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Notice

The Broadband Forum is a non-profit corporation organized to create guidelines for broadband network system development
and deployment. This Technical Report has been approved by members of the Forum. This Technical Report is subject to
change. This Technical Report is owned and copyrighted by the Broadband Forum, and all rights are reserved. Portions of this
Technical Report may be owned and/or copyrighted by Broadband Forum members.

Intellectual Property

Recipients of this Technical Report are requested to submit, with their comments, notification of any relevant patent claims or
other intellectual property rights of which they may be aware that might be infringed by any implementation of this Technical
Report, or use of any software code normatively referenced in this Technical Report, and to provide supporting documentation.

Terms of Use

1. License

Broadband Forum hereby grants you the right, without charge, on a perpetual, non-exclusive and worldwide basis, to utilize the
Technical Report for the purpose of developing, making, having made, using, marketing, importing, offering to sell or license,
and selling or licensing, and to otherwise distribute, products complying with the Technical Report, in all cases subject to the
conditions set forth in this notice and any relevant patent and other intellectual property rights of third parties (which may include
members of Broadband Forum). This license grant does not include the right to sublicense, modify or create derivative works
based upon the Technical Report except to the extent this Technical Report includes text implementable in computer code, in
which case your right under this License to create and modify derivative works is limited to modifying and creating derivative
works of such code. For the avoidance of doubt, except as qualified by the preceding sentence, products implementing this
Technical Report are not deemed to be derivative works of the Technical Report.

2. NO WARRANTIES

THIS TECHNICAL REPORT IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER, AND IN PARTICULAR, ANY
WARRANTY OF NONINFRINGEMENT AND ANY IMPLIED WARRANTIES ARE EXPRESSLY DISCLAIMED. ANY USE OF
THIS TECHNICAL REPORT SHALL BE MADE ENTIRELY AT THE USER’S OR IMPLEMENTER’S OWN RISK, AND NEITHER
THE BROADBAND FORUM, NOR ANY OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER
TO ANY USER, IMPLEMENTER, OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER, DIRECTLY OR
INDIRECTLY, ARISING FROM THE USE OF THIS TECHNICAL REPORT, INCLUDING BUT NOT LIMITED TO, ANY
CONSEQUENTIAL, SPECIAL, PUNITIVE, INCIDENTAL, AND INDIRECT DAMAGES.

3. THIRD PARTY RIGHTS

Without limiting the generality of Section 2 above, BROADBAND FORUM ASSUMES NO RESPONSIBILITY TO COMPILE,
CONFIRM, UPDATE OR MAKE PUBLIC ANY THIRD PARTY ASSERTIONS OF PATENT OR OTHER INTELLECTUAL
PROPERTY RIGHTS THAT MIGHT NOW OR IN THE FUTURE BE INFRINGED BY AN IMPLEMENTATION OF THE
TECHNICAL REPORT IN ITS CURRENT, OR IN ANY FUTURE FORM. IF ANY SUCH RIGHTS ARE DESCRIBED ON THE
TECHNICAL REPORT, BROADBAND FORUM TAKES NO POSITION AS TO THE VALIDITY OR INVALIDITY OF SUCH
ASSERTIONS, OR THAT ALL SUCH ASSERTIONS THAT HAVE OR MAY BE MADE ARE SO LISTED.

All copies of this Technical Report (or any portion hereof) must include the notices, legends, and other provisions set forth on
this page.
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1 Introduction

1.1 Executive Summary

This document describes the architecture, protocol, and data model that build an intelligent User Services Platform. It is targeted
towards application developers, application service providers, CPE vendors, consumer electronics manufacturers, and
broadband and mobile network providers who want to expand the value of the end user’s network connection and their

connected devices.

The term “connected device” is a broad one, applying to the vast array of network connected CPE, consumer electronics, and
computing resources that today’s consumers are using at an increasing rate. With the advent of “smart” platforms (phones,
tablets, and wearables) plus the emerging Internet of Things, the number of connected devices the average user or household

contains is growing by several orders of magnitude.

In addition, users of the fixed and mobile broadband network are hungry for advanced broadband and intelligent cloud services.
As this desire increases, users are turning towards over-the-top providers to consume the entertainment, productivity, and

storage applications they want.

These realities have created an opportunity for consumer electronics vendors, application developers, and broadband and
mobile network providers. These connected devices and services need to be managed, monitored, troubleshot, and controlled
in an easy to develop and interoperable way. A unified framework for these is attractive if we want to enable providers,
developers, and vendors to create value for the end user. The goal should be to create a system for developing, deploying, and
supporting these services for end users on the platform created by their connectivity and components, that is, to be able to treat

the connected user herself as a platform for applications.

To address this opportunity, use cases supported by USP include:

Management of loT devices through re-usable data model objects.
Allowing the user to interact with their devices and services using customer portals or control points on their own smart

devices.
The ability to have both the application and network service provider manage, troubleshoot, and control different aspects of

the services they are responsible for, and enabling provider partnerships.

Providing a consistent user experience from mobile to home.
Simple migration from the CPE WAN Management Protocol[36] (CWMP) — commonly known by its document number,

“TR-069” — through use of the same data model and data modeling tools.

1.2 Purpose and Scope

1.2.1 Purpose

This document provides the normative requirements and operational description of the User Services Platform (USP). USP is
designed for consumer electronics/loT, home network/gateways, smart Wi-Fi systems, and virtual services (though could
theoretically be used for any connected device in many different verticals). It is targeted towards developers, application
providers, and network service providers looking to deploy those products.
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1.2.2 Scope

This document identifies the USP:

Architecture

Record structure, syntax, and rules

Message structure, syntax, and rules

Bindings that allow specific protocols to carry USP Records in their payloads

Discovery and advertisement mechanisms

Security credentials and logic

Encryption mechanisms

Lastly, USP makes use of and expands the Device:2 Data Model[38]. While particular Objects and Parameters necessary to
the function of USP are mentioned here, their normative description can be found in that document.

1.3 References and Terminology

1.3.1 Conventions

In this specification, several words are used to signify the requirements of the specification. These words are always capitalized.
More information can be found in RFC 2119 [8] for key words defined there. Additional key words defined in the context of this
specification are DEPRECATED and OBSOLETED.

MUST

This word, or the term “REQUIRED”, means that the definition is an absolute requirement of the specification.
MUST NOT

This phrase means that the definition is an absolute prohibition of the specification.

SHOULD

This word, or the term “RECOMMENDED”, means that there could exist valid reasons in particular circumstances to ignore this
item, but the full implications need to be understood and carefully weighed before choosing a different course.

SHOULD NOT

This phrase, or the phrase “NOT RECOMMENDED” means that there could exist valid reasons in particular circumstances
when the particular behavior is acceptable or even useful, but the full implications need to be understood and the case carefully
weighed before implementing any behavior described with this label.

MAY

This word, or the term “OPTIONAL”, means that this item is one of an allowed set of alternatives. An implementation that does
not include this option MUST be prepared to inter-operate with another implementation that does include the option.

DEPRECATED

This word refers to a requirement or section of this specification that is defined and valid in the current version of this
specification but is not strictly necessary. This may be done for various reasons, such as irreparable problems being discovered
or another more useful method being defined to accomplish the same purpose. When this word is applied to a requirement, it
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takes precedence over any normative language in the DEPRECATED requirement. DEPRECATED requirements SHOULD
NOT be implemented. When this word is used on a section, it means the entirety of the section SHOULD NOT be implemented
— but if it is implemented the requirements in the section are to be implemented as written. Note that DEPRECATED
requirements and sections might be removed from the next major version of this specification.

OBSOLETED

This word refers to a requirement or section of this specification that meets the definition of DEPRECATED, but which has also
been declared obsolete. Such requirements or entire sections MUST NOT be implemented; they might be removed from a later
minor version of this specification.

1.3.2 References

The following references are of relevance to this Technical Report. At the time of publication, the editions indicated were valid.
All references are subject to revision; users of this Technical Report are therefore encouraged to investigate the possibility of
applying the most recent edition of the references listed below.

A list of currently valid Broadband Forum Technical Reports is published atwww.broadband-forum.org.

(11 Assignments, IEEE Registration Authority, IEEE

[2] FIPS PUB 180-4, Secure Hash Standard (SHS), NIST

[8]1  FIPS PUB 186-4, Digital Signature Standard (DSS), NIST

[4] MQTT 3.1.1, MQ Telemetry Transport 3.1.1, OASIS

[5]  MQTT 5.0, MQ Telemetry Transport 5.0, OASIS

(6] Protocol Buffers v3, Protocol Buffers Mechanism for Serializing Structured Data Version 3, Google

[71  REC 1035, Domain Names - Implementation and Specification, IETF, 1987

(8] RFEC 2119, Key words for use in RFCs to Indicate Requirement Levels IETF, 1997

[91  RFC 2141, URN Syntax, IETF, 1997

[10] REC 2234, Augmented BNF for Syntax Specifications: ABNF, IETF, 1997

[11] RFEC 3279, Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile, IETF, 2002

[12] REC 3315, Dynamic Host Configuration Protocol for IPv6 (DHCPv6), IETF, 2003

[138] RFC 3925, Vendor-Identifying Vendor Options for Dynamic Host Configuration Protocol version 4 (DHCPv4), IETF, 2004

[14] RFC 3986, Uniform Resource Identifier (URI): Generic Syntax IETF, 2005

[15] REC 4122, A Universally Unique IDentifier (UUID) URN Namespace, 2005

[16] RFC 4180, Common Format and MIME Type for Comma-Separated Values (CSV) Files, 2005

[17]1 REC 5246, The Transport Layer Security (TLS) Protocol Version 1.2 2008

[18] REC 5280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profilg 2008

[19] RFC 5705, Keying Material Exporters for Transport Layer Security (TLS) |IETF, 2010

[20] RFC 6066, Transport Layer Security (TLS) Extensions: Extension Definitions, IETF, 2011

[21] RFEC 6125, Representation and Verification of Domain-Based Application Service Identity within Internet Public Key
Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS), IETF, 2011

[22] REC 6347, Datagram Transport Layer Security Version 1.2 IETF, 2012

[23] RFC 6455, The WebSocket Protocol, IETF, 2011

[24] RFC 6762, Multicast DNS, IETF, 2013

[25] REC 6763, DNS-Based Service Discovery, IETF, 2013

[26] RFC 6818, Updates to the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile, IETF, 2013
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[27] RFC 6979, Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm
(ECDSA), IETF, 2013

[28] RFC 7159, The JavaScript Object Notation (JSON) Data Interchange Format 2014

[29] RFC 7252, The Constrained Application Protocol (CoAP), 2014

[30] REC 7925, Transport Layer Security (TLS) / Datagram Transport Layer Security (DTLS) Profiles for the Internet of
Things, 2016

[31] RFC 7959, Block-Wise Transfers in the Constrained Application Protocol (CoAP) 2016

[32] REC 8446, The Transport Layer Security (TLS) Protocol Version 1.3 IETF, 2018

[33] RFC 8766, Discovery Proxy for Multicast DNS-Based Service Discovery, 2020

[34] SOAP 1.1, Simple Object Access Protocol (SOAP) 1.1, W3C, 2000

[35] STOMP-1-2, Simple Text Oriented Message Protocol

[36] TR-069 Amendment 6, CPE WAN Management Protocol, Broadband Forum, 2018

[37] TR-106, Data Model Template for CWMP Endpoints and USP Agents, Broadband Forum

[38] TR-181 Issue 2, Device Data Model, Broadband Forum

[39] XML Schema Part 2, XML Schema Part 2: Datatypes Second Edition W3C, 2004

1.4 Definitions

The following terminology is used throughout this specification.

Agent

An Agent is an Endpoint that exposes Service Elements to one or more Controllers.

Binding

A Binding is a means of sending Messages across an underlying Message Transfer Protocol.

Command

The term used to define and refer to an Object-specific Operation in the Agent’s Instantiated or Supported Data Model.
Connection Capabilities

Connection Capabilities are information related to an Endpoint that describe how to communicate with that Endpoint, and
provide a very basic idea of what sort of function the Endpoint serves.

Controller
A Controller is an Endpoint that manipulates Service Elements through one or more Agents.
Device Type (DT) Definition

A Device Type Definition (DT) is a description of the Service Elements an Agent is able to support, defining its Supported Data
Model.

Discovery
Discovery is the process by which Controllers become aware of Agents and Agents become aware of Controllers.
Endpoint

An Endpoint is a termination point for a Message.
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Endpoint Identifier

The Endpoint Identifier is a globally unique USP layer identifier of an Endpoint.

End to End Message Exchange

USP feature that allows for message integrity protection through the creation of a session context.
Error

An Error is a Message that contains failure information associated with a Request.
Event

An Event is a set of conditions that, when met, triggers the sending of a Notification.
Expression

See also Search Expression.

Expression Component

An Expression Component is the part of a Search Expression that gives the matching Parameter criteria for the search. It is
comprised of an Expression Parameter followed by an Expression Operator followed by an Expression Constant.

Expression Constant

The Expression Constant is the value used to compare against the Expression Component to determine if a search matches a
given Object.

Expression Operator

The Expression Operator is the operator used to determine how the Expression Component will be evaluated against the
Expression Constant, i.e., equals (==), not equals (!=), contains (~=), less than (<), greater than (>), less than or equal (<=) and
greater than or equal (>=).

Expression Parameter

The Expression Parameter is a Parameter relative to the Path Name where an Expression Variable occurs that will be used with
the Expression Constant to evaluate the Expression Component.

Expression Variable
The Expression Variable is an identifier used to allow relative addressing when building an Expression Component.
Instantiated Data Model

The Instantiated Data Model of an Agent represents the current set of Service Elements (and their state) that are exposed to

one or more Controllers.
Instance Identifier

A term used to identify an Instance of a Multi-Instance Object (also called a Row of a Table). While all Multi-Instance Objects
have an Instance Number that can be used as an Instance Identifier, an Object Instance can also be referenced using any of
that Object’s Unique Keys.

Instance Number
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An Instance Number is a numeric Instance Identifier assigned by the Agent to instances of Multi-Instance Objects in an Agent’s
Instantiated Data Model.

Message

A Message refers to the contents of a USP layer communication including exactly one Message Header and exactly one
Message Body.

Message Body
The Message Body is the portion of a Message that contains one of the following: Request, Response, or Error.
Message Header

The portion of a Message that contains elements that provide information about the Message, including the Message type, and
Message ID elements.

Message ID

A Message ID is an identifier used to associate a Response or Error with a Request.

Message Transfer Protocol

A Message Transfer Protocol (MTP) is the protocol at a layer below USP that carries a Message, e.g., WebSocket.
Multi-Instance Object

A Multi-Instance Object refers to an Object that can be created or deleted in the Agent’s Instantiated Data Model. Also called a
Table.

Notification

A Notification is a Request from an Agent that conveys information about an Event to a Controller that has a Subscription to that
event.

Object

An Object refers to a defined type that an Agent represents and exposes. A Service Element may be comprised of one or more
Objects and Sub-Objects.

Object Instance

An Object Instance refers to a single instance Object of a type defined by a Multi-Instance Object in the Agent’s Instantiated
Data Model. Also called a Row of a Table.

Object Instance Path

An Object Instance Path is a Path Name that addresses an Instance of a Multi-Instance Object (also called a Row of a Table). It

includes the Object Path followed by an Instance Identifier. See Path Names.
Object Path

An Object Path is a Path Name that addresses an Object. In the case of Multi-Instance Objects, an Object Path addresses the
Object type itself rather than instances of that Object, which are addressed by Object Instance Paths. See Path Names.

Operation

A method defined for a particular Service Element that can be invoked with the Operate Message.
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Parameter

A Parameter is a variable or attribute of an Object. Parameters have both type and value.

Parameter Path

A Parameter Path is a Path Name that addresses a Parameter of an Object or Object Instance. SeePath Names.
Path Name

A Path Name is a fully qualified reference to an Object, Object Instance, or Parameter in an Agent’s instantiated or Supported
Data Model. See Path Names.

Path Reference

A Path Reference is a Parameter data type that contains a Path Name to an Object or Parameter that may be automatically
followed by using certain Path Name syntax.

Record

The Record is defined as the Message Transfer Protocol (MTP) payload, encapsulating a sequence of datagrams that comprise
of the Message as well as essential protocol information such as the USP version, the source Endpoint ID, and the target
Endpoint ID. It can also contain additional metadata needed for providing integrity protection, payload protection and delivery of
fragmented Messages.

Relative Path

A Relative Path is the remaining Path Name information necessary to form a Path Name given a parent Object Path. It is used
for message efficiency when addressing Path Names.

Request

A Request is a type of Message that either requests the Agent perform some action (create, update, delete, operate, etc.),
requests information about an Agent or one or more Service Elements, or acts as a means to deliver Notifications from the
Agent to the Controller. A Request usually requires a Response.

Response

A Response is a type of Message that provides return information about the successful processing of a Request.
Row

The term Row refers to an Instance of a Multi-Instance Object in the Agent’s Instantiated Data Model.

Search Expression

A Search Expression is used in a Search Path to apply specified search criteria to address a set of Multi-Instance Objects
and/or their Parameters.

Search Path

A Search Path is a Path Name that contains search criteria for addressing a set of Multi-Instance Objects and/or their
Parameters. A Search Path may contain a Search Expression or Wildcard.

Service Element

A Service Element represents a piece of service functionality that is exposed by an Agent, usually represented by one or more
Objects.
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Source Endpoint

The Endpoint that was the sender of a message.

Subscription

A Subscription is a set of logic that tells an Agent which Notifications to send to a particular Controller.
Supported Data Model

The Supported Data Model of an Agent represents the complete set of Service Elements it is capable of exposing to a
Controller. It is defined by the union of all of the Device Type Definitions the Agent exposes to the Controller.

Table

The term Table refers to a Multi-Instance Object in an Agent’s Instantiated or Supported Data Model.
Target Endpoint

The Endpoint that was the intended receiver of a message.

Trusted Broker

An intermediary that either (1) ensures the Endpoint ID in all brokered Endpoint’s USP Recordfrom_id matches the Endpoint
ID of those Endpoint’s certificates or credentials, before sending on a USP Record to another Endpoint, or (2) is part of a closed
ecosystem that “knows” (certain) Endpoints can be trusted not to spoof the Endpoint ID.

Unique Key

A Unique Key of a Multi-Instance Object is a set of one or more Parameters that uniquely identify the instance of an Object in
the Agent’s Instantiated Data Model and can therefore be used as an Instance Identifier.

Unique Key Parameter
A Parameter that is a member of any of a Multi-Instance Object’s Unique Keys.
User Services Platform

The User Services Platform consists of a data model, architecture, and communications protocol to transform consumer
broadband networks into a platform for the development, deployment, and support of broadband enabled applications and

services.
Wildcard

A Wildcard is used in a Search Path to address all Object Instances of a Multi-Instance Object.

1.5 Abbreviations

This specification uses the following abbreviations:

abbrevialion lerm

ABNF Augmented Backus-Naur Form
CoAP Constrained Application Protocol
CWMP CPE WAN Management Protocol
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DNS
DNS-SD

DT
E2E
HMAC
HTTP
IPv4/v6
LAN
MAC
mDNS
MTP
oul
PSS
SAR
SMM
SOAP
TLS
TOFU
TR
URI
URL
usP
uuID
WAN

Domain Name Service

Domain Name Service - Service
Discovery

Device Type Definition

End to End (Message Exchange)
Hash Message Authentication Code
Hypertext Transport Protocol
Internet Protocol (version 4 or version 6)
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Technical Report
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User Services Platform
Universally Unique Identifier

Wide Area Network

1.6 Specification Impact

1.6.1 Energy efficiency

TR-369a2 Issue 1 Amendment 2

The User Services Platform reaches into more and newer connected devices, and expands on the management of physical

hardware, including power management. In addition, USP directly enables smart home, smart building, and other smart energy

applications.

1.6.2 Security
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Any solution that provides a mechanism to manage, monitor, diagnose, and control a connected user’s network, devices, and
applications must prioritize security to protect user data and prevent malicious use of the system. This is especially important
with certain high-risk smart applications like medicine or emergency services.

However reliable the security of communications protocols, in a platform that enables interoperable components that may or
may not be connected with protocols outside the scope of the specification, security must be considered from end-to-end. To
realize this, USP contains its own security mechanisms.

1.6.3 Privacy

Privacy is the right of an individual or group to control or influence what information related to them may be collected,
processed, and stored and by whom, and to whom that information may be disclosed.

Assurance of privacy depends on whether stakeholders expect, or are legally required, to have information protected or
controlled from certain uses. As with security, the ability for users to control who has access to their data is of primary
importance in the world of the connected user, made clear by users as well as regulators.

USP contains rigorous access control and authorization mechanisms to ensure that data is only used by those that have been
enabled by the user.

2 Architecture

The User Services Platform consists of a collection of Endpoints (Agents and Controllers) that allow applications to manipulate
Service Elements. These Service Elements are made up of a set of Objects and Parameters that model a given service, such
as network interfaces, software modules, device firmware, remote elements proxied through another interface, virtual elements,
or other managed services.

USP is made up of several architectural components:

Mechanisms for discovery and trust establishment

A method for encoding messages for transport

A system for end-to-end confidentiality, integrity and identity authentication

Transport of messages over one or more Message Transfer Protocols (MTPs) with associated MTP security

A set of standardized messages based on the CRUD model (create, read, update, delete), plus an Object defined
operations mechanism and a notification mechanism (CRUD-ON)

Authorization and access control on a per element basis

A method for modeling service elements using a set of Objects, Parameters, operations, and events (supported and
instantiated data models)

2.1 Endpoints

A USP Endpoint can act as Agent or a Controller. Controllers only send messages to Agents, and Agents send messages to
Controllers. A USP Endpoint communicates over a secure session between other Endpoints, over one or more Message
Transfer Protocols (MTP) that may or may not be secured.
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Figure 1: USP Agent and Controller Architecture

2.1.1 Agents

A USP Agent exposes (to Controllers) one or more Service Elements that are represented in its data model. It contains or

references both an Instantiated Data Model (representing the current state of Service Elements it represents) and a Supported

Data Model.

2.1.2 Controllers
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A USP Controller manipulates (through Agents) a set of Service Elements that are represented in Agent data models. It may
maintain a database of Agents, their capabilities, and their states, in any combination. A Controller usually acts as an interface
to a user application or policy engine that uses the User Services Platform to address particular use cases.

2.2 Endpoint Identifier

Endpoints are identified by an Endpoint Identifier.

The Endpoint Identifier is a locally or globally unique USP layer identifier of an Endpoint. Whether it is globally or locally unique
depends on the scheme used for assignment.

The Endpoint Identifier (ID) is used in the USP Record and various Parameters in a USP Message to uniquely identify Controller
and Agent Endpoints. It can be globally or locally unique, either among all Endpoints or among all Controllers or all Agents,
depending on the scheme used for assignment.

The Endpoint ID is comprised of two mandatory and one optionally mandatory components:authority-scheme,

authority-id, and instance-id.
These three components are combined as:
authority-scheme ":" [authority-id] ":" instance-id

The format of the authority-id is dictated by the authority-scheme. The format of the instance-id is dictated either by the
authority-scheme or by the entity identified by the authority-id.

When used in a certificate, an Endpoint ID is expressed as a urn in the bbf namespace as:
"urn:bbf:usp:id:" authority-scheme ":" [authority-id] ":" instance-id

When used anywhere else (e.g. in theto_id and from_id of a USP Record), the namespace information is omitted, and the
Endpoint ID is expressed as:

authority-scheme ":" [authority-id] ":" instance-id

2.2.1 Use of authority-scheme and authority-id

The authority-scheme follows the following syntax:

authority-scheme = "oui" | "cid" | "pen" | "self" | "user" | "os" | "ops" | "uuid" | "imei" |

Ilprotoll | Ildocll
How these authority-scheme values impact the format and values of authority-id and instance-id is described below.

The authority defined by an OUI, CID, or Private Enterprise Number (including OUI used in “ops” and “os” authority scheme) is
responsible for ensuring the uniqueness of the resulting Endpoint ID. Uniqueness can be global, local, unique across all
Endpoints, or unique among all Controllers or all Agents. For the “user” authority scheme, the assigning user or machine is
responsible for ensuring uniqueness. For the “self” authority scheme, the Endpoint is responsible for ensuring uniqueness.

R-ARC.0 - A Controller and Agent within the same ecosystem MAY use the same Endpoint ID.
R-ARC.1 - Endpoints MUST tolerate the same Endpoint ID being used by an Agent and a Controller in the same ecosystem.

R-ARC.2 - Endpoints that share the same Endpoint ID MUST NOT communicate with each other via USP.
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No conflict identification or resolution process is defined in USP to deal with a situation where an Endpoint ID is not unique

among either all Agents or all Controllers in whatever ecosystem it operates. Therefore, a non-unique Endpoint ID will result in

unpredictable behavior. An Endpoint ID that changes after having been used to identify an Endpoint can also result in

unpredictable behavior.

Unless the authority responsible for assigning an Endpoint ID assigns meaning to an Agent and Controller having the same

Endpoint ID, no meaning can be construed. That is, unless the assigning authority specifically states that an Agent and

Controller with the same Endpoint ID are somehow related, no relationship can be assumed to exist.

R-ARC.2a - Endpoints MUST follow the authority-scheme requirements outlined in the following table:

authority-scheme

January 2022

oui

cid

pen

self

user

0s

usage and rules for authority-id and instance-id

authority-id MUST be an OUIl assigned and registered by the IEEE Registration
Authority [1] to the entity responsible for this Endpoint. authority-id MUST use hex encoding
of the 24-bit ID (resulting in 6 hex characters). instance-id syntax is defined by this
entity, who is also responsible for determining instance-id assignment mechanisms and for
ensuring uniqueness of the instance-id within the context of the OUL.
Example:oui:00256D:my-unique-bbf-id-42

authority-id MUST be a CID assigned and registered by the IEEE Registration
Authority [1] to the entity responsible for this Endpoint.authority-id MUST use hex
encoding of the 24-bit ID (resulting in 6 hex characters).

instance-id syntax is defined by this entity, who is also responsible for determining
instance-id assignment mechanisms and for ensuring uniqueness of the instance-id within
the context of the CID.

Example: cid:3AA3F8:my-unique-usp-id-42

authority-id MUST be a Private Enterprise Number assigned and registered by the
1ANA to the entity responsible for this Endpoint.authority-id MUST use decimal
encoding of the IANA-assigned number.

instance-id syntax is defined by this entity, who is also responsible for determining
instance-id assignment mechanisms and for ensuring uniqueness of the instance-id within
the context of the Private Enterprise Number.

Example: pen:3561:my-unique-bbf-id-42

When present, an authority-id for “self” MUST be between 1 and 6 non-reserved
characters in length. When present, it is generated by the Endpoint. It is not required to
have an authority-id for “self”.

The Endpoint ID, including instance-1id, is generated by the Endpoint.

The Endpoint MUST change its Endpoint ID if it ever encounters another Endpoint using
the identical Endpoint ID.

Example: self: :my-Agent

An authority-id for “user” MUST be between 0 and 6 non-reserved characters in
length.

The Endpoint ID, including instance-1id, is assigned to the Endpoint via a user or

management interface.

authority-id MUST be zero-length.
instance-idis <OUI> "-" <SerialNumber>, as defined in TR-069[3.4.4/36].
Example: o0s: :00256D-0123456789
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ops authority-id MUST be zero-length.
instance-id is <QUI> "-" <ProductClass> "-" <SerialNumber>, as definedin
TR-069 [3.4.4/36].
Example: ops: :00256D-STB-0123456789
uuid authority-id MUST be zero-length.
instance-idis a UUID[15]
Example:uuid: : f81d4fae-7dec-11d0-a765-00a0c91e6bf6

imei authority-id MUST be zero-length.
instance-id is an IMEI as defined by GSMA (https://imeidb.gsma.com/imei/index).
Example: imei: :990000862471854

proto authority-id MUST be between 0 and 6 non-reserved characters (except “.”) in length.
“proto” is used for prototyping purposes only. Any authority-id and instance-id
value (or scheme for creating the value) is left to the prototyper.
Example: proto: :my-Agent

doc authority-id MUST be between 0 and 6 non-reserved characters in length.
“doc” is used for documentation purposes only (for creating examples in slide decks,
tutorials, and other explanatory documents). Any authority-id and instance-id value
(or scheme for creating the value) is left to the document creator.

R-ARC.3 - BBF OUI (90256D) and Private Enterprise Number (3561) are reserved for use in BBF documentation and BBF
prototyping and MUST NOT be used by any entity other than BBF.
R-ARC.4 - The “proto” and “doc” authority-scheme values MUST NOT be used in production environments.

The “proto” and “doc” values are intended only for prototyping and documentation (tutorials, examples, etc.), respectively.

2.2.2 Use of instance-id

R-ARC.5 - instance-id MUST be encoded using only the following characters:

instance-id = unreserved / pct-encoded
unreserved = ALPHA / DIGIT / "-" / "." / "_"
pct-encoded = "%" HEXDIG HEXDIG

The above expression uses the Augmented Backus-Naur Form (ABNF) notation of RFC 2234[10], including the following core
ABNF syntax rules defined by that specification: ALPHA (letters), DIGIT (decimal digits), HEXDIG (hexadecimal). It is taken
from RFC 3986 [14] as the set of unreserved characters and percent-encoded characters that are acceptable for all components
of a URI. This set is also allowed for use in URNs RFC 2141 [9], and all MTP headers.

R-ARC.6 - An instance-id value MUST be no more than 50 characters in length.

Shorter values are preferred, as end users could be exposed to Endpoint IDs. Long values tend to create a poor user
experience when users are exposed to them.

2.3 Service Elements
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“Service Element” is a general term referring to the set of Objects, Sub-Objects, commands, events, and Parameters that
comprise a set of functionality that is manipulated by a Controller on an Agent. An Agent’s Service Elements are represented in
a Data Model - the data model representing an Agent’s current state is referred to as its Instantiated Data Model, and the data
model representing the Service Elements it supports is called its Supported Data Model. The Supported Data Model is
described in a Device Type Definition (DT). An Agent’s Data Model is referenced using Path Names.

2.4 Data Models

USP is designed to allow a Controller to manipulate Service Elements on an Agent using a standardized description of those
Service Elements. This standardized description is known as an information model, and an information model that is further
specified for use in a particular protocol is known as a “Data Model”.

Note: This should be understood by those familiar with CWMP. For those unfamiliar with that protocol, a Data Model is similar to
a Management Information Base (MIB) used in the Simple Network Management Protocol (SNMP) or YANG definitions used in
NETCONF.

This version of the specification defines support for the following Data Model(s):
o The Device:2 Data Model [38]

This Data Model is specified in XML. The schema and normative requirements for defining Objects, Parameters, Events, and
Commands for the Device:2 Data Model [38], and for creating Device Type Definitions based on that Data Model, are defined in
Broadband Forum TR-106 [37].

The use of USP with any of the above data models creates some dependencies on specific Objects and Parameters that must
be included for base functionality.

2.4.1 Instantiated Data Model
An Agent’s Instantiated Data Model represents the Service Elements (and their state) that are currently represented by the

Agent. The Instantiated Data Model includes a set of Objects, and the Sub-Objects (“children”), Parameters, Events, and
Commands associated with those Objects.

2.4.2 Supported Data Model

An Agent’s Support Data Model represents the Service Elements that an Agent understands. It includes references to the Data
Model(s) that define the Objects, Parameters, Events, and Commands implemented by the Service Elements the Agent
represents. A Supported Data Model consists of the union of all Device Type Definitions used by the Agent.

2.4.3 Objects

Obijects are data structures that are defined by their Sub-Objects, Parameters, Events, Commands, and creation criteria. They
are used to model resources represented by the Agent. Objects may be static (single-instance) or dynamic (a multi-instance
Object, or “table”).

2.4.3.1 Single-Instance Objects
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Static Objects, or “single instance” Objects, are not tables and do not have more than one instance of them in the Agent. They
are usually used to group Service Element functionality together to allow for easy definition and addressing.

2.4.3.2 Multi-Instance Objects

Dynamic Objects, or “multi-instance” Objects, are those Objects that can be the subject of “create” and “delete” operations
(using the Add and Delete Messages, respectively), with each instance of the Object represented in the Instantiated Data Model
with an Instance Identifier (see below). A Multi-Instance Object is also referred to as a “Table”, with each instance of the Object
referred to as a “Row”. Multi-Instance Objects can be also the subject of a search.

2.4.4 Parameters

Parameters define the attributes or variables of an Object. They are retrieved by a Controller using the read operations of USP
and configured using the update operations of USP (the Get and Set Messages, respectively). Parameters have data types and
are used to store values.

2.4.5 Commands

Commands define Object specific methods within the Data Model. A Controller can invoke these methods using the “Operate”
Message in USP (i.e., the Operate Message). Commands have associated input and output arguments that are defined in the
Data Model and used when the method is invoked and returned.

2.4.6 Events

Events define Object specific notifications within the Data Model. A Controller can subscribe to these events by creating
instances of the Subscription table, which are then sent in a Notify request by the Agent (see Notifications and Subscription
Mechanism). Events may also have information associated with them that are delivered in the Notify Request - this information
is defined with the Event in the Data Model.

2.5 Path Names

A Path Name is a fully qualified reference to an Object, Object Instance, or Parameter in an Agent’s instantiated or Supported
Data Model. The syntax for Path Names is defined in TR-106 [37].

R-ARC.7 - All USP Endpoints MUST support the Path Name syntax as defined in TR-10637].

Path Names are represented by a hierarchy of Objects (“parents”) and Sub-Objects (“children”), separated by the dot “.
character, ending with a Parameter if referencing a Parameter Path. There are six different types of Path Names used to
address the data model of an Agent:

1. Object Path - This is a Path Name of either a single-instance (“static”) Object, or the Path Name to a Data Model Table (i.e.,
a Multi-Instance Object). An Object Path ends in a “.” Character (as specified in TR-106 [37]), except when used in a
reference Parameter (see Reference Following). When addressing a Table in the Agent’'s Supported Data Model that

contains one or more Multi-Instance Objects in the Path Name, the sequence “{i}” is used as a placeholder (see The

GetSupportedDM Message).
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2. Object Instance Path - This is a Path Name to a Row in a Table in the Agent’s Instantiated Data Model (i.e., an Instance of
a Multi-Instance Object). It uses an Instance Identifier to address a particular Instance of the Object. An Object Instance
Path ends in a “.” Character (as specified in TR-106 [37]), except when used in a reference Parameter (see Reference
Following).

3. Parameter Path - This is a Path Name of a particular Parameter of an Object.
4. Command Path - This is a Path Name of an Object definedOperation.
5. Event Path - This is a Path Name of an Object definedEvent.

6. Search Path - This is a Path Name that contains search criteria for addressing a set of Multi-Instance Objects and/or their
Parameters. A Search Path may contain a Search Expression or Wildcard.

This creates two functions of Path Names: Addressing and Searching. The first five Path Names are used for addressing a
particular Object, Parameter, Command, or Event. A Search Path uses Searching to return a set of Object Instances and/or
their Parameters. When addressing, the expectation is that the Path Name will resolve to either 0 or 1 instance (and depending
on the context, 0 instances could be an error). When searching, the expectation is that the Search Path will resolve to 0, 1, or
many instances (and depending on the context, 0 instances is often not an error).

Note: When resolving a Path Name, the Agent is expected to use locally cached information and/or information that can be
obtained rapidly and cheaply. Specifically, there is no expectation that the Agent would issue a network request in order to

resolve a Path Name.

Note: Obviously only one form of addressing or searching can be used for a given Instance Identifier in a Path Name, but

different forms of addressing can be used if more than one Instance Identifier needs to be specified in a Path Name.

For example, the following Path Name uses Unique Key Addressing for the Interface table but a Search Expression for the
IPv4Address table to select Enabled IPv4 Addresses associated with the “eth0” IP Interface:

Device.IP.Interface.[Name=="eth0"].IPv4Address.[Status=="Enabled"].IPAddress

2.5.1 Relative Paths

Several USP Messages make use of Relative Paths to address Objects or Parameters. A Relative Path is used to address the
child Objects and Parameters of a given Object Path or Object Instance Path. To build a Path Name using a Relative Path, a
USP Endpoint uses a specified Object Path or Object Instance Path, and concatenates the Relative Path. This allows some
efficiency in Requests and Responses when passing large numbers of repetitive Path Names. This Relative Path may include
instance identifiers to Multi-Instance Objects.

For example, for an Object Path of:
Device.WiFi.Radio.1.
Relative Paths would include Parameters:

Status
SupportedStandards
OperatingStandards

Etc., as well as the following Sub-Object and its Parameters:

Stats.BytesSent

Stats.BytesReceived
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Etc.

2.5.2 Using Instance Identifiers in Path Names

2.5.2.1 Addressing by Instance Number

Instance Number Addressing allows an Object Instance to be addressed by using its Instance Number in the Path Name. An
Instance Number is expressed in the Path Name as a positive integer (>=1) with no additional surrounding characters. The
Instance Number assigned by the Agent is arbitrary.

R-ARC.8 - The assigned Instance Number MUST persist unchanged until the Object Instance is subsequently deleted (either
by the USP Delete Message or through some external mechanism). This implies that the Instance Number MUST persist
across a reboot of the Agent, and that the Agent MUST NOT allow the Instance Number of an existing Object Instance to be
modified by an external source.

For example, the Device.IP.Interface table entry with an Instance Number of 3 would be addressed with the following
Path Name: Device.IP.Interface.3.

2.5.2.2 Addressing by Unique Key

Key-based addressing allows an Object Instance to be addressed by using a Unique Key (as defined in the Device:2 Data
Model [38]) in the Path Name.

Unique Keys used for addressing are expressed in the Path Name by using square brackets surrounding a string that contains
the name and value of the Unique Key Parameter using the equality operator (==).

For example, the Device.IP.Interface table has two separate unique keys:Name and Alias. It could be addressed with
the following Path Names:

Device.IP.Interface.[Name=="eth0"]
Device.IP.Interface.[Alias=="WAN"]

If an Object has a multi-parameter unique key, then the Instance Identifier specifies all of the key’s Parameters using the AND
(&&) logical operator (the Parameter order is not significant).

For example, the Device.NAT.PortMapping table has a multi-parameter unique key consisting of RemoteHost, ExternalPort,
and Protocol. It could be addressed with the following Path Name:

Device.NAT.PortMapping.[RemoteHost==""&&ExternalPort==0&&Protocol=="TCP"].

Note: Addressing by Unique Key uses the same syntax asSearching with Expressions. If a multi-parameter unique key
expression omits any of the key’s Parameters then it's a search (which might match multiple instances) rather than an address

(which can’t match multiple instances).

2.5.3 Searching

Searching is a means of matching 0, 1 or many instances of a Multi-Instance Object by using the properties of Object.
Searching can be done with Expressions or Wildcards.
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2.5.4 Searching with Expressions

Search Paths that use expressions are enclosed in square brackets as the Instance Identifier within a Path Name.

R-ARC.9 - An Agent MUST return Path Names that include all Object Instances that match the criteria of a given Search Path.
The basic format of a Search Path is:

Device.IP.Interface.[<expression>].Status

An Expression consists of one or more Expression Components that are concatenated by the AND (&&) logical operator(Note:
the OR logical operator is not supported).

The basic format of a Search Path with the Expression element expanded is:
Device.IP.Interface.[<expression component>&&<expression component>].Status

An Expression Component is a combination of an Expression Parameter followed by an Expression Operator followed by an
Expression Constant.

The basic format of a Search Path with the Expression Component element expanded is:
Device.IP.Interface.[<expression parameter><expression operator><expression constant>].Status

Further, this Relative Path can’t include any child tables. (Note: this is never necessary because any child tables that need to be

referenced in the Search Path can and should have their own Expression)

An Expression Operator dictates how the Expression Component will be evaluated. The supported operators are equals (==),
not equals (!=), contains (~=), less than (<), greater than (>), less than or equal (<=) and greater than or equal (>=).

An Expression Parameter will always be of the type defined in the data model. Expression operators will only evaluate for
appropriate data types. The literal value representations for all data types are found in TR-106 [37]. For string, boolean and
enumeration types, only the ‘==" and ‘!=" operators are valid.

The ‘~=" operator is only valid for comma-separated lists. It is used to check whether a list contains a certain element using an
exact match of the element. The Expression Constant used in the Search Expression must be of the same type as the values in
the list. For example, for a list of integers, the Expression Constant must also be an integer.

Note: Literal values are conceptually converted to their internal representations before comparison. For exampledateTime
values are converted to their numeric equivalents, int values 123, +123 and 0123 all represent the same value, and so do

boolean values1 and true.

The Expression Constant is the value that the Expression Parameter is being evaluated against; Expression Parameters must
match the type as defined for the associated Parameter in the Device:2 Data Model [38].

Note: String values are enclosed in double quotes. In order to allow a string value to contain double quotes, quote characters

can be percent-escaped as %22 (double quote). Therefore, a literal percent character has to be quoted as %25.

The use of whitespace on either side of an Expression Operator is allowed, but its support is not required. Controllers cannot
assume that an Agent tolerates whitespace. An example of an Expression with whitespace would be [Type == "Normal"]
(which would be [Type=="Normal"] without whitespace).

R-ARC.9a - Agents SHOULD tolerate whitespace on either side of an Expression Operator.

R-ARC.9b - Controllers SHOULD NOT include whitespace on either side of an Expression Operator.
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2.5.4.0.1 Search Expression Examples

Valid Searches:
« Status for all IP Interfaces with a “Normal” type:

Device.IP.Interface.[Type=="Normal"].Status

IPv4 Addresses for all IP Interfaces with a Normal type and a Static addressing type:

Device.IP.Interface.[Type=="Normal"].IPv4Address.[AddressingType=="Static"].IPAddress

IPv4 Addresses for all IP Interfaces with a Normal type and Static addressing type that have at least 1 Error Sent:

Device.IP.Interface.[Type=="Normal"&&Stats.ErrorsSent>0].IPv4Address.
[AddressingType=="Static"].IPAddress

Current profiles used by all DSL lines which are enabled:
Device.DSL.Line.[Enable==true].CurrentProfile
or

Device.DSL.Line.[Enable==1].CurrentProfile

All IPv6 Addresses of all interfaces with a lifetime expiring before 2021-06-06 08:00 UTC:

Device.IP.Interface.*.IPv6Address.[ValidLifetime<2021-06-06T08:00:00Z].IPAddress

All Parameters of all connected USB devices of class 0x08 (Mass Storage Device):

Device.USB.USBHosts.Host.*.Device.[DeviceClass==08].

All Parameters of all PCP servers with IPv6Firewall capabilities:

Device.PCP.Client.*.Server.[Capabilities~="IPv6Firewall"].

All Parameters of all PeriodicStatistics SampleSets that collected data for 5 seconds:
Device.PeriodicStatistics.SampleSet.[SampleSeconds~=5].
Searches that are NOT VALID:

« Invalid because the Expression is empty:

Device.IP.Interface.[].

Invalid because the Expression Component has an Expression Parameter that descends into a child table (always need to
use a separate Expression Variable for each child table instance):

Device.IP.Interface.[Type=="Normal"&&IPv4Address.*.AddressingType=="Static"].Status

Invalid because the search expression uses curly brackets:

Device.IP.Interface.{Type=="Normal"}.Status

Invalid because the Enable Parameter is of type boolean and not a string or derived fromstring:

Device.DSL.Line.[Enable=="true"].CurrentProfile
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2.5.5 Searching by Wildcard

Wildcard-based searching is a means of matching all currently existing Instances (whether that be 0, 1 or many instances) of a
Multi-Instance Object by using a wildcard character “*” in place of the Instance Identifier.

R-ARC.10 - An Agent MUST return Path Names that include all Object Instances that are matched by the use of a Wildcard.
Examples:

All Parameters for all IP Interfaces that currently exist

Device.IP.Interface.*.

Type of each IP Interface that currently exists

Device.IP.Interface.*.Type

2.6 Other Path Decorators

2.6.1 Reference Following

The Device:2 Data Model [38] contains Parameters that reference other Parameters or Objects. The Reference Following
mechanism allows references to Objects (not Parameters) to be followed from inside a single Path Name. Reference Following
is indicated by a “+” character after the Parameter Path, referencing the Object followed by a “.”, optionally followed by a
Relative Object or Parameter Path that are children of the Referenced Object.

For example, Device.NAT.PortMapping.{i}.Interface references an IP Interface Object Device.IP.Interface.
{i}.) and that Object has a Parameter called ‘Name”. With Reference Following, a Path Name of
Device.NAT.PortMapping.1.Interface+.Name references the “‘Name” Parameter of the Interface Object that the

PortMapping is associated with (i.e. it is the equivalent of usingDevice.IP.Interface.1.Name as the Path Name).
The steps that are executed by the Agent when following the reference in this example would be:
1. Retrieve the appropriate instance of the Por tMapping Object based on the Instance Number Addressing information

2. Retrieve the value of the reference Parameter that contains the reference, Interface, which in this case has the value
“Device.IP.Interface.1”

3. Replace the preceding Path Name (Device.NAT.PortMapping.1.Interface+) with the value retrieved in Step 2
4. Append the remainder of the Path Name (. Name), which builds the Path Name:Device.IP.Interface.1.Name
5. Use Device.IP.Interface.1.Name as the Path Name for the action

Note: It should be noted that according to the Device:2 Schema[37], reference Parameters:

o Always contain Path Names (not Search Expressions)
o When configured, can be configured using Path Names using Instance Number Addressing or Unique-Key Addressing,
however:

o When the value of a reference Parameter is read, all Instance Identifiers are returned as Instance Numbers.

R-ARC.11 - A USP Agent MUST support the ability to use Key-based addressing in reference values.
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For example, the following Path Names might illustrate a reference to the same Object (defined as having the Parameter named

KeyParam as unique key) instance using an Instance Number and then a key value:

¢ Object.SomeReferenceParameter = “Object.FooObject.5”
« Object.SomeReferenceParameter = ‘Object.FooObject.[KeyParam=="KeyValueForinstance5”

In the first example, the reference points to the FooObject with Instance Number 5. In the second example, the reference points
to the FooObject with a KeyParam value of “KeyValueForlnstance5”.

R-ARC.12 - The following requirements relate to reference types and the associated Agent behavior:

An Agent MUST reject an attempt to set a strong reference Parameter if the new value does not reference an existing
Parameter or Object.

An Agent MUST NOT reject an attempt to set a weak reference Parameter because the new value does not reference an
existing Parameter or Object.

An Agent MUST change the value of a non-list-valued strong reference Parameter to a null reference when a referenced
Parameter or Object is deleted.

An Agent MUST remove the corresponding list item from a list-valued strong reference Parameter when a referenced
Parameter or Object is deleted.

An Agent MUST NOT change the value of a weak reference Parameter when a referenced Parameter or Object is deleted.

2.6.1.1 List of References

The USP data models have Parameters whose values contain a list of references to other Parameters or Objects. This section
explains how the Reference Following mechanism allows those references to be followed from inside a single Path Name. The
Reference Following syntax as defined above still applies, but the “+” character is preceded by a means of referencing a list
item or items.

« The additional syntax consists of a #” character followed by a list item number (1-indexed), which is placed between the
Parameter name and the “+” character.

o The “#” and list item number are optional. If they are omitted, the first list item is used, i.e.,ReferenceParameter+”
means the same as “ReferenceParameter#1+”.

» To follow all references in the list, use a wildcard (“*”) character instead of a list item number, i.e.,

“ReferenceParameter#*+".

For example, Device .WiFi.SSID.{i}.LowerLayers references a list of Wi-Fi Radio Object (defined as
Device.WiFi.Radio.{i}.) Instances that are associated with the SSID. This Object has aName Parameter; so when
following the first reference in the list of references a Path Name of Device.WiFi.SSID.1.LowerLayers#1l+.Name
references the Name of the Wi-Fi Radio associated with this SSID Object Instance.

The steps that are executed by the Agent when following the reference in this example would be:
1. Retrieve the appropriate Device.WiFi.SSID. {i} instance based on the Instance Number Addressing information

2. Retrieve the value of the LowerlLayers Parameter, which in this case has a value of bevice.WiFi.Radio.1,
Device.WiFi.Radio.2”

3. Retrieve the first list item within the value retrieved in Step 2 (i.e., Device.WiFi.Radio.1")
4. Replace the preceding Path Name (Device.WiFi.SSID.1.LowerLayers#1+) with the value retrieved in Step 3

5. Append the remainder of the Path Name (. Name), resulting in a Path Name of:Device.WiFi.Radio.1.Name
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6. Use Device.WiFi.Radio.1.Name as the Path Name for the action

2.6.1.2 Search Expressions and Reference Following

The Reference Following and Search Expression mechanisms can be combined.

For example, reference the Signal Strength of all Wi-Fi Associated Devices using the “ac” Operating Standard on the “MyHome”
SSID, you would use the Path Name:

Device.WiFi.AccessPoint.[SSIDReference+.SSID=="MyHome"].AssociatedDevice.

[OperatingStandard=="ac"].SignalStrength

2.6.2 Operations and Command Path Names

The Operate Message allows a USP Controller to execute Commands defined in the USP data models. Commands are
synchronous or asynchronous operations that don’t fall into the typical REST-based concepts of CRUD-N that have been
incorporated into the protocol as specific Messages. Commands are addressed like Parameter Paths that end with parentheses
“()” to symbolize that it is a Command.

For example: Device.IP.Interface.[Name=="eth0"].Reset()

2.6.3 Event Path Names
The Notify request allows a type of generic event (called Event) message that allows a USP Agent to emit events defined in the

USP data models. Events are defined in and related to Objects in the USP data models like commands. Events are addressed
like Parameter Paths that end with an exclamation point “!” to symbolize that it is an Event.

For example: Device.Boot!

2.7 Data Model Path Grammar

Expressed as a Backus-Naur Form (BNF) for context-free grammars, the Path Name lexical rules for referencing the
Instantiated Data Model are:
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idmpath ::= objpath | parampath | cmdpath | evntpath
objpath ::= name '.' (name (('.' inst)|(reffollow '.' name) )? '.')*
parampath ::= objpath name

cmdpath ::= objpath name '()'

evntpath ::= objpath name '!'

inst 1= posnum | expr | '*'

expr := '"[' (exprcomp ( '&&' exprcomp )*) ']’
exprcomp ::= relpath oper value

relpath ::= name (reffollow? '.' name )*

reffollow ::= ( '#' (posnum | '*') "+' )| '+'

oper HE R L R S S L B '>=!
value ::= literal | number

name 1:= [A-Za-z_] [A-Za-z_0-9]*

literal R AN

posnum 1= [1-9] [0-9]*

number = ' | ('-'? posnum )

The Path Name lexical rules for referencing the Supported Data Model are:

sdmpath r:=name '.' ( name '."'" ( ( posnum | '{i}' ) '.' )? )* name?
name = [A-Za-z_] [A-Za-z_0-9]*
posnum = [1-9] [0-9]*

2.7.1 BNF Diagrams for Instantiated Data Model

idmpath:

=

. parampath '
mdpath

—¥

idmpath ::= objpath | parampath | cmdpath | evntpath

I

objpath:

name

name . reffallow
: >

objpath ::= name *.” ( name (.’ inst | reffollow ‘.” name)? ‘.’ )*

referenced by:

o cmdpath
« evntpath
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« idmpath
 parampath

parampath:

parampath ::= objpath name
referenced by:

o idm h

cmdpath:

objpath name m

cmdpath ::= objpath name ()’

referenced by:

« idmpath

evntpath:

wer]} (e} @

evntpath ::= objpath name ‘I
referenced by:

. ideath

inst:

l posnum '

inst ::= posnum | expr |

191

referenced by:

« objpath

expr:

expreomp
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expr ::= ‘[ exprcomp ('&& exprcomp )* T’
referenced by:

e inst

exprcomp:

Db—l relpathH oper H value I—H

exprcomp ::= relpath oper value

referenced by:

e expr

relpath:

name

relpath ::= name ( reffollow? ‘.’ name )*

referenced by:

e exprcom

reffollow:
=y

reffollow ::= (‘# (posnum | *))? ‘+

referenced by:
« objpath

o relpath

oper:
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referenced by:

e exprcom

value:

value ::= literal | number

referenced by:

e exprcom

hame:

0-9]

U

[a-z]

[a-Z]
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>=

name ::= [A-Za-z_] [A-Za-z_0-9]*

referenced by:

« cmdpath
« evntpath
- objpath

« parampath
+ relpath
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literal:

8@ e
literal ::= “ [A"]*

referenced by:

« value

number:

L 4
A

posnLInm

number ::= ‘0" | -’? posnum

referenced by:

posnum:

H

posnum ::= [1-9] [0-9]*
referenced by:

t

L]
S
(7]

2.7.2 BNF Diagrams for Supported Data Model

sdmpath:

sdmpath ::= name ‘.’ (name .’ ( ( posnum | {i}") *.")? )* name?
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name:

[4-2]

Fad

name ::= [A-Za-z_] [A-Za-z_0-9]*
referenced by:

o sdmpath

posnum:

posnum ::= [1-9] [0-9]*

referenced by:

o sdmpath

3 Discovery and Advertisement

Discovery is the process by which USP Endpoints learn the USP properties and MTP connection details of another Endpoint,
either for sending USP Messages in the context of an existing relationship (where the Controller's USP Endpoint Identifier,
credentials, and authorized Role are all known to the Agent) or for the establishment of a new relationship.

