
© Broadband Forum. All rights reserved.

TR-369
User Services Platform
(USP)
Issue: 1 Amendment 1

ISSUE DATE: October 2019

TR-069 Data Model for Storage Service Enabled Devices TR-140

2

Note: This document provides a PDF formatted version of the specification, which is
maintained at http://usp.technology. This is provided for convenience only. The published
specification at this URL represents the official normative version. Any discrepancies between
this PDF and the specification at usp.technology should refer to the version published at this
URL.

http://usp.technology/

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 3 of 249

Table of Contents

1 Introduction .. 9

1.1 Legal Notice ... 9

1.1.1 Intellectual Property .. 9
1.1.2 Terms of Use ... 9

1.2 Revision History ... 10

1.2.1 Release 1.1 ... 10
1.2.2 Release 1.0.2 .. 10
1.2.3 Release 1.0.1 .. 10
1.2.4 Release 1.0 ... 10

1.3 Editors .. 11

1.4 Acknowledgements .. 11

1.5 Executive Summary ... 11

1.6 Purpose and Scope ... 12

1.6.1 Purpose ... 12
1.6.2 Scope .. 12

1.7 References and Terminology ... 13

1.7.1 Conventions .. 13
1.7.2 References .. 14

2 Definitions ... 15

2.1 Abbreviations ... 20

3 Specification Impact ... 21

3.1 Energy efficiency ... 21

3.2 Security ... 21

3.3 Privacy .. 22

4 Architecture .. 22

4.1 Endpoints .. 22

4.1.1 Agents ... 24
4.1.2 Controllers ... 24
4.1.3 Endpoint Identifier ... 24

4.2 Service Elements .. 27

4.2.1 Data Models ... 27
4.2.2 Path Names .. 29
4.2.3 Searching .. 32
4.2.4 Other Path Decorators ... 34
4.2.5 Data Model Path Grammar ... 37

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 4 of 249

5 Discovery and Advertisement .. 45

5.1 Controller Information ... 46

5.2 Required Agent Information .. 46

5.3 Use of DHCP for Acquiring Controller Information ... 46

5.3.1 DHCP Options for Controller Discovery ... 47
5.4 mDNS ... 48

5.5 DNS .. 48

5.5.1 DNS-SD Records .. 48
5.5.2 IANA-Registered USP Service Names .. 49
5.5.3 Example Controller Unicast DNS-SD Resource Records .. 50
5.5.4 Example Agent Multicast DNS-SD Resource Records ... 50
5.5.5 Example Controller Multicast DNS-SD Resource Records ... 50

5.6 Using the SendOnBoardRequest() operation and OnBoardRequest notification 51

6 Message Transfer Protocols .. 51

6.1 Supporting Multiple MTPs ... 51

6.2 Securing MTPs ... 51

6.3 Brokered USP Record Errors ... 54

7 CoAP Binding ... 54

7.1 Mapping USP Endpoints to CoAP URIs .. 55

7.2 Mapping USP Records to CoAP Messages .. 56

7.2.1 Handling CoAP Request Success ... 56
7.2.2 Handling CoAP Request Failures .. 56

7.3 MTP Message Encryption .. 57

8 STOMP Binding ... 58

8.1 Handling of the STOMP Session ... 59

8.1.1 Connecting a USP Endpoint to the STOMP Server ... 60
8.1.2 Handling the STOMP Heart Beat Mechanism ... 60

8.2 Mapping USP Endpoints to STOMP Destinations .. 61

8.2.1 Subscribing a USP Endpoint to a STOMP Destination ... 61
8.3 Mapping USP Records to STOMP Frames .. 62

8.3.1 Handling USP Record errors and ERROR Frames ... 63
8.3.2 Handling Other STOMP Frames ... 64

8.4 Discovery Requirements .. 64

8.5 STOMP Server Requirements .. 65

8.6 MTP Message Encryption .. 65

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 5 of 249

9 WebSocket Binding .. 65

9.1 Mapping USP Endpoints to WebSocket URIs ... 65

9.2 Handling of the WebSocket Session .. 66

9.2.1 Mapping USP Records to WebSocket Messages .. 67
9.3 Handling of WebSocket Frames .. 68

9.3.1 Handling Failures to Deliver USP Records ... 69
9.3.2 Keeping the WebSocket Session Alive .. 69
9.3.3 WebSocket Session Retry .. 69

9.4 MTP Message Encryption .. 71

10 MQTT Binding ... 71

10.1 Connecting a USP Endpoint to the MQTT Server ... 74

10.1.1 CONNECT Flags and Properties ... 75
10.1.2 Keep Alive .. 76

10.2 Subscribing to MQTT Topics .. 76

10.3 Sending the USP Record in a PUBLISH Packet Payload .. 78

10.4 Handling Errors .. 79

10.5 Handling Other MQTT Packets ... 80

10.6 Discovery Requirements .. 81

10.7 MQTT Server Requirements .. 81

10.8 MTP Message Encryption .. 82

11 Message Encoding .. 82

12 End to End Message Exchange ... 83

12.1 USP Record Encapsulation .. 84

12.1.1 Record Definition ... 84
12.2 Exchange of USP Records within an E2E Session Context ... 87

12.2.1 Establishing an E2E Session Context ... 87
12.2.2 USP Record Exchange ... 90
12.2.3 Guidelines for Handling Session Context Restarts .. 93
12.2.4 Segmented Message Exchange ... 94
12.2.5 Handling Duplicate USP Records .. 102

12.3 Exchange of USP Records without an E2E Session Context ... 102

12.3.1 Failure Handling of Received USP Records Without a Session Context 102
12.4 Validating the Integrity of the USP Record ... 102

12.4.1 Using the Signature Method to Validate the Integrity of USP Records 103
12.4.2 Using TLS to Validate the Integrity of USP Records ... 104

12.5 Secure Message Exchange ... 105

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 6 of 249

12.5.1 TLS Payload Encapsulation ... 105

13 Messages .. 108

13.1 Encapsulation in a USP Record ... 108

13.2 Requests, Responses and Errors ... 108

13.2.1 Handling Duplicate Messages ... 109
13.2.2 Example Message Flows .. 109

13.3 Message Structure .. 111

13.3.1 The USP Message ... 112
13.3.2 Message Header ... 112
13.3.3 Message Body ... 113

13.4 Creating, Updating, and Deleting Objects ... 115

13.4.1 Selecting Objects and Parameters ... 115
13.4.2 Using Allow Partial and Required Parameters ... 116
13.4.3 The Add Message ... 117
13.4.4 The Set Message ... 121
13.4.5 The Delete Message ... 126

13.5 Reading an Agent’s State and Capabilities .. 130

13.5.1 The Get Message .. 130
13.5.2 The GetInstances Message ... 137
13.5.3 The GetSupportedDM Message ... 141
13.5.4 GetSupportedProtocol .. 147

13.6 Notifications and Subscription Mechanism ... 147

13.6.1 Using Subscription Objects .. 148
13.6.2 Responses to Notifications and Notification Retry ... 148
13.6.3 Notification Types .. 150
13.6.4 The Notify Message .. 153

13.7 Defined Operations Mechanism ... 156

13.7.1 Synchronous Operations .. 156
13.7.2 Asynchronous Operations .. 157
13.7.3 Operate Requests on Multiple Objects ... 158
13.7.4 Event Notifications for Operations .. 159
13.7.5 Concurrent Operations .. 159
13.7.6 Operate Examples .. 159
13.7.7 The Operate Message ... 160

13.8 Error Codes .. 162

13.8.1 Vendor Defined Error Codes ... 164

14 Authentication and Authorization .. 164

14.1 Authentication .. 165

14.2 Role Based Access Control (RBAC) ... 165

14.3 Trusted Certificate Authorities ... 166

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 7 of 249

14.4 Trusted Brokers .. 167

14.5 Self-Signed Certificates .. 167

14.6 Agent Authentication ... 168

14.7 Challenge Strings and Images .. 169

14.8 Analysis of Controller Certificates ... 170

14.8.1 Receiving a USP Record .. 170
14.8.2 Sending a USP Record ... 173
14.8.3 Checking a Certificate Containing an Endpoint ID ... 175
14.8.4 Using a Trusted Broker .. 176

14.9 Theory of Operations ... 178

14.9.1 Data Model Elements ... 179
14.9.2 Roles (Access Control) ... 179
14.9.3 Assigning Controller Roles .. 182
14.9.4 Controller Certificates and Certificate Validation .. 183
14.9.5 Challenges .. 183
14.9.6 Certificate Management ... 184
14.9.7 Application of Modified Parameters .. 184

15 Annex A - HTTP Bulk Data Collection .. 185

15.1 Enabling HTTP/HTTPS Bulk Data Communication ... 185

15.1.1 Use of the URI Query Parameters ... 186
15.1.2 Use of HTTP Status Codes ... 187
15.1.3 Use of TLS and TCP ... 188

15.2 Encoding of Bulk Data ... 190

15.2.1 Using Wildcards to Reference Object Instances in the Report 190
15.2.2 Using Alternative Names in the Report .. 191
15.2.3 Processing of Content for Failed Report Transmissions ... 193
15.2.4 Encoding of CSV Bulk Data ... 193
15.2.5 Encoding of JSON Bulk Data ... 196

16 Appendix I - Software Module Management ... 200

16.1 Lifecycle Management ... 201

16.2 Software Modules .. 201

16.2.1 Deployment Units ... 202
16.2.2 Execution Units .. 206

16.3 Execution Environment Concepts .. 209

16.4 Fault Model .. 211

16.4.1 DU Faults ... 211
16.4.2 EU Faults ... 214

17 Appendix I - Firmware Management of Devices with USP Agents 215

17.1 Getting the firmware image onto the device .. 216

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 8 of 249

17.2 Using multiple firmware images .. 216

17.2.1 Switching firmware images .. 217
17.2.2 Performing a delayed firmware upgrade ... 217
17.2.3 Recovering from a failed upgrade .. 217

18 Appendix III - Device Proxy .. 218

19 Appendix IV - Proxying ... 218

19.1 Proxying Building Block Functions ... 219

19.2 Discovery Proxy ... 220

19.3 Connectivity Proxy ... 220

19.4 Message Transfer Protocol (MTP) Proxy .. 221

19.4.1 MTP Header Translation Algorithms .. 221
19.4.2 CoAP / STOMP MTP Proxy Example Message Flow .. 225

19.5 USP to Non-USP Proxy ... 228

20 Appendix V - IoT Data Model Theory of Operation .. 228

20.1 Introduction .. 228

20.2 IoT data model overview .. 228

20.2.1 IoT Capability table ... 229
20.2.2 Node object table .. 230

20.3 Architecture mappings ... 230

20.3.1 Individual IoT devices .. 230
20.3.2 Proxied IoT devices .. 231

20.4 IoT data model object details ... 231

20.4.1 Common capability parameters ... 231
20.4.2 Control Objects .. 232
20.4.3 Sensor Objects .. 234

20.5 Examples .. 239

20.5.1 Example: A/C Thermostat .. 240
20.5.2 Example: Light with a dimmer and switch ... 242
20.5.3 Example: Fan ... 242
20.5.4 Example: Multi-Sensor strip with a common battery. .. 243
20.5.5 Example: Ceiling Fan with integrated light ... 243
20.5.6 Example: Power strip ... 245
20.5.7 Example: Battery powered radiator thermostat ... 247

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 9 of 249

1 Introduction

1.1 Legal Notice

The Broadband Forum is a non-profit corporation organized to create guidelines for broadband
network system development and deployment. This Technical Report has been approved by
members of the Forum. This Technical Report is subject to change. This Technical Report is
copyrighted by the Broadband Forum, and all rights are reserved. Portions of this Technical Report
may be copyrighted by Broadband Forum members.

1.1.1 Intellectual Property

Recipients of this Technical Report are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be aware that
might be infringed by any implementation of this Technical Report, or use of any software code
normatively referenced in this Technical Report, and to provide supporting documentation.

1.1.2 Terms of Use

1.1.2.1 License

Broadband Forum hereby grants you the right, without charge, on a perpetual, non-exclusive and
worldwide basis, to utilize the Technical Report for the purpose of developing, making, having
made, using, marketing, importing, offering to sell or license, and selling or licensing, and to
otherwise distribute, products complying with the Technical Report, in all cases subject to the
conditions set forth in this notice and any relevant patent and other intellectual property rights of
third parties (which may include members of Broadband Forum). This license grant does not
include the right to sublicense, modify or create derivative works based upon the Technical Report
except to the extent this Technical Report includes text implementable in computer code, in which
case your right under this License to create and modify derivative works is limited to modifying and
creating derivative works of such code. For the avoidance of doubt, except as qualified by the
preceding sentence, products implementing this Technical Report are not deemed to be derivative
works of the Technical Report.

1.1.2.2 NO WARRANTIES

THIS TECHNICAL REPORT IS BEING OFFERED WITHOUT ANY WARRANTY
WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NONINFRINGEMENT IS
EXPRESSLY DISCLAIMED. ANY USE OF THIS TECHNICAL REPORT SHALL BE MADE
ENTIRELY AT THE IMPLEMENTER’S OWN RISK, AND NEITHER THE BROADBAND
FORUM, NOR ANY OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY
WHATSOEVER TO ANY IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 10 of 249

ANY NATURE WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE USE
OF THIS TECHNICAL REPORT.

1.1.2.3 THIRD PARTY RIGHTS

Without limiting the generality of Section 2 above, BROADBAND FORUM ASSUMES NO
RESPONSIBILITY TO COMPILE, CONFIRM, UPDATE OR MAKE PUBLIC ANY THIRD
PARTY ASSERTIONS OF PATENT OR OTHER INTELLECTUAL PROPERTY RIGHTS
THAT MIGHT NOW OR IN THE FUTURE BE INFRINGED BY AN IMPLEMENTATION OF
THE TECHNICAL REPORT IN ITS CURRENT, OR IN ANY FUTURE FORM. IF ANY SUCH
RIGHTS ARE DESCRIBED ON THE TECHNICAL REPORT, BROADBAND FORUM TAKES
NO POSITION AS TO THE VALIDITY OR INVALIDITY OF SUCH ASSERTIONS, OR THAT
ALL SUCH ASSERTIONS THAT HAVE OR MAY BE MADE ARE SO LISTED.

The text of this notice must be included in all copies of this Technical Report.

1.2 Revision History

1.2.1 Release 1.1

• Release contains specification for the User Services Platform 1.1.

– Adds MQTT support as a Message Transfer Protocol

– Adds a theory of operations for IoT control using USP Agents

– Clarifications on protocol functions, error messages, and updates to examples

Valid versions for USP Agents as of this release include “1.1” and “1.0”.

1.2.2 Release 1.0.2

• Typographical and example fixes

1.2.3 Release 1.0.1

• Added examples and clarifications to end-to-end messaging, use of endpoint ID, typographical
fixes

1.2.4 Release 1.0

• Release contains specification for the User Services Platform 1.0.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 11 of 249

1.3 Editors

• Name • Company • Email • Role
• Barbara

Stark
• AT&T • barbara.stark@att.com • Editor/USP Project

Lead
• Tim

Spets
• Green

Wave
Systems

• tim.spets@greenwavesystems.com • Editor/USP Project
Lead

• Jason
Walls

• QA Cafe,
LLC

• jason@qacafe.com • Editor/Broadband
User Services
Work Area
Director

• John
Blackfo
rd

• Arris • john.blackford@arris.com • Editor/Broadband
User Services
Work Area
Director

1.4 Acknowledgements

The following individuals are being acknowledged for their efforts in the testing and development
of this specification.

• Name • Company • Email
• Jean-Didier Ott • Orange • jeandidier.ott@orange.com
• Timothy Carey • Nokia • timothy.carey@nokia.com
• Steven Nicolai • Arris • Steven.Nicolai@arris.com
• Apostolos Papageorgiou • NEC • apostolos.Papageorgiou@neclab.eu
• Mark Tabry • Google • mtab@google.com
• Klaus Wich • Huawei • klaus.wich@huawei.com
• Daniel Egger • Axiros • daniel.egger@axiros.com
• Bahadir Danisik • Nokia • bahadir.danisik@nokia.com

1.5 Executive Summary

This document describes the architecture, protocol, and data model that builds an intelligent User
Services Platform. It is targeted towards application developers, application service providers, CPE
vendors, consumer electronics manufacturers, and broadband and mobile network providers who
want to expand the value of the end user’s network connection and their connected devices.

The term “connected device” is a broad one, applying to the vast array of network connected CPE,
consumer electronics, and computing resources that today’s consumers are using at an increasing
rate. With the advent of “smart” platforms (phones, tablets, and wearables) plus the emerging

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 12 of 249

Internet of Things, the number of connected devices the average user or household contains is
growing by several orders of magnitude.

In addition, users of the fixed and mobile broadband network are hungry for advanced broadband
and intelligent cloud services. As this desire increases, users are turning towards over-the-top
providers to consume the entertainment, productivity, and storage applications they want.

These realities have created an opportunity for consumer electronics vendors, application
developers, and broadband and mobile network providers. These connected devices and services
need to be managed, monitored, troubleshot, and controlled in an easy to develop and interoperable
way. A unified framework for these is attractive if we want to enable providers, developers, and
vendors to create value for the end user. The goal should be to create system for developing,
deploying, and supporting these services for end users on the platform created by their connectivity
and components, that is, to be able to treat the connected user herself as a platform for applications.

To address this opportunity, use cases supported by USP include:

• Management of IoT devices through re-usable data model objects.

• Allowing the user to interact with their devices and services using customer portals or control
points on their own smart devices.

