ObjectHierarchy Report Format

When a BulkData profile utilizes the JSON encoding type and has a
JSONEncoding.ReportFormat Parameter value of “ObjectHierarchy”, then the JSON objects are
encoded such that each Object in the Object hierarchy of the data model is encoded as a corre-
sponding hierarchy of JSON Objects with the parameters (i.e., parameterName, parameterValue)
of the object specified as name/value pairs of the JSON Object.

For example the translation for the leaf Object “Device.MoCA.Interface.*.Stats.” would be:

October 2023 © The Broadband Forum. All rights reserved 216 of 275

The User Services Platform TR-369

 {
 "Report": [
 {
 "Device": {
 "MoCA": {
 "Interface": {
 "1": {
 "Stats": {
 "BroadPktSent": 25248,
 "BytesReceived": 200543250,
 "BytesSent": 25248,
 "MultiPktReceived": 200543250
 }
 },
 "2": {
 "Stats": {
 "BroadPktSent": 93247,
 "BytesReceived": 900543250,
 "BytesSent": 93247,
 "MultiPktReceived": 900543250
 }
 }
 }
 }
 }
 }
]
 }

Note: The translated JSON Object name does not contain the trailing period “.” of the leaf Object.

A.7.2.4 Using the NameValuePair Report Format

When a BulkData profile utilizes the JSON encoding type and has a
JSONEncoding.ReportFormat Parameter value of “NameValuePair”, then the JSON objects are
encoded such that each Parameter of the data model is encoded as an array instance with the
parameterName representing JSON name token and parameterValue as the JSON value token.

For example the translation for the leaf Object “Device.MoCA.Interface.*.Stats.” would be:

{
 "Report": [
 {
 "Device.MoCA.Interface.1.Stats.BroadPktSent": 25248,
 "Device.MoCA.Interface.1.Stats.BytesReceived": 200543250,
 "Device.MoCA.Interface.1.Stats.BytesSent": 25248,
 "Device.MoCA.Interface.1.Stats.MultiPktReceived": 200543250,
 "Device.MoCA.Interface.2.Stats.BroadPktSent": 93247,
 "Device.MoCA.Interface.2.Stats.BytesReceived": 900543250,
 "Device.MoCA.Interface.2.Stats.BytesSent": 93247,
 "Device.MoCA.Interface.2.Stats.MultiPktReceived": 900543250
 }
]
}

Note: The translated JSON Object name does not contain the trailing period “.” of the leaf Object.

October 2023 © The Broadband Forum. All rights reserved 217 of 275

The User Services Platform TR-369

A.7.2.5 Translating Data Types

JSON has a number of basic data types that are translated from the base data types defined in
TR-106 [2]. The encoding of JSON Data Types MUST adhere to RFC 7159 [35].

TR-106 named data types are translated into the underlying base TR-106 data types. Lists based
on TR-106 base data types utilize the JSON String data type.

TR-106 Data Type JSON Data Type
base64 String: base64 representation of the binary data.

boolean Boolean
dateTime String represented as an ISO-8601 timestamp.

hexBinary String: hex representation of the binary data.
int, long, unsignedInt, unsignedLong Number

string String

A.7.2.6 JSON Encoded Report Example

Using the configuration examples provided in the previous sections the configuration for a
JSON encoded HTTP report:

.BulkData.Profile.1

.BulkData.Profile.1.Enable=true

.BulkData.Profile.1.Protocol = "HTTP"

.BulkData.Profile.1.ReportingInterval = 300

.BulkData.Profile.1.TimeReference = "0001-01-01T00:00:00Z"

.BulkData.Profile.1.HTTP.URL = "https://bdc.acme.com/somedirectory"

.BulkData.Profile.1.HTTP.Username = "username"

.BulkData.Profile.1.HTTP.Password = "password"

.BulkData.Profile.1.HTTP.Compression = "Disabled"

.BulkData.Profile.1.HTTP.Method = "POST"

.BulkData.Profile.1.HTTP.UseDateHeader = true

.BulkData.Profile.1.EncodingType = "JSON"

.BulkData.Profile.1.JSONEncoding.ReportFormat ="ObjectHierarchy"

.BulkData.Profile.1.JSONEncoding.ReportTimestamp ="Unix-Epoch"

.BulkData.Profile.1.Parameter.1.Reference = "Device.MoCA.Interface.*.Stats."

The resulting JSON encoded data would look like:

{
 "Report": [
 {
 "CollectionTime": 1364529149,
 "Device": {
 "MoCA": {
 "Interface": {
 "1": {
 "Stats": {
 "BroadPktSent": 25248,
 "BytesReceived": 200543250,
 "BytesSent": 25248,
 "MultiPktReceived": 200543250

October 2023 © The Broadband Forum. All rights reserved 218 of 275

The User Services Platform TR-369

 }
 },
 "2": {
 "Stats": {
 "BroadPktSent": 93247,
 "BytesReceived": 900543250,
 "BytesSent": 93247,
 "MultiPktReceived": 900543250
 }
 }
 }
 }
 }
 }
]
}

If the value of the .BulkData.Profile.1.JSONEncoding.ReportFormat Parameter was
“NameValuePair”, the results of the configuration would be:

{
 "Report": [
 {
 "CollectionTime": 1364529149,
 "Device.MoCA.Interface.1.Stats.BroadPktSent": 25248,
 "Device.MoCA.Interface.1.Stats.BytesReceived": 200543250,
 "Device.MoCA.Interface.1.Stats.BytesSent": 25248,
 "Device.MoCA.Interface.1.Stats.MultiPktReceived": 200543250,
 "Device.MoCA.Interface.2.Stats.BroadPktSent": 93247,
 "Device.MoCA.Interface.2.Stats.BytesReceived": 900543250,
 "Device.MoCA.Interface.2.Stats.BytesSent": 93247,
 "Device.MoCA.Interface.2.Stats.MultiPktReceived": 900543250
 }
]
}

October 2023 © The Broadband Forum. All rights reserved 219 of 275

The User Services Platform TR-369

Appendix I: Software Module Management
This section discusses the Theory of Operation for Software Module Management using USP
and the Software Module Object defined in the Root data model.

As the home networking market matures, devices in the home are becoming more sophisticated
and more complex. One trend in enhanced device functionality is the move towards more stan-
dardized platforms and execution environments (such as Java, Linux, OSGi, Docker, etc.). De-
vices implementing these more robust platforms are often capable of downloading new applica-
tions dynamically, perhaps even from third-party software providers. These new applications
might enhance the existing capabilities of the device or enable the offering of new services.

This model differs from previous device software architectures that assumed one monolithic
firmware that was downloaded and applied to the device in one action.

That sophistication is a double-edged sword for developers, application providers, and service
providers. On one hand, these devices are able to offer new services to customers and therefore
increase the revenue per customer, help companies differentiate, and reduce churn with “sticky”
applications that maintain interest. On the other hand, the increased complexity creates more
opportunities for problems, especially as the users of these home-networking services cease to
be early adopters and move into the mainstream. It is important that the increased revenue op-
portunity is not offset with growing activation and support costs.

In order to address the need of providing more compelling dynamic applications on the device
while ensuring a smooth “plug and play” user experience, it is necessary for manufacturers, ap-
plication providers, and service providers to make use of USP to remotely manage the life cycle
of these applications, including install, activation, configuration, upgrade, and removal. Doing
so ensures a positive user experience, improves service time-to-market, and reduces operational
costs related with provisioning, support, and maintenance.

I.1 Lifecycle Management
There are a number of possible actions in managing the lifecycle of these dynamic applications.
One might want to install a new application on the device for the user. One might want to up-
date existing applications when new versions or patches are available. One might want to start
and/or stop these applications as well. Finally, it may be necessary to uninstall applications that
are no longer needed (or perhaps paid for) by the user.

The specifics of how applications run in different environments vary from platform to platform.
In order to avoid lifecycle management tailored to each specific operating environment, USP-
based software management defines abstract state models and abstract software module con-
cepts as described in the following sections. These concepts are not tied to any particular plat-
form and enable USP to manage dynamic software on a wide range of devices in a wide range
of environments.

I.2 Software Modules

October 2023 © The Broadband Forum. All rights reserved 220 of 275

The User Services Platform TR-369

A Software Module is any software entity that will be installed on a device. This includes mod-
ules that can be installed/uninstalled and those that can be started and stopped. All software on
the device is considered a software module, with the exception of the primary firmware, which
plays a different enough role that it is considered a separate entity.

A software module exists on an Execution Environment (EE), which is a software platform that
supports the dynamic loading and unloading of modules. It might also enable the dynamic shar-
ing of resources among entities, but this differs across various execution environments. Typical
examples include Linux, Docker, OSGi, .NET, Android, and Java ME. It is also likely that these
environments could be “layered,” i.e., that there could be one primary environment such as
Linux on which one or more OSGi frameworks are stacked. This is an implementation specific
decision, however, and USP-based module management does not attempt to enable manage-
ment of this layering beyond exposing which EE a given environment is layered on top of (if
any). USP-based Software Module Management also does not attempt to address the manage-
ment of the primary firmware image, which is expected to be managed via the device’s
Firmware Image Objects defined in the Root data model.

Software modules come in two types: Deployment Units (DUs) and Execution Units (EUs). A
DU is an entity that can be deployed on the EE. It can consist of resources such as functional
EUs, configuration files, or other resources. Fundamentally it is an entity that can be Installed,
Updated, or Uninstalled. Each DU can contain zero or more EUs but the EUs contained within
that DU cannot span across EEs. An EU is an entity deployed by a DU, such as services, scripts,
software components, or libraries. The EU initiates processes to perform tasks or provide ser-
vices. Fundamentally it is an entity that can be Started or Stopped. EUs also expose configura-
tion for the services implemented, either via standard Software Module Management related
data model Objects and Parameters or via EU specific Objects and Parameters.

It is possible that Software Modules can have dependencies on each other. For example a DU
could contain an EU that another DU depends on for functioning. If all the resources on which a
DU depends are present and available on an EE, it is said to be Resolved. Otherwise the EUs as-
sociated with that DU might not be able to function as designed. It is outside the scope of Soft-
ware Module Management to expose these dependencies outside of indicating whether a partic-
ular DU is RESOLVED or not.

I.2.1 Deployment Units

Below is the state machine diagram1 for the lifecycle of DUs.

1This state machine diagram refers to the successful transitions caused by the USP commands that change the
DU state and does not model the error cases.

October 2023 © The Broadband Forum. All rights reserved 221 of 275

The User Services Platform TR-369

Figure 26: Deployment Unit State Diagram

This state machine shows 5 individual states (3 of which are transitory) and 3 explicitly trig-
gered state transitions.

The explicit transitions among the non-transitory states are triggered by the USP commands:
InstallDU(), Update() and Uninstall() or triggered via means other than the USP commands
(e.g. user-triggered or device-triggered).

The explicit transitions include:

October 2023 © The Broadband Forum. All rights reserved 222 of 275

The User Services Platform TR-369

1 - Install, which initiates the process of Installing a DU. The device might need to transfer a file
from the location indicated by a URL in the method call. Once the resources are available on the
device, the device begins the installation process:

• In the Installing state, the DU is in the process of being Installed and will transition to that
state unless prevented by a fault. Note that the Controller has the option to choose which EE
to install a particular DU to, although it can also leave that choice up to the device. If the
Controller does specify the EE, it is up to the Controller to specify one that is compatible with
the DU it is attempting to Install (e.g., an OSGi framework for an OSGi bundle).

• In the Installed state, the DU has been successfully downloaded and installed on the relevant
EE. At this point it might or might not be Resolved. If it is Resolved, the associated EUs can be
started; otherwise an attempt to start the associated EUs will result in a failure. How depen-
dencies are resolved is implementation and EE dependent.

R-SMM.0 - An installed DU MUST persist across reboots. The DU persists until it is Unin-
stalled.

2 - Update, which initiates a process to update a previously existing DU. As with Install, the de-
vice might need to transfer a file from the location indicated by a URL in the respective com-
mand. If no URL is provided in the command, the device uses the last URL stored in the
DeploymentUnit table (including any related authentication credentials) used from either Install
or a previous Update. Once the resources are available on the device, the device begins the up-
dating process:

• In the Updating state, the DU is in the process of being Updated and will transition to the In-
stalled state. As with initial installation, the DU might or might not have dependencies re-
solved at this time.

• During the Updating state, the associated EUs that had been in the Active state transition to
Idle during the duration of the Update. They are automatically restarted once the Update
process is complete.

3 - Uninstall, which initiates the process of uninstalling the DU and removing the resources
from the device. It is possible that a DU to be Uninstalled could have been providing shared de-
pendencies to another DU; it is possible therefore that the state of other DUs and/or EUs could
be affected by the DU being Uninstalled.

• In the Uninstalling state, the DU is in the process of being Uninstalled and will transition to
that state unless prevented by a fault.

• In the Uninstalled state, the DU is no longer available as a resource on the device. Garbage
clean up of the actual resources are EE and implementation dependent. In many cases, the re-
source(s) will be removed automatically at the time of un-installation. The removal of any as-
sociated EUs is part of DU clean up.

R-SMM.1 - The device MUST complete the requested operation within 24 hours of responding
to the InstallDU(), Update() or Uninstall() command. If the device has not been able to
complete the operation request within that 24 hour time window, it MUST consider the opera-
tion in error and send the appropriate Error Message to the operation in the DUStateChange!

October 2023 © The Broadband Forum. All rights reserved 223 of 275

The User Services Platform TR-369

event. If a DU state change fails, the device MUST NOT attempt to retry the state change on its
own initiative, but instead MUST report the failure of the command in the DUStateChange!
event.

The inventory of available DUs along with their current state can be found in the
SoftwareModules service element found in the Root data model, i.e., the
SoftwareModules.DeploymentUnit.{i}. Object. This Object contains a list of all the DUs cur-
rently on the device, along with pertinent information such as DU identifiers, current state,
whether the DU is Resolved, information about the DU itself such as vendor and version, the
list of associated EUs, and the EEs on which the particular DU is installed.

DUs have a number of identifiers, each contributed by a different actor in the ecosystem:

• A Universally Unique Identifier (UUID) either assigned by the Controller or generated by the
device at the time of Installation. This identifier gives the management server a means to
uniquely identify a particular DU across the population of devices on which it is installed. A
DU will, therefore, have the same UUID on different devices, but there can be no more than
one DU with the same UUID and version installed to an EE on a particular device. See UUID
Generation below for more information.

• A Deployment Unit Identifier (DUID) assigned by the EE on which it is deployed; this identi-
fier is specific to the particular EE, and different EEs might have different logic for the assign-
ing of this value. A Name assigned by the author of the DU.

The creation of a particular DU instance in the data model occurs during the Installation
process. It is at this time that the DUID is assigned by the EE. Upon Uninstall, the data model
instance will be removed from the DU table once the resource itself has been removed from the
device. Since garbage clean up is EE and implementation dependent, it is therefore possible that
a particular DU might never appear in the data model in the Uninstalled state but rather disap-
pear at the time of the state transition. It is also possible that an event, such as a reboot, could
be necessary before the associated resources are removed.

I.2.1.1 UUID Generation

An important aspect of the UUID is that it might be generated by either the Controller and pro-
vided to the device as part of the Install command, or generated by the device either if the Con-
troller does not provide a UUID in the Install command or if the DU is Installed outside USP-
based management, such as at the factory or via a LAN-side mechanism (e.g. UPnP DM). Be-
cause the UUID is meant to uniquely identify a DU across a population of devices, it is impor-
tant that the UUID be the same whether generated by the Controller or the device. In order to
ensure this, the UUID is generated (whether by Controller or device) according to the rules de-
fined by RFC 4122 [31] Version 5 (Name-Based) and the Device:2 Data Model [3]. The following
are some possible scenarios:

• The DU is Installed via USP with a Controller generated UUID and is subsequently Updated/
Uninstalled via USP. All post-Install management actions require the UUID to address the DU,
which is retained across version changes.

October 2023 © The Broadband Forum. All rights reserved 224 of 275

The User Services Platform TR-369

• The DU is factory Installed with a device generated UUID and is subsequently Updated/Unin-
stalled via USP. In this case the Controller can either choose to generate this UUID if it has
access to the information necessary to create it or to learn the UUID by interrogating the data
model.

• The DU is Installed via USP with a Controller generated UUID and is subsequently Updated/
Uninstalled via a LAN-side mechanism. In this scenario it is possible that the LAN-side mech-
anism is unaware of the UUID and uses its own protocol-specific mechanism to identify and
address the DU. The UUID, however, is still retained across version changes. If
DUStateChange! events are subscribed to by the Controller for the device, the device also
sends that event (containing the UUID) to the subscribed Controllers once the LAN-side trig-
gered state change has completed.

• The DU is Installed via USP but the Controller provides no UUID in the InstallDU() com-
mand. In this case the device generates the UUID, which must be used by the Controller in
any future USP-based Updates or Uninstalls. Depending on its implementation, the Controller
might choose to generate the UUID at the time of the future operations, learn the value of the
UUID from the DUStateChange! event for the InstallDU(), Update() or Uninstall() com-
mand, or learn it by interrogating the data model.

The DU is Installed via a LAN-side mechanism and is subsequently Updated/Uninstalled via
USP. Since it is likely that the LAN-side mechanism does not provide a Version 5 Name-Based
UUID in its protocol-specific Install operation, it is expected that the device generates the UUID
in this case when it creates the DU instance in the data model. Depending on its implementa-
tion, the Controller might choose to generate the UUID for later operations if it has access to
the information necessary to create it, learn the UUID from the DUStateChange! event, if sub-
scribed, or learn it by interrogating the instantiated data model.

I.2.2 Execution Units

Below is the state machine diagram2 for the lifecycle of EUs.

2This state machine diagram refers to the successful transitions caused by the SetRequestedState() or the
Restart() command within the ExecutionUnit table and does not model the error cases.

October 2023 © The Broadband Forum. All rights reserved 225 of 275

The User Services Platform TR-369

Figure 27: Execution Unit State Diagram

This state machine shows 5 states (3 of them transitory) and four explicitly triggered state tran-
sitions.