Advertisement is the process by which USP Endpoints make their presence known (or USP Endpoint presence is made known)
to other USP Endpoints.

3.1 Controller Information

An Agent that has a USP relationship with a Controller needs to know that Controller’s Endpoint Identifier, credentials, and
authorized Role.

An Agent that has a USP relationship with a Controller needs to obtain information that allows it to determine at least one MTP,
IP address, port, and resource path (if required by the MTP) of the Controller. This may be a URL with all of these components,
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a FQDN that resolves to provide all of these components via DNS-SD records, or mDNS discovery in the LAN.
Example mechanisms for configuration include but are not limited to:

« Pre-configured in firmware
» Configured by an already-known-and-trusted Controller
» Configured through a separate bootstrap mechanism such as a user interface or other management interface.

o DHCP, DNS, or mDNS.

R-DIS.0 - An Agent that supports USP configuration of Controllers MUST implement theDevice.LocalAgent.Controller
Object as defined in the Device:2 Data Model [38].

The Agent can be pre-configured with trusted root certificates or trusted certificates to allow authentication of Controllers. Other
trust models are also possible, where an Agent without a current Controller association will trust the first discovered Controller,
or where the Agent has a Ul that allows a User to indicate whether a discovered Controller is authorized to configure that Agent.

3.2 Required Agent Information
A Controller that has a relationship with an Agent needs to know the Agent’s Endpoint Identifier, connectivity information for the
Agent’'s MTP(s), and credentials.

Controllers acquires this information upon initial connection by an Agent, though a LAN based Controller may acquire an
Agent’'s MTP information through mDNS Discovery. It is each Controller’s responsibility to maintain a record of known Agents.

3.3 Use of DHCP for Acquiring Controller Information

DHCP can be employed as a method for Agents to discover Controllers. The DHCPv4 Vendor-Identifying Vendor-Specific
Information Option [13] (option code 125) and DHCPV6 Vendor-specific Information Option[12] (option code 17) can be used to
provide information to Agents about a single Controller. The options that may be returned by DNS are shown below. Description
of these options can be found in the Device:2 Data Model [38].

R-DIS.1 - If an Agent is configured to request Controller DHCP information, the Agent MUST include in its DHCPv4 requests a
DHCPv4 V-1 Vendor Class Option (option 124) and in its DHCPv6 requests a DHCPv6 Vendor Class (option 16). This option
MUST include the Broadband Forum Enterprise Number (3561 decimal, ©x0DE9 hex) as an enterprise-number, and the string

“usp” (all lower case) in a vendor-class-data instance associated with this enterprise-number.

R-DIS.1a - The Agent MUST decode all received options as strings (provisioning code, wait interval, and interval multiplier are
not decoded as numeric fields).

R-DIS.1b - The Agent MUST interpret a received URL or FQDN of the Controller as either an absolute URL or FQDN.

R-DIS.1c - If the Agent receives an encapsulated option value that is null terminated, the Agent MUST accept the value
provided, and MUST NOT interpret the null character as part of the value.

The Role to associate with a DHCP-discovered Controller is programmatically determined (seeAuthentication and Authorization
).

Note: Requirement R-DIS.2 was removed in USP 1.2.

See Using DNS for requirements on resolving URLs and FQDNs provided by DHCP.
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ISPs are advised to limit the use of DHCP for configuration of a Controller to situations in which the security of the link between
the DHCP server and the Agent can be assured by the service provider. Since DHCP does not itself incorporate a security
mechanism, it is a good idea to use pre-configured certificates or other means of establishing trust between the Agent and a
Controller discovered by DHCP.

3.3.1 DHCP Options for Controller Discovery

Encapsulated DHCPv4 Oplion . .
DHCPvE Oplion 17 Parameler in the Device:2 Data Model [38]

Option 125
URL or FQDN of the 25 25 Dependent on MTP
Controller
Provisioning code 26 26 Device.lLocalAgent.Controller.
{i}.ProvisioningCode
USP retry minimum 27 27 Device.lLocalAgent.Controller.
wait interval {i}.USPNotifRetryMinimumwaitInterval
USP retry interval 28 28 Device.lLocalAgent.Controller.
multiplier {i}.USPNotifRetryIntervalMultiplier
Endpoint ID of the 29 29 Device.lLocalAgent.Controller.
Controller {i}.EndpointID

3.4 Using mDNS

R-DIS.3 - If mDNS discovery is supported by a USP Endpoint, the USP Endpoint MUST implement mDNS client and server
functionality as defined in RFC 6762 [24].

R-DIS.4 - If mDNS advertisement for a MTP is enabled on an Endpoint, the Endpoint MUST listen for messages using that MTP
from other Endpoints requesting establishment of USP communication over that MTP.

R-DIS.5 - If mDNS is enabled, a USP Endpoint MUST use mDNS to resolve a FQDN with domain ‘local.”.

In general, the expectation is that Agents will advertise themselves so they will be discoverable by Controllers. Controllers are
not expected to advertise themselves, but are expected to discover Agents and respond to applicable mDNS requests from
Agents. Agents will use mDNS to resolve a Controller “. local.” FQDN (and get DNS-SD records) when the Agent needs to
send a Notification to that Controller.

3.5 Using DNS

Requirements for implementation of a DNS client and configuration of the DNS client with DNS server address(es) (through
static configuration, DHCPv4, DHCPv6, or Router Solicitation) are not provided. These are sufficiently well-known that they were
not considered necessary for this specification. If the Agent knows of no DNS Server, it cannot do DNS resolution.

R-DIS.6 - If DNS is enabled, an Endpoint MUST use DNS to request IP address(es) (A and/or AAAA records, depending on
confiured IP stacks) for a FQDN with domain other than ones used for mDNS (R-DIS.5).

If the Endpoint is programmatically set to request other resource records, it will request those, too.
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R-DIS.7 - If the Agent is resolving an FQDN for a Controller, and the MTP or resource path are unknown, the Agent MUST
request DNS-SD information (PTR, SRV and TXT resource records) in addition to A, AAAA or other resource records it is
programmatically set to request.

3.6 DNS-SD Records

DNS Service Discovery (DNS-SD) RFC 6763[25] is a mechanism for naming and structuring of DNS resource records to
facilitate service discovery. It can be used to create DNS records for USP Endpoints, so they can be discoverable via DNS PTR
queries RFC 1035 [7] or Multicast DNS (mDNS) RFC 6762 [24]. DNS-SD uses DNS SRV and TXT records to express
information about “services”, and DNS PTR records to help locate the SRV and TXT records. To discover these DNS records,
DNS or mDNS queries can be used. RFC 6762 [24] recommends using the query type PTR to get both the SRV and TXT
records. A and AAAA records will also be returned, for address resolution.

The format of a DNS-SD Service Instance Name (which is the resource record (RR) Name of the DNS SRV and TXT records) is
“<Instance>.<Service>.<Domain>". <Instance> will be the USP Endpoint Identifier of the USP Endpoint.

R-DIS.8 - USP Endpoint DNS-SD records MUST include the USP Endpoint Identifier of the USP Endpoint as the DNS-SD

Service Instance Name.

Service Name values registered by BBF with IANA used by USP are shown below. As described in RFC 6763[25], the
<Service> part of a Service Instance Name is constructed from these values as “<Service Name>._<Transport

Protocol>” (e.g., “_usp-agt-ws._tcp”).

3.6.1 IANA-Registered USP Service Names

Service Name Transport Prolocol MTP Type of USP
Endpoint
usp-agt-coap udp CoAP Agent
usp-agt-mqtt tcp MQTT Agent
usp-agt-stomp tcp STOMP Agent
usp-agt-ws tep WebSocket Agent
usp-ctr-coap udp CoAP Controller
usp-ctr-mqtt tcp MQTT Controller
usp-ctr-stomp tcp STOMP Controller
usp-ctr-ws tcp WebSocket Controller

DNS PTR records with a service subtype identifier (e.g.,._<subtype>._usp-agt-ws._tcp.<Domain>)in the RR can be
used to provide searchable simple (single layer) functional groupings of USP Agents. The registry of subtypes for Service
Names registered by BBF is listed at www.br nd-forum.or ignments. DNS SRV and TXT records can be pointed to by
multiple PTR records, which allow a USP Endpoint to potentially be discoverable as belonging to various functional groupings.

DNS TXT records allow for a small set of additional information to be included in the reply sent to the querier. This information
cannot be used as search criteria. The registry of TXT record attributes for BBF Service Names are listed at www.broadband-

forum.org/assignments.

R-DIS.9 - Agent DNS-SD records MUST include a TXT record with the “path” and “name” attributes.
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R-DIS.10 - The “name” attribute included in the Agent DNS-SD records MUST be identical to theFriendlyName Parameter
defined in the Device:2 Data Model [38], if the FriendlyName Parameter is implemented.

R-DIS.11 - Controller DNS-SD records MUST include a TXT record with the “path” attribute.

The “path” attribute is dependent on each MTP.

R-DIS.11a - If a USP Endpoint requires MTP encryption to be used when connecting to its advertised service, it MUST include
the “encrypt” parameter in the TXT record.

The “encrypt” parameter is Boolean and does not require a value to be specified. Its presence means MTP encryption is
required when connecting to the advertised service. lts absence means MTP encryption is not required when connecting to the

advertised service.
The TXT record can include other attributes defined in the TXT record attribute registry, as well.

Whether a particular USP Endpoint responds to DNS or mDNS queries or populates (through configuration or mDNS
advertisement) their information in a local DNS-SD server can be a configured option that can be enabled/disabled, depending
on the intended deployment usage scenario.

3.6.2 Example Controller Unicast DNS-SD Resource Records

; One PTR record for each supported MTP

_usp-ctr-ws._tcp.host.example.com PTR <USP ID>._ usp-ctr-ws._tcp.example.com.

; One SRV+TXT (DNS-SD Service Instance) record for each supported MTP

<USP ID>._usp-ctr-ws._tcp.example.com. SRV 0 1 5684 host.example.com.

<USP ID>._usp-ctr-ws._tcp.example.com. TXT "<length byte>path=<pathname><length byte>encrypt"
; Controller A and AAAA records

host.example.com. A 192.0.2.200
host.example.com. AAAA  2001:db8::200

3.6.3 Example Agent Multicast DNS-SD Resource Records
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; One PTR record (DNS-SD Service) for each supported MTP
_usp-agt-ws._tcp PTR <USP ID>._usp-agt-ws._tcp.local.

; One PTR record (DNS-SD Service Subtype) for each supported MTP per device type
_iot-device._sub._usp-agt-ws._tcp PTR <USP ID>._usp-agt-ws._tcp.local.
_gateway._sub._usp-agt-ws._tcp PTR <USP ID>._usp-agt-ws._tcp.local.

; One SRV+TXT record (DNS-SD Service Instance) for each supported MTP

<USP ID>._usp-agt-ws._tcp.local. SRV 0 1 5684 <USP ID>.local.

<USP ID>._usp-agt-ws._tcp.local. TXT "<length byte>path=<pathname><length byte>name=kitchen
light<length byte>encrypt"

; Agent A and AAAA records
<USP ID>.local. A 192.0.2.100
<USP ID>.local. AAAA 2001:db8::100

3.6.4 Example Controller Multicast DNS-SD Resource Records

LAN Controllers do not need to have PTR records, as they will only be queried using the DNS-SD instance identifier of the
Controller.

; One SRV+TXT record (DNS-SD Service Instance) for each supported MTP
<USP ID>._usp-ctr-ws._tcp.local. SRV 0 1 5683 <USP ID>.local.
<USP ID>._usp-ctr-ws._tcp.local. TXT "<length byte>path=<pathname>"

; Controller A and AAAA records
<USP ID>.local. A 192.0.2.200
<USP ID>.local. AAAA 2001:db8::200

3.7 Using the SendOnBoardRequest() operation and
OnBoardRequest notification

An “OnBoardRequest” notification can be sent by an Agent to a Controller to begin an on-boarding process (for example, when
the Agent first comes online and discovers a Controller using DHCP). lts use is largely driven by policy, but there is a
mechanism other Controllers can use to ask an Agent to send “OnBoardRequest” to another Controller: the

SendOnBoardRequest() command is defined in the Device:2 Data Model [38]. See Notification Types for additional information
about the OnBoardRequest notification.

4 Message Transfer Protocols

USP messages are sent between Endpoints over one or more Message Transfer Protocols.
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Note: Message Transfer Protocol was a term adopted to avoid confusion with the term “Transport”, which is often overloaded to
include both application layer (e.g. WebSocket) and the actual OSI Transport layer (e.g. TCP). Throughout this document,
Message Transfer Protocol (MTP) refers to application layer transport.

4.1 Generic Requirements

The requirements in this section are common to all MTPs.

4.1.1 Supporting Multiple MTPs

Agents and Controllers may support more than one MTP. When an Agent supports multiple MTPs, the Agent may be
configured with Parameters for reaching a particular Controller across more than one MTP. When an Agent needs to send a
Notification to such a Controller, the Agent can be designed (or possibly configured) to select a particular MTP, to try sending
the Notification to the Controller on all MTPs simultaneously, or to try MTPs sequentially. USP has been designed to allow
Endpoints to recognize when they receive a duplicate Message and to discard any duplicates. Endpoints will always send
responses on the same MTP where the Message was received.

4.1.2 Securing MTPs

This specification places the following requirement for encrypting MTP headers and payloads on USP implementations that are
intended to be used in environments where USP Messages will be transported across the Internet:

R-MTP.0 — The Message Transfer Protocol MUST use secure transport when USP Messages cross inter-network boundaries.

For example, it may not be necessary to use MTP layer security when within an end-user’s local area network (LAN). It is
necessary to secure transport to and from the Internet, however. If the device implementer can reasonably expect Messages to
be transported across the Internet when the device is deployed, then the implementer needs to ensure the device supports
encryption of all MTP protocols.

MTPs that operate over UDP will be expected to implement, at least, DTLS 1.2 as defined iff22].

MTPs that operate over TCP will be expected to implement, at least, TLS 1.2 as defined ij17].

Specific requirements for implementing these are provided in the individual MTP sections.

R-MTP.1 — When TLS or DTLS is used to secure an MTP, an Agent MUST require the MTP peer to provide an X.509 certificate.

R-MTP.2 - An Agent capable of obtaining absolute time SHOULD wait until it has accurate absolute time before establishing
TLS or DTLS encryption to secure MTP communication. If an Agent for any reason is unable to obtain absolute time, it can
establish TLS or DTLS without waiting for accurate absolute time. If an Agent chooses to establish TLS or DTLS before it has
accurate absolute time (or if it does not support absolute time), it MUST ignore those components of the received X.509
certificate that involve absolute time, e.g. not-valid-before and not-valid-after certificate restrictions.

R-MTP.3 - An Agent that has obtained an accurate absolute time MUST validate those components of the received X.509
certificate that involve absolute time.

R-MTP.4 - When an Agent receives an X.509 certificate while establishing TLS or DTLS encryption of the MTP, the Agent
MUST execute logic that achieves the same results as in the mandatory decision flow elements (identified with “MUST”) from

Figure 2.

January 2022 © The Broadband Forum. All rights reserved. 41 of 213



User Services Platform (USP) TR-369a2 Issue 1 Amendment 2

R-MTP.4a - When an Agent receives an X.509 certificate while establishing TLS or DTLS encryption of the MTP, the Agent
SHOULD execute logic that achieves the same results as in the optional decision flow elements (identified with “OPT”) from

Figure 2.
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Figure 2: Receiving a X.509 Certificate

Note: The .local and .home.arpa domains are defined by the IETF as “Special-Use Domains” for use inside any LAN. It is not
possible for an external Certificate Authority (CA) to vouch for whether a LAN device “owns” a particular name in one of these
domains (inside a particular LAN) and these LAN networks have no internal CA. Therefore, it is not possible to validate FQDNs

within these domains. The Internet Assigned Numbers Authority (IANA) maintains a registry of Special Use Domains.

4.1.3 USP Record Encapsulation
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The USP Record Message is defined as the Message Transfer Protocol (MTP) payload, encapsulating a sequence of
datagrams that comprise the USP Message as well as providing additional metadata needed for integrity protection, payload
protection and delivery of fragmented USP Messages. Additional metadata fields are used to identify the E2E session context,
determine the state of the segmentation and reassembly function, acknowledge received datagrams, request retransmissions,
and determine the type of encoding and security mechanism used to encode the USP Message.

Following are the fields contained within a USP Record. When not explicitly set or included in the Record, the fields have a
default value based on the type of field. For strings, the default value is an empty byte string. For numbers (uint64) and
enumerations, the default value is 0. For repeated bytes, the default value is an empty byte string. The term “Optional” means it
is not necessary to include the field in a sent Record. The receiving Endpoint will use default values for fields not included in a
received Record. “Required” fields are always included. A Record without a “Required” field will fail to be processed by a
receiving Endpoint. “Repeated” fields can be included any number of times, including zero.

4.1.3.1 Record Definition

Note: This version of the specification defines Record inProtocol Buffers v3. This part of the specification may change to a more

generic description (normative and non-normative) if further encodings are specified in future versions.
string version

Required. Version (Major.Minor) of the USP Protocol (i.e., “1.0” or “1.17).

string to_id

Required. Receiving/Target USP Endpoint Identifier.

string from_id

Required. Originating/Source USP Endpoint Identifier.

enum PayloadSecurity payload_security

Optional. An enumeration of type PayloadSecurity. When the payload is present, this indicates the protocol or mechanism used
to secure the payload (if any) of the USP Message. The value of TLS12 means TLS 1.2 or later (with backward compatibility to
TLS 1.2) will be used to secure the payload (see TLS Payi En lation for more information).

Valid values are:

PLAINTEXT (0)
TLS12 (1)

bytes mac_signature

Optional. When integrity protection of non-payload fields is performed, this is the message authentication code or signature
used to ensure the integrity of the non-payload fields of the USP Record.

bytes sender_cert

Optional. The PEM encoded certificate, or certificate chain, of the sending USP Endpoint used to provide the signature in the
mac_signature field, when integrity protection is used and the payload security mechanism doesn’t provide the mechanism to
generate the mac_signature.

oneof record_type

Required. This field contains one of the types given below:

January 2022 © The Broadband Forum. All rights reserved. 43 of 213



User Services Platform (USP) TR-369a2 Issue 1 Amendment 2

NoSessionContextRecord no_session_context
SessionContextRecord session_context
WebSocketConnectRecord websocket_connect
MQTTConnectRecord mqtt_connect
STOMPConnectRecord stomp_connect

DisconnectRecord disconnect

4.1.3.1.1 NoSessionContextRecord fields

The following describe the fields included ifrecord_type is no_session_context.
bytes payload

Required. The USP Message.

4.1.3.1.2 SessionContextRecord fields

The following describe the fields included ifrecord_type is session_context.
uint64 session_id

Required. This field is the Session Context identifier.

uint64 sequence_id

Required. Datagram sequence identifier. Used only for exchange of USP Records with an E2E Session Context. The field is
initialized to 1 when starting a new Session Context and incremented after each sent USP Record.

Note: Endpoints maintain independent values for received and sent sequence_id for a Session Context, based respectively on

the number of received and sent Records.
uint64 expected_id

Required. This field contains the nextsequence_1id the sender is expecting to receive, which implicitly acknowledges to the
recipient all transmitted datagrams less than expected_id. Used only for exchange of USP Records with an E2E Session
Context.

uint64 retransmit_id

Optional. Used to request a USP Record retransmission by a USP Endpoint to request a missing USP Record using the missing
USP Record’s anticipated sequence_id. Used only for exchange of USP Records with an E2E Session Context. Will be

received as © when no retransmission is requested.
enum PayloadSARState payload_sar_state

Optional. An enumeration of type PayloadSARState. When payload is present, indicates the segmentation and reassembly state
represented by the USP Record. Valid values are:
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NONE (0)
BEGIN (1)
INPROCESS (2)
COMPLETE (3)

enum PayloadSARState payloadrec_sar_state

Optional. An enumeration of type PayloadSARState. When payload segmentation is being performed, indicates the
segmentation and reassembly state represented by an instance of the payload datagram. If payload_sar_state =0 (or is not

included or not set), then payloadrec_sar_state will be © (or not included or not set). Valid values are:

NONE (0)
BEGIN (1)
INPROCESS (2)
COMPLETE (3)

repeated bytes payload

Optional. This repeated field is a sequence of zero, one, or multiple datagrams. It contains the Message, in eithePLAINTEXT
or encrypted format. When using TLS12 payload security, this contains the encrypted TLS records, either sequentially in a
single payload field, or divided into multiple payload fields. When using PLAINTEXT payload security there will be a single

payload field for any Message being sent.

4.1.3.1.3 WebSocketConnectRecord fields

This Record type has no fields.

4.1.3.1.4 MQTTConnectRecord fields

The following describe the fields included ifrecord_type is mqtt_connect.
enum MQTTVersion version
Required. The MQTT protocol version used by the USP Endpoint to send this Record. Valid values are:

v3_1_1 (0)
V5 (1)

string subscribed_topic

Required. A MQTT Topic where the USP Endpoint sending this Record can be reached (i.e. a MQTT Topic it is subscribed to).

4.1.3.1.5 STOMPConnectRecord fields

The following describe the fields included ifrecord_type is stomp_connect.

enum STOMPVersion version

Required. The STOMP protocol version used by the USP Endpoint to send this Record. Valid values are:
Vi 2 (0)

string subscribed_destination
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Required. A STOMP Destination where the USP Endpoint sending this Record can be reached (i.e. a STOMP Destination it is
subscribed to).

4.1.3.1.6 DisconnectRecord fields

The following describe the fields included ifrecord_type is disconnect.
fixed32 reason_code

Optional. A code identifying the reason of the disconnect.

string reason

Optional. A string describing the reason of the disconnect.

4.1.4 USP Record Errors

A variety of errors can occur while establishing and during a USP communication flow. In order to signal such problems to the
other Endpoint while processing an incoming E2E Session Context Record or a Record containing a Message of the type
Request, an Endpoint encountering such a problem can create a USP Record containing a Message of type Error and transmit it
over the same MTP and connection which was used when the error was encountered.

For this mechanism to work and to prevent information leakage, the sender causing the problem needs to be able to create a
valid USP Record containing a valid source Endpoint ID and a correct destination Endpoint ID. In addition a MTP specific return
path needs to be known so the error can be delivered.

R-MTP.5 - A recipient of an erroneous USP Record MUST create a Record with a Message of type Error and deliver it to sender
if the source Endpoint ID is valid, the destination Endpoint ID is its own, and a MTP-specific return path is known. If any of those
criteria on the erroneous Record are not met or the Record is known to contain a USP Message of types Response or Error, it
MUST be ignored.

The following error codes (in the range 7100-7199) are defined to allow the Error to be more specifically indicated. Additional
requirements for these error codes are included in the specific MTP definition, where appropriate.

Code Name Descriplion

7100 Record could not be parsed This error indicates the received USP Record could not be
parsed.

7101 Secure session required This error indicates USP layer Secure Message Exchange is
required.

7102 Secure session not supported This error indicates USP layer Secure Message Exchange Was

indicated in the received Record but is not supported by the
receiving Endpoint.

7103 Segmentation and reassembly not This error indicates segmentation and reassembly was indicated
supported in the received Record but is not supported by the receiving
Endpoint.
7104 Invalid Record value This error indicates the value of at least one Record field was
invalid.
7105 Session Context terminated This error indicates an existing Session Context Establishing an

E2E Session Context is being terminated.
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7106 Session Context not allowed This error indicates use of Session Context Establishing an E2E
Session Contextis not allowed or not supported.

4.1.5 Connect and Disconnect Record Types

A Connect Record is a subgroup of Record types (record_type), there is one Record type per USP MTP in this subgroup.
These Records are used to assert the USP Agent presence and exchange needed information for proper start of
communication between Agent and Controller, the presence information is specifically useful when using brokered MTPs.

R-MTP.6 - If a USP Agent has the necessary information to create a Connect Record, it MUST send the associated Connect
Record, specific for the MTP in use, after it has successfully established an MTP communications channel to a USP Controller.

The DisconnectRecord is a Record type used by a USP Agent to indicate it wishes to end an on-going communication with a
USP Controller. It can be used for presence information, for sending supplemental information about the disconnect event and
to force the remote USP Endpoint to purge some cached information about the current session.

R-MTP.7 - The USP Agent SHOULD send aDisconnectRecord to the USP Controller before disconnecting from an MTP
communications channel. Upon receiving a DisconnectRecord, a USP Controller MUST clear all cached information relative
to an existing E2E Session Context with that Endpoint, including the information that a previous E2E Session Context was
established.

It is not mandatory for a USP Endpoint to close its MTP connection after sending or receiving adisconnectRecord.

R-MTP.8 - After sending or receiving aDisconnectRecord and maintaining the underlying MTP communications channel or
after establishing a new MTP communications channel, the USP Endpoint MUST send or receive the correct Connect Record
type before exchanging any other USP Records.

R-MTP.9 - ADisconnectRecord SHOULD include the reason_code and reason fields with an applicable code from USP

Record Errors.

4.2 CoAP Binding (DEPRECATED)

Note: The CoAP MTP was deprecated in USP 1.2. Due to the way it is specified this MTP can only be used in local area

networks under narrow conditions. Please see Section 4.3 for a suitable alternative.

The Constrained Application Protocol (CoAP) MTP transfers USP Records between USP Endpoints using the CoAP protocol as
defined in RFC 7252 [29]. Messages that are transferred between CoAP clients and servers utilize a request/response
messaging interaction based on RESTful architectural principles. The following figure depicts the transfer of the USP Records
between USP Endpoints.
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’OST[USP Record], Token 0x26, Uri-Host=192.0.2.20,
, Uri-Path=abe, Uri-Query="reply ps:/192.0.2.

(2.04, Token 0x26)

(POSTIUSP Record), Token 0x07, Uri-Host (from received reply.
received reply-to)=55555, Uri-Path(from received reply-to)=xyz,
ply-10=coaps://192.0.2. )

.04, Token 0x07)

Figure 3: Example: USP Request/Response over the CoAP MTP

In this example, a USP Request is encoded within a USP Record and encapsulated within a CoAP request message. When a
USP Endpoint receives the CoAP request message the USP Endpoint immediately sends a CoAP response message (with no
USP Record) to indicate receipt of the message. A USP Response encoded within a USP Record is encapsulated in a new
CoAP request message. When the USP Endpoint receives the USP Response, it sends a CoAP response message that
indicates receipt of the message. Therefore, all Endpoints supporting CoAP will implement both CoAP client and server.

As noted in the definition of a USP Request, this USP Record either requests the Agent perform some action (create, update,
delete, operate, etc.), requests information about an Agent or one or more Service Elements, or acts as a means to deliver
Notifications from the Agent to the Controller. Notifications will only cause a USP Response to be generated if specified in the
Notification Request. However, the CoAP response will always be sent.

4.2.1 Mapping USP Endpoints to CoAP URIs

Section 6 of RFC 7262[29] discusses the URI schemes for identifying CoAP resources and provides a means of locating the
resource. These resources are organized hierarchically and governed by a CoAP server listening for COAP requests on a given
port. USP Endpoints are one type of CoOAP resource that is identified and discovered.

R-COAP.0 - As the USP Endpoint is a resource governed by a CoAP server, the CoAP server MUST also be identified as
defined in section 6 of RFC 7262 [29].

R-COAP.1 - A USP Endpoint MUST be represented as a CoAP resource with the following resource attributes:

« |dentifier within the CoAP server (uri-path)
« Resource type (rt): ‘bbf.usp.endpoint”
« Interface (if): “bbf.usp.c” for USP Controller or ‘bbf.usp.a” for USP Agent

The identifier within the CoAP server is used to deliver messages to the USP Endpoint. When this identifier is used to deliver
messages to the USP Endpoint, this identifier is a uri-path that represents the USP Endpoint.

R-COAP.2 - A CoAP request message MUST include a Uri-Query option that supplies the CoAP server URI of the Endpoint
that is the source of the CoAP request, formatted as ?reply-to=<coap or coaps uri>. The coap and coaps URIs are
defined in sections 6.1 and 6.2 of RFC 7262 [29]. The URI MUST NOT include any optional queries at the end.

R-COAP.2a - When a USP Endpoint receives a CoAP request message it MUST use the reply-to Uri-Query option included in
the CoAP request as the CoAP URI for the USP Response (if a response is required by the incoming USP Request).

R-COAP.3 - When creating DNS-SD records (see DNS-SD Records), an Endpoint MUST set the DNS-SD TXT record “path”
attribute equal to the value of the CoAP server identifier (uri-path).
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4.2.2 Mapping USP Records to CoAP Messages

R-COAP.4 - In order for USP Records to be transferred between a USP Controller and Agent using CoAP, the USP Record
MUST be encapsulated within the CoAP message as defined in RFC 7262 [29].

R-COAP.5 — USP Records that exceed the CoAP message size MUST be block encapsulated in accordance with31].

USP Records are transferred using the CoAP resource that represents the receiving USP Endpoint using the CoAP POST
method as defined in RFC 7252.

R-COAP.6 - The CoAP Content-Format for USP Records MUST be application/octet-stream (ID=42) for Message Encoding.

R-COAP.7 - Upon successful reception of the CoAP message using POST, the CoAP server MUST respond with a response
code of 2.04 (Changed).

4.2.2.1 Handling CoAP Request Failures

At times CoAP requests fail to complete due to problems in the underlying transport (e.g., timeout) or a failure response code
received from the CoAP server due to problems in the CoAP request sent by the CoAP client (4.xx) or problems with the CoAP
server implementation (5.xx).

R-COAP.8 - CoAP clients and servers MUST implement the required CoAP response codes defined in section 5.9 of RFC 7262
[29].

R-COAP.9 - When a CoAP client receives a failure indication (e.g., timeout) from the underlying transport layer, the CoAP client
MUST indicate a timeout to the USP Endpoint.

R-COAP.10 - When a CoAP client receives a response code of 4.xx or 5.xx, the CoAP client MUST indicate a CoAP failure to
the USP Endpoint.

When a CoAP client sends a CoAP request, the CoAP client can provide incorrect or missing information in the CoAP request.
For example, a CoAP client can send a CoAP request with an:

« Invalid CoAP method: The CoAP server responds with a4 .05
« Invalid Content-Format options: The CoAP server responds with a4 .15

« Invalid or not understandable payload: The CoAP server responds with a4 . 00

R-COAP.11 - When a CoAP server receives a CoAP request with an invalid CoAP method, the CoAP server MUST respond
with a 4. 05 response code.

R-COAP.12 - When a CoAP server receives a CoAP request with an invalid CoAP Content-Format option, the CoAP server
MUST respond with a 4 .15 response code.

R-COAP.13 - When a CoAP server receives a CoAP request and the receiving USP Endpoint cannot interpret or decode the
USP Record for processing, the CoAP server MUST respond with a 4. 00 response code.

4.2.3 MTP Message Encryption

CoAP MTP message encryption is provided using DTLS as described in Section 9 of RFC 726229].
In section 9 of RFC 7262[29], CoAP messages are secured using one of three modes:

e NoSec: DTLS is disabled
o PreSharedKey: DTLS is enabled and the MTP endpoint uses pre-shared keys that are used to validate the identity of CoAP
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endpoints involved in the message exchange

o RawPublicKey: DTLS is enabled and the MTP endpoint has an asymmetric key pair without a certificate. The MTP endpoint
has an identity calculated from the public key and a list of other MTP endpoints to which it can communicate

« Certificate: DTLS is enabled and the MTP endpoint has an asymmetric key pair with an X.509 certificate.

R-COAP.14 - CoAP clients and servers MUST implement the NoSec and Certificate modes of CoAP security as defined in RFC
7262 [29].

While section 9 of RFC 7262[29] provides guidance on securing CoAP, further guidance related to DTLS implementations for
the Internet of Things is provided by RFC 7925 [30].

R-COAP.15 - CoAP clients and servers MUST implement the mandatory statements of RFC 792530] with the exception that:

» Section 4.4.1 USP Controller certificates can contain domain names with wildcard characters per RFC 612521] guidance.

« Section 4.4.2 Client certificate identifiers do not use EUI-64 identifier but instead use the identifier defined for Client
certificates in this Working Text.

« Section 4.4.5 Client Certificate URLs are not required to be implemented.

As USP Endpoints play the role of both CoAP client and server; when the MTP is secured using the Certificate mode of CoAP
Security, the USP Endpoint provides a X.509 certificate to the MTP peer.

R-COAP.16 — When the Certificate mode of CoAP is used to secure an MTP, a USP Endpoint MUST provide an X.509
certificate to the MTP peer.

Note that DTLS sessions established for an Endpoint’'s CoAP client and CoAP server are distinct. Therefore, it is possible for
CoAP to be encrypted in one direction and not the other. If this happens, the requirements and flows in Authentication and
Authorization will dictate that Secure Message Exchange be used.

4.3 WebSocket Binding

The WebSockets MTP transfers USP Records between USP Endpoints using the WebSocket protocol as defined in RFC 6455
[23]. Messages that are transferred between WebSocket clients and servers utilize a request/response messaging interaction
across an established WebSocket session.

4.3.1 Mapping USP Endpoints to WebSocket URIs

Section 3 of RFC 6455 discusses the URI schemes for identifying WebSocket origin servers and their target resources. These
resources are organized hierarchically and governed by a WebSocket origin server listening for WebSocket messages on a
given port. USP Endpoints are one type of WebSocket resource that is identified and discovered.

R-WS.1 - As the USP Endpoint is a resource governed by a WebSocket origin server, the WebSocket server MUST also be
identified as defined in section 3 of RFC 6455 [23].

R-WS.2 - A USP Endpoint MUST be represented as a WebSocket resource using the path component as defined in section 3 of
RFC 6455 [23].

R-WS.3 - When creating DNS-SD records (seeDiscovery), an Endpoint MUST set the DNS-SD TXT record “path” attribute
equal to the value of the Websocket resource using the path component as defined in section 3 of RFC 6455 [23].
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4.3.2 Handling of the WebSocket Session

When exchanging the USP Records across WebSockets MTPs, the two USP Endpoints establish a WebSocket session. These
WebSocket sessions are expected to be long lived and are reused for subsequent USP Record exchange. A WebSocket
session is established using a handshake procedure described in section 4 of RFC 6455. When a WebSocket connection is not
longer necessary, the WebSocket connection is closed according to section 7 of RFC 6455. The following figure depicts a
WebSocket session handshake that is originated by an Agent.

Get /endpointresource HTTP/1.1
Host: controller.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhIIHNhbXBsZSBub26/ZQ==
Sec-WebSocket-Version: 13
Sec-WebSocket-Protocol: v1.usp
_ Sec-WebSocket-Extensions: bbf-usp-protocol; eid="<Agent Endpoint ID>"
HTTP/1.1 101 Switching Protocols
Upgrade:websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBIiTxaQ9%Y GzzhZRbK+x0o=
Sec-WebSocket-Protocol: v1.usp
Sec-WebSocket-Extensions: bbf-usp-protocol; eid="<Controller Endpoint 1D="

Session Established (v1.usp)

=

Figure 4: WebSocket Session Handshake

While WebSocket sessions can be established by either USP Controllers or USP Agents in many deployment scenarios

(e.g. communication between USP Endpoints across the Internet), in general, USP Agents will establish the WebSocket session
and not expose an open port toward the Internet for security reasons. Regardless of which entity establishes the WebSocket
session, at most one (1) open WebSocket session is utilized between the USP Endpoints.

R-WS.4 - USP Endpoints that exchange USP Records MUST utilize at most one (1) open WebSocket session.
R-WS.5 - USP Agent MUST provide the capability to originate the establishment of a WebSocket session.
R-WS.6 - USP Agent MUST provide the capability to accept the establishment of a WebSocket session from a USP Controller.

Note: Requirement R-WS.6 was altered from a MAY to a MUST in USP 1.2 to ensure that the WebSocket MTP is suitable for

the in-home communications use case.

R-WS.7 - A USP Endpoint MUST implement the WebSocket handshake protocol to establish a WebSocket connection as
defined in section 4 of RFC 6455 [23].

R-WS.8 - A USP Endpoint MUST implement the procedures to close a WebSocket connection as defined in section 7 of RFC
6455 [23].

4.3.2.1 Mapping USP Records to WebSocket Messages

During the establishment of the WebSocket session, the WebSocket client informs the WebSocket server in theSec -
WebSocket-Protocol header about the type of USP Records that will be exchanged across the established WebSocket
connection. For USP Records, the Sec-WebSocket-Protocol header contains the value vl.usp. When presented with a
Sec-WebSocket-Protocol header containing v1.usp, the WebSocket Server serving a USP Endpoint returnsv1.usp in
the response’s Sec-WebSocket-Protocol header. If the WebSocket client doesn’t receive a Sec-WebSocket-Protocol

header with a value of v1.usp, the WebSocket client does not establish the WebSocket session.

When a WebSocket connection is being initiated with TLS, no USP Record is sent until the TLS negotiation is complete. The
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WebSocket server will be unable to identify the Endpoint ID of the client unless it looks inside the certificate. To make it easier
for the server to identify the client, the WebSocket Extension bbf -usp-protocol has been registered. The extension
parameter of eid is defined for use with this extension. The value of theeid parameter will be the Endpoint ID of the Endpoint
sending the WebSocket header.

Note: When using an Endpoint ID as the value of theeid parameter in theSec-WebSocket -Extensions header, it will need
to be in the quoted-string form as referenced in section 9 of RFC 6455[23].

R-WS.9 - The WebSocket's handshake Sec-WebSocket -Protocol header for exchange of USP Records using the protocol-
buffers encoding mechanism MUST be v1.usp.

R-WS.10 - A WebSocket client MUST include theSec-WebSocket -Protocol header for exchange of USP Records when
initiating a WebSocket session.

R-WS.10a - A WebSocket client MUST include theSec -WebSocket -Extensions header with bbf-usp-protocol

WebSocket Extension and extension parameter eid equal to the client’s Endpoint ID when initiating a WebSocket session.

R-WS.11 - A WebSocket server that supports USP Endpoints MUST include theSec -WebSocket -Protocol header for
exchange of USP Records when responding to an initiation of a WebSocket session.

R-WS.11a - A WebSocket server MUST include theSec -WebSocket -Extensions header with bbf-usp-protocol
WebSocket Extension and extension parameter eid equal to the server’s Endpoint ID when responding to an initiation of a

WebSocket session that includes the bbf-usp-protocol extension.

R-WS.11b - WebSocket clients SHOULD NOT consider WebSocket responses that do not include thebbf -usp-protocol
WebSocket Extension to be an error.

R-WS.11c - WebSocket servers SHOULD NOT consider WebSocket session initiation requests that do not include thebbf -

usp-protocol WebSocket Extension to be an error.

R-WS.12 - A WebSocket client MUST NOT establish a WebSocket session if the response to a WebSocket session initiation
request does not include the Sec-WebSocket-Protocol header for exchange of USP Records in response to an initiation of
a WebSocket session.

R-WS.12a - A WebSocket server MUST NOT establish a WebSocket session if the WebSocket session initiation request does
not include the Sec-WebSocket-Protocol header.

4.3.3 Handling of WebSocket Frames

RFC 6455 defines a number of type of WebSocket control frames (e.g., Ping, Pong, Close) and associated condition codes in
order to maintain a WebSocket connection. In addition messages are transferred in WebSocket Data control frame.

R-WS.13 - A USP Endpoint MUST implement the WebSocket control frames defined in section 5.5 of RFC 645923].

USP Records can be transferred between USP Controllers and USP Agents over an established WebSocket session. These
USP Records are encapsulated within a binary WebSocket data frame as depicted by the figure below.
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USP Controller USP Agent

CRUD-O request
——

: Session Established (v1.usp) _

Binary Data (CRUD-O request)

Binary Data (CRUD-O response)

=

CRUD-O response '
——————

| CRUD-O request _ |
- >
. _ CRUD-O response |
< |

Figure 5: USP Request using a WebSocket Session

R-WS.14 - In order for USP Records to be transferred between a USP Controller and Agent using WebSockets MUST be
encapsulated within as a binary WebSocket data frame as defined in section 5.6 of RFC 6455 [23].

R-WS.15 - USP Records are transferred between USP Endpoints using message body procedures as defined in section 6 of
RFC 6455 [23].

4.3.3.1 Handling Failures to Deliver USP Records

If a USP Endpoint receives a WebSocket frame containing a USP Record that cannot be extracted for processing (e.g., text
frame instead of a binary frame, malformed USP Record or USP Record, bad encoding), the receiving USP Endpoint notifies
the originating USP Endpoint that an error occurred by closing the WebSocket connection with a 1003 Status Code with the
WebSocket Close frame.

R-WS.16 - A USP Endpoint that receives a WebSocket frame containing a USP Record that cannot be extracted for processing,

the receiving USP Endpoint MUST terminate the connection using a WebSocket Close frame with a Status Code of 1003.

4.3.3.2 Keeping the WebSocket Session Alive

Once a WebSocket session is established, the WebSocket session is expected to remain open for future exchanges of USP
Records. The WebSocket protocol uses Ping and Pong control frames as a keep-alive session. Section 5.5 of RFC 6455
discusses the handling of Ping and Pong control frames.

R-WS.17 - A USP Agent MUST implement a WebSocket keep-alive mechanism by periodically sending Ping control frames and
responding to received Ping control frames with Pong control frames as described in section 5.5 of RFC 6455 [23].

R-WS.18 - A USP Agent MUST provide the capability to assign a keep-alive interval in order to send Ping control frames to the

remote USP Endpoint.

4.3.3.3 WebSocket Session Retry

If for any reason a WebSocket Session is closed, the USP Endpoint will attempt to re-establish the WebSocket Session
according to its session retry policy. For Controllers, this session retry policy is implementation specific.

R-WS.19 — When retrying to establish a WebSocket Session, the Agent MUST use the following retry algorithm to manage the
WebSocket Session establishment procedure:
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For Agents, the retry interval range is controlled by two variables (described in the table below): the minimum wait interval and
the interval multiplier. The corresponding data model Parameter MAY be implemented to allow a USP Controller to change the
values of these variables. The factory default values of these variables MUST be the default values listed in the Default column
of the table below.

Descriplive Name Symbaol Defaull Data Model Parameter Name
Minimum wait m 5 seconds Device.lLocalAgent.Controller.{i}.MTP.
interval {i}.WebSocket.SessionRetryMinimumwWaitInterval
Interval multiplier k 2000 Device.lLocalAgent.Controller. {i}.MTP.

{i}.wWebSocket.SessionRetryIntervalMultiplier

Ratry Count Defaull Wail Interval Range Aclual Wail Interval Range (min-max
(min-max seconds) seconds)

#1 5-10 m - m.(k/1000)

#2 10-20 m.(k/1000) - m.(k/1000)"2

#3 20-40 m.(k/1000)"2 - m.(k/1000)"3
#4 40-80 m.(k/1000)"3 - m.(k/1000)"4
#5 80-160 m.(k/1000)"4 - m.(k/1000)"5
#6 160-320 m.(k/1000)"5 - m.(k/1000)"6
#7 320-640 m.(k/1000)"6 - m.(k/1000)"7
#8 640-1280 m.(k/1000)"7 - m.(k/1000)"8
#9 1280-2560 m.(k/1000)"8 - m.(k/1000)"9

#10 and subsequent 2560-5120 m.(k/1000)"9 - m.(k/1000)10

R-WS.20 — Once a WebSocket session is established between the Agent and the Controller, the Agent MUST reset the
WebSocket MTP’s retry count to zero for the next WebSocket Session establishment.

R-WS.21 - If a reboot of the Agent occurs, the Agent MUST reset the WebSocket MTP’s retry count to zero for the next
WebSocket Session establishment.

4.3.4 MTP Message Encryption

WebSocket MTP message encryption is provided using certificates in TLS as described in section 10.5 and section 10.6 of RFC
6455 [23].

R-WS.22 - USP Endpoints utilizing WebSockets clients and servers for message transport MUST implement the Certificate
modes of TLS security as defined in sections 10.5 and 10.6 of RFC 6455 [23].

R-WS.23 - USP Endpoints capable of obtaining absolute time SHOULD wait until it has accurate absolute time before
contacting the peer USP Endpoint. If a USP Endpoint for any reason is unable to obtain absolute time, it can contact the peer
USP Endpoint without waiting for accurate absolute time. If a USP Endpoint chooses to contact the peer USP Endpoint before it
has accurate absolute time (or if it does not support absolute time), it MUST ignore those components of the peer USP
Endpoint's WebScoket MTP certificate that involve absolute time, e.g. not-valid-before and not-valid-after certificate restrictions.

R-WS.24 - USP Controller certificates MAY contain domain names with wildcard characters per RFC 6125[21] guidance.
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4.4 STOMP Binding

The STOMP MTP transfers USP Records between USP endpoints using version 1.2 of the STOMP protoco[35], further
referred to as “STOMP Specification”, or the Simple Text Oriented Message Protocol. Messages that are transferred between
STOMP clients utilize a message bus interaction model where the STOMP server is the messaging broker that routes and
delivers messages based on the destination included in the STOMP header.

The following figure depicts the transfer of the USP Records between USP Agents and Controllers.

STOMP
Server

i -

USP Contraller USP Agent

STOMP Client STOMP Client

i
i

TLS j TLS l

]

TCFR/IP TCR/IP

| —— AT ——.

Figure 6: USP over STOMP Architecture
The basic steps for any USP Endpoint that utilizes a STOMP MTP are:

1. Negotiate TLS (if required/configured)
2. Connect to the STOMP Server

3. Maintain Heart Beats (if configured)
4. Subscribe to a Destination

5. Send USP Records

R-STOMP.0 - USP Agents utilizing STOMP clients for message transport MUST support theSTOMPConn:1 and
STOMPController:1 data model profiles.

R-STOMP.1 - USP Agents utilizing STOMP clients for message transport SHOULD support theSTOMPAgent : 1 and
STOMPHear tbeat : 1 data model profile.

4.4.1 Handling of the STOMP Session

When exchanging USP Records across STOMP MTPs, each USP Endpoint establishes a communications session with a
STOMP server. These STOMP communications sessions are expected to be long lived and are reused for subsequent
exchange of USP Records. A STOMP communications session is established using a handshake procedure as described in
“Connecting a USP Endpoint to the STOMP Server” section below. A STOMP communications session is intended to be
established as soon as the USP Endpoint becomes network-aware and is capable of sending TCP/IP messages.

When a STOMP communications session is no longer necessary, the STOMP connection is closed by the STOMP client,
preferably by sending a DISCONNECT frame (see “Handling Other STOMP Frames” section below).

4.4.1.1 Connecting a USP Endpoint to the STOMP Server

R-STOMP.2 - USP Endpoints utilizing STOMP clients for message transport MUST send aSTOMP frame to the STOMP server
to initiate the STOMP communications session as defined in the “Connecting” section of the STOMP Specification.

R-STOMP.3 - USP Endpoints that DO NOT utilize client certificate authentication MUST include the login and passcode STOMP
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headers in the STOMP frame. For a USP Agent, if the .STOMP.Connection.{i}.Username Parameter is implemented then
its value will be the source for the 1ogin STOMP header, and if the . STOMP.Connection. {i}.Password Parameter is

implemented then its value will be the source for the passcode STOMP header.

R-STOMP.4 - USP Endpoints sending aSTOMP frame MUST include (in addition to other mandatory STOMP headers) an
endpoint-id STOMP header containing the Endpoint ID of the USP Endpoint sending the frame Note: According to the
STOMP Specification, the STOMP frame requires that “C style literal escapes” need to be used to encode any carriage return,
line feed, or colon characters that are found within the UTF-8 encoded headers, and R-STOMP.4 requires the Endpoint ID to be

included in those headers. Since the Endpoint ID always contains colon characters, those will need to be escaped.

R-STOMP.5 - USP Endpoints sending a STOMP frame MUST include a host STOMP header, if configured to do so. For a USP
Agent the value MUST contain the value from the appropriate . STOMP.Connection.{i}.VirtualHost Parameter if
supported and not empty.

R-STOMP.6 - If the USP Endpoint receives asubscribe-dest STOMP header in the CONNECTED frame, it MUST use the
associated value when Subscribing to its destination (see “Subscribing a USP Endpoint to a STOMP Destination” section for
more details).

R-STOMP.7 - If the connection to the STOMP server is NOT successful then the USP Endpoint MUST enter a connection retry
state. For a USP Agent the retry mechanism is based on the STOMP.Connection. {i}. retry Parameters:

ServerRetryInitialInterval, ServerRetryIntervalMultiplier, and ServerRetryMaxInterval.

4.4.1.2 Handling the STOMP Heart Beat Mechanism

The STOMP Heart Beat mechanism can be used to periodically send data between a STOMP client and a STOMP server to
ensure that the underlying TCP connection is still available. This is an optional STOMP mechanism and is negotiated when
establishing the STOMP connection.

R-STOMP.8 - If the STOMP . Connection instance’s EnableHeartbeats Parameter value is true then the USP Agent MUST
negotiate the STOMP Heart Beat mechanism within the STOMP frame during the process of establishing the STOMP connection
as is defined in the “Heart-beating” section of the STOMP Specification.

R-STOMP.9 - If the STOMP . Connection instance’s EnableHeartbeats Parameter value is either false or not implemented
then the USP Agent MUST either not send the heart-beat STOMP header in the STOMP frame or send “0,0” as the value of
the heart-beat STOMP header in the STOMP frame.

R-STOMP.10 - USP Agents negotiating the STOMP Heart Beat mechanism MUST use theSTOMP . Connection.
{i}.0OutgoingHeartbeat and STOMP.Connection. {i}.IncomingHeartbeat Parameter values within the heart-beat
STOMP header as defined in the “Heart-beating” section of the STOMP Specification.

R-STOMP.11 - USP Agents that have negotiated a STOMP Heart Beat mechanism with a STOMP server MUST adhere to the
heart beat values (as defined in the “Heart-beating” section of the STOMP Specification) as returned in the CONNECTED frame.

4.4.2 Mapping USP Endpoints to STOMP Destinations

USP Agents will have one STOMP destination per STOMP MTP independent of whether those STOMP MTPs use the same
STOMP.Connection instance or a different one. The STOMP destination is either configured by the STOMP server via the
USP custom subscribe-dest STOMP Header received in theCONNECTED frame (exposed in the

Device.lLocalAgent .MTP.{i}.STOMP.DestinationFromServer Parameter) or taken from the

Device.LocalAgent .MTP.{i}.STOMP.Destination Parameter if there wasn't asubscribe-dest STOMP Header
received in the CONNECTED frame. The USP custom subscribe-dest STOMP Header is helpful in scenarios where the USP
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Agent doesn’t have a pre-configured destination as it allows the USP Agent to discover the destination.

A USP Controller will subscribe to a STOMP destination for each STOMP server that it is associated with. The USP Controller's
STOMP destination needs to be known by the USP Agent (this is configured in the Device.LocalAgent.Controller.

{i}.MTP.{i}.STOMP.Destination Parameter) as it is used when sending a USP Record containing a Notification.

4.4.2.1 Subscribing a USP Endpoint to a STOMP Destination

R-STOMP.12 - USP Endpoints utilizing STOMP clients for message transport MUST subscribe to their assigned STOMP
destination by sending a SUBSCRIBE frame to the STOMP server as defined in the “SUBSCRIBE” section of the STOMP
Specification.

R-STOMP.13 - USP Endpoints sending a SUBSCRIBE frame MUST include (in addition to other mandatory STOMP headers) a
destination STOMP header containing the STOMP destination associated with the USP Endpoint sending the frame.

R-STOMP.14 - USP Agents that receive asubscribe-dest STOMP Header in the CONNECTED frame MUST use that STOMP
destination in the destination STOMP header when sending a SUBSCRIBE frame.

R-STOMP.15 - USP Agents that have NOT received asubscribe-dest STOMP Header in the CONNECTED frame MUST use
the STOMP destination found in the Device.LocalAgent .MTP.{i}.STOMP.Destination Parameter in thedestination
STOMP header when sending a SUBSCRIBE frame.