• The ability to have both the application and network service provider manage, troubleshoot,
and control different aspects of the services they are responsible for, and enabling provider
partnerships.

• Providing a consistent user experience from mobile to home.

• Simple migration from the CPE WAN Management Protocol (CWMP) - commonly known by
its document number, “TR-069” - through use of the same data model and data modeling tools.

1.6 Purpose and Scope

1.6.1 Purpose

This document provides the normative requirements and operational description of the User
Services Platform (USP). USP is designed for consumer electronics/IoT, home network/gateways,
smart WiFi systems, and virtual services (though could theoretically be used for any connected
device in many different verticals). It is targeted towards developers, application providers, and
network service providers looking to deploy those products.

1.6.2 Scope

This document identifies the USP:

• Architecture

https://www.broadband-forum.org/technical/download/TR-069.pdf

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 13 of 249

• Record structure, syntax, and rules

• Message structure, syntax, and rules

• Bindings that allow specific protocols to carry USP Records in their payloads

• Discovery and advertisement mechanisms

• Security credentials and logic

• Encryption mechanisms

Lastly, USP makes use of and expands the Device:2 Data Model. While particular Objects and
parameters necessary to the function of USP are mentioned here, their normative description can be
found in that XML document.

1.7 References and Terminology

1.7.1 Conventions

In this specification, several words are used to signify the requirements of the specification. These
words are always capitalized. More information can be found be in RFC 2119.

MUST

This word, or the term “REQUIRED”, means that the definition is an absolute requirement of the
specification.

MUST NOT

This phrase means that the definition is an absolute prohibition of the specification.

SHOULD

This word, or the term “RECOMMENDED”, means that there could exist valid reasons in
particular circumstances to ignore this item, but the full implications need to be understood and
carefully weighed before choosing a different course.

SHOULD NOT

This phrase, or the phrase “NOT RECOMMENDED” means that there could exist valid reasons in
particular circumstances when the particular behavior is acceptable or even useful, but the full
implications need to be understood and the case carefully weighed before implementing any
behavior described with this label.

MAY

https://usp-data-models.broadband-forum.org/
https://tools.ietf.org/html/rfc2119

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 14 of 249

This word, or the term “OPTIONAL”, means that this item is one of an allowed set of alternatives.
An implementation that does not include this option MUST be prepared to inter-operate with
another implementation that does include the option.

1.7.2 References

The following references are of relevance to this Technical Report. At the time of publication, the
editions indicated were valid. All references are subject to revision; users of this Technical Report
are therefore encouraged to investigate the possibility of applying the most recent edition of the
references listed below.

A list of currently valid Broadband Forum Technical Reports is published at www.broadband-
forum.org.

1. Broadband Forum TR-181 Issue 2: Device Data Model

2. Broadband Forum TR-069 Amendment 6: CPE WAN Management Protocol

3. Broadband Forum TR-106 Amendment 8: Data Model Template for CWMP Endpoints and
USP Agents

4. IETF RFC 7228: Terminology for Constrained-Node Networks

5. IETF RFC 2136: Dynamic Updates in the Domain Name System

6. IETF RFC 3007: Secure Domain Name System Dynamic Update

7. IETF RFC 6763: DNS-Based Service Discovery

8. IETF RFC 6762: Multicast DNS

9. IETF RFC 7252: The Constrained Application Protocol (CoAP)

10. IETF RFC 7390: Group Communication for the Constrained Application Protocol (CoAP)

11. IETF RFC 4033: DNS Security Introduction and Requirements

12. Protocol Buffers v3 Protocol Buffers Mechanism for Serializing Structured Data Version 3

13. IEEE Registration Authority

14. IETF RFC 4122 A Universally Unique IDentifier (UUID) URN Namespace

15. IETF RFC 5290: Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile

16. IETF RFC 6818: Updates to the Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile

17. IETF RFC 2234 Augmented BNF for Syntax Specifications: ABNF

https://www.broadband-forum.org/
https://www.broadband-forum.org/
https://usp-data-models.broadband-forum.org/
https://www.broadband-forum.org/technical/download/TR-069.pdf
https://www.broadband-forum.org/technical/download/TR-106_Amendment-8.pdf
https://www.broadband-forum.org/technical/download/TR-106_Amendment-8.pdf
https://tools.ietf.org/html/rfc7228
https://tools.ietf.org/html/rfc2136
https://tools.ietf.org/html/rfc3007
https://tools.ietf.org/html/rfc6763
https://tools.ietf.org/html/rfc6762
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7390
https://tools.ietf.org/html/rfc4033
https://developers.google.com/protocol-buffers/docs/proto3
https://regauth.standards.ieee.org/standards-ra-web/pub/view.html#registries
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc6818
https://tools.ietf.org/html/rfc6818
https://tools.ietf.org/html/rfc2234

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 15 of 249

18. IETF RFC 3986 Uniform Resource Identifier (URI): Generic Syntax

19. IETF RFC 2141 URN Syntax

20. IETF RFC 6455 The WebSocket Protocol

21. Simple Text Oriented Message Protocol

22. The Transport Layer Security (TLS) Protocol Version 1.2

23. Datagram Transport Layer Security Version 1.2

24. MQ Telemetry Transport 5.024.

2 Definitions
The following terminology is used throughout this specification.

Agent

An Agent is an Endpoint that exposes Service Elements to one or more Controllers.

Binding

A Binding is a means of sending Messages across an underlying Message Transfer Protocol.

Command

The term used to define and refer to an Object-specific Operation in the Agent’s Instantiated or
Supported Data Model.

Connection Capabilities

Connection Capabilities are information related to an Endpoint that describe how to communicate
with that Endpoint, and provide a very basic idea of what sort of function the Endpoint serves.

User Services Platform

The User Services Platform consists of a data model, architecture, and communications protocol to
transform consumer broadband networks into a platform for the development, deployment, and
support of broadband enabled applications and services.

Controller

A Controller is an Endpoint that manipulates Service Elements through one or more Agents.

Device Type (DT) Definition

A Device Type Definition (DT) is a description of the Service Elements an Agent is able to support,
defining its Supported Data Model.

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc2141
https://tools.ietf.org/html/rfc6455
https://stomp.github.io/stomp-specification-1.2.html
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc6347
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 16 of 249

Discovery

Discovery is the process by which Controllers become aware of Agents and Agents become aware
of Controllers.

Endpoint

An Endpoint is a termination point for a Message.

Endpoint Identifier

The Endpoint Identifier is a globally unique USP layer identifier of an Endpoint.

End to End Message Exchange

USP feature that allows for message integrity protection through the creation of a session context.

Error

An Error is a Message that contains failure information associated with a Request.

Event

An Event is a set of conditions that, when met, triggers the sending of a Notification.

Expression

See also Search Expression

Expression Component

An Expression Component is the part of a Search Expression that gives the matching Parameter
criteria for the search. It is comprised of an Expression Parameter followed by an Expression
Operator followed by an Expression Constant.

Expression Constant

The Expression Constant is the value used to compare against the Expression Component to
determine if a search matches a given Object.

Expression Operator

The Expression Operator is the operator used to determine how the Expression Component will be
evaluated against the Expression Constant, i.e., equals (==), not equals (!=), less than (<), greater
than (>), less than or equal (<=), and greater than or equal (>=).

Expression Parameter

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 17 of 249

The Expression Parameter is a Parameter relative to the path where an Expression Variable occurs
that will be used with the Expression Constant to evaluate the Expression Component.

Expression Variable

The Expression Variable is an identifier used to allow relative addressing when building an
Expression Component.

Instantiated Data Model

The Instantiated Data Model of an Agent represents the current set of Service Elements (and their
state) that are exposed to one or more Controllers.

Instance Identifier

A term used to identify to an Instance of a Multi-Instance Object (also called a Row of a Table).
While all Multi-Instance Objects have an Instance Number that can be used as an Instance
Identifier, an Object Instance can also be referenced using that Object’s Unique Key.

Instance Number

An Instance Number is a numeric Instance Identifier assigned by the Agent to instances of Multi-
Instance Objects in an Agent’s Instantiated Data Model.

Instance Path

An Instance Path is a Path Name that addresses an Instance of a Multi-Instance Object (also called a
Row of a Table). It includes the Object Path followed by an Instance Identifier.

Message

A Message refers to the contents of a USP layer communication including exactly one Message
Header and at most one Message Body.

Message Body

The Message Body is the portion of a Message that contains one of the following: Request,
Response, or Error.

Message Header

The portion of a Message that contains elements that provide information about the message,
including the Endpoint Identifier of the sender and receiver, message type, and Message ID
elements.

Message ID

A Message ID is an identifier used to associate a Response or Error with a Request.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 18 of 249

Message Transfer Protocol

A Message Transfer Protocol (MTP) is the protocol at a layer below USP that carries a Message,
i.e., CoAP.

Multi-Instance Object

A Multi-Instance Object refers to an Object that can be created or deleted in the Agent’s
Instantiated Data Model. Also called a Table.

Notification

A Notification is a Request from an Agent that conveys information about an Event to a Controller
that has a Subscription to that event.

Object

An Object refers to a defined type that an Agent represents and exposes. A Service Element may be
comprised of one or more Objects and Sub-Objects.

Object Instance

An Object Instance refers to a single instance Object of a type defined by a Multi-Instance Object in
the Agent’s Instantiated Data Model. Also called a Row of a Table.

Object Path

An Object Path is a Path Name that addresses an Object. In the case of Multi-Instance Objects, an
Object Path addresses the Object type itself rather than instances of that Object, which are
addressed by Instance Paths

Operation

A method defined for a particular Service Element that can be invoked with the Operate message.

Parameter

A Parameter is a variable or attribute of an Object. Parameters have both type and value.

Parameter Path

A Parameter Path is a Path Name that addresses a Parameter of an Object or Object Instance.

Path Name

A Path Name is a fully qualified reference to an Object, Object Instance, or Parameter in an Agent’s
instantiated or Supported Data Model.

Path Reference

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 19 of 249

A Path Reference is a Parameter data type that contains a Path Name to an Object or Parameter that
may be automatically followed by using certain Path Name syntax.

Record

The Record is defined as the Message Transfer Protocol (MTP) payload, encapsulating a sequence
of datagrams that comprise the Message as well as providing additional metadata needed for
providing integrity protection, payload protection and delivery of fragmented Messages.

Relative Path

A Relative Path is the remaining path information necessary to form a Path Name given a parent
Object Path. It is used for message efficiency when addressing Path Names.

Request

A Request is a type of Message that either requests the Agent perform some action (create, update,
delete, operate, etc.), requests information about an Agent or one or more Service Elements, or acts
as a means to deliver Notifications from the Agent to the Controller. A Request usually requires a
Response.

Response

A Response is a type of Message that provides return information about the successful processing of
a Request.

Row

The term Row refers to an Instance of a Multi-Instance Object in the Agent’s Instantiated Data
Model.

Search Expression

A Search Expression is used in a Search Path to apply specified search criteria to address a set of
Multi-Instance Objects and/or their Parameters.

Search Path

A Search Path is a Path Name that contains search criteria for addressing a set of Multi-Instance
Objects and/or their Parameters. A Search Path may contain a Search Expression or Wildcard.

Service Element

A Service Element represents a piece of service functionality that is exposed by an Agent, usually
represented by one or more Objects.

Source Endpoint

An Endpoint that was the sender of a message.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 20 of 249

Subscription

A Subscription is a set of logic that tells an Agent which Notifications to send to a particular
Controller.

Supported Data Model

The Supported Data Model of an Agent represents the complete set of Service Elements it is
capable of exposing to a Controller. It is defined by the union of all of the Device Type Definitions
the Agent exposes to the Controller.

Table

The term Table refers to a Multi-Instance Object in an Agent’s Instantiated or Supported Data
Model.

Target Endpoint

An Endpoint that was the intended receiver of a message.

Trusted Broker

An intermediary that either (1) ensures the Endpoint ID in all brokered Endpoint’s USP Record
from_id matches the Endpoint ID of those Endpoint’s certificates or credentials, before sending on
a USP Record to another Endpoint, or (2) is part of a closed ecosystem that “knows” (certain)
Endpoints can be trusted not to spoof the Endpoint ID.

Unique Key

The Unique Key of a Multi-Instance Object is a set of Parameters that uniquely identify the instance
of an Object in the Agent’s Instantiated Data Model and can be used as an Instance Identifier.

Wildcard

A Wildcard is used in a Search Path to address all Object Instances of a Multi-Instance Object.

2.1 Abbreviations

This specification uses the following abbreviations:

• abbreviation • term
• ABNF • Augmented Backus-Naur Form
• CoAP • Constrained Application Protocol
• USP • User Services Platform
• CWMP • CPE WAN Management Protocol
• DNS • Domain Name Service

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 21 of 249

• DNS-SD • Domain Name Service - Service Definition
• DT • Device Type Definition
• E2E • End to End (Message Exchange)
• HMAC • Hash Message Authentication Code
• HTTP • Hypertext Transport Protocol
• mDNS • Multicast Domain Name Service
• IPv4/v6 • Internet Protocol (version 4 or version 6)
• LAN • Local Area Network
• MAC • Message Authentication Code
• MTP • Message Transfer Protocol
• OUI • Organizationally Unique Identifier
• PSS • Probabilistic Signature Scheme
• SAR • Segmentation And Reassembly
• SMM • Software Module Management
• TLS • Tranport Layer Security
• TR • Technical Report
• URI • Uniform Resource Identifier
• URL • Uniform Resource Locator
• UUID • Universally Unique Identifier
• WAN • Wide Area Network

3 Specification Impact

3.1 Energy efficiency

The User Services Platform reaches into more and newer connected devices, and expands on the
management of physical hardware, including power management. In addition, USP directly enables
smart home, smart building, and other smart energy applications.

3.2 Security

Any solution that provides a mechanism to manage, monitor, diagnose, and control a connected
user’s network, devices, and applications must prioritize security to protect user data and prevent
malicious use of the system. This is especially important with certain high-risk smart applications
like medicine or emergency services.

However reliable the security of communications protocols, in a platform that enables interoperable
components that may or may not be connected with protocols outside the scope of the specification,
security must be considered from end-to-end. To realize this, USP contains its own security
mechanisms.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 22 of 249

3.3 Privacy

Privacy is the right of an individual or group to control or influence what information related to
them may be collected, processed, and stored and by whom, and to whom that information may be
disclosed.

Assurance of privacy depends on whether stakeholders expect, or are legally required, to have
information protected or controlled from certain uses. As with security, the ability for users to
control who has access to their data is of primary importance in the world of the connected user,
made clear by users as well as regulators.

USP contains rigorous access control and authorization mechanisms to ensure that data is only used
by those that have been enabled by the user.

4 Architecture
The User Services Platform consists of a collection of Endpoints (Agents and Controllers) that
allow applications to manipulate Service Elements. These Service Elements are made up of a set of
Objects and parameters that model a given service, such as network interfaces, software modules,
device firmware, remote elements proxied through another interface, virtual elements, or other
managed services.

USP is made up of several architectural components:

• Mechanisms for discovery and trust establishment

• A method for encoding messages for transport

• A system for end-to-end confidentiality, integrity and identity authentication

• Transport of messages over one or more Message Transfer Protocols (MTPs) with associated
MTP security

• A set of standardized messages based on the CRUD model (create, read, update, delete), plus
an object defined operations mechanism and an notification mechanism (CRUD-ON)

• Authorization and access control on a per element basis

• A method for modeling service elements using a set of objects, parameters, operations, and
events (supported and instantiated data models)

4.1 Endpoints

A USP endpoint can act as Agent or a Controller. Controllers only send messages to Agents, and
Agents send messages to Controllers. A USP Endpoint communicates over a secure session
between other endpoints, over one or more Message Transfer Protocols (MTP) that may or may not
be secured.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 23 of 249

Figure ARC.1 - USP Agent and Controller Architecture

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 24 of 249

4.1.1 Agents

A USP Agent exposes (to Controllers) one or more Service Elements that are represented in its data
model. It contains or references both an Instantiated Data Model (representing the current state of
Service Elements it represents) and a Supported Data Model.

4.1.2 Controllers

A USP Controller manipulates (through Agents) a set of Service Elements that are represented in
Agent data models. It may maintain a database of Agents, their capabilities, and their states, in any
combination. A Controller usually acts as an interface to a user application or policy engine that
uses the User Services Platform to address particular use cases.

4.1.3 Endpoint Identifier

Endpoints are identified by an Endpoint Identifier.

The Endpoint Identifier is a locally or globally unique USP layer identifier of an Endpoint. Whether
it is globally or locally unique depends on the scheme used for assignment.

The Endpoint Identifier (ID) is used in the USP Record and various Parameters in a USP Message
to uniquely identify Controller and Agent Endpoints. It can be globally or locally unique, either
among all Endpoints or among all Controllers or all Agents, depending on the scheme used for
assignment.

The Endpoint ID is comprised of two mandatory and one optionally mandatory components:
authority-scheme, authority-id, and instance-id.

These three components are combined as:

authority-scheme ":" [authority-id] ":" instance-id

The format of the authority-id is dictated by the authority-scheme. The format of the instance-id is
dictated either by the authority-scheme or by the entity identified by the authority-id.

When used in a certificate, an Endpoint ID is expressed as a urn in the bbf namespace as:

"urn:bbf:usp:id:" authority-scheme ":" [authority-id] ":" instance-id

When used anywhere else (e.g. in the to_id and from_id of a USP Record), the namespace
information is omitted, and the Endpoint ID is expressed as:

authority-scheme ":" [authority-id] ":" instance-id

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 25 of 249

4.1.3.1 Use of authority-scheme and authority-id

The authority-scheme follows the following syntax:

authority-scheme = "oui" | "cid" | "pen" | "self" | "user" | "os" | "ops" |
"uuid" | "imei" | "proto" | "doc"

How these authority-scheme values impact the format and values of authority-id and instance-id is
described below.