The state transitions between the non-transitory states are triggered by executing the
SoftwareModules.ExecutionUnit.{i}.SetRequestedState() or the
SoftwareModules.ExecutionUnit.{i}.Restart() command. The explicit transitions are as fol-
lows:

• In order to Start an EU, the Controller sends a SetRequestedState() command with the
RequestedState Parameter set to Active. The EU enters the Starting state, during which it
takes any necessary steps to move to the Active state, and it will transition to that state un-
less prevented by a fault. Note that an EU can only be successfully started if the DU with
which it is associated has all dependencies Resolved. If this is not the case, then the EU’s sta-
tus remains as Idle, and the ExecutionFaultCode and ExecutionFaultMessage Parameters
are updated appropriately.

• In order to Stop an EU, the Controller sends a SetRequestedState() command with the
RequestedState Parameter set to Idle. The EU enters the Stopping state, during which it takes
any necessary steps to move to the Idle state, and then transitions to that state.

• In order to Restart an EU, the Controller sends a Restart() command. The EU enters the
Restarting state, during which it stops execution and then re-starts before transitioning back
to the Active state. The command may be rejected with error code 7230 (Invalid Execution
Environment State) if the EU is currently in a state of Stopping.

• It is also possible that the EU could transition to the Active, Restarting, or Idle state without
being explicitly instructed to do so by a Controller (e.g., if the EU is allowed to AutoStart, in
combination with the run level mechanism, or if an AutoRestart mechanism is enabled, or if

October 2023 © The Broadband Forum. All rights reserved 226 of 275

The User Services Platform TR-369

operation of the EU is disrupted because of a later dependency error). A Controller can be no-
tified of these autonomous state changes by creating a Subscription.{i}. Object Instance
for a ValueChange notification type that references the SoftwareModules.ExecutionUnit.
{i}.Status Parameter.

The inventory of available EUs along with their current state can be found in the
SoftwareModules service element found in the Root data model; i.e., the
SoftwareModules.ExecutionUnit.{i}. Object. This Object contains a list of all the EUs cur-
rently on the device along with accompanying status and any current errors as well as resource
utilization related to the EU, including memory and disk space in use.

EUs have a number of identifiers, each contributed by a different actor in the ecosystem:

• An Execution Unit Identifier (EUID) assigned by the EE on which it is deployed; this identifier
is specific to the particular EE, and different EEs might have different logic for assigning this
value. There can be only one EU with a particular EUID.

• A Name provided by the developer and specific to the associated DU.
• A Label assigned by the EE; this is a locally defined name for the EU.

The creation of a particular EU instance in the data model occurs during the Installation process
of the associated DU. It is at this time that the EUID is assigned by the EE as well. The configu-
ration exposed by a particular EU is available from the time the EU is created in the data model,
whether or not the EU is Active. Upon Uninstall of the associated DU, it is expected that the EU
would transition to the Idle State, and the data model instance would be removed from the EU
table once the associated resources had been removed from the device. Garbage clean up, how-
ever, is EE and implementation dependent.

Although the majority of EUs represent resources such as scripts that can be started or stopped,
there are some inert resources, such as libraries, which are represented as EUs. In this case,
these EUs behave with respect to the management interface as a “regular” EU. In other words,
they respond successfully to Stop and Start commands, even though they have no operational
meaning and update the SoftwareModules.ExecutionUnit.{i}.Status Parameter accordingly.
In most cases the Status would not be expected to transition to another state on its own, except
in cases where its associated DU is Updated or Uninstalled or its associated EE is Enabled or
Disabled, in which cases the library EU acts as any other EU. Restarting such an EU will result
in a successful response but the state remains unchanged.

The EUs created by the Installation of a particular DU might provide functionality to the device
that requires configuration by a Controller. This configuration could be exposed via the USP
data model in five ways:

1. Service data model (if, for example, the EU provides VoIP functionality, configuration would
be exposed via the Voice Service data model defined in TR-104).

2. Standard Objects and parameters in the device’s root data model (if, for example, the EU pro-
vides port mapping capability, the configuration would be exposed via the port mapping
table defined in the Device:2 Data Model [3]).

October 2023 © The Broadband Forum. All rights reserved 227 of 275

The User Services Platform TR-369

3. Instances of standard Objects in the Root or any Service data model, (if, for example, the EU
provides support for an additional Codec in a VoIP service).

4. Vendor extension Objects and Parameters that enhance and extend the capabilities of stan-
dard Objects (if, for example, the EU provides enhanced UserInterface capabilities)

5. Standalone vendor extension Objects that are directly controlled Objects of the EU (for ex-
ample, a new vendor specific Object providing configuration for a movies on demand ser-
vice).

In all cases the GetSupportedDM and GetInstances Messages can be used to retrieve the associ-
ated supported data model along with the corresponding Object Instances.

All data model services, Objects, and Parameters related to a particular EU come into existence
at the time of Installation or Update of the related DU, The related data model disappears from
the device’s data model tree at the time of Uninstall and clean up of the related DU resources. It
is possible that the device could encounter errors during the process of discovering and creating
EUs; if this happens, it is not expected that the device would roll back any data model it has cre-
ated up until this point but would rather set the ExecutionFaultCode of the EU to
“Unstartable.” In this case, it is not expected that any faults (with the exception of System Re-
sources Exceeded) would have been generated in response to the Install or Update operation.
See below for more information on EU faults.

The configuration of EUs could be backed up and restored using vendor configuration files. The
EU Object in the data model contains a Parameter, which is a path reference to an instance in
the vendor config file table in the Root data model. This path reference indicates the vendor
config file associated with the configuration of the particular EU from which the associated Ob-
ject Instance could be backed up or restored using respective commands for that Object In-
stance.

It is also possible that applications could have dedicated log files. The EU Object also contains a
Parameter, which is a path reference to an instance in the log file table in the root data model.
This path reference indicates the log file associated with a particular EU from which the refer-
enced Object Instance could be retrieved using the Upload command for that Object Instance.

I.3 Execution Environment Concepts
As discussed above, an EE is a software platform that supports the dynamic loading and unload-
ing of modules. A given device can have multiple EEs of various types and these EEs can be lay-
ered on top of each other. The following diagram gives a possible implementation of multiple
EEs.

October 2023 © The Broadband Forum. All rights reserved 228 of 275

The User Services Platform TR-369

Figure 28: Possible Multi-Execution Environment Implementation

In this example, the device exposes its Linux Operating System as an EE and has two different
OSGi frameworks layered on top of it, all of which are modeled as separate ExecEnv Object In-
stances. In order to indicate the layering to a Controller, the two OSGi framework Objects
(.ExecEnv.2 and .ExecEnv.3) would populate the Exec.Env.{i}.Parent Parameter with a path
reference to the Linux Object (.ExecEnv.1). The Linux EE Object would populate that Parame-
ter with an empty string to indicate that it is not layered on top of any managed EE.

Note that the above is merely an example; whether a device supports multiple frameworks of the
same type and whether it exposes its Operating System as an Execution Environment for the pur-
poses of management is implementation specific.

Multiple versions of a DU can be installed within a single EE instance, but there can only be one
instance of a given version at a time. In the above diagram, there are two versions of DU1, v1.0
and v1.2 installed on .ExecEnv.2. If an attempt is made to update DU1 to version 1.2, or to in-
stall another DU with version 1.0 or 1.2, on ExecEnv.2, the operation will fail.

A DU can also be installed to multiple EEs. In the above example, DU1 is installed both to
ExecEnv.2and ExecEnv.3. The Installation is accomplished by sending two separate
InstallDU() commands where one command’s ExecEnvRef Parameter has a value of
“.ExecEnv.2” and the other command’s ExecEnvRef Parameter as a value of “.ExecEnv.3” ; note
that the USP Controller is required to handle cases where there is an expectation that the instal-
lation of both deployment units is atomic.

When DUs are Updated, the DU instances on all EEs are affected. For example, in the above dia-
gram, if DU1 v.1.0 is updated to version 2.0, the instances on both .ExecEnv.2 and .ExecEnv.3
will update to version 2.0.

October 2023 © The Broadband Forum. All rights reserved 229 of 275

The User Services Platform TR-369

For Uninstall, a Controller can either indicate the specific EE from which the DU should be re-
moved, or not indicate a specific EE, in which case the DU is removed from all EEs.

An EE can be enabled and disabled by a Controller. Sending a SoftwareModules.ExecEnv.
{i}.Restart() command is equivalent to first disabling and then later enabling the EE, but also
allows the reason for and the time of the restart to be recorded in SoftwareModules.ExecEnc.
{i}.RestartReason and SoftwareModules.ExecEnc.{i}.LastRestarted respectively.

Figure 29: Execution Environment State Diagram

When an EE instance is disabled by a Controller, the EE itself shuts down. Additionally, any
EUs associated with the EE automatically transition to Stopped and the ExecutionFaultCode
Parameter value is Unstartable. The state of the associated DUs remains the same. If a USP
command that changes the DU state is attempted on any of the DUs associated with a disabled
EE, the operation fails and an “Invalid value” error is returned in the DUStateChange! event
for the affected DU instance. It should be noted if the Operating System of the device is exposed
as an EE, disabling it could result in the device being put into a non-operational and non-man-
ageable state. It should also be noted that disabling the EE on which the USP Agent resides can
result in the device becoming unmanageable via USP.

I.3.1 Managing Execution Environments

An implementation may provide for Execution Environments to be added or removed at run-
time. These implementations should provide the SoftwareModules.ExecEnvClass table and its
associated AddExecEnv() command. For example in Figure 28 the ExecEnvClassRef of the
Linux EE would point to one entry in SoftwareModules.ExecEnvClass while the two OSGI
Frameworks would point to to another entry. A new OSGI Framework instance could be created

October 2023 © The Broadband Forum. All rights reserved 230 of 275

The User Services Platform TR-369

using SoftwareModules.ExecEnvClass.{i}.AddExecEnv(), or an instance could be removed
using SoftwareModules.ExecEnv.{i}.Remove().

The ExecEnvClass.{i}.Capability table describes the class of EE in terms of the kinds of DUs
it supports. For example a web services framework would probably support the installation of
WAR files, but it may also support OSGi Bundles as a DU format.

(Note: In the example shown in Figure 28 the ExecEnvClassRef of the Linux EE could also be
left blank, as apparently this EE does not support the installation of any kind of DU nor is it
possible to add new instances.)

I.3.2 Application Data Volumes

An Execution Environment may offer filesystem storage facilities to the software modules
which are installed into it; these EEs should provide the SoftwareModules.ExecEnv.
{i}.ApplicationData table which exposes the storage volumes which currently exist.

Each application data volume is associated with an “application” and a volume Name (so that
an application may own multiple volumes). The application is identified by the UUID of its DU,
and hence by the Vendor and Name of a Deployment Unit. This makes it possible for a data vol-
ume to persist across an Update of the DU or even across an Uninstall and subsequent re-Install,
if desired. At the opposite extreme, an application data volume may be marked “Retain Until
Stopped”, meaning that the data will be lost when application no longer has any Active EUs
(conceptually these volumes are destroyed, and will be re-created when an EU becomes Active).

The set of application data volumes needed by an application are specified in an optional para-
meter of the InstallDU() command, and can be modified by the Update() command. Note that
the parameter specifies the retention policy for each volume, but not where it is stored - a vol-
ume might be stored on the local flash of one device while another device would store the same
volume in the cloud. This makes it easier to design applications which can be deployed across a
wide range of devices without needing to know the detailed storage layout of each device.

By default the Update() and Uninstall() commands cause all application data volumes associ-
ated with the affected DUs to be lost. This can be prevented by setting the optional RetainData
argument to true; in the case of Uninstall() this will result in an “orphaned” volume with an
ApplicationUUID which does not match any DU installed in the EE. The
SoftwareModules.ExecEnv.{i}.ApplicationData.{i}.Remove() command is available to
clean up orphaned data volumes if they are no longer needed. Implementations are advised to
reject any attempt to invoke this command on a data volume with an ApplicationUUID which
matches that of a DU which is currently installed in the EE, with error code 7229 (Invalid De-
ployment Unit State).

I.3.3 Signing Deployment Units

An Execution Environment may require any DU which is Installed into it to be signed by an au-
thorized principal. A signature may take many forms, such as a JSON Web Signature (JWS, RFC
7515) or GNU Privacy Guard (GPG, RFC 4880); however in essence it always amounts to a cryp-
tographically-signed statement that a certain artifact is authentic. Typically the document is

October 2023 © The Broadband Forum. All rights reserved 231 of 275

The User Services Platform TR-369

identified by a hash of its contents (so the signature also provides assurance of integrity), and
asymmetric encryption is used so that both the signature itself and the public key which can be
used to verify its authenticity can be transmitted over an insecure channel without risk of com-
promise.

It may be possible to derive the URL of the signature from the URL of the DU itself, for example
by appending a suffix such as “.sig”. Alternatively an optional Signature argument can be in-
cluded in the Install or Update command, providing greater operational flexibility.

If the public key(s) which are used to verify signatures are distributed in the form of X.509 cer-
tificates, these may be stored in the Device.Security.Certificate table. the Execution Envi-
ronment may then list the relevant entries in its Signers parameter.

I.4 Fault Model
Faults can occur at a number of steps in the software module process. The following sections
discuss Deployment Unit faults and Execution Unit faults.

I.4.1 DU Faults

There are two basic types of DU faults: Operation failures and USP message errors that are the
result of the invoking the InstallDU(),Update(),UninstallDU(), Reset(), SetRunLevel() and
SetRequestedState() commands.

I.4.1.1 Install Faults

Most Install faults will be recognized before resources or instances are created on the device.
When there is an Operation failure at Install, there are no resources installed on the device and
no DU (or EU) instances are created in the data model. Similarly, if there are any command fail-
ures, besides System Resources Exceeded, there are no resources installed on the device and no
DU (or EU) instances created in the data model.

There are a number of command failures defined for Installation. The first category is those
faults associated with the file server or attempt to transfer the DU resource and are the same as
those defined for the existing InstallDU() and Update() commands. These include:

• Userinfo element being specified in the URL
• The URL being unavailable (either because the host cannot be reached or because the resource

is unavailable)
• Authentication failures due to incorrectly supplied credentials
• The URL transport method specified not being supported by the device or server
• The file transfer being interrupted (because of a device reboot or loss of connectivity, for ex-

ample)

The second category of faults relate to issues with the DU and the Execution Environment.
These are specific to Software Module Management and include:

October 2023 © The Broadband Forum. All rights reserved 232 of 275

The User Services Platform TR-369

• The EE reference specified by a Controller in the InstallDU() command does not exist in the
data model. Note that the Controller can simply omit the EE reference in the request and al-
low the deice to choose the destination.

• The EE being disabled. This fault can occur when the InstallDU() command explicitly speci-
fies a disabled EE. If there is no EE specified in the request, this fault could occur because the
only possible destination EE for the DU (the only OSGi framework instance in the case of an
OSGi bundle, for example) is disabled. The device is expected to make every attempt not to
use a disabled EE in this scenario, however.

• Any mismatch existing between the DU and the EE (attempting to install a Linux package on
an OSGi framework instance, for example). This fault can occur when the request explicitly
specifies a mismatching EE. If there is no EE specified in the request, this fault could occur
when there is no EE at all on the device that can support the DU.

• A DU of the same version already existing on the EE.

Finally there are a number of faults related to the DU resource itself. These include:

• The UUID in the request not matching the format specified in RFC 4122 [31] Version 5 (Name-
based).

• A corrupted DU resource, or the DU not being installable for other reasons, such as not being
signed by any trusted entity

• The installation of the DU requiring more system resources, such as disk space, memory, etc.,
than the device has available. Note that this error is not to be used to indicate that more oper-
ations have been requested than the device can support, which is indicated by the Resourced
Exceeded error (described above).

I.4.1.2 Update Faults

When there is a fault on an Update of a DU of any kind, the DU remains at the version it was
before the attempted DU state change, and it also remains in the Installed state (i.e., it is not
Uninstalled). If for any reason the a Controller wishes to remove a DU after an unsuccessful Up-
date, it must do so manually using an Uninstall() command. When there is a USP message er-
ror for the Update, there are no new resources installed on the device and no DU (or EU) in-
stances are changed in the data model. Similarly, if there are any Operation failures, besides
System Resources Exceeded, there are no new resources installed on the device and no DU (or
EU) instances are changed in the data model. The state of any associated EUs or any dependent
EUs in the event of an Update failure is EE and implementation dependent.

There are a number of Operation failures defined for Update of a DU. The first category is those
faults associated with the file server or attempt to transfer the DU resource and are the same as
those defined for the existing Update() command. These include:

• Userinfo element being specified in the URL
• The URL being unavailable (either because the host cannot be reached or because the resource

is unavailable)
• Authentication failures due to incorrectly supplied credentials
• The URL transport method specified not being supported by the device or server

October 2023 © The Broadband Forum. All rights reserved 233 of 275

The User Services Platform TR-369

• The file transfer being interrupted (because of a device reboot or loss of connectivity, for ex-
ample)

The second category of faults relate to issues with the DU and the Execution Environment.
These are specific to Software Module Management and include:

• The EE on which the targeted DU resides being disabled. This fault can occur when the re-
quest explicitly specifies the UUID of a DU on a disabled EE or when the request explicitly
specifies a URL last used by a DU on a disabled EE. If neither the URL nor UUID was specified
in the request, this fault can occur when at least one DU resides on a disabled EE.

• Any mismatch existing between the DU and the EE. This fault occurs when the content of the
updated DU does not match the EE on which it resides (for example, an attempt is made to
Update a Linux package with a DU that is an OSGi bundle).

• Updating the DU would cause it to have the same version as a DU already installed on the EE.
• The version of the DU not being specified in the request when there are multiple versions in-

stalled on the EE.

Finally there are a number of faults related to the DU resource itself. These include:

• The UUID in the request not matching the format specified in RFC 4122 [31] Version 5 (Name-
Based).