R-STOMP.16 - USP Agents that have NOT received asubscribe-dest STOMP Header in the CONNECTED frame and do
NOT have a value in the Device.LocalAgent.MTP.{i}.STOMP.Destination Parameter MUST terminate the STOMP

communications session (preferably via the DISCONNECT frame) and enter a connection retry state following 3-STOMP.7.

R-STOMP.17 - USP Endpoints sending aSUBSCRIBE frame MUST use anack value of “auto”.

4.4.3 Mapping USP Records to STOMP Frames

A USP Record is sent from a USP Endpoint to a STOMP Server within aSEND frame. The STOMP Server delivers that USP
Record to the destination STOMP Endpoint within a MESSAGE frame. When a USP Endpoint responds to the USP request, the
USP Endpoint sends the USP Record to the STOMP Server within a SEND frame, and the STOMP Server delivers that USP
Record to the destination USP Endpoint within a MESSAGE frame.

R-STOMP.18 - USP Endpoints utilizing STOMP clients for message transport MUST send USP Records in aSEND frame to the
STOMP server as defined in the “SEND” section of the STOMP Specification.

R-STOMP.19 - USP Endpoints sending a SEND frame MUST include (in addition to other mandatory STOMP headers) a
content-length STOMP header containing the length of the body included in theSEND frame.

R-STOMP.20 - USP Endpoints sending aSEND frame MUST include (in addition to other mandatory STOMP headers) a
content-type STOMP header with a value of ‘application/vnd.bbf.usp.msg”, which signifies that the body included in
the SEND frame contains a Protocol Buffer [6] binary encoding message.

R-STOMP.21 - USP Endpoints sending a SEND frame with content-type ofapplication/vnd.bbf.usp.msg MUST include
(in addition to other mandatory STOMP headers) a reply-to-dest STOMP header containing the STOMP destination that
indicates where the USP Endpoint that receives the USP Record should send any response (if required).

R-STOMP.22 - USP Endpoints sending a SEND frame with content-type ofapplication/vnd.bbf.usp.msg MUST include
the Protocol Buffer [6] binary encoding of the USP Record as the body of theSEND frame.
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R-STOMP.23 - When a USP Endpoint receives aMESSAGE frame it MUST use thereply-to-dest included in the STOMP
headers as the STOMP destination of the USP response (if a response is required by the incoming USP request).

4.4.3.1 Handling Errors

If a STOMP USP Endpoint receives aMESSAGE frame containing a USP Record that cannot be extracted for processing (e.g.,
text frame instead of a binary frame, malformed USP Record, bad encoding), it will silently drop the unprocessed USP Record. If
the requirements according to USP Record Errors are fulfilled, for the STOMP MTP specifically this means that thereply-to-
dest information has to be available, then a USP Record with an appropriate Error Message must be created and transmitted
via STOMP SEND frame.

Note: Error handling was unified between MTPs in USP 1.2 by using USP Records instead of MTP specific messages,
deprecating most of this section, specifically the requirements R-STOMP.23a, RB-STOMP.23b, RB-STOMP.24, RB-STOMP.24a
and R-STOMP.24b. Please see USP Record Errors for details.

R-STOMP.23a (DEPRECATED) - USP Endpoints MUST support STOMP content-type header value of

application/vnd.bbf.usp.error.
Note: Requirement RB-STOMP.23a was removed in USP 1.2

R-STOMP.23b (DEPRECATED) - A USP Endpoint MUST include ausp-err-id STOMP header in SEND frames of content-
type application/vnd.bbf.usp.msg. The value of this header is:<USP Record to_id> + "/" + <USP Message
msg_id>, the <USP Message msg_id> field can be left blank if the Record does not contain a USP Message. Since the colon
“:"is a reserved character in STOMP headers, all instances of " in the USP Record to_id MUST be expressed using an

encoding of \c.
Note: Requirement R-STOMP.23b was removed in USP 1.2

R-STOMP.24 (DEPRECATED) - When a USP Endpoint receives aMESSAGE frame containing a USP Record or an
encapsulated USP Message within a USP Record that cannot be extracted for processing, the receiving USP Endpoint MUST
ignore the USP Record if the received STOMP MESSAGE frame did not include a usp-err-id header.

Note: Requirement R-STOMP.24 was removed in USP 1.2

R-STOMP.24a (DEPRECATED) - When a USP Endpoint receives a MESSAGE frame containing a USP Record or an
encapsulated USP Message within a USP Record that cannot be extracted for processing, the receiving USP Endpoint MUST
send a STOMP SEND frame with an application/vnd.bbf.usp.error content-type header value if the received STOMP
MESSAGE frame included a usp-err-id header.

Note: Requirement R-STOMP.24a was removed in USP 1.2

R-STOMP.24b (DEPRECATED) - A STOMP SEND frame withapplication/vnd.bbf.usp.error content-type MUST
contain the received usp-err-id header, the destination header value set to the receivedreply-to-dest header, and a
message body (formatted using UTF-8 encoding) with the following 2 lines:

e err_code:<numeric code indicating the type of error that caused the overall message to

fail>
e err_msg:<additional information about the reason behind the error>
The specific error codes are listed in the MTPUSP_Record Errors section.

The following is an example message. This example uses "@” to represent the NULL octet that follows a STOMP body.
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SEND
destination:/usp/the-reply-to-dest
content-type:application/vnd.bbf.usp.error

usp-err-id:cid\c3AA3F8\cusp-id-42/683

err_code:7100

err_msg:Field n is not recognized.”@
Note: Requirement R-STOMP.24b was removed in USP 1.2

R-STOMP.25 - If an ERROR frame is received by the USP Endpoint, the STOMP server will terminate the connection. In this
case the USP Endpoint MUST enter a connection retry state. For a USP Agent the retry mechanism is based on the
STOMP.Connection.{i}. retry Parameters: ServerRetryInitialInterval, ServerRetryIntervalMultiplier, and

ServerRetryMaxInterval.

4.4.3.2 Handling Other STOMP Frames

R-STOMP.26 - USP Endpoints utilizing STOMP clients for message transport MUST NOT send the transactional STOMP
frames including: BEGIN, COMMIT, and ABORT.

R-STOMP.27 - USP Endpoints utilizing STOMP clients for message transport MUST NOT send the acknowledgement STOMP
frames including: ACK and NACK.

R-STOMP.28 - USP Endpoints utilizing STOMP clients for message transport MAY send the following STOMP frames when
shutting down a STOMP connection: UNSUBSCRIBE (according to the rules defined in the UNSUBSCRIBE section of the
STOMP Specification) and DISCONNECT (according to the rules defined in the DISCONNECT section of the STOMP
Specification).

R-STOMP.29 - USP Endpoints utilizing STOMP clients for message transport that DID NOT receive asubscribe-dest
STOMP Header in the CONNECTED frame when establishing the STOMP communications session MUST update their STOMP
subscription when their destination is altered by sending the UNSUBSCRIBE STOMP frame (according to the rules defined in the
UNSUBSCRIBE section of the STOMP Specification) and then re-subscribing as detailed in the “Subscribing a USP Endpoint to
a STOMP Destination” section.

R-STOMP.30 - USP Endpoints utilizing STOMP clients for message transport MAY receive aRECEIPT frame in which case the
STOMP server is acknowledging that the corresponding client frame has been processed by the server.

4.4.4 Discovery Requirements

The USP Discovery section details requirements about the general usage of DNS, mDNS, and DNS-SD records as it pertains to
the USP protocol. This section provides further requirements as to how a USP Endpoint advertises discovery information when
a STOMP MTP is being utilized.

R-STOMP.31 - When creating a DNS-SD record, an Endpoint MUST set the DNS-SD path” attribute equal to the value of the
destination that it has subscribed to.

R-STOMP.32 - When creating a DNS-SD record, an Endpoint MUST utilize the STOMP server’s address information in the A
and AAAA records instead of the USP Endpoint’s address information.

4.4.5 STOMP Server Requirements
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R-STOMP.33 - A STOMP server implementation MUST adhere to the requirements defined in the STOMP Specification.

R-STOMP.34 - A STOMP server implementation MUST perform authentication of the STOMP client and ensure that a Remote
USP Endpoint is only allowed to subscribe to the destination that is associated with the USP Endpoint.

R-STOMP.35 - A STOMP server implementation SHOULD support both Client Certification Authentication and
Username/Password Authentication mechanisms.

4.4.6 MTP Message Encryption

STOMP MTP message encryption is provided using TLS certificates.

R-STOMP.36 - USP Endpoints utilizing STOMP clients for message transport MUST implement TLS 1.2 RFC 524€17] or later
with backward compatibility to TLS 1.2.

R-STOMP.37 - STOMP server certificates MAY contain domain names and those domain names MAY contain domain names
with wildcard characters per RFC 6125 [21] guidance.

4.5 MQTT Binding

The Message Queuing Telemetry Transport (MQTT) MTP transfers USP Records between USP Endpoints using the MQTT
protocol. Messages that are transferred between MQTT clients utilize a message bus interaction model where the MQTT server
is the messaging broker that routes and delivers messages based on the Topic Name included in the MQTT Publish packet

variable header.

The following figure depicts the transfer of the USP Records between USP Agents and Controllers.

MQTT Server

Controller Agent

MQTT Client MQTT Client

TLS TLS

TCPRIP

TCPIP

Figure 7: USP over MQTT Architecture
The basic steps for any USP Endpoint that utilizes an MQTT MTP are:

o Negotiate TLS (if required/configured)

» Connect to the MQTT Server (server may require Authentication)
« Subscribe to a Topic

« Publish USP Records

» Optionally send PINGREQ messages to keep the connection alive

The following figure shows the MQTT packets that have requirements in this section for their use when MQTT is a USP MTP.
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Figure 8: MQTT Packets
R-MQTT.1 - USP Endpoints utilizing MQTT clients for message transport MUST implement MQTT 5.05].
R-MQTT.2 - USP Endpoints utilizing MQTT clients for message transport MAY implement MQTT 3.1.1[4].

Requirements in this MQTT MTP specification are common to both the MQTT 3.1.1 and MQTT 5.0 specifications unless an
MQTT version is named.

The MQTT specifications are very complete and comprehensive in describing syntax and usage requirements of MQTT packets
and behaviors. Therefore, none of those requirements are re-iterated in this specification. This specification only contains
requirements unique to use of MQTT as a USP MTP. The above two requirements for compliance with the MQTT specifications
are critical in developing an implementation compliant with this MQTT Binding specification. Wherever an MQTT packet or other
functionality is mentioned in the requirements in this MQTT Binding specification, the requirement for compliance with the

MQTT specification (RB-MQTT.1 and R-MQTT.2) apply.
R-MQTT.3 - USP Agents utilizing MQTT clients for message transport MUST support MQTT over TCP transport protocol.

The MQTT specification also describes how MQTT can run over WebSockets. Deployments can choose to use MQTT over
WebSockets, if they use MQTT clients and servers with support for this option. The TCP option is required to ensure
interoperability.

R-MQTT.4 - USP Agents utilizing MQTT clients for message transport MUST support theMQTTClientCon:1,
MQTTClientSubscribe:1,MQTTAgent:1, and MQTTController :1 data model profiles.

R-MQTT.5 - USP Agents utilizing MQTT clients for message transport SHOULD support theMQTTClientExtended:1 data
model profile.
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4.5.1 Connecting a USP Endpoint to the MQTT Server

When exchanging USP Records across MQTT MTPs, each USP Endpoint establishes a communications session with an
MQTT server. These MQTT communications sessions are expected to be long-lived and are re-used for subsequent exchange
of USP Records. An MQTT communications session is established using the procedure in this section. An MQTT
communications session is intended to be established as soon as the USP Endpoint becomes network-aware and can send
TCP/IP messages.

When an MQTT communications session is no longer necessary or expires (see “Keep Alive” section below), the MQTT
connection is closed by the MQTT client, preferably by sending a DISCONNECT packet (see Handling Other MQTT Packets
section below).

R-MQTT.1 and R-MQTT.2 require that all MQTT capabilities referenced in this section and its sub-sections are compliant with
the MQTT specifications. Reading the MQTT specification is highly recommended to ensure the correct syntax and usage of
MQTT packets and properties (CONNECT, CONNACK, User Name, Password, Clientld, User Property, Keep Alive,PINGREQ,
PINGRESP, etc.).

R-MQTT.6 - USP Endpoints utilizing MQTT clients for message transport MUST send aCONNECT packet to the MQTT server to
initiate the MQTT communications session.

R-MQTT.7 - USP Endpoints with a configured MQTT User Name and Password for use with this MQTT server MUST include
these in the MQTT CONNECT packet. The .MQTT.Client.{i}.Username and .MQTT.Client.{i}.Password Parameter
values (associated with this MQTT server) will be used for User Name and Password.

R-MQTT.8 - USP Endpoints MUST set the value of theCONNECT packet Client Identifier (Clientld) as follows:

« If a non-empty, non-null Clientld value exists for use with this MQTT server, this MUST be used. The data model Parameter
for the Clientld is .MQTT.Client.{i}.ClientID.

If an MQTT 5.0 client has no configured Clientld (null or empty string) the USP Endpoint MUST send an empty string in the
Client Identifier property.

If an MQTT 3.1.1 client has no configured Clientld, the USP Endpoint SHOULD attempt to use its USP Endpoint ID as the
Clientld.

R-MQTT.9 - An MQTT 5.0 client MUST save (in the.MQTT.Client.{i}.ClientID Parameter) an Assigned Client Identifier
included in a CONNACK packet as its configured Clientld for future connections to the MQTT server.

R-MQTT.10 - If the connection to the MQTT server is NOT successful then the USP Endpoint MUST enter a connection retry
state. For a USP Agent the retry mechanism is based on the MQTT.Client.{i}. retry Parameters: ConnectRetryTime,

ConnectRetryIntervalMultiplier, and ConnectRetryMaxInterval.

R-MQTT.11 - Once a USP Endpoint has successfully connected to an MQTT server, it MUST use the same Clientld for all
subsequent connections with that server.

4.5.1.1 CONNECT Flags and Properties

The MQTT CONNECT packet has a number of flags and properties that can be set. The User Name and Password flags are set
to 1 if these parameters are included. The use of the Will Retain, Will QoS, and Will Flag are left up to the deployment. They are
not needed in order to use MQTT as a USP MTP and can be “0” if there is no deployment-specified need for them. The Clean
Start flag can also be used according to deployment-specified needs. Configured values for these flags can be provided through
the related .MQTT.Client.{i}. Parameters.
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MQTT 3.1.1 does not provide a simple mechanism for a USP MQTT client to provide its Endpoint ID to the MQTT server. But
the server does have other options, such as:

1. Support Endpoint ID as Clientld.
2. Get Endpoint ID from client TLS certificate.

MQTT 3.1.1 also does not provide a mechanism for the MQTT server to tell a client what Topic other Endpoints should use to
send it a message (the “reply to” Topic). This information would need to be pre-configured or provided in some manner not
specified here.

MQTT 5.0 includes additional properties that deployments can choose to use.

R-MQTT.12 - An MQTT 5.0 USP Endpoint MUST support setting the Request Response Information property to 1, and MUST

support receiving the corresponding Response Information in the CONNACK packet.

The Response Information property is used by an MQTT 5.0 client as the Response Topic (which is the MQTT 5.(PUBLISH
packet property identifying the Topic to send a USP response to). The Response Information property requirements for use of
the received Response Information are below in Sending the USP Record in a PUBLISH Packet Payload Ensuring the client is
subscribed to this Topic or a Topic Filter that includes this Topic is described in Subscribing to MQTT Topics.

R-MQTT.13 - An MQTT 5.0 USP Endpoint MUST include a User Property name-value pair in theCONNECT packet with name of
“usp-endpoint-id” and value of this Endpoint’s USP Endpoint ID.

4.5.1.2 Keep Alive

The MQTT Keep Alive mechanism has several components:

« The CONNECT packet Keep Alive field tells the server to disconnect the client if the server does not receive a packet from
the client before the Keep Alive time (in seconds) has elapsed since the prior received packet.

o The MQTT 5.0 CONNACK packet Keep Alive field allows the server to inform the client the maximum interval the server will
allow to elapse between received packets before it disconnects the client due to inactivity.

« PINGREQ and PINGRESP packets can be used to keep the connection up if the timer is nearing expiry and there is no need

for another type of message. PINGREQ can also be used by the client at any time to check on the status of the connection.

The client can indicate the Server is not required to disconnect the Client on the grounds of inactivity by setting th€ONNECT
Keep Alive to zero (0). Note that WebSockets mechanisms can be used to keep the connection alive if MQTT is being run over
WebSockets. Also note the server is allowed to disconnect the client at any time, regardless of Keep Alive value.

R-MQTT.14 - USP Endpoints with a configured Keep Alive value MUST include this in the MQTTCONNECT packet. The
.MQTT.Client.{i}.KeepAliveTime Parameter value (associated with this MQTT server) will be used for the Keep Alive
value.

Use of PINGREQ and PINGRESP for keeping sessions alive (or determining session aliveness) is as described in the MQTT
specification. No additional requirements are provided for use of these packets in a USP context.

4.5.2 Subscribing to MQTT Topics

The SUBSCRIBE packet is sent by the MQTT client to subscribe to one or more Topics or Topic Filters. These are needed to
allow the MQTT client to receive application messages. The MQTT client will receive all application messages published by
other clients that are sent to a Topic that matches (either exactly or within a wildcarded Topic Filter) a subscribed-to Topic or
Topic Filter. The MQTT server indicates in the SUBACK response packet whether the client has succeeded or failed to subscribe

to each Topic or Topic Filter sent in the SUBSCRIBE packet.
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USP Endpoints can be configured with one or more specific MQTT Topics or Topic Filters to subscribe to for each MQTT server
they are associated with. In MQTT 5.0, a CONNACK User Property named “subscribe-topic” can be used to provide the client with
Topic or Topic Filter values for the client to subscribe to. There is no similar capability in MQTT 3.1.1. This means configuration
or some out-of-band mechanism are the only means of supplying subscription Topics or Topic Filters to an MQTT 3.1.1 client.
An Agent will need to be configured with a Controller's MQTT Topic (the Device.LocalAgent.Controller.{i}.MTP.
{i}.MQTT.Topic Parameter is used to configure this), to send a Notification to that Controller.

R-MQTT.1 and BR-MQTT.2 require that all MQTT capabilities referenced in this section and its sub-sections are compliant with
the MQTT specifications. Reading the MQTT specification is highly recommended to ensure the correct syntax and usage of
MQTT packets and properties (SUBSCRIBE, Topic Filter, QoS 0, QoS 1, QoS 2, etc.).

R-MQTT.15 - USP Endpoints that successfully connect to an MQTT server MUST send aSUBSCRIBE packet with all Topic
Filters identified in the following list:

All configured Topic Filter values for use with this MQTT server MUST be included in aSUBSCRIBE packet. For a USP
Agent, the .MQTT.Client.{i}.Subscription.{i}. table can be used to configure Topic Filter values.

If an MQTT 5.0 USP Endpoint received one or more User Property in theCONNACK packet where the name of the name-
value pair is “subscribe-topic”, the USP Endpoint MUST include the value of all such name-value pairs in its SUBSCRIBE
packet as a Topic Filter.

If an MQTT 5.0 Endpoint received a Response Information property in theCONNACK packet, and the topic from that
Response Information property is not included (directly or as a subset of a Topic Filter) among the Topic Filters of the
previous 2 bullets, the Endpoint MUST include the value of the Response Information property in its SUBSCRIBE packet.

« If an Endpoint has aResponseTopicConfigured value and did not receive a Response Information property in the
CONNACK packet, and the topic in theResponseTopicConfigured Parameter is not included (directly or as a subset of a
Topic Filter) among the Topic Filters of the first 2 bullets, the Endpoint MUST include the value of the
ResponseTopicConfigured in its SUBSCRIBE packet.

R-MQTT.16 - USP Agents that have NOT received a “subscribe-topic” User Property in theCONNACK and do NOT have a
configured Topic Filter (Device.MQTT.Client.{i}.Subscription.{i}.Topic Parameter for this Client instance in the
data model) MUST terminate the MQTT communications session (via the DISCONNECT packet) and consider the MTP disabled.

R-MQTT.17 - If a USP Endpoint does not successfully subscribe to at least one Topic, it MUST NOT publish a packet with a
USP Record in its Application Message, and MUST disconnect from the MQTT server.

For each Topic listed in aSUBSCRIBE packet, the client will also provide a desired QoS level. See the MQTT specification
(MQTT 3.1.1 [4] or MQTT 5.0[5], Section 4.3) for description of the three QoS levels (QoS 0, QoS 1, QoS 2). The usefulness of
these QoS levels in the context of USP depends on the particulars of the MQTT deployment. It is therefore up to the
implementer / deployer to decide which QoS setting to use. In order to ensure deployments have the ability to use at least QoS
1, MQTT clients and servers are required to implement at least QoS 1 (see requirements in Sending the USP Record in a

PUBLISH Packet Payload and MQTT Server Requirements).

4.5.3 Sending the USP Record in a PUBLISH Packet Payload

A USP Record is sent from a USP Endpoint to an MQTT Server within aPUBLISH packet payload. The MQTT Server delivers
that PUBLISH packet to the destination MQTT client USP Endpoint. This is true of all USP Message types.

R-MQTT.1 and R-MQTT.2 require that all MQTT capabilities referenced in this section and its sub-sections are compliant with
the MQTT specifications. Reading the MQTT specification is highly recommended to ensure the correct syntax and usage of
MQTT packets and properties (PUBLISH, Content Type, Response Topic, etc.).

January 2022 © The Broadband Forum. All rights reserved. 64 of 213



User Services Platform (USP) TR-369a2 Issue 1 Amendment 2

R-MQTT.18 - USP Endpoints utilizing MQTT clients for message transport MUST send the USP Record in the payload of a
PUBLISH packet.

R-MQTT.19 - USP Endpoints MUST send USP Records using the Protocol Buffer[6] binary encoding of the USP Record.
R-MQTT.20 - USP Endpoints utilizing MQTT clients for message transport MUST support MQTT QoS 0 and QoS 1.
The USP Controller's MQTT Topic needs to be known by any USP Agent expected to send a Notify message to the Controller.

The USP Agent will also need to know an exact Topic where it can be reached (and not just a Topic Filter) in order to provide a
Controller with the Agent’s “reply to” Topic.

R-MQTT.21 - An MQTT 5.0 USP Endpoint that receives Response Information in theCONNACK packet MUST use this as its
“reply to” Topic.

R-MQTT.22 - USP Endpoints MUST include a “reply to” Topic in allPUBLISH packets transporting USP Records.
R-MQTT.23 - USP Endpoints using MQTT 5.0 MUST include their “reply to” Topic in thePUBLISH Response Topic property.

R-MQTT.24 - USP Endpoints using MQTT 3.1.1 MUST include their “reply to” Topic after “/reply-to="at the end of thePUBLISH
Topic Name, with any “/” character in the Topic replaced by “%2F”.

For example, if a Controller’s “reply to” Topic is “usp/controllers/oui:00256D:my-unique-bbf-id-42”, and it is sending to an Agent

whose Topic is “usp/agents/cid:3AA3F8:my-unique-usp-id-42”, the PUBLISH Topic Name for a USP Controller using an MQTT

3.1.1 client will be “usp/agents/cid:3AA3F8:my-unique-usp-id-42/reply-to= usp%2Fcontrollers%2Foui:00256 D:my-unique-bbf-id-
42",

USP Endpoints that need to send a response to a received USP Record will need to determine the Topic Name to use in the
responding PUBLISH packet.

R-MQTT.25 - USP Endpoints using MQTT 3.1.1 MUST interpret the portion of the received®UBLISH Topic Name following the
last forward slash “/reply-to="as the response Topic Name. Any instance of “%2F” in this received string MUST be replaced
with “/”.

R-MQTT.26 - USP Endpoints using MQTT 5.0 MUST use the receivedPUBLISH Response Topic property as the response
Topic Name.

When an USP Endpoint receives a MQTT 3.1.1 PUBLISH packet without “reply to” Topic or a USPConnect Record with a
different MQTT version indicated in the version field of themgtt_connect Record type, then a MQTT version mismatch
between brokers involved in the MQTT communication has occurred.

R-MQTT.26a - If a MQTT version mismatch is encountered and the sender “reply to” Topic is known, the receiving Endpoint
MUST handle this error according to Handling Errors and cease communication until the mismatch has been addressed by the
sender.

R-MQTT.27 - USP Endpoints sending a USP Record using MQTT 5.0 MUST have “usp.msg” in the Content Type property.

MQTT clients using MQTT 3.1.1 will need to know to pass the payload to the USP Agent for handling. There is no indication in
MQTT 3.1.1 of the payload application or encoding. an MQTT 3.1.1 deployment could choose to dedicate the MQTT connection
to USP, or put something in the syntax of PUBLISH packet Topic Names that would indicate the payload is a USP Record.

R-MQTT.27a - USP Endpoints receiving a MQTT 5.0PUBLISH packet MUST interpret the Content Type property of “usp.msg”
or “application/vnd.bbf.usp.msg” (the registered USP Record MIME type) as indicating the packet contains a USP Record.

4.5.4 Handling Errors
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The MQTT specification requires servers and clients to disconnect if there is a violation at the MQTT protocol layer.

If a MQTT USP Endpoint receives aPUBLISH packet containing a USP Record that cannot be extracted for processing
(e.g. malformed USP Record or bad encoding), it will silently drop the unprocessed USP Record. If the requirements according

to USP Record Errors are fulfilled, then a USP Record with an appropriate Error Message will be created and published.

Note: Error handling was unified between MTPs in USP 1.2 by using USP Records instead of MTP specific messages,

deprecating most of this section, specifically R-MQTT.28, R-MQTT.29, R-MQTT.30, R-MQTT.31, R-MQTT.31a and R-MQTT.32.
Please see USP Record Errors for details.

R-MQTT.28 (DEPRECATED) - MQTT 5.0 Endpoints MUST supportPUBLISH Content Type value of “usp.error”.
Note: Requirement R-MQTT.28 was removed in USP 1.2

R-MQTT.29 (DEPRECATED) - MQTT 5.0 Endpoints MUST include ausp-err-id MQTT User Property inPUBLISH packets
of content-type “usp.msg”. The value of this User Property is: <USP Record to_id> + "/" + <USP Message msg_id>,
the <USP Message msg_id> field can be left blank if the Record does not contain a USP Message.

Note: Requirement R-MQTT.29 was removed in USP 1.2

R-MQTT.30 (DEPRECATED) - When an MQTT 3.1.1 USP Endpoint receives aPUBLISH packet containing a USP Record or an
encapsulated USP Message within a USP Record that cannot be extracted for processing, the receiving USP Endpoint MUST
silently drop the USP Record.

Note: Requirement R-MQTT.30 was removed in USP 1.2

R-MQTT.31 (DEPRECATED) - When an MQTT 5.0 USP Endpoint receives aPUBLISH packet containing a USP Record or an
encapsulated USP Message within a USP Record that cannot be extracted for processing and the PUBLISH packet contains a
usp-err-1id header, the receiving USP Endpoint MUST send aPUBLISH packet with Content Type “usp.error”, a User
Property set to the received usp-err-id User Property, the Topic Name set to the received Response Topic, and aPUBLISH
Payload (formatted using UTF-8 encoding) with the following 2 lines:

o err_code:<numeric code indicating the type of error that caused the overall message to fail>

e err_msg: <additional information about the reason behind the error>
The specific error codes are listed in the MTP.USP_Record Errors section.
MQTT 5.0 includes a Reason Code that is used to respond toPUBLISH packets when QoS 1 or QoS 2 is used.
Note: Requirement R-MQTT.31 was removed in USP 1.2

R-MQTT.31a (DEPRECATED) - USP Endpoints receiving a MQTT 5.0PUBLISH packet MUST interpret the Content Type
property of “usp.error” or “application/vnd.bbf.usp.error” (the registered USP error message MIME type) as indicating the packet
contains a USP error message and code.

Note: Requirement R-MQTT.31a was removed in USP 1.2

R-MQTT.32 (DEPRECATED) - When a USP Endpoint using MQTT 5.0 receives aPUBLISH packet with QoS 1 or QoS 2
containing a USP Record or an encapsulated USP Message within a USP Record that cannot be extracted for processing, the
receiving USP Endpoint MUST include Reason Code 153 (0x99) identifying “Payload format invalid” in any PUBACK or PUBREC
packet.

Note these packets will be received by the MQTT server and will not be forwarded to the USP Endpoint that originally sent the
USP Record.
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Note: Requirement R-MQTT.32 was removed in USP 1.2

R-MQTT.33 - If the MQTT server terminates the connection, the USP Endpoint MUST enter a connection retry state. For a USP

Agent the retry mechanism is based on the MQTT.Client.{i}. ConnectRetryTime Parameter.

4.5.5 Handling Other MQTT Packets

Use of PUBREL, and PUBCOMP depends on the QoS level being used for the subscribed Topic. No additional requirements are
provided for use of these packets in a USP context.

Use of PINGREQ and PINGRESP for keeping sessions alive (or determining session aliveness) is as described in the MQTT
specification. No additional requirements are provided for use of these packets in a USP context.

Use of UNSUBSCRIBE and UNSUBACK is as described in the MQTT specification. If an Agent’s configured Topics are disabled
by a Controller (by setting Device.MQTT.Client.{i}.Subscription.{i}.Enable to “false”), UNSUBSCRIBE is used to unsubscribe from
them.

R-MQTT.34 - USP Endpoints utilizing MQTT clients for message transport SHOULD send anUNSUBSCRIBE packet when a
subscribed Topic or Topic Filter is no longer indicated but the MQTT connection is expected to stay up.

R-MQTT.1 and R-MQTT.2 require that all MQTT capabilities referenced in this section and its sub-sections are compliant with
the MQTT specifications. Reading the MQTT specification is highly recommended to ensure the correct syntax and usage of
MQTT packets and properties (DISCONNECT, etc.).

R-MQTT.35 - USP Endpoints utilizing MQTT clients for message transport SHOULD send aDISCONNECT packet when shutting
down an MQTT connection.

MQTT 5.0 specifies the AUTH packet to use for extended authentication. Implementations can make use of extended
authentication but should only do so if they are sure that all clients and servers will support the same authentication
mechanisms.

4.5.6 Discovery Requirements

The USP discovery section details requirements about the general usage of DNS, mDNS, and DNS-SD records as it pertains to
the USP protocol. This section provides further requirements as to how a USP Endpoint advertises discovery information when
an MQTT MTP is being utilized.

R-MQTT.36 - When creating a DNS-SD record (DNS-SD Records), an Agent MUST set the DNS-SD “path” attribute equal to
the value of its “reply to” Topic.

R-MQTT.37 - When creating a DNS-SD record (DNS-SD Records), a Controller MUST set the DNS-SD “path” attribute equal to
a value that is included among the Controller’s subscribed Topics and Topic Filters.

R-MQTT.38 - When creating a DNS-SD record, an Endpoint MUST utilize the MQTT server’s address information in the A and
AAAA records instead of the USP Endpoint’s address information.

4.5.7 MQTT Server Requirements

R-MQTT.39 - MQTT servers MUST implement MQTT 5.0[5].

R-MQTT.40 - MQTT servers SHOULD implement MQTT 3.1.1[4].
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R-MQTT.41 - MQTT servers MUST implement MQTT over TCP transport protocol.

R-MQTT.42 - An MQTT server MUST support authentication of the MQTT client through at least one of the mechanisms
described in Section 5.4.1 of the MQTT specification, and support an Access Control List mechanism that can restrict the topics
an authenticated MQTT client can subscribe or publish to.

R-MQTT.43 - An MQTT server SHOULD support both Client Certification Authentication and User Name / Password
Authentication mechanisms.

R-MQTT.44 - An MQTT server SHOULD support sending Topic or Topic Filter values in a “subscribe-topic” User Property in the
CONNACK packet.

R-MQTT.45 - If an MQTT server supports subscriptions from unconfigured Agents, it MUST support wildcarded Topic Filters.
This will allow support for Agents that try to subscribe to “+/<Endpoint ID>/#" and “+/+/<Endpoint ID>/#" Topic Filters.
R-MQTT.46 - An MQTT server MUST support at least MQTT QoS 1 level.

R-MQTT.47 - An MQTT server SHOULD support a Clientld value that is a USP Endpoint ID. This includes supporting all

Endpoint ID characters (includes “-”, “.”, “ 7, “%”, and “:”) and at least 64 characters length.

4.5.8 MTP Message Encryption

MQTT MTP message encryption is provided using TLS certificates.

R-MQTT.48 - USP Endpoints utilizing MQTT clients for message transport MUST implement TLS 1.417] or later with
backward compatibility to TLS 1.2.

R-MQTT.49 - MQTT server certificates MAY contain domain names and those domain names MAY contain domain names with
wildcard characters per RFC 6125 [21] guidance.

5 Message Encoding

USP requires a mechanism to serialize data to be sent over a Message Transfer Protocol. The description of each individual
Message and the USP Record encoding scheme is covered in a section of this document and/or in the referenced specification.
This version of the specification includes support for:

« Protocol Buffers Version 3 [6]

R-ENC.0 - An implementation using protocol buffers encoding to encode USP Messages (Requests, Responses, and Errors)
MUST conform to the schema defined in usp-msg-1-2.proto.

R-ENC.1 - An implementation using protocol buffers encoding to encode USP Records MUST conform to the schema defined in
usp-record-1-2.proto.

Protocol Buffers Version 3 uses a set of enumerated elements to coordinate encoding and decoding during transmission. It is
intended that these remain backwards compatible, but new versions of the schema may contain new enumerated elements.

R-ENC.2 - If an Endpoint receives a USP payload containing an unknown enumeration value for a known field, the Endpoint
MUST report the failure to the receiving MTP to indicate a “bad request” and do no further processing of the USP Record or
USP Message.
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Protocol Buffers uses a datatype called oneof. This means that the element contains elements of one or more varying types.

R-ENC.3 - USP Records and USP Messages that contain an element of typeoneof MUST include 1 and only 1 instance of the
element, which MUST contain one of the possible elements.

R-ENC.4 - A USP Record that violates R-ENC.3 MUST be discarded.

R-ENC.5 - A USP Message that violates R-ENC.3 SHOULD return an error of type 7004 (Invalid Arguments).

5.1 Parameter and Argument Value Encoding

usp-msg-1-2.proto specifies that Parameter and argument values in USP Messages are represented as Protocol Buffers
Version 3 strings (which are UTF-8-encoded).

This section specifies how Parameter and argument values are converted to and from Protocol Buffers Version 3 strings.

R-ENC.6 - Parameter and argument values MUST be converted to and from Protocol Buffers Version 3 strings using the string
representations of the TR-106 Appendix |.4 [37] data types.

TR-106 Appendix 1.4 states that “Parameters make use of a limited subset of the default SOAP data types”. The SOAP 1.1
specification [34] states that all SOAP simple types are defined by the XML Schema Part 2: Datatypes specificatior{39], and
this is the ultimate reference.

In practice there should be few surprises, e.g., XML Schema Part 2, Section 3.3.2939] states that it has a lexical representation
consisting of a finite-length sequence of decimal digits (#x30-#x39).

Some of the encoding rules are quite complicated, e.g. SOAP 1.1, Section 5.2.3[34] states that base64 line length restrictions
don’t apply to SOAP, and XML Schema Part 2, Section 3.2.7 [39] has a lot of detail about which aspects of ISO 8601 are and
are not supported by the dateTime data type.

6 End to End Message Exchange

USP Messages are exchanged between Controllers and Agents. In some deployment scenarios, the Controller and Agent have
a direct connection. In other deployment scenarios, the messages exchanged by the Controller and Agent traverse multiple
intermediate MTP Proxies. The latter deployment scenario typically occurs when the Agent or Controller is deployed outside the
proximal or Local Area Network. In both types of scenarios, the End-to-End (E2E) message exchange capabilities of USP
permit the:

« Exchange of USP Records within an E2E Session Context that allows for:
o Integrity protection for non-payload fields
o Protected and unprotected payloads
o Segmentation and reassembly of E2E Messages that would be too large to transfer through the intermediate MTP
Proxies.
¢ Exchange of USP Records without an E2E Session Context that allows for:
o Integrity protection for non-payload fields
o Unprotected payloads or protected payloads where the payload protection security mechanism doesn’t require a
concept of a session (e.g., COSE)
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Protected payloads provide a secure message exchange (confidentiality, integrity and identity authentication) through exchange
of USP Messages that are secured by the originating and receiving USP Endpoints.

USP makes use of USP Records to exchange USP Messages between Endpoints, seeRecord Definition for a description of the
USP Record fields.

R-E2E.1 - A receiving USP Endpoint MUST ignore any Record that does not contain its own Endpoint Identifier as theto_id
field of the Record.

R-E2E.2 — A USP Record with record_type = session_context MUST contain at least onepayload field, or a non-zero
retransmit_id. (DEPRECATED)

Note: the R-E2E.2 requirement was deprecated in USP 1.2, because sending a Session Context Record without a payload is

useful for restarting a Session Context

Note: the requirements below reference Objects and Parameters used to manage the E2E Session. These are specified in the
Device:2 Data Model [38].

Note: The USP Record Encapsulation section was moved toUSP Record Encapsulation in USP 1.2.

6.1 Exchange of USP Records within an E2E Session Context

When exchanging USP Records within an E2E Session Context, record_type of session_context is used, and all required

parameters for record_type of session_context are supplied.

6.1.1 Establishing an E2E Session Context

For the exchange of USP Records within an E2E Session Context to happen between two USP Endpoints, an E2E Session
Context (Session Context) is established between the participating USP Endpoints. The Session Context is uniquely identified
within the USP Endpoint by the combination of the Session Identifier and remote USP Endpoint’s Identifier.

In USP, either a Controller or an Agent can begin the process of establishing a Session Context. This is done by the Controller
or Agent sending a USP Record with a session_id field that is not currently associated with the Agent/Controller combination
and a sequence_id field value of 1. Note that a Record with an empty payload can be used to establish a new Session
Context.

R-E2E.3 — Session Context identifiers MUST be generated by the USP Endpoint that originates the session such that it is
greater than 1 and scoped to the remote USP Endpoint.

When a Session Context had been previously established between an Agent and Controller and the remote USP Endpoint
receives a USP Record with a different session_id field, the remote USP Endpoint will restart the Session Context using the

new session_id field.

R-E2E.4 — When a USP Endpoint receives a USP Record from another USP Endpoint where there is no established Session
Context, and the USP Record includes a Session Context identifier, and the USP Endpoint is configured to allow Session
Context to be used with the other Endpoint, the USP Endpoint MUST start a new Session Context for the remote USP Endpoint,

and initialize the sequence_id field to 1.
R-E2E.5 — At most one (1) Session Context is established between an Agent and Controller.

R-E2E.6 — When a USP Endpoint receives a USP Record from a remote USP Endpoint with a different Session Context
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identifier than was previously established, the USP Endpoint MUST start a new Session Context for the remote USP Endpoint,

and initialize the sequence_id field to 1.

Note: Implementations need to consider if outstanding USP Messages that have not been transmitted to the remote USP

Endpoint need to be transmitted within the newly established Session Context.

R-E2E.6a — When an Agent is configured not to allow Session Context or does not support Session Context and receives a
USP Record initiating Session Context, the Agent MUST reply with a Disconnect Record and MUST include reason_code and

reason fields indicating Session Context is not allowed (code 7106 from USP Record Errors).

When a Controller is configured to require Session Context and receives a Disconnect Record indicating Session Context is not
allowed or supported by the Agent, the Controller is expected to terminate the MTP session.

R-E2E.6b — If an Agent needs to terminate a Session Context without terminating an existing MTP connection where Session
Context is being used, it MUST send a Disconnect Record and MUST include reason_code and reason indicating Session
Context is being terminated (code 7105 from USP Record Errors).

6.1.1.1 Session Context Expiration

Sessions Contexts have a lifetime and can expire. The expiration of the Session Context is handled by the
Device.lLocalAgent.Controller.{i}.E2ESession.SessionExpiration Parameter in the Agent. If the Agent does
not see activity (an exchange of USP Records) within the Session Context, the Agent considers the Session Context expired
and for the next interaction with the Controller a new Session Context is established.

R-E2E.7 — When a Session Context between a Controller or Agent expires the Agent MUST initiate a new Session Context
upon the next interaction with the remote USP Endpoint or from a Session Context request by the remote USP Endpoint.

6.1.1.2 Exhaustion of Sequence Identifiers

USP Endpoints identify the USP Record using thesequence_id field. When the sequence_id field for a USP Record that is
received or transmitted by a USP Endpoint nears the maximum value that can be handled by the USP Endpoint, the USP
Endpoint will attempt to establish a new Session Context in order to avoid a rollover of the sequence_id field.

R-E2E.8 — When a USP Endpoint receives a USP Record with a value of thesequence_id field that is within 10,000 of the
maximum size for the data type of the sequence_id field, the USP Endpoint MUST establish a new Session Context with the
remote USP Endpoint.

R-E2E.9 — When a USP Endpoint transmits a USP Record with a value of thesequence_id field that is within 10,000 of the
maximum size for the data type of the sequence_id field, the USP Endpoint MUST establish a new Session Context with the
remote USP Endpoint upon its next contact with the remote USP Endpoint.

6.1.1.3 Failure Handling in the Session Context

In some situations, (e.g., TLS negotiation handshake) the failure to handle a received USP Record is persistent, causing an
infinite cycle of “receive failure/request->session/establish->session/receive->failure” to occur. In these situations, the Agent
enforces a policy as defined in this section regarding establishment of failed Session Contexts or failed interactions within a

Session Context. The policy is controlled by the Device.LocalAgent.Controller.{i}.E2ESession.Enable Parameter.

R-E2E.10 — When retrying USP Records, the Agent MUST use the following retry algorithm to manage the retransmission
Session Context establishment procedure:

The retry interval range is controlled by two Parameters, the minimum wait interval and the interval multiplier, each of which

January 2022 © The Broadband Forum. All rights reserved. 71 0f213



User Services Platform (USP) TR-369a2 Issue 1 Amendment 2

corresponds to a data model Parameter, and which are described in the table below. The factory default values of these
Parameters MUST be the default values listed in the Default column. They MAY be changed by a Controller with the appropriate
permissions at any time.

Descriptive
Name Symbal Dedaull Dala Medel Parameler Name
Minimum wait m 5 Device.LocalAgent.Controller.
interval seconds {i}.E2ESession.SessionRetryMinimumwWaitInterval
Interval k 2000 Device.LocalAgent.Controller.
multiplier {i}.E2ESession.SessionRetryIntervalMultiplier
Fletry Count Defaull Wail Interval Range (min-max Aclual Wail Interval Range (min-max
saconds) seconds)
#1 5-10 m - m.(k/1000)
#2 10-20 m.(k/1000) - m.(k/1000)"2
#3 20-40 m.(k/1000)"2 - m.(k/1000)"3
#4 40-80 m.(k/1000)"3 - m.(k/1000)"4
#5 80-160 m.(k/1000)"4 - m.(k/1000)"5
#6 160-320 m.(k/1000)"5 - m.(k/1000)"6
#7 320-640 m.(k/1000)"6 - m.(k/1000)"7
#8 640-1280 m.(k/1000)"7 - m.(k/1000)"8
#9 1280-2560 m.(k/1000)"8 - m.(k/1000)"9
#10 and 2560-5120 m.(k/1000)"9 - m.(k/1000)*10
subsequent

R-E2E.11 - Beginning with the tenth retry attempt, the Agent MUST choose from the fixed maximum range. The Agent will
continue to retry a failed session establishment until a USP Message is successfully received by the Agent or until the
SessionExpiration time is reached.

R-E2E.12 — Once a USP Record is successfully received, the Agent MUST reset the Session Context retry count to zero for the
next Session Context establishment.

R-E2E.13 — If a reboot of the Agent occurs, the Agent MUST reset the Session Context retry count to zero for the next Session
Context establishment.

6.1.2 USP Record Exchange

Once a Session Context is established, USP Records are created to exchange payloads in the Session Context. USP Records
are uniquely identified by their originating USP Endpoint Identifier (from_id), Session Context identifier (session_id) and
USP Record sequence identifier (sequence_id).

6.1.2.1 USP Record Transmission

When an originating USP Endpoint transmits a USP Record, it creates the USP Record with a monotonically increasing

sequence identifier (sequence_1id).
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R-E2E.14 — When an originating USP Endpoint transmits a USP Record, it MUST set the sequence identifier of the first
transmitted USP Record in the Session Context to 1.

R-E2E.15 — When an originating USP Endpoint transmits additional USP Records, the originating USP Endpoint MUST
monotonically increase the sequence identifier from the last transmitted USP Record in the Session Context by one (1).

To communicate the sequence identifier of the last USP Record received by a receiving USP Endpoint to the originating USP
Endpoint, whenever a USP Endpoint transmits a USP Record the originating USP Endpoint communicates the next sequence
identifier of a USP Record it expects to receive in the expected_id field. The receiving USP Endpoint uses this information to
maintain its buffer of outgoing (transmitted) USP Records such that any USP Records with a sequence identifier less than the

expected_id can be removed from the receiving USP Endpoints buffer of transmitted USP Records for this Session Context.

R-E2E.16 — When an originating USP Endpoint transmits a USP Record, the originating USP Endpoint MUST preserve it in an
outgoing buffer, for fulfilling retransmit requests, until the originating USP Endpoint receives a USP Record from the receiving

USP Endpoint with a greater expected_id.

R-E2E.17 — When an originating USP Endpoint transmits a USP Record, the originating USP Endpoint MUST inform the
receiving USP Endpoint of the next sequence identifier in the Session Context for a USP Record it expects to receive.

6.1.2.2 Payload Security within the Session Context

The value of the payload_security field defines the type of payload security that is performed in the Session Context. Once
a Session Context is established the payload security stays the same throughout the lifetime of the Session Context.

R-E2E.18 — The originating USP Endpoint MUST use the same value in thepayload_security field for all USP Records
within a Session Context.

6.1.2.3 USP Record Reception

USP Records received by a USP Endpoint have information that is used by the receiving USP Endpoint to process:

1. The payload contained within the USP Record,

2. Arequest to retransmit a USP Record, and

3. The contents of the outgoing buffer to clear the USP Records that the originating USP Endpoint has indicated it has
received from the receiving USP Endpoint.

As USP Records can be received out of order or not at all, the receiving USP Endpoint only begins to process a USP Record
when the sequence_id field of the USP Record in the Session Context is thesequence_id field that the receiving USP
Endpoint expects to receive. The following figure depicts the high-level processing for USP Endpoints that receive a USP
Record.
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Unprocessed records? no o

<sequence_id> <<expected_id>? LY

~
Gracefully ignore Add to unprocessed records

Figure 9: Processing of Received USP Records

R-E2E.19 — The receiving USP Endpoint MUST ensure that the value in thepayload_security field for all USP Records
within a Session Context is the same and fail the USP Record if the value of the payload_security field is different.

R-E2E.20 — Incoming USP Records MUST be processed per the following rules:

1. If the USP Record contains a sequence_id field larger than the nextexpected_id value, the USP Record is added to
an incoming buffer of unprocessed USP Records.

2. If the sequence_id is less that the nextexpected_id, the Endpoint MUST gracefully ignore the USP Record.

3. If the sequence_id matches the expected_id, for the USP Record and any sequential USP Records in the incoming
buffer:

1. If the payload is not empty, it is passed to the implementation for processing based on the type of payload in the
payload_security field and if the payload requires reassembly according to the values of the
payload_sar_state and payloadrec_sar_state fields.

2. Ifaretransmit_id field is non-zero, the USP Record with the sequence identifier of theretransmit_id field is

resent from the outgoing buffer.

4. The expected_id field for new outgoing Records is set tosequence_id field + 1 of this USP Record.

6.1.2.3.1 Failure Handling of Received USP Records Within a Session Context

When a receiving USP Endpoint fails to either buffer or successfully process a USP Record, the receiving USP Endpoint

initiates a new Session Context.

R-E2E.21 — When a USP Endpoint that receives a USP Record within a Session Context that fails to buffer or successfully
process (e.g., decode, decrypt, retransmit) the USP Endpoint MUST start a new Session Context.

6.1.2.4 USP Record Retransmission

An Agent or Controller can request to receive USP Records that it deems as missing at any time within the Session Context.
The originating USP Endpoint requests a USP Record from the receiving USP Endpoint by placing the sequence identifier of the
requested USP Record in the retransmit_id field of the USP Record to be transmitted.
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The receiving USP Endpoint will determine if USP Record exists and then re-send the USP Record to the originating USP
Endpoint.

If the USP Record doesn't exist, the USP Endpoint that received the USP Record will consider the USP Record as failed and
perform the failure processing as defined in section Failure Handling of Received USP Records.

To guard against excessive requests to retransmit a specific USP Record, the USP Endpoint checks to see if the number of
times the USP Record has been retransmitted is greater than or equal to maximum times a USP Record can be retransmitted
as defined in the Device.LocalAgent.Controller.{i}.E2ESession.MaxRetransmitTries Parameter. If this
condition is met, then the USP Endpoint that received the USP Record with the retransmit request will consider the USP Record
as failed and perform the failure processing as defined in section Failure Handling of Received USP Records.

6.1.3 Guidelines for Handling Session Context Restarts

A Session Context can be restarted for a number of reasons (e.g., sequence id exhaustion, errors, manual request). When a
Session Context is restarted, the USP Endpoints could have USP Records that have not been transmitted, received or
processed. This section provides guidance for USP Endpoints when the Session Context is restarted.

The originating Endpoint is responsible for determining the policy for recovering from USP Records that were not transmitted.
For example, the policy could be to resend the USP Message conveyed through the USP Record, or to simply discard the USP
Message.

R-E2E.22 — The receiving USP Endpoint MUST successfully process the USP Record through theexpected_id field that it
last transmitted in the previous session.

When a USP Endpoint receives a USP Record that cannot pass an integrity check or that has an incorrect value in the

session_id element, the Session Context is restarted.

R-E2E.23 — USP Records that do not pass integrity checks MUST be silently ignored and the receiving USP Endpoint MUST
restart the Session Context.

This allows keys to be distributed and enabled under the old session keys and then request a session restarted under the new
keys.

R-E2E.24 — USP Records that pass the integrity check but have an invalid value in thesession_id field MUST be silently
ignored and the receiving USP Endpoint MUST restart the Session Context.

6.1.4 Segmented Message Exchange

Since USP can use different types of MTPs, some MTPs place a constraint on the size of the USP Message that it can
transport. To handle this, USP has a Segmentation and Reassembly function. When this Segmentation and Reassembly
function is performed by Controller and Agent, it removes the possibly that the message may be blocked (and typically) dropped
by the intermediate transport servers. A Segmentation and Reassembly example is shown in the figure below where the ACS
Controller segments the USP Message within the USP Record into segments of 64K bytes because the STOMP MTP Endpoint
(in this example) can only handle messages up to 64K bytes.

While the sequence_id field identifies the USP Record sequence identifier within the context of a Session Context and the
retransmit_id field provides a means of a receiving USP Endpoint to indicate to the transmitting USP Endpoint that it needs
a specific USP Record to ensure information fields are processed in a first-in-first-out (FIFO) manner, the Segmentation and
Reassembly function allows multiple payloads to be segmented by the transmitting USP Endpoint and reassembled by the
receiving USP Endpoint by augmenting the USP Record with additional information fields without changing the current
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semantics of the USP Record'’s field definitions. This is done using the payload_sar_state and payloadrec_sar_state
fields in the USP Record to indicate status of the segmentation and reassembly procedure. This status along with the existing
sequence_id, expected_id and retransmit_id fields and the foreknowledge of the E2E maximum transmission unit
MaxUSPRecordSize Parameter in the Agent’s Controller table provide the information needed for two USP Endpoints to
perform segmentation and reassembly of payloads conveyed by USP Records. In doing so, the constraint imposed by MTP
Endpoints (that could be intermediate MTP Endpoints) that do not have segmentation and reassembly capabilities are
alleviated. USP Records of any size can now be conveyed across any USP MTP Endpoint as depicted below:

USP Message (150kB)
Segment in max size 64kB

sequence_id: 4000
payload_sar_state: 1 - BEGIN
payloadrec_sar_state: 1 - BEGIN
payload record: USP Message

| USP Record (64kB) '
(64kB - USP Record header size) i

| USP Record:
| sequence_id: 4000
| payload_sar_state: 1 - BEGIN...

USP Record (64kB) |
sequence_id: 4001 |
payload_sar_state: 2 - INPROCESS |
payloadrec_sar_state: 2 - INPFROCESS i
payload record: USP Message I
(64kB - USP Record header size) |

USP Record:
sequence_id: 4001
payload_sar_state: 2 - INPROCESS...