The authority defined by an OUI, CID, or Private Enterprise Number (including OUI used in “ops”
and “os” authority scheme) is responsible for ensuring the uniqueness of the resulting Endpoint ID.
Uniqueness can be global, local, unique across all Endpoints, or unique among all Controllers or all
Agents. For the “user” authority scheme, the assigning user or machine is responsible for ensuring
uniqueness. For the “self” authority scheme, the Endpoint is responsible for ensuring uniqueness.

R-ARC.0 - A Controller and Agent within the same ecosystem MAY use the same Endpoint ID.

R-ARC.1 - Endpoints MUST tolerate the same Endpoint ID being used by an Agent and a
Controller in the same ecosystem.

R-ARC.2 - Endpoints that share the same Endpoint ID MUST NOT communicate with each other
via USP.

No conflict identification or resolution process is defined in USP to deal with a situation where an
Endpoint ID is not unique among either all Agents or all Controllers in whatever ecosystem it
operates. Therefore, a non-unique Endpoint ID will result in unpredictable behavior. An Endpoint
ID that changes after having been used to identify an Endpoint can also result in unpredictable
behavior.

Unless the authority responsible for assigning an Endpoint ID assigns meaning to an Agent and
Controller having the same Endpoint ID, no meaning can be construed. That is, unless the assigning
authority specifically states that an Agent and Controller with the same Endpoint ID are somehow
related, no relationship can be assumed to exist.

• authority-
scheme • usage and rules for authority-id and instance-id

• oui • authority-id MUST be an OUI assigned and registered by the IEEE
Registration Authority to the entity responsible for this Endpoint. authority-
id MUST use hex encoding of the 24-bit ID (resulting in 6 hex characters).
instance-id syntax is defined by this entity, who is also responsible for
determining instance-id assignment mechanisms and for ensuring uniqueness
of the instance-id within the context of the OUI. Example:oui:00256D:my-
unique-bbf-id-42

• cid • authority-id MUST be a CID assigned and registered by the IEEE
Registration Authority to the entity responsible for this Endpoint.
authority-id MUST use hex encoding of the 24-bit ID (resulting in 6 hex

https://regauth.standards.ieee.org/standards-ra-web/pub/view.html#registries
https://regauth.standards.ieee.org/standards-ra-web/pub/view.html#registries
https://regauth.standards.ieee.org/standards-ra-web/pub/view.html#registries
https://regauth.standards.ieee.org/standards-ra-web/pub/view.html#registries

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 26 of 249

characters).instance-id syntax is defined by this entity, who is also
responsible for determining instance-id assignment mechanisms and for
ensuring uniqueness of the instance-id within the context of the
CID.Example: cid:3AA3F8:my-unique-usp-id-42

• pen • authority-id MUST be a Private Enterprise Number assigned and
registered by the IANA to the entity responsible for this Endpoint.
authority-id MUST use decimal encoding of the IANA-assigned
number.instance-id syntax is defined by this entity, who is also
responsible for determining instance-id assignment mechanisms and for
ensuring uniqueness of the instance-id within the context of the Private
Enterprise Number.Example: pen:3561:my-unique-bbf-id-42

• self • An authority-id for “self” MUST be between 0 and 6 non-reserved
characters in length. When authority-id is 1 or more characters, it is
generated by the Endpoint.The Endpoint ID, including instance-id, is
generated by the Endpoint.The Endpoint MUST change its Endpoint ID if it
ever encounters another Endpoint using the identical Endpoint ID.Example:
self::my-Agent

• user • An authority-id for “user” MUST be between 0 and 6 non-reserved
characters in length.The Endpoint ID, including instance-id, is assigned to
the Endpoint via a user or management interface.

• os • authority-id MUST be zero-length.instance-idis <OUI> "-
"<SerialNumber>, as defined in TR-069, Section 3.4.4. Example:
os::00256D-0123456789

• ops • authority-id MUST be zero-length.instance-id is <OUI> "-"
<ProductClass> "-" <SerialNumber>, as defined in TR-069, Section
3.4.4.Example: ops::00256D-STB-0123456789

• uuid • authority-id MUST be zero-length.instance-id is a
UUIDExample:uuid::f81d4fae-7dec-11d0-a765-00a0c91e6bf6

• imei • authority-id MUST be zero-length.instance-id is an IMEI as defined by
GSMA(https://imeidb.gsma.com/imei/index).Example:
imei::990000862471854

• proto • authority-id MUST be between 0 and 6 non-reserved characters (except
“.”) in length.“proto” is used for prototyping purposes only. Any
authority-id and instance-id value (or scheme for creating the value) is
left to the prototyper.Example: proto::my-Agent

• doc • authority-id MUST be between 0 and 6 non-reserved characters in
length.“doc” is used for documentation purposes only (for creating examples
in slide decks, tutorials, and other explanatory documents). Any authority-
id and instance-id value (or scheme for creating the value) is left to the
document creator.

R-ARC.3 - BBF OUI (00256D) and Private Enterprise Number (3561) are reserved for use in BBF
documentation and BBF prototyping and MUST NOT be used by any entity other than BBF.

http://pen.iana.org/pen/PenApplication.page
https://www.broadband-forum.org/technical/download/TR-069.pdf
https://www.broadband-forum.org/technical/download/TR-069.pdf
https://tools.ietf.org/html/rfc4122

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 27 of 249

R-ARC.4 - The “proto” and “doc” authority-scheme values MUST NOT be used in production
environments.

The “proto” and “doc” values are intended only for prototyping and documentation (tutorials,
examples, etc.), respectively.

4.1.3.2 Use of instance-id

R-ARC.5 - instance-id MUST be encoded using only the following characters:

 instance-id = unreserved / pct-encoded
 unreserved = ALPHA / DIGIT / "-" / "." / "_"
 pct-encoded = "%" HEXDIG HEXDIG

The above expression uses the Augmented Backus-Naur Form (ABNF) notation of RFC2234,
including the following core ABNF syntax rules defined by that specification: ALPHA (letters),
DIGIT (decimal digits), HEXDIG (hexadecimal). It is taken from RFC3986 as the set of unreserved
characters and percent-encoded characters that are acceptable for all components of a URI. This set
is also allowed for use in URNs RFC2141, and all MTP headers.

R-ARC.6 - An instance-id value MUST be no more than 50 characters in length.

Shorter values are preferred, as end users could be exposed to Endpoint IDs. Long values tend to
create a poor user experience when users are exposed to them.

4.2 Service Elements

“Service Element” is a general term referring to the set of Objects, sub-Objects, commands, events,
and parameters that comprise a set of functionality that is manipulated by a Controller on an Agent.
An Agent’s Service Elements are represented in a Data Model - the data model representing an
Agent’s current state is referred to as its Instantiated Data Model, and the data model representing
the Service Elements it supports is called its Supported Data Model. The Supported Data Model is
described in a Device Type Definition (DT). An Agent’s Data Model is referenced using Path
Names.

4.2.1 Data Models

USP is designed to allow a Controller to manipulate Service Elements on an Agent using a
standardized description of those Service Elements. This standardized description is known as an
information model, and an information model that is further specified for use in a particular
protocol is known as a “Data Model”.

Note: This should be understood by those familiar with CWMP. For those unfamiliar with that
protocol, a Data Model is similar to a Management Information Base (MIB) used in the Simple
Network Management Protocol (SNMP) or YANG definitions used in NETCONF.

https://tools.ietf.org/html/rfc2234
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc2141

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 28 of 249

This version of the specification defines support for the following Data Model(s):

• The Device:2 Data Model

This Data Model is specified in XML. The schema and normative requirements for defining
Objects, Parameters, Events, and Commands for the Device:2 Data Model, and for creating Device
Type Definitions based on that Data Model, are defined in Broadband Forum TR-106, “Data Model
Template for TR-069 Enabled Devices”.

The use of USP with any of the above data models creates some dependencies on specific Objects
and Parameters that must be included for base functionality.

4.2.1.1 Instantiated Data Model

An Agent’s Instantiated Data Model represents the Service Elements (and their state) that are
currently represented by the Agent. The Instantiated Data Model includes a set of Objects, and the
sub-Objects (“children”), Parameters, Events, and Commands associated with those objects.

4.2.1.2 Supported Data Model

An Agent’s Support Data Model represents the Service Elements that an Agent understands. It
includes references to the Data Model(s) that define the Objects, Parameters, Events, and
Commands implemented by the Service Elements the Agent represents. A Supported Data Model
consists of the union of all Device Type Definitions used by the Agent.

4.2.1.3 Objects

Objects are data structures that are defined by their sub-Objects, Parameters, Events, Commands,
and creation criteria. They are used to model resources represented by the Agent. Objects may be
static (single-instance) or dynamic (a multi-instance Object, or “table”).

4.2.1.3.1 Single-Instance Objects

Static Objects, or “single instance” Objects, are not tables and do not have more than one instance
of them in the Agent. They are usually used to group Service Element functionality together to
allow for easy definition and addressing.

4.2.1.3.2 Multi-Instance Objects

Dynamic Objects, or “multi-instance” Objects, are those Objects that can be the subject of “create”
and “delete” operations (using the Add and Delete messages, respectively), with each instance of
the Object represented in the Instantiated Data Model with an Instance Identifier (see below). A

https://usp-data-models.broadband-forum.org/
https://usp-data-models.broadband-forum.org/
https://www.broadband-forum.org/technical/download/TR-106_Amendment-8.pdf
https://www.broadband-forum.org/technical/download/TR-106_Amendment-8.pdf

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 29 of 249

Multi-Instance Object is also referred to as a “Table”, with each instance of the Object referred to as
a “Row”. Multi-Instance Objects can be also the subject of a search.

4.2.1.4 Parameters

Parameters define the attributes or variables of an Object. They are retrieved by a Controller using
the read operations of USP and configured using the update operations of USP (the Get and Set
messages, respectively). Parameters have data types and are used to store values.

4.2.1.5 Commands

Commands define Object specific methods within the Data Model. A Controller can invoke these
methods using the “Operate” message in USP (i.e., the Operate message). Commands have
associated input and output arguments that are defined in the Data Model and used when the
method is invoked and returned.

4.2.1.6 Events

Events define Object specific notifications within the Data Model. A Controller can subscribe to
these events by creating instances of the Subscription table, which are then sent in a Notify Request
by the Agent. Events may also have information associated with them that are delivered in the
Notify Request - this information is defined with the Event in the Data Model.

4.2.2 Path Names

A Path Name is a fully qualified reference to an Object, Object Instance, or Parameter in an Agent’s
instantiated or Supported Data Model. The syntax for Path Names is defined in TR-106.

R-ARC.7 - All USP endpoints MUST support the Path Name syntax as defined in TR-106.

Path Names are represented by a hierarchy of Objects (“parents”) and sub-Objects (“children”),
separated by the dot “.” character, ending with a parameter if referencing a parameter path. There
are six different types of Path Names used to address the data model of an Agent:

1. Object Path - This is a Path Name of either a single-instance (“static”) Object, or the Path
Name to a Data Model Table (i.e., a Multi-Instance Object). An Object Path ends in a “.”
Character (as specified in TR-106), except when used in a reference parameter. When
addressing a Table in the Agent’s Supported Data Model that contains one or more Multi-
Instance Objects in the Path Name, the sequence “{i}” is used as a placeholder (see the
GetSupportedDM message).

2. Object Instance Path - This is a Path Name to a Row in a Table in the Agent’s Instantiated
Data Model (i.e., an Instance of a Multi-Instance Object). It uses an Instance Identifier to

https://www.broadband-forum.org/technical/download/TR-106_Amendment-8.pdf
https://www.broadband-forum.org/technical/download/TR-106_Amendment-8.pdf
https://www.broadband-forum.org/technical/download/TR-106_Amendment-8.pdf

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 30 of 249

address a particular Instance of the Object. An Object Instance Path ends in a “.” Character (as
specified in TR-106), except when used in a reference parameter.

3. Parameter Path - This is a Path Name of a particular Parameter of an Object.

4. Command Path - This is a Path Name of an Object defined Operation.

5. Event Path - This is a Path Name of an Object defined Event.

6. Search Path - This is a Path Name that contains search criteria for addressing a set of Multi-
Instance Objects and/or their Parameters. A Search Path may contain a Search Expression or
Wildcard.

This creates two functions of Path Names: Addressing and Searching. The first five paths are used
for addressing a particular Object, Parameter, Command, or Event. A Search Path uses Searching to
return a set of Object Instances and/or their Parameters. When addressing, the expectation is that the
Path Name will resolve to either 0 or 1 instance (and depending on the context, 0 instances could be
an error). When searching, the expectation is that the Search Path will resolve to 0, 1, or many
instances (and depending on the context, 0 instances is often not an error).

NOTE: When resolving a Path Name, the Agent is expected to use locally cached information
and/or information that can be obtained rapidly and cheaply. Specifically, there is no expectation
that the Agent would issue a network request in order to resolve a Path Name.

NOTE: Obviously only one form of addressing or searching can be used for a given Instance
Identifier in a Path Name, but different forms of addressing can be used if more than one Instance
Identifier needs to be specified in a Path Name.

For example, the following Path Name uses Unique Key Addressing for the Interface table but a
Search Expression for the IPv4Address table to select Enabled IPv4 Addresses associated with the
“eth0” IP Interface:

Device.IP.Interface.[Name=="eth0"].IPv4Address.[Status=="Enabled"].IPAddress

4.2.2.1 Relative Paths

Several USP messages make use of relative paths to address Objects or Parameters. A relative path
is used to address the child Objects and parameters of a given Object Path or Object Instance Path.
To build a Path Name using a Relative Path, a USP endpoint uses a specified Object Path or Object
Instance Path, and concatenates the Relative Path. This allows some efficiency in Requests and
Responses when passing large numbers of repetitive Path Names. This relative path may include
instance identifiers to Multi-Instance Objects.

For example, for an Object Path of:

Device.WiFi.Radio.1.

Relative paths would include parameters:

https://www.broadband-forum.org/technical/download/TR-106_Amendment-8.pdf

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 31 of 249

Status

SupportedStandards

OperatingStandards

Etc., as well as the following sub-Object and its parameters:

Stats.BytesSent

Stats.BytesReceived

Etc.

4.2.2.2 Using Instance Identifiers in Path Names

4.2.2.2.1 Addressing by Instance Number

Instance Number Addressing allows an Object Instance to be addressed by using its Instance
Number in the Path Name. An Instance Number is expressed in the Path Name as a positive integer
(>=1) with no additional surrounding characters. The Instance Number assigned by the Agent is
arbitrary.

R-ARC.8 - The assigned Instance Number MUST persist unchanged until the Object Instance is
subsequently deleted (either by the USP Delete message or through some external mechanism).
This implies that the Instance Number MUST persist across a reboot of the Agent, and that the
Agent MUST NOT allow the Instance Number of an existing Object Instance to be modified by an
external source.

For example, the Device.IP.Interface table entry with an Instance Number of 3 would be
addressed with the following Path Name: Device.IP.Interface.3.

4.2.2.2.2 Addressing by Unique Key

Key-based addressing allows an Object Instance to be addressed by using a Unique Key (as defined
in Device:2) in the Path Name. This is possible since once a Parameter that is part of a unique key
has its value set, then that value is immutable for the life of the Object that contains the Parameter.

For example, the Device.IP.Interface table has 2 separate unique keys; Name and Alias.

Unique Keys used for addressing are expressed in the Path Name by using square brackets
surrounding a string that contains the name and value of the Unique Key parameter using the
equivalence operator (==).

If an Object has a compound unique key (multiple parameters included within the same unique
key), then all keys must be present in the Instance Identifier and concatenated by the AND (&&)

https://usp-data-models.broadband-forum.org/

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 32 of 249

logical operator (the order of the parameters does not have to follow the order of the parameters as
defined in the unique key element as defined in Device:2).

NOTE: Addressing by Unique Key uses the same format as Searching with Expressions (see below).
If for a compound unique key expression a key component is omitted it is no longer addressing by
unique key but becomes a search with expressions.

For example, the Device.NAT.PortMapping table has a compound unique key consisting of
RemoteHost, ExternalPort, and Protocol, which would be addressed with the following Path Name:

Device.NAT.PortMapping.[RemoteHost==""&&ExternalPort==0&&Protocol=="TCP"].

4.2.3 Searching

Searching is a means of matching 0, 1 or many instances of a Multi-Instance Object by using the
properties of Object. Searching can be done with Expressions or Wildcards.

4.2.3.1 Searching with Expressions

Search paths that use expression are enclosed in square brackets as the Instance Identifier within a
Path Name.

R-ARC.9 - An Agent MUST return Path Names that include all Object Instances that match the
criteria of a given Search Path.

The basic format of a Search Path is:

Device.IP.Interface.[<expression>].Status

An Expression consists of one or more Expression Components that are concatenated by the AND
(&&) logical operator (NOTE: the OR logical operator is not supported).

The basic format of a Search Path with the Expression element expanded is:

Device.IP.Interface.[<expression component>&&<expression component>].Status

An Expression Component is a combination of an Expression Parameter followed by an Expression
Operator followed by an Expression Constant.

The basic format of a Search Path with the Expression Component element expanded is:

Device.IP.Interface.[<expression parameter><expression operator><expression
constant>].Status

For example, Device.IP.Interface.[intf].IPv4Address.[addr].IPAddress means that the
“intf” Expression represents the instances of the Device.IP.Interface.{i} Object whereas the

https://usp-data-models.broadband-forum.org/

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 33 of 249

“addr” Expression represents the instances of the Device.IP.Interface.{i}.IPv4Address.{i}
Object.