• A corrupted DU resource, or the DU not being installable for other reasons, such as not being
signed by any trusted entity

• The DU cannot be found in the data model. This fault can occur when the request explicitly
specifies the UUID (or combination of UUID and version) of a DU that is unknown. It can also
occur when the request does not specify a UUID but explicitly specifies a URL that has never
been used to previously Install or Update a DU.

• Attempting to downgrade the DU version.
• Attempting to Update a DU not in the Installed state.
• Updating the DU requiring more system resources, such as disk space, memory, etc., than the

device has available. Note that this error is not to be used to indicate that more operations
have been requested than the device can support, which is indicated by the Resourced Ex-
ceeded USP error (described above).

I.4.1.3 Uninstall Faults

When there is a fault due to the Uninstall of a DU fault of any kind, the DU does not transition
to the Uninstalled state and no resources are removed from the device. No changes are made to
the EU-related portions of the data model (including the EU Objects themselves and the related
Objects and Parameters that came into existence because of this DU).

There are Operation failures defined for Uninstall of a DU. They are as follows:

• The EE on which the targeted DU resides is disabled. Note that if the Uninstall operation tar-
gets DUs across multiple EEs, this fault will occur if at least one of the EEs on which the DU
resides is disabled.

October 2023 © The Broadband Forum. All rights reserved 234 of 275

The User Services Platform TR-369

• The DU cannot be found in the data model. If the EE is specified in the request, this error oc-
curs when there is no UUID (or UUID and version) matching the one requested for the speci-
fied EE. If there is no EE specified in the request, this error occurs when there is no UUID
matching the one in the requested on any EE in the data model, or, if the version is also speci-
fied in the request, then this error occurs when there is no DU with this combination of UUID
and version on any EE in the data model.

• The UUID in the request not matching the format specified in RFC 4122 [31] Version 5 (Name-
Based).

• The DU caused an EE to come into existence on which at least 1 DU is Installed.

I.4.2 EU Faults

EU state transitions are triggered by the SetRequestedState() command. One type of EU fault
is a USP Error Message sent in response to USP operate Message for the SetRequestedState()
command. The USP Error Message defined are therefore simply a subset of the errors defined
for the generic USP Operate Message (e.g., Request Denied, Internal Error).

Note that there is one case specific to Software Module Management: if a Controller tries to
Start an EU on a disabled EE using the SetRequestedState() command, the device returns a
“7012 Invalid Value” error response to the command request.

There are also Software Module Management specific faults indicated in the
ExecutionFaultCode and ExecutionFaultMessage Parameters in the data model. In addition to
providing software module specific fault information, this Parameter is especially important in
a number of scenarios:

• Errors that occur at a later date than the original USP Message, such as a Dependency Failure
that occurs several days after successful Start of an EU because a DU providing dependencies
is later Uninstalled.

• State transition errors that are triggered by the Autostart/Run level mechanism.
• “Autonomous” state transitions triggered outside the purview of USP, such as by a LAN-side

protocol.

The faults in the ExecutionFaultCode Parameter are defined as follows:

• FailureOnStart – the EU failed to start despite being requested to do so by the Controller.
• FailureOnAutoStart – the EU failed to start when enabled to do so automatically.
• FailureOnStop – the EU failed to stop despite being requested to do so by the Controller.
• FailureWhileActive – an EU that had previously successfully been started either via an ex-

plicit transition or automatically later fails.
• DependencyFailure – this is a more specific fault scenario in which the EU is unable to start

or stops at a later date because of unresolved dependencies
• Unstartable – some error with the EU resource, its configuration, or the state of the associ-

ated DU or EE, such as the EE being disabled, prevents it from being started.

When the EU is not currently in fault, this Parameter returns the value NoFault. The
ExecutionFaultMessage Parameter provides additional, implementation specific information

October 2023 © The Broadband Forum. All rights reserved 235 of 275

The User Services Platform TR-369

about the fault in question. The ExecutionFaultCode and ExecutionFaultMessage Parameters
are triggered Parameters. In other words, it is not expected that an Controller could read this
Parameter before issuing a USP Message and see that there was a Dependency Failure that it
would attempt to resolve first. If a Controller wants a notification when these Parameters
change, the Controller can subscribe to the ValueChange notification type with the Parameters
for the referenced EU.

October 2023 © The Broadband Forum. All rights reserved 236 of 275

The User Services Platform TR-369

Appendix II: Firmware Management of Devices with USP
Agents
Many manufacturers build and deploy devices that are able to support multiple firmware im-
ages (i.e. multiple firmware images can be installed on an Agent at the same time). There are at
least a couple of advantages to this strategy:

1. Having multiple firmware images installed improves the robustness and stability of the de-
vice because, in all likelihood, one of the installed images will be stable and bootable. Should
a device not be able to boot a newly installed firmware image, it could have the ability to at-
tempt to boot from a different firmware image, thus allowing the device to come back online.

2. Support for multiple firmware images offers the ability for the service provider to have a
new firmware downloaded (but not activated) to the device at any point during the day, then
perhaps requiring only a Set Message and an Operate Message to invoke the Reboot com-
mand at some later time (perhaps during a short maintenance window or when the device is
idle) to cause the device to switch over to the new firmware. Along with reducing the impact
on the subscriber, the ability to spread the download portion a firmware upgrade over a
longer period of time (eg, the entire day or over several days) can help minimize the impact
of the upgrade on the provider’s network.

This Appendix discusses how to utilize the firmware image table on a device to support
firmware upgrades whether the device supports multiple instances or just a single instance.

II.1 Getting the firmware image onto the device
A Controller can download a firmware image to an Agent by invoking the Download() com-
mand (via the Operate Message) found within an instance of the
Device.DeviceInfo.FirmwareImage.{i}. data model table. The Download() command will
cause the referenced file to be downloaded into the firmware image instance being operated on,
and it will cause that file to be validated by the Agent (the validation process would include any
normal system validate of a firmware image as well as the check sum validation provided in the
Download() command).

If an Agent only supports a single firmware image instance then a Controller would invoke the
Download() command on that active firmware image instance using the AutoActivate argu-
ment to immediately activate the new firmware after it has been downloaded. Neither the
Device.DeviceInfo.BootFirmwareImage Parameter nor the
Device.DeviceInfo.FirmwareImage.{i}.Activate() command would typically be imple-
mented by a device that only supports a single firmware image instance.

If an Agent supports more than a single firmware image instance then a Controller would typi-
cally invoke the Download() command on a non-active firmware image instance in an effort of
preserving the current firmware image in case of an error while upgrading the firmware. A
firmware image instance is considered active if it is the currently running firmware image.

October 2023 © The Broadband Forum. All rights reserved 237 of 275

The User Services Platform TR-369

II.2 Using multiple firmware images
This section discusses the added functionality available when a device supports two or more in-
stances in the Device.DeviceInfo.FirmwareImage.{i}. data model table.

II.2.1 Switching firmware images

Once a device has multiple firmware images downloaded, validated, and available, a Controller
can use the data model to query what images are on the device, which image is active, and con-
figure which image to activate.

A Controller can activate a new firmware image by following one of two different procedures:
(A) the Controller can modify the Device.DeviceInfo.BootFirmwareImage Parameter to point
to the Device.DeviceInfo.FirmwareImage.{i}. Object Instance that contains the desired
firmware image and then reboot the device by invoking an Operate Message with a Reboot()
command or (B) the Controller can invoke an Operate Message with an Activate() command
against the desired FirmwareImage instance.

When attempting to get a device to switch to a different firmware image, it is recommended
that the Controller either subscribe to a ValueChange notification on the
DeviceInfo.SoftwareVersion Parameter or subscribe to the Boot! Event notification. If the
Software Version value has not changed or the Boot! Event’s FirmwareUpdated argument is
false, it could be an indication that the device had problems booting the target firmware image.

II.2.2 Performing a delayed firmware upgrade

One of the benefits to having support for multiple firmware images on a device is that it pro-
vides an opportunity to push a firmware image to a device and then have the device switch to
that image at a later time. This functionally allows a service provider to push a firmware image
to a set of devices at any point during the day and then use a maintenance window to switch all
of the target devices to the target firmware.

This ability is of value because normally the download of the firmware and the switch to the
new image would both have to take place during the maintenance window. Bandwidth limita-
tions may have an impact on the number of devices that can be performing the download at the
same time. If this is the case, the number of devices that can be upgrading at the same time may
be lower than desired, requiring multiple maintenance windows to complete the upgrade. How-
ever, support for multiple firmware images allows for the service provider to push firmware im-
ages over a longer period of time and then use a smaller maintenance window to tell the device
to switch firmware images. This can result is shorter system-wide firmware upgrades.

II.2.3 Recovering from a failed upgrade

Another benefit of having multiple firmware images on a device is that if a device cannot boot
into a target firmware image because of some problem with the image, the device could then try
to boot one of the other firmware images.

When there are two images, the device would simply try booting the alternate image (which,
ideally, holds the previous version of the firmware). If there are more than two images, the de-

October 2023 © The Broadband Forum. All rights reserved 238 of 275

The User Services Platform TR-369

vice could try booting from any of the other available images. Ideally, the device would keep
track of and try to boot from the previously known working firmware (assuming that firmware
is still installed on the device).

If the activation of a firmware image causes the device to lose its USP Agent connectivity to the
controller for any reason (i.e., the USP Agent fails to send messages to the Controller, or the
messages are not understood by the Controller), the device is expected to roll back to the previ-
ously activated image and add appropriate information to the
Device.DeviceInfo.FirmwareImage.{i}.BootFailureLog parameter of the failed image.

Should the device boot a firmware image other than that specified via the
Device.DeviceInfo.BootFirmwareImage Parameter, it is important that the device not change
the value of the Device.DeviceInfo.BootFirmwareImage Parameter to point to the currently-
running firmware image Object. If the device was to change this Parameter value, it could make
troubleshooting problems with a firmware image switch more difficult.

It was recommended above that the Controller keep track of the value of
Device.DeviceInfo.SoftwareVersion Parameter or the FirmwareUpdated flag in the Boot!
event. If the version changes unexpectedly or the FirmwareUpdated flag is set to true, it could
be an indication that the device had problems booting a particular firmware image.

October 2023 © The Broadband Forum. All rights reserved 239 of 275

The User Services Platform TR-369

Appendix III: Device Proxy
This appendix describes a Theory of Operations for the Device.ProxiedDevice. Object defined
in the Device:2 Data Model [3].

The Device.ProxiedDevice table is defined as:

“Each entry in the table is a ProxiedDevice Object that is a mount point. Each ProxiedDevice
represents distinct hardware Devices. ProxiedDevice Objects are virtual and abstracted repre-
sentation of functionality that exists on hardware other than that which the Agent is run-
ning.”

An implementation of the Device.ProxiedDevice. Object may be used in an IoT Gateway that
proxies devices that are connected to it via technologies other than USP such as Z-Wave, Zig-
Bee, Wi-Fi, etc. By designating a table of ProxiedDevice Objects, each defined as a mount point,
this allows a data model with Objects that are mountable to be used to represent the capabilities
of each of the ProxiedDevice table instances.

For example, if Device.WiFi. and Device.TemperatureStatus. Objects are modeled by the
Agent, then Device.ProxiedDevice.1.WiFi.Radio.1. models a distinctly separate hardware
device and has no relationship with Device.WiFi.Radio.1.. The ProxiedDevice Objects may
each represent entirely different types of devices each with a different set of Objects. The
ProxiedDevice.1.TemperatureStatus.TemperatureSensor.1. Object has no physical relation-
ship to ProxiedDevice.2.TemperatureStatus.TemperatureSensor.1. as they represent tem-
perature sensors that exist on separate hardware. The mount point allows
Device.ProxiedDevice.1.WiFi.Radio. and Device.ProxiedDevice.1.
TemperatureStatus.TemperatureSensor. to represent the full set of capabilities for the device
being proxied. This provides a Controller a distinct path to each ProxiedDevice Object.

October 2023 © The Broadband Forum. All rights reserved 240 of 275

The User Services Platform TR-369

Appendix IV: Communications Proxying
This appendix describes a variety of proxies that can be created and deployed in order to en-
hance the USP experience.

The types of proxies described are:

• Discovery Proxy: proxies discovery and advertisement; does not proxy USP messages
• Connectivity Proxy: proxies USP messages at the IP layer; does not care about MTP or USP

message headers or content; may do message caching for sleeping devices
• MTP Proxy: proxies USP messages at the MTP layer and below; does not care about USP Mes-

sage headers or content; may do message caching for sleeping devices [Note: The MTP Proxy
may choose to look at the USP Record to get information related to USP Endpoints, especially
when proxying WebSocket MTP.]

• USP to Non-USP Proxy: Proxies between USP and a non-USP management or control protocol

IV.1 Proxying Building Block Functions
These proxies are comprised of one or more of the building block functions described in Table 1.

Table 1: Proxy Building Block Functions

Function Description
L3/4 Translation Function Translates up to and including the IP and transport

layer (e.g., UDP, TCP) protocol headers, while leaving
all higher layer protocol headers and payloads un-
touched.

MTP Translation Function Translates up to and including the Message Transfer
Protocol (MTP) header, while leaving the USP Record
untouched. Requires knowledge of how to bind USP to
two or more MTPs.

USP to non-USP Translation Function Translates all headers and the USP Record and USP
Message into data model and headers of another man-
agement protocol. Requires proxy to have an Agent.

Caching Function Can hold on to USP Messages intended for Endpoints
that are intermittently connected, until a time when
that Endpoint is connected. The USP Message is not al-
tered, so no Endpoint is required to be aware of the ex-
istence of this function.

Non-USP Advertisement Function Responds to discovery queries using protocols other
than USP (e.g., DNS-SD, DNS, DHCP) on behalf of End-
points. May include a DNS Server. See Discovery sec-
tion for formatting of various non-USP discovery pro-
tocols in the context of USP.

October 2023 © The Broadband Forum. All rights reserved 241 of 275

The User Services Platform TR-369

Non-USP Discovery Function Discovers Endpoints through discovery queries using
protocols other than USP. See Discovery section for
formatting of various non-USP discovery protocols in
the context of USP.

Agent USP Advertisement Function Maintains a USP data model table of discovered Agents.
Requires an Agent.

IV.2 Discovery Proxy
A Discovery Proxy simply repeats the exact information that it discovers from Endpoints. This
is particularly useful in a multi-segment LAN, where mDNS messages do not cross segment
boundaries. The DNS-SD Discovery Proxy [39] functionality is recommended as a component of
a Discovery Proxy. When used inside a LAN, this would need the Non-USP Discovery Function
and the Non-USP Advertisement Function described in Table 1.

An Agent USP Advertisement Function would be needed to support Endpoints in different net-
works (e.g., discovery of Agents on the LAN by a Controller on the WAN).

USP Messages between proxied Endpoints go directly between the Endpoints and do not go
across the Discovery Proxy. The Discovery Proxy has no role in USP outside discovery.

IV.3 Connectivity Proxy
This describes proxying of discovery and IP connectivity of Endpoints that need IP address or
port translation to communicate, and/or do not maintain continual IP connectivity. The Con-
nectivity Proxy may cache USP Messages on behalf of Endpoints that do not maintain continual
connectivity. The USP Message is not processed by the proxy function, but it does go through
the proxy for address translation or so it can be cached, if necessary. Therefore, the connectivity
information provided by the Connectivity Proxy directs IP packets (that contain the USP
Records) be sent to the proxy and not to the destination IP address of the Endpoint being prox-
ied.

Both Endpoints must be using the same MTP. This Proxy translates the IP address (and possibly
the TCP or UDP port) from the Connectivity Proxy to the proxied Endpoint, but does not touch
(or need to understand) the MTP headers or USP Message.

It is also possible to combine the caching functionality with the MTP Proxy, by adding the
Caching Function to the MTP Proxy (see Section 3).

In order to serve as a Connectivity Proxy, the following functions (from Table 1) are needed: 1.
L3/4 Translation Function 1. Depending on whether the proxy is on the same network as the
proxied Endpoints: 1. Non-USP Discovery Function and/or otherwise determined/configured
knowledge of Agent(s) 1. Non-USP Advertisement Function and/or Agent USP Advertisement
Function

The Connectivity Proxy can also include the Caching Function to support Endpoints with inter-
mittent connectivity.

October 2023 © The Broadband Forum. All rights reserved 242 of 275

The User Services Platform TR-369

IV.4 Message Transfer Protocol (MTP) Proxy
This describes proxying between two USP Endpoints that do not support a common MTP. The
USP Record is untouched by the proxy function. MTP and IP headers are changed by the proxy.

In order to serve as a MTP Proxy, the following functions (from Table 1) are needed:

1. MTP Translation Function
2. Depending on whether it is on the same network as the proxied Agents and/or the Con-

troller that wants to communicate with those Agents:

1. Non-USP Discovery Function and/or otherwise determined/configured knowledge of Agen-
t(s)

2. Non-USP Advertisement Function and/or Agent USP Advertisement Function

The MTP Proxy can also include the Caching Function to support Endpoints with intermittent
connectivity.

IV.4.1 MTP Header Translation Algorithms

In order to implement a meaningful translation algorithm, the MTP Proxy will need to:

1. Maintain mapping of discovered or configured Endpoint information to information the MTP
Proxy generates or is configured with. This allows it to advertise that Endpoint on a different
MTP and to translate the MTP when it receives a message destined for that Endpoint.

2. Maintain a mapping of received “reply to” and other connection information to connection
and “reply to” information included by the MTP Proxy in the sent message. This allows it to
translate the MTP when it receives a response message destined for that Endpoint.

3. Identify the target Endpoint for a received message.

The following information will need to be stored in a maintained mapping for an Endpoint:

1. URL -or- the IP Address (es) (IPv4 and/or IPv6) and UDP or TCP ports -or- the socket for an
established connection (note that the information and configured data needed to establish
this connection is out-of-scope of this specification)

2. MTP-specific destination information (including destination resource)

1. For CoAP, this is the uri-path of the CoAP server Endpoint resource
2. For WebSocket, this is either an established WebSocket connection or the WebSocket

server Endpoint resource
3. For STOMP, this is the STOMP destination of the Endpoint
4. For MQTT, this is a Topic that is subscribed to by the Endpoint

This mapping information is used to construct important parts of the sent IP, UDP/TCP, and
MTP headers. Other information used to construct these headers may come from the received
MTP Headers or even the received USP Record.