USP Record

(size of USP Record + remaining payload)
sequence_id: 4002

payload_sar state: 3 - COMPLETE
payloadrec_sar_state: 3 - COMPLETE
payload record: USP Message

(bytes remaining)

| USP Record:
| sequence_id: 4002

i payload_sar_state: 3 - COMPLETE...

| Reassemble segments
| USP Message (150kB)

Figure 10: E2E Segmentation and Reassembly

Note: the 64k size limit is not inherent to the STOMP protocol. It is merely provided here as an example.

6.1.4.1 SAR function algorithm

The following algorithm is used to provide the SAR function.

6.1.4.1.1 Originating USP Endpoint

For each USP Message segment the Payload:

1. Compose the USP Message.
2. If payload_security is TLS12, encrypt the USP Message. TLS will segment the encrypted Message per the maximum
allowed TLS record size.

1. If all TLS records + Record header elements are less than the maximum allowed USP Record size, then a single USP
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Record is sent.
2. Otherwise segmentation of the USP Record will need to be done.
1. If the record size of a single TLS record + USP Record header elements is less than the maximum allowed USP
Record size, exactly one TLS record can be included in a USP Record.
2. If the TLS record size + Record header elements is greater than the maximum allowed USP Record size, the TLS
record is segmented across multiple USP Records.
3. If the Message is transmitted using PLAINTEXT and the Message + Record header elements are greater than the
maximum allowed USP Record size, the USP Record is segmented.
4. Setthe payload_sar_state field for each transmitted Record.

1. If there is only one Record, payload_sar_state =NONE (0).

2. If there is more than one USP Record, thepayload_sar_state field is set toBEGIN (1) on the first Record,
COMPLETE (3) on the last Record, and INPROCESS (2) on all Records between the two.

5. Setthe payloadrec_sar_state field for each transmitted Record.

1. If there is only one Record or one Secure Message Exchange TLS record per USP Recordpayloadrec_sar_state
=NONE (0).

2. If Secure Message Exchange TLS records or aPLAINTEXT payload are segmented across multiple USP Records,
payloadrec_sar_state =BEGIN (1) on a Record that contains the initial segment of a TLS record oPLAINTEXT
payload, COMPLETE (3) on a Record that contains the final segment of a TLS record ofPLAINTEXT payload, and
INPROCESS (2) on all Records containing segments between initial and final segments of a TLS record or
PLAINTEXT payload.

6. Each Record is sent (within a Session Context) using the procedures defined in the USP Record Message Exchange
section above.

The effect of the above rules for PLAINTEXT payloads or for Secure Message Exchange with a single TLS record is that

payloadrec_sar_state will be the same aspayload_sar_state for all Records used to communicate the USP Message.

Note: The maximum allowed USP Record size can be exposed via the data model using theMaxUSPRecordSize Parameter.

6.1.4.1.2 Receiving Endpoint

For each USP Message reassemble the segmented payload:

1. When a USP Record that indicates segmentation has started, store the USP Records until a USP Record is indicated to be
complete. A completed segmentation is where the USP Record’s payload_sar_state and payloadrec_sar_state
have a value of COMPLETE (3).

2. Follow the procedures in USP Record Retransmission to retransmit any USP Records that were not received.

3. Once the USP Record is received that indicates that the segmentation is complete, reassemble the payload by appending
the payloads using the monotonically increasing sequence_id field’s value from the smaller number to larger sequence
numbers. The reassembly keeps the integrity of the instances of the payload field’s payload records. To keep the integrity
of the payload record, the payload record is reassembled using the payloadrec_sar_state values.

4. Reassembly of the payload that represents the USP Message is complete.

If the segmentation and reassembly fails for any reason, the USP Endpoint that received the segmented USP Records will
consider the last received USP Record as failed and perform the failure processing as defined in section Failure Handling of
Received USP Records.

6.1.4.2 Segmentation Examples
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The following examples show the values assigned topayload_sar_state and payloadrec_sar_state fields for various
permutations of payload_security, and maximum USP Record size and Secure Message Exchange maximum TLS record
size relative to the size of the USP Message. The examples are not exhaustive.

Case 1: payload_security = PLAINTEXT, single USP Record

Conditions:

1. Maximum USP Record size > size of (USP Message + USP Record header)

USP Message (PLAINTEXT)
USP Record A
payload_sar_state MONE

payloadrec_sar_state MNONE

Case 2: payload_security = PLAINTEXT, fragmented across multiple USP Records

Conditions:

1. Maximum USP Record size < size of (USP Message + USP Record header)

USP Message (PLAINTEXT)

USP Record A USP Record B USP Record C
payload_sar_state BEGIN INPROCESS COMPLETE
payloadrec_sar_state  BEGIN INFROCESS COMPLETE

Case 3: payload_security = TLS12, single TLS record, single USP Record

Conditions:

1. Maximum TLS record size > size of (USP Message + TLS record header)

2. Maximum USP Record size > size of USP Message + size of TLS record header + size of USP Record header

USP Message
TLS record 1

USP Record A
payload_sar_state NONE

payloadrec_sar_state  NONE

Case 4: Payload_security = TLS12, all TLS records in a single USP Record

Conditions:

1. Maximum TLS record size < size of (USP Message + TLS record header)
2. Maximum USP Record size > size of all TLS records + size of USP Record header
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USP Message

TLS

TLS record 1 TLS record 2 record 3

USP Record A

payload_sar_state MOME

payloadrec_sar_state NOME

Case 5: Payload_security = TLS12, single TLS record fragmented across multiple USP Records
Conditions:

1. Maximum TLS record size > size of (USP Message + TLS record header)
2. Maximum USP Record size < size of (TLS record + USP Record header)

USP Message

TLS record 1

usp

USPRecordA | USPRecordB | >

payload_sar_state  BEGIN INPROCESS ~ COMPLETE
payloadrec_sar_state BEGIN INPROCESS ~ COMPLETE

Case 6: Payload_security = TLS12, multiple TLS records, one TLS record per USP Record
Conditions:

1. Maximum TLS record size < size of (USP Message + TLS record header)
2. Maximum USP Record size > maximum TLS record size + size of USP Record header
3. Maximum USP Record size < size of USP Message + size of TLS record header + size of USP Record header

USF Message

TLS record 1 TLS record 2

USP Record A USP Record B
payload_sar_state BEGIN COMPLETE
payloadrec_sar_state  NONE NONE

Case 7: Payload_security = TLS12, multiple TLS records, some TLS records fragmented across multiple USP Records
Conditions:

1. Maximum TLS record size < size of (USP Message + TLS record header)
2. Maximum USP Record size < size of (some TLS records + USP Record header)
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USP Message

TLS record 1 TLS record 2 LS
record 3
UsP UspP UsP UsP UsP UsP USP
Record A Record B Record C Record D Record E Record F Record G
payload_sar_state BEGIN INPROCESS INPROCESS INPROCESS INPROCESS INPROCESS COMPLETE
payloadrec_sar_state BEGIN INPROCESS COMFLETE BEGIN INFROCESS COMFLETE NOME

6.1.5 Handling Duplicate USP Records

Circumstances may arise (such as multiple Message Transfer Protocols, retransmission requests) that cause duplicate USP
Records (those with an identical sequence_id and session_id fields from the same USP Endpoint) to arrive at the target
USP Endpoint.

R-E2E.25 - When exchanging USP Records with an E2E Session Context, if a target USP Endpoint receives a USP Record with
duplicate sequence_id and session_id fields from the same originating USP Endpoint, it MUST gracefully ignore the
duplicate USP Record.

6.2 Exchange of USP Records without an E2E Session Context
When the exchange of USP Records without an E2E Session Context is used, therecord_type is set to
no_session_context.

R-E2E.26 - Arecord_type of no_session_context MUST be used for exchange of USP Records without an E2E Session
Context. A non-zero payload MUST be included.

6.2.1 Failure Handling of Received USP Records Without a Session Context

When a receiving USP Endpoint fails to either buffer or successfully process a USP Record, the receiving USP Endpoint reports
a failure.

R-E2E.27 — When a USP Endpoint that receives a USP Record without a Session Context that fails to buffer or successfully
process (e.g., decode, decrypt, retransmit) the USP Endpoint SHOULD send a DisconnectRecord (as described in B-MTP.7
for Agents).

Note that R-MTP.7 says Agents should send aDisconnectRecord when terminating an MTP. Controllers can also send a
DisconnectRecord in this case. The MTP can stay connected. Brokered MTP sessions are expected to remain but other
MTP connections could be closed.

6.3 Validating the Integrity of the USP Record

When a USP Record is transmitted to a USP Endpoint, the transmitting USP Endpoint has the capability to protect the integrity
of the non-payload fields of the USP Record. The payload field is not part of the generation or verification process, as the
expectation is that this element will be secured using an E2E security protection mechanism (payload_security other than
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PLAINTEXT).
The integrity of the USP Record is required to be validated when the USP Record cannot be protected by the underlying MTP.

R-E2E.28 - When a USP Record is received or transmitted the following conditions MUST apply for the USP Record to be
considered protected by the underlying MTP:

o The MTP is encrypted per requirements in the applicable MTP section

» The peer MTP certificate contains an Endpoint ID and this Endpoint ID is the same as the USP Recordfrom_id field OR
the peer MTP certificate is directly associated (e.g., referenced from a Device.LocalAgent.Controller.
{i}.Credential Parameter) with a Controller whose Endpoint ID matches the USP Recordf rom_id field.

» The peer MTP certificate is that of a Trusted Broker.

R-E2E.29 — Unless protected by the underlying MTP, when a USP Endpoint transmits a USP Record, the USP Endpoint MUST
protect the integrity of the non-payload portion of the USP Record.

R-E2E.30 — When a USP Endpoint receives a USP Record, the USP Endpoint MUST verify the integrity of the non-payload
portion of the USP Record when the USP Record contains the mac_signature field or the USP Endpoint is not protected by the
underlying MTP.

The integrity of the non-payload fields is accomplished by the transmitting USP Endpoint generating a Message Authentication
Code (MAC) or signature of the non-payload fields which is then placed into the mac_signature field where the receiving USP
Endpoint then verifies the MAC or signature as appropriate. The method to generate and validate MAC or signature depends on
the value of the payload_security field. If the value of thepayload_security field is PLAINTEXT then the integrity
validation method always uses the signature method described in section Using the Signature Method to Validate the Integrity
of USP Records. If the value of the payload_security field is TLS12 then the validation method that is used is dependent on
whether the TLS handshake has been completed. If the TLS handshake has not been completed, the signature method
described in section Using the Signature Method to Validate the Integrity of USP Records is used otherwise the MAC method
described in section Using TLS to Validate the Integrity of USP Records is used.

6.3.1 Using the Signature Method to Validate the Integrity of USP Records

When the transmitting USP Endpoint protects the integrity of the non-payload fields of the USP Record using the signature
method in this section, the non-payload fields are protected by signing a hash of the non-payload fields using the private key of
the sending USP Endpoint’s certificate. The receiving USP Endpoint then verifies the integrity using either the public key of the

certificate in the USP Record sender_cert field or of the certificate used for Secure Message Exchange.

This signature method uses the SHA-256 hash algorithm, as defined in FIPS PUB 180-4 Secure Hash Standard (SHS)2], and
the NIST P-256 curve that generates a signature for the hash using the Digital Signature Standard (DSS) scheme as defined in
FIPS PUB 186-4 Digital Signature Standard (DSS) [3]. To reduce the burden of requiring a strong source of randomness, the
signature algorithm may apply the method described in RFC 6979 [27] to deterministically derive encryption parameters. The
signature must be ASN.1 DER-encoded as described in RFC 3279 [11], we will refer to this signature scheme as
ECDSA_P256_SHA256_ASNL1 in this specification.

R-E2E.31 — When using the signature method to protect the integrity of the non-payload portion of the USP Record, the
transmitting USP Endpoint MUST protect the integrity using the ECDSA_P256_SHA256_ASN1 signature scheme, as defined in
this specification, to sign and verify the protection. The transmitting USP Endpoint MUST create the signature using the private
key of the transmitting USP Endpoint’s certificate. The receiving USP Endpoint MUST verify the signature using the public key
of the transmitted sender’s certificate.

6.3.2 Using TLS to Validate the Integrity of USP Records
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When the transmitting and receiving USP Endpoints have established a TLS session, the transmitting USP Endpoint no longer
needs to generate a signature or transmit the sender’s certificate with the USP Record. Instead the transmitting USP Endpoint
generates a MAC that is verified by the receiving USP Endpoint. The MAC ensures the integrity of the non-payload fields of the
USP Record. The MAC mechanism used in USP for this purpose is the SHA-256 keyed-Hash Message Authentication Code
(HMAC) algorithm. The keys used for the HMAC algorithm are derived in accordance with RFC 5705 [19] when using TLS 1.2
or in accordance with the updated version found in RFC 8446 [32] when using TLS 1.3. These procedures require the following
inputs: a label, a context and the length of the output keying material. The label used must be “EXPORTER-BBF-USP-Record”,
the context must be empty (note that, for TLS 1.2, an empty context, i.e. zero length, is different than no context at all) and the
output length must be 64 octets, where the first 32 octets will be used as the client key and the other 32 octets as the server key
(in TLS terms). When using TLS 1.2, the PRF used must be the one defined in RFC 5246 [17] with SHA-256 Hash.

R-E2E.32 — When generating or validating the MAC or signature to protect the integrity of the USP Record, the sequence of the
non-payload fields MUST use the field identifier of the USP Record’s protobuf specification proceeding from lowest to highest.
The non-payload fields in the Record definition (other than the mac_signature field itself) MUST be used first and then the

fields of the SessionContextRecord if applicable.

R-E2E.32.1 — When generating or validating the MAC or signature, all non-payload fields MUST be appended as byte arrays
and fed into the MAC or signature generation function with the following conditions:

uint64 types MUST be passed as 8 bytes in big endian ordering

uint32 types MUST be passed as 4 bytes in big endian ordering
e enum types MUST be treated as uint32

string types MUST be passed as UTF-8 encoded byte array

« bytes types MUST be passed as is

R-E2E.33 - If using the TLS MAC method to protect the integrity of a USP Record, and a USP Endpoint receives a USP Record,
the USP Endpoint MUST verify the MAC using the SHA-256 HMAC algorithm for the non-payload portion of the USP Record.

R-E2E.34 - If using the TLS MAC method to protect the integrity of a USP Record, when generating or validating the MAC of
the USP Record, the sequence of the non-payload fields MUST use the field identifier of the USP Record’s protobuf
specification proceeding from lowest to highest.

R-E2E.35 - If using the TLS MAC method to protect the integrity of a USP Record, when generating or validating the MAC of
the USP Record, the USP Endpoint MUST derive the keys in accordance with RFC 5705 [19] when using TLS 1.2 or with
accordance with RFC 8446 [32] when using TLS 1.3.

R-E2E.36 — If using the TLS MAC method to protect the integrity of a USP Record, when generating or validating the MAC of
the USP Record, the USP Endpoint MUST use a label value of “EXPORTER-BBF-USP-Record” and a zero length context.

R-E2E.37 — If using the TLS MAC method to protect the integrity of a USP Record, when generating or validating the MAC of
the USP Record, the USP Endpoint MUST generate 64 octets of keying material.

R-E2E.38 - If using the TLS MAC method to protect the integrity of a USP Record, when generating or validating the MAC of
the USP Record, the USP Endpoint MUST use the TLS PRF defined in RFC 5246 [17] with SHA-256 Hash when using TLS 1.2
for End-to-End security.

R-E2E.39 - If using the TLS MAC method to protect the integrity of a USP Record, when generating the MAC of the USP
Record, the USP Endpoint MUST use the first 32 octets of the keying material as the client key and the other 32 octets as the
server key.
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6.4 Secure Message Exchange

While message transport bindings implement point-to-point security, the existence of broker-based message transports and
transport proxies creates a need for end-to-end security within the USP protocol. End-to-end security is established by securing
the payloads prior to segmentation and transmission by the originating USP Endpoint and the decryption of reassembled
payloads by the receiving USP Endpoint. The indication whether and how the USP Message has been secured is via the
payload_security field. This field defines the security protocol or mechanism applied to the USP payload, if any. This
section describes the payload security protocols supported by USP.

6.4.1 TLS Payload Encapsulation

USP employs TLS as one security mechanism for protection of USP payloads in Agent-Controller message exchanges.

While traditionally deployed over reliable streams, TLS is a record-based protocol that can be carried over datagrams, with
considerations taken for reliable and in-order delivery. To aid interoperability, USP Endpoints are initially limited to a single
cipher specification, though future revisions of the protocol may choose to expand cipher support.

R-E2E.40 — When using TLS to protect USP payloads in USP Records, USP Endpoints MUST implement TLS 1.2 or later (with
backward compatibility to TLS 1.2) with the ECDHE -ECDSA-AES128-GCM-SHA256 cipher for TLS 1.2 and the TLS-AES128-
GCM-SHA256 cipher for TLS 1.3.

R-E2E.40a - When using TLS to protect USP payloads in USP Records, USP Endpoints MUST use ECDHE for key exchange
and MUST support the named group secp256r1 (NIST P-256 curve) for use in ECDHE.

R-E2E.40b - When using TLS to protect USP payloads in USP Records, USP Endpoints MUST use the ECDSA signature
scheme with the NIST P-256 curve and SHA-256.

Note: The requirements listed above require a USP Endpoint to use X.509 certificates with an Elliptic-curve public key
compatible with the NIST P-256 curve.

6.4.1.1 Session Handshake

When TLS is used as a payload protection mechanism for USP Message, TLS requires the use of the Session Context to
negotiate its TLS session. The USP Endpoint that initiated the Session Context will act in the TLS client role when establishing
the security layer. The security layer is constructed using a standard TLS handshake, encapsulated within one or more of the
above-defined USP Record payload datagrams. Per the TLS protocol, establishment of a new TLS session requires two round-
trips.
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Generate session_id

1 S— i

New TLS client for
(controller_id, session_id)

TLS Handshake
(RFC5246, Section 7) J

USPRecord(session_id, sequence_id = 1,
paylead = ClientHello)

-
-«

New TLS session for
(agent_id, session_id)

USPRecord(session_id, sequence_id = 1,
payload = ServerHello ... ServerHelloDone)
e

USPRecord(session_id, sequence_id = 2,
payload = Certificate ... Finished)

USPRecord(session_id, sequence_id = 2,
payload = Finished)

USP Session

Figure 11: TLS Session Handshake

R-E2E.41 — USP Endpoints that specify TLS12 in the payload_security field MUST exchange USP Records within an E2E
Session Context.

If the TLS session cannot be established for any reason, the USP Endpoint that received the USP Record will consider the USP
Record as failed and perform the failure processing as defined in section Failure Handling of Received USP Records.

TLS provides a mechanism to renegotiate the keys of a TLS session without tearing down the existing session called TLS
renegotiation. However, for E2E Message exchange in USP, TLS renegotiation is forbidden.

R-E2E.42 — USP Endpoints MUST NOT accept requests for TLS renegotiation when used for E2E Message exchange. USP

Endpoints MAY send a TLS no_renegotiation alert in response to a request for renegotiation.

6.4.1.2 Authentication

USP relies upon peer authentication using X.509 certificates, as provided by TLS. Each USP Endpoint identifier is identified
within an X.509 certificate. The rules for authentication are provided in Authentication and Authorization.

R-E2E.43 — USP Endpoints MUST be mutually authenticated using X.509 certificates.

Agents will authenticate Controllers according to rules for analysis of Controller certificates requirements inAnalysis of
Controller Certificates. Controllers will authenticate Agents using the USP Endpoint identifier encoded in the Agent’s certificate

as per Agent Authentication

7 Messages

USP contains messages to create, read, update, and delete Objects, perform Object-defined operations, and allow Agents to
notify controllers of events. This is often referred to as CRUD with the addition of O (operate) and N (notify), or CRUD-ON.
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Note: This version of the specification defines its Messages inProtocol Buffers v3. This part of the specification may change to a
more generic description (normative and non-normative) if further encodings are specified in future versions.

These sections describe the types of USP Messages and the normative requirements for their flow and operation. USP
Messages are described in a protocol buffers schema, and the normative requirements for the individual fields of the schema
are outlined below.

7.1 Encapsulation in a USP Record

All USP Messages are encapsulated by a USP Record. The definition of the USP Record portion of a USP Message can be
found in Record Definition, and the rules for managing transactional integrity are described inEnd to End Message Exchange

7.2 Requests, Responses and Errors

The three types of USP Messages are Request, Response, and Error.

A request is a Message sent from a source USP Endpoint to a target USP Endpoint that includes fields to be processed and
returns a response or error. Unless otherwise specified, all requests have an associated response. Though the majority of
requests are made from a Controller to an Agent, the Notify Message follows the same format as a request but is sent from an
Agent to a Controller.

R-MSG.0 - The target USP Endpoint MUST respond to a request Message from the source USP Endpoint with either a
response Message or Error Message, unless otherwise specified (see The Operate Message and The Notify Message).

R-MSG.1 - The target USP Endpoint MUST ignore or send an Error Message in response to Messages it does not understand.

Note: Requirement R-MSG.2 was removed in USP 1.2, because it did not align with the concept of brokered MTPs and long-

lived connections in general.

R-MSG.3 - In any USP Message originating from an Agent, unless otherwise specified, Path Names reported from the Agent’s
Instantiated Data Model MUST use Instance Number Addressing.

7.2.1 Handling Duplicate Messages

Circumstances may arise (such as multiple Message Transfer Protocols) that cause duplicate Messages (those with an identical
Message ID) to arrive at the target USP Endpoint.

R-MSG.4 - If a target USP Endpoint receives a Message with a duplicate Message ID before it has processed and sent a
Response or Error to the original Message, it MUST gracefully ignore the duplicate Message.

For Messages that require no response, it is up to the target Endpoint implementation when to allow the same Message ID to be
re-used by the same source USP Endpoint.

7.2.2 Handling search expressions

Many USP Messages allow for search expressions to be used in the request. To help make Controller requests more flexible, it
is desired that requests using search expressions that match zero Objects should receive a successful response. In these
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cases, the Agent is in the desired state the Controller intends, and the result should not interrupt the Controller’s application.
In the Messages below, this requirement is sometimes explicit, but it is stated here as a general requirement.

R-MSG.4a - Unless otherwise specified, if a Request contains a Search Path, the associated Response MUST result in a
successful operation with an empty element (i.e. oper_success{}) if the Search Path matches zero Objects in the Agent’s
Instantiated Data Model.

7.2.3 Example Message Flows

Successful request/response: In this successful Message sequence, a Controller sends an Agent a request. The Message
header and body are parsed, the Message is understood, and the Agent sends a response with the relevant information in the
body.

o

USP Record(version: 1.0, to_id: <agent_id>, from_id: <controller_id>
payload: header(msg_id: <id>, msg_type <request>),
body(request(elements))

Parse Message
.« ....... i

USP Record(version: 1.0, to_id: <controller_id>, from_id: <agent_id>
payload: header(msg_id: <id>, msg_type <response>),
body(response(elements))

Figure 12: A successful request/response sequence

Failed request/response: In this failed Message sequence, a Controller sends an Agent a request. The Message header and
body are parsed, but the Agent throws an error. The error arguments are generated and sent in an Error Message.
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o -

USP Record(version: 1.0, to_id: <agent_id>, from_id: <controller_id>
payload: header(msg_id: <id>, msg_type <request>),
body(request(elements))

{ ..... -
Parse Body

Parse Message

Process Request

USP Record(version: 1.0, to_id: <centroller_id>, from_id: <agent_id>
payload: header(msg_id: <id>, msg_type <error=>},
body(error(elements))

Figure 13: A failed request/response sequence

7.3 Message Structure

A Message consists of a header and body. When using[6], the fields of the header and body for different Messages are defined
in a schema and sent in an encoded format from one USP Endpoint to another.

R-MSG.5 - A Message MUST conform to the schemas defined inusp-msg-1-2.proto.

Note: When not explicitly set or included in the Message, the fields have a default value based on the type of field. For strings,
the default value is an empty byte string. For booleans, the default value is “false”. For numbers (fixed32) and enumerations, the
default value is 0. For repeated bytes, the default value is an empty byte string. For a oneof field, none of the allowed values is
assumed if the field is absent. If there is no requirement stating a field must be present, it is not necessary to include the field in
a sent Message. The receiving Endpoint will use default values for fields not included in a received Message. Any field with a
requirement indicating it must be present is required to always be included. A Message without a required field will fail to be
processed by a receiving Endpoint. “Repeated” fields can be included any number of times, including zero. For additional

information, default values (when fields are missing) are described in the “Default Values” section of [6].

Every USP Message contains a header and a body. The header contains basic destination and coordination information, and is
separated to allow security and discovery mechanisms to operate. The body contains the message itself and its arguments.

Each of the Message types and fields below are described with the field type according to Protocol Buffers version 36],
followed by its name.

7.3.1 The USP Message

Header header
R-MSG.6 - A Message MUST contain exactly one header field.
Body body

The Message Body that must be present in every Message. The Body field contains either a Request, Response, or Error field.

January 2022 © The Broadband Forum. All rights reserved. 87 of 213



User Services Platform (USP) TR-369a2 Issue 1 Amendment 2

R-MSG.7 - A Message MUST contain exactly one body field.

7.3.2 Message Header

The Message Header includes a Message ID to associate Requests with Responses or Errors, and a field indicating the type of
Message.

The purpose of the Message Header is to provide basic information necessary for the target Endpoint to process the message.

7.3.2.1 Message Header fields

string msg_id
A locally unique opaque identifier assigned by the Endpoint that generated this Message.
R-MSG.8 - The msg_id field MUST be present in every Header.

R-MSG.9 - The msg_id field in the Message Header for a Response or Error that is associated with a Request MUST contain
the Message ID of the associated request. If the msg_id field in the Response or Error does not contain the Message ID of the
associated Request, the response or error MUST be ignored.

enum MsgType msg_type
This field contains an enumeration indicating the type of message contained in the Message body. It is an enumeration of:

ERROR (0)

GET (1)

GET_RESP (2)

NOTIFY (3)

SET (4)

SET_RESP (5)

OPERATE (6)

OPERATE_RESP (7)

ADD (8)

ADD_RESP (9)

DELETE (10)

DELETE_RESP (11)
GET_SUPPORTED_DM (12)
GET_SUPPORTED_DM_RESP (13)
GET_INSTANCES (14)
GET_INSTANCES_RESP (15)
NOTIFY_RESP (16)
GET_SUPPORTED_PROTO (17)
GET_SUPPORTED_PROTO_RESP (18)

R-MSG.10 - The msg_type field MUST be present in every Header. Though required, it is meant for information only. In the
event this field differs from the req_type or resp_type in the Message body (respectively), the type given in either of those
elements SHOULD be regarded as correct.

7.3.3 Message Body
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The Message body contains the intended message and the appropriate fields for the Message type.

Every Message body contains exactly one message and its fields. When an Agent is the target Endpoint, these messages can
be used to create, read, update, and delete Objects, or execute Object-defined operations. When a Controller is the target
Endpoint, the Message will contain a notification, response, or an error.

7.3.3.1 Message Body fields

oneof msg_body

This field contains one of the types given below:

Request request

This field indicates that the Message contains a request of a type given in the Request Message.
Response response

This field indicates that the Message contains a response of a type given in the Response Message.
Error error

This field indicates that the Message contains an Error Message.

7.3.3.2 Request fields

oneof req_type
This field contains one of the types given below. Each indicates that the Message contains a Message of the given type.

Get get
GetSupportedDM get_supported_dm
GetInstances get_instances

Set set

Add add

Delete delete

Operate operate

Notify notify

GetSupportedProtocol get_supported_protocol

7.3.3.3 Response fields

oneof resp_type

This field contains one of the types given below. Each indicates that the Message contains a Message of the given type.
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GetResp get_resp

GetSupportedDMResp get_supported_dm_resp
GetInstancesResp get_instances_resp

SetResp set_resp

AddResp add_resp

DeleteResp delete_resp

OperateResp operate_resp

NotifyResp notify_resp

GetSupportedProtocolResp get_supported_protocol_resp

7.3.3.4 Error fields

fixed32 err_code

This field contains a numeric code (see Error Codes) indicating the type of error that caused the overall Message to fail.
string err_msg

This field contains additional information about the reason behind the error.

repeated ParamError param_errs

This field is present in an Error Message in response to an Add, Set, or Delete Message when the allow_partial field is false and
detailed error information is available for each Object or Parameter that have caused the Message to report an Error.

7.3.3.4.1 ParamError fields

string param_path

This field contains a Path Name to the Object or Parameter that caused the error.

fixed32 err_code

This field contains a numeric code (see Error Codes) indicating the type of error that caused the Message to fail.
string err_msg

This field contains additional information about the reason behind the error.

7.4 Creating, Updating, and Deleting Objects

The Add, Set, and Delete requests are used to create, configure and remove Objects that comprise Service fields.

Add, OCH,

7.4.1 Selecting Objects and Parameters

Each Add, Set, and Delete request operates on one or more Path Names. For the Add request, these Path Names are
references to Multi-Instance Objects. For all other requests, these Path Names can contain either addressing based identifiers
that match zero or one Object or search based identifiers that matches one or more Objects.

For Add and Set requests, each Object address or search is conveyed in a field that also contains a sub-field listing the
Parameters to update in the matched Objects.
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The Add response contains details about the success or failure of the creation of the Object and the Parameters set during its
creation. In addition, it also returns those Parameters that were set by the Agent upon creation of the Object.

Note: The order of the data on the wire is not guaranteed to be in the order an implementation may require to process a

Message piece by piece. Some common scenarios which an Agent will need to handle:

» In Objects containing a union Object, the union member Object will only exist after the discriminator Parameter was set to
the associated value

« Key Parameters need only to have unique values after the whole Message has been processed

« All explicit and hidden data dependencies need to be accounted for, so if related Parameters are changed, the order in
which they occur in the Message do not make any difference to the outcome

For example, a Controller wants to create a new Wi-Fi network on an Agent. It could use an Add Message with the following
fields:

add {
allow_partial: false
create_objs {
obj_path: "Device.WiFi.SSID."
param_settings {
param: "LowerLayers"
value: "Device.WiFi.Radio.1."
required: true
}
param_settings {
param: "SSID"
value: "NewSSIDName"

required: true

}

The Agent’s response would include the Object created (with its instance identifier) and the Unique Key Parameters of the
created Object as defined in the Device:2 Data Model [38]:
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add_resp {
created_obj_results {
requested_path: "Device.WiFi.SSID."
oper_status {
oper_success {
instantiated_path: "Device.WiFi.SSID.4."
unique_keys {
key: "BSSID"
value: "112233445566"
}
unique_keys {
key: "Name"

value: "GuestNetworkl"

}
unique_keys {
key: "Alias"
value: "cpe-alias-1"
}
}

7.4.2 Using Allow Partial and Required Parameters

The Add, Set, and Delete requests contain a field called ‘@1low_partial”. This field determines whether or not the Message
should be treated as one complete configuration change, or a set of individual changes, with regards to the success or failure of
that configuration.

For Delete, this is straightforward - ifallow_partial is true, the Agent returns a Response Message withaffected_paths
and unaffected_path_errs containing the successfully deleted Objects and unsuccessfully deleted Objects, respectively. If

allow_partial is false, the Agent will return an Error Message if any Objects fail to be deleted.

For the Add and Set Messages, Parameter updates contain a field called fequired”. This details whether or not the update or
creation of the Object should fail if a required Parameter fails.

This creates a hierarchy of error conditions for the Add and Set requests, such as:
Parameter Error -> Object Error -> Message Error

Ifallow_partial is true, but one or more required Parameters fail to be updated or configured, the creation or update of a
requested Path Name fails. This results in an oper_failure in theoper_status field and updated_obj_result or
created_obj_result returned in the Add or Set response.

Ifallow_partial is false, the failure of any required Parameters will cause the update or creation of the Object to fail, which
will cause the entire Message to fail. In this case, the Agent returns an Error Message rather than a response Message.

Note: It is up to the individual implementation whether to abort and return an Error Message after the first error, or provide

information about multiple failures.
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If the Message was at least partially successful, the response will make use of theoper_success field to indicate the

successfully affected Objects.

The oper_failure and oper_success fields as well as Error Messages contain a field calledparam_errs, which contains

fields of type ParameterError or Paramerror. This is so that the Controller will receive the details of failed Parameter

updates regardless of whether or not the Agent returned a Response or Error Message.

The logic can be described as follows:

allow partial

true/false
true/false
true/false
true/false

true

false

Required
Paramelers

No
No
Yes
Yes
Yes

Yes

7.4.3 The Add Message

The Add Message is used to create new Instances of Multi-Instance Objects in the Agent’s Instantiated Data Model.

7.4.3.1 Add Example

Required Other
Parameler Parameler
Failed Failed
- No

- Yes
No No
No Yes

Yes =
Yes -

Responsa/Error

Response
Response
Response
Response
Response

Error

Dper_slalus of
Object
oper_success
oper_success
oper_success
oper_success
oper_failure

N/A

Contains

param_errs

No
Yes
No
Yes
Yes

Yes

In this example, the Controller requests that the Agent create a new instance in theDevice.LocalAgent.Controller table.
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header {
msg_id: "52867"
msg_type: ADD
}
body {
request {
add {
allow_partial: true
create_objs {
obj_path: "Device.lLocalAgent.Controller."
param_settings {
param: "Enable"
value: "true"
required: false
}
param_settings {
param: "EndpointID"
value: "controller-temp"

required: false
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header {
msg_id: "52867"
msg_type: ADD_RESP
}
body {
response {
add_resp {
created_obj_results {
requested_path: "Device.LocalAgent.Controller."
oper_status {
oper_success {
instantiated_path: "Device.LocalAgent.Controller.3."
unique_keys {
key: "EndpointID"
value: "controller-temp"
}
unique_keys {
key: "Alias"

value: "cpe-alias-3"

7.4.3.2 Add Request fields

bool allow_partial

This field tells the Agent how to process the Message in the event that one or more of the Objects specified in the

create_objs argument fails creation.

R-ADD.O - [f theallow_partial field is set to true, and no other exceptions are encountered, the Agent treats each Object
matched in obj_path independently. The Agent MUST complete the creation of valid Objects regardless of the inability to
create or update one or more Objects (see Using Allow Partial and Required Parameters).

R-ADD.1 - If theallow_partial field is set tofalse, and no other exceptions are encountered, the Agent treats each Object
matched in obj_path holistically. A failure to create any one Object MUST cause the Add Message to fail and return arError

Message (see Using Allow Partial and Required Parameters).
repeated CreateObject create_objs

This field contains a repeated set of CreateObject fields.

7.4.3.2.1 CreateObiject fields

string obj_path

This field contains an Object Path to a writeable Table in the Agent’s Instantiated Data Model.
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R-ADD.2 - The obj_path field in theCreateObject Message of an Add Request MUST specify or match exactly one Object
Path.

repeated CreateParamSetting param_settings

This field contains a repeated set of CreateParamSetting fields.

7.4.3.2.1.1 CreateParamSetting fields

string param

This field contains a Relative Path to a Parameter of the Object specified inobj_path, or any Parameter in a nested tree of

single instance Sub-Objects of the Object specified in obj_path.
string value

This field contains the value of the Parameter specified in theparam field that the Controller would like to configure as part of
the creation of this Object. Refer to Parameter and Argument Value Encoding for details of how Parameter values are encoded
as Protocol Buffers v3 strings.

bool required

This field specifies whether the Agent should treat the creation of the Object specified imobj_path as conditional upon the
successful configuration of this Parameter (see Using Allow Partial and Required Parameters).

Note: Any Unique Key Parameter contained in the Add Message will be considered as required regardless of how this field is

set. This is to ensure that Unique Key constraints are met when creating the instance of the Object.

R-ADD.3 - If the required field is set to true, a failure to update this Parameter MUST result in a failure to create the Object.

7.4.3.3 Add Response fields

repeated CreatedObjectResult created_obj_results

A repeated set of CreatedObjectResult fields for each CreateObject field in the Add Message.

7.4.3.3.1 CreatedObjectResult fields

string requested_path
This field returns the value ofobj_paths in the CreateObject Message associated with thisCreatedObjectResult.
OperationStatus oper_status

The field contains a Message of typeOperationStatus that specifies the overall status for the creation of the Object

specified in requested_path.

7.4.3.3.1.1 OperationStatus fields

oneof oper_status
This field contains one of the types given below. Each indicates that the field contains a Message of the given type.

OperationFailure oper_failure
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Used when the Object given inrequested_path failed to be created.
OperationSuccess oper_success

Used when the Add Message was (at least partially) successful.

7.4.3.3.1.2 OperationFailure fields

fixed32 err_code
This field contains a numeric code (Error Codes) indicating the type of error that caused the Object creation to fail.
string err_msg

This field contains additional information about the reason behind the error.

7.4.3.3.1.3 Operation Success fields

string instantiated_path

This field contains the Object Instance Path of the created Object.
repeated ParameterError param_errs

This field returns a repeated set of ParameterError messages.

R-ADD.4 - If any of the Parameters and values specified in theparam_settings field fail to configure upon creation, this set
MUST include one field describing each of the failed Parameters and the reason for their failure.

map<string, string> unique_keys

This field contains a map of the Relative Path and value for all of this Object’s Unique Key Parameters that are supported by the
Agent.

R-ADD.5 - If the Controller did not include some or all of the Unique Key Parameters that are supported by the Agent in the

param_settings field, the Agent MUST assign values to these Parameters and return them in theunique_keys field.

R-ADD.6 - If the Controller does not have Read permission on any of the Parameters returned irunique_keys, these
Parameters MUST NOT be returned in this field.

7.4.3.3.1.4 ParameterError fields

string param

This field contains the Relative Parameter Path to the Parameter that failed to be set.

fixed32 err_code

This field contains the numeric code (Error Codes) of the error that caused the Parameter set to fail.
string err_msg

This field contains text related to the error specified byerr_code.

7.4.3.4 Add Message Supported Error Codes
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Appropriate error codes for the Add Message include 7000-7019, 7026, and 7800-7999.

7.4.4 The Set Message

The Set Message is used to update the Parameters of existing Objects in the Agent’s Instantiated Data Model.

7.4.4.1 Set Example

In this example the Controller requests that the Agent change the value of the=riendlyName Parameter in the

Device.DeviceInfo. Object.

header {
msg_id: "19220"
msg_type: SET
}
body {
request {
set {
allow_partial: true
update_objs {
obj_path: "Device.DeviceInfo."
param_settings {
param: "FriendlyName"
value: "MyDevicesFriendlyName"

required: true
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header {
msg_id: "19220"
msg_type: SET_RESP

}
body {
response {
set_resp {
updated_obj_results {
requested_path: "Device.DeviceInfo."
oper_status {
oper_success {
updated_inst_results {
affected_path: "Device.DeviceInfo."
updated_params {
key: "FriendlyName"
value: "MyDevicesFriendlyName"
}
}
}
}
}
}
}
}

7.4.4.2 Set Request fields

bool allow_partial

TR-369a2 Issue 1 Amendment 2

This field tells the Agent how to process the Message in the event that one or more of the Objects matched in thebj_path

fails to update.

R-SET.0 - If theallow_partial field is set to true, and no other exceptions are encountered, the Agent treats each

UpdateObject message obj_path independently. The Agent MUST complete the update of valid Objects regardless of the

inability to update one or more Objects (see Using Allow Partial and Required Parameters).

Note: This may cause some counterintuitive behavior if there are no required Parameters to be updated. The Set Request can

still result in a Set Response (rather than an Error Message) ifallow_partial is set to true.

R-SET.1 - If theallow_partial field is set to false, and no other exceptions are encountered, the Agent treats each

UpdateObject message obj_path holistically. A failure to update any one Object MUST cause the Set Message to fail and

return an Error Message (see Using Allow Partial and Requir

repeated UpdateObject update_objs

This field contains a repeated set of UpdateObject messages.

7.4.4.2.1 UpdateObiject fields

string obj_path
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This field contains an Object Path, Object Instance Path, or Search Path to Objects or Object Instances in the Agent’s
Instantiated Data Model.

repeated UpdateParamSetting param_settings

The field contains a repeated set ofUpdatedParamSetting messages.

7.4.4.2.1.1 UpdateParamSetting fields

string param
This field contains the Relative Path of a Parameter of the Object specified inobj_path.
string value

This field contains the value of the Parameter specified in theparam field that the Controller would like to configure. Refer to
Parameter and Argument Value Encoding for details of how Parameter values are encoded as Protocol Buffers v3 strings.

bool required

This field specifies whether the Agent should treat the update of the Object specified irobj_path as conditional upon the
successful configuration of this Parameter.

R-SET.2 - If therequired field is set to true, a failure to update this Parameter MUST result in a failure to update the Object

(see Using Allow Partial and Required Parameters).

7.4.4.3 Set Response

repeated UpdatedObjectResult updated_obj_results

This field contains a repeated set ofUpdatedObjectResult messages for each UpdateObject message in the associated
Set Request.

7.4.4.3.1 UpdatedObjectResult fields

string requested_path

This field returns the value ofupdated_obj_results in theUpdateObject message associated with this
UpdatedObjectResult.

OperationStatus oper_status

The field contains a message of typeOperationStatus that specifies the overall status for the update of the Object specified

in requested_path.

7.4.4.3.1.1 OperationStatus fields

oneof oper_status

This field contains a message of one of the following types.

OperationFailure oper_failure

Used when the Object specified inrequested_path failed to be updated.
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OperationSuccess oper_success

Used when the Set message was (at least partially) successful.

7.4.4.3.1.2 OperationFailure fields

fixed32 err_code

This field contains a numeric code (Error Codes) indicating the type of error that caused the Object update to fail.

string err_msg
This field contains additional information about the reason behind the error.
repeated UpdatedInstanceFailure updated_inst_failures

This field contains a repeated set of messages of typeUpdatedInstanceFailure.

7.4.4.3.1.3 UpdatedinstanceFailure fields

string affected_path
This field returns the Object Path or Object Instance Path of the Object that failed to update.
repeated ParameterError param_errs

This field contains a repeated set ofParameterError messages.

7.4.4.3.1.4 ParameterError fields

string param

This field contains the Relative Parameter Path to the Parameter that failed to be set.

fixed32 err_code

This field contains a numeric code (Error Codes) indicating the type of error that caused the Parameter set to fail.

string err_msg

This field contains text related to the error specified byerr_code.
7.4.4.3.1.5 OperationSuccess fields

repeated UpdatedInstanceResult updated_inst_results

This field contains a repeated set ofUpdatedInstanceResult messages.
7.4.4.3.1.6 UpdatedinstanceResult fields

string affected_path

This field returns the Object Path or Object Instance Path of the updated Object.

repeated ParameterError param_errs
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This field contains a repeated set ofParameterError messages.
map<string, string> updated_params

This field returns a set of key/value pairs containing a Relative Parameter Path (relative to theaffected_path) to each of the
Parameters updated by the Set Request and its value after the update. Refer to Parameter and Argument Value Encoding for
details of how Parameter values are encoded as Protocol Buffers v3 strings.

R-SET.3 - If the Controller does not have Read permission on any of the Parameters specified irupdated_params, these
Parameters MUST NOT be returned in this field.

Note: If the Set Request configured a Parameter to the same value it already had, this Parameter is still returned in the

updated_params.

7.4.4.3.1.7 ParameterError fields

string param

This field contains the Parameter Path to the Parameter that failed to be set.

fixed32 err_code

This field contains a numeric code (Error Codes) indicating the type of error that caused the Parameter set to fail.
string err_msg

This field contains text related to the error specified byerr_code.

7.4.4.4 Set Message Supported Error Codes

Appropriate error codes for the Set Message include 7000-7016, 7020, 7021, 7026, and 7800-7999.

7.4.5 The Delete Message

The Delete Message is used to remove Instances of Multi-Instance Objects in the Agent’s Instantiated Data Model.

7.4.5.1 Delete Example

In this example, the Controller requests that the Agent remove the instance inDevice.LocalAgent.Controller table that

has the EndpointID value of “controller-temp”.
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header {
msg_id: "24799"
msg_type: DELETE

}
body {
request {
delete {
allow_partial: false
obj_paths: 'Device.LocalAgent.Controller.[EndpointID=="controller-temp"]."
}
}
}
header {

msg_id: "24799"
msg_type: DELETE_RESP
}
body {
response {
delete_resp {
deleted_obj_results {
requested_path: 'Device.LocalAgent.Controller.[EndpointID=="controller-temp"]."
oper_status {
oper_success {

affected_paths: "Device.LocalAgent.Controller.31185."

7.4.5.2 Delete Request fields

bool allow_partial

This field tells the Agent how to process the Message in the event that one or more of the Objects specified in thebj_path
argument fails deletion.

R-DEL.O - If theallow_partial field is set to true, and no other exceptions are encountered, the Agent treats each entry in

obj_path independently. The Agent MUST complete the deletion of valid Objects regardless of the inability to delete one or
more Objects (see Using Allow Partial and Required Parameters).

R-DEL.1 - If theallow_partial field is set to false, the Agent treats each entry inobj_path holistically. Any entry referring
to an Object which is non-deletable or doesn't exist in the supported data model MUST cause the Delete Message to fail and
return an Error Message.

repeated string obj_paths

This field contains a repeated set of Object Instance Paths or Search Paths.
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7.4.5.3 Delete Response fields

repeated DeletedObjectResult deleted_obj_results

This field contains a repeated set ofDeletedObjectResult messages.

7.4.5.3.1 DeletedObjectResult fields

string requested_path
This field returns the value of the entry ofobj_paths (in the Delete Request) associated with thisDeleteObjectResult.
OperationStatus oper_status

This field contains a message of typeOperationStatus.

7.4.5.3.1.1 OperationStatus fields

oneof oper_status

This field contains a message of one of the following types.
OperationFailure oper_failure

Used when the Object specified inrequested_path failed to be deleted.
OperationSuccess oper_success

Used when the Delete Message was (at least partially) successful.

7.4.5.3.1.2 OperationFailure fields

fixed32 err_code
This field contains a numeric code (Error Codes) indicating the type of error that caused the delete to fail.
string err_msg

This field contains additional information about the reason behind the error.

7.4.5.3.1.3 OperationSuccess fields

repeated string affected_paths
This field returns a repeated set of Path Names to Object Instances.

R-DEL.2 - If the Controller does not have Read permission on any of the Objects specified imffected_paths, these Objects
MUST NOT be returned in this field.

R-DEL.2a - If the requested_path was valid (i.e., properly formatted and in the Agent’s supported data model) but did not
resolve to any Objects in the Agent’s instantiated data model, the Agent MUST return an OperationSuccess for this
requested_path, and include an empty set for affected_path.

repeated UnaffectedPathError unaffected_path_errs

This field contains a repeated set of messages of typeUnaffectedPathError.
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R-DEL.3 - This set MUST include oneUnaffectedPathError message for each Object Instance that exists in the Agent’s

instantiated data model and were matched by the Path Name specified in obj_path and failed to delete.

R-DEL.4 - If the Controller does not have Read permission on any of the Objects specified iinaffected_paths, these
Objects MUST NOT be returned in this field.

7.4.5.3.1.4 UnaffectedPathError fields

string unaffected_path

This field returns the Path Name to the Object Instance that failed to be deleted.

fixed32 err_code

This field contains a numeric code (Error Codes) indicating the type of the error that caused the deletion of this Object to fail.
string err_msg

This field contains text related to the error specified byerr_code.

7.4.5.4 Delete Message Supported Error Codes

Appropriate error codes for the Delete Message include 7000-7008, 7015, 7016, 7018, 7024, 7026 and 7800-7999.

7.5 Reading an Agent’s State and Capabilities

An Agent’s current state and capabilities are represented in its data model. The current state is referred to as its Instantiated
Data Model, while the data model that represents its set of capabilities is referred to as its Supported Data Model. Messages
exist to retrieve data from both the instantiated and Supported Data Models.

7.5.1 The Get Message

The basic Get Message is used to retrieve the values of a set of Object’'s Parameters in order to learn an Agent’s current state.
It takes a set of Path Names as an input and returns the complete tree of all Objects and Sub-Objects of any Object matched by
the specified expressions, along with each Object’s Parameters and their values. The Search Paths specified in a Get request
can also target individual Parameters within Objects to be returned.

Note: Those familiar with Broadband Forum TR-069[36] will recognize this behavior as the difference between “Partial Paths”
and “Complete Paths”. This behavior is replicated in USP for the Get Message for each Path Name that is matched by the

expression(s) supplied in the request.

Note: Each Search Path is intended to be evaluated separately, and the results from a given Search Path are returned in a field
dedicated to that Path Name. As such, it is possible that the same information may be returned from more than one Search

Path. This is intended, and the Agent should treat each Search Path atomically.

The response returns a req_path_results entry for each Path Name given inparam_paths. If a Path expression specified
in the request does not match any valid Parameters or Objects, the response will indicate that this expression was an “Invalid
Path”, indicating that the Object or Parameter does not currently exist in the Agent’s Supported Data Model.

Each req_path_results message given in the response contains a set ofresolved_path_results messages for each
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Object and Sub-Object relative to the Path resolved by the param_paths element. Each results is followed by a list of
Parameters (result_params) and their values. If there are no Parameters,result_params may be empty. These Parameter
Paths are Relative Paths to the resolved_path. Note: This behavior has been clarified as of USP 1.2. Previous versions
implied that Sub-Object Parameters be returned as Relative Paths to the original resolved_path in a singleresult_params

list. In USP 1.2, each Sub-Object is returned in its own resolved_path.

The tree depth of a Get result_params tree can be limited by specifying a non-zero value for themax_depth field in Get
request. If max_depth field is present and not® then the Agent will limit the maximum depth of each returnedresult_params
tree to the depth specified by max_depth value.

Note: The max_depth field was introduced in USP 1.2. If this field is not present in a Get request or has a value d@, the Agent
returns the complete tree of all Objects and Sub-Objects of all the Path Names mentioned in param_paths. This is the same
as the behavior specified for prior USP versions. An Agent implementing a prior version of the USP specification will ignore the

field and behave as if the max_depth field was set to0.

7.5.1.1 Get Examples

The following table illustrates the result params for one of the Path Names mentioned inparam_paths is

Device.DeviceInfo. and example values of themax_depth Get request field.

max_depth param_paths result params
0 Device.DeviceInfo. All the Parameters of Device.DeviceInfo. and all of its Sub-Objects
(like Device.DeviceInfo.TemperatureStatus. and

Device.DeviceInfo.TemperatureStatus.TemperatureSensor.
{i}.) along with their values

1 Device.DeviceInfo. All the Parameters of Device.DeviceInfo. and their values only

2 Device.DeviceInfo. All the Parameters of Device.DeviceInfo. and its first level Sub-
Objects(like Device.DeviceInfo.TemperatureStatus.) along with
their values

3 Device.DeviceInfo. All the Parameters of Device.DeviceInfo. and its first and second
level Sub-Objects (like Device.DeviceInfo.TemperatureStatus.
and
Device.DeviceInfo.TemperatureStatus.TemperatureSensor.
{1i}.) along with their values

For example, a Controller wants to read the data model to learn the settings andStats of a single Wi-Fi SSID, “HomeNetwork”
with a BSSID of “00:11:22:33:44:55”. It could use a Get request with the following fields:

get {
param_paths: 'Device.WiFi.SSID.[SSID=="HomeNetwork"&&BSSID=="00:11:22:33:44:55"]."
max_depth: 2

}

In response to this request the Agent returns all Parameters, plus Sub-Objects and their Parameters, of the addressed instance.
The max_depth value of 2 has no impact on the returned result in this case since the SSID Object only contains thestats
Sub-Object which has no Sub-Objects of its own. Had max_depth been set to 1 then all of the SSID Parameters and their
values would have been returned, as well as the Stats Sub-Object, but the Sub-Object’'s Parameters and values would have
been omitted. The Agent returns this data in the Get response using a field for each of the requested Path Names. In this case:
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get_resp {
req_path_results {

requested_path: 'Device.WiFi.SSID.[SSID=="HomeNetwork"&&BSSID=="00:11:22:33:44:55"]."

resolved_path_results {
resolved_path: "Device.WiFi.SSID.1."
result_params {
key: "Enable"
value: "true"
}
result_params {
key: "Status"
value: "up"
}
result_params {
key: "Alias"
value: "cpe-alias-1"
}
result_params {
key: "Name"
value: "Home Network"
}
result_params {
key: "LastChange"
value: "864000"
}
result_params {
key: "BSSID"
value: "00:11:22:33:44:55"
}
result_params {
key: "SSID"

value: "HomeNetwork"

resolved_path_results {
resolved_path: "Device.WiFi.SSID.1.Stats."
result_params {
key: "BytesSent"
value: "24901567"
}
result_params {
key: "BytesReceived"
value: "892806908296"

# (etc.)
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3

In another example, the Controller only wants to read the current status of the Wi-Fi network with the SSID “HomeNetwork” with
the BSSID of 00:11:22:33:44:55. It could use a Get request with the following fields:

get {
param_paths: 'Device.WiFi.SSID.[SSID=="HomeNetwork"&&BSSID=="00:11:22:33:44:55"].Status'

}

In response to this request the Agent returns only the Status Parameter and its value.

get_resp {
req_path_results {
requested_path: 'Device.WiFi.SSID.[SSID=="HomeNetwork"&&BSSID=="00:11:22:33:44:55"].Status'
resolved_path_results {
resolved_path: "Device.WiFi.SSID.1."
result_params {
key: "Status"

value: "up"

}

Lastly, using wildcards or another Search Path, the requested Path Name may resolve to more than one resolved Path Names.