Further, this relative path can’t include any child tables. (NOTE: this is never necessary because
any child tables that need to be referenced in the Search Path can and should have their own
Expression)

An Expression Operator dictates how the Expression Component will be evaluated. The supported
operators include: equals (==), not equals (!=), less than (<), greater than (>), less than or equal
(<=), and greater than or equal (>=).

Note: When comparing values of type dateType, the values are presumed to be converted to their
numeric equivalent before comparison.

An Expression Parameter will always be of the type defined in the data model. Expression operators
will only evaluate for appropriate data types. The literal value representations for all data types are
found in TR-106. For string, boolean and enumeration types, only the ‘==’ and ‘!=’ operators
are valid.

The Expression Constant is the value that the Expression Parameter is being evaluated against;
Expression Parameters must match the type as defined for the associated Parameter in TR-181.

Note: String values are enclosed in double quotes. In order to allow a string value to contain
double quotes, quote characters can be percent-escaped as %22 (double quote). Therefore, a literal
percent character has to be quoted as %25.

4.2.3.1.1 Search Expression Examples

Valid Searches:

• Status for all IP Interfaces with a “Normal” type:

• Device.IP.Interface.[Type=="Normal"].Status

• IPv4 Addresses for all IP Interfaces with a Normal type and a Static addressing type:

• Device.IP.Interface.[Type=="Normal"].IPv4Address.[AddressingType=="Static"]
.IPAddress

• IPv4 Addresses for all IP Interfaces with a Normal type and Static addressing type that have at
least 1 Error Sent

• Device.IP.Interface.[Type=="Normal"&&Stats.ErrorsSent>0].IPv4Address.[Addre
ssingType=="Static"].IPAddress

Searches that are NOT VALID:

• Invalid because the Expression is empty:

https://www.broadband-forum.org/technical/download/TR-106_Amendment-8.pdf
https://usp-data-models.broadband-forum.org/

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 34 of 249

• Device.IP.Interface.[].

• Invalid because the Expression Component has an Expression Parameter that descends into a
child table (always need to use a separate Expression Variable for each child table instance):

• Device.IP.Interface.[Type=="Normal"&&IPv4Address.*.AddressingType=="Static"
].Status

• Invalid because the search expression uses curly brackets:

• Device.IP.Interface.{Type=="Normal"}.Status

4.2.3.2 Searching by Wildcard

Wildcard-based searching is a means of matching all currently existing Instances (whether that be 0,
1 or many instances) of a Multi-Instance Object by using a wildcard character “*” in place of the
Instance Identifier.

R-ARC.10 - An Agent MUST return Path Names that include all Object Instances that are matched
by the use of a Wildcard.

Examples:

All parameters for all IP Interfaces that currently exist

Device.IP.Interface.*.

Type of each IP Interface that currently exists

Device.IP.Interface.*.Type

4.2.4 Other Path Decorators

4.2.4.1 Reference Following

Device:2 contains Parameters that reference other Parameters or Objects. The Reference Following
mechanism allows references to Objects (not Parameters) to be followed from inside a single Path
Name. Reference Following is indicated by a “+” character after the name of the Parameter that is
referencing the Object followed by a “.”, followed by Objects or Parameters that are children of the
Referenced Object.

For example, Device.NAT.PortMapping.{i}.Interface references an IP Interface Object
(Device.IP.Interface.{i}.) and that Object has a Parameter called “Name”. With Reference
Following, a Path Name of Device.NAT.PortMapping.1.Interface+.Name references the
“Name” Parameter of the Interface Object that the PortMapping is associated with (i.e. it is the
equivalent of using Device.IP.Interface.1.Name as the Path Name.

https://usp-data-models.broadband-forum.org/

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 35 of 249

The steps that are executed by the Agent when following the reference in this example would be:

1. Retrieve the appropriate instance of the PortMapping Object based on the Instance Number
Addressing information

2. Retrieve the value of the reference parameter Parameter that contains the reference, Interface,
which in this case has the value “Device.IP.Interface.1”

3. Replace the preceding path (Device.NAT.PortMapping.1.Interface+) with the value
retrieved in Step 2

4. Append the remainder of the Path Name (.Name), which builds the Path Name:
Device.IP.Interface.1.Name

5. Use Device.IP.Interface.1.Name as the Path Name for the action

*Note: It should be noted that according to the Device:2 Schema, reference parameters:

• Always contain Path Names (not Search Expressions)

• When configured, can be configured using Path Names using Instance Number Addressing or
Unique-Key Addressing, however:

• When the value of a reference parameter is read, all Instance Identifiers are returned as
Instance Numbers.*

R-ARC.11 - A USP Agent MUST support the ability to use Key-based addressing in reference
values.

For example, the following paths might illustrate a reference to the same object (defined as having
the KeyParam parameter as unique key) instance using an Instance Number and then a key value:

• Object.SomeReferenceParameter = “Object.FooObject.5”

• Object.SomeReferenceParameter =
“Object.FooObject.[KeyParam=="KeyValueForInstance5"]”

In the first example, the reference points to the FooObject with Instance Number 5. In the second
example, the reference points to the FooObject with a KeyParam value of “KeyValueForInstance5”.

R-ARC.12 - The following requirements relate to reference types and the associated Agent
behavior:

• An Agent MUST reject an attempt to set a strong reference parameter if the new value does not
reference an existing parameter or object.

• An Agent MUST NOT reject an attempt to set a weak reference parameter because the new
value does not reference an existing parameter or object.

• An Agent MUST change the value of a non-list-valued strong reference parameter to a null
reference when a referenced parameter or object is deleted.

https://www.broadband-forum.org/technical/download/TR-106_Amendment-8.pdf

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 36 of 249

• An Agent MUST remove the corresponding list item from a list-valued strong reference
parameter when a referenced parameter or object is deleted.

• An Agent MUST NOT change the value of a weak reference parameter when a referenced
parameter or object is deleted.

4.2.4.1.1 List of References

The USP data models have Parameters whose values contain a list of references to other Parameters
or Objects. This section explains how the Reference Following mechanism allows those references
to be followed from inside a single Path Name. The Reference Following syntax as defined above
still applies, but it is preceded by a means of referencing a specific instance within the list. The
additional syntax consists of a “#” character followed by list item number (1-indexed), which is
placed between the name of the Parameter that contains the list of references and the “+” that
indicates that the reference should be followed. To follow all references in the list, the endpoint can
specify a “#” character followed by a wildcard (“*”) character and the “+” character to follow the
reference (i.e., “ReferenceParameter#*+”).

For example, Device.WiFi.SSID.{i}.LowerLayers references a list of WiFi Radio Object
(defined as Device.WiFi.Radio.{i}.) Instances that are associated with the SSID. This Object
has a Name Parameter; so when following the first reference in the list of references a Path Name of
Device.WiFi.SSID.1.LowerLayers#1+.Name references the Name of the WiFi Radio associated
with this SSID Object Instance.

The steps that are executed by the Agent when following the reference in this example would be:

1. Retrieve the appropriate Device.WiFi.SSID.{i} instance based on the Instance Number
Addressing information

2. Retrieve the value of the LowerLayers Parameter, which in this case has a value of
“Device.WiFi.Radio.1, Device.WiFi.Radio.2”

3. Retrieve the first list item within the value retrieved in Step 2 (i.e., “Device.WiFi.Radio.1”)

4. Replace the preceding path (Device.WiFi.SSID.1.LowerLayers#1+) with the value retrieved
in Step 3

5. Append the remainder of the Path Name (.Name), resulting in a Path Name of:
Device.WiFi.Radio.1.Name

6. Use Device.WiFi.Radio.1.Name as the Path Name for the action

4.2.4.1.2 Search Expressions and Reference Following

The Reference Following and Search Expression mechanisms can be combined.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 37 of 249

For example, reference the Signal Strength of all WiFi Associated Devices using the “ac” Operating
Standard on the “MyHome” SSID, you would use the Path Name:

Device.WiFi.AccessPoint.[SSIDReference+.SSID=="MyHome"].AssociatedDevice.[Opera
tingStandard=="ac"].SignalStrength

4.2.4.2 Operations and Command Path Names

The Operate message allows a USP Controller to execute Commands defined in the USP data
models. Commands are synchronous or asynchronous operations that don’t fall into the typical
REST-based concepts of CRUD-N that have been incorporated into the protocol as specific
messages. Commands are addressed like Parameter Paths that end with parentheses “()” to
symbolize that it is a Command.

For example: Device.IP.Interface.[Name=="eth0"].Reset()

4.2.4.2.1 Event Path Names

The Notify request allows a type of generic event (called Event) message that allows a USP Agent
to emit events defined in the USP data models. Events are defined in and related to Objects in the
USP data models like commands. Events are addressed like Parameter Paths that end with an
exclamation point “!” to symbolize that it is an Event.

For example: Device.Boot!

4.2.5 Data Model Path Grammar

Expressed as a Backus-Naur Form (BNF) for context-free grammars, the path lexical rules for
referencing the Instantiated Data Model are:

idmpath ::= objpath | parampath | cmdpath | evntpath | searchpath
objpath ::= name '.' (name (('.' inst)|(reffollow '.' name))? '.')*
parampath ::= objpath name
cmdpath ::= objpath name '()'
evntpath ::= objpath name '!'
inst ::= posnum | expr | '*'
expr ::= '[' (exprcomp ('&&' exprcomp)*) ']'
exprcomp ::= relpath oper value
relpath ::= name (reffollow? '.' name)*
reffollow ::= ('#' (posnum | '*') '+')| '+'
oper ::= '==' | '!=' | '<' | '>' | '<=' | '>='
value ::= literal | number
name ::= [A-Za-z_] [A-Za-z_0-9]*
literal ::= '"' [^"]* '"'
posnum ::= [1-9] [0-9]*
number ::= '0' | ('-'? posnum)

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 38 of 249

The path lexical rules for referencing the Supported Data Model are:

sdmpath ::= name ‘.’ (name ‘.’ ((posnum | ‘{i}’) ‘.’)?)* name?
name ::= [A-Za-z_] [A-Za-z_0-9]*
posnum ::= [1-9] [0-9]*

4.2.5.1 BNF Diagrams for Instantiated Data Model

idmpath:

idmpath ::= objpath | parampath | cmdpath | evntpath | searchpath

objpath:

objpath ::= name ‘.’ (name (‘.’ inst | reffollow ‘.’ name)? ‘.’)*

referenced by:

• cmdpath

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 39 of 249

• evntpath

• idmpath

• parampath

parampath:

parampath ::= objpath name

referenced by:

• idmpath

cmdpath:

cmdpath ::= objpath name ‘()’

referenced by:

• idmpath

evntpath:

evntpath ::= objpath name ‘!’

referenced by:

• idmpath

inst:

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 40 of 249

inst ::= posnum | expr | ’*’

referenced by:

• objpath

expr:

expr ::= ‘[’ exprcomp (’&&’ exprcomp)* ’]’

referenced by: * inst

exprcomp:

exprcomp ::= relpath oper value

referenced by:

• expr

relpath:

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 41 of 249

relpath ::= name (reffollow? ‘.’ name)*

referenced by:

• exprcomp

• keyexpr

reffollow:

reffollow ::= (‘#’ (posnum | ’*’))? ‘+’

referenced by:

• objpath

• relpath

oper:

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 42 of 249

oper ::= ‘==’ | ‘!=’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’

referenced by:

• exprcomp

value:

value ::= literal | number

referenced by:

• exprcomp

• keyexpr

name:

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 43 of 249

name ::= [A-Za-z_] [A-Za-z_0-9]*

referenced by:

• cmdpath

• evntpath

• objpath

• parampath

• relpath

literal:

literal ::= ‘"’ [^"]* ‘"’

referenced by:

• value

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 44 of 249

number:

number ::= ‘0’ | ‘-’? posnum

referenced by:

• value

posnum:

posnum ::= [1-9] [0-9]*

referenced by:

• inst

• number

• reffollow

4.2.5.2 BNF Diagrams for Supported Data Model

sdmpath:

sdmpath ::= name ‘.’ (name ‘.’ ((posnum | ‘{i}’) ‘.’)?)* name?

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 45 of 249

name:

name ::= [A-Za-z_] [A-Za-z_0-9]*

referenced by:

• sdmpath

posnum:

posnum ::= [1-9] [0-9]*

referenced by:

• sdmpath

5 Discovery and Advertisement
Discovery is the process by which USP Endpoints learn the USP properties and MTP connection
details of another Endpoint, either for sending USP Messages in the context of an existing

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 46 of 249

relationship (where the Controller’s USP Endpoint Identifier, credentials, and authorized Role are
all known to the Agent) or for the establishment of a new relationship.

Advertisement is the process by which USP Endpoints make their presence known (or USP
Endpoint presence is made known) to other USP Endpoints.

5.1 Controller Information

An Agent that has a USP relationship with a Controller needs to know that Controller’s Endpoint
Identifier, credentials, and authorized Role.

An Agent that has a USP relationship with a Controller needs to obtain information that allows it to
determine at least one MTP, IP address, port, and resource path (if required by the MTP) of the
Controller. This may be a URL with all of these components, a FQDN that resolves to provide all of
these components via DNS-SD records, or mDNS discovery in the LAN.

Example mechanisms for configuration include but are not limited to:

• Pre-configured in firmware

• Configured by an already-known-and-trusted Controller

• Configured through a separate bootstrap mechanism such as a user interface or other
management interface.

• DHCP, DNS, or mDNS discovery.

R-DIS.0 - An Agent that supports USP configuration of Controllers MUST implement the
Device.LocalAgent.Controller Object as defined in The Device:2 Data Model.

The Agent can be pre-configured with trusted root certificates or trusted certificates to allow
authentication of Controllers. Other trust models are also possible, where an Agent without a
current Controller association will trust the first discovered Controller, or where the Agent has a UI
that allows a User to indicate whether a discovered Controller is authorized to configure that Agent.

5.2 Required Agent Information

A Controller that has a relationship with an Agent needs to know the Agent’s Endpoint Identifier,
connectivity information for the Agent’s MTP(s), and credentials.

Controllers acquires this information upon initial connection by an Agent, though a LAN based
Controller may acquire an Agent’s MTP information through mDNS Discovery. It is each
Controller’s responsibility to maintain a record of known Agents.

5.3 Use of DHCP for Acquiring Controller Information

https://usp-data-models.broadband-forum.org/

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 47 of 249

DHCP can be employed as a method for Agents to discover Controllers. The DHCPv4 Vendor-
Identifying Vendor-Specific Information Option RFC 3925 (option code 125) and DHCPv6
Vendor-specific Information Option RFC 3315 (option code 17) can be used to provide information
to Agents about a single Controller. The options that may be returned by DNS are shown below.
Description of these options can be found in Device:2.

R-DIS.1 - If an Agent is configured to request Controller DHCP information, the Agent MUST
include in its DHCPv4 requests a DHCPv4 V-I Vendor Class Option (option 124) and in its
DHCPv6 requests a DHCPv6 Vendor Class (option 16). This option MUST include the Broadband
Forum Enterprise Number (3561 decimal, 0x0DE9 hex) as an enterprise-number, and the string
“usp” (all lower case) in a vendor-class-data instance associated with this enterprise-number.

R-DIS.1a - The Agent MUST decode all received options as strings (provisioning code, wait
interval, and interval multiplier are not decoded as numeric fields).

R-DIS.1b - The Agent MUST interpret a received URL or FQDN of the Controller as either an
absolute URL or FQDN.

R-DIS.1c - If the Agent receives an encapsulated option value that is null terminated, the Agent
MUST accept the value provided, and MUST NOT interpret the null character as part of the value.

The Role to associate with a DHCP-discovered Controller is programmatically determined (see
Security).

R-DIS.2 - If the URL provided by DHCP includes the FQDN of a Controller, the Agent MUST use
DNS to retrieve additional Controller information.

ISPs are advised to limit the use of DHCP for configuration of a Controller to situations in which
the security of the link between the DHCP server and the Agent can be assured by the service
provider. Since DHCP does not itself incorporate a security mechanism, it is a good idea to use pre-
configured certificates or other means of establishing trust between the Agent and a Controller
discovered by DHCP.

5.3.1 DHCP Options for Controller Discovery

• Encapsulated
Option

• DHCPv4
Option
125

• DHCPv6
Option
17 • Parameter in Device:2

• URL or
FQDN of the
Controller

• 25 • 25 • Dependent on MTP

• Provisioning
code

• 26 • 26 • Device.LocalAgent.Controller.{i}.Provisionin

• USP retry
minimum
wait interval

• 27 • 27 • Device.Controller.{i}.USPRetryMinimumWaitInt

https://tools.ietf.org/html/rfc3925
https://tools.ietf.org/html/rfc3315
https://usp-data-models.broadband-forum.org/
https://usp-data-models.broadband-forum.org/

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 48 of 249

• USP retry
interval
multiplier

• 28 • 28 • Device.Controller.{i}.USPRetryIntervalMultip

5.4 mDNS

R-DIS.3 - If mDNS discovery is supported by a USP Endpoint, the USP Endpoint MUST
implement mDNS client and server functionality as defined in RFC 6762.

R-DIS.4 - If mDNS advertisement for a MTP is enabled on an Endpoint, the Endpoint MUST listen
for messages using that MTP from other Endpoints requesting establishment of USP
communication over that MTP.

R-DIS.5 - If mDNS is enabled, a USP Endpoint MUST use mDNS to resolve a FQDN with domain
“.local.”.