The following table describes possible ways to accomplish the activities for proxying from or to
a particular MTP, and possible sources of information. Other possibilities for proxying between

October 2023 © The Broadband Forum. All rights reserved 243 of 275

The User Services Platform TR-369

two MTPs may also exist. This table is not normative and is not intended to constrain imple-
mentations.

Table 2: Possible MTP Proxy Methods

MTP Activity when Proxying from when Proxying to
CoAP Maintain mapping of dis-

covered/configured info
to advertised info

store discovered CoAP
path/url/IP address/port
with “reply to” and/or
connectivity info for
other MTP

generate a CoAP uri-path
for discovered info

Maintain mapping of re-
ceived info

store received uri-query
reply-to CoAP Parameter
with “reply to” and/or
connectivity info of the
sent message

store the supplied “reply
to” and/or connectivity
info with a generated
CoAP uri-path

Identify target USP End-
point for a received mes-
sage

possible source: received
CoAP uri-path

put value from a main-
tained mapping in uri-
path and use IP address
and port from mapping

WebSocket Maintain mapping of dis-
covered/configured info
to advertised info

store WebSocket connec-
tion info (and Endpoint
ID, if socket is used for
more than one Endpoint)
with “reply to” and/or
connectivity info for
other MTP

establish WebSocket
connection or associate
Endpoint with existing
connection, for discov-
ered info

Maintain mapping of re-
ceived info

store WebSocket connec-
tion info (and Endpoint
ID, if socket is used for
more than one Endpoint)
with “reply to” and/or
connectivity info for
other MTP

store the supplied “reply
to” and/or connectivity
info with a WebSocket
connection (and End-
point ID, if socket is used
for more than one End-
point)

Identify target USP End-
point for a received mes-
sage

possible source: Web-
Socket connection estab-
lished per proxied End-
point
possible source: to_id in
USP Record

send over WebSocket
connection associated
with the proxied End-
point

October 2023 © The Broadband Forum. All rights reserved 244 of 275

The User Services Platform TR-369

STOMP Maintain mapping of dis-
covered/configured info
to advertised info

store subscribed-to
STOMP destination with
“reply to” and/or connec-
tivity info for other MTP

subscribe to STOMP des-
tination for discovered
info

Maintain mapping of re-
ceived info

store reply-to-dest
STOMP header (and as-
sociated STOMP connec-
tion) with “reply to” or
socket info of the sent
message

store the supplied “reply
to” and/or connectivity
info with subscribed-to
STOMP destination and
connection

Identify target USP End-
point for a received mes-
sage

possible source: received
STOMP destination
possible source: to_id in
USP Record

put value from main-
tained mapping in
STOMP destination
header and use STOMP
connection from that
mapping

MQTT Maintain mapping of dis-
covered/configured info
to advertised info

store subscribed-to Topic
(Filter) with “reply to”
and/or connectivity info
for other MTP

subscribe to MQTT
Topic (Filter) for discov-
ered info (if Topic Filter,
know which specific
Topic to use for “reply
to” info)

Maintain mapping of re-
ceived info

store Response Topic or
other provided “reply to”
info (and associated
MQTT connection) with
“reply to” or connectivity
info of the sent message

store the supplied “reply
to” and/or connectivity
info with a specific
MQTT Topic (within
subscribed-to Topic Fil-
ter) and connection

Identify target USP End-
point for a received mes-
sage

possible source: received
MQTT PUBLISH Topic
Name
possible source: to_id in
USP Record

put value from main-
tained mapping in
MQTT PUBLISH Topic
Name and use MQTT
connection from that
mapping

Figure 30 shows an example of how an MTP Proxy might be used to proxy between an MTP
used by a Cloud Server in the WAN and an MTP used inside the LAN. It also shows proxying
between MTPs and internal APIs used to communicate with multiple Agents internal to the Ser-
vices Gateway.

October 2023 © The Broadband Forum. All rights reserved 245 of 275

The User Services Platform TR-369

Figure 30: Example of MTP Proxy in LAN with WAN Controller

IV.4.2 CoAP / STOMP MTP Proxy Example Message Flow

The following example is provided as a detailed look at a sample CoAP (LAN) / STOMP (WAN)
MTP Proxy to describe one possible way to do discovery, connectivity and security. This exam-
ple makes several assumptions as to the nature of the STOMP connection between the MTP
Proxy and the STOMP server, which is completely undefined. It also makes assumptions about
implemented, enabled and configured Agent capabilities.

Assumptions include: * a STOMP connection per proxied device * the STOMP server supplies a
subscribe-dest header in CONNECTED frames (this is optional for a STOMP server) * there ex-
ists some means for the Controller to discover the proxied Agent connection to the STOMP
server * the CoAP Agent does mDNS advertisement (optional but recommended behavior) * the
CoAP Agent and Proxy support and have enabled DTLS * the CoAP Agent has been configured
with the Proxy’s certificate for use as a Trusted Broker. * the proxy uses the subscribe-dest
value (supplied by the STOMP server) as the value for the reply-to-dest header.

October 2023 © The Broadband Forum. All rights reserved 246 of 275

The User Services Platform TR-369

Figure 31: CoAP-STOMP MTP Proxy Example Flow

Controller connects to the STOMP server

October 2023 © The Broadband Forum. All rights reserved 247 of 275

The User Services Platform TR-369

A / B / C At any point prior to #5 the USP Controller Endpoint ctrl1 connects to STOMP and
subscribes to destination A

• OUT OF SCOPE how the USP Endpoint ctrl1 destination A is discovered by Proxy
• OUT OF SCOPE how the proxied USP Endpoint agent1 STOMP destination Y is discovered by

USP Endpoint ctrl1

Agent appears on network and Proxy allows Controller to communicate with Agent

#1 The USP Endpoint agent1 appears on the network. Proxy receives advertisement and gets
the USP Endpoint identifier “agent1” of the Agent (retrieved from mDNS advertisement see R-
DIS.8).

#2 Proxy sends a CONNECT frame to the STOMP server with endpoint-id header of “agent1”.

#3 Proxy receives a subscribe-dest header in the CONNECTED frame identifying the STOMP
destination it needs to subscribe to on behalf of agent1.

#4 The Proxy sends a SUBSCRIBE frame to the STOMP server with destination:Y and stores a
mapping of USP Endpoint agent1 with coaps://<Agent IP>:<port>/agent1 to this STOMP con-
nection with destination Y.

#5 / #6 USP Endpoint ctrl1 initiates USP message to agent. Proxy creates a STOMP reply-to-
dest:A (on this STOMP connection) to coaps://<Proxy IP>:<port>/destA mapping.

#7/ #7.1 Proxy takes USP Record from the STOMP frame and sends it in a CoAP payload with
CoAP URI coming from the step #4 mapping of STOMP destination Y to coap://<Agent IP>:<-
port>/agent1. To secure the communication, the proxy and Agent establish a DTLS session (ex-
change certificates) and the Agent determines whether the proxy is a Trusted Broker.

#8 / #8.1 USP Endpoint agent1 sends a USP Record in reply to ctrl1 using CoAP, to coaps://
<Proxy IP>:<port>/destA.

#9 / #10 Proxy takes USP Record from the CoAP payload and sends it in a STOMP SEND frame
using the mapping (created in steps #5 / #6) of coaps://<Proxy IP>:<port>/destA to STOMP des-
tination A (and associated STOMP connection) created in steps #5 / #6 .

Agent sends Notify Message to Controller

These steps include the following additional assumptions: * Controller has configured Agent
with a notification subscription. * Controller configured Agent with CoAP MTP information for
itself. * Proxy replies to mDNS queries for Controller with “ctrl1” Instance. Controller was able
to assume or otherwise determine that Proxy would do this and that its proxied CoAP connec-
tion would be discoverable by querying for ctrl1._usp-ctrl-coap._udp._local. * Proxy can use the
previous reply-to-dest header value to reach this Controller

#11 The Agent sends mDNS query for ctrl1._usp-ctrl-coap._udp._local.

#12 The Proxy response to the Agent includes TXT record with path of coaps://<Proxy IP>:<-
port>/ctrl1. This provides a URL for the Agent to use to send a Notify Message to the Controller.

October 2023 © The Broadband Forum. All rights reserved 248 of 275

The User Services Platform TR-369

#13 / #13.1 The Agent sends a Notify Message to Controller at coaps://<Proxy IP>:<port>/ctrl1.

#14 / #15 Proxy takes the USP Record from the CoAP payload and sends it in a STOMP SEND
frame using the mapping (stored in #5 / #6) of coaps://<Proxy IP>:<port>/destA to STOMP des-
tination:A (and associated STOMP connection).

IV.5 USP to Non-USP Proxy
This describes proxying between a Controller and some other management protocol with its
own data model schema (e.g., UPnP DM, ZigBee, NETCONF, RESTCONF). In this case the proxy
is expected to maintain a USP representation of the non-USP data. This requires the proxy to
expose itself as a full Agent to the Controller. See the Device Proxy appendix for the Theory of
Operations for the Device.ProxiedDevice. Object defined in the Device:2 Data Model [3].

In order to serve as a USP to non-USP Proxy, the USP to non-USP Translation Function (from
Table 1) is needed.

October 2023 © The Broadband Forum. All rights reserved 249 of 275

The User Services Platform TR-369

Appendix V: IoT Data Model Theory of Operation
V.1 Introduction
Since there are thousands of different Internet of Things (IoT) devices, the data model needs a
flexible modular way to support them using generic building block templates. To achieve this,
an IoT device is represented in the data model by sensor and control capabilities:

• Sensor capabilities, which allow reading a state, e.g. a temperature value, a battery level, a
light color, etc.

• Control capabilities, which allow changing a value, e.g. set a temperature, switch a light etc.

The Device:2 Data Model [3] defines capability Objects that reflect capabilities found on many
different devices (example: BinaryControl). By using these Objects, a large ecosystem of devices
can be described using a small set of capabilities (see table below).

V.2 IoT data model overview
The figure shows the overall structure of the IoT data model:

Figure 32: IoT Data Model

October 2023 © The Broadband Forum. All rights reserved 250 of 275

The User Services Platform TR-369

The data model defines an IoT Capability table, whose instances describe the IoT device’s ex-
posed capabilities. The capability table can appear directly under the Device. Object (if the IoT
device hosts a USP Agent) or under a Device.ProxiedDevice.{i}. or Device.ProxiedDevice.
{i}.Node.{i}. instance.

V.2.1 IoT Capability table

A capability is represented in the Device.IoTCapability. table as a generic Object Instance
with a specific class, and an instantiated Sub-Object depending on this class. The class name is
defined by the Sub-Object name in a Class Parameter for each IoT Capability table entry, to al-
low the Controller to detect the instantiated Sub-Object.

Only one out of the following Sub-Objects can exist per instance:

Capability Sub-Object Description
BinaryControl Allows setting a binary value (e.g. on or off)
LevelControl Allows setting a continuous value in a predefined range
EnumControl Allows setting a value from a predefined set of values
BinarySensor Provides a binary reading value (true/false)
LevelSensor Provides a continuous reading value
MultiLevelSensor Provides multiple reading values, which belong together

Each IoT capability Sub-Object has a Type Parameter to identify the functionality the capability
is representing. See the Type definition section for details.

V.2.2 Node Object table

The Device.Node.{i}. and Device.ProxiedDevice.{i}.Node.{i}. Objects are mount points
that provide the ability to support complex devices - that is, a group of capabilities. Each node is
a container for a group of device capabilities that have a direct relationship with each other
(sub-device) and a hierarchal relationship with the top-level. A node may have the same capa-
bilities as the top-level, but applicable only for the node, with no impact to the top-level. Capa-
bilities for the top-level node may have an effect on the lower level nodes, such as power.

V.3 Architecture mappings
V.3.1 Individual IoT devices

Stand-alone IoT devices, which are capable of supporting their own USP Agent, provide their
own data models, which expose the IoT sensor and control capabilities of the device:

October 2023 © The Broadband Forum. All rights reserved 251 of 275

The User Services Platform TR-369

Figure 33: IoT individual device models

Each device registers as an individual entity to the USP Controller. With the help of Node Ob-
jects, the capabilities can be additionally structured (not shown in the picture).

V.3.2 Proxied IoT devices

IoT devices connected over a proxy protocol (e.g. ZigBee) with an IoT control device hosting the
USP Agent are modeled as proxied devices (i.e., using the Device.ProxiedDevice. table) in the
data model of the control device’s USP Agent:

Figure 34: IoT proxied device model

Each IoT device is represented as a Device.ProxiedDevice.{i}. instance in the data model of
the control device, which exposes its IoT capabilities in the corresponding Objects. The capabili-
ties can be additionally structured with the help of Node Object (not shown in the picture).

V.4 IoT data model Object details
V.4.1 Common capability Parameters

October 2023 © The Broadband Forum. All rights reserved 252 of 275

The User Services Platform TR-369

These Parameters have the same behavior for all capability Sub-Objects, where defined.

V.4.1.1 Type definition

Applies to: All capability Sub-Objects

All capability Objects contain a mandatory Type enumeration value.

The Type value is a predefined enumeration value with the goal of giving a unified description
of the capability Object. If the Type value requires further detail, the Description Parameter
may provided a further definition.

Note: The Type enumeration in the data model can also, like all Parameters, be extended using the
rules defined in TR-106 [2].

V.4.1.2 Unit definition

Applies to: LevelControl, LevelSensor, MultilevelSensor

To define the used unit a similar concept as for the type definition is used. The definition con-
sists of the Unit enumeration value.

The Unit value is a predefined enumeration value with the goal of giving a unified representa-
tion of the used unit.

Note: The Unit enumeration in the data model can also, like all Parameters, be extended using the
rules defined in TR-106 [2].

Note: Imperial units are intentionally not modeled in favor of the metric system to increase the in-
ter-working. If the Controller needs imperial units, it can easily convert the metric units into imper-
ial ones by using the well-defined conversion routines.

V.4.2 Control Objects

Control Objects represent IoT capabilities that involve the manipulation of device or application
states. They include Binary Controls, Level Controls, and Enumerated Controls.

V.4.2.1 BinaryControl

The binary controller defines the simplest type of controller, which allows to switch between
two values like true/false, on/off, full/empty, etc. Its value is modeled as a Boolean, which can
be either true or false.

The minimum definition of a “BinaryControl” consists of:

 IoTCapability.i.Class = "BinaryControl"
 IoTCapability.i.BinaryControl.Type = ...
 IoTCapability.i.BinaryControl.Value = ...

The value can be changed either directly by a USP Set operation, or via The Toggle() command,
which corresponds to the behavior of a switch, changing the value to the other state.

V.4.2.2 LevelControl

October 2023 © The Broadband Forum. All rights reserved 253 of 275

The User Services Platform TR-369

The level controller capability allows a continuous change of a value within a predefined range.
Its capabilities are defined by these three mandatory Parameters:

• Unit - The unit used for the value
• MinValue - The minimum value the value can be set
• MaxValue - The maximum value the value can be set

Implementations have to provide the minimum and maximum values to allow the controller to
detect what values can be applied.

The minimum definition of a “LevelControl” consists of:

 IoTCapability.i.Class = "LevelControl"
 IoTCapability.i.LevelControl.Type = ...
 IoTCapability.i.LevelControl.Unit = ...
 IoTCapability.i.LevelControl.MinValue = ...
 IoTCapability.i.LevelControl.MaxValue = ...
 IoTCapability.i.LevelControl.Value = ...

The value can be changed either directly by a USP Set operation, or via the step commands.

If the StepUp() command and/or the StepDown() command are implemented, the StepValue
Parameter has to be implemented, which indicates the amount of change triggered by a step
command. If resulting value of a step command would exceed the defined range, the operation
does not result in a failure - instead, the result is set to the range limit value.

For example, if a temperature range is defined from 5.5 degC to 25 degC with a step value of 1
degC, a step down from 6 degC would result in 5.5 degC and not in 5 degC.

Additionally, if the lowest possible value is already set, a StepDown() will not change the cur-
rent value, since the defined minimum range would be exceeded. The same also applies to the
maximum value and StepUp() command.

V.4.2.3 EnumControl

The enumeration controller capability allows setting one of a set of predefined values. Examples
are mode selections, with more than two modes. If only two values exist, the binary controller
Object is preferred.

The minimum definition of an “EnumControl” consists of:

 IoTCapability.i.Class = "EnumControl"
 IoTCapability.i.EnumControl.Type = ...
 IoTCapability.i.EnumControl.ValidValues = <list of possible values>
 IoTCapability.i.EnumControl.Value = <current value>

The value can be changed either directly by a USP Set operation, or via the step commands.

The step commands will cycle through the value range, meaning that if the last valid value is
reached, the next StepUp() command will select the first value of the valid values and vice
versa for the StepDown() command. The valid values are stored in the Parameter ValidValues
as a comma-separated list; that order of the list will be followed by the step commands.

It is possible to implement only one of the step commands, if only one direction is needed.

October 2023 © The Broadband Forum. All rights reserved 254 of 275

The User Services Platform TR-369

V.4.3 Sensor Objects

Sensor Objects represent IoT capabilities that involve reading or reporting on a device or appli-
cation state. They include Binary Sensors, Level Sensors, and Enumerated Sensors, along with
support for thresholds and triggering events.

V.4.3.1 Binary Sensor

The binary sensor Object Instance supports different kinds of binary sensor operations:

• Simple binary state, e.g. a door or window state
• Threshold trigger, e.g. trigger a Carbon Dioxide Alarm if a certain threshold is exceeded.
• Repeated trigger with grace period, e.g. movement detector.

V.4.3.1.1 Simple binary state sensor

To model a simple sensor, which changes between two distinct states (e.g. a window or door
open/close sensor), only the Value Parameter is needed.