For example for a Request sent to an Agent with two WiFi.SSID instances:

get {
param_paths: "Device.WiFi.SSID.*.Status"

}

The Agent’s response would be:
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get_resp {
req_path_results {
requested_path: "Device.WiFi.SSID.*.Status"
resolved_path_results {
resolved_path: "Device.WiFi.SSID.1."
result_params {
key: "Status"

value: "up"

}
resolved_path_results {
resolved_path: "Device.WiFi.SSID.2."
result_params {
key: "Status"

value: "up"

}

TR-369a2 Issue 1 Amendment 2

In an example with full USP Message header and body, the Controller requests all Parameters of the MTP table entry that

contains the Alias value “WS-MTP1”, and the value of theEnable Parameter of the Subscription table where the value of

the Parameter ID is “boot-1” and the Recipient Parameter has a value of “Device.LocalAgent.Controller.1”:

header {
msg_id: "5721"
msg_type: GET
}
body {
request {
get {

param_paths: 'Device.lLocalAgent.MTP.[Alias=="WS-MTP1"].'
param_paths: 'Device.LocalAgent.Subscription.[ID=="boot-

1"&&Recipient=="Device.LocalAgent.Controller.1"].Enable'

}

}

header {
msg_id: "5721"
msg_type: GET_RESP
}
body {
response {
get_resp {
req_path_results {

requested_path: 'Device.LocalAgent.MTP.[Alias=="WS-MTP1"].'

resolved_path_results {

resolved_path: "Device.LocalAgent.MTP.5156."

result_params {

January 2022 © The Broadband Forum. All rights reserved. 109 of 213



User Services Platform (USP) TR-369a2 Issue 1 Amendment 2

key: "Alias"
value: "WS-MTP1"

}

result_params {
key: "Enable"
value: "true"

}

result_params {
key: "Status"
value: "up"

}

result_params {
key: "Protocol"
value: "WebSocket"

}

result_params {
key: "EnableMDNS"

value: "false"

}
resolved_path_results {
resolved_path: "Device.LocalAgent.MTP.5156.WebSocket."
result_params {
key: "Interfaces"
value: "Device.IP.Interface.1."
}

result_params {

key: "Port"
value: "5684"
}
result_params {
key: "Path"

value: "usp-controller"
}
result_params {

key: "EnableEncryption"

value: "true"

req_path_results {
requested_path: 'Device.LocalAgent.Subscription.[ID=="boot-
1"&&Recipient=="Device.LocalAgent.Controller.1"].Enable'
err_code: 0
err_msg: ""
resolved_path_results {
resolved_path: "Device.lLocalAgent.Subscription.6629."

result_params {
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key: "Enable"

value: "true"

7.5.1.2 Get Request fields

repeated string param_paths

This field is a set of Object Paths, Object Instance Paths, Parameter Paths, or Search Paths to Objects and Parameters in an
Agent’s Instantiated Data Model.

fixed32 max_depth

This field limits the maximum depth of each returnedresult_params tree to the depth specified bymax_depth value. A value

of @ returns the complete tree of all Objects and Sub-Objects of all the Path Names mentioned inparam_paths.
R-GET.5 - If themax_depth field is present and contains a value other than 0, then the Agent MUST limit the tree depth of the

resolved Sub-Objects included in the resolved_path_results field of the Response to the specified value.

7.5.1.3 Get Response fields

repeated RequestedPathResult req_path_results

A repeated set of RequestedPathResult messages for each of the Path Names given in the associated Get request.

7.5.1.3.1 RequestedPathResult field

string requested_path
This field contains one of the Path Names or Search Paths given in theparam_path field of the associated Get Request.
fixed32 err_code

This field contains a numeric code (Error Codes) indicating the type of error that caused the Get to fail on this Path Names. A
value of 0 indicates the Path Name could be read successfully.

R-GET.0 - If requested_path contains a Path Name that does not match any Object or Parameter in the Agent’s Supported
Data Model, the Agent MUST use the 7026 - Invalid Path error in thisRequestedPathResult.

R-GET.1 - If the Controller making the Request does not have Read permission on an Object or Parameter matched through
the requested_path field, the Object or Parameter MUST be treated as if it is not present in the Agent’s Supported data
model.

string err_msg
This field contains additional information about the reason behind the error.

repeated ResolvedPathResult resolved_path_results
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This field contains one message of type ResolvedPathResult for each Path Name resolved by the Path Name or Search Path

given by requested_path.

R-GET.1a - If the requested_path is valid (i.e., properly formatted and in the Agent’s supported data model) but did not resolve
to any Objects in the Agent’s instantiated data model, the resolved_path_results set MUST be empty and is not considered an

error.

7.5.1.3.1.1 ResolvedPathResult fields

string resolved_path

This field contains a Path Name to an Object or Object Instance that was resolved from the Path Name or Search Path given in

requested_path.

R-GET.2 - If the requested_path included a Path Name to a Parameter, theresolved_path MUST contain only the Path
Name to the parent Object or Object Instance of that Parameter.

map<string, string> result_params

This field contains a set of mapped key/value pairs listing a Parameter Path (relative to the Path Name inresolved_path) to
each of the Parameters and their values of the Object given in resolved_path. Refer to Parameter and Argument Value

Encoding for details of how Parameter values are encoded as Protocol Buffers v3 strings.

R-GET.3 - If therequested_path included a Path Name to a Parameter, result_params MUST contain only the Parameter
included in that Path Name.

R-GET.4 - If the Controller does not have Read permission on any of the Parameters specified irresult_params, these
Parameters MUST NOT be returned in this field. This MAY result in this field being empty.

7.5.1.3.1.2 Get Message Supported Error Codes

Appropriate error codes for the Get Message include 7000-7006, 7008, 7010, 7026 and 7800-7999.

7.5.2 The Getlnstances Message

The GetInstances Message takes a Path Name to an Object and requests that the Agent return the Instances of that Object that
exist and possibly any Multi-Instance Sub-Objects that exist as well as their Instances. This is used for getting a quick map of
the Multi-Instance Objects (i.e., Tables) the Agent currently represents, and their Unique Key Parameters, so that they can be
addressed and manipulated later.

Getlnstances takes one or more Path Names to Multi-Instance Objects in a Request to an Agent. In addition, both Getinstances
and GetSupportedDM (below) make use of a flag called first_level_only, which determines whether or not the Response
should include all of the Sub-Objects that are children of the Object specified in obj_path. A value of t rue means that the

Response returns data only for the Object specified. A value of false means that all Sub-Objects will be resolved and returned.

7.5.2.1 Getlnstances Examples

For example, if a Controller wanted to knowonly the current instances of Wi-Fi SSID Objects that exist on an Agent (that has 2
SSIDs), it would send a GetInstances Request as:
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get_instances {
obj_paths: "Device.WiFi.SSID."

first_level_only: true

}

The Agent’s Response would contain:

get_instances_resp {
req_path_results {
requested_path: "Device.WiFi.SSID."
curr_insts {
instantiated_obj_path: "Device.WiFi.SSID.1."
unique_keys {
key: "Alias"
value: "UserWiFil"
}
unique_keys {
key: "Name"

value: "UserwWiFi1i"

}
unique_keys {

key: "BSSID"

value: "00:11:22:33:44:55"
}

curr_insts {
instantiated_obj_path: "Device.WiFi.SSID.2."
unique_keys {
key: "Alias"
value: "UserWiFi2"
}
unique_keys {
key: "Name"

value: "UserwWiFi2"

}
unique_keys {

key: "BSSID"

value: "11:22:33:44:55:66"
}

}

In another example, the Controller wants to get all of the Instances of thédevice.WiFi.AccessPoint table, plus all of the
instances of the AssociatedDevice Object and AC Object (Sub-Objects of AccessPoint). It would issue a Getlnstances Request
with the following:
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get_instances {
obj_paths: "Device.WiFi.AccessPoint."

first_level_only: false

The Agent’'s Response will contain an entry incurr_insts for all of the Instances of theDevice.WiFi.AccessPoint table,

plus the Instances of the Multi-Instance Sub-Objects .AssociatedDevice. and .AC.:

get_instances_resp {
req_path_results {
requested_path: "Device.WiFi.AccessPoint."
curr_insts {
instantiated_obj_path: "Device.WiFi.AccessPoint.1."
unique_keys {
key: "Alias"
value: "cpe-alias-1"
}
unique_keys {
key: "SSIDReference"

value: "Device.WiFi.SSID.1"

}
curr_insts {
instantiated_obj_path: "Device.WiFi.AccessPoint.l1l.AssociatedDevice.1."
unique_keys {
key: "MACAddress"
value: "11:22:33:44:55:66"

}
curr_insts {
instantiated_obj_path: "Device.WiFi.AccessPoint.1.AC.1."
unique_keys {
key: "AccessCategory"

value: "BE"

curr_insts {
instantiated_obj_path: "Device.WiFi.AccessPoint.2."
unique_keys {
key: "Alias"
value: "cpe-alias-2"
}
unique_keys {
key: "SSIDReference"

value: "Device.WiFi.SSID.2"
}

curr_insts {

instantiated_obj_path: "Device.WiFi.AccessPoint.2.AssociatedDevice.1."
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unique_keys {
key: "MACAddress"
value: "11:22:33:44:55:66"

}
curr_insts {
instantiated_obj_path: "Device.WiFi.AccessPoint.2.AC.1."
unique_keys {
key: "AccessCategory"

value: "BE"

}

Or more, if more Object Instances exist.

7.5.2.2 Getlnstances Request fields

repeated string obj_paths

This field contains a repeated set of Path Names or Search Paths to Multi-Instance Objects in the Agent’s Instantiated Data
Model.

bool first_level_only
This field, if t rue, indicates that the Agent returns only those instances in the Object(s) matched by the Path Name or Search

Path in obj_path, and not return any child Objects.

7.5.2.3 GetInstances Response fields

repeated RequestedPathResult req_path_results

This field contains a RequestedPathResult message for each Path Name or Search

string requested_path

This field contains one of the Path Names or Search Paths given inobj_path of the associated Getlnstances Request.
fixed32 err_code

This field contains a numeric code (Error Codes) indicating the type of error that caused the Getlnstances to fail on this Path
Name. A value of 0 indicates the Path Name could be read successfully.

R-GIN.O - If the Controller making the Request does not have Read permission on an Object or Parameter used for matching
through the requested_path field, any otherwise matched Object MUST be treated as if it is not present in the Agent’s
Instantiated Data Model

string err_msg
This field contains additional information about the reason behind the error.

repeated CurrInstance curr_insts
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This field contains a message of typeCurrInstance for each Instance of all of the Objects matched byrequested_path
that exists in the Agent’s Instantiated Data Model.

7.5.2.3.0.1 Currinstance fields

string instantiated_obj_path

This field contains the Object Instance Path of the Object.

map<string, string> unique_keys

This field contains a map of key/value pairs for all of this Object’'s Unique Key Parameters that are supported by the Agent.

R-GIN.1 - If the Controller does not have Read permission on any of the Parameters specified iinique_keys, these
Parameters MUST NOT be returned in this field.

7.5.2.4 Getinstances Error Codes

Appropriate error codes for the Getlnstances Message include 7000-7006, 7008, 7016, 7018, 7026 and 7800-7999.

7.5.3 The GetSupportedDM Message

GetSupportedDM is used to retrieve the Objects, Parameters, Events, and Commands in the Agent’'s Supported Data Model.
This allows a Controller to learn what an Agent understands, rather than its current state.

The GetSupportedDM Message is different from other USP Messages in that it only returns information about the Agent’s
Supported Data Model. This means that Path Names to Multi-Instance Objects only address the Object itself, rather than
Instances of the Object, and those Path Names that contain Multi-Instance Objects in the Path Name use the {1} identifier to
indicate their place in the Path Name as specified in TR-106 [37].

The obj_paths field takes a list of Object Paths, either from the Supported Data Model or the Instantiated Data Model.

For example, a Path Name to theAssociatedDevice Object (a child of the .WiFi.AccessPoint Object) could be
addressed in the Supported Data Model as Device.WiFi.AccessPoint.{i}.AssociatedDevice.{i}. butin addition to
this notation the omission of the final {1} . is also allowed, such asDevice.WiFi.AccessPoint.

{i}.AssociatedDevice.. Both of these syntaxes are supported and equivalent.

Alternatively an Instantiated Data Model Object Path can be used as long as the Object exists, such as
Device.WiFi.AccessPoint.1l.AssociatedDevice.. The Agent will use the Supported Data Model pertaining to this
particular Object when processing the Message.

If the Agent encounters a diverging Supported Data Model, e.g. due to the use of different Mounted Objects underneath a
Mountpoint, the Agent will skip the traversal of the children Objects, populate the Response’s divergent_paths element with
all divergent Object Instance Paths, and continue processing with the next unambiguous Object. The Supported Data Model of
such divergent Objects can only be obtained by specifically using Object Instance Paths in the obj_paths field of a
GetSupportedDM request.

The Agent’s Response returns all Path Names in thesupported_obj_path field according to the associated Device Type
document as specified in TR-106 [37].

7.5.3.1 GetSupportedDM Examples
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For example, the Controller wishes to learn the Wi-Fi capabilities the Agent represents. It could issue a GetSupportedDM
Request as:

get_supported_dm {
obj_paths : "Device.WiFi."
first_level_only : false
return_commands : false
return_events : false
return_params : false

}

The Agent’s Response would be:

get_supported_dm_resp {
req_obj_results {

req_obj_path: "Device.WiFi."

data_model_inst_uri: "urn:broadband-forum-org:tr-181-2-12-0"

supported_objs {
supported_obj_path: "Device.WiFi."
access: OBJ_READ_ONLY
is_multi_instance: false

}

supported_objs {
supported_obj_path: "Device.WiFi.Radio.{i}."
access: OBJ_READ_ONLY
is_multi_instance: true

}

supported_objs {
supported_obj_path: "Device.WiFi.Radio.{i}.Stats"
access: OBJ_READ_ONLY
is_multi_instance: false

}

supported_objs {
supported_obj_path: "Device.WiFi.SSID.{i}."
access: OBJ_ADD_DELETE
is_multi_instance: true

}

supported_objs {
supported_obj_path: "Device.WiFi.SSID.{i}.Stats"
access: OBJ_READ_ONLY
is_multi_instance: false

}

supported_objs {
supported_obj_path: "Device.WiFi.AccessPoint.{i}."
access: OBJ_ADD_DELETE
is_multi_instance: true

}

supported_objs {
supported_obj_path: "Device.WiFi.AccessPoint.{i}.Security."
access: OBJ_READ_ONLY
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is_multi_instance: false
}
supported_objs {
supported_obj_path: "Device.WiFi.AccessPoint.{i}.wWPS."
access: OBJ_READ_ONLY
is_multi_instance: false
}
supported_objs {
supported_obj_path: "Device.WiFi.AccessPoint.{i}.AssociatedDevice.{i}."
access: OBJ_READ_ONLY
is_multi_instance: true
}
supported_objs {
supported_obj_path: "Device.WiFi.AccessPoint.{i}.AssociatedDevice.{i}.Stats."
access: OBJ_READ_ONLY
is_multi_instance: false
}
supported_objs {
supported_obj_path: "Device.WiFi.AccessPoint.{i}.AC.{i}."
access: OBJ_READ_ONLY
is_multi_instance: true
}
supported_objs {
supported_obj_path: "Device.WiFi.AccessPoint.{i}.AC.{i}.Stats."
access: OBJ_READ_ONLY
is_multi_instance: false
}
supported_objs {
supported_obj_path: "Device.WiFi.AccessPoint.{i}.Accounting."
access: OBJ_READ_ONLY
is_multi_instance: false
}
supported_objs {
supported_obj_path: "Device.WiFi.EndPoint.{i}."
access: OBJ_ADD_DELETE

is_multi_instance: true

## And continued, for Device.WiFi.EndPoint.{i}. Sub-Objects such as Device.WiFi.EndPoint.
{i}.Stats., Device.WiFi.EndPoint.{i}/// .Security., etc.

}

In another example request:
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get_supported_dm {
obj_paths : "Device.WiFi."
first_level only : true
return_commands : true
return_events : true

return_params : true

The Agent’s response would be:

get_supported_dm_resp {
req_obj_results {
req_obj_path: "Device.WiFi."
data_model_inst_uri: "urn:broadband-forum-org:tr-181-2-12-0"
supported_objs {
supported_obj_path: "Device.WiFi."
access: OBJ_READ_ONLY
is_multi_instance: false
supported_params {
param_name: "RadioNumberOfEntries"
access: PARAM_READ_ONLY
value_type : PARAM_UNSIGNED_INT
value_change : VALUE_CHANGE_ALLOWED
}
supported_params {
param_name: "SSIDNumberOfEntries"
access: PARAM_READ_ONLY
value_type : PARAM_UNSIGNED_INT
value_change : VALUE_CHANGE_ALLOWED

## Continued for all Device.WiFi. Parameters

supported_commands {
command_name: "NeighboringwWiFiDiagnostic()"
output_arg_names: "Status"
output_arg_names: "Result.{i}.Radio"
output_arg_names: "Result.{i}.SSID"
output_arg_names: "Result.{i}.BSSID"
output_arg_names: "Result.{i}.Mode"

output_arg_names: "Result.{i}.Channel"
## Continued for other NeighboringwWiFiDiagnostic() output arguments

command_type : CMD_ASYNC

## followed by its immediate child objects with no details
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supported_objs {
supported_obj_path: "Device.WiFi.Radio.{i}."
access: OBJ_READ_ONLY
is_multi_instance: true

}

supported_objs {
supported_obj_path: "Device.WiFi.SSID.{i}."
access: OBJ_ADD_DELETE
is_multi_instance: true

}

supported_objs {
supported_obj_path: "Device.WiFi.AccessPoint.{i}."
access: OBJ_ADD_DELETE
is_multi_instance: true

}

supported_objs {
supported_obj_path: "Device.WiFi.EndPoint.{i}."
access: OBJ_ADD_DELETE

is_multi_instance: true

7.5.3.2 GetSupportedDM Request fields

repeated obj_paths

This field contains a repeated set of Path Names to Objects in the Agent’s Supported or Instantiated Data Model. For Path
Names from the Supported Data Model the omission of the final {i} . is allowed.

bool first_level_only

This field, if true, indicates that the Agent returns only those objects matched by the Path Name or Search Path irobj_path
and its immediate (i.e., next level) child objects. The list of child objects does not include commands, events, or Parameters of
the child objects regardless of the values of the following elements:

bool return_commands

This field, if true, indicates that, in thesupported_objs, the Agent should include asupported_commands field containing
Commands supported by the reported Object(s).

bool return_events

This field, if true, indicates that, in thesupported_objs, the Agent should include asupported_events field containing
Events supported by the reported Object(s).

bool return_params

This field, if true, indicates that, in thesupported_objs, the Agent should include asupported_params field containing
Parameters supported by the reported Object(s).

7.5.3.3 GetSupportedDMResp fields
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repeated RequestedObjectResult req_obj_results

This field contains a repeated set of messages of typeRequestedObjectResult.

7.5.3.3.1 RequestedObjectResult fields

string req_obj_path
This field contains one of the Path Names given inobj_path of the associated GetSupportedDM Request.
fixed32 err_code

This field contains a numeric code (Error Codes) indicating the type of error that caused the GetSupportedDM to fail on this
Path Name. A value of 0 indicates the Path Name could be read successfully.

R-GSP.0 - If the Controller making the Request does not have Read permission on an Object or Parameter matched through
the requested_path field, the Object or Parameter MUST be treated as if it is not present in the Agent’s Supported Data
Model.

string err_msg

This field contains additional information about the reason behind the error.

string data_model_inst_uri

This field contains a Uniform Resource Identifier (URI) to the Data Model associated with the Object specified imbj_path.
repeated SupportedObjectResult supported_objs

The field contains a message of type SupportedObjectResult for each reported Object.

7.5.3.3.1.1 SupportedObjectResult fields

In the case of a diverging Supported Data Model, only thesupported_obj_path, access,is_multi_instance, and
divergent_paths fields will be populated for the divergent Object.

string supported_obj_path
This field contains the Full Object Path Name of the reported Object in Supported Data Model notation.
ObjAccessType access

The field contains an enumeration of type ObjAccessType specifying the access permissions that are specified for this Object in
the Agent’s Supported Data Model. This usually only applies to Multi-Instance Objects. This may be further restricted to the
Controller based on rules defined in the Agent’s Access Control List. It is an enumeration of:

OBJ_READ_ONLY (0)
OBJ_ADD_DELETE (1)
OBJ_ADD_ONLY (2)
OBJ_DELETE_ONLY (3)

bool is_multi_instance
This field, if true, indicates that the reported Object is a Multi-Instance Object.

repeated SupportedParamResult supported_params
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The field contains a message of type SupportedParamResult for each Parameter supported by the reported Object. If there
are no Parameters in the Object, this should be an empty list.

repeated SupportedCommandResult supported_commands

The field contains a message of type SupportedCommandResult for each Command supported by the reported Object. If
there are no Parameters in the Object, this should be an empty list.

repeated SupportedEventResult supported_events

The field contains a message of type SupportedEventResult for each Event supported by the reported Object. If there are
no Parameters in the Object, this should be an empty list.

repeated string divergent_paths
The field contains an Object Instance Path for each divergent Path Name.

Note: The divergent_paths field was added in USP 1.2. An Agent that supports versions before USP 1.2 would not know to
send the divergent_paths field and thus an empty list will be seen by the Controller.

7.5.3.3.1.2 SupportedParamResult fields

string param_name
This field contains the Relative Path of the Parameter.
ParamAccessType access

The field contains an enumeration of type ParamAccessType specifying the access permissions that are specified for this
Parameter in the Agent’s Supported Data Model. This may be further restricted to the Controller based on rules defined in the
Agent’s Access Control List. It is an enumeration of:

PARAM_READ_ONLY (0)
PARAM_READ_WRITE (1)
PARAM_WRITE_ONLY (2)

ParamValueType value_type

This field contains an enumeration of type ParamValueType specifying theprimitive (or base) data typeof this Parameter in the
Agent’s Supported Data Model. It is an enumeration of:

PARAM_UNKNOWN (0)
PARAM_BASE_64 (1)
PARAM_BOOLEAN (2)
PARAM_DATE_TIME (3)
PARAM_DECIMAL (4)
PARAM_HEX_BINARY (5)
PARAM_INT (6)
PARAM_LONG (7)
PARAM_STRING (8)
PARAM_UNSIGNED_INT (9)
PARAM_UNSIGNED_LONG (10)

Note: The value_type field was added in USP 1.2, and the PARAM_UNKNOWN enumerated value is present for backwards
compatibility purposes. An Agent that supports versions before USP 1.2 would not know to send the value_type and thus a 0
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value (PARAM_UNKNOWN) will be seen by the Controller.

Note: This refers to the data type of the Parameter as implemented on the device, even though the value itself is transmitted as

a Protocol Buffers string.
ValueChangeType value_change

This field contains an enumeration of type ValueChangeType specifying whether or not the Parameter will honor or ignore a
ValueChange Subscription. The value of this field does not impact the ability for a Controller to create a ValueChange
Subscription that references the associated Parameter, it only impacts how the Agent handles the Subscription. It is an
enumeration of:

VALUE_CHANGE_UNKNOWN (0)
VALUE_CHANGE_ALLOWED (1)
VALUE_CHANGE_WILL_IGNORE (2)

Note: The value_change field was added in USP 1.2, and the VALUE_CHANGE_UNKNOWN enumerated value is present for
backwards compatibility purposes. An Agent that supports versions before USP 1.2 would not know to send the value_change
and thus a 0 value (VALUE_CHANGE_UNKNOWN) will be seen by the Controller.

7.5.3.3.1.3 SupportedCommandResult fields

string command_name
This field contains the Relative Path of the Command.
repeated string input_arg_names

This field contains a repeated set of Relative Paths for the input arguments of the Command, which can include Objects and
Object Instances where the names are represented in Supported Data Model notation.

Note: This field only contains the Path Name of the supported Input arguments without details about the supported number of
instances, mandatory arguments or expected data types. Those details are implementation specific and not detailed as part of

the SupportedCommandResult.
repeated string output_arg_names

This field contains a repeated set of Relative Paths for the output arguments of the Command, which can include Objects and
Object Instances where the names are represented in Supported Data Model notation.

CmdType command_type
This field contains an enumeration of type CmdType specifying the type of execution for the Command. It is an enumeration of:

CMD_UNKNOWN (0)
CMD_SYNC (1)
CMD_ASYNC (2)

Note: The command_type field was added in USP 1.2, and the CMD_UNKNOWN enumerated value is present for backwards
compatibility purposes. An Agent that supports versions before USP 1.2 would not know to send the command_type and thus a
0 value (CMD_UNKNOWN) will be seen by the Controller.

7.5.3.3.1.4 SupportedEventResult

string event_name
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This field contains the Relative Path of the Event.
repeated string arg_names

This field contains a repeated set of Relative Paths for the arguments of the Event.

7.5.3.4 GetSupportedDM Error Codes

Appropriate error codes for the GetSupportedDM Message include 7000-7006, 7008, 7016, 7026, and 7800-7999.

Note: when using error 7026 (Invalid path), it is important to note that in the context of GetSupportedDM this applies to the
Agent’s Supported Data Model.

7.5.4 GetSupportedProtocol

The GetSupportedProtocol Message is used as a simple way for the Controller and Agent to learn which versions of USP each
supports to aid in interoperability and backwards compatibility.

7.5.4.1 GetSupportedProtocol Request fields

string controller_supported_protocol_versions

A comma separated list of USP Protocol Versions (major.minor) supported by this Controller.

7.5.4.2 GetSupportedProtocolResponse fields

string agent_supported_protocol_versions

A comma separated list of USP Protocol Versions (major.minor) supported by this Agent.

7.6 Notifications and Subscription Mechanism

A Controller can use the Subscription mechanism to subscribe to certain events that occur on the Agent, such as a Parameter

change, Object removal, wake-up, etc. When such event conditions are met, the Agent sends a Notify Message to the
Controller.

7.6.1 Using Subscription Objects

Subscriptions are maintained in instances of the Multi-Instance Subscription Object in the USP data model. The normative
requirements for these Objects are described in the data model Parameter descriptions for
Device.LocalAgent.Subscription.{i}. in the Device:2 Data Model[38].

R-NOT.0 - The Agent and Controller MUST follow the normative requirements defined in the
Device.LocalAgent.Subscription.{i}. Object specified in the Device:2 Data Model[38].

Note: Those familiar with Broadband Forum TR-069[36] will recall that a notification for a value change caused by an Auto-
Configuration Server (ACS - the CWMP equivalent of a Controller) are not sent to the ACS. Since there is only a single ACS
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notifying the ACS of value changes it requested is unnecessary. This is not the case in USP: an Agent should follow the

behavior specified by a subscription, regardless of the originator of that subscription.

7.6.1.1 ReferencelList Parameter

All subscriptions apply to one or more Objects or Parameters in the Agent’s Instantiated Data Model. These are specified as
Path Names or Search Paths in the ReferenceList Parameter. The ReferenceList Parameter may have different meaning
depending on the nature of the notification subscribed to.

For example, a Controller wants to be notified when a new Wi-Fi station joins the Wi-Fi network. It uses the Add Message to
create an instance of a Subscription Object with Device.WiFi.AccessPoint.1.AssociatedDevice. specified in the
ReferencelList Parameter and ObjectCreation as the NotificationType.

In another example, a Controller wants to be notified whenever an outside source changes the SSID of a Wi-Fi network. It uses
the Add Message to create an instance of a Subscription Object with Device.WiFi.SSID.1.SSID specified in the
ReferencelList and ValueChange as theNotificationType.

7.6.2 Responses to Notifications and Notification Retry

The Notify request contains a flag, send_resp, that specifies whether or not the Controller should send a response Message
after receiving a Notify request. This is used in tandem with the NotifRetry Parameter in the subscription Object - if
NotifRetry is true, then the Agent sends its Notify requests withsend_resp : true, and the Agent considers the
notification delivered when it receives a response from the Controller. If NotifRetry is false, the Agent does not need to use
the send_resp flag and should ignore the delivery state of the notification.

If NotifRetry is true, and the Agent does not receive a response from the Controller, it begins retrying using the retry
algorithm below. The subscription Object also uses a NotifExpiration Parameter to specify when this retry should end if no
success is ever achieved.

R-NOT.1 - When retrying notifications, the Agent MUST use the following retry algorithm to manage the retransmission of the
Notify request.

The retry interval range is controlled by two Parameters, the minimum wait interval and the interval multiplier, each of which
corresponds to a data model Parameter, and which are described in the table below. The factory default values of these
Parameters MUST be the default values listed in the Default column. They MAY be changed by a Controller with the appropriate

permissions at any time.

Descriplive Mame Symbol Defaull Data Model Parameter Name

Minimum wait interval m 5 seconds Device.LocalAgent.Controller.

{i}.USPNotifRetryMinimumwWaitInterval

Interval multiplier k 2000 Device.lLocalAgent.Controller.

{i}.USPNotifRetryIntervalMultiplier

Defaull Wail Interval Range Aclual Wail Interval Range (min-max
Relry Count
(min-max seconds) seconds)
#1 5-10 m - m.(k/1000)
#2 10-20 m.(k/1000) - m.(k/1000)"2
#3 20-40 m.(k/1000)"2 - m.(k/1000)"3
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#4 40-80 m.(k/1000)"3 - m.(k/1000)"4
#5 80-160 m.(k/1000)"4 - m.(k/1000)"5
#6 160-320 m.(k/1000)"5 - m.(k/1000)"6
#7 320-640 m.(k/1000)"6 - m.(k/1000)"7
#8 640-1280 m.(k/1000)"7 - m.(k/1000)"8
#9 1280-2560 m.(k/1000)"8 - m.(k/1000)"9
#10 and subsequent 2560-5120 m.(k/1000)"9 - m.(k/1000)"10

R-NOT.2 - Beginning with the tenth retry attempt, the Agent MUST choose from the fixed maximum range. The Agent will

continue to retry a failed notification until it is successfully delivered or until the NotifExpiration time is reached.

R-NOT.3 - Once a natification is successfully delivered, the Agent MUST reset the retry count to zero for the next notification
Message.

R-NOT.4 - If a reboot of the Agent occurs, the Agent MUST reset the retry count to zero for the next notification Message.

7.6.3 Notification Types

There are several types events that can cause a Notify request. These include those that deal with changes to the Agent’s
Instantiated Data Model (ValueChange, ObjectCreation, ObjectDeletion), the completion of an asynchronous Object-
defined operation (OperationComplete), a policy-defined OnBoardRequest, and a genericEvent for use with Object-
defined events.

7.6.3.1 ValueChange

The ValueChange notification is subscribed to by a Controller when it wants to know that the value of a single or set of
Parameters has changed from the state it was in at the time of the subscription or to a state as described in an expression, and
then each time it transitions from then on for the life of the subscription. It is triggered when the defined change occurs, even if it
is caused by the originating Controller.

7.6.3.2 ObjectCreation and ObjectDeletion

These notifications are used for when an instance of the subscribed to Multi-Instance Objects is added or removed from the
Agent’s Instantiated Data Model. Like ValueChange, this notification is triggered even if the subscribing Controller is the
originator of the creation or deletion.

The ObjectCreation notification also includes the Object’s Unique Key Parameters and their values.

7.6.3.3 OperationComplete

The OperationComplete notification is used to indicate that an asynchronous Object-defined operation finished (either
successfully or unsuccessfully). These operations may also trigger other Events defined in the data model (see below).

7.6.3.4 OnBoardRequest
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An OnBoardRequest notification is used by the Agent when it is triggered by an external source to initiate the request in order
to communicate with a Controller that can provide on-boarding procedures and communicate with that Controller (likely for the
first time).

R-NOT.5 - An Agent MUST send anOnBoardRequest notify request in the following circumstances:

1. When the SendOnBoardRequest () command is executed. This sends the notification request to the Controller that is the
subject of that operation. The SendOnBoardRequest () operation is defined in the Device:2 Data Model[38]. This

requirement applies only to those Controller table instances that have their Enabled Parameter set to true.
2. When instructed to do so by internal application policy (for example, when using DHCP discovery defined above).

Note: as defined in the Subscription table, OnBoardRequest is not included as one of the enumerated types of a Subscription,

i.e., it is not intended to be the subject of a Subscription.

R-NOT.6 If a response is required, the OnBoardRequest MUST follow the Retry logic defined above.

7.6.3.5 Event

The Event notification is used to indicate that an Object-defined event was triggered on the Agent. These events are defined in
the data model and include what Parameters, if any, are returned as part of the notification.

7.6.3.6 Notify Examples

In this example, a Controller has subscribed to be notified of changes in value to thbevice.DeviceInfo.FriendlyName
Parameter. When it is changed, the Agent sends a Notify Request to inform the Controller of the change.

header {
msg_id: "33936"
msg_type: NOTIFY

}
body {
request {
notify {
subscription_id: "vc-1"
send_resp: true
value_change {
param_path: "Device.DeviceInfo.FriendlyName"
param_value: "MyDevicesFriendlyName"
}
}
}
}
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header {
msg_id: "33936"
msg_type: NOTIFY_RESP
}
body {
response {
notify_resp {

subscription_id: "vc-1"

}

In another example, the event “Boot!”, defined in theDevice. Object, is triggered. The Agent sends a Notify Request to the
Controller(s) subscribed to that event.

header {
msg_id: "26732"
msg_type: NOTIFY
}
body {
request {
notify {
subscription_id: "boot-1"
send_resp: true
event {
obj_path: "Device."
event_name: "Boot!"
params {
key: "Cause"
value: "LocalReboot™"
}
params {
key: "CommandKey"
value: "controller-command-key"
}
params {
key: "ParameterMap"
value:
'{"Device.LocalAgent.Controller.1.Enable":"True", "Device.LocalAgent.Controller.2.Enable":"False"}"'
}
params {
key: "FirmwareUpdated"

value: "false"
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header {
msg_id: "26732"
msg_type: NOTIFY_RESP
}
body {
response {
notify_resp {

subscription_id: "boot-1"

7.6.4 The Notify Message

7.6.4.1 Notify Request fields

string subscription_id

TR-369a2 Issue 1 Amendment 2

This field contains the locally unique opaque identifier that was set by the Controller when it created the Subscription on the

Agent.

R-NOT.7 - The subscription_id field MUST contain the Subscription ID of the Subscription Object that triggered this
notification. If no subscription_id is available (for example, for OnBoardRequest notifications), this field MUST be set to an

empty string.

bool send_resp

This field lets the Agent indicate to the Controller whether or not it expects a response in association with the Notify request.

R-NOT.8 - When send_response is set to false, the Controller SHOULD NOT send a response or error to the Agent. If a

response is still sent, the responding Controller MUST expect that any such response will be ignored.

oneof notification

Contains one of the following Notification messages:

Event event

ValueChange value_change
ObjectCreation obj_creation
ObjectDeletion obj_deletion
OperationComplete oper_complete

OnBoardRequest on_board_req

7.6.4.1.1 Event fields

string obj_path

This field contains the Object or Object Instance Path of the Object that caused this event (for example,

Device.lLocalAgent.).

string event_name
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This field contains the name of the Object defined event that caused this notification (for exampleBoot !).
map<string, string> parameters

This field contains a set of key/value pairs of Parameters associated with this event. Refer toParameter and Argument Value
Encoding for details of how Parameter values are encoded as Protocol Buffers v3 strings.

7.6.4.1.2 ValueChange fields

string param_path
This field contains the Path Name of the changed Parameter.
string param_value

This field contains the value of the Parameter specified inparam_path. Refer to Parameter and Argument Value Encoding for
details of how Parameter values are encoded as Protocol Buffers v3 strings.

7.6.4.1.3 ObjectCreation fields

string obj_path

This field contains the Path Name of the created Object Instance.
map<string, string> unique_keys

This field contains a map of key/value pairs for all of this Object’s Unique Key Parameters that are supported by the Agent.

7.6.4.1.4 ObjectDeletion fields

string obj_path

This field contains the Path Name of the deleted Object Instance.

7.6.4.1.5 OperationComplete fields

string command_name

This field contains the Relative Path of the Object defined command that caused this notification (i.e.pownload()).
string obj_path

This field contains the Object or Object Instance Path to the Object that contains this operation.

string command_key

This field contains the command key set during an Object defined Operation that caused this notification.

oneof operation_resp

Contains one of the following messages:

OutputArgs req_output_args

CommandFailure cmd_failure

7.6.4.1.5.1 OutputArgs fields
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map<string, string> output_args

This field contains a map of key/value pairs indicating the output arguments (relative to the command specified in the
command_name field) returned by the method invoked in the Operate Message. Refer toParameter and Argument Value

Encoding for details of how argument values are encoded as Protocol Buffers v3 strings.

7.6.4.1.5.2 CommandFailure fields

fixed32 err_code

This field contains a numeric code (see Error Codes) indicating the type of the error that caused the operation to fail.
Appropriate error codes for CommandFailure include 7002-7008, 7016, 7022, 7023, and 7800-7999. Error 7023 is reserved
for asynchronous operations that were canceled by a Controller invoking the Cancel() command on the appropriate Request

Object (see Asynchronous Operations).
string err_msg

This field contains additional (human readable) information about the reason behind the error.

7.6.4.1.6 OnBoardRequest fields

string oui

This field contains the Organizationally Unique Identifier associated with the Agent.
string product_class

This field contains a string used to provide additional context about the Agent.
string serial_number

This field contains a string used to provide additional context about the Agent.
string agent_supported_protocol_versions

A comma separated list of USP Protocol Versions (major.minor) supported by this Agent.

7.6.4.2 Notify Response fields

string subscription_id
This field contains the Subscription ID that was received with the Notify Request.
R-NOT.9 -The Agent SHOULD ignore the subscription_id field.

Note: The requirement in the previous versions of the specification requiring the Agent to check this subscription_id field has

been deprecated. However for backward compatibility the Controller is still required to send the matching subscription_id.

R-NOT.10 - The Controller MUST populate the subscription_id field with the same Subscription ID as was presented in the
Notify Request.

7.6.4.3 Notify Error Codes

Appropriate error codes for the Notify Message include 7000-7006, and 7800 -7999.
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7.7 Defined Operations Mechanism

Additional methods (operations) are and can be defined in the USP data model. Operations are generally defined on an Object,
using the “command” attribute, as defined in [37]. The mechanism is controlled using the Operate Message in conjunction with
the Multi-Instance Request Object.

7.7.1 Synchronous Operations

A synchronous operation is intended to complete immediately following its processing. When complete, the output arguments
are sent in the Operate response. If the send_resp flag is false, the Controller doesn’t need the returned information (if any),
and the Agent does not send an Operate Response.

i Operate Request (command) |

i Perform operation
| [ send_resp == true ]
A < Operate Response (operation_result)

Figure 14: Operate Message Flow for Synchronous Operations

7.7.2 Asynchronous Operations

An asynchronous operation expects to take some processing on the system the Agent represents and will return results at a
later time. When complete, the output arguments are sent in a Notify (OperationComplete) request to any Controllers that
have an active subscription to the operation and Object(s) to which it applies.

When a Controller using the Operate request specifies an operation that is defined as asynchronous, the Agent creates an
instance of the Request Object in its data model, and includes a reference to the created Object in the Operate response. If the
send_resp flag is false, the Controller doesn’t need the Request details, and intends to ignore it.

The lifetime of a Request Object expires when the operation is complete (either by success or failure). An expired Request
Object is removed from the Instantiated Data Model.

R-OPR.0 - When an Agent receives an Operate Request that addresses an asynchronous operation, it MUST create a Request
Object in the Request table of its Instantiated Data Model (see the Device:2 Data Model [38]). When the Operation is complete
(either success or failure), it MUST remove this Object from the Request table.

If any Controller wants a notification that an operation has completed, it creates a Subscription Object with the
NotificationType settoOperationComplete and with theReferencelList Parameter including a Path Name to the
specified command. The Agent processes this Subscription when the operation completes and sends a Notify Message,

including the command_key value that the Controller assigned when making the Operate request.

A Controller can cancel a request that is still present in the Agent'sDevice.LocalAgent.Request. table by invoking the

Device.LocalAgent.Request.{i}.Cancel() command through another Operate Message.
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i Operate Request (command) |

Create instance of Request Object

| [ send_resp == true ]
L Operate Response (req_object path)
Operation started

The Controller can use

the Request Object Path

in order to retrieve
operation-related parameters
until the operation completes.

Operation completed and returned (success or failure)

i | Remove Request Object
| [ controller has subscribed to this operation ]
i Notify Request ("OperationComplete”, req_output_args)

Figure 15: Operate Message Flow for Asynchronous Operations

7.7.2.1 Persistance of Asynchronous Operations

Synchronous Operations do not persist across a reboot or restart of the Agent or its underlying system. It is expected that
Asynchronous Operations do not persist, and a command that is in process when the Agent is rebooted can be expected to be
removed from the Request table, and is considered to have failed. If a command is allowed or expected to be retained across a
reboot, it will be noted in the command description.

7.7.3 Operate Requests on Multiple Objects

Since the Operate request can take a Path Name expression as a value for the command field, it is possible to invoke the same
operation on multiple valid Objects as part of a single Operate request. Responses to requests to Operate on more than one
Object are handled using the OperationResult field type, which is returned as a repeated set in the Operate Response. The
success or failure of the operation on each Object is handled separately and returned in a different OperationResult entry.
For this reason, operation failures are never conveyed in an Error Message - in reply to an Operate request, Error is only used
when the Message itself fails for one or more reasons, rather than the operation invoked.

Note: This specification does not make any requirement on the order in which commands on multiple objects selected with a

Path Name expression are executed.

R-OPR.1 - When processing Operate Requests on multiple Objects, an Agent MUST NOT send an Error Message due to a

failed operation. It MUST instead include the failure in the cmd_failure field of the Operate response.

R-OPR.2 - For asynchronous operations the Agent MUST create a separate Request Object for each Object and associated
operation matched in the command field.

7.7.4 Event Notifications for Operations

When an operation triggers an Event notification, the Agent sends the Event notification for all subscribed recipients as

described in Notifications and Subscription Mechanism.
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7.7.5 Concurrent Operations

If an asynchronous operation is triggered multiple times by one or more Controllers, the Agent has the following options:

1. Deny the new operation (with, for example, 7005 Resources Exceeded )
2. The operations are performed in parallel and independently.
3. The operations are queued and completed in order.

R-OPR.3 - When handling concurrently invoked operations, an Agent MUST NOT cancel an operation already in progress
unless explicitly told to do so by a Controller with permission to do so (i.e., via the Device.LocalAgent .Request.

{i}.Cancel() operation).

7.7.6 Operate Examples

In this example, the Controller requests that the Agent initiate the SendOnBoardRequest() operation defined in the

Device.LocalAgent.Controller. Object.

header {
msg_id: "42314"
msg_type: OPERATE

}
body {
request {
operate {
command: 'Device.LocalAgent.Controller.[EndpointID=="controller"].SendOnBoardRequest()"
command_key: "onboard_command_key"
send_resp: true
}
}
}
header {

msg_id: "42314"
msg_type: OPERATE_RESP

}
body {
response {
operate_resp {
operation_results {
executed_command: "Device.LocalAgent.Controller.1.SendOnBoardRequest()"
req_obj_path: "Device.LocalAgent.Request.1"
}
}
}
}

7.7.7 The Operate Message

7.7.7.1 Operate Request fields
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string command

This field contains a Command Path or Search Path to an Object defined Operation in one or more Objects.

string command_key

This field contains a string used as a reference by the Controller to match the operation with notifications.

bool send_resp

This field lets the Controller indicate to Agent whether or not it expects a response in association with the operation request.

R-OPR.4 - When send_resp is set to false, the target Endpoint SHOULD NOT send anOperateResp Message to the
source Endpoint. If an error occurs during the processing of an Operate Message, the target Endpoint SHOULD send an
Error Message to the source Endpoint. If a response is still sent, the responding Endpoint MUST expect that any such
response will be ignored.

Note: The requirement in the previous versions of the specification also discouraged the sending of arfError Message,
however the Controller issuing the Operate might want to learn about and handle errors occurring during the processing of the

Operate request but still ignore execution results.
map<string, string> input_args

This field contains a map of key/value pairs indicating the input arguments (relative to the Command Path in the command field)
to be passed to the method indicated in the command field.

R-OPR.5 - A Command can have mandatory input_args as defined in the Supported Data Model. When a mandatory Input
argument is omitted from the input_args field, the Agent MUST respond with anError of type 7004 Invalid arguments

and stop processing the Operate Message.

R-OPR.6 - When an unrecognized Input argument is included in theinput_args field, the Agent MUST ignore the Input

argument and continue processing the Operate Message.

R-OPR.7 - When a non-mandatory Input argument is omitted from theinput_args field, the Agent MUST use a default value

for the missing Input argument and continue processing the Operate Message.

Refer to Parameter and Argument Value Encoding for details of how argument values are encoded as Protocol Buffers v3
strings.

7.7.7.2 Operate Response fields

repeated OperationResult operation_results

This field contains a repeated set ofOperationResult messages.

7.7.7.2.1 OperationResult fields

string executed_command
This field contains a Command Path to the Object defined Operation that is the subject of thifDperateResp message.
oneof operate_resp

This field contains a message of one of the following types.
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string reg_obj_path
OutputArgs req_output_args

CommandFailure cmd_failure

7.7.7.2.1.1 Using req_obj_path

The req_obj_path field, when used as theoperate_resp, contains an Object Instance Path to the Request Object created as
a result of this asynchronous operation.

7.7.7.2.1.2 OutputArgs fields

map<string, string> output_args

This field contains a map of key/value pairs indicating the output arguments (relative to the command specified in thecommand
field) returned by the method invoked in the Operate Message. Refer to Parameter and Argument Value Encoding for details of
how argument values are encoded as Protocol Buffers v3 strings.

7.7.7.2.1.3 CommandFailure fields

fixed32 err_code

This field contains a numeric code (see Error Codes) indicating the type of the error that caused the operation to fail.
string err_msg

This field contains additional (human readable) information about the reason behind the error.

7.7.7.3 Operate Message Error Codes

Appropriate error codes for the Operate Message include 7000-7008, 7016, 7022, 7026, 7027, and 7800-7999.

7.8 Error Codes

USP uses error codes with a range 7000-7999 for both Controller and Agent errors. The errors appropriate for each Message
(and how they must be implemented) are defined in the message descriptions below.

Code Namea Applicability Description
7000 Message failed Error Message This error indicates a general failure that is described in an err_msg
field.

7001 Message not Error Message This error indicates that the attempted message was not understood
supported by the target Endpoint.

7002 Request denied Error Message This error indicates that the target Endpoint cannot or will not
(no reason process the message.
specified)

7003 Internal error Error Message This error indicates that the message failed due to internal hardware

or software reasons.
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7004 Invalid Error Message This error indicates that the message failed due to invalid values in
arguments the USP message.

7005 Resources Error Message This error indicates that the message failed due to memory or
exceeded processing limitations on the target Endpoint.

7006 Permission Error Message This error indicates that the source Endpoint does not have the
denied authorization for this action.

7007 Invalid Error Message This error indicates that the message failed because processing the
configuration message would put the target Endpoint in an invalid or

unrecoverable state.

7008 Invalid path any This error indicates that the Path Name used was not understood by
syntax requested_path the target Endpoint.

7009 Parameter Set This error indicates that the Parameter failed to update for a general
action failed reason described in an err_msg field.

7010 Unsupported Add, Set This error indicates that the requested Path Name associated with
parameter this ParamError or ParameterError did not match any instantiated

Parameters.
7011 Invalid type Add, Set This error indicates that the requested value was not of the correct

data type for the Parameter.

7012 Invalid value Add, Set This error indicates that the requested value was not within the
acceptable values for the Parameter.

7013 Attempt to Add, Set This error indicates that the source Endpoint attempted to update a
update non- Parameter that is not defined as a writeable Parameter.
writeable
parameter

7014 Value conflict Add, Set This error indicates that the requested value would result in an

invalid configuration based on other Parameter values.

7015 Operation error Add, Set, Delete This error indicates a general failure in the creation, update, or
deletion of an Object that is described in an err_msg field.

7016 Object does not Add, Set, This error indicates that the requested Path Name associated with
exist Operate this OperationStatus did not match any instantiated Objects.

7017 Object could not Add This error indicates that the operation failed to create an instance of
be created the specified Object.

7018 Object is not a Add This error indicates that the requested Path Name associated with
table this OperationStatus is not a Multi-Instance Object.

7019 Attempt to Add This error indicates that the source Endpoint attempted to create an
create non- Object that is not defined as able to be created.

creatable object

7020 Object could not Set This error indicates that the requested Object in a Set request failed
be updated to update.

7021 Required Add, Set This error indicates that the request failed on this Object because
parameter failed one or more required Parameters failed to update. Details on the

failed Parameters are included in an associated ParamError or
ParameterError message.
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7022 Command Operate This error indicates that an command initiated in an Operate
failure Request failed to complete for one or more reasons explained in the
err_msg field.
7023 Command Operate This error indicates that an asynchronous command initiated in an
canceled Operate Request failed to complete because it was cancelled using

the Cancel() operation.

7024 Delete failure Delete This error indicates that this Object Instance failed to be deleted.
7025 Object exists Add, Set This error indicates that an Object already exists with the Unique
with duplicate Keys specified in an Add or Set Message.
key
7026 Invalid path Any This error indicates that the Object, Parameter, or Command Path

Name specified does not match any Objects, Parameters, or
Commands in the Agent’s Supported Data Model

7027 Invalid Operate This error indicates that an Operate Message failed due to invalid or
command unknown arguments specified in the command.
arguments

7100- USP Record - These errors are listed and described in USP Record Errors.

7199 error codes

7200- Data model - These errors are described in the data model.

7299 defined error
codes

7800- Vendor defined - These errors are described in Vendor Defined Error Codes.

7999 error codes

7.8.1 Vendor Defined Error Codes

Implementations of USP MAY specify their own error codes for use with Errors and Responses. These codes use the7800 -

7999 series. There are no requirements on the content of these errors.

8 Authentication and Authorization

USP contains mechanisms for Authentication and Authorization, and Encryption. Encryption can be provided at the MTP layer,
the USP layer, or both. Where Endpoints can determine (through Authentication) that the termination points of the MTP and
USP messages are the same, MTP encryption is sufficient to provide end-to-end encryption and security. Where the termination
points are different (because there is a proxy or other intermediate device between the USP Endpoints), USP layer End to End
Message Exchange is required, or the intermediate device must be a trusted part of the end-to-end ecosystem.

8.1 Authentication

Authentication of Controllers is done using X.509 certificates as defined in[18] and [26]. Authentication of Agents is done either
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by using X.509 certificates or shared secrets. X.509 certificates, at a minimum, need to be usable for Securing MTPs with TLS
or DTLS protocols. It is recommended that Agents implement the ability to encrypt all MTPs using one of these two protocols,
enable it by default, and not implement the ability to disable it.

In order to support various authentication models (e.g., trust Endpoint identity and associated certificate on first use; precise
Endpoint identity is indicated in a certificate issued by a trusted Certificate Authority; trust that MTP connection is being made to
a member of a trusted domain as verified by a trusted Certificate Authority (CA)), this specification provides guidance based on
conditions under which the Endpoint is operating, and on the Endpoint’s policy for storing certificates of other Endpoints or
certificates of trusted CAs. The Device.LocalAgent.Certificate. Object can be implemented if choosing to expose
these stored certificates through the data model. See the Theory of Operations, Certificate Management subsection, below for
additional information.

R-SEC.0 - Prior to processing a USP Message from a Controller, the Agent MUST either:

« have the Controller’s certificate information and have a cryptographically protected connection between the two Endpoints,
or

» have a Trusted Broker’s certificate information and have a cryptographically protected connection between the Agent and
the Trusted Broker

TLS and DTLS both have handshake mechanisms that allow for exchange of certificate information. If the MTP connection is
between the Agent and Controller (for example, without going through any application-layer proxy or other intermediate
application-layer middle-box), then a secure MTP connection will be sufficient to ensure end-to-end protection, and the USP
Record can use payload_security “PLAINTEXT” encoding of the Message. If the middle-box is part of a trusted end-to-end
ecosystem, the MTP connection may also be considered sufficient. Otherwise, the USP Record will use End fo End Message

Exchange.