In general, the expectation is that Agents will advertise themselves so they will be discoverable by
Controllers. Controllers are not expected to advertise themselves, but are expected to discover
Agents and respond to applicable mDNS requests from Agents. Agents will use mDNS to resolve a
Controller “.local.” FQDN (and get DNS-SD records) when the Agent needs to send a
Notification to that Controller.

5.5 DNS

Requirements for implementation of a DNS client and configuration of the DNS client with DNS
server address(es) (through static configuration, DHCPv4, DHCPv6, or Router Solicitation) are not
provided. These are sufficiently well-known that they were not considered necessary for this
specification. If the Agent knows of no DNS Server, it cannot do DNS resolution.

R-DIS.6 - If DNS is enabled, an Endpoint MUST use DNS to resolve a FQDN with domain other
than ones used for mDNS (R-DIS.5)

R-DIS.7 - If the Agent is resolving an FQDN for a Controller, and the MTP or resource path are
unknown, the Agent MUST request DNS-SD information (PTR, SRV and TXT resource records) in
addition to A, AAAA or other resource records it is programmatically set to request.

5.5.1 DNS-SD Records

DNS Service Discovery (DNS-SD) RFC 6763 is a mechanism for naming and structuring of DNS
resource records to facilitate service discovery. It can be used to create DNS records for USP
Endpoints, so they can be discoverable via DNS PTR queries RFC 1035 or Multicast DNS (mDNS)
RFC 6762. DNS-SD uses DNS SRV and TXT records to express information about “services”, and
DNS PTR records to help locate the SRV and TXT records. To discover these DNS records, DNS
or mDNS queries can be used. [RFC 6762] recommends using the query type PTR to get both the
SRV and TXT records. A and AAAA records will also be returned, for address resolution.

https://tools.ietf.org/html/rfc6762
https://tools.ietf.org/html/rfc6763
https://www.ietf.org/rfc/rfc1035.txt
https://tools.ietf.org/html/rfc6762

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 49 of 249

The format of a DNS-SD Service Instance Name (which is the resource record (RR) Name of the
DNS SRV and TXT records) is “<Instance>.<Service>.<Domain>”. <Instance> will be the
USP Endpoint Identifier of the USP Endpoint.

R-DIS.8 - USP Endpoint DNS-SD records MUST include the USP Endpoint Identifier of the USP
Endpoint as the DNS-SD Service Instance Name.

Service Name values registered by BBF with IANA used by USP are shown below. As described in
RFC 6763, the <Service> part of a Service Instance Name is constructed from these values as
“_<Service Name>._<Transport Protocol>” (e.g., “_usp-agt-coap._udp”).

5.5.2 IANA-Registered USP Service Names

• Service Name • Transport Protocol • MTP • Type of USP Endpoint
• usp-agt-coap • udp • CoAP • Agent
• usp-ctr-coap • udp • CoAP • Controller
• usp-agt-ws • tcp • WebSocket • Agent
• usp-ctr-ws • tcp • WebSocket • Controller
• usp-agt-stomp • tcp • STOMP • Agent
• usp-ctr-stomp • tcp • STOMP • Controller
DNS PTR records with a service subtype identifier (e.g., ._<subtype>._usp-agt-
coap._udp.<Domain>) in the RR can be used to provide searchable simple (single layer) functional
groupings of USP Agents. The registry of subtypes for Service Names registered by BBF is listed at
www.broadband-forum.org/assignments. DNS SRV and TXT records can be pointed to by multiple
PTR records, which allow a USP Endpoint to potentially be discoverable as belonging to various
functional groupings.

DNS TXT records allow for a small set of additional information to be included in the reply sent to
the querier. This information cannot be used as search criteria. The registry of TXT record attributes
for BBF Service Names are listed at www.broadband-forum.org/assignments.

R-DIS.9 - Agent DNS-SD records MUST include a TXT record with the “path” and “name”
attributes.

R-DIS.10 - The “name” attribute included in the Agent DNS-SD records MUST be identical to the
.FriendlyName parameter defined in Device:2, if the FriendlyName parameter is implemented.

R-DIS.11 - Controller DNS-SD records MUST include a TXT record with the “path” attribute.

The “path” attribute is dependent on each Message Transfer Protocol.

The TXT record can include other attributes defined in the TXT record attribute registry, as well.

Whether a particular USP Endpoint responds to DNS or mDNS queries or populates (through
configuration or mDNS advertisement) their information in a local DNS-SD server can be a

http://www.broadband-forum.org/assignments
https://tools.ietf.org/html/rfc6763
http://www.broadband-forum.org/assignments
http://www.broadband-forum.org/assignments
https://usp-data-models.broadband-forum.org/

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 50 of 249

configured option that can be enabled/disabled, depending on the intended deployment usage
scenario.

5.5.3 Example Controller Unicast DNS-SD Resource Records

 ; One PTR record for each supported MTP
 _usp-ctr-coap._udp.host.example.com PTR <USP ID>._usp-ctr-
coap._udp.example.com.

 ; One SRV+TXT (DNS-SD Service Instance) record for each supported MTP
 <USP ID>._usp-ctr-coap._udp.example.com. SRV 0 1 443 host.example.com.
 <USP ID>._usp-ctr-coap._udp.example.com. TXT "path=<pathname>"

 ; Controller A and AAAA records
 host.example.com. A 192.0.2.200
 host.example.com. AAAA 2001:db8::200

5.5.4 Example Agent Multicast DNS-SD Resource Records

 ; One PTR record (DNS-SD Service) for each supported MTP
 _usp-agt-coap._udp PTR <USP ID>._usp-agt-coap._udp.local.

 ; One PTR record (DNS-SD Service Subtype) for each supported MTP per device
type
 _iot-device._sub._usp-agt-coap._udp PTR <USP ID>._usp-agt-
coap._udp.local.
 _gateway._sub._usp-agt-coap._udp PTR <USP ID>._usp-agt-
coap._udp.local.

 ; One SRV+TXT record (DNS-SD Service Instance) for each supported MTP
 <USP ID>._usp-agt-coap._udp.local. SRV 0 1 5694 <USP ID>.local.
 <USP ID>._usp-agt-coap._udp.local. TXT "path=<pathname>" "name=kitchen
light"

 ; Agent A and AAAA records
 <USP ID>.local. A 192.0.2.100
 <USP ID>.local. AAAA 2001:db8::100

5.5.5 Example Controller Multicast DNS-SD Resource Records

LAN Controllers do not need to have PTR records, as they will only be queried using the DNS-SD
instance identifier of the Controller.

 ; One SRV+TXT record (DNS-SD Service Instance) for each supported MTP
 <USP ID>._usp-ctr-coap._tcp.local. SRV 0 1 443 <USP ID>.local.
 <USP ID>._usp-ctr-coap._tcp.local. TXT "path=<pathname>"

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 51 of 249

 ; Controller A and AAAA records
 <USP ID>.local. A 192.0.2.200
 <USP ID>.local. AAAA 2001:db8::200

5.6 Using the SendOnBoardRequest() operation and OnBoardRequest
notification

An “OnBoardRequest” notification can be sent by an Agent to a Controller to begin an on-boarding
process (for example, when the Agent first comes online and discovers a Controller using DHCP).
Its use is largely driven by policy, but there is a mechanism other Controllers can use to ask an
Agent to send “OnBoardRequest” to another Controller: the SendOnBoardRequest() command is
defined in the Device:2. See section on notify messages for additional information about the
OnBoardRequest notification.

6 Message Transfer Protocols
USP messages are sent between Endpoints over one or more Message Transfer Protocols.

Note: Message Transfer Protocol was a term adopted to avoid confusion with the term “Transport”,
which is often overloaded to include both application layer (i.e. CoAP) and the actual OSI Transport
layer (i.e. UDP). Throughout this document, Message Transfer Protocol (MTP) refers to application
layer transport.

The requirements for each individual Message Transfer Protocol is covered in a section of this
document. This version of the specification includes definitions for:

• The Constrained Application Protocol (CoAP)

• WebSockets

• The Simple Text-Oriented Messaging Protocol

• MQ Telemetry Transport (MQTT)

6.1 Supporting Multiple MTPs

Agents and Controllers may support more than one MTP. When an Agent supports multiple MTPs,
the Agent may be configured with parameters for reaching a particular Controller across more than
one MTP. When an Agent needs to send a Notification to such a Controller, the Agent can be
designed (or possibly configured) to select a particular MTP, to try sending the Notification to the
Controller on all MTPs simultaneously, or to try MTPs sequentially. USP has been designed to
allow Endpoints to recognize when they receive a duplicate Message and to discard any duplicates.
Endpoints will always send responses on the same MTP where the Message was received.

6.2 Securing MTPs

https://usp-data-models.broadband-forum.org/

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 52 of 249

This specification places the following requirement for encrypting MTP headers and payloads on
USP implementations that are intended to be used in environments where USP Messages will be
transported across the Internet:

R-MTP.0 – The Message Transfer Protocol MUST use secure transport when USP Messages cross
inter-network boundaries.

For example, it may not be necessary to use MTP layer security when within an end-user’s local
area network (LAN). It is necessary to secure transport to and from the Internet, however. If the
device implementer can reasonably expect Messages to be transported across the Internet when the
device is deployed, then the implementer needs to ensure the device supports encryption of all MTP
protocols.

MTPs that operate over UDP will be expected to implement, at least, DTLS 1.2 as defined in RFC
6347.

MTPs that operate over TCP will be expected to implement, at least, TLS 1.2 as defined in RFC
5246.

Specific requirements for implementing these are provided in the individual MTP sections.

R-MTP.1 – When TLS or DTLS is used to secure an MTP, an Agent MUST require the MTP peer
to provide an X.509 certificate.

R-MTP.2 - An Agent capable of obtaining absolute time SHOULD wait until it has accurate
absolute time before establishing TLS or DTLS encryption to secure MTP communication. If an
Agent for any reason is unable to obtain absolute time, it can establish TLS or DTLS without
waiting for accurate absolute time. If an Agent chooses to establish TLS or DTLS before it has
accurate absolute time (or if it does not support absolute time), it MUST ignore those components
of the received X.509 certificate that involve absolute time, e.g. not-valid-before and not-valid-after
certificate restrictions.

R-MTP.3 - An Agent that has obtained an accurate absolute time MUST validate those components
of the received X.509 certificate that involve absolute time.

R-MTP.4 - When an Agent receives an X.509 certificate while establishing TLS or DTLS
encryption of the MTP, the Agent MUST execute logic that achieves the same results as in the
decision flow from Figures MTP.1.

https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 53 of 249

Figure MTP.1 – Receiving a X.509 Certificate

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 54 of 249

6.3 Brokered USP Record Errors

MTPs that allow connectivity directly between Endpoints tear down the connection when
encountering a USP Record error or other failure caused by the USP Record. This allows such a
problem to be signaled to the other Endpoint. MTP protocols where Endpoints connect to a session
broker do not tear down the connections to the session broker when encountering USP Record
errors. To notify an Endpoint when a failed USP Record was sent, the receiving Endpoint replies
with a simple error message.

These error messages are indicated using content type application/vnd.bbf.usp.error. The
following error codes (in the range 7100-7199) are defined to allow the error to be more specifically
indicated. Requirements for communicating USP Record errors using this content type and these
error codes are included in the definitions of brokered MTPs.

• Code • Name • Description
• 7100 • Record could not be

parsed
• This error indicates the received USP Record could

not be parsed.
• 7101 • Secure session

required
• This error indicates USP layer Secure Message

Exchange is required.
• 7102 • Secure session not

supported
• This error indicates USP layer Secure Message

Exchange was indicated in the received Record but
is not supported by the receiving Endpoint.

• 7103 • Segmentation and
reassembly not
supported

• This error indicates segmentation and reassembly
was indicated in the received Record but is not
supported by the receiving Endpoint.

• 7104 • Invalid Record value • This error indicates the value of at least one Record
field was invalid.

7 CoAP Binding
The Constrained Application Protocol (CoAP) MTP transfers USP Records between USP Endpoints
using the CoAP protocol as defined in RFC 7252. Messages that are transferred between CoAP
clients and servers utilize a request/response messaging interaction based on RESTful architectural
principles. The following figure depicts the transfer of the USP Records between USP Endpoints.

https://tools.ietf.org/html/rfc7252

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 55 of 249

Figure COAP.1 - Example: USP Request/Response over the CoAP MTP

In this example, a USP Request is encoded within a USP Record and encapsulated within a CoAP
request message. When a USP Endpoint receives the CoAP request message the USP Endpoint
immediately sends a CoAP response message (with no USP Record) to indicate receipt of the
message. A USP Response encoded within a USP Record is encapsulated in a new CoAP request
message. When the USP Endpoint receives the USP Response, it sends a CoAP response message
that indicates receipt of the message. Therefore, all Endpoints supporting CoAP will implement
both CoAP client and server.

As noted in the definition of a USP Request, this USP Record either requests the Agent perform
some action (create, update, delete, operate, etc.), requests information about an Agent or one or
more Service Elements, or acts as a means to deliver Notifications from the Agent to the Controller.
Notifications will only cause a USP Response to be generated if specified in the Notification
Request. However, the CoAP response will always be sent.

7.1 Mapping USP Endpoints to CoAP URIs

Section 6 of RFC 7252 discusses the URI schemes for identifying CoAP resources and provides a
means of locating the resource. These resources are organized hierarchically and governed by a
CoAP server listening for CoAP requests on a given port. USP Endpoints are one type of CoAP
resource that is identified and discovered.

R-COAP.0 - As the USP Endpoint is a resource governed by a CoAP server, the CoAP server
MUST also be identified as defined in section 6 of RFC 7252.

R-COAP.1 - A USP Endpoint MUST be represented as a CoAP resource with the following
resource attributes:

• Identifier within the CoAP server (uri-path)

• Resource type (rt): “bbf.usp.endpoint”

https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 56 of 249

• Interface (if): “bbf.usp.c” for USP Controller or “bbf.usp.a” for USP Agent

The identifier within the CoAP server is used to deliver messages to the USP Endpoint. When this
identifier is used to deliver messages to the USP Endpoint, this identifier is a uri-path that represents
the USP Endpoint.

R-COAP.2 - A CoAP request message MUST include a Uri-Query option that supplies the CoAP
server URI of the Endpoint that is the source of the CoAP request, formatted as ?reply-to=<coap
or coaps uri>. The coap and coaps URIs are defined in sections 6.1 and 6.2 of RFC 7252. The
URI MUST NOT include any optional queries at the end.

R-COAP-2a - When a USP Endpoint receives a CoAP request message it MUST use the reply-to
Uri-Query option included in the CoAP request as the CoAP URI for the USP Response (if a
response is required by the incoming USP Request).

R-COAP.3 - When creating DNS-SD records (see Using DNS), an Endpoint MUST set the DNS-
SD TXT record “path” attribute equal to the value of the CoAP server identifier (uri-path).

7.2 Mapping USP Records to CoAP Messages

R-COAP.4 - In order for USP Records to be transferred between a USP Controller and Agent using
CoAP, the USP Record MUST be encapsulated within the CoAP message as defined in RFC 7252.

R-COAP.5 – USP Records that exceed the CoAP message size MUST be block encapsulated in
accordance with RFC 7959.

USP Records are transferred using the CoAP resource that represents the receiving USP Endpoint
using the CoAP POST method as defined in RFC 7252.

R-COAP.6 - The CoAP Content-Format for USP Records MUST be application/octet-stream
(ID=42) for protobuf encoding.

7.2.1 Handling CoAP Request Success

R-COAP.7 - Upon successful reception of the CoAP message using POST, the CoAP server MUST
respond with a response code of 2.04 (Changed).

7.2.2 Handling CoAP Request Failures

At times CoAP requests fail to complete due to problems in the underlying transport (e.g., timeout)
or a failure response code received from the CoAP server due to problems in the CoAP request sent
by the CoAP client (4.xx) or problems with the CoAP server implementation (5.xx).

R-COAP.8 - CoAP clients and servers MUST implement the required CoAP response codes
defined in section 5.9 of RFC 7252.

https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
https://www.rfc-editor.org/rfc/rfc7959.txt
https://tools.ietf.org/html/rfc7252

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 57 of 249

R-COAP.9 - When a CoAP client receives a failure indication (e.g., timeout) from the underlying
transport layer, the CoAP client MUST indicate a timeout to the USP Endpoint.

R-COAP.10 - When a CoAP client receives a response code of 4.xx or 5.xx, the CoAP client
MUST indicate a CoAP failure to the USP Endpoint.

When a CoAP client sends a CoAP request, the CoAP client can provide incorrect or missing
information in the CoAP request. For example, a CoAP client can send a CoAP request with an:

• Invalid CoAP method: The CoAP server responds with a 4.05

• Invalid Content-Format options: The CoAP server responds with a 4.15

• Invalid or not understandable payload: The CoAP server responds with a 4.00

R-COAP.11 - When a CoAP server receives a CoAP request with an invalid CoAP method, the
CoAP server MUST respond with a 4.05 response code.

R-COAP.12 - When a CoAP server receives a CoAP request with an invalid CoAP Content-Format
option, the CoAP server MUST respond with a 4.15 response code.

R-COAP.13 - When a CoAP server receives a CoAP request and the receiving USP Endpoint
cannot interpret or decode the USP Record for processing, the CoAP server MUST respond with a
4.00 response code.

7.3 MTP Message Encryption

CoAP MTP message encryption is provided using DTLS as described in Section 9 of RFC 7252.