The minimum definition of a BinarySensor consists of:

 IoTCapability.i.Class = "BinarySensor"
 IoTCapability.i.BinarySensor.Type = ...
 IoTCapability.i.BinarySensor.Value = {true/false}

The values of true and false represent the two possible Value states. Each time the state
changes the value toggles.

For example, a motion sensor would be modeled as:

 IoTCapability.i.Class = "BinarySensor"
 IoTCapability.i.BinarySensor.Type = "MotionDetected"
 IoTCapability.i.BinarySensor.Value = true

Note that binary sensor types are meaningful for binary state behavior, e.g., “WindowOpen”
rather than “Window”.

V.4.3.1.2 Threshold trigger sensor

To model a sensor, which additionally triggers on a certain threshold, add the Sensitivity Pa-
rameter to the definition:

 IoTCapability.1.Class = "BinarySensor"
 IoTCapability.1.BinarySensor.Type = "CarbonDioxideDetected"
 IoTCapability.1.BinarySensor.Value = {true/false}
 IoTCapability.1.BinarySensor.Sensitivity = 50

With the Sensitivity Parameter, the threshold is controlled. As soon as the measured value
exceeds the threshold, the Value Parameter is set to true. As soon as the measured value goes
below the threshold the Value Parameter is set to false.

October 2023 © The Broadband Forum. All rights reserved 255 of 275

The User Services Platform TR-369

Figure 35: IoT threshold trigger sensitivity

The sensitivity value is a relative value in the range 0 to 100 percent. The exact meaning de-
pends on the implementation.

V.4.3.1.3 Trigger time control

If the sensor state, after being triggered, should stay active for a minimum period, the HoldTime
Parameter is used:

 IoTCapability.1.Class = "BinarySensor"
 IoTCapability.1.BinarySensor.Type = "CarbonDioxideDetected"
 IoTCapability.1.BinarySensor.Value = {true/false}
 IoTCapability.1.BinarySensor.Sensitivity = 50
 IoTCapability.1.BinarySensor.HoldTime = 5000

This figure shows the effect of the HoldTime Parameter on the resulting value:

Figure 36: IoT threshold trigger hold time

If the HoldTime Parameter is not implemented or is set to 0, the handling is disabled.

V.4.3.1.4 Repeated trigger with grace period

Some sensors might produce too many triggers, e.g. continuous movement, when only one trig-
ger in a specific time period is needed. To filter these the RestTime Parameter is used:

October 2023 © The Broadband Forum. All rights reserved 256 of 275

The User Services Platform TR-369

 IoTCapability.1.Class = "BinarySensor"
 IoTCapability.1.BinarySensor.Type = "CarbonDioxideDetected"
 IoTCapability.1.BinarySensor.Value = {true/false}
 IoTCapability.1.BinarySensor.Sensitivity = 50
 IoTCapability.1.BinarySensor.RestTime = 10000

With this setting, new trigger events are ignored for 10 seconds (10000 miliseconds) after the
first trigger has been detected, resulting in the following pattern:

Figure 37: IoT threshold trigger rest time

If the RestTime Parameter is not implemented or is set to 0, the handling is disabled.

V.4.3.1.5 Repeated trigger with minimum duration

To get readings with a minimum duration, combine rest and hold times:

 IoTCapability.1.Class = "BinarySensor"
 IoTCapability.1.BinarySensor.Type = "CarbonDioxideDetected"
 IoTCapability.1.BinarySensor.Value = {true/false}
 IoTCapability.1.BinarySensor.Sensitivity = 50
 IoTCapability.1.BinarySensor.HoldTime = 5000
 IoTCapability.1.BinarySensor.RestTime = 10000

Which results in the following pattern:

Figure 38: IoT threshold trigger minimum duration

October 2023 © The Broadband Forum. All rights reserved 257 of 275

The User Services Platform TR-369

V.4.3.2 Level Sensor

The LevelSensor Object provides a template for modeling devices that report various levels.
LevelSensor is used to reflect the functionality of a sensor that reports a level in units and sup-
ports different kinds of sensor operation:

• Level reading
• Additional Threshold trigger: e.g., a Battery Alarm is triggered.

V.4.3.2.1 Level reading

To model a level reading, the reading value and its unit are defined. The minimum definition of
a LevelSensor consists of:

 IoTCapability.i.Class = "LevelSensor"
 IoTCapability.i.LevelSensor.Type = ...
 IoTCapability.i.LevelSensor.Unit = ...
 IoTCapability.i.LevelSensor.Value = ...

For example, to show the remaining load of a battery in percent, this capability would have the
following values:

 IoTCapability.1.Class = "LevelSensor"
 IoTCapability.1.LevelSensor.Type = "Battery"
 IoTCapability.1.LevelSensor.Unit = "%"
 IoTCapability.1.LevelSensor.Value = 63"

With this definition, the remaining load is expressed in percent, here 63 percent. Since the unit
value is a decimal type it is also possible to specify fractions for the value:

 IoTCapability.1.Class = "LevelSensor"
 IoTCapability.1.LevelSensor.Type = "Battery"
 IoTCapability.1.LevelSensor.Unit = "%"
 IoTCapability.1.LevelSensor.Value = 63.26

This expresses a total remaining load of 63.26 percent.

V.4.3.2.2 Threshold trigger

In cases where not only the actual value is of interest, but also important to know if a prede-
fined threshold is reached or undershot, the LevelSensor Object can be extended with thresh-
old Parameters. Once the LowLevel or HighLevel Parameter is true, it will remain true until
the device is reset or the condition no longer exists. This will depend on the particular device.

Parameter Type R/W Description
LowLevel boolean R True means that the low level threshold is reached

or undershot.
LowLevelThreshold decimal R/W The defined low level value.
HighLevel boolean R True means that the high level threshold is reached

or exceeded.
HighLevelThreshold decimal R/W The defined high level value.

October 2023 © The Broadband Forum. All rights reserved 258 of 275

The User Services Platform TR-369

Table 17 – IoT LevelSensor threshold Parameters

When modeling a battery with a LevelSensor Object, an additional low level warning (Boolean)
may be supported along with a Low Level threshold that provides a setting for the warning. The
resulting Object looks like this:

 IoTCapability.1.Class = "LevelSensor"
 IoTCapability.1.LevelSensor.Type = "Battery"
 IoTCapability.1.LevelSensor.Unit = "%"
 IoTCapability.1.LevelSensor.LowLevelThreshold = 20
 IoTCapability.1.LevelSensor.Value = 19
 IoTCapability.1.LevelSensor.LowLevel = true

Note: For more complex scenarios, like having a grace period, the binary sensor Object can be used
instead of the LowLevel or HighLevel Threshold Parameters.

V.4.3.2.3 Multi Level Sensor

A MultiLevelSensor instance models sensors, which provide a set of related values with the
same unit.

The minimum definition of a “MultiLevelSensor” consists of:

 IoTCapability.i.Class = "MultiLevelSensor"
 IoTCapability.i.MultiLevelSensor.Type = ...
 IoTCapability.i.MultiLevelSensor.Unit = ...
 IoTCapability.i.MultiLevelSensor.Values = ...
 IoTCapability.1.MultiLevelSensor.ValueNames = ...

An example is a location reading consisting of the two values longitude and latitude in decimal
degree notation, which have to be read together:

 IoTCapability.1.Class = "MultiLevelSensor"
 IoTCapability.1.MultiLevelSensor.Type = "Location"
 IoTCapability.1.MultiLevelSensor.Unit = "deg"
 IoTCapability.1.MultiLevelSensor.Values = "48.1372056,11.57555"
 IoTCapability.1.MultiLevelSensor.ValueNames = "Latitude,Longitude"

This example uses the Parameter ValueNames to provide information about the individual value
meanings.

V.4.3.3 Enum Sensor

An EnumSensor instance provides a reading value from a predefined set of values. This allows
modeling of sensors, which can output discreet values from a predefined set.

The minimum definition of an “EnumSensor” consists of:

 IoTCapability.i.Class = "EnumSensor"
 IoTCapability.i.EnumSensor.Type = ...
 IoTCapability.i.EnumSensor.Unit = ...
 IoTCapability.i.EnumSensor.ValidValues = ...
 IoTCapability.i.EnumSensor.Value = ...

The ValidValues Parameter determines the set of values, which will be delivered by the sensor.

For example, a traffic light could be modeled as:

October 2023 © The Broadband Forum. All rights reserved 259 of 275

The User Services Platform TR-369

 IoTCapability.1.Class = "EnumSensor"
 IoTCapability.1.EnumSensor.Type = "X_<oui>_TrafficLight"
 IoTCapability.1.EnumSensor.ValidValues = "Red, Yellow, Green"
 IoTCapability.1.EnumSensor.Value = "Green"

V.5 Examples
This chapter gives several examples how to model IoT Devices.

V.5.1 Example: A/C Thermostat

This example shows an A/C Thermostat connected over Z-Wave as a proxied device of an IoT
Gateway:

Structure elements:

• IoTCapability.1 (EnumControl) : Operation Mode
• IoTCapability.2 (LevelControl) : Cool Temperature in range from 14 to 25 degC
• IoTCapability.3 (LevelControl) : Heat Temperature in range from 14 to 25 degC
• IoTCapability.4 (LevelControl) : Energy Saving Cool Temperature in range from 14 to 25 degC
• IoTCapability.5 (LevelControl) : Energy Saving Heat Temperature in range from 14 to 25 degC
• IoTCapability.6 (LevelSensor) : Current Temperature
• IoTCapability.7 (EnumControl) : Fan Mode Control
• IoTCapability.8 (EnumSensor) : Current Fan Operating State

Instantiated data model:

 ProxiedDevice.1.Type = "Thermostat"
 ProxiedDevice.1.Online = true
 ProxiedDevice.1.ProxyProtocol = "Z-Wave"

 ProxiedDevice.1.IoTCapabilityNumberOfEntries = 9

 ProxiedDevice.1.IoTCapability.1.Class = "EnumControl"
 ProxiedDevice.1.IoTCapability.1.EnumControl.Type = "ThermostatMode"
 ProxiedDevice.1.IoTCapability.1.EnumControl.Value = "Cool"
 ProxiedDevice.1.IoTCapability.1.EnumControl.ValidValues = "Heat, Cool,
 Energy_heat,
 Energy_cool, Off,
 Auto"

 ProxiedDevice.1.IoTCapability.2.Class = "LevelControl"
 ProxiedDevice.1.IoTCapability.2.LevelControl.Type = "Temperature"
 ProxiedDevice.1.IoTCapability.2.LevelControl.Description = "TargetCoolTemperature"
 ProxiedDevice.1.IoTCapability.2.LevelControl.Value = 17
 ProxiedDevice.1.IoTCapability.2.LevelControl.Unit = "degC"
 ProxiedDevice.1.IoTCapability.2.LevelControl.MinValue = 14
 ProxiedDevice.1.IoTCapability.2.LevelControl.MaxValue = 25

 ProxiedDevice.1.IoTCapability.3.Class = "LevelControl"
 ProxiedDevice.1.IoTCapability.3.LevelControl.Type = "Temperature"
 ProxiedDevice.1.IoTCapability.3.LevelControl.Description = "TargetHeatTemperature"
 ProxiedDevice.1.IoTCapability.3.LevelControl.Value = 21
 ProxiedDevice.1.IoTCapability.3.LevelControl.Unit = "degC"

October 2023 © The Broadband Forum. All rights reserved 260 of 275

The User Services Platform TR-369

 ProxiedDevice.1.IoTCapability.3.LevelControl.MinValue = 14
 ProxiedDevice.1.IoTCapability.3.LevelControl.MaxValue = 25

 ProxiedDevice.1.IoTCapability.4.Class = "LevelControl"
 ProxiedDevice.1.IoTCapability.4.LevelControl.Type = "Temperature"
 ProxiedDevice.1.IoTCapability.4.LevelControl.Description = "TargetEnergyCoolTemp"
 ProxiedDevice.1.IoTCapability.4.LevelControl.Value = 19
 ProxiedDevice.1.IoTCapability.4.LevelControl.Unit = "degC"
 ProxiedDevice.1.IoTCapability.4.LevelControl.MinValue = 14
 ProxiedDevice.1.IoTCapability.4.LevelControl.MaxValue = 25

 ProxiedDevice.1.IoTCapability.5.Class = "LevelControl"
 ProxiedDevice.1.IoTCapability.5.LevelControl.Type = "Temperature"
 ProxiedDevice.1.IoTCapability.5.LevelControl.Description = "TargetEnergyHeatTemp"
 ProxiedDevice.1.IoTCapability.5.LevelControl.Value = 19
 ProxiedDevice.1.IoTCapability.5.LevelControl.Unit = "degC"
 ProxiedDevice.1.IoTCapability.5.LevelControl.MinValue = 14
 ProxiedDevice.1.IoTCapability.5.LevelControl.MaxValue = 25

 ProxiedDevice.1.IoTCapability.6.Class = "LevelSensor"
 ProxiedDevice.1.IoTCapability.6.LevelSensor.Type = "Temperature"
 ProxiedDevice.1.IoTCapability.6.LevelSensor.Value = 19.5
 ProxiedDevice.1.IoTCapability.6.LevelSensor.Unit = "degC"

 ProxiedDevice.1.IoTCapability.7.Class = "EnumControl"
 ProxiedDevice.1.IoTCapability.7.EnumControl.Type = "FanMode"
 ProxiedDevice.1.IoTCapability.7.EnumControl.Value = "Low"
 ProxiedDevice.1.IoTCapability.7.EnumControl.ValidValues = "Auto_low, Low,
 Circulation, Off"

 ProxiedDevice.1.IoTCapability.8.Class = "EnumSensor"
 ProxiedDevice.1.IoTCapability.8.EnumSensor.Type = "OperatingState"
 ProxiedDevice.1.IoTCapability.8.EnumSensor.Value = "Cooling"
 ProxiedDevice.1.IoTCapability.8.EnumSensor.ValidValues =
 "Heating, Cooling,
 FanOnly, PendingHeat, PendingCool, VentEconomizer,
 AuxHeating, 2ndStageHeating, 2ndStageCooling,
 2ndStageAuxHeat, 3rdStageAuxHeat"

V.5.2 Example: Light with a dimmer and switch

This example shows a dimmable light connected over Z-Wave as proxied device to an IoT Gate-
way.

Structure elements:

• IoTCapability.1 (BinaryControl) : On/Off Switch, expressed as true and false value
• IoTCapability.2 (LevelControl) : Brightness control from 0% to 100%

Instantiated data model:

 ProxiedDevice.2.Type = "Light"
 ProxiedDevice.2.Online = "true"
 ProxiedDevice.2.ProxyProtocol = "Z-Wave"
 ProxiedDevice.2.Name = "GE DimMing Bulb"
 ProxiedDevice.2.IoTCapabilityNumberOfEntries = 2

October 2023 © The Broadband Forum. All rights reserved 261 of 275

The User Services Platform TR-369

 ProxiedDevice.2.IoTCapability.1.Class = "BinaryControl"
 ProxiedDevice.2.IoTCapability.1.BinaryControl.Type = "Switch"
 ProxiedDevice.2.IoTCapability.1.BinaryControl.Value = true

 ProxiedDevice.2.IoTCapability.2.Class = "LevelControl"
 ProxiedDevice.2.IoTCapability.2.LevelControl.Type = "Brightness"
 ProxiedDevice.2.IoTCapability.2.LevelControl.Value = 100
 ProxiedDevice.2.IoTCapability.2.LevelControl.Min = 0
 ProxiedDevice.2.IoTCapability.2.LevelControl.Max = 100
 ProxiedDevice.2.IoTCapability.2.LevelControl.Unit = "%"

V.5.3 Example: Fan

This example shows a simple fan connected over Z-Wave as proxied device to an IoT Gateway.

Structure elements:

• IoTCapability.1 (EnumControl) : Fan state

Instantiated data model:

 ProxiedDevice.3.Type = "Fan"
 ProxiedDevice.3.Online = "true"
 ProxiedDevice.3.ProxyProtocol = "Z-Wave"
 ProxiedDevice.3.name = "GE Fan"
 ProxiedDevice.3.IoTCapabilityNumberOfEntries = 1

 ProxiedDevice.2.IoTCapability.1.Class = "EnumControl"
 ProxiedDevice.3.IoTCapability.1.EnumControl.Type = "FanMode"
 ProxiedDevice.3.IoTCapability.1.EnumControl.Value = "Off"
 ProxiedDevice.3.IoTCapability.1.EnumControlValidValues =
 "Off, Low, Medium, High, On, Auto, Smart"

V.5.4 Example: Multi-Sensor strip with a common battery.

The sensors are inserted into the strip and may have their own power switch, battery, energy
consumption and manufacturer.

Instantiated data model:

 ProxiedDevice.4.Type = "SensorStrip"
 ProxiedDevice.4.Online = true
 ProxiedDevice.4.ProxyProtocol = "Z-Wave"
 ProxiedDevice.4.Name = "Insertable Sensor
Strip"
 ProxiedDevice.4.IoTCapabilityNumberOfEntries = 1
 ProxiedDevice.4.NodeNumberOfEntries = 2

 ProxiedDevice.4.IoTCapability.1.Class = "LevelSensor"
 ProxiedDevice.4.IoTCapability.1.LevelSensor.Value = 80
 ProxiedDevice.4.IoTCapability.1.LevelSensor.Unit = "%"
 ProxiedDevice.4.IoTCapability.1.LevelSensor.Type = "Battery"
 ProxiedDevice.4.IoTCapability.1.LevelSensor.LowLevelThreshold = 30
 ProxiedDevice.4.IoTCapability.1.LevelSensor.LowLevel = false

 ProxiedDevice.4.Node.1.Type = "Sensor"

October 2023 © The Broadband Forum. All rights reserved 262 of 275

The User Services Platform TR-369

 ProxiedDevice.4.Node.1.IoTCapabilityNumberOfEntries = 1

 ProxiedDevice.4.Node.1.IoTCapability.1.Class = "BinarySensor"
 ProxiedDevice.4.Node.1.IoTCapability.1.BinarySensor.HoldTime = 0
 ProxiedDevice.4.Node.1.IoTCapability.1.BinarySensor.Sensitivity = 5
 ProxiedDevice.4.Node.1.IoTCapability.1.BinarySensor.RestTime = 10000
 ProxiedDevice.4.Node.1.IoTCapability.1.BinarySensor.Value = false
 ProxiedDevice.4.Node.1.IoTCapability.1.BinarySensor.Type = "MotionDetected"
 ProxiedDevice.4.Node.1.IoTCapability.1.BinarySensor.LastSensingTime = 1573344000

V.5.5 Example: Ceiling Fan with integrated light

This example shows a ceiling fan with integrated light connected over Z-Wave as proxied de-
vice to an IoT Gateway.