Whether a Controller requires Agent certificates is left up to the Controller implementation.

8.2 Role Based Access Control (RBAC)

It is expected that Agents will have some sort of Access Control List (ACL) that will define different levels of authorization for
interacting with the Agent’s data model. This specification refers to different levels of authorization as “Roles”. The Agent may
be so simple as to only support a single Role that gives full access to its data model; or it may have just an “untrusted” Role and
a “full access” Role. Or it may be significantly more complex with, for example, “untrusted” Role, different Roles for parents and
children in a customer household, and a different Role for the service provider Controller. These Roles may be fully defined in
the Agent’s code, or Role definition may be allowed via the data model.

R-SEC.1 - An Agent MUST confirm a Controller has the necessary permissions to perform the requested actions in a Message
prior to performing that action.

R-SEC.1a - Agents SHOULD implement the Controller Object with theAssignedRole Parameter (with at least read-only
data model definition) and InheritedRole Parameter (if allowed Roles can come from a trusted CA), so users can see what
Controllers have access to the Agent and their permissions. This will help users identify rogue Controllers that may have gained
access to the Agent.

See the Theory of Operations, Roles (Access Control) and Assigning Controller Roles subsections, below for additional
information on data model elements that can be implemented to expose information and allow control of Role definition and

assignment.
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8.3 Trusted Certificate Authorities

An Endpoint can have a configured list of trusted Certificate Authority (CA) certificates. The Agent policy may trust the CA to
authorize authenticated Controllers to have a specific default Role, or the policy may only trust the CA to authenticate the
Controller identity. The Controller policy may require an Agent certificate to be signed by a trusted CA before the Controller
exchanges USP Messages with the Agent.

R-SEC.2 - To confirm a certificate was signed by a trusted CA, the Endpoint MUST contain information from one or more trusted
CA certificates that are either pre-loaded in the Endpoint or provided to the Endpoint by a secure means. At a minimum, this
stored information will include a certificate fingerprint and fingerprint algorithm used to generate the fingerprint. The stored
information MAY be the entire certificate.

This secure means can be accomplished through USP (see Theory of Operations), Certificate Management subsection, making
use of the Device.LocalAgent.Certificate. Object), or through a mechanism external to USP. The stored CA
certificates can be root or intermediate CAs.

R-SEC.3 - Where a CA is trusted to authenticate Controller identity, the Agent MUST ensure the URN form of the Controller
Endpoint ID is in the Controller certificate subjectaltName with a typeuniformResourceIdentifier attribute, and this

matches the USP Record from_id.

R-SEC.4 - Where a CA is trusted to authorize a Controller Role, the Agent MUST ensure either that the Controller certificate
matches the certificate stored in the Credential Parameter of the Device.LocalAgent.Controller. entry specific to that
Controller OR that the URN form of the Controller Endpoint ID (that matches the USP Record from_id) is in the Controller

certificate subjectaltName with a typeuniformResourceIdentifier attribute.

Note that trusting a CA to authorize a Controller Role requires the Agent to maintain an association between a CA certificate
and the Role(s) that CA is trusted to authorize. If the Agent allows CAs to authorize Roles, the Agent will need to identify
specific CA certificates in a Controller’s chain of trust that can authorize Roles. The specific Role(s) associated with such a CA
certificate can then be inherited by the Controller. The Device.LocalAgent.ControllerTrust.Credential. Object can
be implemented to expose and allow control over trust and authorization of CAs.

Note that if an Agent supports and has enabled a Trust on First Use (TOFU) policy, it is possible for Controllers signed by
unknown CAs to be granted the “untrusted role”. See Figure 19 and Figure 20 and the penultimate bullet in the Assigning
Controller Roles section below for more information related to TOFU and the “untrusted” role.

8.4 Trusted Brokers

An Endpoint can have a configured list of Trusted Broker certificates. The Endpoint policy would be to trust the broker to vouch
for the identity of Endpoints it brokers — effectively authenticating the from_id contained in a received USP Record. The Agent
policy may trust the broker to authorize all Controllers whose Records transit the broker to have a specific default Role.

R-SEC.4a - To confirm a certificate belongs to a Trusted Broker, the Endpoint MUST contain information from one or more
Trusted Broker certificates that are either pre-loaded in the Endpoint or provided to the Endpoint by a secure means. This
stored information MUST be sufficient to determine if a presented certificate is the Trusted Broker certificate.

This secure means of loading certificate information into an Agent can be accomplished through USP (see Theory of Operations
section related to Certificate Management), or through a mechanism external to USP.
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Note that trusting a broker to authorize a Controller Role requires the Agent to maintain an association between a Trusted
Broker certificate and the Role(s) that Trusted Broker is trusted to authorize. The
Device.LocalAgent.ControllerTrust.Credential. Object can be implemented to expose and allow control over
identifying Trusted Brokers. The AllowedUses Parameter is used to indicate whether an entry is a Trusted Broker.

8.5 Self-Signed Certificates

R-SEC.5 - An Endpoint that generates a self-signed certificate MUST place the URN form of its Endpoint ID in a certificate

subjectaltName with a typeuniformResourceIdentifier attribute.

Self-signed certificates supplied by Controllers can only be meaningfully used in cases where a person is in a position to provide
Authorization (what Role the Controller is trusted to have). Whether or not an Agent allows self-signed certificates from a
Controller is a matter of Agent policy.

R-SEC.6 - If an Agent allows Controllers to provide self-signed certificates, the Agent MUST assign such Controllers an
“untrusted” Role on first use.

That is, the Agent will trust the certificate for purpose of encryption, but will heavily restrict what the Controller is authorized to
do. See Figure 19 and Figure 20 and the penultimate bullet in the Assigning Controller Roles section below for more information
related to TOFU and the “untrusted” role.

R-SEC.7 - If an Agent allows Controllers to provide self-signed certificates, the Agent MUST have a means of allowing an
external entity to change the Role of each such Controller.

Controller policy related to trust of Agent self-signed certificates is left to the Controller. Controllers may be designed to refuse
self-signed certificates (thereby refusing to control the Agent), they may have a means of allowing a person to approve
controlling the Agent via the Controller, or they may automatically accept the Agent.

R-SEC.8 - An Endpoint that accepts self-signed certificates MUST maintain the association of accepted certificate and Endpoint
IDs.

Self-signed certificates require a “trust on first use” (TOFU) policy when using them to authenticate an Endpoint’s identity. An
external entity (a trusted Controller or user) can then authorize the authenticated Endpoint to have certain permissions.
Subsequent to the first use, this same self-signed certificate can be trusted to establish the identity of that Endpoint. However,
authentication of the Endpoint can only be subsequently trusted if the association of certificate to identity is remembered (i.e., it
is known this is the same certificate that was used previously by that Endpoint). If it is not remembered, then every use is
effectively a first use and would need to rely on an external entity to authorize permissions every time. The
Device.LocalAgent.Certificate. Object can be implemented if choosing to expose and allow control of remembered
certificates in the data model.

8.6 Agent Authentication

R-SEC.9 - Controllers MUST authenticate Agents either through X.509 certificates, a shared secret, or by trusting a Trusted
Broker to vouch for Agent identity.

When authentication is done using X.509 certificates, it is up to Controller policy whether to allow for Agents with self-signed
certificates or to require Agent certificates be signed by a CA.
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Note that allowing use of, method for transmitting, and procedure for handling shared secrets is specific to the MTP used, as
described in Message Transfer Protocols. Shared secrets that are not unique per device are not recommended as they leave
devices highly vulnerable to various attacks — especially devices exposed to the Internet.

R-SEC.10 - An Agent certificate MUST contain the URN form of the Agent Endpoint ID in thesubjectaltName with a type
uniformResourceIdentifier attribute.

R-SEC.10a - The certificate subjectaltName value MUST be used to authenticate the USP Recordfrom_id for any Records
secured with an Agent certificate.

Agent certificates can be used to secure Records by encrypting at theMTP layer and/or encrypting at the USP layer.
Some Controller implementations may allow multiple Agents to share a single certificate with a wildcarded Endpoint ID.

R-SEC.11 - If a single certificate is shared among multiple Agents, those Agents MUST include a wild-cardedinstance-1id in

the Endpoint ID in the subjectaltName with identical authority-scheme and authority-id.

Use of a shared certificate is not recommended, and which portion of theinstance-id can be wildcarded may be specific to
the authorizing CA or to the authority-id and authority-scheme values of the Endpoint ID. Wildcards can only be
allowed in cases where the assigning entity is explicitly identified. Controllers are not required to support wildcarded certificates.

R-SEC.12 - If a wildcard character is present in theinstance-id of an Endpoint ID in a certificatesubjectaltName, the

authority-scheme MUST be one of “oui”, “cid”, “pen”, “os”, or “ops”. In the case of “0s” and “ops”, the portion of the

instance-1id that identifies the assigning entity MUST NOT be wildcarded.

8.7 Challenge Strings and Images

It is possible for the Agent to allow an external entity to change a Controller Role by means of a Challenge string or image. This
Challenge string or image can take various forms, including having a user supply a passphrase or a PIN. Such a string could be
printed on the Agent packaging, or supplied by means of a SMS to a phone number associated with the user account. These
Challenge strings or images can be done using USP operations. Independent of how challenges are accomplished, following
are some basic requirements related to Challenge strings and images.

R-SEC.13 - The Agent MAY have factory-default Challenge value(s) (strings or images) in its configuration.

R-SEC.14 - A factory-default Challenge value MUST be unique to the Agent. Re-using the same passphrase among multiple
Agents is not permitted.

R-SEC.15 - A factory-default Challenge value MUST NOT be derivable from information the Agent communicates about itself
using any protocol at any layer.

R-SEC.16 - The Agent MUST limit the number of tries for the Challenge value to be supplied successfully.

R-SEC.17 - The Agent SHOULD have policy to lock out all use of Challenge values for some time, or indefinitely, if the number
of tries limit is exceeded.

See the Theory of Operations, Challenges subsection, below for a description of data model elements that need to be
implemented and are used when doing challenges through USP operations.

8.8 Analysis of Controller Certificates
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An Agent will analyze Controller certificates to determine if they are valid, are appropriate for authentication of Controllers, and
to determine what permissions (Role) a Controller has. The Agent will also determine whether MTP encryption is sufficient to

provide end-to-end protection of the Record and Message, or if USP layer En End M Exchangeis required.

The diagrams in this section use the database symbol to identify where the described information can be represented in the
data model, if an implementation chooses to expose this information through the USP protocol.

8.8.1 Receiving a USP Record

R-SEC.19 - An Agent capable of obtaining absolute time SHOULD wait until it has accurate absolute time before contacting a
Controller. If an Agent for any reason is unable to obtain absolute time, it can contact the Controller without waiting for accurate
absolute time. If an Agent chooses to contact a Controller before it has accurate absolute time (or if it does not support absolute
time), it MUST ignore those components of the Controller certificate that involve absolute time, e.g. not-valid-before and not-
valid-after certificate restrictions.

R-SEC.20 - An Agent that has obtained accurate absolute time MUST validate those components of the Controller certificate
that involve absolute time.

R-SEC.21 — An Agent MUST clear all cached encryption session and Role authorization information when it reboots.

R-SEC.22 - When an Agent receives a USP Record, the Agent MUST execute logic that achieves the same results as in the

mandatory decision flow elements (identified with “MUST") from Figure 16 and Figure 17.

R-SEC.22a - When an Agent receives a USP Record, the Agent SHOULD execute logic that achieves the same results as in
the optional decision flow elements (identified with “OPT”) from Figure 16 and Figure 17.
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8.8.2 Sending a USP Record

R-SEC.23 - When an Agent sends a USP Record, the Agent MUST execute logic that achieves the same results as in the
mandatory decision flow elements (identified with “MUST") from Figure 18.

R-SEC.23a - When an Agent sends a USP Record, the Agent SHOULD execute logic that achieves the same results as in the
optional decision flow elements (identified with “OPT”) from Figure 18.
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Figure 18: Sending a USP Record

8.8.3 Checking a Certificate

R-SEC.24 - When an Agent analyzes a Controller certificate for authentication and determining permissions (Role), the Agent
MUST execute logic that achieves the same results as in the mandatory decision flow elements (identified with “MUST”) from

Figure 19 and Figure 20.

R-SEC.24a - When an Agent analyzes a Controller certificate for authentication and determining permissions (Role), the Agent
SHOULD execute logic that achieves the same results as in the optional decision flow elements (identified with “OPT”) from

Figure 19 and Figure 20.

R-SEC.25 - When determining the inherited Role to apply based on Roles associated with a trusted CA, only the first matching
CA in the chain will be used.
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8.8.4 Using a Trusted Broker

Support for Trusted Broker logic is optional.

R-SEC.26 - If Trusted Brokers are supported, and a Trusted Broker is encountered (from the optional “OPT” “Trusted Broker

cert?” decision diamonds in Figure 17, Figure 18 the Agent MUST execute logic that achieves the same results as in the
mandatory decision flow elements (identified with “MUST”) from Figure 21 for a received USP Record and Figure 22 for sending

a USP Record.

R-SEC.26a - If Trusted Brokers are supported, and a Trusted Broker is encountered (from the optional “OPT” “Trusted Broker

cert?” decision diamonds in Figure 17, Figure 18 the Agent SHOULD execute logic that achieves the same results as in the

optional decision flow elements (identified with “OPT”) from Figure 21 for a received USP Record and Figure 22 for sending a

USP Record.
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8.9 Theory of Operations

The following theory of operations relies on Objects, Parameters, events, and operations from theLocalAgent Object of the
Device:2 Data Model [38].

8.9.1 Data Model Elements

These data model elements play a role in reporting on and allowing control of trusted Controllers and the permissions they have
to read and write parts of the Agent’s data model, and allowing an Agent to establish trust with a Controller.

e LocalAgent.Controller.{i}.AssignedRole Parameter
o LocalAgent.Controller.{i}.InheritedRole Parameter

e LocalAgent.Controller.{i}.Credential Parameter
From component ControllerTrust:

« Object LocalAgent.ControllerTrust.

o Parameters UntrustedRole, BannedRole, TOFUAllowed, TOFUInactivityTimer
o Commands RequestChallenge( ), ChallengeResponse()

« Object LocalAgent.ControllerTrust.Role.{i}.

Object LocalAgent.ControllerTrust.Credential. {i}.

o Object LocalAgent.ControllerTrust.Challenge.{i}.
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The Object LocalAgent.Certificate. can be used to manage Controller and CA certificates, along with the
LocalAgent.AddCertificate() and LocalAgent.Controller.{i}.AddMyCertificate() commands.

For brevity, Device.LocalAgent. is not placed in front of all further Object references in this Security section. However, all
Objects references are under Device.LocalAgent .. This section does not describe use of Parameters under other top level

components.

8.9.2 Roles (Access Control)

Controller permissions are conveyed in the data model through Roles.

8.9.2.1 Role Definition

A Role is described in the data model through use of theControllerTrust.Role. {i}. Object. Each entry in this Object
identifies the Role it describes, and has a Permission. Sub-Object for the Targets (data model Path Names that the related
permissions apply to), permissions related to Parameters, Objects, instantiated Objects, and commands identified by the
Targets Parameter, and the relative Order of precedence among Permission. entries for the Role (the larger value of this
Parameter takes priority over an entry with a smaller value in the case of overlapping Targets entries for the Role).

The permissions of a Role for the specifiedTarget entries are described by Param, Obj, InstantiatedObj, and
CommandEvent Parameters. Each of these is expressed as a string of 4 characters where each character represents a
permission (“r” for Read, ‘w” for Write, “x” for Execute”, and “n” for Notify). The 4 characters are always presented in the same

order in the string (rwxn) and the lack of a permission is signified by a “” character (e.g., r - -n). How these permissions are
applied to Parameters, Objects, and various Messages is described in the data model description of these Parameters.

An Agent that wants to allow Controllers to define and modify Roles will implement theControllerTrust.Role. {i}. Object
with all of the Parameters listed in the data model. In order for a Controller to define or modify Role entries, it will need to be
assigned a Role that gives it the necessary permission. Care should be taken to avoid defining this Role’s permissions such that
an Agent with this Role can modify the Role and no longer make future modifications to the ControllerTrust.Role.{i}.
Object.

A simple Agent that only wants to inform Controllers of pre-defined Roles (with no ability to modify or define additional Roles)
can implement the ControllerTrust.Role. Object with read-only data model definition for all entries and Parameters. A
simple Agent could even implement the Object with read-only data model definition and just the Alias and Role Parameters,
and no Permission. Sub-Object; this could be sufficient in a case where the Role names convey enough information (e.g.,
there are only two pre-defined Roles named "Untrusted" and "FullAccess").

8.9.2.2 Special Roles

Two special Roles are identified by theUntrustedRole and BannedRole Parameters under the ControllerTrust. Object.
An Agent can expose these Parameters with read-only data model implementation if it simply wants to tell Controllers the
names of these specific Roles.

The UntrustedRole is the Role the Agent will automatically assign to any Controller that has not been authorized for a
different Role. Any Agent that has a means of allowing a Controller’s Role to be changed (by users through a Challenge string,
by other Controllers through modification of Controller.{i}.AssignedRole, or through some other external means) and
that allows “unknown” Controllers to attach will need to have an “untrusted” Role defined; even if the identity of this Role is not
exposed to Controllers through implementation of the UntrustedRole Parameter.

The BannedRole (if implemented) is assigned automatically by the Agent to Controllers whose certificates have been revoked.
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If it is not implemented, the Agent can use the UntrustedRole for this, as well. It is also possible to simply implement policy
for treatment of invalid or revoked certificates (e.g., refuse to connect), rather than associate them with a specific Role. This is
left to the Agent policy implementation.

8.9.2.3 A Controller’s Role

A Controller’s assigned Roles can be conveyed by theController.{i}.AssignedRole Parameter. This Parameter is a list
of all Role values assigned to the Controller through means other than ControllerTrust.Credential.{i}.Role. A
Controller’s inherited Roles (those inherited from ControllerTrust.Credential. {i}.Role as described in the next
section) need to be maintained separately from assigned Roles and can be conveyed by the Controller.
{i}.InheritedRole Parameter. Where multiple assigned and inherited Roles have overlappingTargets entries, the
resulting permission is the union of all assigned and inherited permissions. For example, if two Roles have the same Targets
with one Role assigning the Targets Param a value of r - - - and the other Role assigning Param a value of - - -n, the
resulting permission will be r - -n. This is done after determining whichControllerTrust.Role.{i}.Permission.{i}
entry to apply for each Role for specific Targets, in the case where a Role has overlappingPermission.{i}.Targets
entries for the same Role.

For example, Given the followingControllerTrust.Role.{i}. entries:

i=1, Role = "A"; Permission.l1.: Targets = "Device.LocalAgent.", Order = 3, Param = "r---"

i=1, Role = "A"; Permission.2.: Targets = "Device.LocalAgent.Controller.", Order = 55, Param =
"poxn"

i=3, Role = "B"; Permission.l1: Targets = "Device.LocalAgent.", Order = 20, Param = "r---"

i=3, Role = "B"; Permission.5: Targets = "Device.LocalAgent.Controller.", Order = 78, Param = "--

"

and Device.LocalAgent.Controller.1.AssignedRole = “Device.LocalAgent. ControllerTrust.Role.1.,
Device.LocalAgent. ControllerTrust.Role.3.”

When determining permissions for the Device.LocalAgent.Controller. table, the Agent will first determine that for Role
A Permission.2 takes precedence over Permission.1 (55 > 3). For B, Permission.5 takes precedence over Permission.1 (78 >

20). The union of A and B is “r-xn” + “—-" = “r-xn”.

8.9.2.4 Role Associated with a Credential or Challenge

The ControllerTrust.Credential. {i}.Role Parameter value is inherited by Controllers whose credentials have been
validated using the credentials in the same entry of the ControllerTrust.Credential. {i}. table. Whenever
ControllerTrust.Credential.{i}. is used to validate a certificate, the Agent writes the current value of the associated
ControllerTrust.Credential.{i}.Role into the Controller.{i}.InheritedRole Parameter. For more information
on use of this table for assigning Controller Roles and validating credentials, see the sections below.

The ControllerTrust.Challenge.{i}.Role Parameter is a Role that is assigned to Controllers that send a successful
ChallengeResponse () command. For more information on use of challenges for assigning Controller Roles, see the sections
below.

8.9.3 Assigning Controller Roles

As mentioned above, the Controller. {i}.AssignedRole Parameter can be used to expose the Controller’s assigned Role
via the data model.
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Note: Even if it is not exposed through the data model, the Agent is expected to maintain knowledge of the permissions

assigned to each known Controller.

Controllers can be assigned Roles through a variety of methods, depending on the data model elements an Agent implements
and the Agent’s coded policy. Note that it is possible for an Agent to maintain trusted CA credentials with associated
permissions (as described by the ControllerTrust.Credential. {i}. Object) and various default permission definitions
(as identified by the UntrustedRole and BannedRole Parameters) without exposing these through the data model. If the
data is maintained but not exposed, the same methods can still be used.

Figure 19 and Figure 20in the above Analysis of Controller Certificates section identify points in the decision logic where some
of the following calls to data model Parameters can be made. The following bullets note when they are identified in one of these
figures.

Another Controller (with appropriate permission) can insert a Controller (including theAssignedRole Parameter value)
into the Controller.{i}. table, or can modify theAssignedRole Parameter of an existingController.{i}. entry.

The InheritedRole value cannot be modified by another Controller.

If credentials in an entry in aControllerTrust.Credential.{i}.Credential Parameter with an associated
ControllerTrust.Credential.{i}.Role Parameter are used to successfully validate the certificate presented by
the Controller, the Controller inherits the Role from the associated ControllerTrust.Credential. {i}.Role. The

Agent writes this value to the Controller. {i}.InheritedRole Parameter. This step is shown inFigure 20.

A Controller whose associated certificate is revoked by a CA can be assigned the role irBannedRole, if this Parameter or
policy is implemented. In this case, the value of BannedRole must be the only value inController.

{i}.AssignedRole (all other entries are removed) andController.{i}.InheritedRole must be empty (all entries
are removed). This step is shown in Figure 19. In the case of a Controller that has not previously been assigned a Role or

who has been assigned the value of UntrustedRole:

If the Controller’s certificate is validated by credentials in aControllerTrust.Credential.{i}.Credential
Parameter but there is no associated ControllerTrust.Credential. {i}.Role Parameter (or the value is empty)
and Controller.{i}.AssignedRole is empty, then the Controller is assigned the role inUntrustedRole (written to
the Controller.{i}.AssignedRole Parameter). This step is shown inFigure 20. Note that assigning UntrustedRole
means there needs to be some implemented way to elevate the Controller's Role, either by another Controller manipulating
the Role, implementing Challenges, or some non-USP method.

If the Controller’s certificate is self-signed or is validated by credentials not inControllerTrust.Credential.{i}., the
Agent policy may be to assign the role in UntrustedRole. The optional policy decision (whether or not to allow Trust on
First Use (TOFU), which can be codified in the data model with the ControllerTrust. TOFUAIllowed flag) is shown in Figure
19; Figure 20 shows the Role assignment.

If the Agent implements the RequestChallenge() and ChallengeResponse() commands, a Controller assigned the
role in UntrustedRole can have permission to read one or moreControllerTrust.Challenge.{i}.Alias and
Description values and issue the commands. Roles with more extensive permissions can have permission to read
additional ControllerTrust.Challenge.{i}.Alias and Description values. A successful Challenge results in the
Controller being assigned the associated Role value.

8.9.4 Controller Certificates and Certificate Validation
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When an Agent is presented with a Controller’s certificate, the Agent will always attempt to validate the certificate to whatever
extent possible. Figure 17, Figure 19and Figure 20 identify points in the decision logic where data model Parameters can be
used to influence policy decisions related to Controller certificate analysis.

Note that it is possible for an Agent to maintain policy of the type described by theUntrustedRole, BannedRole, and the
information described by ControllerTrust.Credential.{i}. and Controller.{i}.Credential without exposing
these through the data model. If the policy concepts and data are maintained but not exposed, the same methods can still be
used. It is also possible for an Agent to have policy that is not described by any defined data model element.

8.9.5 Challenges

An Agent can implement the ability to provide Controllers with challenges via USP, in order to be trusted with certain Roles. It is
also possible to use non-USP methods to issue challenges, such as HTTP digest authentication with prompts for login and
password.

To use the USP mechanism, theRequestChallenge() and ChallengeResponse() commands and
ControllerTrust.Challenge.{i}. Object with at least theAlias, Role, and Description Parameters needs to be
implemented. The functionality implied by the other ControllerTrust.Challenge.{i}. Parameters needs to be
implemented, but does not have to be exposed through the data model.

A Controller that sends a Get Message onDevice.ControllerTrust.Challenge.{i}. will receive all entries and
Parameters that are allowed for its current assigned Role. In the simplest case, this will be a single entry and only Alias and
Description will be supplied for that entry. It is important to restrict visibility to all other implemented Parameters to highly trusted
Roles, if at all.

The Controller can display the value ofDescription to the user and allow the user to indicate they want to request the
described challenge. If multiple entries were returned, the user can be asked to select which challenge they want to request,
based on the description. An example of a description might be “Request administrative privileges” or “Request guest privilege”.

When the user indicates to the Controller which challenge they want, the Controller sendRequestChallenge( ) with the

Path Name of the Challenge Object Instance associated with the desiredDescription. The Agent replies with the
associated Instruction, InstructionType, ValueType and an auto-generated ChallengeID. The Controller presents
the value of Instruction to the user (in a manner appropriate forInstructionType). Examples of an instruction might be
“Enter passphrase printed on bottom of device” or “Enter PIN sent to registered email address”. The user enters a string per the
instructions, and the Controller sends this value together with the ChallengeID in ChallengeResponse( ).

If the returned value matchesValue, the Agent gives a successful response - otherwise it returns an unsuccessful response. If
successful, the ControllerTrust.Challenge.{i}.Role replaces anUntrustedRole inController.
{i}.AssignedRole oris appended to any otherController.{i}.AssignedRole value.

The number of times aControllerTrust.Challenge.{i}. entry can be consecutively failed (across all Controllers, without
intermediate success) is defined by Retries. Once the number of failed consecutive attempts equalsRetries, the

ControllerTrust.Challenge. {i}. cannot be retried until afterLockoutPeriod has expired.

Type values other than Passphrase can be used and defined to trigger custom mechanisms, such as requests for emailed or
SMS-provided PINs.

8.9.6 Certificate Management
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If an Agent wants to allow certificates associated with Controllers and CAs to be exposed through USP, the Agent can
implement the Controller.{i}.Credential and ControllerTrust.Credential.{i}.Credential Parameters,
which require implementation of the LocalAgent.Certificate. Object. Allowing management of these certificates through
USP can be accomplished by implementing LocalAgent.AddCertificate(),Controller.{i}.AddMyCertificate()

and Certificate.{i}.Delete() commands.

To allow a Controller to check whether the Agent has correct certificates, theCertificate.{i}.GetFingerprint()
command can be implemented.

8.9.7 Application of Modified Parameters

It is possible that various Parameters related to authentication and authorization may change that would impact cached
encrypted sessions and Role permissions for Controllers. Example of such Parameters include Controller.
{i}.AssignedRole, Controller.{i}.Credential, ControllerTrust.Role. definition of a Role, and
ControllerTrust.Credential.{i}.Role.

There is no expectation that an Agent will apply these changes to cached sessions. It is up to the Agent to determine whether or
not it will detect these changes and flush cached session information. However, it is expected that a reboot will clear all cached
session information.
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Annex A: Bulk Data Collection

Note: This Annex has been re-written in the 1.2 version of the USP specification to include the previously-defined USP Event
Notification aspects of Bulk Data Collection and the new MQTT aspects of Bulk Data Collection, in addition to the already
defined HTTP Bulk Data Collection mechanism.

This section discusses the Theory of Operation for USP specific mechanisms related to the collection and transfer of bulk data
using either HTTP, MQTT, or USP Event Notifications. This includes an explanation of how the Agent can be configured to
enable the collection of bulk data using HTTP, MQTT, or USP Event Notifications via the BulkData Objects, which are defined in
the Device:2 Data Model [38].

A.1 Introduction

The general concept behind the USP Bulk Data collection mechanism is that a USP Controller can configure an Agent to
consistently deliver a bulk data report at a specific interval. For large CPE populations, this is a more efficient mechanism when
compared to the alternative of polling each individual CPE for the data. There are four key aspects of configuring the bulk data

collection mechanism on an Agent:

What data needs to be collected :: The set of Object/Parameter Path Names that dictate the set of Parameters that will
be included in each Bulk Data report. Anything included in this set should be considered a filter that is applied against the
Instantiated Data Model at the time of report generation, which means that the generation of the report is not contingent
upon the Path Name being present in the Instantiated Data Model at the time of report generation.

How often does the data need to be collected:: The interval and time reference that dictates the frequency and cycle of
report generation. For example, the interval could be set to 15 minutes while the time reference could be set to 42 minutes
past 1 AM, which would mean that the report is generated every 15 minutes at 42 past the hour, 57 past the hour, 12 past
the hour, and 27 past the hour.

Where does the data need to be sent:: The destination of where the report needs to be delivered after it has been
generated. This is specific to the Bulk Data collection mechanism being used: HTTP vs MQTT vs USP Event Notification.

How does the data get sent:: The protocol used to send the data across the wire, the encoding of the data, and the
format of the data. From a Protocol perspective, the HTTP Bulk Data collection mechanism utilizes either the HTTP or
HTTPS protocols, the MQTT Bulk Data Collection mechanism utilizes the MQTT protocol, and the USPEventNotif Bulk
Data collection mechanism utilizes the existing USP communications channel related to the USP Controller that owns the
bulk data profile. From a data encoding perspective, both Bulk Data collection mechanisms support the CSV and JSON
options as described later. From a data formatting perspective, both Bulk Data collection mechanisms support the Object

Hierarchy and Name Value Pairreport formats, also described later.

The Bulk Data collection mechanism is configured within an Agent by creating a Bulk Data Profile. A Bulk Data Profile defines
the configuration of the four key aspects (as mentioned above) for a given Bulk Data Report. Meaning, the Bulk Data Profile
defines the protocol to use (HTTP vs MQTT vs USPEventNotif), the data encoding to use (CSV vs JSON), the report format to
use (Object Hierarchy vs Name Value Pair), the destination of the report, the frequency of the report generation, and the set of
Parameters to include in the report. Furthermore, the Bulk Data Profile has a Controller Parameter that is a read-only
Parameter and is set by the Agent based on the Controller that created the Bulk Data Profile. The Controller Parameter
represents the owner of the Profile, which is used when determining permissions. When the Agent generates the Bulk Data
Report it uses the permissions associated with the referenced Controller to determine what is included in the Report (Objects
and Parameters that fail the permissions check are simply filtered out of the Report).
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Note: When a Bulk Data Collection Profile is either created or updated the Agent performs validation checks for the associated

Objects and Parameters against the Supported Data Model at the time of the operation.

Note: When a Bulk Data Collection Report is generated the Agent performs permission checks for the associated Objects and
parameters against the Instantiated Data Model, filtering out any Object instances or Parameters that are not present at that

time.

A.2 HTTP Bulk Data Collection

The Bulk Data Collection mechanism that utilizes an out-of-band HTTP/HTTPS communications mechanism for delivering the
Bulk Data Report.

A.2.1 Enabling HTTP/HTTPS Bulk Data Communication

HTTP/HTTPS communication between the Agent and Bulk Data Collector is enabled by either configuring an existing

BulkData.Profile Object Instance for the HTTP/HTTPS transport protocol or adding and configuring a new

BulkData.Profile Object Instance using the Add Message. For example:
.BulkData.Profile.1

.BulkData.Profile.1.Enable=true

.BulkData.Profile.1.Protocol = "HTTP"
.BulkData.Profile.1.ReportingInterval = 300
.BulkData.Profile.1.TimeReference = "0001-01-01T00:00:00Z"
.BulkData.Profile.1.HTTP.URL = "https://bdc.acme.com/somedirectory"
.BulkData.Profile.1.HTTP.Username = "username"
.BulkData.Profile.1.HTTP.Password = "password"
.BulkData.Profile.1.HTTP.Method = "POST"
.BulkData.Profile.1.HTTP.UseDateHeader = true

The configuration above defines a profile that transfers data from the Agent to the Bulk Data Collector using secured HTTP. In
addition the Agent will provide authentication credentials (username, password) to the Bulk Data Collector, if requested by the
Bulk Data Collector. Finally, the Agent establishes a communication session with the Bulk Data Collector every 300 seconds in
order to transfer the data defined by the .BulkData.Report. Object Instance.

Once the communication session is established between the Agent and Bulk Data Collector the data is transferred from the
Agent using the POST HTTP method with a HTTP Date header and no compression.

R-BULK.O0 - In many scenarios Agents will utilize “chunked” transfer encoding. As such, the Bulk Data Collector MUST support
the HTTP transfer-coding value of “chunked”.

A.2.2 Use of the URI Query Parameters

The HTTP Bulk Data transfer mechanism allows Parameters to be used as HTTP URI query parameters. This is useful when
Bulk Data Collector utilizes the specific parameters that the Agent reports for processing (e.g., logging, locating directories)
without the need for the Bulk Data Collector to parse the data being transferred.

R-BULK.1 - The Agent MUST transmit the device’s Manufacturer OUI, Product Class and Serial Number or the USP Endpoint
ID as part of the URI query parameters. The data model Parameters are encoded as:
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.DeviceInfo.ManufacturerOUI -> oui
.DeviceInfo.ProductClass -> pc
.DeviceInfo.SerialNumber -> sn

.LocalAgent.EndpointID -> eid

As such, the values of the device’s OUI, Serial Number and Product Class are formatted in the HTTP request URI as follows:
POST https://<bulk data collector url>?0ui=00256D&pc=Z&sn=Y

If the USP Endpoint ID is used the HTTP request URI is formatted as:

POST https://<bulk data collector url>?eid=o0s::000256:asdfa99384

Note: If the USP Endpoint ID should be transmitted together with the device’s Manufacturer OUI, Product Class and Serial
Number (e.g. to distinguish multiple bulk data collection instances on the same device), then the USP Endpoint ID has to be

configured as additional URI parameter in the . BulkData.Profile.{i}.HTTP.RequestURIParameter.{i}. table.

Configuring the URI query parameters for other Parameters requires that instances of a.BulkData.Profile.
{i}.HTTP.RequestURIParameter.{i}. Object Instance be created and configured with the requested parameters. The
additional parameters are appended to the required URI query parameters.

Using the example to add the device’s current local time to the required URI parameters, the HTTP request URI would be as
follows:

POST https://<bulk data collector url>?0ui=00256D&pc=Z&sn=Y&ct=2015-11-01T11:12:13Z
By setting the following Parameters using the Add Message as follows:

.BulkData.Profile.1.HTTP.RequestURIParameter 1.Name ="ct"

.BulkData.Profile.1.HTTP.RequestURIParameter.1.Reference ="Device.Time.CurrentLocalTime"

A.2.3 Use of HTTP Status Codes

The Bulk Data Collector uses standard HTTP status codes, defined in the HTTP specification, to inform the Agent whether a
bulk data transfer was successful. The HTTP status code is set in the response header by the Bulk Data Collector. For example,
“200 OK” status code indicates an upload was processed successfully, 202 Accepted” status code indicates that the request
has been accepted for processing, but the processing has not been completed, “401 Unauthorized” status code indicates
user authentication failed and a “5600 Internal Server Error” status code indicates there is an unexpected system error.

A.2.3.1 HTTP Retry Mechanism

R-BULK.2 - When the Agent receives an unsuccessful HTTP status code and the HTTP retry behavior is enabled, the Agent
MUST try to redeliver the data. The retry mechanism employed for the transfer of bulk data using HTTP uses the same

algorithm as is used for USP Notify retries.

The retry interval range is controlled by two Parameters, the minimum wait interval and the interval multiplier, each of which
corresponds to a data model Parameter, and which are described in the table below. The factory default values of these
Parameters MUST be the default values listed in the Default column. They MAY be changed by a Controller with the appropriate

permissions at any time.

Descriplive Name Symbol Default Dala Model Parameler Name
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Minimum wait interval m 5 seconds Device.BulkData.Profile.
{1} .HTTP.RetryMinimumwWaitInterval

Interval multiplier k 2000 Device.BulkData.Profile.
{1} .HTTP.RetryIntervalMultiplier

Ratry Count Defaull Wail Interval Range Aclual Wail Interval Range (min-max
(min-max seconds) seconds)

#1 5-10 m - m.(k/1000)

#2 10-20 m.(k/1000) - m.(k/1000)2
#3 20-40 m.(k/1000)2 - m.(k/1000)3
#4 40-80 m.(k/1000)3 - m.(k/1000)4
#5 80-160 m.(k/1000)4 - m.(k/1000)5
#6 160-320 m.(k/1000)5 - m.(k/1000)6
#7 320-640 m.(k/1000)6 - m.(k/1000)7
#8 640-1280 m.(k/1000)7 - m.(k/1000)8
#9 1280-2560 m.(k/1000)8 - m.(k/1000)9

#10 and subsequent 2560-5120 m.(k/1000)9 - m.(k/1000)10

R-BULK.3 - Beginning with the tenth retry attempt, the Agent MUST choose from the fixed maximum range. The Agent will

continue to retry a failed bulk data transfer until it is successfully delivered or until the next reporting interval for the data transfer

becomes effective.

R-BULK.4 - Once a bulk data transfer is successfully delivered, the Agent MUST reset the retry count to zero for the next

reporting interval.

R-BULK.5 - If a reboot of the Agent occurs, the Agent MUST reset the retry count to zero for the next bulk data transfer.

A.2.3.2 Processing of Content for Failed Report Transmissions

When the content (report) cannot be successfully transmitted, including retries, to the data collector, the

NumberOfRetainedFailedReports Parameter of the BulkData.Profile Object Instance defines how the content should

be disposed based on the following rules:

When the value of theNumberOfRetainedFailedReports Parameter is greater than 0, then the report for the current
reporting interval is appended to the list of failed reports. How the content is appended is dependent on the type of
encoding (e.g., CSV, JSON) and is described further in corresponding encoding section.

If the value of theNumberOfRetainedFailedReports Parameter is -1, then the Agent will retain as many failed reports
as possible.

If the value of the NumberOfRetainedFailedReports Parameter is@, then failed reports are not to be retained for
transmission in the next reporting interval.

If the Agent cannot retain the number of failed reports from previous reporting intervals while transmitting the report of the
current reporting interval, then the oldest failed reports are deleted until the Agent is able to transmit the report from the
current reporting interval.

If the value BulkData.Profile Object Instance’s EncodingType Parameter is modified any outstanding failed reports
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are deleted.

A.2.4 Use of TLS and TCP

The use of TLS to transport the HTTP Bulk Data is RECOMMENDED, although the protocol MAY be used directly over a TCP
connection instead. If TLS is not used, some aspects of security are sacrificed. Specifically, TLS provides confidentiality and
data integrity, and allows certificate-based authentication in lieu of shared secret-based authentication.

R-BULK.6 - Certain restrictions on the use of TLS and TCP are defined as follows:

e The Agent MUST support TLS version 1.2 or later (with backward compatibility to TLS 1.2).
« If the Collection Server URL has been specified as an HTTPS URL, the Agent MUST establish secure connections to the
Collection Server, and MUST start the TLS session negotiation with TLS 1.2 or later.

Note: If the Collection Server does not support TLS 1.2 or higher with a cipher suite supported by the Agent, it may not be
possible for the Agent to establish a secure connection to the Collection Server.

Note: TLS RSA_WITH_AES 128 CBC_SHA is the only mandatory TLS 1.2 cipher suite.

« The Agent SHOULD use the [20] Server Name TLS extension to send the host portion of the Collection Server URL as the
server name during the TLS handshake.

If TLS 1.2 (or a later version) is used, the Agent MUST authenticate the Collection Server using the certificate provided by
the Collection Server. Authentication of the Collection Server requires that the Agent MUST validate the certificate against
a root certificate. To validate against a root certificate, the Agent MUST contain one or more trusted root certificates that are
either pre-loaded in the Agent or provided to the Agent by a secure means outside the scope of this specification. If as a
result of an HTTP redirect, the Agent is attempting to access a Collection Server at a URL different from its pre-configured
Collection Server URL, the Agent MUST validate the Collection Server certificate using the redirected Collection Server
URL rather than the pre-configured Collection Server URL.

If the host portion of the Collection Server URL is a DNS name, this MUST be done according to the principles of RFC
6125 [21], using the host portion of the Collection Server URL as the reference identifier.

If the host portion of the Collection Server URL is an IP address, this MUST be done by comparing the IP address against
any presented identifiers that are IP addresses.

Note: the terms “reference identifier” and “presented identifier” are defined in RFC 6125[21].
Note: wildcard certificates are permitted as described in RFC 6125[21].

« An Agent capable of obtaining absolute time SHOULD wait until it has accurate absolute time before contacting the
Collection Server. If a Agent for any reason is unable to obtain absolute time, it can contact the Collection Server without
waiting for accurate absolute time. If a Agent chooses to contact the Collection Server before it has accurate absolute time
(or if it does not support absolute time), it MUST ignore those components of the Collection Server certificate that involve
absolute time, e.g. not-valid-before and not-valid-after certificate restrictions.

« Support for Agent authentication using client-side certificates is NOT RECOMMENDED. Instead, the Collection Server
SHOULD authenticate the Agent using HTTP basic or digest authentication to establish the identity of a specific Agent.

A.2.5 Bulk Data Encoding Requirements
When utilizing the HTTP Bulk Data collection option, the encoding type is sent as a media type within the report. For CSV the

media type is text/csv as specified in RFC 4180[16] and for JSON the media type isapplication/json as specified in
RFC 7159 [28]. For example, a CSV encoded report usingcharset=UTF -8 would have the following Content-Type header:
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Content-Type: text/csv; charset=UTF-8
R-BULK.7 - The ‘media- type” field and ‘charset” Parameters MUST be present in the Content-Type header.

In addition the report format that was used for encoding the report is included as an HTTP custom header with the following

format:
BBF-Report-Format: <ReportFormat>
The <ReportFormat> field is represented as a token.

For example a CSV encoded report using a ReportFormat for ParameterPerRow would have the following BBF-Report-Format
header:

BBF-Report-Format: "ParameterPerRow"

R-BULK.8 - The BBF-Report-Format custom header MUST be present when transferring data to the Bulk Data Collector from
the Agent using HTTP/HTTPS.

A.3 MQTT Bulk Data Collection

The Bulk Data Collection mechanism that utilizes an out-of-band MQTT communications mechanism for delivering the Bulk
Data Report.

A.3.1 Enabling MQTT Bulk Data Communication

Bulk Data communications that utilizes MQTT for transferring the Bulk Data Report between the Agent and a Bulk Data
Collector, is enabled by either configuring an existing BulkData.Profile Object Instance for the MQTT transport protocol or

adding and configuring a new BulkData.Profile Object Instance using the Add Message. For example:

.BulkData.Profile.1

.BulkData.Profile.1.Enable = true

.BulkData.Profile.1.Name = "MQTT Profile 1"
.BulkData.Profile.1.Protocol = "MQTT"
.BulkData.Profile.1.EncodingType = "JSON"
.BulkData.Profile.1.ReportingInterval = 300
.BulkData.Profile.1.TimeReference = "0001-01-01T00:00:00Z"
.BulkData.Profile.1.MQTT.Reference = "Device.MQTT.Client.1"
.BulkData.Profile.1.MQTT.PublishTopic = "/bulkdata"
.BulkData.Profile.1.MQTT.PublishQoS = 1
.BulkData.Profile.1.MQTT.PublishRetain = false

The configuration above defines a profile that transfers data from the Agent to a Bulk Data Collector via the MQTT protocol. The
Agent utilizes the referenced MQTT Client instance to determine the MQTT broker for this Bulk Data Collection Profile. The
Agent sends the Bulk Data Report to the reference MQTT Broker by issuing an MQTT PUBLISH message to the PublishTopic
every 300 seconds (ReportingInterval). The Bulk Data Collector would subscribe to the PublishTopic in order to receive the Bulk
Data Reports.

A.3.2 Determining Successful Transmission
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Delivering a Bulk Data Collection report using MQTT means that successful transmission of the report is tied to the successful
delivery of the MQTT PUBLISH message, which is determined by the PublishQoS configured as part of the Bulk Data Collection
Profile.

A.3.2.1 Retrying Failed Transmissions

Delivering a Bulk Data Collection report using MQTT means that any failed transmissions are retried based on the referenced
MQTT Client and the associated QoS value contained within the MQTT PUBLISH message, which is determined by the
PublishQoS parmater. Furthermore, the CleanSession (MQTT 3.1 and MQTT 3.1.1) and CleanStart (MQTT 5.0) flags determine
if unacknowledged PUBLISH messages are re-delivered on client reconnect. For MQTT 3.1 there is also the
MessageRetryTime defined in the referenced MQTT Client that determines how frequently an unacknowledged PUBLISH
message should be retried.

A.3.2.2 Processing of Content for Failed Report Transmissions

When the content (report) cannot be successfully transmitted, including retries, to the MQTT broker, the
NumberOfRetainedFailedReports Parameter of theBulkData.Profile Object Instance defines how the content should
be disposed based on the following rules:

When the value of theNumberOfRetainedFailedReports Parameter is greater than 0, then the report for the current
reporting interval is appended to the list of failed reports. How the content is appended is dependent on the type of
encoding (e.g., CSV, JSON) and is described further in corresponding encoding section.

If the value of theNumberOfRetainedFailedReports Parameter is -1, then the Agent will retain as many failed reports
as possible.

If the value of the NumberOfRetainedFailedReports Parameter is@, then failed reports are not to be retained for
transmission in the next reporting interval.

If the Agent cannot retain the number of failed reports from previous reporting intervals while transmitting the report of the
current reporting interval, then the oldest failed reports are deleted until the Agent is able to transmit the report from the

current reporting interval.

If the value BulkData.Profile Object Instance’s EncodingType Parameter is modified any outstanding failed reports
are deleted.

A.3.3 Bulk Data Encoding Requirements

When utilizing the MQTT Bulk Data collection option with a MQTT 5.0 Client connection, the encoding type is sent as a media
type within the MQTT PUBLISH message header and the Content Type property. For CSV the media type is text/csv as
specified in RFC 4180 [16] and for JSON the media type isapplication/json as specified in RFC 7159[28]. For example, a
CSV encoded report using charset=UTF-8 would have the following Content Type property:

text/csv; charset=UTF-8

R-BULK.8a - The ‘media-type” field and “charset” parameters MUST be present in the Content Type property when using
MQTT 5.0.

When utilizing the MQTT Bulk Data collection option with a MQTT 3.1 or MQTT 3.1.1 client connection, the encoding type is not
sent in the MQTT PUBLISH message; instead the receiving Bulk Data Collector will need to know how the

.BulkData.Profile Object Instance is configured.

In addition the data layout is not included in the MQTT PUBLISH message; instead the receiving Bulk Data Collector will need
to know how the .BulkData.Profile.{i}.CSVEncoding.ReportFormat or .BulkData.Profile.
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{i}.JSONEncoding.ReportFormat Parameter is configured.

A.4 USPEventNotif Bulk Data Collection

The Bulk Data Collection mechanism that utilizes the existing USP communications channel for delivering the Bulk Data Report

via a Notify Message that contains a Push! Event.

A.4.1 Enabling USPEventNotif Bulk Data Communication

Bulk Data communications using a USP Event notification that utilizes the Notify Message between the Agent and a Controller,
acting as a Bulk Data Collector, is enabled by either configuring an existing BulkData.Profile Object Instance for the

USPEventNotif transport protocol or adding and configuring a new BulkData.Profile Object Instance using the Add

Message. For example:

.BulkData.Profile.
.BulkData.Profile.1.Enable = true
.BulkData.Profile.1.Name = "USP Notif Profile 1"
.BulkData.Profile.
.BulkData.Profile.
.BulkData.Profile.

.BulkData.Profile.

.Protocol = "USPEventNotif"
.EncodingType = "JSON"
.ReportingInterval = 300

B R R B R RR

.TimeReference = "0001-01-01T00:00:00Z"

The configuration above defines a profile that transfers data from the Agent to a Controller that is acting as the Bulk Data
Collector. The Controller that receives an Event notification is dictated by the Agent’s currently defined Subscriptions
Notifications and Subscription Mechanism. The Agent utilizes the existing communications session with the Controller acting as
the Bulk Data Collector every 300 seconds in order to transfer the data defined by the .BulkData.Profile Object Instance.

The data is transferred from the Agent using the USP Notify Message and a.BulkData.Profile.1.Push! Event

notification.

A.4.2 Determining Successful Transmission

Delivering a Bulk Data Collection report using the USP Notify Message and a.BulkData.Profile.1.Push! Event
notification means that successful transmission of the report is tied to the successful delivery of the notification itself Responses
Notifications and Notification Retry.

A.4.2.1 Retrying Failed Transmissions

Delivering a Bulk Data Collection report using the USP Notify Message and a.BulkData.Profile.1.Push! Event

notification means that any failed transmissions are retried based on the notification retry requirements B-NOT. 1 through R-

NOT.4 Responses to Notifications and Notification Retry.

Furthermore, the NumberOfRetainedFailedReports Parameter of theBulkData.Profile Object Instance does not
pertain to the USPEventNotif Bulk Data Collection mechanism as each report is wholly contained within a USP Notify Message.
This means that the notification retry mechanism will determine the life of each individual failed report, and that each reporting
interval will generate a new report that is delivered via a new USP Notify Message.
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A.4.3 Bulk Data Encoding Requirements

When utilizing the USPEventNotif Bulk Data collection option, the encoding type is not sent in the USP Event notification;
instead the receiving Controller will need to know how the .BulkData.Profile Object Instance is configured.

In addition the data layout is not included in the USP Event notification; instead the receiving Controller will need to know how
the .BulkData.Profile.{i}.CSVEncoding.ReportFormat or .BulkData.Profile.
{i}.JSONEncoding.ReportFormat Parameter is configured.

A.5 Using Wildcards to Reference Object Instances in the
Report

When the Agent supports the use of the Wildcard value “*” in place of instance identifiers for the Reference Parameter, then all
Object Instances of the referenced Parameter are encoded. For example to encode the “BroadPktSent” Parameter for all
Object Instances of the MoCA Interface Object the following will be configured:

.BulkData.Profile.1.Parameter.1.Name = ""

.BulkData.Profile.1.Parameter.1.Reference = "Device.MoCA.Interface.*.Stats.BroadPktSent"

A.6 Using Alternative Names in the Report

Alternative names can be defined for the Parameter name in order to shorten the name of the Parameter. For example instead
of encoding the full Parameter name “Device.MoCA.Interface.1l.Stats.BroadPktSent” could be encoded with a shorter

name “BroadPktSent”. This allows the encoded data to be represented using the shorter name. This would be configured as:

.BulkData.Profile.1.Parameter.1.Name = "BroadPktSent"

.BulkData.Profile.1.Parameter.1.Reference = "Device.MoCA.Interface.1l.Stats.BroadPktSent"

In the scenario where there are multiple instances of a Parameter (e.g.,
“Device.MoCA.Interface.1.Stats.BroadPktSent”, “Device.MoCA.Interface.2.Stats.BroadPktSent”)ina
Report, the content of the Name parameter SHOULD be unique (e.g., BroadPktSent .1, BroadPktSent.2).

A.6.0.1 Using Object Instance Wildcards and Parameter Partial Paths with Alternative Names

Wildcards for Object Instances can be used in conjunction with the use of alternative names by reflecting Object hierarchy of the
value of the Reference Parameter in the value of the Name Parameter.

R-BULK.9 - When the value of the Reference Parameter uses a wildcard for an instance identifier, the value of the Name
Parameter (as used in a report) MUST reflect the wild-carded instance identifiers of the Parameters being reported on.
Specifically, the value of the Name Parameter MUST be appended with a period (.) and then the instance identifier. If the value
of the Reference Parameter uses multiple wildcard then each wild-carded instance identifier MUST be appended in order from
left to right.

For example, for a device to report the Bytes Sent for the Associated Devices of the device’s Wi-Fi Access Points the following
would be configured:
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.BulkData.Profile.1.Parameter.1.Name = "WiFi_AP_Assoc_BSent"
.BulkData.Profile.1.Parameter.1.Reference =

"Device.WiFi.AccessPoint.*.AssociatedDevice.*.Stats.BytesSent"

Using this configuration a device that has 2 Wi-Fi Access Points (with instance identifiers1 and 3) each with 2 Associated

Devices (with instance identifiers 10 and 11), would contain a Report with following Parameter names:

WiFi_AP_Assoc_BSent.1.10
WiFi_AP_Assoc_BSent.1.11
WiFi_AP_Assoc_BSent.3.10
WiFi_AP_Assoc_BSent.3.11

Object or Object Instance Paths can also be used to report all Parameters of the associated Object.