In section 9 of RFC 7252, CoAP messages are secured using one of three modes:

• NoSec: DTLS is disabled

• PreSharedKey: DTLS is enabled and the MTP endpoint uses pre-shared keys that are used to
validate the identity of CoAP endpoints involved in the message exchange

• RawPublicKey: DTLS is enabled and the MTP endpoint has an asymmetric key pair without a
certificate. The MTP endpoint has an identity calculated from the public key and a list of other
MTP endpoints to which it can communicate

• Certificate: DTLS is enabled and the MTP endpoint has an asymmetric key pair with an X.509
certificate.

R-COAP.14 - CoAP clients and servers MUST implement the NoSec and Certificate modes of
CoAP security as defined in RFC 7252.

While section 9 of RFC 7252 provides guidance on securing CoAP, further guidance related to
DTLS implementations for the Internet of Things is provided by RFC 7925.

https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7925

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 58 of 249

R-COAP.15 - CoAP clients and servers MUST implement the mandatory statements of RFC 7925
with the exception that:

• Section 4.4.1 USP Controller certificates can contain domain names with wildcard characters
per RFC 6125 guidance.

• Section 4.4.2 Client certificate identifiers do not use EUI-64 identifier but instead use the
identifier defined for Client certificates in this Working Text.

• Section 4.4.5 Client Certificate URLs are not required to be implemented.

As USP Endpoints play the role of both CoAP client and server; when the MTP is secured using the
Certificate mode of CoAP Security, the USP Endpoint provides a X.509 certificate to the MTP peer.

R-COAP.16 – When the Certificate mode of CoAP is used to secure an MTP, a USP Endpoint
MUST provide an X.509 certificate to the MTP peer.

8 STOMP Binding
1. Handling of the STOMP Session

1. Connecting a USP Endpoint to the STOMP Server

2. Handling the STOMP Heart Beat Mechanism

2. Mapping USP Endpoints to STOMP Destinations

1. Subscribing a USP Endpoint to a STOMP Destination

3. Mapping USP Records to STOMP Frames

1. Handling ERROR Frames

2. Handling Other STOMP Frames

4. Discovery Requirements

5. STOMP Server Requirements

6. MTP Message Encryption

The STOMP MTP transfers USP Records between USP endpoints using version 1.2 of the STOMP
protocol (further referred to as “STOMP Specification”), or the Simple Text Oriented Message
Protocol. Messages that are transferred between STOMP clients utilize a message bus interaction
model where the STOMP server is the messaging broker that routes and delivers messages based on
the destination included in the STOMP header.

The following figure depicts the transfer of the USP Records between USP Agents and Controllers.

https://tools.ietf.org/html/rfc7925
https://tools.ietf.org/html/rfc6125
https://stomp.github.io/stomp-specification-1.2.html
https://stomp.github.io/stomp-specification-1.2.html

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 59 of 249

Figure STOMP.1 - USP over STOMP Architecture

The basic steps for any USP Endpoint that utilizes a STOMP MTP are:

1. Negotiate TLS (if required/configured)

2. Connect to the STOMP Server

3. Maintain Heart Beats (if configured)

4. Subscribe to a Destination

5. Send USP Records

R-STOMP.0 - USP Agents utilizing STOMP clients for message transport MUST support the
STOMPConn:1 and STOMPController:1 data model profiles.

R-STOMP.1 - USP Agents utilizing STOMP clients for message transport SHOULD support the
STOMPAgent:1 and STOMPHeartbeat:1 data model profile.

8.1 Handling of the STOMP Session

When exchanging USP Records across STOMP MTPs, each USP Endpoint establishes a
communications session with a STOMP server. These STOMP communications sessions are
expected to be long lived and are reused for subsequent exchange of USP Records. A STOMP
communications session is established using a handshake procedure as described in “Connecting a
USP Endpoint to the STOMP Server” section below. A STOMP communications session is
intended to be established as soon as the USP Endpoint becomes network-aware and is capable of
sending TCP/IP messages.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 60 of 249

When a STOMP communications session is no longer necessary, the STOMP connection is closed
by the STOMP client, preferably by sending a DISCONNECT frame (see “Handling Other STOMP
Frames” section below).

8.1.1 Connecting a USP Endpoint to the STOMP Server

R-STOMP.2 - USP Endpoints utilizing STOMP clients for message transport MUST send a STOMP
frame to the STOMP server to initiate the STOMP communications session as defined in the
“Connecting” section of the STOMP Specification.

R-STOMP.3 - USP Endpoints that DO NOT utilize client certificate authentication MUST include
the login and passcode STOMP headers in the STOMP frame. For a USP Agent, if the
.STOMP.Connection.{i}.Username parameter is implemented then its value will be the source for
the login STOMP header, and if the .STOMP.Connection.{i}.Password parameter is
implemented then its value will be the source for the passcode STOMP header.

R-STOMP.4 - USP Endpoints sending a STOMP frame MUST include (in addition to other
mandatory STOMP headers) an endpoint-id STOMP header containing the Endpoint ID of the
USP Endpoint sending the frame. NOTE: According to the STOMP Specification, the STOMP frame
requires that “C style literal escapes” need to be used to encode any carriage return, line feed, or
colon characters that are found within the UTF-8 encoded headers, and R-STOMP.4 requires the
Endpoint ID to be included in those headers. Since the Endpoint ID always contains colon
characters, those will need to be escaped.

R-STOMP.5 - USP Endpoints sending a STOMP frame MUST include a host STOMP header, if
configured to do so. For a USP Agent the value MUST contain the value from the appropriate
.STOMP.Connection.{i}.VirtualHost parameter if supported and not empty.

R-STOMP.6 - If the USP Endpoint receives a subscribe-dest STOMP header in the CONNECTED
frame, it MUST use the associated value when Subscribing to its destination (see “Subscribing a
USP Endpoint to a STOMP Destination” section for more details).

R-STOMP.7 - If the connection to the STOMP server is NOT successful then the USP Endpoint
MUST enter a connection retry state. For a USP Agent the retry mechanism is based on the
STOMP.Connection.{i}. retry parameters: ServerRetryInitialInterval,
ServerRetryIntervalMultiplier, and ServerRetryMaxInterval.

8.1.2 Handling the STOMP Heart Beat Mechanism

The STOMP Heart Beat mechanism can be used to periodically send data between a STOMP client
and a STOMP server to ensure that the underlying TCP connection is still available. This is an
optional STOMP mechanism and is negotiated when establishing the STOMP connection.

R-STOMP.8 - If the STOMP.Connection instance’s EnableHeartbeats parameter value is True
then the USP Agent MUST negotiate the STOMP Heart Beat mechanism within the STOMP frame

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 61 of 249

during the process of establishing the STOMP connection as is defined in the “Heart-beating”
section of the STOMP Specification.

R-STOMP.9 - If the STOMP.Connection instance’s EnableHeartbeats parameter value is either
False or not implemented then the USP Agent MUST either not send the heart-beat STOMP
header in the STOMP frame or send “0,0” as the value of the heart-beat STOMP header in the
STOMP frame.

R-STOMP.10 - USP Agents negotiating the STOMP Heart Beat mechanism MUST use the
STOMP.Connection.{i}.OutgoingHeartbeat and
STOMP.Connection.{i}.IncomingHeartbeat parameter values within the heart-beat STOMP
header as defined in the “Heart-beating” section of the STOMP Specification.

R-STOMP.11 - USP Agents that have negotiated a STOMP Heart Beat mechanism with a STOMP
server MUST adhere to the heart beat values (as defined in the “Heart-beating” section of the
STOMP Specification) as returned in the CONNECTED frame.

8.2 Mapping USP Endpoints to STOMP Destinations

USP Agents will have one STOMP destination per STOMP MTP independent of whether those
STOMP MTPs use the same STOMP.Connection instance or a different one. The STOMP
destination is either configured by the STOMP server via the USP custom subscribe-dest
STOMP Header received in the CONNECTED frame (exposed in the
Device.LocalAgent.MTP.{i}.STOMP.DestinationFromServer parameter) or taken from the
Device.LocalAgent.MTP.{i}.STOMP.Destination parameter if there wasn’t a subscribe-dest
STOMP Header received in the CONNECTED frame. The USP custom subscribe-dest STOMP
Header is helpful in scenarios where the USP Agent doesn’t have a pre-configured destination as it
allows the USP Agent to discover the destination.

A USP Controller will subscribe to a STOMP destination for each STOMP server that it is
associated with. The USP Controller’s STOMP destination needs to be known by the USP Agent
(this is configured in the Device.LocalAgent.Controller.{i}.MTP.{i}.STOMP.Destination
parameter) as it is used when sending a USP Record containing a Notification.

8.2.1 Subscribing a USP Endpoint to a STOMP Destination

R-STOMP.12 - USP Endpoints utilizing STOMP clients for message transport MUST subscribe to
their assigned STOMP destination by sending a SUBSCRIBE frame to the STOMP server as defined
in the “SUBSCRIBE” section of the STOMP Specification.

R-STOMP.13 - USP Endpoints sending a SUBSCRIBE frame MUST include (in addition to other
mandatory STOMP headers) a destination STOMP header containing the STOMP destination
associated with the USP Endpoint sending the frame.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 62 of 249

R-STOMP.14 - USP Agents that receive a subscribe-dest STOMP Header in the CONNECTED
frame MUST use that STOMP destination in the destination STOMP header when sending a
SUBSCRIBE frame.

R-STOMP.15 - USP Agents that have NOT received a subscribe-dest STOMP Header in the
CONNECTED frame MUST use the STOMP destination found in the
Device.LocalAgent.MTP.{i}.STOMP.Destination parameter in the destination STOMP
header when sending a SUBSCRIBE frame.

R-STOMP.16 - USP Agents that have NOT received a subscribe-dest STOMP Header in the
CONNECTED frame and do NOT have a value in the
Device.LocalAgent.MTP.{i}.STOMP.Destination parameter MUST terminate the STOMP
communications session (via the DISCONNECT frame) and consider the MTP disabled.

R-STOMP.17 - USP Endpoints sending a SUBSCRIBE frame MUST use an ack value of “auto”.

8.3 Mapping USP Records to STOMP Frames

A USP Record is sent from a USP Endpoint to a STOMP Server within a SEND frame. The STOMP
Server delivers that USP Record to the destination STOMP Endpoint within a MESSAGE frame.
When a USP Endpoint responds to the USP request, the USP Endpoint sends the USP Record to the
STOMP Server within a SEND frame, and the STOMP Server delivers that USP Record to the
destination USP Endpoint within a MESSAGE frame.

R-STOMP.18 - USP Endpoints utilizing STOMP clients for message transport MUST send USP
Records in a SEND frame to the STOMP server as defined in the “SEND” section of the STOMP
Specification.

R-STOMP.19 - USP Endpoints sending a SEND frame MUST include (in addition to other
mandatory STOMP headers) a content-length STOMP header containing the length of the body
included in the SEND frame.

R-STOMP.20 - USP Endpoints sending a SEND frame MUST include (in addition to other
mandatory STOMP headers) a content-type STOMP header with a value of
“application/vnd.bbf.usp.msg”, which signifies that the body included in the SEND frame
contains a Protocol Buffer binary encoding message.

R-STOMP.21 - USP Endpoints sending a SEND frame with content-type of
application/vnd.bbf.usp.msg MUST include (in addition to other mandatory STOMP headers)
a reply-to-dest STOMP header containing the STOMP destination that indicates where the USP
Endpoint that receives the USP Record should send any response (if required).

R-STOMP.22 - USP Endpoints sending a SEND frame with content-type of
application/vnd.bbf.usp.msg MUST include the Protocol Buffer binary encoding of the USP
Record as the body of the SEND frame.

https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 63 of 249

R-STOMP.23 - When a USP Endpoint receives a MESSAGE frame it MUST use the reply-to-dest
included in the STOMP headers as the STOMP destination of the USP response (if a response is
required by the incoming USP request).

8.3.1 Handling USP Record errors and ERROR Frames

If a USP Endpoint receives a MESSAGE frame containing a USP Record that cannot be extracted for
processing (e.g., text frame instead of a binary frame, malformed USP Record or USP Message, bad
encoding), the receiving USP Endpoint will drop the USP Record if the STOMP MESSAGE frame
does not have a usp-err-id header or if the receiving Endpoint does not support the
application/vnd.bbf.usp.error content-type value. If the receiving Endpoint does support the
application/vnd.bbf.usp.error content-type value and the received STOMP MESSAGE frame
had a usp-err-id header, the receiving Endpoint will issue a STOMP SEND frame of
application/vnd.bbf.usp.error content-type value.

R-STOMP.23a - USP Endpoints MUST support STOMP content-type header value of
application/vnd.bbf.usp.error.

R-STOMP.23b - A USP Endpoint MUST include a usp-err-id STOMP header in SEND frames of
content-type application/vnd.bbf.usp.msg. The value of this header is: <USP Record to-id
> + "/" + <USP Message msg_id>. Since the colon “:” is a reserved character in STOMP
headers, all instances of “:” in the USP Record to-id MUST be expressed using an encoding of \c.

R-STOMP.24 - When a USP Endpoint receives a MESSAGE frame containing a USP Record or an
encapsulated USP Message within a USP Record that cannot be extracted for processing, the
receiving USP Endpoint MUST ignore the USP Record if the received STOMP MESSAGE frame
did not include a usp-err-id header.

R-STOMP.24a - When a USP Endpoint receives a MESSAGE frame containing a USP Record or
an encapsulated USP Message within a USP Record that cannot be extracted for processing, the
receiving USP Endpoint MUST send a STOMP SEND frame with an
application/vnd.bbf.usp.error content-type header value if the received STOMP MESSAGE
frame included a usp-err-id header.

R-STOMP.24b - A STOMP SEND frame with application/vnd.bbf.usp.error content-type
MUST contain the received usp-err-id header, the destination header value set to the received
reply-to-dest header, and a message body (formatted using UTF-8 encoding) with the following
2 lines:

• err_code:<numeric code indicating the type of error that caused the overall
message to fail>

• err_msg:<additional information about the reason behind the error>

The specific error codes are listed in the MTP Brokered USP Record Errors section.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 64 of 249

The following is an example message. This example uses “^@” to represent the NULL octet that
follows a STOMP body.

SEND
destination:/usp/the-reply-to-dest
content-type:application/vnd.bbf.usp.error
usp-err-id:cid\c3AA3F8\cusp-id-42/683

err_code:7100
err_msg:Field n is not recognized.^@

R-STOMP.25 - If an ERROR frame is received by the USP Endpoint, the STOMP server will
terminate the connection. In this case the USP Endpoint MUST enter a connection retry state. For a
USP Agent the retry mechanism is based on the STOMP.Connection.{i}. retry parameters:
ServerRetryInitialInterval, ServerRetryIntervalMultiplier, and
ServerRetryMaxInterval.

8.3.2 Handling Other STOMP Frames

R-STOMP.26 - USP Endpoints utilizing STOMP clients for message transport MUST NOT send
the transactional STOMP frames including: BEGIN, COMMIT, and ABORT.

R-STOMP.27 - USP Endpoints utilizing STOMP clients for message transport MUST NOT send
the acknowledgement STOMP frames including: ACK and NACK.

R-STOMP.28 - USP Endpoints utilizing STOMP clients for message transport MAY send the
following STOMP frames when shutting down a STOMP connection: UNSUBSCRIBE (according to
the rules defined in the UNSUBSCRIBE section of the STOMP Specification) and DISCONNECT
(according to the rules defined in the DISCONNECT section of the STOMP Specification).

R-STOMP.29 - USP Endpoints utilizing STOMP clients for message transport that DID NOT
receive a subscribe-dest STOMP Header in the CONNECTED frame when establishing the STOMP
communications session MUST update their STOMP subscription when their destination is altered
by sending the UNSUBSCRIBE STOMP frame (according to the rules defined in the UNSUBSCRIBE
section of the STOMP Specification) and then re-subscribing as detailed in the “Subscribing a USP
Endpoint to a STOMP Destination” section.

R-STOMP.30 - USP Endpoints utilizing STOMP clients for message transport MAY receive a
RECEIPT frame in which case the STOMP server is acknowledging that the corresponding client
frame has been processed by the server.

8.4 Discovery Requirements

The USP discovery section details requirements about the general usage of DNS, mDNS, and DNS-
SD records as it pertains to the USP protocol. This section provides further requirements as to how
a USP Endpoint advertises discovery information when a STOMP MTP is being utilized.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 65 of 249

R-STOMP.31 - When creating a DNS-SD record, an Endpoint MUST set the DNS-SD “path”
attribute equal to the value of the destination that it has subscribed to.

R-STOMP.32 - When creating a DNS-SD record, an Endpoint MUST utilize the STOMP server’s
address information in the A and AAAA records instead of the USP Endpoint’s address
information.

8.5 STOMP Server Requirements

R-STOMP.33 - A STOMP server implementation MUST adhere to the requirements defined in the
STOMP Specification.

R-STOMP.34 - A STOMP server implementation MUST perform authentication of the STOMP
client and ensure that a Remote USP Endpoint is only allowed to subscribe to the destination that is
associated with the USP Endpoint.

R-STOMP.35 - A STOMP server implementation SHOULD support both Client Certification
Authentication and Username/Password Authentication mechanisms.

8.6 MTP Message Encryption

STOMP MTP message encryption is provided using TLS certificates.

R-STOMP.36 - USP Endpoints utilizing STOMP clients for message transport MUST implement
TLS 1.2 RFC 5246 or later with backward compatibility to TLS 1.2.

R-STOMP.37 - STOMP server certificates MAY contain domain names and those domain names
MAY contain domain names with wildcard characters per RFC 6125 guidance.

9 WebSocket Binding
The WebSockets MTP transfers USP Records between USP endpoints using the WebSocket
protocol as defined in RFC 6455. Messages that are transferred between WebSocket clients and
servers utilize a request/response messaging interaction across an established WebSocket session.