Structure elements:

• IoTCapability.1 (BinaryControl) :
• Node.1 : Represents the light control
• .IoTCapability.1 (LevelControl) : Brightness control from 0% to 100%
• .IoTCapability.2 (BinaryControl) : On/Off Switch, expressed as true and false value
• Node.2 : Fan control
• .IoTCapability.1 (EnumControl) : Set fan state

Instantiated data model:

 ProxiedDevice.5.Type = "Fan"
 ProxiedDevice.5.Online = true
 ProxiedDevice.5.ProxyProtocol = "Z-Wave"
 ProxiedDevice.5.Name = "42'' Ceiling Fan"

 ProxiedDevice.5.IoTCapabilityNumberOfEntries = 1
 ProxiedDevice.5.NodeNumberOfEntries = 2

 ProxiedDevice.5.IoTCapability.1.Class = "BinaryControl"
 ProxiedDevice.5.IoTCapability.1.BinaryControl.Type = "Switch"
 ProxiedDevice.5.IoTCapability.1.BinaryControl.State = true

 ProxiedDevice.5.Node.1.Type = "Light"
 ProxiedDevice.5.Node.1.IoTCapabilityNumberOfEntries = 2

 ProxiedDevice.5.Node.1.IoTCapability.1.Class = "LevelControl"
 ProxiedDevice.5.Node.1.IoTCapability.1.LevelControl.Type = "Brightness"
 ProxiedDevice.5.Node.1.IoTCapability.1.LevelControl.Value = 99
 ProxiedDevice.5.Node.1.IoTCapability.1.LevelControl.MinValue = 0
 ProxiedDevice.5.Node.1.IoTCapability.1.LevelControl.MaxValue = 100
 ProxiedDevice.5.Node.1.IoTCapability.1.LevelControl.Unit = "%"

 ProxiedDevice.5.Node.1.IoTCapability.2.Class = "BinaryControl"
 ProxiedDevice.5.Node.1.IoTCapability.2.BinaryControl.Type = "Switch"
 ProxiedDevice.5.Node.1.IoTCapability.2.BinaryControl.Value = true

 ProxiedDevice.5.Node.2.Type = "Fan"
 ProxiedDevice.5.Node.2.IoTCapabilityNumberOfEntries = 1

October 2023 © The Broadband Forum. All rights reserved 263 of 275

The User Services Platform TR-369

 ProxiedDevice.5.Node.2.IoTCapability.1.Class = "EnumControl"
 ProxiedDevice.5.Node.2.IoTCapability.1.EnumControl.Type = "FanMode"
 ProxiedDevice.5.Node.2.IoTCapability.1.EnumControl.Value = "Off"
 ProxiedDevice.5.Node.2.IoTCapability.1.EnumControl.ValidValues = "Off, Low,
 Medium, High,
 Auto, Smart

V.5.6 Example: Power strip

This example shows a power strip with integrated power measurements connected over Z-Wave
as proxied device to an IoT Gateway.

Structure elements:

• IoTCapability.1 (BinaryControl) : On/Off Switch for complete power strip
• IoTCapability.2 (LevelSensor) : Total power reading of strip in KWh.
• Node.1 - 3: Each node represents a power outlet with:

• .IoTCapability.1 (BinaryControl) : On/Off Switch, expressed as true and false value
• .IoTCapability.2 (LevelSensor) : Current power reading of outlet in Watt.
• .IoTCapability.3 (LevelSensor) : Total used power reading of outlet in KWh.

Instantiated data model:

 ProxiedDevice.6.Type = "PowerStrip"
 ProxiedDevice.6.Online = "true"
 ProxiedDevice.6.ProxyProtocol = "Z-Wave"
 ProxiedDevice.6.Name = "3 Plug Strip"
 ProxiedDevice.6.IoTCapabilityNumberOfEntries = 2
 ProxiedDevice.6.NodeNumberOfEntries = 3

 ProxiedDevice.6.IoTCapability.1.Class = "BinaryControl"
 ProxiedDevice.6.IoTCapability.1.BinaryControl.Type = "Switch"
 ProxiedDevice.6.IoTCapability.1.BinaryControl.Value = true
 ProxiedDevice.6.IoTCapability.3.Class = "LevelSensor"
 ProxiedDevice.6.IoTCapability.3 Name = "Total Accumulated
Power"
 ProxiedDevice.6.IoTCapability.3.LevelSensor.Type = "Power"
 ProxiedDevice.6.IoTCapability.3.LevelSensor.Unit = "KWh"
 ProxiedDevice.6.IoTCapability.3.LevelSensor.Value = "2227,56"

 ProxiedDevice.6.Node.1.Type = "Switch"
 ProxiedDevice.6.Node.1.IoTCapabilityNumberOfEntries = 3
 ProxiedDevice.6.Node.1.IoTCapability.1.Class = "BinaryControl"
 ProxiedDevice.6.Node.1.IoTCapability.1.BinaryControl.Type = "Switch"
 ProxiedDevice.6.Node.1.IoTCapability.1.BinaryControl.State = true
 ProxiedDevice.6.Node.1.IoTCapability.2.Class = "LevelSensor"
 ProxiedDevice.6.Node.1.IoTCapability.2.LevelSensor.Type = "Power"
 ProxiedDevice.6.Node.1.IoTCapability.2.LevelSensor.Unit = "W"
 ProxiedDevice.6.Node.1.IoTCapability.2.LevelSensor.Value = 99
 ProxiedDevice.6.Node.1.IoTCapability.3.Class = "LevelSensor"
 ProxiedDevice.6.Node.1.IoTCapability.3 Name = "Accumulated Power"
 ProxiedDevice.6.Node.1.IoTCapability.3.LevelSensor.Type = "Power"
 ProxiedDevice.6.Node.1.IoTCapability.3.LevelSensor.Unit = "KWh"
 ProxiedDevice.6.Node.1.IoTCapability.3.LevelSensor.Value = 390.67

October 2023 © The Broadband Forum. All rights reserved 264 of 275

The User Services Platform TR-369

 ProxiedDevice.6.Node.2.Type = "Switch"
 ProxiedDevice.6.Node.2.IoTCapabilityNumberOfEntries = 3
 ProxiedDevice.6.Node.2.IoTCapability.1.Class = "BinaryControl"
 ProxiedDevice.6.Node.2.IoTCapability.1.BinaryControl.Type = "Switch"
 ProxiedDevice.6.Node.2.IoTCapability.1.BinaryControl.State = true
 ProxiedDevice.6.Node.2.IoTCapability.2.Class = "LevelSensor"
 ProxiedDevice.6.Node.2.IoTCapability.2.LevelSensor.Type = "Power"
 ProxiedDevice.6.Node.2.IoTCapability.2.LevelSensor.Unit = "W"
 ProxiedDevice.6.Node.2.IoTCapability.2.LevelSensor.Value = 76
 ProxiedDevice.6.Node.2.IoTCapability.3.Class = "LevelSensor"
 ProxiedDevice.6.Node.2.IoTCapability.3 Name = "Accumulated Power"
 ProxiedDevice.6.Node.2.IoTCapability.3.LevelSensor.Type = "Power"
 ProxiedDevice.6.Node.2.IoTCapability.3.LevelSensor.Unit = "KWh"
 ProxiedDevice.6.Node.2.IoTCapability.3.LevelSensor.Value = 1783.63

 ProxiedDevice.6.Node.3.Type = "Switch"
 ProxiedDevice.6.Node.3.IoTCapabilityNumberOfEntries = 3
 ProxiedDevice.6.Node.3.IoTCapability.1.Class = "BinaryControl"
 ProxiedDevice.6.Node.3.IoTCapability.1.BinaryControl.Type = "Switch"
 ProxiedDevice.6.Node.3.IoTCapability.1.BinaryControl.State = true
 ProxiedDevice.6.Node.3.IoTCapability.2.Class = "LevelSensor"
 ProxiedDevice.6.Node.3.IoTCapability.2.LevelSensor.Type = "Power"
 ProxiedDevice.6.Node.3.IoTCapability.2.LevelSensor.Unit = "W"
 ProxiedDevice.6.Node.3.IoTCapability.2.LevelSensor.Value = 0
 ProxiedDevice.6.Node.3.IoTCapability.3.Class = "LevelSensor"
 ProxiedDevice.6.Node.3.IoTCapability.3 Name = "Accumulated Power"
 ProxiedDevice.6.Node.3.IoTCapability.3.LevelSensor.Type = "Power"
 ProxiedDevice.6.Node.3.IoTCapability.3.LevelSensor.Unit = "KWh"
 ProxiedDevice.6.Node.3.IoTCapability.3.LevelSensor.Value = 53.26

V.5.7 Example: Battery powered radiator thermostat

This example shows the IoT model for a radiator thermostat with an integrated USP Agent,
which is directly controlled.

Structure elements:

• IoTCapability.1 (EnumControl): Operation Mode
• IoTCapability.2 (EnumControl): Auto/Manual Temperature setting
• IoTCapability.3 (EnumControl): Vacation Temperature setting
• IoTCapability.4 (LevelSensor) : Current Temperature
• IoTCapability.5 (LevelSensor): Valve position
• IoTCapability.6 (LevelSensor): Battery status

Note: All temperature settings are modeled as “EnumControl” to define a range between 4 and 23°
degC in steps of 0.5° or an “Off” value.

Instantiated data model:

 Device.DeviceInfo.Description = "Battery powered radiator
 thermostat"

 Device.IoTCapabilityNumberOfEntries = 6

October 2023 © The Broadband Forum. All rights reserved 265 of 275

The User Services Platform TR-369

 Device.IoTCapability.1.Class = "EnumControl
 Device.IoTCapability.1.EnumControl.Type = "ThermostatMode"
 Device.IoTCapability.1.EnumControl.ValidValues = "Off, Auto, Manual, Vacation"
 Device.IoTCapability.1.EnumControl.Value = "Auto" # current mode

 Device.IoTCapability.2.Class = "EnumControl
 Device.IoTCapability.2.Name = "Desired Temperature"
 Device.IoTCapability.2.EnumControl.Type = "TemperatureMode"
 Device.IoTCapability.2.EnumControl.ValidValues = "Off, 4, 4.5, 5.0, 5.5,
 6, 6.5, 7, 7.5, 8, 8.5,
 9, 9.5, 10, 10.5, 11,
 11.5, 12, 12.5, 13, 13.5,
 14, 14.5, 15.0, 15.5, 16,
 16.5, 17, 17.5, 18, 18.5,
 19, 19.5, 20, 20.5, 21,
 21.5, 22, 22.5, 23"
 Device.IoTCapability.2.EnumControl.Value = 19 # Requested temperature

 Device.IoTCapability.3.Class = "EnumControl"
 Device.IoTCapability.3.Name = "Vacation Temperature"
 Device.IoTCapability.3.EnumControl.Type = "TemperatureMode"
 Device.IoTCapability.3.EnumControl.ValidValues = "Off, 4, 4.5, 5.0, 5.5,
 6, 6.5, 7, 7.5, 8, 8.5,
 9, 9.5, 10, 10.5, 11,
 11.5, 12, 12.5, 13, 13.5,
 14, 14.5, 15.0, 15.5, 16,
 16.5, 17, 17.5, 18, 18.5,
 19, 19.5, 20, 20.5, 21,
 21.5, 22, 22.5, 23"
 Device.IoTCapability.3.EnumControl.Value = 12 # Requested temperature
 # during absence

 Device.IoTCapability.4.Class = "LevelSensor"
 Device.IoTCapability.4.Name = "Current Temperature"
 Device.IoTCapability.4.LevelSensor.Type = "Temperature"
 Device.IoTCapability.4.LevelSensor.Unit = "degC"
 Device.IoTCapability.4.LevelSensor.Value = 19.3 # Current temperature

 Device.IoTCapability.5.Class = "LevelSensor"
 Device.IoTCapability.5.Name = "Valve Position"
 Device.IoTCapability.5.LevelSensor.Type = "Position"
 Device.IoTCapability.5.LevelSensor.Unit = "%"
 Device.IoTCapability.5.LevelSensor.MinValue = 0
 Device.IoTCapability.5.LevelSensor.MaxValue = 100
 Device.IoTCapability.5.LevelSensor.Value = 16 # e.g. 16% valve
 # opening

 Device.IoTCapability.6.Class = "LevelSensor"
 Device.IoTCapability.6.Name = "Local Battery"
 Device.IoTCapability.6.LevelSensor.Type = "Battery"
 Device.IoTCapability.6.LevelSensor.Unit = "%"
 Device.IoTCapability.6.LevelSensor.MinValue = 0
 Device.IoTCapability.6.LevelSensor.MaxValue = 100
 Device.IoTCapability.6.LevelSensor.Value = 82 # e.g. 82% battery load

October 2023 © The Broadband Forum. All rights reserved 266 of 275

The User Services Platform TR-369

Appendix VI: Software Modularization and USP-Enabled
Applications Theory of Operation

This section discusses the Theory of Operation for Software Modularization and USP-Enabled
Applications within Connected Devices.

VI.1 Background
Operators and manufacturers of connected devices are moving away from monolithic firmware
images and toward a more modular approach to firmware architecture. The reasons for this
trend are mostly related to the ability to more quickly adapt to subscriber demands. By moving
to a more modularized software stack on the connected device, Operators are able to reduce the
current device firmware versioning lead times (typically 12 to 18 months) and introduce new
services at a much faster pace. To aid in this evolution, there needs to be a standard mechanism
to install/update/uninstall software modules (see Software Module Management appendix) and
there needs to be a standard communications mechanism that allows the services to expose
their own data model to both internal components and remote management entities as well as
consume other portions of the device’s data model (the purpose of this Appendix). A side-effect
of this software modularization is that certain individual services can also be updated indepen-
dently of the overall firmware, which helps in both enhancing already enabled services and per-
forming quick patches to address any security issues.

VI.2 Basic Solution Concepts
The following concepts are key components of the overall solution to enable connected device
software modularization by deploying USP-enabled applications.

• USP Broker:

• An entity that is responsible for exposing a consolidated set of Service Elements
for the device to external USP Controllers. This includes any data model elements
exposed by the USP Agent contained within the USP Broker as well as any data
model elements exposed by USP Services that have connected to the USP Broker.
Furthermore, the USP Broker serves as an intermediary for USP Services looking
to interact with data model elements that are maintained by other portions of the
device (the USP Broker or other USP Services).

• A USP Broker has both a USP Agent and a USP Controller embedded in it.
• The USP Agent serves as both the Agent that exposes the device’s management environ-

ment to the external world and the Agent to any USP Controllers that reside inside the de-
vice.

• The USP Controller serves as the Controller for all communications with USP services.
• For a USP Broker to recognize a USP Agent as a USP Service, it needs to register a portion

of its data model via the Register message.
• USP Service:

October 2023 © The Broadband Forum. All rights reserved 267 of 275

The User Services Platform TR-369

• An entity that is responsible for implementing a portion of the device’s overall
functionality. A USP Service exposes a set of Service Elements related to the func-
tionality that it is responsible for implementing. A USP Service could have a need
to interact with Service Elements that are outside of its functional domain,
whether that be Service Elements exposed by the USP Broker or some other USP
Service.

• A USP Service has a USP Agent and could have a USP Controller embedded in it.
• The USP Agent serves to expose the portion of the data model that is controlled by the USP

Service to the USP Broker. (data model provider).
• The USP Controller serves to retrieve/configure portions of the data model that are not di-

rectly exposed by the USP Service. (data model consumer).
• If a USP Service has both a USP Agent and a USP Controller then it is highly recommended

that they both use the same Endpoint ID.

• If the USP Agent and USP Controller don’t use the same Endpoint ID then the USP Bro-
ker won’t be able to correlate the two USP Endpoints as a single USP Service.

• Based on use cases (see below) not all USP Services will need a USP Controller.
• UNIX Domain Socket MTP:

• An internal MTP for communications within the device via UNIX Domain Sockets.
• The USP Broker will maintain a well-known UNIX Domain Socket facilitating an easy place

for Controllers within USP Services to connect.
• The USP Broker will maintain a well-known UNIX Domain Socket facilitating an easy place

for Agents within USP Services to connect.
• TLVs are used to encapsulate any headers (e.g. identification, length of full message) and

the USP Record itself in protobuf form.
• No authentication is needed as the installation of the software module itself will essentially

grant access (assumption that you should only install trusted applications).

• This can be enhanced in later versions.

VI.3 USP Service Use Cases
The following 3 use cases represent 3 unique types of USP Services.

1. Data Model Provider Application

1. Description: USP Service that exposes a data model
2. Example: A Software Module that implements a Speed Test
3. Components:

1. USP Agent (data model provider)
2. Integrated Data Model Application

1. Description: USP Service that both exposes a data model and needs to interact with de-
pendent portions of the data model being exposed by other entities

2. Example: A Software Module that implements a Network Topology View
3. Components:

October 2023 © The Broadband Forum. All rights reserved 268 of 275

The User Services Platform TR-369

1. USP Agent (data model provider)
2. USP Controller (data model consumer)

3. Cloud Application

1. Description: USP Service that resides in the cloud
2. Example: A Software Module that implements a cloud-based Wi-Fi mesh controller
3. Components: Could be any Agent/Controller combination as described in use case 1 or 2

The following image depicts the first 2 use cases where the USP Service number corresponds to
the use case number (i.e., USP Service 1 is a reflection of use case 1).