R-BULK.10 - When the value of the Reference Parameter is an Object Path, the value of the Name Parameter (as used in a
report) MUST reflect the remainder of the Parameter Path. Specifically, the value of Name Parameter MUST be appended with

“«n

a “.” and then the remainder of the Parameter Path.
For example, for a device to report the statistics of a Wi-Fi associated device Object Instance the following would be configured:

.BulkData.Profile.1.Parameter.1.Name = "WiFi_AP1_Assoc10"

.BulkData.Profile.1.Parameter.1.Reference = "Device.WiFi.AccessPoint.1.AssociatedDevice.10.Stats."
Using the configuration the device’s report would contain the following Parameter names:

WiFi_AP1_Assocl10.BytesSent
WiFi_AP1_Assoc10.BytesReceived
WiFi_AP1_Assoc10.PacketsSent
WiFi_AP1_Assoc10.PacketsReceived
WiFi_AP1_Assocl0.ErrorsSent
WiFi_AP1_Assoc10.RetransCount
WiFi_AP1_Assoc10.FailedRetransCount
WiFi_AP1_Assoc10.RetryCount
WiFi_AP1_Assocl10.MultipleRetryCount

It is also possible for the value of the Reference Parameter to use both wildcards for instance identifiers and be a partial Path
Name. For example, for device to report the statistics for the device’s Wi-Fi associated device, the following would be
configured:

.BulkData.Profile.1.Parameter.1.Name = "WiFi_AP_Assoc"

.BulkData.Profile.1.Parameter.1.Reference = "Device.WiFi.AccessPoint.*.AssociatedDevice.*.Stats."

Using this configuration a device that has 1 Wi-Fi Access Point (with instance identifier1) with 2 Associated Devices (with

instance identifiers 10 and 11), would contain a Report with following Parameter names:

January 2022 © The Broadband Forum. All rights reserved. 165 of 213



User Services Platform (USP) TR-369a2 Issue 1 Amendment 2

WiFi_AP_Assoc.
WiFi_AP_Assoc.
WiFi_AP_Assoc.
WiFi_AP_Assoc.
WiFi_AP_Assoc.
WiFi_AP_Assoc.
WiFi_AP_Assoc.
WiFi_AP_Assoc.
WiFi_AP_Assoc.
WiFi_AP_Assoc.
WiFi_AP_Assoc.
WiFi_AP_Assoc.
WiFi_AP_Assoc.
WiFi_AP_Assoc.
WiFi_AP_Assoc.
WiFi_AP_Assoc.
WiFi_AP_Assoc.
WiFi_AP_Assoc.

.10.BytesSent
.10.BytesReceived
.10.PacketsSent
.10.PacketsReceived
.10.ErrorsSent
.10.RetransCount
.10.FailedRetransCount
.10.RetryCount
.10.MultipleRetryCount
.11.BytesSent
.11.BytesReceived
.11.PacketsSent
.11.PacketsReceived
.11.ErrorsSent
.11.RetransCount
.11.FailedRetransCount
.11.RetryCount
.11.MultipleRetryCount

e T O Y

A.7 Encoding of Bulk Data

A.7.1 Encoding of CSV Bulk Data

R-BULK.11 - CSV Bulk Data SHOULD be encoded as per RFC 4180[16], MUST contain a header line (column headers), and
the media type MUST indicate the presence of the header line.

For example: Content-Type: text/csv; charset=UTF-8; header=present

In addition, the characters used to separate fields and rows as well as identify the escape character can be configured from the
characters used in RFC 4180 [16].

Using the HTTP example above, the following configures the Agent to transfer data to the Bulk Data Collector using CSV
encoding, separating the fields with a comma and the rows with a new line character, by setting the following Parameters:

.BulkData.Profile.1.EncodingType = "CSV"
.BulkData.Profile.1 CSVEncoding.FieldSeparator = ", 6"
.BulkData.Profile.1.CSVEncoding.RowSeparator="8&#13;&#10;"
.BulkData.Profile.1.CSVEncoding.EscapeCharacter="&quot;"

A.7.1.1 Defining the Report Layout of the Encoded Bulk Data

The layout of the data in the reports associated with the profiles allows Parameters to be formatted either as part of a column
(ParameterPerColumn) or as a distinct row ParameterPerRow) as defined below. In addition, the report layout allows rows
of data to be inserted with a timestamp stating when the data is collected.

Using the HTTP example above, the following configures the Agent to format the data using a Parameter as a row and inserting
a timestamp as the first column entry in each row using the “Unix-Epoch” time. The information is configured by setting the
following Parameters:
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.BulkData.Profile.1.CSVEncoding.ReportFormat ="ParameterPerRow"

.BulkData.Profile.1.CSVEncoding.RowTimestamp ="Unix-Epoch"

R-BULK.12 - The report format of ‘ParameterPerRow” MUST format each Parameter using theParameterName,

ParameterValue and ParameterType in that order.

R-BULK.13 - The ParameterType MUST be the Parameter’s base data type as described in TR-106[37].

A.7.1.2 Layout of Content for Failed Report Transmissions

Note: This is only relevant for the HTTP variant of Bulk Data Collection.

When the value of theNumberOfRetainedFailedReports Parameter of theBulkData.Profile Object Instance is -1 or
greater than @, then the report of the current reporting interval is appended to the failed reports. For CSV Encoded data the
content of new reporting interval is added onto the existing content without any header data.

A.7.1.3 CSV Encoded Report Examples
A.7.1.3.1 CSV Encoded Reporting Using ParameterPerRow Report Format

Using the configuration examples provided in the previous sections the configuration for a CSV encoded HTTP report using the

ParameterPerRow report format:

.BulkData.Profile.
.BulkData.Profile.
.BulkData.Profile.

.Enable=true

.Protocol = "HTTP"
.BulkData.Profile.1.ReportingInterval = 300
.BulkData.Profile.1.TimeReference = "0001-01-01T00:00:00Z"
.BulkData.Profile.
.BulkData.Profile.

.BulkData.Profile.

HTTP.URL = "https://bdc.acme.com/somedirectory"
.HTTP.Username = "username"

.HTTP.Password = "password"
.BulkData.Profile.1.HTTP.Compression = "Disabled"
HTTP.Method = "POST"

.HTTP.UseDateHeader = true

.BulkData.Profile.
.BulkData.Profile.
.BulkData.Profile.
.BulkData.Profile.

.EncodingType = "CSV"

CSVEncoding.FieldSeparator = ","
.BulkData.Profile.1.CSVEncoding.RowSeparator="8&#13;&#10;"
.BulkData.Profile.1.CSVEncoding.EscapeCharacter="&quot;"
.BulkData.Profile.
.BulkData.Profile.
.BulkData.Profile.

.BulkData.Profile.

.CSVEncoding.ReportFormat ="ParameterPerRow"
.CSVEncoding.ReportTimestamp ="Unix-Epoch"

nn

.Parameter.1.Name =

.Parameter.l1.Reference = '"Device.MoCA.Interface.l.Stats.BroadPktSent"

.BulkData.Profile.1.Parameter.2.Name = ""
.BulkData.Profile.
.BulkData.Profile.
.BulkData.Profile.

.BulkData.Profile.

.Parameter.2.Reference "Device.MoCA.Interface.1l.Stats.BytesReceived"

.Parameter.3.Reference = '"Device.MoCA.Interface.l.Stats.BytesSent"

nn

.Parameter.4.Name =

B R R B R R R B R R R B R R R B R R RB R B R B R R

1
1
2
2
.Parameter.3.Name = ""
3
4
4

.BulkData.Profile.1.Parameter.4.Reference "Device.MoCA.Interface.1l.Stats.MultiPktReceived"

The resulting CSV encoded data would look like:
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ReportTimestamp, ParameterName, Parametervalue, ParameterType

1364529149, Device.MoCA.Interface.1.Stats.BroadPktSent, 25248, unsignedLong
1364529149, Device.MoCA.Interface.1.Stats.BytesReceived, 200543250, unsignedLong
1364529149, Device.MoCA.Interface.l.Stats.Stats.BytesSent,7682161,unsignedLong
1364529149, Device.MoCA.Interface.1l.Stats.MultiPktReceived, 890682272, unsignedLong

A.7.1.3.2 CSV Encoded Reporting Using ParameterPerColumn Report Format

Using the configuration examples provided in the previous sections the configuration for a CSV encoded HTTP report using the

ParameterPerColumn report format:

.BulkData.Profile.
.BulkData.Profile.
.BulkData.Profile.

.Enable=true
.Protocol = "HTTP"
.BulkData.Profile.1.ReportingInterval = 300

.BulkData.Profile.1.TimeReference = "0001-01-01T00:00:00Z"

.BulkData.Profile.1.HTTP.URL = "https://bdc.acme.com/somedirectory"
.BulkData.Profile.1.HTTP.Username = "username"
.BulkData.Profile.1.HTTP.Password = "password"

.BulkData.Profile.1.HTTP.Compression = "Disabled"

.BulkData.Profile.1.HTTP.Method = "POST"
.BulkData.Profile.
.BulkData.Profile.
.BulkData.Profile.

.BulkData.Profile.

HTTP.UseDateHeader = true
.EncodingType = "CSV"
CSVEncoding.FieldSeparator = ", "
.CSVEncoding.RowSeparator="&#13;&#10;"
.BulkData.Profile.1.CSVEncoding.EscapeCharacter="&quot;"
.BulkData.Profile.1.CSVEncoding.ReportFormat ="ParameterPerColumn"

.BulkData.Profile.1.CSVEncoding.ReportTimestamp ="Unix-Epoch"

B R R B R R R B R R R B R R R B R R R R R R B R R

.BulkData.Profile.1.Parameter.1.Name = "BroadPktSent"
.BulkData.Profile.1.Parameter.1.Reference = '"Device.MoCA.Interface.1l.Stats.BroadPktSent"
.BulkData.Profile.1.Parameter.2.Name = "BytesReceived"
.BulkData.Profile.1.Parameter.2.Reference = "Device.MoCA.Interface.1l.Stats.BytesReceived"
.BulkData.Profile.1.Parameter.3.Name = "BytesSent"

.BulkData.Profile.1.Parameter.3.Reference = "Device.MoCA.Interface.1l.Stats.BytesSent"
.BulkData.Profile.1.Parameter.4.Name = "MultiPktReceived"
.BulkData.Profile.1.Parameter.4.Reference = "Device.MoCA.Interface.l.Stats.MultiPktReceived"

The resulting CSV encoded data with transmission of the last 3 reports failed to complete would look like:

ReportTimestamp, BroadPktSent, BytesReceived, BytesSent, MultiPktReceived
1364529149, 25248, 200543250, 7682161, 890682272
1464639150, 25249, 200553250, 7683161, 900683272
1564749151, 25255, 200559350, 7684133, 910682272
1664859152, 25252, 200653267, 7685167, 9705982277

A.7.2 Encoding of JSON Bulk Data

Using the HTTP example above, the Set Message is used to configure the Agent to transfer data to the Bulk Data Collector
using JSON encoding as follows:
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.BulkData.Profile.1.EncodingType = "JSON"

A.7.2.1 Defining the Report Layout of the Encoded Bulk Data

Reports that are encoded with JSON Bulk Data are able to utilize different report format(s) defined by theJSONEncoding

object’'s ReportFormat Parameter as defined below.

In addition, a ‘CollectionTime” JSON object can be inserted into the report instance that defines when the data for the report
was collected.

The following configures the Agent to encode the data using a Parameter as JSON Object named CollectionTime” using
the “Unix-Epoch” time format:

.BulkData.Profile.1.JSONEncoding.ReportTimestamp ="Unix-Epoch"

Note: The encoding format of ‘CollectionTime” is defined as an JSON Object parameter encoded as:
"CollectionTime":1364529149

Reports are defined as an Array of Report instances encoded as:
"Report":[{...},{...}]

Note: Multiple instances of Report instances may exist when previous reports have failed to be transmitted.

A.7.2.2 Layout of Content for Failed Report Transmissions

Note: This is only relevant for the HTTP variant of Bulk Data Collection.

When the value of theNumberOfRetainedFailedReports Parameter of theBulkData.Profile Object Instance is -1 or
greater than 0, then the report of the current reporting interval is appended to the failed reports. For JSON Encoded data the
report for the current reporting interval is added onto the existing appended as a new “Data” object array instance as shown
below:

"Report": [
{Report from a failed reporting interval},
{Report from the current reporting interval}

1

A.7.2.3 Using the ObjectHierarchy Report Format

When a BulkData profile utilizes the JSON encoding type and has aJSONEncoding.ReportFormat Parameter value of
“ObjectHierarchy”, then the JSON objects are encoded such that each Object in the Object hierarchy of the data model is
encoded as a corresponding hierarchy of JSON Objects with the parameters (i.e., parameterName, parameterValue) of the
object specified as name/value pairs of the JSON Object.

For example the translation for the leaf Object Device.MoCA.Interface.*.Stats.” would be:
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{
"Report": [
{
"Device": {
"MoCA": {
"Interface": {
"t {
"Stats": {
"BroadPktSent": 25248,
"BytesReceived": 200543250,
"BytesSent": 25248,
"MultiPktReceived": 200543250
}
H
"2t {
"Stats": {
"BroadPktSent": 93247,
"BytesReceived": 900543250,
"BytesSent": 93247,
"MultiPktReceived": 900543250
}
}
}
}
}
}
]
}

Note: The translated JSON Object name does not contain the trailing period “.” of the leaf Object.

A.7.2.4 Using the NameValuePair Report Format

When a BulkData profile utilizes the JSON encoding type and has aJSONEncoding.ReportFormat Parameter value of
“NameValuePair”, then the JSON objects are encoded such that each Parameter of the data model is encoded as an array
instance with the parameterName representing JSON name token and parameterValue as the JSON value token.

For example the translation for the leaf Object Device.MoCA.Interface.*.Stats.” would be:
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{
"Report": [
{
"Device.MoCA.Interface.l1l.Stats.BroadPktSent": 25248,
"Device.MoCA.Interface.1l.Stats.BytesReceived": 200543250,
"Device.MoCA.Interface.1l.Stats.BytesSent": 25248,
"Device.MoCA.Interface.l1l.Stats.MultiPktReceived": 200543250,
"Device.MoCA.Interface.2.Stats.BroadPktSent": 93247,
"Device.MoCA.Interface.2.Stats.BytesReceived": 900543250,
"Device.MoCA.Interface.2.Stats.BytesSent": 93247,
"Device.MoCA.Interface.2.Stats.MultiPktReceived": 900543250
}
1
}

Note: The translated JSON Object name does not contain the trailing period “.” of the leaf Object.

A.7.2.5 Translating Data Types

JSON has a number of basic data types that are translated from the base data types defined in TR-10637]. The encoding of
JSON Data Types MUST adhere to RFC 7159 [28].

TR-106 named data types are translated into the underlying base TR-106 data types. Lists based on TR-106 base data types
utilize the JSON String data type.

TR-106 Dala Type JSON Data Type

base64 String: base64 representation of the binary
data.

boolean Boolean
dateTime String represented as an 1ISO-8601 timestamp.
hexBinary String: hex representation of the binary data.

int, long, unsignedint, Number
unsignedLong

string String

A.7.2.6 JSON Encoded Report Example

Using the configuration examples provided in the previous sections the configuration for a JSON encoded HTTP report:
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.BulkData.Profile.
.BulkData.Profile.
.BulkData.Profile.

1
1.Enable=true
1.Protocol = "HTTP"
.BulkData.Profile.1.ReportingInterval = 300
.BulkData.Profile.1
.BulkData.Profile.1
.BulkData.Profile.1.HTTP.Username = "username"
.BulkData.Profile.1.HTTP.Password = "password"
.BulkData.Profile.1.HTTP.Compression = "Disabled"
.BulkData.Profile.1.HTTP.Method = "POST"
.BulkData.Profile.1.HTTP.UseDateHeader = true
.BulkData.Profile.1
.BulkData.Profile.1
1
1

.BulkData.Profile.

.EncodingType = "JSON"

.BulkData.Profile.

The resulting JSON encoded data would look like:

{
"Report": [
{
"CollectionTime": 1364529149,
"Device": {
"MoCA": {
"Interface": {
"t {
"Stats": {
"BroadPktSent": 25248,
"BytesReceived": 200543250,
"BytesSent": 25248,
"MultiPktReceived":
}
+
"2t {
"Stats": {
"BroadPktSent": 93247,
"BytesReceived": 900543250,
"BytesSent": 93247,
"MultiPktReceived":
}
3
}
}
}
}
]
}

.TimeReference = "0001-01-01T00:00:00Z"
HTTP.URL = "https://bdc.acme.com/somedirectory"

.JSONEncoding.ReportFormat ="ObjectHierarchy"
.JSONEncoding.ReportTimestamp ="Unix-Epoch"

TR-369a2 Issue 1 Amendment 2

.Parameter.1.Reference = "Device.MoCA.Interface.*.Stats."

If the value of the .BulkData.Profile.1.JSONEncoding.ReportFormat Parameter was ‘NameValuePair”, the results

of the configuration would be:
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{
"Report": [
{
"CollectionTime": 1364529149,
"Device.MoCA.Interface.l1l.Stats.BroadPktSent": 25248,
"Device.MoCA.Interface.1l.Stats.BytesReceived": 200543250,
"Device.MoCA.Interface.l1l.Stats.BytesSent": 25248,
"Device.MoCA.Interface.1l.Stats.MultiPktReceived": 200543250,
"Device.MoCA.Interface.2.Stats.BroadPktSent": 93247,
"Device.MoCA.Interface.2.Stats.BytesReceived": 900543250,
"Device.MoCA.Interface.2.Stats.BytesSent": 93247,
"Device.MoCA.Interface.2.Stats.MultiPktReceived": 900543250
}
1
}
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Appendix |: Software Module Management

This section discusses the Theory of Operation for Software Module Management using USP and the Software Module Object
defined in the Root data model.

As the home networking market matures, devices in the home are becoming more sophisticated and more complex. One trend
in enhanced device functionality is the move towards more standardized platforms and execution environments (such as Java,
Linux, OSGi, Docker, etc.). Devices implementing these more robust platforms are often capable of downloading new
applications dynamically, perhaps even from third-party software providers. These new applications might enhance the existing
capabilities of the device or enable the offering of new services.

This model differs from previous device software architectures that assumed one monolithic firmware that was downloaded and
applied to the device in one action.

That sophistication is a double-edged sword for developers, application providers, and service providers. On one hand, these
devices are able to offer new services to customers and therefore increase the revenue per customer, help companies
differentiate, and reduce churn with “sticky” applications that maintain interest. On the other hand, the increased complexity
creates more opportunities for problems, especially as the users of these home-networking services cease to be early adopters
and move into the mainstream. It is important that the increased revenue opportunity is not offset with growing activation and
support costs.

In order to address the need of providing more compelling dynamic applications on the device while ensuring a smooth “plug
and play” user experience, it is necessary for manufacturers, application providers, and service providers to make use of USP to
remotely manage the life cycle of these applications, including install, activation, configuration, upgrade, and removal. Doing so
ensures a positive user experience, improves service time-to-market, and reduces operational costs related with provisioning,
support, and maintenance.

|.1 Lifecycle Management

There are a number of possible actions in managing the lifecycle of these dynamic applications. One might want to install a new
application on the device for the user. One might want to update existing applications when new versions or patches are
available. One might want to start and/or stop these applications as well. Finally, it may be necessary to uninstall applications
that are no longer needed (or perhaps paid for) by the user.

The specifics of how applications run in different environments vary from platform to platform. In order to avoid lifecycle
management tailored to each specific operating environment, USP-based software management defines abstract state models
and abstract software module concepts as described in the following sections. These concepts are not tied to any particular
platform and enable USP to manage dynamic software on a wide range of devices in a wide range of environments.

|.2 Software Modules

A Software Module is any software entity that will be installed on a device. This includes modules that can be
installed/uninstalled and those that can be started and stopped. All software on the device is considered a software module, with
the exception of the primary firmware, which plays a different enough role that it is considered a separate entity.
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A software module exists on an Execution Environment (EE), which is a software platform that supports the dynamic loading
and unloading of modules. It might also enable the dynamic sharing of resources among entities, but this differs across various
execution environments. Typical examples include Linux, Docker, OSGi, .NET, Android, and Java ME. It is also likely that these
environments could be “layered,” i.e., that there could be one primary environment such as Linux on which one or more OSGi
frameworks are stacked. This is an implementation specific decision, however, and USP-based module management does not
attempt to enable management of this layering beyond exposing which EE a given environment is layered on top of (if any).
USP-based Software Module Management also does not attempt to address the management of the primary firmware image,
which is expected to be managed via the device’s Firmware Image Objects defined in the Root data model.

Software modules come in two types: Deployment Units (DUs) and Execution Units (EUs). A DU is an entity that can be
deployed on the EE. It can consist of resources such as functional EUs, configuration files, or other resources. Fundamentally it
is an entity that can be Installed, Updated, or Uninstalled. Each DU can contain zero or more EUs but the EUs contained within
that DU cannot span across EEs. An EU is an entity deployed by a DU, such as services, scripts, software components, or
libraries. The EU initiates processes to perform tasks or provide services. Fundamentally it is an entity that can be Started or
Stopped. EUs also expose configuration for the services implemented, either via standard Software Module Management
related data model Objects and Parameters or via EU specific Objects and Parameters.

It is possible that Software Modules can have dependencies on each other. For example a DU could contain an EU that another
DU depends on for functioning. If all the resources on which a DU depends are present and available on an EE, it is said to be
Resolved. Otherwise the EUs associated with that DU might not be able to function as designed. It is outside the scope of
Software Module Management to expose these dependencies outside of indicating whether a particular DU is RESOLVED or

not.

[.2.1 Deployment Units
Below is the state machine diagram for the lifecycle of DUs.
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Figure 23: Deployment Unit State Diagram
This state machine shows 5 individual states (3 of which are transitory) and 3 explicitly triggered state transitions.

The explicit transitions among the non-transitory states are triggered by the USP commands:Installbu( ), Update() and
Uninstall() or triggered via means other than the USP commands (e.g. user-triggered or device-triggered).
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The explicit transitions include:

1 - Install, which initiates the process of Installing a DU. The device might need to transfer a file from the location indicated by a
URL in the method call. Once the resources are available on the device, the device begins the installation process:

« In the Installing state, the DU is in the process of being Installed and will transition to that state unless prevented by a fault.
Note that the Controller has the option to choose which EE to install a particular DU to, although it can also leave that
choice up to the device. If the Controller does specify the EE, it is up to the Controller to specify one that is compatible with
the DU it is attempting to Install (e.g., an OSGi framework for an OSGi bundle).

« In the Installed state, the DU has been successfully downloaded and installed on the relevant EE. At this point it might or
might not be Resolved. If it is Resolved, the associated EUs can be started; otherwise an attempt to start the associated
EUs will result in a failure. How dependencies are resolved is implementation and EE dependent.

R-SMM.0 - An installed DU MUST persist across reboots. The DU persists until it is Uninstalled.

2 - Update, which initiates a process to update a previously existing DU. As with Install, the device might need to transfer a file
from the location indicated by a URL in the respective command. If no URL is provided in the command, the device uses the last
URL stored in the DeploymentUnit table (including any related authentication credentials) used from either Install or a
previous Update. Once the resources are available on the device, the device begins the updating process:

« In the Updating state, the DU is in the process of being Updated and will transition to the Installed state. As with initial
installation, the DU might or might not have dependencies resolved at this time.

« During the Updating state, the associated EUs that had been in the Active state transition to Idle during the duration of the
Update. They are automatically restarted once the Update process is complete.

3 - Uninstall, which initiates the process of uninstalling the DU and removing the resources from the device. It is possible that a
DU to be Uninstalled could have been providing shared dependencies to another DU; it is possible therefore that the state of
other DUs and/or EUs could be affected by the DU being Uninstalled.

« In the Uninstalling state, the DU is in the process of being Uninstalled and will transition to that state unless prevented by a
fault.

« In the Uninstalled state, the DU is no longer available as a resource on the device. Garbage clean up of the actual
resources are EE and implementation dependent. In many cases, the resource(s) will be removed automatically at the time
of un-installation. The removal of any associated EUs is part of DU clean up.

R-SMM.1 - The device MUST complete the requested operation within 24 hours of responding to thelnstallDu( ),
Update() orUninstall() command. If the device has not been able to complete the operation request within that 24 hour
time window, it MUST consider the operation in error and send the appropriate Error Message to the operation in the
DUStateChange! event. If a DU state change fails, the device MUST NOT attempt to retry the state change on its own

initiative, but instead MUST report the failure of the command in the DUStateChange! event.

The inventory of available DUs along with their current state can be found in theSoftwareModules service element found in
the Root data model, i.e., the SoftwareModules.DeploymentUnit.{i}. Object. This Object contains a list of all the DUs
currently on the device, along with pertinent information such as DU identifiers, current state, whether the DU is Resolved,
information about the DU itself such as vendor and version, the list of associated EUs, and the EEs on which the particular DU
is installed.

DUs have a number of identifiers, each contributed by a different actor in the ecosystem:

« A Universally Unique Identifier (UUID) either assigned by the Controller or generated by the device at the time of
Installation. This identifier gives the management server a means to uniquely identify a particular DU across the population
of devices on which it is installed. A DU will, therefore, have the same UUID on different devices, but there can be no more
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than one DU with the same UUID and version installed to an EE on a particular device. See UUID Generation below for
more information.

« A Deployment Unit Identifier (DUID) assigned by the EE on which it is deployed; this identifier is specific to the particular
EE, and different EEs might have different logic for the assigning of this value. A Name assigned by the author of the DU.

The creation of a particular DU instance in the data model occurs during the Installation process. It is at this time that the DUID
is assigned by the EE. Upon Uninstall, the data model instance will be removed from the DU table once the resource itself has
been removed from the device. Since garbage clean up is EE and implementation dependent, it is therefore possible that a
particular DU might never appear in the data model in the Uninstalled state but rather disappear at the time of the state
transition. It is also possible that an event, such as a reboot, could be necessary before the associated resources are removed.

1.2.1.1 UUID Generation

An important aspect of the UUID is that it might be generated by either the Controller and provided to the device as part of the
Install command, or generated by the device either if the Controller does not provide a UUID in the Install command or if the DU
is Installed outside USP-based management, such as at the factory or via a LAN-side mechanism (e.g. UPnP DM). Because the
UUID is meant to uniquely identify a DU across a population of devices, it is important that the UUID be the same whether
generated by the Controller or the device. In order to ensure this, the UUID is generated (whether by Controller or device)
according to the rules defined by RFC 4122 [15] Version 5 (Name-Based) and the Device:2 Data Model[38]. The following are
some possible scenarios:

The DU is Installed via USP with a Controller generated UUID and is subsequently Updated/Uninstalled via USP. All post-
Install management actions require the UUID to address the DU, which is retained across version changes.

The DU is factory Installed with a device generated UUID and is subsequently Updated/Uninstalled via USP. In this case
the Controller can either choose to generate this UUID if it has access to the information necessary to create it or to learn
the UUID by interrogating the data model.

The DU is Installed via USP with a Controller generated UUID and is subsequently Updated/Uninstalled via a LAN-side
mechanism. In this scenario it is possible that the LAN-side mechanism is unaware of the UUID and uses its own protocol-
specific mechanism to identify and address the DU. The UUID, however, is still retained across version changes. If
DUStateChange! events are subscribed to by the Controller for the device, the device also sends that event (containing
the UUID) to the subscribed Controllers once the LAN-side triggered state change has completed.

The DU is Installed via USP but the Controller provides no UUID in theInstallDU() command. In this case the device
generates the UUID, which must be used by the Controller in any future USP-based Updates or Uninstalls. Depending on
its implementation, the Controller might choose to generate the UUID at the time of the future operations, learn the value of
the UUID from the DUStateChange! event for the InstallbDU( ), Update() orUninstall() command, or learn it by
interrogating the data model.

The DU is Installed via a LAN-side mechanism and is subsequently Updated/Uninstalled via USP. Since it is likely that the LAN-
side mechanism does not provide a Version 5 Name-Based UUID in its protocol-specific Install operation, it is expected that the
device generates the UUID in this case when it creates the DU instance in the data model. Depending on its implementation,
the Controller might choose to generate the UUID for later operations if it has access to the information necessary to create it,

learn the UUID from the DUStateChange! event, if subscribed, or learn it by interrogating the instantiated data model.

|.2.2 Execution Units

Below is the state machine diagram? for the lifecycle of EUs.
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Figure 24: Execution Unit State Diagram
This state machine shows 4 states (2 of them transitory) and two explicitly triggered state transitions.

The state transitions between the non-transitory states are triggered by executing theSoftwareModules.ExecutionUnit.
{i}.SetRequestedState() command. The explicit transitions are as follows:

« In order to Start an EU, the Controller sends aSetRequestedState() command with theRequestedState Parameter
set to Active. The EU enters the Starting state, during which it takes any necessary steps to move to the Active state, and it
will transition to that state unless prevented by a fault. Note that an EU can only be successfully started if the DU with which
it is associated has all dependencies Resolved. If this is not the case, then the EU’s status remains as Idle, and the

ExecutionFaultCode and ExecutionFaultMessage Parameters are updated appropriately.

In order to Stop an EU, the Controller sends aSetRequestedState() command with theRequestedState Parameter
set to Idle. The EU enters the Stopping state, during which it takes any necessary steps to move to the Idle state, and then
transitions to that state.

It is also possible that the EU could transition to the Active or Idle state without being explicitly instructed to do so by a
Controller (e.g., if the EU is allowed to AutoStart, in combination with the run level mechanism, or if operation of the EU is
disrupted because of a later dependency error). A Controller can be notified of these autonomous state changes by
creating a Subscription. {i}. Object Instance for aValueChange notification type that references the
SoftwareModules.ExecutionUnit.{i}.Status Parameter.

The inventory of available EUs along with their current state can be found in theSoftwareModules service element found in
the Root data model; i.e., the SoftwareModules.Executionunit.{i}. Object. This Object contains a list of all the EUs
currently on the device along with accompanying status and any current errors as well as resource utilization related to the EU,
including memory and disk space in use.

EUs have a number of identifiers, each contributed by a different actor in the ecosystem:

« An Execution Unit Identifier (EUID) assigned by the EE on which it is deployed; this identifier is specific to the particular EE,
and different EEs might have different logic for assigning this value. There can be only one EU with a particular EUID.

« A Name provided by the developer and specific to the associated DU.

« A Label assigned by the EE; this is a locally defined name for the EU.
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The creation of a particular EU instance in the data model occurs during the Installation process of the associated DU. It is at
this time that the EUID is assigned by the EE as well. The configuration exposed by a particular EU is available from the time
the EU is created in the data model, whether or not the EU is Active. Upon Uninstall of the associated DU, it is expected that the
EU would transition to the Idle State, and the data model instance would be removed from the EU table once the associated
resources had been removed from the device. Garbage clean up, however, is EE and implementation dependent.

Although the majority of EUs represent resources such as scripts that can be started or stopped, there are some inert
resources, such as libraries, which are represented as EUs. In this case, these EUs behave with respect to the management
interface as a “regular” EU. In other words, they respond successfully to Stop and Start commands, even though they have no
operational meaning and update the Sof twareModules.ExecutionUnit.{i}.Status Parameter accordingly. In most
cases the Status would not be expected to transition to another state on its own, except in cases where its associated DU is
Updated or Uninstalled or its associated EE is Enabled or Disabled, in which cases the library EU acts as any other EU.

The EUs created by the Installation of a particular DU might provide functionality to the device that requires configuration by a
Controller. This configuration could be exposed via the USP data model in five ways:

1. Service data model (if, for example, the EU provides VolP functionality, configuration would be exposed via the Voice
Service data model defined in TR-104).

2. Standard Objects and parameters in the device’s root data model (if, for example, the EU provides port mapping capability,
the configuration would be exposed via the port mapping table defined in the Device:2 Data Model [38]).

3. Instances of standard Objects in the Root or any Service data model, (if, for example, the EU provides support for an
additional Codec in a VolIP service).

4. Vendor extension Objects and Parameters that enhance and extend the capabilities of standard Objects (if, for example,
the EU provides enhanced Userlnterface capabilities)

5. Standalone vendor extension Objects that are directly controlled Objects of the EU (for example, a new vendor specific
Object providing configuration for a movies on demand service).

In all cases the GetSupportedDM and Getinstances Messages can be used to retrieve the associated supported data model
along with the corresponding Object Instances.

All data model services, Objects, and Parameters related to a particular EU come into existence at the time of Installation or
Update of the related DU, The related data model disappears from the device’s data model tree at the time of Uninstall and
clean up of the related DU resources. It is possible that the device could encounter errors during the process of discovering and
creating EUs; if this happens, it is not expected that the device would roll back any data model it has created up until this point
but would rather set the ExecutionFaultCode of the EU to Unstartable.” In this case, it is not expected that any faults
(with the exception of System Resources Exceeded) would have been generated in response to the Install or Update operation.
See below for more information on EU faults.

The configuration of EUs could be backed up and restored using vendor configuration files. The EU Object in the data model
contains a Parameter, which is a path reference to an instance in the vendor config file table in the Root data model. This path
reference indicates the vendor config file associated with the configuration of the particular EU from which the associated
Object Instance could be backed up or restored using respective commands for that Object Instance.

It is also possible that applications could have dedicated log files. The EU Object also contains a Parameter, which is a path
reference to an instance in the log file table in the root data model. This path reference indicates the log file associated with a
particular EU from which the referenced Object Instance could be retrieved using the Upload command for that Object Instance.

|.3 Execution Environment Concepts
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As discussed above, an EE is a software platform that supports the dynamic loading and unloading of modules. A given device
can have multiple EEs of various types and these EEs can be layered on top of each other. The following diagram gives a
possible implementation of multiple EEs.

3,v1.0
DUS, v1.0

=
i
>
-
=2
o

0OSGi Framework 1 0OSGi Framework 2

D

[SoftwareModules.ExecEnv.2] [SoftwareModules.ExecEnv.3]
Linux EE (O/S) [SoftwareModules.ExecEnv.1]

Primary Firmware

Figure 25: Possible Multi-Execution Environment Implementation

In this example, the device exposes its Linux Operating System as an EE and has two different OSGi frameworks layered on
top of it, all of which are modeled as separate ExecEnv Object Instances. In order to indicate the layering to a Controller, the
two OSGi framework Objects (.ExecEnv.2 and .ExecEnv.3) would populate theExec.Env. {1} .Parent Parameter with a
path reference to the Linux Object (.ExecEnv.1). The Linux EE Object would populate that Parameter with an empty string to
indicate that it is not layered on top of any managed EE.

Multiple versions of a DU can be installed within a single EE instance, but there can only be one instance of a given version at a
time. In the above diagram, there are two versions of DU1, v1.0 and v1.2 installed on .ExecEnv.2. If an attempt is made to

update DU1 to version 1.2, or to install another DU with version 1.0 or 1.2, on ExecEnv . 2, the operation will fail.

A DU can also be installed to multiple EEs. In the above example, DU1 is installed both toExecEnv.2and ExecEnv. 3. The
Installation is accomplished by sending two separate InstallDU() commands where one command’s ExecEnvRef
Parameter has a value of “. ExecEnv . 2" and the other command’sExecEnvRef Parameter as a value of “.ExecEnv.3” ; note
that the USP Controller is required to handle cases where there is an expectation that the installation of both deployment units is
atomic.

When DUs are Updated, the DU instances on all EEs are affected. For example, in the above diagram, if DU1 v.1.0 is updated

to version 2.0, the instances on both .ExecEnv.2 and .ExecEnv. 3 will update to version 2.0.

For Uninstall, a Controller can either indicate the specific EE from which the DU should be removed, or not indicate a specific
EE, in which case the DU is removed from all EEs.

An EE can be enabled and disabled by a Controller. Reboot of an EE is accomplished by first disabling and then later enabling
the EE. When an EE instance is disabled by a Controller, the EE itself shuts down. Additionally, any EUs associated with the EE
automatically transition to Stopped and the ExecutionFaultCode Parameter value is Unstartable. The state of the
associated DUs remains the same. If a USP command that changes the DU state is attempted on any of the DUs associated

with a disabled EE, the operation fails and an “Invalid value” error is returned in theDUStateChange! event for the
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affected DU instance. It should be noted if the Operating System of the device is exposed as an EE, disabling it could result in
the device being put into a non-operational and non-manageable state. It should also be noted that disabling the EE on which
the USP Agent resides can result in the device becoming unmanageable via USP.

Note that the above is merely an example; whether a device supports multiple frameworks of the same type and whether it

exposes its Operating System as an Execution Environment for the purposes of management is implementation specific.

|.4 Fault Model

Faults can occur at a number of steps in the software module process. The following sections discuss Deployment Unit faults
and Execution Unit faults.

1.4.1 DU Faults

There are two basic types of DU faults: Operation failures and USP message errors that are the result of the invoking the
InstallDU(),Update(),UninstallDU(),Reset(), SetRunLevel() and SetRequestedState() commands.

1.4.1.1 Install Faults

Most Install faults will be recognized before resources or instances are created on the device. When there is an Operation
failure at Install, there are no resources installed on the device and no DU (or EU) instances are created in the data model.
Similarly, if there are any command failures, besides System Resources Exceeded, there are no resources installed on the
device and no DU (or EU) instances created in the data model.

There are a number of command failures defined for Installation. The first category is those faults associated with the file server
or attempt to transfer the DU resource and are the same as those defined for the existing InstallDU() and Update()
commands. These include:

« Userinfo element being specified in the URL

« The URL being unavailable (either because the host cannot be reached or because the resource is unavailable)
« Authentication failures due to incorrectly supplied credentials

« The URL transport method specified not being supported by the device or server

« The file transfer being interrupted (because of a device reboot or loss of connectivity, for example)

The second category of faults relate to issues with the DU and the Execution Environment. These are specific to Software
Module Management and include:

The EE reference specified by a Controller in theInstallDU() command does not exist in the data model. Note that the
Controller can simply omit the EE reference in the request and allow the deice to choose the destination.

The EE being disabled. This fault can occur when theInstallDU () command explicitly specifies a disabled EE. If there is
no EE specified in the request, this fault could occur because the only possible destination EE for the DU (the only OSGi
framework instance in the case of an OSGi bundle, for example) is disabled. The device is expected to make every attempt
not to use a disabled EE in this scenario, however.

Any mismatch existing between the DU and the EE (attempting to install a Linux package on an OSGi framework instance,
for example). This fault can occur when the request explicitly specifies a mismatching EE. If there is no EE specified in the
request, this fault could occur when there is no EE at all on the device that can support the DU.

« A DU of the same version already existing on the EE.
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Finally there are a number of faults related to the DU resource itself. These include:

e The UUID in the request not matching the format specified in RFC 412215] Version 5 (Name-based).

« A corrupted DU resource, or the DU not being installable for other reasons, such as not being signed by any trusted entity

« The installation of the DU requiring more system resources, such as disk space, memory, etc., than the device has
available. Note that this error is not to be used to indicate that more operations have been requested than the device can
support, which is indicated by the Resourced Exceeded error (described above).

1.4.1.2 Update Faults

When there is a fault on an Update of a DU of any kind, the DU remains at the version it was before the attempted DU state
change, and it also remains in the Installed state (i.e., it is not Uninstalled). If for any reason the a Controller wishes to remove a
DU after an unsuccessful Update, it must do so manually using an Uninstall() command. When there is a USP message
error for the Update, there are no new resources installed on the device and no DU (or EU) instances are changed in the data
model. Similarly, if there are any Operation failures, besides System Resources Exceeded, there are no new resources installed
on the device and no DU (or EU) instances are changed in the data model. The state of any associated EUs or any dependent
EUs in the event of an Update failure is EE and implementation dependent.

There are a number of Operation failures defined for Update of a DU. The first category is those faults associated with the file
server or attempt to transfer the DU resource and are the same as those defined for the existing Update () command. These
include:

» Userinfo element being specified in the URL

« The URL being unavailable (either because the host cannot be reached or because the resource is unavailable)
» Authentication failures due to incorrectly supplied credentials

« The URL transport method specified not being supported by the device or server

« The file transfer being interrupted (because of a device reboot or loss of connectivity, for example)

The second category of faults relate to issues with the DU and the Execution Environment. These are specific to Software
Module Management and include:

The EE on which the targeted DU resides being disabled. This fault can occur when the request explicitly specifies the
UUID of a DU on a disabled EE or when the request explicitly specifies a URL last used by a DU on a disabled EE. If
neither the URL nor UUID was specified in the request, this fault can occur when at least one DU resides on a disabled EE.

Any mismatch existing between the DU and the EE. This fault occurs when the content of the updated DU does not match
the EE on which it resides (for example, an attempt is made to Update a Linux package with a DU that is an OSGi bundle).

Updating the DU would cause it to have the same version as a DU already installed on the EE.

The version of the DU not being specified in the request when there are multiple versions installed on the EE.

Finally there are a number of faults related to the DU resource itself. These include:

The UUID in the request not matching the format specified in RFC 412215] Version 5 (Name-Based).
A corrupted DU resource, or the DU not being installable for other reasons, such as not being signed by any trusted entity

The DU cannot be found in the data model. This fault can occur when the request explicitly specifies the UUID (or
combination of UUID and version) of a DU that is unknown. It can also occur when the request does not specify a UUID but
explicitly specifies a URL that has never been used to previously Install or Update a DU.

Attempting to downgrade the DU version.

Attempting to Update a DU not in the Installed state.

Updating the DU requiring more system resources, such as disk space, memory, etc., than the device has available. Note
that this error is not to be used to indicate that more operations have been requested than the device can support, which is
indicated by the Resourced Exceeded USP error (described above).
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1.4.1.3 Uninstall Faults

When there is a fault due to the Uninstall of a DU fault of any kind, the DU does not transition to the Uninstalled state and no
resources are removed from the device. No changes are made to the EU-related portions of the data model (including the EU
Objects themselves and the related Objects and Parameters that came into existence because of this DU).

There are Operation failures defined for Uninstall of a DU. They are as follows:

The EE on which the targeted DU resides is disabled. Note that if the Uninstall operation targets DUs across multiple EEs,

this fault will occur if at least one of the EEs on which the DU resides is disabled.

The DU cannot be found in the data model. If the EE is specified in the request, this error occurs when there is no UUID (or
UUID and version) matching the one requested for the specified EE. If there is no EE specified in the request, this error
occurs when there is no UUID matching the one in the requested on any EE in the data model, or, if the version is also

specified in the request, then this error occurs when there is no DU with this combination of UUID and version on any EE in
the data model.

The UUID in the request not matching the format specified in RFC 412215] Version 5 (Name- Based).

The DU caused an EE to come into existence on which at least 1 DU is Installed.

1.4.2 EU Faults

EU state transitions are triggered by theSetRequestedState () command. One type of EU fault is a USP Error Message
sent in response to USP operate Message for the SetRequestedState() command. The USP Error Message defined are
therefore simply a subset of the errors defined for the generic USP Operate Message (e.g., Request Denied, Internal Error).

Note that there is one case specific to Software Module Management: if a Controller tries to Start an EU on a disabled EE using
the SetRequestedState () command, the device returns a ‘7012 Invalid Value” error response to the command

request.

There are also Software Module Management specific faults indicated in theExecutionFaultCode and
ExecutionFaultMessage Parameters in the data model. In addition to providing software module specific fault information,
this Parameter is especially important in a number of scenarios:

» Errors that occur at a later date than the original USP Message, such as a Dependency Failure that occurs several days
after successful Start of an EU because a DU providing dependencies is later Uninstalled.

« State transition errors that are triggered by the Autostart/Run level mechanism.

« “Autonomous” state transitions triggered outside the purview of USP, such as by a LAN-side protocol.

The faults in the ExecutionFaultCode Parameter are defined as follows:

e FailureOnStart —the EU failed to start despite being requested to do so by the Controller.

e FailureOnAutoStart —the EU failed to start when enabled to do so automatically.

e FailureOnStop —the EU failed to stop despite being requested to do so by the Controller.

o FailureWwhileActive —an EU that had previously successfully been started either via an explicit transition or
automatically later fails.

* DependencyFailure — this is a more specific fault scenario in which the EU is unable to start or stops at a later date
because of unresolved dependencies

o Unstartable — some error with the EU resource, its configuration, or the state of the associated DU or EE, such as the
EE being disabled, prevents it from being started.
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When the EU is not currently in fault, this Parameter returns the valueNoFault. The ExecutionFaultMessage Parameter
provides additional, implementation specific information about the fault in question. The ExecutionFaultCode and
ExecutionFaultMessage Parameters are triggered Parameters. In other words, it is not expected that an Controller could
read this Parameter before issuing a USP Message and see that there was a Dependency Failure that it would attempt to
resolve first. If a Controller wants a notification when these Parameters change, the Controller can subscribe to the
ValueChange notification type with the Parameters for the referenced EU.

January 2022 © The Broadband Forum. All rights reserved. 184 of 213



User Services Platform (USP) TR-369a2 Issue 1 Amendment 2

Appendix Il: Firmware Management of Devices
with USP Agents

Many manufacturers build and deploy devices that are able to support multiple firmware images (i.e. multiple firmware images
can be installed on an Agent at the same time). There are at least a couple of advantages to this strategy:

1. Having multiple firmware images installed improves the robustness and stability of the device because, in all likelihood, one
of the installed images will be stable and bootable. Should a device not be able to boot a newly installed firmware image, it
could have the ability to attempt to boot from a different firmware image, thus allowing the device to come back online.

2. Support for multiple firmware images offers the ability for the service provider to have a new firmware downloaded (but not
activated) to the device at any point during the day, then perhaps requiring only a Set Message and an Operate Message to
invoke the Reboot command at some later time (perhaps during a short maintenance window or when the device is idle) to
cause the device to switch over to the new firmware. Along with reducing the impact on the subscriber, the ability to spread
the download portion a firmware upgrade over a longer period of time (eg, the entire day or over several days) can help
minimize the impact of the upgrade on the provider’s network.

This Appendix discusses how to utilize the firmware image table on a device to support firmware upgrades whether the device
supports multiple instances or just a single instance.

Il.1 Getting the firmware image onto the device

A Controller can download a firmware image to an Agent by invoking theDownload () command (via the Operate Message)
found within an instance of the Device.DeviceInfo.FirmwareImage.{i}. data model table. The Download() command
will cause the referenced file to be downloaded into the firmware image instance being operated on, and it will cause that file to
be validated by the Agent (the validation process would include any normal system validate of a firmware image as well as the
check sum validation provided in the Download() command).

If an Agent only supports a single firmware image instance then a Controller would invoke theDownload () command on that
active firmware image instance using the AutoActivate argument to immediately activate the new firmware after it has been
downloaded. Neither the Device.DeviceInfo.BootFirmwareImage Parameter nor the
Device.DeviceInfo.FirmwareImage.{i}.Activate() command would typically be implemented by a device that only

supports a single firmware image instance.

If an Agent supports more than a single firmware image instance then a Controller would typically invoke theDownload ()
command on a non-active firmware image instance in an effort of preserving the current firmware image in case of an error

while upgrading the firmware. A firmware image instance is considered active if it is the currently running firmware image.

Il.2 Using multiple firmware images

This section discusses the added functionality available when a device supports two or more instances in the

Device.DeviceInfo.FirmwareImage.{i}. data model table.

[1.2.1 Switching firmware images
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Once a device has multiple firmware images downloaded, validated, and available, a Controller can use the data model to query
what images are on the device, which image is active, and configure which image to activate.

A Controller can activate a new firmware image by following one of two different procedures: (A) the Controller can modify the
Device.DeviceInfo.BootFirmwareImage Parameter to point to theDevice.DeviceInfo.FirmwareImage.{i}.
Object Instance that contains the desired firmware image and then reboot the device by invoking an Operate Message with a
Reboot () command or (B) the Controller can invoke an Operate Message with anActivate() command against the desired

FirmwareImage instance.

When attempting to get a device to switch to a different firmware image, it is recommended that the Controller either subscribe
to a ValueChange notification on the DeviceInfo.SoftwareVersion Parameter or subscribe to theBoot! Event
notification. If the Software Version value has not changed or the Boot ! Event's FirmwareUpdated argument is false, it could
be an indication that the device had problems booting the target firmware image.

[1.2.2 Performing a delayed firmware upgrade

One of the benefits to having support for multiple firmware images on a device is that it provides an opportunity to push a
firmware image to a device and then have the device switch to that image at a later time. This functionally allows a service
provider to push a firmware image to a set of devices at any point during the day and then use a maintenance window to switch
all of the target devices to the target firmware.

This ability is of value because normally the download of the firmware and the switch to the new image would both have to take
place during the maintenance window. Bandwidth limitations may have an impact on the number of devices that can be
performing the download at the same time. If this is the case, the number of devices that can be upgrading at the same time
may be lower than desired, requiring multiple maintenance windows to complete the upgrade. However, support for multiple
firmware images allows for the service provider to push firmware images over a longer period of time and then use a smaller
maintenance window to tell the device to switch firmware images. This can result is shorter system-wide firmware upgrades.

[1.2.3 Recovering from a failed upgrade

Another benefit of having multiple firmware images on a device is that if a device cannot boot into a target firmware image
because of some problem with the image, the device could then try to boot one of the other firmware images.

When there are two images, the device would simply try booting the alternate image (which, ideally, holds the previous version
of the firmware). If there are more than two images, the device could try booting from any of the other available images. Ideally,
the device would keep track of and try to boot from the previously known working firmware (assuming that firmware is still
installed on the device).

Should the device boot a firmware image other than that specified via theDevice.DeviceInfo.BootFirmwareImage
Parameter, it is important that the device not change the value of the Device.DeviceInfo.BootFirmwareImage Parameter
to point to the currently-running firmware image Object. If the device was to change this Parameter value, it could make
troubleshooting problems with a firmware image switch more difficult.

It was recommended above that the Controller keep track of the value ofbevice.DeviceInfo.SoftwareVersion
Parameter or the FirmwareUpdated flag in theBoot ! event. If the version changes unexpectedly or theFirmwareUpdated

flag is set to true, it could be an indication that the device had problems booting a particular firmware image.
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Appendix Ill: Device Proxy

This appendix describes a Theory of Operations for theDevice.ProxiedDevice. Object defined in the Device:2 Data Model

[38].
The Device.ProxiedDevice table is defined as:

“Each entry in the table is a ProxiedDevice Object that is a mount point. Each ProxiedDevice represents distinct
hardware Devices. ProxiedDevice Objects are virtual and abstracted representation of functionality that exists on
hardware other than that which the Agent is running.”

An implementation of the Device.ProxiedDevice. Object may be used in an loT Gateway that proxies devices that are
connected to it via technologies other than USP such as Z-Wave, ZigBee, Wi-Fi, etc. By designating a table of ProxiedDevice
Objects, each defined as a mount point, this allows a data model with Objects that are mountable to be used to represent the

capabilities of each of the ProxiedDevice table instances.

For example, if Device.WiFi. and Device.TemperatureStatus. Objects are modeled by the Agent, then
Device.ProxiedDevice.1l.WiFi.Radio.1. models a distinctly separate hardware device and has no relationship with
Device.WiFi.Radio.1.. The ProxiedDevice Objects may each represent entirely different types of devices each with a
different set of Objects. The ProxiedDevice.1.TemperatureStatus.TemperatureSensor.1. Object has no physical
relationship to ProxiedDevice.2.TemperatureStatus.TemperatureSensor.1. as they represent temperature sensors
that exist on separate hardware. The mount point allows Device.ProxiedDevice.1.WiFi.Radio. and
Device.ProxiedDevice.1l.TemperatureStatus.TemperatureSensor . to represent the full set of capabilities for the
device being proxied. This provides a Controller a distinct path to each ProxiedDevice Object.
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Appendix 1V: Proxying

This appendix describes a variety of proxies that can be created and deployed in order to enhance the USP experience.

The types of proxies described are:

Discovery Proxy: proxies discovery and advertisement; does not proxy USP messages

Connectivity Proxy: proxies USP messages at the IP layer; does not care about MTP or USP message headers or content;

may do message caching for sleeping devices

e MTP Proxy: proxies USP messages at the MTP layer and below; does not care about USP Message headers or content;
may do message caching for sleeping devices [Note: The MTP Proxy may choose to look at the USP Record to get
information related to USP Endpoints, especially when proxying WebSocket MTP.]