9.1 Mapping USP Endpoints to WebSocket URIs

Section 3 of RFC 6455 discusses the URI schemes for identifying WebSocket origin servers and
their target resources. These resources are organized hierarchically and governed by a WebSocket
origin server listening for WebSocket messages on a given port. USP Endpoints are one type of
WebSocket resource that is identified and discovered.

R-WS.1 - As the USP Endpoint is a resource governed by a WebSocket origin server, the
WebSocket server MUST also be identified as defined in section 3 of RFC 6455.

https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc6125
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 66 of 249

R-WS.2 - A USP Endpoint MUST be represented as a WebSocket resource using the path
component as defined in section 3 of RFC 6455.

R-WS.3 - When creating DNS-SD records (see Discovery), an Endpoint MUST set the DNS-SD
TXT record “path” attribute equal to the value of the Websocket resource using the path component
as defined in section 3 of RFC 6455.

9.2 Handling of the WebSocket Session

When exchanging the USP Records across WebSockets MTPs, the two USP Endpoints establish a
WebSocket session. These WebSocket sessions are expected to be long lived and are reused for
subsequent USP Record exchange. A WebSocket session is established using a handshake
procedure described in section 4 of RFC 6455. When a WebSocket connection is not longer
necessary, the WebSocket connection is closed according to section 7 of RFC 6455. The following
figure depicts a WebSocket session handshake that is originated by an Agent.

Figure WS.1 - WebSocket Session Handshake

While WebSocket sessions can be established by either USP Controllers or USP Agents in many
deployment scenarios (e.g. communication between USP endpoints across the Internet), in general,
USP Agents will establish the WebSocket session and not expose an open port toward the Internet

https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 67 of 249

for security reasons. Regardless of which entity establishes the WebSocket session, at most one (1)
open WebSocket session is utilized between the USP Endpoints.

R-WS.4 - USP Endpoints that exchange USP Records MUST utilize at most one (1) open
WebSocket session.

R-WS.5 - USP Agent MUST provide the capability to originate the establishment of a WebSocket
session.

R-WS.6 - USP Agent MAY provide the capability to accept the establishment of a WebSocket
session from a USP Controller.

R-WS.7 - A USP Endpoint MUST implement the WebSocket handshake protocol to establish a
WebSocket connection as defined in section 4 of RFC 6455.

R-WS.8 - A USP Endpoint MUST implement the procedures to close a WebSocket connection as
defined in section 7 of RFC 6455.

9.2.1 Mapping USP Records to WebSocket Messages

During the establishment of the WebSocket session, the WebSocket client informs the WebSocket
server in the Sec-WebSocket-Protocol header about the type of USP Records that will be
exchanged across the established WebSocket connection. For USP Records, the Sec-WebSocket-
Protocol header contains the value v1.usp. When presented with a Sec-WebSocket-Protocol
header containing v1.usp, the WebSocket Server serving a USP Endpoint returns v1.usp in the
response’s Sec-WebSocket-Protocol header. If the WebSocket client doesn’t receive a Sec-
WebSocket-Protocol header with a value of v1.usp, the WebSocket client does not establish the
WebSocket session.

When a WebSocket connection is being initiated with TLS, no USP Record is sent until the TLS
negotiation is complete. The WebSocket server will be unable to identify the Endpoint ID of the
client unless it looks inside the certificate. To make it easier for the server to identify the client, the
WebSocket Extension bbf-usp-protocol has been registered. The extension parameter of eid is
defined for use with this extension. The value of the eid parameter will be the Endpoint ID of the
Endpoint sending the WebSocket header.

R-WS.9 - The WebSocket’s handshake Sec-WebSocket-Protocol header for exchange of USP
Records using the protocol-buffers encoding mechanism MUST be v1.usp.

R-WS.10 - A WebSocket client MUST include the Sec-WebSocket-Protocol header for exchange
of USP Records when initiating a WebSocket session.

R-WS.10a - A WebSocket client MUST include the Sec-WebSocket-Extensions header with
bbf-usp-protocol WebSocket Extension and extension parameter eid equal to the client’s
Endpoint ID when initiating a WebSocket session.

https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 68 of 249

R-WS.11 - A WebSocket server that supports USP Endpoints MUST include the Sec-WebSocket-
Protocol header for exchange of USP Records when responding to an initiation of a WebSocket
session.

R-WS.11a - A WebSocket server MUST include the Sec-WebSocket-Extensions header with
bbf-usp-protocol WebSocket Extension and extension parameter eid equal to the server’s
Endpoint ID when responding to an initiation of a WebSocket session that includes the bbf-usp-
protocol extension.

R-WS.11b - WebSocket clients SHOULD NOT consider WebSocket responses that do not include
the bbf-usp-protocol WebSocket Extension to be an error.

R-WS.12 - A WebSocket client MUST NOT establish a WebSocket session if the response to a
WebSocket session initiation request does not include the Sec-WebSocket-Protocol header for
exchange of USP Records in response to an initiation of a WebSocket session.

9.3 Handling of WebSocket Frames

RFC 6455 defines a number of type of WebSocket control frames (e.g., Ping, Pong, Close) and
associated condition codes in order to maintain a WebSocket connection. In addition messages are
transferred in WebSocket Data control frame.

R-WS.13 - A USP Endpoint MUST implement the WebSocket control frames defined in section
5.5 of RFC 6455.

USP Records can be transferred between USP Controllers and USP Agents over an established
WebSocket session. These USP Records are encapsulated within a binary WebSocket data frame as
depicted by the figure below.

Figure WS.2 - USP Request using a WebSocket Session

https://tools.ietf.org/html/rfc6455

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 69 of 249

R-WS.14 - In order for USP Records to be transferred between a USP Controller and Agent using
WebSockets MUST be encapsulated within as a binary WebSocket data frame as defined in section
5.6 of RFC 6455.

R-WS.15 - USP Records are transferred between USP Endpoints using message body procedures as
defined in section 6 of RFC 6455.

9.3.1 Handling Failures to Deliver USP Records

If a USP Endpoint receives a WebSocket frame containing a USP Record that cannot be extracted
for processing (e.g., text frame instead of a binary frame, malformed USP Record or USP Record,
bad encoding), the receiving USP Endpoint notifies the originating USP Endpoint that an error
occurred by closing the WebSocket connection with a 1003 Status Code with the WebSocket Close
frame.

R-WS.16 - A USP Endpoint that receives a WebSocket frame containing a USP Record that cannot
be extracted for processing, the receiving USP Endpoint MUST terminate the connection using a
WebSocket Close frame with a Status Code of 1003.

9.3.2 Keeping the WebSocket Session Alive

Once a WebSocket session is established, the WebSocket session is expected to remain open for
future exchanges of USP Records. The WebSocket protocol uses Ping and Pong control frames as a
keep-alive session. Section 5.5 of RFC 6455 discusses the handling of Ping and Pong control
frames.

R-WS.17 - A USP Agent MUST implement a WebSocket keep-alive mechanism by periodically
sending Ping control frames and respond to Pong control frames as described in section 5.5 of RFC
6455.

R-WS.18 - A USP Agent MUST provide the capability to assign a keep-alive interval in order to
send Ping control frames to the remote USP Endpoint.

9.3.3 WebSocket Session Retry

If for any reason a WebSocket Session is closed, the USP Endpoint will attempt to re-establish the
WebSocket Session according to its session retry policy. For Controllers, this session retry policy is
implementation specific.

R-WS.19 – When retrying to establish a WebSocket Session, the Agent MUST use the following
retry algorithm to manage the WebSocket Session establishment procedure:

For Agents, the retry interval range is controlled by two variables (described in the table below): the
minimum wait interval and the interval multiplier. The corresponding data model parameter MAY
be implemented to allow a USP Controller to change the values of these variables. The factory

https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 70 of 249

default values of these variables MUST be the default values listed in the Default column of the
table below.

• Descriptive
Name • Symbol • Default • Data Model Parameter Name

• Minimum
wait
interval

• m • 5 seconds • Device.LocalAgent.Controller.{i}.MTP.{i}.Web

• Interval
multiplier

• k • 2000 • Device.LocalAgent.Controller.{i}.MTP.{i}.Web

• Retry
Count

• Default
Wait
Interval
Range
(min-
max
second
s)

• Actual Wait
Interval
Range
(min-max
seconds)

• #1 • 5-10 • m -
m.(k/1000)

• #2 • 10-20 • m.(k/1000)
-
m.(k/1000)2

• #3 • 20-40 • m.(k/1000)2
-
m.(k/1000)3

• #4 • 40-80 • m.(k/1000)3
-
m.(k/1000)4

• #5 • 80-160 • m.(k/1000)4
-
m.(k/1000)5

• #6 • 160-
320

• m.(k/1000)5
-
m.(k/1000)6

• #7 • 320-
640

• m.(k/1000)6
-
m.(k/1000)7

• #8 • 640-
1280

• m.(k/1000)7
-
m.(k/1000)8

• #9 • 1280-
2560

• m.(k/1000)8
-

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 71 of 249

m.(k/1000)9
• #10 and

subsequent
• 2560-

5120
• m.(k/1000)9

-
m.(k/1000)1
0

R-WS.20 – Once a WebSocket session is established between the Agent and the Controller, the
Agent MUST reset the WebSocket MTP’s retry count to zero for the next WebSocket Session
establishment.

R-WS.21 – If a reboot of the Agent occurs, the Agent MUST reset the WebSocket MTP’s retry
count to zero for the next WebSocket Session establishment.

9.4 MTP Message Encryption

WebSocket MTP message encryption is provided using certificates in TLS as described in section
10.5 and section 10.6 of RFC 6455.

R-WS.22 - USP Endpoints utilizing WebSockets clients and servers for message transport MUST
implement the Certificate modes of TLS security as defined in sections 10.5 and 10.6 of RFC 6455.

R-WS.23 - USP Endpoints capable of obtaining absolute time SHOULD wait until it has accurate
absolute time before contacting the peer USP Endpoint. If a USP Endpoint for any reason is unable
to obtain absolute time, it can contact the peer USP Endpoint without waiting for accurate absolute
time. If a USP Endpoint chooses to contact the peer USP Endpoint before it has accurate absolute
time (or if it does not support absolute time), it MUST ignore those components of the peer USP
Endpoint’s WebScoket MTP certificate that involve absolute time, e.g. not-valid-before and not-
valid-after certificate restrictions.

R-WS.24 - USP Controller certificates MAY contain domain names with wildcard characters per
RFC 6125 guidance.

10 MQTT Binding
1. Connecting a USP Endpoint to the MQTT Server

1. CONNECT Flags and Properties

2. Keep Alive

2. Subscribing to MQTT Topics

3. Sending the USP Record in a PUBLISH Packet Payload

4. Handling Errors

5. Handling Other MQTT Packets

6. Discovery Requirements

https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6125

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 72 of 249

7. MQTT Server Requirements

8. MTP Message Encryption

The Message Queuing Telemetry Transport (MQTT) MTP transfers USP Records between USP
Endpoints using the MQTT protocol. Messages that are transferred between MQTT clients utilize a
message bus interaction model where the MQTT server is the messaging broker that routes and
delivers messages based on the Topic Name included in the MQTT Publish packet variable header.

The following figure depicts the transfer of the USP Records between USP Agents and Controllers.

Figure MQTT.1 - USP over MQTT Architecture

The basic steps for any USP Endpoint that utilizes an MQTT MTP are:

• Negotiate TLS (if required/configured)

• Connect to the MQTT Server (server may require Authentication)

• Subscribe to a Topic

• Publish USP Records

• Optionally send PINGREQ messages to keep the connection alive

The following figure shows the MQTT packets that have requirements in this section for their use
when MQTT is a USP MTP.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 73 of 249

Figure MQTT.2 - MQTT Packets

R-MQTT.1 - USP Endpoints utilizing MQTT clients for message transport MUST implement
MQTT 5.0.

R-MQTT.2 - USP Endpoints utilizing MQTT clients for message transport MAY implement
MQTT 3.1.1.

Requirements in this MQTT MTP specification are common to both the MQTT 3.1.1 and MQTT
5.0 specifications unless an MQTT version is named.

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 74 of 249

The MQTT specifications are very complete and comprehensive in describing syntax and usage
requirements of MQTT packets and behaviors. Therefore, none of those requirements are re-iterated
in this specification. This specification only contains requirements unique to use of MQTT as a USP
MTP. The above two requirements for compliance with the MQTT specifications are critical in
developing an implementation compliant with this MQTT Binding specification. Wherever an
MQTT packet or other functionality is mentioned in the requirements in this MQTT Binding
specification, the requirement for compliance with the MQTT specification (R-MQTT.1 and R-
MQTT.2) apply.

R-MQTT.3 - USP Agents utilizing MQTT clients for message transport MUST support MQTT
over TCP transport protocol.

The MQTT specification also describes how MQTT can run over WebSockets. Deployments can
choose to use MQTT over WebSockets, if they use MQTT clients and servers with support for this
option. The TCP option is required to ensure interoperability.

R-MQTT.4 - USP Agents utilizing MQTT clients for message transport MUST support the
MQTTClientCon:1, MQTTClientSubscribe:1, MQTTAgent:1, and MQTTController:1 data model
profiles.

R-MQTT.5 - USP Agents utilizing MQTT clients for message transport SHOULD support the
MQTTClientExtended:1 data model profile.

10.1 Connecting a USP Endpoint to the MQTT Server

When exchanging USP Records across MQTT MTPs, each USP Endpoint establishes a
communications session with an MQTT server. These MQTT communications sessions are
expected to be long-lived and are re-used for subsequent exchange of USP Records. An MQTT
communications session is established using the procedure in this section. An MQTT
communications session is intended to be established as soon as the USP Endpoint becomes
network-aware and can send TCP/IP messages.

When an MQTT communications session is no longer necessary or expires (see “Keep Alive”
section below), the MQTT connection is closed by the MQTT client, preferably by sending a
DISCONNECT packet (see Handling Other MQTT Packets section below).

R-MQTT-1 and R-MQTT-2 require that all MQTT capabilities referenced in this section and its
sub-sections are compliant with the MQTT specifications. Reading the MQTT specification is
highly recommended to ensure the correct syntax and usage of MQTT packets and properties
(CONNECT, CONNACK, User Name, Password, ClientId, User Property, Keep Alive, PINGREQ,
PINGRESP, etc.).

R-MQTT.6 - USP Endpoints utilizing MQTT clients for message transport MUST send a CONNECT
packet to the MQTT server to initiate the MQTT communications session.

R-MQTT.7 - USP Endpoints with a configured MQTT User Name and Password for use with this
MQTT server MUST include these in the MQTT CONNECT packet. The

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 75 of 249

.MQTT.Client.{i}.Username and .MQTT.Client.{i}.Password parameters values (associated
with this MQTT server) will be used for User Name and Password.

R-MQTT.8 - USP Endpoints MUST set the value of the CONNECT packet Client Identifier (ClientId)
as follows:

• If a non-empty, non-null ClientId value exists for use with this MQTT server, this MUST be
used. The data model parameter for the ClientId is .MQTT.Client.{i}.ClientID.

• If an MQTT 5.0 client has no configured ClientId (null or empty string) the USP Endpoint
MUST send an empty string in the Client Identifier property.

• If an MQTT 3.1.1 client has no configured ClientId, the USP Endpoint SHOULD attempt to
use its USP Endpoint ID as the ClientId.

R-MQTT.9 - An MQTT 5.0 client MUST save (in the .MQTT.Client.{i}.ClientID parameter)
an Assigned Client Identifier included in a CONNACK packet as its configured ClientId for future use.

R-MQTT.10 - If the connection to the MQTT server is NOT successful then the USP Endpoint
MUST enter a connection retry state. For a USP Agent the retry mechanism is based on the
MQTT.Client.{i}. retry parameters: ConnectRetryTime, ConnectRetryIntervalMultiplier,
and ConnectRetryMaxInterval.

R-MQTT.11 - Once a USP Endpoint has successfully connected to an MQTT server, it MUST use
the same ClientId for all subsequent connections with that server.

10.1.1 CONNECT Flags and Properties

The MQTT CONNECT packet has a number of flags and properties that can be set. The User Name
and Password flags are set to 1 if these parameters are included. The use of the Will Retain, Will
QoS, and Will Flag are left up to the deployment. They are not needed in order to use MQTT as a
USP MTP and can be “0” if there is no deployment-specified need for them. The Clean Start flag
can also be used according to deployment-specified needs. Configured values for these flags can be
provided through the related .MQTT.Client.{i}. parameters.

MQTT 3.1.1 does not provide a simple mechanism for a USP MQTT client to provide its Endpoint
ID to the MQTT server. But the server does have other options, such as:

1. Support Endpoint ID as ClientId.

2. Get Endpoint ID from client TLS certificate.

MQTT 3.1.1 also does not provide a mechanism for the MQTT server to tell a client what Topic
other Endpoints should use to send it a message (the “reply to” Topic). This information would need
to be pre-configured or provided in some manner not specified here.

MQTT 5.0 includes additional properties that deployments can choose to use.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 76 of 249

R-MQTT.12 - An MQTT 5.0 USP Endpoint MUST support setting the Request Response
Information property to 1, and MUST support receiving the corresponding Response Information in
the CONNACK packet.

The Response Information property is used by an MQTT 5.0 client as the Response Topic (which is
the MQTT 5.0 PUBLISH packet property identifying the Topic to send a USP response to). The
Response Information property requirements for use of the received Response Information are
below in the section Sending the USP Record in a PUBLISH Packet Payload. Ensuring the client is
subscribed to this Topic or a Topic Filter that includes this Topic is described in Subscribing to
MQTT Topics.