Figure 39: Software Modularization Use Cases

VI.4 USP Broker Responsibilities
A USP Broker generally has 3 main responsibilities:

• Track the Service Elements (portions of the data model) that the USP Services wish to expose
to other entities.

• Proxy USP communications internally within the device based on the Service Elements that
the USP Services have exposed.

October 2023 © The Broadband Forum. All rights reserved 269 of 275

The User Services Platform TR-369

• Provide a consolidated view of the device’s Service Elements to USP Controllers that reside
externally to the device.

When a USP Service is started, there will be a data model registration to inform the USP Broker
which Service Elements (portions of the data model) should be exposed for this USP Service.
This means that one of the key responsibilities of the USP Broker is to track the portion of the
data model associated with each USP Service, which is facilitated by receiving a Register USP
message from the USP Agent of the USP Service.

The USP Agent portion of the USP Broker provides a consolidated view of the device’s Service
Elements (including all Service Elements exposed by USP Services) to USP Controllers that are
external to the device, and those USP Controllers will send USP messages to the device that re-
quire the USP Broker to proxy either the entire USP message or a portion of the USP message to
one or more USP Services based on the Service Elements being exposed by the various USP Ser-
vices. These USP messages can come in many forms:

• A Get message to retrieve various portions of the data model that could be distributed across
multiple USP Services.

• A Set message to configure various portions of the data model that could be distributed across
multiple USP Services.

• An Add message to create and configure a new instance of a data model object, and while
each data model object is only served by a single USP Service, the Add message could be cre-
ating instances of multiple data model objects that could be distributed across multiple USP
Services.

• A Delete message to remove an existing instance of a data model object, and while each data
model object is only served by a single USP Service, the Delete message could be removing
instances from multiple data model objects that could be distributed across multiple USP Ser-
vices.

• An Operate message to execute a data model command, which would be handled by a single
USP Service.

The USP Agent portion of the USP Broker might also need to handle notifications and subscrip-
tions. These subscriptions might be created by either USP Controllers that are external to the
device or USP Services that are internal to the device, where they are looking for notifications
related to a part of the device’s Service Elements where some portions of that subscription
could be distributed across multiple USP Services. This means that the USP Agent portion of the
USP Broker might need to send USP Notify messages to external USP Controllers or internal
USP Controllers associated with USP Services that have created associated Subscriptions.

VI.5 Data Model Implications for USP Brokers and USP Services
VI.5.1 UNIX Domain Socket Data Model Table and the UDS MTP
Objects

The MTP table of the LocalAgent object represents the Message Transfer Protocols (MTPs) that
a USP Agent is currently using. So an MTP instance with a Protocol of UNIX Domain Socket

October 2023 © The Broadband Forum. All rights reserved 270 of 275

The User Services Platform TR-369

means that the USP Broker or USP Service has an Agent that is configured to use the UNIX Do-
main Socket MTP for communications within the device between the USP Broker and one or
more USP Services.

Each instance of the LocalAgent.Controller table represents a USP Controller that has access to
the associated USP Agent. For a USP Service that would be the USP Broker’s Controller, which
means that a USP Service will only have 1 instance of the LocalAgent.Controller table and the
UDS MTP object will contain a Reference to the UnixDomainSocket Object instance containing
the Path to the Controller portion of the USP Broker and be in a Connect Mode. For a USP Bro-
ker that would be the USP Service’s Controller (if it exists), which means that a USP Broker will
have an instance of the LocalAgent.Controller table for each USP Service that contains a Con-
troller. Each LocalAgent.Controller instance would have a UDS MTP object that contains a ref-
erence to the USPService Object instance containing details about the USP Service itself.

The LocalAgent.MTP.UDS instance will be auto-created based on the USP Broker or USP Ser-
vice supporting the UNIX Domain Socket MTP. The LocalAgent.Controller instances for a USP
Broker and USP Services will be automatically created with the UDS instance based on USP Ser-
vice startup procedures. Given that and the USP Broker has well-known paths for the Agent
and Controller UNIX Domain Socket MTP, the UDS objects are read-only.

Due to the lack of a discovery mechanism and to ensure a interoperable environment where 3rd
party USP Services can communicate with the USP Broker, it is highly recommended that the
USP Broker’s UNIX Domain Socket paths used for both its USP Agent and USP Controller be
preset as follows:

• USP Broker’s USP Agent: /var/run/usp/broker_agent_path
• USP Broker’s USP Controller: /var/run/usp/broker_controller_path

VI.5.2 USPService Data Model Table

The USP Broker should keep track of all USP Services it has an active connection to, which in-
cludes the following parameters:

• EndpointID: the Endpoint ID of the USP Agent within the USP Service
• DataModelPaths: a list of data model paths that have been registered by the USP Service
• DeploymentUnitRef: a reference to the Software Module Deployment Unit, if applicable
• HasController: a flag that indicates whether or not the USP Service has an embedded USP

Controller (NOTE: this can be determined when the USP Service’s USP Controller connects to
the USP Broker’s USP Agent if it is using the same Endpoint ID as the USP Service’s USP
Agent)

When a USP Service disconnects then the associated USPService table instance is removed.

VI.5.3 Example Data Models for a USP Broker and USP Services

Here’s an example set of data models for a USP Broker and 2 USP Services that matches the use
cases depicted in the Figure shown in the previous section.

October 2023 © The Broadband Forum. All rights reserved 271 of 275

The User Services Platform TR-369

USP Broker (NOTE: there isn’t a Controller.1 instance because USP Service 1 doesn’t have a
Controller):

UnixDomainSocket.1.Path = /var/run/usp/broker_agent_path
UnixDomainSocket.1.Mode = Listen
UnixDomainSocket.2.Path = /var/run/usp/broker_controller_path
UnixDomainSocket.2.Mode = Listen
LocalAgent.MTP.1.UDS.UnixDomainSocketRef = UnixDomainSocket.1
LocalAgent.Controller.2.MTP.1.UDS.UnixDomainSocketRef = UnixDomainSocket.1
LocalAgent.Controller.2.MTP.1.UDS.USPServiceRef = USPService.2
USPService.1.EndpointID = doc::Service1
USPService.1.DataModelPaths = PathA, PathB, PathC
USPService.1.DeploymentUnitRef = SoftwareModules.DeploymentUnit.1
USPService.1.HasController = false
USPService.2.EndpointID = doc::Service2
USPService.2.DataModelPaths = PathX, PathY, PathZ
USPService.2.DeploymentUnitRef = SoftwareModules.DeploymentUnit.2
USPService.2.HasController = true

USP Service 1 (NOTE: USP Service 1 doesn’t have a Controller, so there isn’t a Controller in-
stance in the USP Broker for this USP Service):

UnixDomainSocket.2.Path = /var/run/usp/broker_controller_path
UnixDomainSocket.2.Mode = Connect
LocalAgent.MTP.1.UDS.UnixDomainSocketRef = UnixDomainSocket.2
LocalAgent.Controller.1.MTP.1.UDS.UnixDomainSocketRef = UnixDomainSocket.2
LocalAgent.Controller.1.MTP.1.UDS.USPServiceRef = <empty>

USP Service 2 (has both an Agent and a Controller):

UnixDomainSocket.1.Path = /var/run/usp/broker_agent_path
UnixDomainSocket.1.Mode = Connect
UnixDomainSocket.2.Path = /var/run/usp/broker_controller_path
UnixDomainSocket.2.Mode = Connect
LocalAgent.MTP.1.UDS.UnixDomainSocketRef = UnixDomainSocket.2
LocalAgent.Controller.1.MTP.1.UDS.UnixDomainSocketRef = UnixDomainSocket.2
LocalAgent.Controller.1.MTP.1.UDS.USPServiceRef = <empty>

VI.6 Startup and Shutdown Procedures
VI.6.1 Device Boot Procedures

When the device boots up, the USP Broker comes online. The USP Broker exposes both a USP
Agent (communicating externally and internally; listening on a well-known internal path for
communications via the Unix Domain Socket MTP) and an internal USP Controller (listening on
a well-known internal path for communications via the Unix Domain Socket MTP). The USP
Agent communicates externally via one or more of the USP defined MTPs (MQTT, STOMP, or
WebSocket). The USP Agent also communicates internally via the Unix Domain Socket MTP
and begins to listen on a well-known internal path. The USP Controller communicates inter-
nally via the Unix Domain Socket MTP and begins to listen on a well-known internal path.
 Each installed and enabled USP Service also starts up - see the next section.

VI.6.2 USP Service Startup Procedures

Use Case 1 - Data Model Provider Application:

October 2023 © The Broadband Forum. All rights reserved 272 of 275

The User Services Platform TR-369

As the USP Service starts up, it begins to connect to the USP Broker…

• The Agent within the USP Service initiates the UNIX Domain Socket connection to the Con-
troller on the USP Broker and the well-known internal path

• Once the UNIX Domain Socket is connected, the USP Service’s Agent will initiate the UNIX
Domain Socket MTP Handshake mechanism

• Once the USP Broker’s Controller receives the UNIX Domain Socket MTP Handshake mes-
sage, it will respond with its own Handshake message

• Once the UNIX Domain Socket MTP Handshake mechanism is successfully completed, the
Agent within the USP Service sends an empty UnixDomainSocketConnectRecord

• After sending the empty UnixDomainSocketConnectRecord, the Agent within the USP Ser-
vice sends a Register message to the Controller in the USP Broker that details the portion of
the data model that is being exposed by the USP Service.

Use Case 2 - Integrated Data Model Application:

As the USP Service starts up, it begins to connect to the USP Broker…

• The Agent within the USP Service initiates the UNIX Domain Socket connection to the Con-
troller on the USP Broker and the well-known internal path

• Once the UNIX Domain Socket is connected, the USP Service’s Agent will initiate the UNIX
Domain Socket MTP Handshake mechanism

• Once the USP Broker’s Controller receives the UNIX Domain Socket MTP Handshake mes-
sage, it will respond with its own Handshake message

• Once the UNIX Domain Socket MTP Handshake mechanism is successfully completed, the
Agent within the USP Service sends an empty UnixDomainSocketConnectRecord

• After sending the empty UnixDomainSocketConnectRecord, the Agent within the USP Ser-
vice sends a Register message to the Controller in the USP Broker that details the portion of
the data model that is being exposed by the USP Service.

• The Controller within the USP Service initiates the UNIX Domain Socket connection to the
Agent on the USP Broker and the well-known internal path

• Once the UNIX Domain Socket is connected, the USP Service’s Controller will initiate the
UNIX Domain Socket MTP Handshake mechanism

• Once the USP Broker’s Agent receives the UNIX Domain Socket MTP Handshake message,
it will respond with its own Handshake message

• Once the UNIX Domain Socket MTP Handshake mechanism is successfully completed, the
Agent within the USP Broker sends an empty UnixDomainSocketConnectRecord

• Once the USP Service identifies that it is connected to the USP Broker, the USP Service’s
Controller can issue a GSDM to retrieve portions of the USP Broker’s supported data model
that it might need to interact with

Use Case 3 - Cloud Application:

Note: One of the key tenets of USP was that multiple MTPs were defined not for general prefer-
ences but because each of them serves a different kind of use case. So when we define a new

October 2023 © The Broadband Forum. All rights reserved 273 of 275

The User Services Platform TR-369

use case (like this one), it is certainly conceivable that some MTPs might not be appropriate. In
this case, the WebSocket MTP is less appropriate, because it would require 2 socket connections
to a WebSocket server.

As the USP Service starts up, it begins to connect to the USP Broker…

• The Cloud USP Service establishes a connection to the STOMP/MQTT Broker based on the
Agent’s data model (STOMP.Connection / MQTT.Client)

• The Agent within the Cloud USP Service send a STOMP/MQTT Connect Record to the
Controller of the USP Broker

• After sending the appropriate Connect Record, the Agent within the USP Service sends a
Register message to the Controller in the USP Broker that details the portion of the data
model that is being exposed by the USP Service.

• The USP Broker establishes a connection to the STOMP/MQTT Broker based on the Agent’s
data model (STOMP.Connection / MQTT.Client)

• Note: The USP Controller will need to configure the USP Broker to communicate with the
Cloud USP Service by setting up the associated MTP connection details.

• The Agent within the USP Broker sends a STOMP/MQTT Connect Record to the Controller
of the Cloud USP Service

• Note: This looks just like any other external USP Controller that is configured within the
USP Broker’s Agent.

• Once the Controller within the Cloud USP Service receives the appropriate Connect Record,
the Cloud USP Service’s Controller can issue a GSDM to retrieve portions of the USP Bro-
ker’s supported data model that it might need to interact with

VI.6.3 USP Service Shutdown Procedures

When a USP Service terminates (either gracefully by sending a Disconnect Record or abruptly
by closing the UNIX Domain Socket connection), the USP Broker will remove the portion of the
data model that was being exposed for the given USP Service.

VI.7 USP Services and Software Modules
USP Services have a rough correlation to Software Modules and the Software Module Manage-
ment concepts defined within USP. This means that the installation of a Software Module might
cause a USP Service to come into existence, and that the removal of a Software Module might
cause a USP Service to cease to exist. That being said, not all Software Modules will contain a
USP Service and not all USP Services will be part of a Software Module.

If the USP Service includes a Controller, its access to the data model will be subject to the per-
missions described in Role Based Access Control (RBAC). The Roles which the Service needs in
order to function at all, and the Roles which are not essential but would enable the Service to
offer more functionality, can be included in the InstallDU() command using the
RequiredRoles and OptionalRoles arguments respectively; these arguments can also be in-
cluded in the Update() command if needed. The AvailableRoles parameter of the Execution

October 2023 © The Broadband Forum. All rights reserved 274 of 275

The User Services Platform TR-369

Environment into which the Service is being installed lists the Roles which are available to Ser-
vices according to the security policy of the EE.

Note: Special care needs to be taken when processing requests to create a new EE or to change
the AvailableRoles of an existing EE, for example to prevent a Controller from creating an EE
with Roles which it does not itself have and thereby enabling privilege escalation.

Once the Controller has connected to the USP Broker, a reference to the resulting instance of
LocalAgent.Controller will be exposed in parameter InternalController of the Deployment
Unit.

VI.7.1 Installing a Software Module

Installing a Software Module that contains a USP Service will cause the USP Service to startup
(see VI.6.2) once the Software Module is installed and running.

VI.7.2 Updating a Software Module

Updating a Software Module that contains a USP Service will cause the USP Service to be
stopped (see VI.6.3) and then restarted (see “USP Service Startup Procedures”) once the Software
Module is updated and running once again.

VI.7.3 Deleting a Software Module

Deleting a Software Module that contains a USP Service will cause the USP Service to be re-
moved (see VI.6.3).

October 2023 © The Broadband Forum. All rights reserved 275 of 275

	1 Introduction
	1.1 Executive Summary
	1.2 Purpose and Scope
	1.2.1 Purpose
	1.2.2 Scope

	1.3 References and Terminology
	1.3.1 Conventions
	1.3.2 References

	1.4 Definitions
	1.5 Abbreviations
	1.6 Specification Impact
	1.6.1 Energy efficiency
	1.6.2 Security
	1.6.3 Privacy

	2 Architecture
	2.1 Endpoints
	2.1.1 Agents
	2.1.2 Controllers

	2.2 Endpoint Identifier
	2.2.1 Use of authority-scheme and authority-id
	2.2.2 Use of instance-id

	2.3 Service Elements
	2.4 Data Models
	2.4.1 Instantiated Data Model
	2.4.2 Supported Data Model
	2.4.3 Objects
	2.4.3.1 Single-Instance Objects
	2.4.3.2 Multi-Instance Objects

	2.4.4 Parameters
	2.4.5 Commands
	2.4.6 Events

	2.5 Path Names
	2.5.1 Relative Paths
	2.5.2 Using Instance Identifiers in Path Names
	2.5.2.1 Addressing by Instance Number
	2.5.2.2 Addressing by Unique Key

	2.5.3 Searching
	2.5.4 Searching with Expressions
	2.5.4.0.1 Search Expression Examples

	2.5.5 Searching by Wildcard

	2.6 Other Path Decorators
	2.6.1 Reference Following
	2.6.1.1 List of References
	2.6.1.2 Search Expressions and Reference Following

	2.6.2 Operations and Command Path Names
	2.6.3 Event Path Names

	2.7 Data Model Path Grammar
	2.7.1 BNF Diagrams for Instantiated Data Model
	2.7.2 BNF Diagrams for Supported Data Model

	3 Discovery and Advertisement
	3.1 Controller Information
	3.2 Required Agent Information
	3.3 Use of DHCP for Acquiring Controller Information
	3.3.1 DHCP Options for Controller Discovery

	3.4 Use of DHCP for Exchanging GatewayInfo
	3.4.1 Exchanging DHCP Options
	3.4.2 DHCP Encapsulated Vendor-Specific Option-Data fields for
	3.4.3 DHCP Encapsulated Vendor-Specific Option-Data fields for

	3.5 Using mDNS
	3.6 Using DNS
	3.7 DNS-SD Records
	3.7.1 IANA-Registered USP Service Names
	3.7.2 Example Controller Unicast DNS-SD Resource Records
	3.7.3 Example Agent Multicast DNS-SD Resource Records
	3.7.4 Example Controller Multicast DNS-SD Resource Records

	3.8 Using the SendOnBoardRequest() operation and OnBoardRequest

	4 Message Transfer Protocols
	4.1 Generic Requirements
	4.1.1 Supporting Multiple MTPs
	4.1.2 Securing MTPs
	4.1.3 USP Record Encapsulation
	4.1.3.1 Record Definition
	4.1.3.1.1 NoSessionContextRecord fields
	4.1.3.1.2 SessionContextRecord fields
	4.1.3.1.3 WebSocketConnectRecord fields
	4.1.3.1.4 MQTTConnectRecord fields
	4.1.3.1.5 STOMPConnectRecord fields
	4.1.3.1.6 UDSConnectRecord fields
	4.1.3.1.7 DisconnectRecord fields