» USP to Non-USP Proxy: Proxies between USP and a non-USP management or control protocol

IV.1 Proxying Building Block Functions

These proxies are comprised of one or more of the building block functions described infable 1.
Table 1: Proxy Building Block Functions

Funclion Descriplion

L3/4 Translation Function Translates up to and including the IP and transport layer (e.g., UDP,
TCP) protocol headers, while leaving all higher layer protocol
headers and payloads untouched.

MTP Translation Function Translates up to and including the Message Transfer Protocol (MTP)
header, while leaving the USP Record untouched. Requires
knowledge of how to bind USP to two or more MTPs.

USP to non-USP Translation Function Translates all headers and the USP Record and USP Message into
data model and headers of another management protocol. Requires
proxy to have an Agent.

Caching Function Can hold on to USP Messages intended for Endpoints that are
intermittently connected, until a time when that Endpoint is
connected. The USP Message is not altered, so no Endpoint is
required to be aware of the existence of this function.

Non-USP Advertisement Function Responds to discovery queries using protocols other than USP (e.g.,
DNS-SD, DNS, DHCP) on behalf of Endpoints. May include a DNS
Server. See Discovery section for formatting of various non-USP
discovery protocols in the context of USP.

Non-USP Discovery Function Discovers Endpoints through discovery queries using protocols other
than USP. See Discovery section for formatting of various non-USP
discovery protocols in the context of USP.

Agent USP Advertisement Function Maintains a USP data model table of discovered Agents. Requires
an Agent.
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V.2 Discovery Proxy

A Discovery Proxy simply repeats the exact information that it discovers from Endpoints. This is particularly useful in a multi-
segment LAN, where mDNS messages do not cross segment boundaries. The DNS-SD Discovery Proxy [33] functionality is
recommended as a component of a Discovery Proxy. When used inside a LAN, this would need the Non-USP Discovery

Function and the Non-USP Advertisement Function described in Table 1.

An Agent USP Advertisement Functionwould be needed to support Endpoints in different networks (e.g., discovery of Agents
on the LAN by a Controller on the WAN).

USP Messages between proxied Endpoints go directly between the Endpoints and do not go across the Discovery Proxy. The
Discovery Proxy has no role in USP outside discovery.

V.3 Connectivity Proxy

This describes proxying of discovery and IP connectivity of Endpoints that need IP address or port translation to communicate,
and/or do not maintain continual IP connectivity. The Connectivity Proxy may cache USP Messages on behalf of Endpoints that
do not maintain continual connectivity. The USP Message is not processed by the proxy function, but it does go through the
proxy for address translation or so it can be cached, if necessary. Therefore, the connectivity information provided by the
Connectivity Proxy directs IP packets (that contain the USP Records) be sent to the proxy and not to the destination IP address
of the Endpoint being proxied.

Both Endpoints must be using the same MTP. This Proxy translates the IP address (and possibly the TCP or UDP port) from
the Connectivity Proxy to the proxied Endpoint, but does not touch (or need to understand) the MTP headers or USP Message.

It is also possible to combine the caching functionality with the MTP Proxy, by adding theCaching Function to the MTP Proxy
(see Section 3).

In order to serve as a Connectivity Proxy, the following functions (fromZable 1) are needed: 1. L3/4 Translation Function1.
Depending on whether the proxy is on the same network as the proxied Endpoints: 1. Non-USP Discovery Function and/or
otherwise determined/configured knowledge of Agent(s) 1. Non-USP Advertisement Function and/or Agent USP Advertisement

Function

The Connectivity Proxy can also include the Caching Function to support Endpoints with intermittent connectivity.

V.4 Message Transfer Protocol (MTP) Proxy

This describes proxying between two USP Endpoints that do not support a common MTP. The USP Record is untouched by the
proxy function. MTP and IP headers are changed by the proxy.

In order to serve as a MTP Proxy, the following functions (fromTable 1) are needed:

1. MTP Translation Function
2. Depending on whether it is on the same network as the proxied Agents and/or the Controller that wants to communicate
with those Agents:
1. Non-USP Discovery Function and/or otherwise determined/configured knowledge of Agent(s)

2. Non-USP Advertisement Function and/or Agent USP Advertisement Function
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The MTP Proxy can also include the Caching Function to support Endpoints with intermittent connectivity.

IV.4.1 MTP Header Translation Algorithms

In order to implement a meaningful translation algorithm, the MTP Proxy will need to: 1. Maintain mapping of discovered or

configured Endpoint information to information the MTP Proxy generates or is configured with. This allows it to advertise that

Endpoint on a different MTP and to translate the MTP when it receives a message destined for that Endpoint. 1. Maintain a

mapping of received “reply to” and other connection information to connection and “reply to” information included by the MTP

Proxy in the sent message. This allows it to translate the MTP when it receives a response message destined for that Endpoint.

1. Identify the target Endpoint for a received message.

The following information will need to be stored in a maintained mapping for an Endpoint:

1. URL -or- the IP Address (es) (IPv4 and/or IPv6) and UDP or TCP ports -or- the socket for an established connection (note

that the information and configured data needed to establish this connection is out-of-scope of this specification)

2. MTP-specific destination information (including destination resource)

A W N =

. For CoAP, this is the uri-path of the CoAP server Endpoint resource
. For WebSocket, this is either an established WebSocket connection or the WebSocket server Endpoint resource
. For STOMP, this is the STOMP destination of the Endpoint

. For MQTT, this is a Topic that is subscribed to by the Endpoint

This mapping information is used to construct important parts of the sent IP, UDP/TCP, and MTP headers. Other information

used to construct these headers may come from the received MTP Headers or even the received USP Record.

The following table describes possible ways to accomplish the activities for proxying from or to a particular MTP, and possible

sources of information. Other possibilities for proxying between two MTPs may also exist. This table is not normative and is not

intended to constrain implementations.

Activity
CoAP Maintain mapping of
discovered/configured

info to advertised info

Maintain mapping of
received info

Identify target USP
Endpoint for a
received message

WebSocket Maintain mapping of
discovered/configured

info to advertised info

Maintain mapping of

received info
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Table 2: Possible MTP Proxy Methods

when Proxying from

store discovered CoAP path/url/IP
address/port with “reply to” and/or
connectivity info for other MTP

store received uri-query reply-to COAP
Parameter with “reply to” and/or
connectivity info of the sent message

possible source: received CoAP yri-path

store WebSocket connection info (and
Endpoint ID, if socket is used for more
than one Endpoint) with “reply to” and/or
connectivity info for other MTP

store WebSocket connection info (and
Endpoint ID, if socket is used for more
than one Endpoint) with “reply to” and/or
connectivity info for other MTP

© The Broadband Forum. All rights reserved.

when Proxying to

generate a CoAP yri-path for

discovered info

store the supplied “reply to” and/or
connectivity info with a generated
COoAP uri-path

put value from a maintained
mapping in yri-path and use IP

address and port from mapping

establish WebSocket connection
or associate Endpoint with existing

connection, for discovered info

store the supplied “reply to” and/or
connectivity info with a WebSocket
connection (and Endpoint ID, if
socket is used for more than one
Endpoint)
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Identify target USP
Endpoint for a

received message

STOMP Maintain mapping of
discovered/configured

info to advertised info

Maintain mapping of

received info

Identify target USP
Endpoint for a
received message

MQTT Maintain mapping of
discovered/configured

info to advertised info

Maintain mapping of
received info

Identify target USP
Endpoint for a
received message

possible source: WebSocket connection
established per proxied Endpoint
possible source: to_id in USP Record

store subscribed-to STOMP destination
with “reply to” and/or connectivity info for
other MTP

store reply-to-dest STOMP header (and
associated STOMP connection) with
“reply to” or socket info of the sent
message

possible source: received STOMP
destination
possible source: to_id in USP Record

store subscribed-to Topic (Filter) with
“reply to” and/or connectivity info for
other MTP

store Response Topic or other provided
“reply to” info (and associated MQTT
connection) with “reply to” or
connectivity info of the sent message

possible source: received MQTT
PUBLISH Topic Name
possible source: to_id in USP Record

TR-369a2 Issue 1 Amendment 2

send over WebSocket connection
associated with the proxied
Endpoint

subscribe to STOMP destination
for discovered info

store the supplied “reply to” and/or
connectivity info with subscribed-to
STOMP destination and
connection

put value from maintained
mapping in STOMP destination
header and use STOMP
connection from that mapping

subscribe to MQTT Topic (Filter)
for discovered info (if Topic Filter,
know which specific Topic to use
for “reply to” info)

store the supplied “reply to” and/or
connectivity info with a specific
MQTT Topic (within subscribed-to
Topic Filter) and connection

put value from maintained
mapping in MQTT PUBLISH Topic
Name and use MQTT connection
from that mapping

Figure 26 shows an example of how an MTP Proxy might be used to proxy between an MTP used by a Cloud Server in the
WAN and an MTP used inside the LAN. It also shows proxying between MTPs and internal APIs used to communicate with
multiple Agents internal to the Services Gateway.
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Cloud Server

Controller 1
MTP X
WAN ——
/
/ LAN
Services | MTP X | | MTP Z
Gateway

MTP Proxy Sensor Gateway

Internal APIs | \ AgentC

MTP Z

AgentB

Figure 26: Example of MTP Proxy in LAN with WAN Controller

IV.4.2 CoAP / STOMP MTP Proxy Example Message Flow

The following example is provided as a detailed look at a sample CoAP (LAN) / STOMP (WAN) MTP Proxy to describe one
possible way to do discovery, connectivity and security. This example makes several assumptions as to the nature of the
STOMP connection between the MTP Proxy and the STOMP server, which is completely undefined. It also makes assumptions

about implemented, enabled and configured Agent capabilities.

Assumptions include: * a STOMP connection per proxied device * the STOMP server supplies a subscribe-dest header in
CONNECTED frames (this is optional for a STOMP server) * there exists some means for the Controller to discover the proxied
Agent connection to the STOMP server * the CoAP Agent does mDNS advertisement (optional but recommended behavior) *
the CoAP Agent and Proxy support and have enabled DTLS * the CoAP Agent has been configured with the Proxy’s certificate
for use as a Trusted Broker. * the proxy uses the subscribe-dest value (supplied by the STOMP server) as the value for the

reply-to-dest header.
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Figure 27: CoAP-STOMP MTP Proxy Example Flow
Controller connects to the STOMP server

A/ B/ C At any point prior to #5 the USP Controller Endpoint ctrl1 connects to STOMP and subscribes to destination A
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« OUT OF SCOPE how the USP Endpoint ctrl1 destination A is discovered by Proxy
e OUT OF SCOPE how the proxied USP Endpoint agenti STOMP destination Y is discovered by USP Endpoint ctrl1

Agent appears on network and Proxy allows Controller to communicate with Agent

#1 The USP Endpoint agent1 appears on the network. Proxy receives advertisement and gets the USP Endpoint identifier

“agent1” of the Agent (retrieved from mDNS advertisement see R-DIS.8).

#2 Proxy sends a CONNECT frame to the STOMP server with endpoint-id header of “agent1”.

#3 Proxy receives a subscribe-dest header in the CONNECTED frame identifying the STOMP destination it needs to subscribe
to on behalf of agent1.

#4 The Proxy sends a SUBSCRIBE frame to the STOMP server with destination:Y and stores a mapping of USP Endpoint
agent1 with coaps://<Agent IP>:<port>/agent1 to this STOMP connection with destination Y.

#5 / #6 USP Endpoint ctrl1 initiates USP message to agent. Proxy creates a STOMP reply-to-dest:A (on this STOMP
connection) to coaps://<Proxy IP>:<port>/destA mapping.

#7/ #7.1 Proxy takes USP Record from the STOMP frame and sends it in a CoAP payload with CoAP URI coming from the step
#4 mapping of STOMP destination Y to coap://<Agent IP>:<port>/agent1. To secure the communication, the proxy and Agent
establish a DTLS session (exchange certificates) and the Agent determines whether the proxy is a Trusted Broker.

#8 / #8.1 USP Endpoint agent1 sends a USP Record in reply to ctrl1 using CoAP, to coaps://<Proxy IP>:<port>/destA.

#9 / #10 Proxy takes USP Record from the CoAP payload and sends it in a STOMP SEND frame using the mapping (created in
steps #5 / #6) of coaps://<Proxy IP>:<port>/destA to STOMP destination A (and associated STOMP connection) created in
steps #5 / #6 .

Agent sends Notify Message to Controller

These steps include the following additional assumptions: * Controller has configured Agent with a notification subscription. *
Controller configured Agent with CoAP MTP information for itself. * Proxy replies to mDNS queries for Controller with “ctrl1”
Instance. Controller was able to assume or otherwise determine that Proxy would do this and that its proxied CoAP connection
would be discoverable by querying for ctrl1._usp-ctrl-coap._udp._local. * Proxy can use the previous reply-to-dest header value
to reach this Controller

#11 The Agent sends mDNS query for ctrl1._usp-ctrl-coap._udp._local.

#12 The Proxy response to the Agent includes TXT record with path of coaps://<Proxy IP>:<port>/ctrl1. This provides a URL for
the Agent to use to send a Notify Message to the Controller.

#13 / #13.1 The Agent sends a Notify Message to Controller at coaps://<Proxy IP>:<port>/ctrl1.

#14 / #15 Proxy takes the USP Record from the CoAP payload and sends it in a STOMP SEND frame using the mapping
(stored in #5 / #6 ) of coaps://<Proxy IP>:<port>/destA to STOMP destination:A (and associated STOMP connection).

IV.5 USP to Non-USP Proxy

This describes proxying between a Controller and some other management protocol with its own data model schema (e.g.,
UPnP DM, ZigBee, NETCONF, RESTCONF). In this case the proxy is expected to maintain a USP representation of the non-
USP data. This requires the proxy to expose itself as a full Agent to the Controller. See the Device Proxy appendix for the
Theory of Operations for the Device.ProxiedDevice. Object defined in the Device:2 Data Model[38].
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In order to serve as a USP to non-USP Proxy, theUSP to non-USP Translation Function(from Table 1) is needed.
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Appendix V: loT Data Model Theory of Operation

V.1 Introduction

Since there are thousands of different Internet of Things (IoT) devices, the data model needs a flexible modular way to support
them using generic building block templates. To achieve this, an IoT device is represented in the data model by sensor and

control capabilities:

« Sensor capabilities, which allow reading a state, e.g. a temperature value, a battery level, a light color, etc.

« Control capabilities, which allow changing a value, e.g. set a temperature, switch a light etc.

The Device:2 Data Model [38] defines capability Objects that reflect capabilities found on many different devices (example:
BinaryControl). By using these Objects, a large ecosystem of devices can be described using a small set of capabilities (see

table below).

V.2 loT data model overview

The figure shows the overall structure of the loT data model:

Device

loTCapabilityNumberOfEntries

ProxiedDeviceNumberOfEntrie:

NodeNumberOfEntries

ProxiedDevice

|

i

loTCapability

Class = (sub-object)
Name

!

l

‘ BinaryControl ‘

LevelControl

‘ EnumControl ‘ L ‘ Multil |
Type Type
Value Value Description
Description Unit Description Unit ValueNames
Toggle() MinValue Description LastChange Description Unit LastChange
MaxValue StepUp() Sensitivity LastChange LastChange Validvalues
StepValue StepDown() HoldTime LowLevel Description
StepUp() RestTime LowlLevelThreshold
StepDown() HighLevel
Description HighLevelThreshold
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Figure 28: loT Data Model
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The data model defines an loT Capability table, whose instances describe the 10T device’s exposed capabilities. The capability
table can appear directly under the Device. Object (if the loT device hosts a USP Agent) or under a

Device.ProxiedDevice.{i}. orDevice.ProxiedDevice.{i}.Node.{i}. instance.

V.2.1 loT Capability table

A capability is represented in theDevice.IoTCapability. table as a generic Object Instance with a specific class, and an
instantiated Sub-Object depending on this class. The class name is defined by the Sub-Object name in a Class Parameter for
each loT Capability table entry, to allow the Controller to detect the instantiated Sub-Object.

Only one out of the following Sub-Objects can exist per instance:

Capability Sub-Object Description
BinaryControl Allows setting a binary value (e.g. on or off)
LevelControl Allows setting a continuous value in a predefined range
EnumControl Allows setting a value from a predefined set of values
BinarySensor Provides a binary reading value (true/false)
LevelSensor Provides a continuous reading value
MultiLevelSensor Provides multiple reading values, which belong
together

Each IoT capability Sub-Object has aType Parameter to identify the functionality the capability is representing. See theType
definition section for details.

V.2.2 Node Object table

The Device.Node.{i}. and Device.ProxiedDevice. {i}.Node.{i}. Objects are mount points that provide the ability to
support complex devices - that is, a group of capabilities. Each node is a container for a group of device capabilities that have a
direct relationship with each other (sub-device) and a hierarchal relationship with the top-level. A node may have the same
capabilities as the top-level, but applicable only for the node, with no impact to the top-level. Capabilities for the top-level node
may have an effect on the lower level nodes, such as power.

V.3 Architecture mappings

V.3.1 Individual loT devices

Stand-alone loT devices, which are capable of supporting their own USP Agent, provide their own data models, which expose
the loT sensor and control capabilities of the device:
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Multiple Data Models:

Device.xx
X Control Device
Device.LocalAgent.xx

Device.xx
Device.LocalAgent.xx 10T Device 1

Device loTCapability.{i}.
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Device.LocalAgent.xx

10T Device 2

U 10T Device 3
Agent

Device.xx
10T Device 3

Device.LocalAgent.xx
Device.loTCapability.{i}.

Figure 29: loT individual device models

Each device registers as an individual entity to the USP Controller. With the help oNode Objects, the capabilities can be
additionally structured (not shown in the picture).

V.3.2 Proxied loT devices

loT devices connected over a proxy protocol (e.g. ZigBee) with an loT control device hosting the USP Agent are modeled as

proxied devices (i.e., using the Device.ProxiedDevice. table) in the data model of the control device’s USP Agent:

Data Model (combined):

Device.xx Control Device
. Specific part(s)
Device.LocalAgent.xx
(fetilz Dz Device.ProxiedDevice.1. )
(LAN/WLAN) 10T Device 1

10T Device 1

Device.ProxiedDevice.1.loTCapability.{i}.

Control Device

Device.ProxiedDevice.2.
Device.ProxiedDevice.2.loTCapability.{i}.

Device.ProxiedDevice.3.

10T Device 2
10T Device 2

10T Device 3

Device.ProxiedDevice.3.loTCapability.{i}.

Proxy Protocol

10T Device 3
(e.g. Zighee)

Figure 30: loT proxied device model

Each IoT device is represented as aDevice.ProxiedDevice. {i}. instance in the data model of the control device, which
exposes its 0T capabilities in the corresponding Objects. The capabilities can be additionally structured with the help of Node
Object (not shown in the picture).

V.4 |oT data model Object details

V.4.1 Common capability Parameters
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These Parameters have the same behavior for all capability Sub-Objects, where defined.

V.4.1.1 Type definition

Applies to: All capability Sub-Objects
All capability Objects contain a mandatory Type enumeration value.

The Type value is a predefined enumeration value with the goal of giving a unified description of the capability Object. If the
Type value requires further detail, theDescription Parameter may provided a further definition.

Note: The Type enumeration in the data model can also, like all Parameters, be extended using the rules defined in TR-10437]

V.4.1.2 Unit definition

Applies to: LevelControl, LevelSensor, MultilevelSensor

To define the used unit a similar concept as for the type definition is used. The definition consists of theUnit enumeration
value.

The Unit value is a predefined enumeration value with the goal of giving a unified representation of the used unit.

Note: The Unit enumeration in the data model can also, like all Parameters, be extended using the rules defined in TR-10437]

Note: Imperial units are intentionally not modeled in favor of the metric system to increase the inter-working. If the Controller

needs imperial units, it can easily convert the metric units into imperial ones by using the well-defined conversion routines.

V.4.2 Control Objects

Control Objects represent loT capabilities that involve the manipulation of device or application states. They include Binary
Controls, Level Controls, and Enumerated Controls.

V.4.2.1 BinaryControl

The binary controller defines the simplest type of controller, which allows to switch between two values like true/false, on/off,

full/lempty, etc. Its value is modeled as a Boolean, which can be either true or false.
The minimum definition of a “BinaryControl” consists of:

IoTCapability.i.Class = "BinaryControl"
IoTCapability.i.BinaryControl.Type = ...
IoTCapability.i.BinaryControl.vValue = ...

The value can be changed either directly by a USP Set operation, or via TheToggle () command, which corresponds to the
behavior of a switch, changing the value to the other state.

V.4.2.2 LevelControl
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The level controller capability allows a continuous change of a value within a predefined range. Its capabilities are defined by
these three mandatory Parameters:

e Unit - The unit used for the value
e MinValue - The minimum value the value can be set

e MaxValue - The maximum value the value can be set
Implementations have to provide the minimum and maximum values to allow the controller to detect what values can be applied.
The minimum definition of a “LevelControl” consists of:

IoTCapability.i.Class = "LevelControl"

IoTCapability.i.LevelControl.Type

IoTCapability.i.LevelControl.Unit

IoTCapability.i.LevelControl.Minvalue
IoTCapability.i.LevelControl.MaxValue = ...
IoTCapability.i.LevelControl.Value I

The value can be changed either directly by a USP Set operation, or via the step commands.

If the StepUp () command and/or the StepDown () command are implemented, the Stepvalue Parameter has to be
implemented, which indicates the amount of change triggered by a step command. If resulting value of a step command would
exceed the defined range, the operation does not result in a failure - instead, the result is set to the range limit value.

For example, if a temperature range is defined from 5.5 degC to 25 degC with a step value of 1 degC, a step down from 6 degC
would result in 5.5 degC and not in 5 degC.

Additionally, if the lowest possible value is already set, aStepDown () will not change the current value, since the defined

minimum range would be exceeded. The same also applies to the maximum value and StepUp () command.

V.4.2.3 EnumControl

The enumeration controller capability allows setting one of a set of predefined values. Examples are mode selections, with more
than two modes. If only two values exist, the binary controller Object is preferred.

The minimum definition of an “EnumControl” consists of:

IoTCapability.i.Class = "EnumControl"

IoTCapability.i.EnumControl.Type
IoTCapability.i.EnumControl.Validvalues = <list of possible values>

IoTCapability.i.EnumControl.Value = <current value>
The value can be changed either directly by a USP Set operation, or via the step commands.

The step commands will cycle through the value range, meaning that if the last valid value is reached, the nexstepUp ()
command will select the first value of the valid values and vice versa for the StepDown () command. The valid values are
stored in the Parameter ValidValues as a comma-separated list; that order of the list will be followed by the step commands.

It is possible to implement only one of the step commands, if only one direction is needed.

V.4.3 Sensor Objects
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Sensor Objects represent loT capabilities that involve reading or reporting on a device or application state. They include Binary
Sensors, Level Sensors, and Enumerated Sensors, along with support for thresholds and triggering events.

V.4.3.1 Binary Sensor

The binary sensor Object Instance supports different kinds of binary sensor operations:

« Simple binary state, e.g. a door or window state
« Threshold trigger, e.g. trigger a Carbon Dioxide Alarm if a certain threshold is exceeded.
« Repeated trigger with grace period, e.g. movement detector.

V.4.3.1.1 Simple binary state sensor

To model a simple sensor, which changes between two distinct states (e.g. a window or door open/close sensor), only the
Value Parameter is needed.

The minimum definition of a BinarySensor consists of:

IoTCapability.i.Class = "BinarySensor"

IoTCapability.i.BinarySensor.Type 000
IoTCapability.i.BinarySensor.Value = {true/false}

The values of true and false represent the two possible Value states. Each time the state changes the value toggles.

For example, a motion sensor would be modeled as:

IoTCapability.i.Class "BinarySensor"

IoTCapability.i.BinarySensor.Type = "MotionDetected"

IoTCapability.i.BinarySensor.Value = true

Note that binary sensor types are meaningful for binary state behavior, e.g., “WindowOpen” rather than “Window”.

V.4.3.1.2 Threshold trigger sensor

To model a sensor, which additionally triggers on a certain threshold, add theSensitivity Parameter to the definition:

IoTCapability.1.Class = "BinarySensor"
IoTCapability.1.BinarySensor.Type = "CarbonDioxideDetected"
IoTCapability.1.BinarySensor.Value = {true/false}

IoTCapability.1.BinarySensor.Sensitivity = 50

With the Sensitivity Parameter, the threshold is controlled. As soon as the measured value exceeds the threshold, the
Value Parameter is set to true. As soon as the measured value goes below the threshold thevalue Parameter is set to

false.
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Figure 31: loT threshold trigger sensitivity

The sensitivity value is a relative value in the range 0 to 100 percent. The exact meaning depends on the implementation.

V.4.3.1.3 Trigger time control

If the sensor state, after being triggered, should stay active for a minimum period, theHoldTime Parameter is used:

IoTCapability.1.Class = "BinarySensor"
IoTCapability.1.BinarySensor.Type = "CarbonDioxideDetected"
IoTCapability.1.BinarySensor.Value = {true/false}
IoTCapability.1.BinarySensor.Sensitivity = 50
IoTCapability.1.BinarySensor.HoldTime = 5000

This figure shows the effect of theHoldTime Parameter on the resulting value:
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Figure 32: loT threshold trigger hold time

V.4.3.1.4 Repeated trigger with grace period

Some sensors might produce too many triggers, e.g. continuous movement, when only one trigger in a specific time period is

needed. To filter these the RestTime Parameter is used:

IoTCapability.1.Class = "BinarySensor"
IoTCapability.1.BinarySensor.Type = "CarbonDioxideDetected"
IoTCapability.1.BinarySensor.Value = {true/false}
IoTCapability.1.BinarySensor.Sensitivity = 50
IoTCapability.1.BinarySensor.RestTime = 10000

With this setting, new trigger events are ignored for 10 seconds (10000 miliseconds) after the first trigger has been detected,
resulting in the following pattern:
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Figure 33: loT threshold trigger rest time

V.4.3.1.5 Repeated trigger with minimum duration

To get readings with a minimum duration, combine rest and hold times:

IoTCapability.1.Class = "BinarySensor"
IoTCapability.1.BinarySensor.Type = "CarbonDioxideDetected"
IoTCapability.1.BinarySensor.Value = {true/false}
IoTCapability.1.BinarySensor.Sensitivity = 50
IoTCapability.1.BinarySensor.HoldTime = 5000
IoTCapability.1.BinarySensor.RestTime = 10000

Which results in the following pattern:
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Figure 34: loT threshold trigger minimum duration

V.4.3.2 Level Sensor

The LevelSensor Object provides a template for modeling devices that report various levels.LevelSensor is used to reflect
the functionality of a sensor that reports a level in units and supports different kinds of sensor operation:

« Level reading
« Additional Threshold trigger: e.g., a Battery Alarm is triggered.

V.4.3.2.1 Level reading

To model a level reading, the reading value and its unit are defined. The minimum definition of aLevelSensor consists of:
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IoTCapability.
IoTCapability.
IoTCapability.
IoTCapability.

i
i
i

i

.Class =

TR-369a2 Issue 1 Amendment 2

"LevelSensor"

.LevelSensor.Type = ...

.LevelSensor.unit

.LevelSensor.vValue = ...

For example, to show the remaining load of a battery in percent, this capability would have the following values:

IoTCapability.1.Class =

IoTCapability.1.LevelSensor.Type =

IoTCapability.1.LevelSensor.Unit =

IoTCapability.1.LevelSensor.Value =

"LevelSensor"

"Battery"

nggn
63"

With this definition, the remaining load is expressed in percent, here 63 percent. Since the unit value is a decimal type it is also

possible to specify fractions for the value:

IoTCapability.1.Class = "LevelSensor"

IoTCapability.1.LevelSensor.Type =

IoTCapability.1.LevelSensor.Unit =

IoTCapability.1.LevelSensor.Value =

"Battery

gy

63.26

This expresses a total remaining load of 63.26 percent.

V.4.3.2.2 Threshold trigger

In cases where not only the actual value is of interest, but also important to know if a predefined threshold is reached or

undershot, the LevelSensor Object can be extended with threshold Parameters. Once theLowLevel orHighLevel

Parameter is true, it will remain true until the device is reset or the condition no longer exists. This will depend on the

particular device.

Parameter Type
LowLevel boolean
LowLevelThreshold decimal
HighLevel boolean
HighLevelThreshold decimal

Table 17 — loT LevelSensor threshold Parameters

RW

R/W

R/W

Descriplion
True means that the low level threshold is reached or undershot.
The defined low level value.
True means that the high level threshold is reached or exceeded.

The defined high level value.

When modeling a battery with aLevelSensor Object, an additional low level warning (Boolean) may be supported along with a

Low Level threshold that provides a setting for the warning. The resulting Object looks like this:

IoTCapability.
IoTCapability.
IoTCapability.
IoTCapability.
IoTCapability.
IoTCapability.

B R R R R R

.Class
.LevelSensor.Type

.LevelSensor.unit

= "LevelSensor"
= "Battery"
= nggn

.LevelSensor.LowLevelThreshold = 20

.LevelSensor.Value

.LevelSensor.LowLevel

=19

= true

Note: For more complex scenarios, like having a grace period, the binary sensor Object can be used instead of the LowLevel or

HighLevel Threshold Parameters.

V.4.3.2.3 Multi Level Sensor
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A MultilLevelSensor instance models sensors, which provide a set of related values with the same unit.
The minimum definition of a “MultiLevelSensor” consists of:

"MultilLevelSensor"

IoTCapability.i.Class
IoTCapability.i.MultilLevelSensor.Type = ...
IoTCapability.i.MultilLevelSensor.Unit SR

IoTCapability.i.MultilLevelSensor.Values
IoTCapability.1.MultilLevelSensor.ValueNames = ...

An example is a location reading consisting of the two values longitude and latitude in decimal degree notation, which have to
be read together:

IoTCapability.1.Class = "MultiLevelSensor"
IoTCapability.1.MultilLevelSensor.Type = "Location"
IoTCapability.1.MultilLevelSensor.Unit = "deg"
IoTCapability.1.MultilLevelSensor.Values = "48.1372056,11.57555"
IoTCapability.1.MultiLevelSensor.ValueNames = "Latitude,Longitude"

This example uses the ParameterValueNames to provide information about the individual value meanings.

V.4.3.3 Enum Sensor

An EnumSensor instance provides a reading value from a predefined set of values. This allows modeling of sensors, which can
output discreet values from a predefined set.

The minimum definition of an “EnumSensor” consists of:

IoTCapability.i.Class "EnumSensor"

IoTCapability.i.EnumSensor.Type S

SR

IoTCapability.i.EnumSensor.uUnit

IoTCapability.i.EnumSensor.Validvalues = ...

IoTCapability.i.EnumSensor.Value
The Validvalues Parameter determines the set of values, which will be delivered by the sensor.
For example, a traffic light could be modeled as:

IoTCapability.1.Class = "EnumSensor"
IoTCapability.1.EnumSensor.Type = "X_<oui>_TrafficLight"
IoTCapability.1.EnumSensor.Validvalues = "Red, Yellow, Green"

IoTCapability.1.EnumSensor.Value = "Green"

V.5 Examples

This chapter gives several examples how to model loT Devices.

V.5.1 Example: A/C Thermostat

This example shows an A/C Thermostat connected over Z-Wave as a proxied device of an loT Gateway:
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Structure elements:

loTCapability.1 (EnumControl) :
loTCapability.2 (LevelContro
loTCapability.3 (LevelControl

loTCapability.4
loTCapability.5

loTCapability.6 (LevelSensor
loTCapability.7 (EnumControl) :

(
(
(
(
(
(
(
(

loTCapability.8 (EnumSensor) :

):
):
LevelControl) :
LevelControl) :

):

Instantiated data model:

ProxiedDevice.
ProxiedDevice.

ProxiedDevice.

ProxiedDevice.

ProxiedDevice.
ProxiedDevice.
ProxiedDevice.

ProxiedDevice.

ProxiedDevice.
ProxiedDevice.
ProxiedDevice.
ProxiedDevice.
ProxiedDevice.
ProxiedDevice.

ProxiedDevice.

ProxiedDevice.
ProxiedDevice.
ProxiedDevice.
ProxiedDevice.
ProxiedDevice.
ProxiedDevice.

ProxiedDevice.

ProxiedDevice.
ProxiedDevice.
ProxiedDevice.
ProxiedDevice.
ProxiedDevice.
ProxiedDevice.

ProxiedDevice.

January 2022

B R R R B R R B R R B R RR BB R R

B R R B R RR

.Type
.0Online

.ProxyProtocol

.IoTCapability.
.IoTCapability.
.IoTCapability.

.IoTCapability.
.IoTCapability.
.IoTCapability.
.IoTCapability.
.IoTCapability.
.IoTCapability.
.IoTCapability.

.IoTCapability.
.IoTCapability.
.IoTCapability.
.IoTCapability.
.IoTCapability.
.IoTCapability.
.IoTCapability.

.IoTCapability.
.IoTCapability.
.IoTCapability.
.IoTCapability.
.IoTCapability.
.IoTCapability.
.IoTCapability.

akg
akg

W W W W W w w N N N N N NN

A A D A D D b

Operation Mode

Current Temperature
Fan Mode Control
Current Fan Operating State

.IoTCapabilityNumberOfEntries

.IoTCapability.1.Class
ah5

EnumControl.Type =

EnumControl.Value =

EnumControl.validvalues =

.Class

.LevelControl.
.LevelControl.
.LevelControl.
.LevelControl.
.LevelControl.

.LevelControl.

.Class

.LevelControl.
.LevelControl.
.LevelControl.
.LevelControl.
.LevelControl.

.LevelControl.

.Class

.LevelControl.
.LevelControl.
.LevelControl.
.LevelControl.
.LevelControl.

.LevelControl.

Type =
Description

Value =
unit =
Minvalue =

MaxValue =

Type =
Description

Value =
unit =
Minvalue =

MaxValue =

Type =
Description

Value =
unit =
Minvalue =

MaxValue =
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Cool Temperature in range from 14 to 25 degC
Heat Temperature in range from 14 to 25 degC
Energy Saving Cool Temperature in range from 14 to 25 degC
Energy Saving Heat Temperature in range from 14 to 25 degC

"Thermostat"
true

"Z-wave"

"EnumControl"
"ThermostatMode"
"Cool"
"Heat, Cool,
Energy_heat,
Energy_cool, Off,

Auto"

"LevelControl"
"Temperature"
= "TargetCoolTemperature"
17

""degC"

14

25

"LevelControl"
"Temperature"
= "TargetHeatTemperature"
21

"degC"

14

25

"LevelControl"
"Temperature"
= "TargetEnergyCoolTemp"
19

""degC"

14

25

© The Broadband Forum. All rights reserved.

206 of 213



ProxiedDevice.1.IoTCapability.5.Class = "LevelControl"
ProxiedDevice.1.IoTCapability.5.LevelControl.Type = "Temperature"
ProxiedDevice.1.IoTCapability.5.LevelControl.Description = "TargetEnergyHeatTemp"
ProxiedDevice.1.IoTCapability.5.LevelControl.Value = 19
ProxiedDevice.1.IoTCapability.5.LevelControl.uUnit = "degC"
ProxiedDevice.1.IoTCapability.5.LevelControl.Minvalue = 14
ProxiedDevice.1.IoTCapability.5.LevelControl.MaxValue = 25
ProxiedDevice.1.IoTCapability.6.Class = "LevelSensor"
ProxiedDevice.1.IoTCapability.6.LevelSensor.Type = "Temperature"
ProxiedDevice.1.IoTCapability.6.LevelSensor.Value = 19.5
ProxiedDevice.1.IoTCapability.6.LevelSensor.uUnit = "degC"
ProxiedDevice.1.IoTCapability.7.Class = "EnumControl"
ProxiedDevice.1.IoTCapability.7.EnumControl.Type = "FanMode"
ProxiedDevice.1.IoTCapability.7.EnumControl.Value = "Low"
ProxiedDevice.1.IoTCapability.7.EnumControl.validvalues = "Auto_low, Low,
Circulation, Off"
ProxiedDevice.1.IoTCapability.8.Class = "EnumSensor"
ProxiedDevice.1.IoTCapability.8.EnumSensor.Type = "OperatingState"
ProxiedDevice.1.IoTCapability.8.EnumSensor.Value = "Cooling"
ProxiedDevice.1.IoTCapability.8.EnumSensor.Validvalues =

User Services Platform (USP)
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"Heating, Cooling,
FanOnly, PendingHeat, PendingCool, VentEconomizer,
AuxHeating, 2ndStageHeating, 2ndStageCooling,

2ndStageAuxHeat, 3rdStageAuxHeat"

V.5.2 Example: Light with a dimmer and switch

This example shows a dimmable light connected over Z-Wave as proxied device to an loT Gateway.
Structure elements:

« loTCapability.1 (BinaryControl) : On/Off Switch, expressed astrue and false value
« loTCapability.2 (LevelControl) : Brightness control from 0% to 100%

Instantiated data model:
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ProxiedDevice.2.Type = "Light"
ProxiedDevice.2.0nline = "true"
ProxiedDevice.2.ProxyProtocol = "Z-wave"
ProxiedDevice.2.Name = "GE DimMing Bulb"
ProxiedDevice.2.IoTCapabilityNumberOfEntries =2
ProxiedDevice.2.IoTCapability.1.Class = "BinaryControl"
ProxiedDevice.2.IoTCapability.1.BinaryControl.Type = "Switch"
ProxiedDevice.2.IoTCapability.1.BinaryControl.Value = true
ProxiedDevice.2.IoTCapability.2.Class = "LevelControl"
ProxiedDevice.2.IoTCapability.2.LevelControl.Type = "Brightness"
ProxiedDevice.2.IoTCapability.2.LevelControl.Value = 100
ProxiedDevice.2.IoTCapability.2.LevelControl.Min =0
ProxiedDevice.2.IoTCapability.2.LevelControl.Max = 100
ProxiedDevice.2.IoTCapability.2.LevelControl.Unit = "%"

V.5.3 Example: Fan

This example shows a simple fan connected over Z-Wave as proxied device to an loT Gateway.
Structure elements:
o |loTCapability.1 (EnumControl) : Fan state

Instantiated data model:

ProxiedDevice.3.Type = "Fan"
ProxiedDevice.3.0nline = "true"
ProxiedDevice.3.ProxyProtocol = "Z-wave"
ProxiedDevice.3.name = "GE Fan"
ProxiedDevice.3.IoTCapabilityNumberOfEntries =1
ProxiedDevice.2.IoTCapability.1.Class = "EnumControl"
ProxiedDevice.3.IoTCapability.1.EnumControl.Type = "FanMode"
ProxiedDevice.3.IoTCapability.1.EnumControl.Value = "off"
ProxiedDevice.3.IoTCapability.1.EnumControlvalidvalues =

"off, Low, Medium, High, On, Auto, Smart"

V.5.4 Example: Multi-Sensor strip with a common battery.

The sensors are inserted into the strip and may have their own power switch, battery, energy consumption and manufacturer.

Instantiated data model:
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ProxiedDevice.4.Type "SensorStrip"
ProxiedDevice.4.0nline true
ProxiedDevice.4.ProxyProtocol "Z-Wave"
ProxiedDevice.4.Name "Insertable Sensor Strip"
ProxiedDevice.4.IoTCapabilityNumberOfEntries 1
ProxiedDevice.4.NodeNumberOfEntries

ProxiedDevice.4.IoTCapability.1.Class "LevelSensor"
ProxiedDevice.4.IoTCapability.1.LevelSensor.Value 80
ProxiedDevice.4.IoTCapability.1.LevelSensor.uUnit "%"
ProxiedDevice.4.IoTCapability.1.LevelSensor.Type "Battery"
ProxiedDevice.4.IoTCapability.1.LevelSensor.LowLevelThreshold 30
ProxiedDevice.4.IoTCapability.1.LevelSensor.LowLevel false
ProxiedDevice.4.Node.1.Type "Sensor"
ProxiedDevice.4.Node.1l.IoTCapabilityNumberOfEntries 1
ProxiedDevice.4.Node.1.IoTCapability.1.Class "BinarySensor"
ProxiedDevice.4.Node.1.IoTCapability.1.BinarySensor.HoldTime 0
ProxiedDevice.4.Node.1.IoTCapability.1.BinarySensor.Sensitivity 5
ProxiedDevice.4.Node.1.IoTCapability.1.BinarySensor.RestTime 10000
ProxiedDevice.4.Node.1.IoTCapability.1.BinarySensor.Value false
ProxiedDevice.4.Node.1l.IoTCapability.1.BinarySensor.Type = "MotionDetected"
ProxiedDevice.4.Node.1.IoTCapability.1.BinarySensor.LastSensingTime = 1573344000

V.5.5 Example: Ceiling Fan with integrated light

This example shows a ceiling fan with integrated light connected over Z-Wave as proxied device to an loT Gateway.
Structure elements:

« loTCapability.1 (BinaryControl) :

« Node.1 : Represents the light control

o .loTCapability.1 (LevelControl) : Brightness control from 0% to 100%

o .loTCapability.2 (BinaryControl) : On/Off Switch, expressed astrue and false value
* Node.2 : Fan contro

o .loTCapability.1 (EnumControl) : Set fan state

Instantiated data model:
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ProxiedDevice.5.Type = "Fan"
ProxiedDevice.5.0nline = true
ProxiedDevice.5.ProxyProtocol = "Z-wave"
ProxiedDevice.5.Name = "42'' Ceiling Fan"

ProxiedDevice.5.IoTCapabilityNumberOfEntries =1

ProxiedDevice.5.NodeNumberOfEntries =2

ProxiedDevice.5.IoTCapability.1.Class = "BinaryControl"
ProxiedDevice.5.IoTCapability.1.BinaryControl.Type = "Switch"
ProxiedDevice.5.IoTCapability.1.BinaryControl.State = true
ProxiedDevice.5.Node.1.Type = "Light"
ProxiedDevice.5.Node.1.IoTCapabilityNumberOfEntries =2
ProxiedDevice.5.Node.1.IoTCapability.1.Class = "LevelControl"
ProxiedDevice.5.Node.1.IoTCapability.1.LevelControl.Type = "Brightness"
ProxiedDevice.5.Node.1.IoTCapability.1.LevelControl.Value = 99
ProxiedDevice.5.Node.1.IoTCapability.1.LevelControl.MinvValue =0
ProxiedDevice.5.Node.1.IoTCapability.1.LevelControl.MaxValue = 100
ProxiedDevice.5.Node.1.IoTCapability.1.LevelControl.Unit = "%"
ProxiedDevice.5.Node.1.IoTCapability.2.Class = "BinaryControl"
ProxiedDevice.5.Node.1.IoTCapability.2.BinaryControl.Type = "Switch"
ProxiedDevice.5.Node.1.IoTCapability.2.BinaryControl.Value = true
ProxiedDevice.5.Node.2.Type = "Fan"
ProxiedDevice.5.Node.2.IoTCapabilityNumberOfEntries =1
ProxiedDevice.5.Node.2.IoTCapability.1.Class = "EnumControl"
ProxiedDevice.5.Node.2.IoTCapability.1.EnumControl.Type = "FanMode"
ProxiedDevice.5.Node.2.IoTCapability.1.EnumControl.Value = "off"
ProxiedDevice.5.Node.2.IoTCapability.1.EnumControl.Vvalidvalues = "Off, Low,
Medium, High,
Auto, Smart

V.5.6 Example: Power strip

This example shows a power strip with integrated power measurements connected over Z-Wave as proxied device to an loT
Gateway.

Structure elements:

» loTCapability.1 (BinaryControl) : On/Off Switch for complete power strip
o loTCapability.2 (LevelSensor) : Total power reading of strip in KWh.
« Node.1 - 3: Each node represents a power outlet with:

o .loTCapability.1 (BinaryControl) : On/Off Switch, expressed astrue and false value
o .loTCapability.2 (LevelSensor) : Current power reading of outlet in Watt.
o .loTCapability.3 (LevelSensor) : Total used power reading of outlet in KWh.
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ProxiedDevice.6.Type "PowerStrip"
ProxiedDevice.6.0nline "true"
ProxiedDevice.6.ProxyProtocol "Z-Wave"
ProxiedDevice.6.Name "3 Plug Strip"
ProxiedDevice.6.IoTCapabilityNumberOfEntries 2
ProxiedDevice.6.NodeNumberOfEntries 3
ProxiedDevice.6.I0oTCapability.1.Class "BinaryControl"
ProxiedDevice.6.I0TCapability.1.BinaryControl.Type "Switch"
ProxiedDevice.6.IoTCapability.1.BinaryControl.Vvalue true
ProxiedDevice.6.IoTCapability.3.Class "LevelSensor"
ProxiedDevice.6.I0TCapability.3 Name "Total Accumulated Power"
ProxiedDevice.6.I0TCapability.3.LevelSensor.Type "Power"
ProxiedDevice.6.I0TCapability.3.LevelSensor.uUnit "Kwh"
ProxiedDevice.6.IoTCapability.3.LevelSensor.Value "2227,56"
ProxiedDevice.6.Node.1.Type = "Switch"
ProxiedDevice.6.Node.1.IoTCapabilityNumberOfEntries =3
ProxiedDevice.6.Node.1.IoTCapability.1.Class = "BinaryControl"
ProxiedDevice.6.Node.1.IoTCapability.1.BinaryControl.Type = "Switch"
ProxiedDevice.6.Node.1.IoTCapability.1.BinaryControl.State = true
ProxiedDevice.6.Node.1.IoTCapability.2.Class = "LevelSensor"
ProxiedDevice.6.Node.1.IoTCapability.2.LevelSensor.Type = "Power"
ProxiedDevice.6.Node.1.IoTCapability.2.LevelSensor.Unit = "w"
ProxiedDevice.6.Node.1.IoTCapability.2.LevelSensor.Value = 99
ProxiedDevice.6.Node.1.IoTCapability.3.Class = "LevelSensor"
ProxiedDevice.6.Node.1.IoTCapability.3 Name = "Accumulated Power"
ProxiedDevice.6.Node.1.IoTCapability.3.LevelSensor.Type = "Power"
ProxiedDevice.6.Node.1.IoTCapability.3.LevelSensor.uUnit = "Kwh"
ProxiedDevice.6.Node.1.IoTCapability.3.LevelSensor.Value = 390.67
ProxiedDevice.6.Node.2.Type = "Switch"
ProxiedDevice.6.Node.2.IoTCapabilityNumberOfEntries =3
ProxiedDevice.6.Node.2.IoTCapability.1.Class = "BinaryControl"
ProxiedDevice.6.Node.2.IoTCapability.1.BinaryControl.Type = "Switch"
ProxiedDevice.6.Node.2.IoTCapability.1.BinaryControl.State = true
ProxiedDevice.6.Node.2.IoTCapability.2.Class = "LevelSensor"
ProxiedDevice.6.Node.2.IoTCapability.2.LevelSensor.Type = "Power"
ProxiedDevice.6.Node.2.IoTCapability.2.LevelSensor.Unit = "w"
ProxiedDevice.6.Node.2.IoTCapability.2.LevelSensor.Value = 76
ProxiedDevice.6.Node.2.IoTCapability.3.Class = "LevelSensor"
ProxiedDevice.6.Node.2.IoTCapability.3 Name = "Accumulated Power"
ProxiedDevice.6.Node.2.IoTCapability.3.LevelSensor.Type = "Power"
ProxiedDevice.6.Node.2.IoTCapability.3.LevelSensor.Unit = "Kwh"
ProxiedDevice.6.Node.2.IoTCapability.3.LevelSensor.Value = 1783.63
ProxiedDevice.6.Node.3.Type = "Switch"
ProxiedDevice.6.Node.3.IoTCapabilityNumberOfEntries =3
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ProxiedDevice.6.Node.3.IoTCapability.1.Class "BinaryControl"
ProxiedDevice.6.Node.3.IoTCapability.1.BinaryControl.Type "Switch"
ProxiedDevice.6.Node.3.IoTCapability.1.BinaryControl.State true
ProxiedDevice.6.Node.3.IoTCapability.2.Class "LevelSensor"
ProxiedDevice.6.Node.3.IoTCapability.2.LevelSensor.Type "Power"
ProxiedDevice.6.Node.3.IoTCapability.2.LevelSensor.uUnit "W
ProxiedDevice.6.Node.3.IoTCapability.2.LevelSensor.Value 0
ProxiedDevice.6.Node.3.IoTCapability.3.Class "LevelSensor"
ProxiedDevice.6.Node.3.IoTCapability.3 Name "Accumulated Power"
ProxiedDevice.6.Node.3.IoTCapability.3.LevelSensor.Type = "Power"
ProxiedDevice.6.Node.3.IoTCapability.3.LevelSensor.uUnit = "Kwh"
ProxiedDevice.6.Node.3.IoTCapability.3.LevelSensor.Value = 53.26

V.5.7 Example: Battery powered radiator thermostat

This example shows the loT model for a radiator thermostat with an integrated USP Agent, which is directly controlled.

Structure elements:

loTCapability.1 (EnumControl): Operation Mode

loTCapability.3
loTCapability.4
loTCapability.5 (LevelSensor): Valve position

(
(
(
(
(
(

loTCapability.6 (LevelSensor): Battery status

EnumControl): Vacation Temperature setting
LevelSensor) : Current Temperature

loTCapability.2 (EnumControl): Auto/Manual Temperature setting

Note: All temperature settings are modeled as “EnumControl” to define a range between 4 and 23° degC in steps of 0.5° or an

“Off” value.

Instantiated data model:

Device.DeviceInfo.Description

Device.IoTCapabilityNumberOfEntries
Device.IoTCapability.1.Class
Device.IoTCapability.1.EnumControl.Type

Device.IoTCapability.

R R R R

Device.IoTCapability.1.EnumControl.Vvalue

Device.IoTCapability.2.Class
Device.IoTCapability.2.Name

Device.IoTCapability.2.EnumControl.Type

N N NN

Device.IoTCapability.
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"Battery powered radiator

thermostat"

"EnumControl
"ThermostatMode"
"off, Auto, Manual, Vacation"

"Auto" # current mode

"EnumControl

"Desired Temperature"
"TemperatureMode"

"off, 4, 4.5, 5.0, 5.5,
6, 6.5, 7, 7.5, 8, 8.5,
9, 9.5, 10, 10.5, 11,
11.5, 12, 12.5, 13, 13.5,
14, 14.5, 15.0, 15.5, 16,
16.5, 17, 17.5, 18, 18.5,
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19, 19.5, 20, 20.5, 21,
21.5, 22, 22.5, 23"

Device.IoTCapability.2.EnumControl.Value = 19 # Requested temperature
Device.IoTCapability.3.Class = "EnumControl"
Device.IoTCapability.3.Name = "Vacation Temperature"
Device.IoTCapability.3.EnumControl.Type = "TemperatureMode"
Device.IoTCapability.3.EnumControl.validvalues = "Off, 4, 4.5, 5.0, 5.5,

6, 6.5, 7, 7.5, 8, 8.5,

9, 9.5, 10, 10.5, 11,

11.5, 12, 12.5, 13, 13.5,

14, 14.5, 15.0, 15.5, 16,

16.5, 17, 17.5, 18, 18.5,

19, 19.5, 20, 20.5, 21,

21.5, 22, 22.5, 23"
Device.IoTCapability.3.EnumControl.Value = 12 # Requested temperature

# during absence

Device.IoTCapability.4.Class = "LevelSensor"
Device.IoTCapability.4.Name = "Current Temperature"
Device.IoTCapability.4.LevelSensor.Type = "Temperature"
Device.IoTCapability.4.LevelSensor.uUnit = "degC"
Device.IoTCapability.4.LevelSensor.Value = 19.3 # Current temperature
Device.IoTCapability.5.Class = "LevelSensor"
Device.IoTCapability.5.Name = "Valve Position"
Device.IoTCapability.5.LevelSensor.Type = "Position"
Device.IoTCapability.5.LevelSensor.uUnit = "%"
Device.IoTCapability.5.LevelSensor.Minvalue =0
Device.IoTCapability.5.LevelSensor.MaxValue = 100
Device.IoTCapability.5.LevelSensor.Value = 16 # e.g. 16% valve

# opening
Device.IoTCapability.6.Class = "LevelSensor"
Device.IoTCapability.6.Name = "Local Battery"
Device.IoTCapability.6.LevelSensor.Type = "Battery"
Device.IoTCapability.6.LevelSensor.uUnit = "%"
Device.IoTCapability.6.LevelSensor.Minvalue =0
Device.IoTCapability.6.LevelSensor.MaxValue = 100
Device.IoTCapability.6.LevelSensor.Value = 82 # e.g. 82% battery load

1. This state machine diagram refers to the successful transitions caused by the USP commands that change the DU state
and does not model the error cases.«

2. This state machine diagram refers to the successful transitions caused by theSetRequestedState () command within
the ExecutionUnit table and does not model the error cases«
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