	4.1.4 USP Record Errors
	4.1.5 Connect and Disconnect Record Types

	4.2 CoAP Binding (OBSOLETED)
	4.2.1 Mapping USP Endpoints to CoAP URIs
	4.2.2 Mapping USP Records to CoAP Messages
	4.2.2.1 Handling CoAP Request Failures

	4.2.3 MTP Message Encryption

	4.3 WebSocket Binding
	4.3.1 Mapping USP Endpoints to WebSocket URIs
	4.3.2 Handling of the WebSocket Session
	4.3.2.1 Mapping USP Records to WebSocket Messages

	4.3.3 Handling of WebSocket Frames
	4.3.3.1 Handling Failures to Deliver USP Records
	4.3.3.2 Keeping the WebSocket Session Alive
	4.3.3.3 WebSocket Session Retry

	4.3.4 MTP Message Encryption

	4.4 STOMP Binding
	4.4.1 Handling of the STOMP Session
	4.4.1.1 Connecting a USP Endpoint to the STOMP Server
	4.4.1.2 Handling the STOMP Heart Beat Mechanism

	4.4.2 Mapping USP Endpoints to STOMP Destinations
	4.4.2.1 Subscribing a USP Endpoint to a STOMP Destination

	4.4.3 Mapping USP Records to STOMP Frames
	4.4.3.1 Handling Errors
	4.4.3.2 Handling Other STOMP Frames

	4.4.4 Discovery Requirements
	4.4.5 STOMP Server Requirements
	4.4.6 MTP Message Encryption

	4.5 MQTT Binding
	4.5.1 Connecting a USP Endpoint to the MQTT Server
	4.5.1.1 CONNECT Flags and Properties
	4.5.1.2 Keep Alive

	4.5.2 Subscribing to MQTT Topics
	4.5.3 Sending the USP Record in a PUBLISH Packet Payload
	4.5.4 Handling Errors
	4.5.5 Handling Other MQTT Packets
	4.5.6 Discovery Requirements
	4.5.7 MQTT Server Requirements
	4.5.8 MTP Message Encryption

	4.6 UNIX Domain Socket Binding
	4.6.1 Handling UNIX Domain Socket Connections
	4.6.1.1 Establishing a UNIX Domain Socket Connection
	4.6.1.2 Retrying a UNIX Domain Socket Connection
	4.6.1.3 Sending a Message over a UNIX Domain Socket

	4.6.2 Handshaking with UNIX Domain Sockets
	4.6.2.1 Handling Failures to Handshake

	4.6.3 Sending USP Records across UNIX Domain Sockets
	4.6.3.1 Handling Failures to Deliver USP Records

	4.6.4 MTP Message Encryption
	4.6.5 Handling Other UNIX Domain Socket Failures
	4.6.6 Error Handling

	5 Message Encoding
	5.1 Parameter and Argument Value Encoding

	6 End to End Message Exchange
	6.1 Exchange of USP Records within an E2E Session Context
	6.1.1 Establishing an E2E Session Context
	6.1.1.1 Session Context Expiration
	6.1.1.2 Exhaustion of Sequence Identifiers
	6.1.1.3 Failure Handling in the Session Context

	6.1.2 USP Record Exchange
	6.1.2.1 USP Record Transmission
	6.1.2.2 Payload Security within the Session Context
	6.1.2.3 USP Record Reception
	6.1.2.3.1 Failure Handling of Received USP Records Within a

	6.1.2.4 USP Record Retransmission

	6.1.3 Guidelines for Handling Session Context Restarts
	6.1.4 Segmented Message Exchange
	6.1.4.1 SAR function algorithm
	6.1.4.1.1 Originating USP Endpoint
	6.1.4.1.2 Receiving Endpoint

	6.1.4.2 Segmentation Examples

	6.1.5 Handling Duplicate USP Records

	6.2 Exchange of USP Records without an E2E Session Context
	6.2.1 Failure Handling of Received USP Records Without a Session

	6.3 Validating the Integrity of the USP Record
	6.3.1 Using the Signature Method to Validate the Integrity of USP
	6.3.2 Using TLS to Validate the Integrity of USP Records

	6.4 Secure Message Exchange
	6.4.1 TLS Payload Encapsulation
	6.4.1.1 Session Handshake
	6.4.1.2 Authentication

	7 Messages
	7.1 Encapsulation in a USP Record
	7.2 Requests, Responses and Errors
	7.2.1 Handling Duplicate Messages
	7.2.2 Handling Search Expressions
	7.2.3 Example Message Flows

	7.3 Message Structure
	7.3.1 The USP Message
	7.3.2 Message Header
	7.3.2.1 Message Header Fields

	7.3.3 Message Body
	7.3.3.1 Message Body Fields
	7.3.3.2 Request Fields
	7.3.3.3 Response Fields
	7.3.3.4 Error Fields
	7.3.3.4.1 ParamError Fields

	7.4 Creating, Updating, and Deleting Objects
	7.4.1 Selecting Objects and Parameters
	7.4.2 Unique Key Immutability
	7.4.3 Using Allow Partial and Required Parameters
	7.4.3.1 Search Paths and allow_partial in Set

	7.4.4 The Add Message
	7.4.4.1 Add Example
	7.4.4.2 Add Request Fields
	7.4.4.2.1 CreateObject Fields
	7.4.4.2.1.1 CreateParamSetting Fields

	7.4.4.3 Add Response Fields
	7.4.4.3.1 CreatedObjectResult Fields
	7.4.4.3.1.1 OperationStatus Fields
	7.4.4.3.1.2 OperationFailure Fields
	7.4.4.3.1.3 Operation Success Fields
	7.4.4.3.1.4 ParameterError Fields

	7.4.4.4 Add Message Supported Error Codes

	7.4.5 The Set Message
	7.4.5.1 Set Example
	7.4.5.2 Set Request Fields
	7.4.5.2.1 UpdateObject Fields
	7.4.5.2.1.1 UpdateParamSetting Fields

	7.4.5.3 Set Response
	7.4.5.3.1 UpdatedObjectResult Fields
	7.4.5.3.1.1 OperationStatus Fields
	7.4.5.3.1.2 OperationFailure Fields
	7.4.5.3.1.3 UpdatedInstanceFailure Fields
	7.4.5.3.1.4 ParameterError Fields
	7.4.5.3.1.5 OperationSuccess Fields
	7.4.5.3.1.6 UpdatedInstanceResult Fields
	7.4.5.3.1.7 ParameterError Fields

	7.4.5.4 Set Message Supported Error Codes

	7.4.6 The Delete Message
	7.4.6.1 Delete Example
	7.4.6.2 Delete Request Fields
	7.4.6.3 Delete Response Fields
	7.4.6.3.1 DeletedObjectResult Fields
	7.4.6.3.1.1 OperationStatus Fields
	7.4.6.3.1.2 OperationFailure Fields
	7.4.6.3.1.3 OperationSuccess Fields
	7.4.6.3.1.4 UnaffectedPathError Fields

	7.4.6.4 Delete Message Supported Error Codes

	7.5 Reading an Agent’s State and Capabilities
	7.5.1 The Get Message
	7.5.1.1 Get Examples
	7.5.1.2 Get Request Fields
	7.5.1.3 Get Response Fields
	7.5.1.3.1 RequestedPathResult Field
	7.5.1.3.1.1 ResolvedPathResult Fields

	7.5.1.4 Get Message Supported Error Codes

	7.5.2 The GetInstances Message
	7.5.2.1 GetInstances Examples
	7.5.2.2 GetInstances Request Fields
	7.5.2.3 GetInstances Response Fields
	7.5.2.3.0.1 CurrInstance Fields

	7.5.2.4 GetInstances Error Codes

	7.5.3 The GetSupportedDM Message
	7.5.3.1 GetSupportedDM Examples
	7.5.3.2 GetSupportedDM Request Fields
	7.5.3.3 GetSupportedDMResp Fields
	7.5.3.3.1 RequestedObjectResult Fields
	7.5.3.3.1.1 SupportedObjectResult Fields
	7.5.3.3.1.2 SupportedParamResult Fields
	7.5.3.3.1.3 SupportedCommandResult Fields
	7.5.3.3.1.4 SupportedEventResult

	7.5.3.4 GetSupportedDM Error Codes

	7.5.4 GetSupportedProtocol
	7.5.4.1 GetSupportedProtocol Request Fields
	7.5.4.2 GetSupportedProtocolResponse Fields

	7.5.5 The Register Message
	7.5.5.1 Register Examples
	7.5.5.2 Register Request Fields
	7.5.5.2.1 RegistrationPath Fields

	7.5.5.3 Register Response Fields
	7.5.5.4 RegisteredPathResult Fields
	7.5.5.4.1 OperationStatus Fields
	7.5.5.4.2 OperationFailure Fields
	7.5.5.4.3 OperationSuccess Fields

	7.5.5.5 Register Message Supported Error Codes

	7.5.6 The Deregister Message
	7.5.6.1 Deregister Examples
	7.5.6.2 Deregister Request Fields
	7.5.6.3 Deregister Response Fields
	7.5.6.4 DeregisteredPathResult Fields
	7.5.6.4.1 OperationStatus Fields
	7.5.6.4.2 OperationFailure Fields
	7.5.6.4.3 OperationSuccess Fields

	7.5.6.5 Deregister Message Supported Error Codes

	7.6 Notifications and Subscription Mechanism
	7.6.1 Using Subscription Objects
	7.6.1.1 ReferenceList Parameter
	7.6.1.2 TriggerAction Parameter

	7.6.2 Responses to Notifications and Notification Retry
	7.6.3 Notification Types
	7.6.3.1 ValueChange
	7.6.3.2 ObjectCreation and ObjectDeletion
	7.6.3.3 OperationComplete
	7.6.3.4 OnBoardRequest
	7.6.3.5 Event

	7.6.4 The Notify Message
	7.6.4.1 Notify Examples
	7.6.4.2 Notify Request Fields
	7.6.4.2.1 Event Fields
	7.6.4.2.2 ValueChange Fields
	7.6.4.2.3 ObjectCreation Fields
	7.6.4.2.4 ObjectDeletion Fields
	7.6.4.2.5 OperationComplete Fields
	7.6.4.2.5.1 OutputArgs Fields
	7.6.4.2.5.2 CommandFailure Fields

	7.6.4.2.6 OnBoardRequest Fields

	7.6.4.3 Notify Response Fields
	7.6.4.4 Notify Error Codes

	7.7 Defined Operations Mechanism
	7.7.1 Synchronous Operations
	7.7.2 Asynchronous Operations
	7.7.2.1 Persistance of Asynchronous Operations

	7.7.3 Operate Requests on Multiple Objects
	7.7.4 Event Notifications for Operations
	7.7.5 Concurrent Operations
	7.7.6 Operate Examples
	7.7.7 The Operate Message
	7.7.7.1 Operate Request Fields
	7.7.7.2 Operate Response Fields
	7.7.7.2.1 OperationResult Fields
	7.7.7.2.1.1 Using req_obj_path
	7.7.7.2.1.2 OutputArgs Fields
	7.7.7.2.1.3 CommandFailure Fields

	7.7.7.3 Operate Message Error Codes

	7.8 Error Codes
	7.8.1 Vendor Defined Error Codes

	8 Authentication and Authorization
	8.1 Authentication
	8.2 Role Based Access Control (RBAC)
	8.3 Trusted Certificate Authorities
	8.4 Trusted Brokers
	8.5 Self-Signed Certificates
	8.6 Agent Authentication
	8.7 Challenge Strings and Images
	8.8 Analysis of Controller Certificates
	8.8.1 Receiving a USP Record
	8.8.2 Sending a USP Record
	8.8.3 Checking a Certificate
	8.8.4 Using a Trusted Broker

	8.9 Theory of Operations
	8.9.1 Data Model Elements
	8.9.2 Roles (Access Control)
	8.9.2.1 Role Definition
	8.9.2.2 Special Roles
	8.9.2.3 A Controller’s Role
	8.9.2.4 Role Associated with a Credential or Challenge

	8.9.3 Assigning Controller Roles
	8.9.4 Controller Certificates and Certificate Validation
	8.9.5 Challenges
	8.9.6 Certificate Management
	8.9.7 Application of Modified Parameters

	Annex A: Bulk Data Collection
	A.1 Introduction
	A.2 HTTP Bulk Data Collection
	A.2.1 Enabling HTTP/HTTPS Bulk Data Communication
	A.2.2 Use of the URI Query Parameters
	A.2.3 Use of HTTP Status Codes
	A.2.3.1 HTTP Retry Mechanism
	A.2.3.2 Processing of Content for Failed Report Transmissions

	A.2.4 Use of TLS and TCP
	A.2.5 Bulk Data Encoding Requirements

	A.3 MQTT Bulk Data Collection
	A.3.1 Enabling MQTT Bulk Data Communication
	A.3.2 Determining Successful Transmission
	A.3.2.1 Retrying Failed Transmissions
	A.3.2.2 Processing of Content for Failed Report Transmissions

	A.3.3 Bulk Data Encoding Requirements

	A.4 USPEventNotif Bulk Data Collection
	A.4.1 Enabling USPEventNotif Bulk Data Communication
	A.4.2 Determining Successful Transmission
	A.4.2.1 Retrying Failed Transmissions

	A.4.3 Bulk Data Encoding Requirements

	A.5 Using Wildcards to Reference Object Instances in the Report
	A.6 Using Alternative Names in the Report
	A.6.0.1 Using Object Instance Wildcards and Parameter Partial

	A.7 Encoding of Bulk Data
	A.7.1 Encoding of CSV Bulk Data
	A.7.1.1 Defining the Report Layout of the Encoded Bulk Data
	A.7.1.2 Layout of Content for Failed Report Transmissions
	A.7.1.3 CSV Encoded Report Examples
	A.7.1.3.1 CSV Encoded Reporting Using ParameterPerRow Report
	A.7.1.3.2 CSV Encoded Reporting Using ParameterPerColumn

	A.7.2 Encoding of JSON Bulk Data
	A.7.2.1 Defining the Report Layout of the Encoded Bulk Data
	A.7.2.2 Layout of Content for Failed Report Transmissions
	A.7.2.3 Using the ObjectHierarchy Report Format
	A.7.2.4 Using the NameValuePair Report Format
	A.7.2.5 Translating Data Types
	A.7.2.6 JSON Encoded Report Example

	Appendix I: Software Module Management
	I.1 Lifecycle Management
	I.2 Software Modules
	I.2.1 Deployment Units
	I.2.1.1 UUID Generation

	I.2.2 Execution Units

	I.3 Execution Environment Concepts
	I.3.1 Managing Execution Environments
	I.3.2 Application Data Volumes
	I.3.3 Signing Deployment Units

	I.4 Fault Model
	I.4.1 DU Faults
	I.4.1.1 Install Faults
	I.4.1.2 Update Faults
	I.4.1.3 Uninstall Faults

	I.4.2 EU Faults

	Appendix II: Firmware Management of Devices with USP Agents
	II.1 Getting the firmware image onto the device
	II.2 Using multiple firmware images
	II.2.1 Switching firmware images
	II.2.2 Performing a delayed firmware upgrade
	II.2.3 Recovering from a failed upgrade

	Appendix III: Device Proxy
	Appendix IV: Communications Proxying
	IV.1 Proxying Building Block Functions
	IV.2 Discovery Proxy
	IV.3 Connectivity Proxy
	IV.4 Message Transfer Protocol (MTP) Proxy
	IV.4.1 MTP Header Translation Algorithms
	IV.4.2 CoAP / STOMP MTP Proxy Example Message Flow

	IV.5 USP to Non-USP Proxy

	Appendix V: IoT Data Model Theory of Operation
	V.1 Introduction
	V.2 IoT data model overview
	V.2.1 IoT Capability table
	V.2.2 Node Object table

	V.3 Architecture mappings
	V.3.1 Individual IoT devices
	V.3.2 Proxied IoT devices

	V.4 IoT data model Object details
	V.4.1 Common capability Parameters
	V.4.1.1 Type definition
	V.4.1.2 Unit definition

	V.4.2 Control Objects
	V.4.2.1 BinaryControl
	V.4.2.2 LevelControl
	V.4.2.3 EnumControl

	V.4.3 Sensor Objects
	V.4.3.1 Binary Sensor
	V.4.3.1.1 Simple binary state sensor
	V.4.3.1.2 Threshold trigger sensor
	V.4.3.1.3 Trigger time control
	V.4.3.1.4 Repeated trigger with grace period
	V.4.3.1.5 Repeated trigger with minimum duration

	V.4.3.2 Level Sensor
	V.4.3.2.1 Level reading
	V.4.3.2.2 Threshold trigger
	V.4.3.2.3 Multi Level Sensor

	V.4.3.3 Enum Sensor

	V.5 Examples
	V.5.1 Example: A/C Thermostat
	V.5.2 Example: Light with a dimmer and switch
	V.5.3 Example: Fan
	V.5.4 Example: Multi-Sensor strip with a common battery.
	V.5.5 Example: Ceiling Fan with integrated light
	V.5.6 Example: Power strip
	V.5.7 Example: Battery powered radiator thermostat

	Appendix VI: Software Modularization and USP-Enabled
	VI.1 Background
	VI.2 Basic Solution Concepts
	VI.3 USP Service Use Cases
	VI.4 USP Broker Responsibilities
	VI.5 Data Model Implications for USP Brokers and USP Services
	VI.5.1 UNIX Domain Socket Data Model Table and the UDS MTP
	VI.5.2 USPService Data Model Table
	VI.5.3 Example Data Models for a USP Broker and USP Services

	VI.6 Startup and Shutdown Procedures
	VI.6.1 Device Boot Procedures
	VI.6.2 USP Service Startup Procedures
	VI.6.3 USP Service Shutdown Procedures

	VI.7 USP Services and Software Modules
	VI.7.1 Installing a Software Module
	VI.7.2 Updating a Software Module
	VI.7.3 Deleting a Software Module