R-MQTT.13 - An MQTT 5.0 USP Endpoint MUST include a User Property name-value pair in the
CONNECT packet with name of “usp-endpoint-id” and value of this Endpoint’s USP Endpoint ID.

10.1.2 Keep Alive

The MQTT Keep Alive mechanism has several components:

• The CONNECT packet Keep Alive field tells the server to disconnect the client if the server does
not receive a packet from the client before the Keep Alive time (in seconds) has elapsed since
the prior received packet.

• The MQTT 5.0 CONNACK packet Keep Alive field allows the server to inform the client the
maximum interval the server will allow to elapse between received packets before it
disconnects the client due to inactivity.

• PINGREQ and PINGRESP packets can be used to keep the connection up if the timer is nearing
expiry and there is no need for another type of message. PINGREQ can also be used by the client
at any time to check on the status of the connection.

The client can indicate the Server is not required to disconnect the Client on the grounds of
inactivity by setting the CONNECT Keep Alive to zero (0). Note that WebSockets mechanisms can be
used to keep the connection alive if MQTT is being run over WebSockets. Also note the server is
allowed to disconnect the client at any time, regardless of Keep Alive value.

R-MQTT.14 - USP Endpoints with a configured Keep Alive value MUST include this in the
MQTT CONNECT packet. The .MQTT.Client.{i}. KeepAliveTime parameter value (associated
with this MQTT server) will be used for the Keep Alive value.

Use of PINGREQ and PINGRESP for keeping sessions alive (or determining session aliveness) is as
described in the MQTT specification. No additional requirements are provided for use of these
packets in a USP context.

10.2 Subscribing to MQTT Topics

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 77 of 249

The SUBSCRIBE packet is sent by the MQTT client to subscribe to one or more Topics or Topic
Filters. These are needed to allow the MQTT client to receive application messages. The MQTT
client will receive all application messages published by other clients that are sent to a Topic that
matches (either exactly or within a wildcarded Topic Filter) a subscribed-to Topic or Topic Filter.
The MQTT server indicates in the SUBACK response packet whether the client has succeeded or
failed to subscribe to each Topic or Topic Filter sent in the SUBSCRIBE packet.

USP Endpoints can be configured with one or more specific MQTT Topics or Topic Filters to
subscribe to for each MQTT server they are associated with. In MQTT 5.0, a CONNACK User
Property named “subscribe-topic” can be used to provide the client with Topic or Topic Filter
values for the client to subscribe to. There is no similar capability in MQTT 3.1.1. This means
configuration or some out-of-band mechanism are the only means of supplying subscription Topics
or Topic Filters to an MQTT 3.1.1 client. An Agent will need to be configured with a Controller’s
MQTT Topic (the Device.LocalAgent.Controller.{i}.MTP.{i}.MQTT.Topic parameter is used to
configure this), to send a Notification to that Controller.

R-MQTT-1 and R-MQTT-2 require that all MQTT capabilities referenced in this section and its
sub-sections are compliant with the MQTT specifications. Reading the MQTT specification is
highly recommended to ensure the correct syntax and usage of MQTT packets and properties
(SUBSCRIBE, Topic Filter, QoS 0, QoS 1, QoS 2, etc.).

R-MQTT.15 - USP Endpoints that successfully connect to an MQTT server MUST send a
SUBSCRIBE packet with all Topic Filters identified in the following list:

• All configured Topic Filter values for use with this MQTT server MUST be included in a
SUBSCRIBE packet. For a USP Agent, the .MQTT.Client.{i}.Subscription.{i}. table can
be used to configure Topic Filter values.

• If an MQTT 5.0 USP Endpoint received one or more User Property in the CONNACK packet
where the name of the name-value pair is “subscribe-topic”, the USP Endpoint MUST include
the value of all such name-value pairs in its SUBSCRIBE packet as a Topic Filter.

• If an MQTT 5.0 Endpoint received a Response Information property in the CONNACK packet,
and the topic from that Response Information property is not included (directly or as a subset
of a Topic Filter) among the Topic Filters of the previous 2 bullets, the Endpoint MUST
include the value of the Response Information property in its SUBSCRIBE packet.

• If an Endpoint has a ResponseTopicConfigured value and did not receive a Response
Information property in the CONNACK packet, and the topic in the ResponseTopicConfigured
parameter is not included (directly or as a subset of a Topic Filter) among the Topic Filters of
the first 2 bullets, the Endpoint MUST include the value of the ResponseTopicConfigured in
its SUBSCRIBE packet.

R-MQTT.16 - USP Agents that have NOT received a “subscribe-topic” User Property in the
CONNACK and do NOT have a configured Topic Filter
(Device.MQTT.Client.{i}.Subscription.{i}.Topic parameter for this Client instance in the
data model) MUST terminate the MQTT communications session (via the DISCONNECT packet) and
consider the MTP disabled.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 78 of 249

R-MQTT.17 - If a USP Endpoint does not successfully subscribe to at least one Topic, it MUST
NOT publish a packet with a USP Record in its Application Message, and MUST disconnect from
the MQTT server.

For each Topic listed in a SUBSCRIBE packet, the client will also provide a desired QoS level. See
the MQTT specification (MQTT 3.1.1 or MQTT 5.0, Section 4.3) for description of the three QoS
levels (QoS 0, QoS 1, QoS 2). The usefulness of these QoS levels in the context of USP depends on
the particulars of the MQTT deployment. It is therefore up to the implementer / deployer to decide
which QoS setting to use. In order to ensure deployments have the ability to use at least QoS 1,
MQTT clients and servers are required to implement at least QoS 1 (see requirements in Sending
the USP Record in a PUBLISH Packet Payload and MQTT Server Requirements.

10.3 Sending the USP Record in a PUBLISH Packet Payload

A USP Record is sent from a USP Endpoint to an MQTT Server within a PUBLISH packet payload.
The MQTT Server delivers that PUBLISH packet to the destination MQTT client USP Endpoint.
This is true of all USP Message types.

R-MQTT-1 and R-MQTT-2 require that all MQTT capabilities referenced in this section and its
sub-sections are compliant with the MQTT specifications. Reading the MQTT specification is
highly recommended to ensure the correct syntax and usage of MQTT packets and properties
(PUBLISH, Content Type, Response Topic, etc.).

R-MQTT.18 - USP Endpoints utilizing MQTT clients for message transport MUST send the USP
Record in the payload of a PUBLISH packet.

R-MQTT.19 - USP Endpoints MUST send USP Records using the Protocol Buffer binary encoding
of the USP Record.

R-MQTT.20 - USP Endpoints utilizing MQTT clients for message transport MUST support MQTT
QoS 0 and QoS 1.

The USP Controller’s MQTT Topic needs to be known by any USP Agent expected to send a
Notify message to the Controller.

The USP Agent will also need to know an exact Topic where it can be reached (and not just a Topic
Filter) in order to provide a Controller with the Agent’s “reply to” Topic.

R-MQTT.21 - An MQTT 5.0 USP Endpoint that receives Response Information in the CONNACK
packet MUST use this as its “reply to” Topic.

R-MQTT.22 - USP Endpoints MUST include a “reply to” Topic in all PUBLISH packets
transporting USP Records.

R-MQTT.23 - USP Endpoints using MQTT 5.0 MUST include their “reply to” Topic in the
PUBLISH Response Topic property.

https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 79 of 249

R-MQTT.24 - USP Endpoints using MQTT 3.1.1 MUST include their “reply to” Topic after a
forward slash “/reply-to=” at the end of the PUBLISH Topic Name, with any “/” character in the
Topic replaced by “%2F”.

For example, if a Controller’s “reply to” Topic is “usp/controllers/oui:00256D:my-unique-bbf-id-
42”, and it is sending to an Agent whose Topic is “usp/agents/cid:3AA3F8:my-unique-usp-id-42”,
the PUBLISH Topic Name for a USP Controller using an MQTT 3.1.1 client will be
“usp/agents/cid:3AA3F8:my-unique-usp-id-42/reply-to= usp%2Fcontrollers%2Foui:00256D:my-
unique-bbf-id-42”.

USP Endpoints that need to send a response to a received USP Record will need to determine the
Topic Name to use in the responding PUBLISH packet.

R-MQTT.25 - USP Endpoints using MQTT 3.1.1 MUST interpret the portion of the received
PUBLISH Topic Name following the last forward slash “/reply-to=” as the response Topic Name.
Any instance of “%2F” in this received string MUST be replaced with “/”.

R-MQTT.26 - USP Endpoints using MQTT 5.0 MUST use the received PUBLISH Response Topic
property as the response Topic Name.

R-MQTT.27 - USP Endpoints sending a USP Record using MQTT 5.0 MUST have
“application/vnd.bbf.usp.msg” in the Content Type property.

MQTT clients using MQTT 3.1.1 will need to know to pass the payload to the USP Agent for
handling. There is no indication in MQTT 3.1.1 of the payload application or encoding. an MQTT
3.1.1 deployment could choose to dedicate the MQTT connection to USP, or put something in the
syntax of PUBLISH packet Topic Names that would indicate the payload is a USP Record.

10.4 Handling Errors

The MQTT specification requires servers and clients to disconnect if there is a violation at the
MQTT protocol layer.

If an MQTT 5.0 USP Endpoint receives a PUBLISH packet containing a USP Record that cannot be
extracted for processing (e.g., text frame instead of a binary frame, malformed USP Record or USP
Message, bad encoding), it is required to send an error message (described below). An MQTT 3.1.1
receiving USP Endpoint will silently drop the unprocessed USP Record.

R-MQTT-1 and R-MQTT-2 require that all MQTT capabilities referenced in this section and its
sub-sections are compliant with the MQTT specifications. Reading the MQTT specification is
highly recommended to ensure the correct syntax and usage of MQTT packets and properties
(PUBLISH, PUBACK, etc.).

R-MQTT.28 - MQTT 5.0 Endpoints MUST support PUBLISH Content Type value of
application/vnd.bbf.usp.error.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 80 of 249

R-MQTT.29 - MQTT 5.0 Endpoints MUST include a usp-err-id MQTT User Property in
PUBLISH packets of content-type “application/vnd.bbf.usp.msg”. The value of this header is: <USP
Record to-id> + “/” + <USP Message msg_id>.

R-MQTT.30 - When an MQTT 3.1.1 USP Endpoint receives a PUBLISH packet containing a USP
Record or an encapsulated USP Message within a USP Record that cannot be extracted for
processing, the receiving USP Endpoint MUST silently drop the USP Record.

R-MQTT.31 - When an MQTT 5.0 USP Endpoint receives a PUBLISH packet containing a USP
Record or an encapsulated USP Message within a USP Record that cannot be extracted for
processing, the receiving USP Endpoint MUST send a PUBLISH packet with Content Type
application/vnd.bbf.usp.error, a User Property set to the received usp-err-id User Property, the
Topic Name set to the received Response Topic, and a PUBLISH Payload (formatted using UTF-8
encoding) with the following 2 lines:

• err_code:<numeric code indicating the type of error that caused the overall message to fail>

• err_msg:<additional information about the reason behind the error>

The specific error codes are listed in the MTP Brokered USP Record Errors section.

MQTT 5.0 includes a Reason Code that is used to respond to PUBLISH packets when QoS 1 or QoS
2 is used.

R-MQTT.32 - When a USP Endpoint using MQTT 5.0 receives a PUBLISH packet with QoS 1 or
QoS 2 containing a USP Record or an encapsulated USP Message within a USP Record that cannot
be extracted for processing, the receiving USP Endpoint MUST include Reason Code 153 (0x99)
identifying “Payload format invalid” in any PUBACK or PUBREC packet.

Note these packets will be received by the MQTT server and will not be forwarded to the USP
Endpoint that originally sent the USP Record.

R-MQTT.33 - If the MQTT server terminates the connection, the USP Endpoint MUST enter a
connection retry state. For a USP Agent the retry mechanism is based on the MQTT.Client.{i}.
ConnectRetryTime parameter.

10.5 Handling Other MQTT Packets

Use of PUBREL, and PUBCOMP depends on the QoS level being used for the subscribed Topic. No
additional requirements are provided for use of these packets in a USP context.

Use of PINGREQ and PINGRESP for keeping sessions alive (or determining session aliveness) is as
described in the MQTT specification. No additional requirements are provided for use of these
packets in a USP context.

Use of UNSUBSCRIBE and UNSUBACK is as described in the MQTT specification. If an Agent’s
configured Topics are disabled by a Controller (by setting

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 81 of 249

Device.MQTT.Client.{i}.Subscription.{i}.Enable to “false”), UNSUBSCRIBE is used to unsubscribe
from them.

R-MQTT.34 - USP Endpoints utilizing MQTT clients for message transport SHOULD send an
UNSUBSCRIBE packet when a subscribed Topic or Topic Filter is no longer indicated but the MQTT
connection is expected to stay up.

R-MQTT-1 and R-MQTT-2 require that all MQTT capabilities referenced in this section and its
sub-sections are compliant with the MQTT specifications. Reading the MQTT specification is
highly recommended to ensure the correct syntax and usage of MQTT packets and properties
(DISCONNECT, etc.).

R-MQTT.35 - USP Endpoints utilizing MQTT clients for message transport SHOULD send a
DISCONNECT packet when shutting down an MQTT connection.

MQTT 5.0 specifies the AUTH packet to use for extended authentication. Implementations can make
use of extended authentication but should only do so if they are sure that all clients and servers will
support the same authentication mechanisms.

10.6 Discovery Requirements

The USP discovery section details requirements about the general usage of DNS, mDNS, and DNS-
SD records as it pertains to the USP protocol. This section provides further requirements as to how
a USP Endpoint advertises discovery information when an MQTT MTP is being utilized.

R-MQTT.36 - When creating a DNS-SD record, an Agent MUST set the DNS-SD “path” attribute
equal to the value of its “reply to” Topic.

R-MQTT.37 - When creating a DNS-SD record, a Controller MUST set the DNS-SD “path”
attribute equal to a value that is included among the Controller’s subscribed Topics and Topic
Filters.

R-MQTT.38 - When creating a DNS-SD record, an Endpoint MUST utilize the MQTT server’s
address information in the A and AAAA records instead of the USP Endpoint’s address
information.

10.7 MQTT Server Requirements

R-MQTT.39 - MQTT servers MUST implement MQTT 5.0.

R-MQTT.40 - MQTT servers SHOULD implement MQTT 3.1.1.

R-MQTT.41 - MQTT servers MUST implement MQTT over TCP transport protocol.

R-MQTT.42 - An MQTT server MUST support authentication of the MQTT client through at least
one of the mechanisms described in Section 5.4.1 of the MQTT specification, and support an

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 82 of 249

Access Control List mechanism that can restrict the topics an authenticated MQTT client can
subscribe or publish to.

R-MQTT.43 - An MQTT server SHOULD support both Client Certification Authentication and
User Name / Password Authentication mechanisms.

R-MQTT.44 - An MQTT server SHOULD support sending Topic or Topic Filter values in a
“subscribe-topic” User Property in the CONNECT packet.

R-MQTT.45 - If an MQTT server supports subscriptions from unconfigured Agents, it MUST
support wildcarded Topic Filters.

This will allow support for Agents that try to subscribe to “+/<Endpoint ID>/#” and “+/+/<Endpoint
ID>/#” Topic Filters.

R-MQTT.46 - An MQTT server MUST support at least MQTT QoS 1 level.

R-MQTT.47 - An MQTT server SHOULD support a ClientId value that is a USP Endpoint ID.
This includes supporting all Endpoint ID characters (includes “-”, “.”, “_”, “%”, and “:”) and at
least 64 characters length.

10.8 MTP Message Encryption

MQTT MTP message encryption is provided using TLS certificates.

R-MQTT.48 - USP Endpoints utilizing MQTT clients for message transport MUST implement
TLS 1.2 RFC 5246 or later with backward compatibility to TLS 1.2.

R-MQTT.49 - MQTT server certificates MAY contain domain names and those domain names
MAY contain domain names with wildcard characters per RFC 6125 guidance.

11 Message Encoding
USP requires a mechanism to serialize data to be sent over a message transfer protocol. The
description of each individual message and the USP Record encoding scheme is covered in a
section of this document and/or in the referenced specification. This version of the specification
includes support for:

• Protocol Buffers Version 3

R-ENC.0 - An implementation using protocol buffers encoding to encode USP Messages
(Requests, Responses, and Errors) MUST conform to the schema defined in usp-msg.proto.

R-ENC.1 - An implementation using protocol buffers encoding to encode USP Records MUST
conform to the schema defined in usp-record.proto.

https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc6125
https://developers.google.com/protocol-buffers/docs/proto3

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 83 of 249

Protocol Buffers Version 3 uses a set of enumerated elements to coordinate encoding and decoding
during transmission. It is intended that these remain backwards compatible, but new versions of the
schema may contain new enumerated elements.

R-ENC.2 - If an Endpoint receives a USP payload containing an unknown enumeration value for a
known field, the Endpoint MUST report the failure to the receiving MTP to indicate a “bad request”
and do no further processing of the USP Record or USP Message.

Protocol Buffers uses a datatype called oneof. This means that the element contains elements of
one or more varying types.

R-ENC.3 - USP Records and USP Messages that contain an element of type oneof MUST include
1 and only 1 instance of the element, which MUST contain one of the possible elements.

R-ENC.4 - A USP Record that violates R-ENC.3 MUST be discarded.

R-ENC.5 - A USP Message that violates R-ENC.3 SHOULD return an error of type 7004 (Invalid
Arguments).

12 End to End Message Exchange
USP Messages are exchanged between Controllers and Agents. In some deployment scenarios, the
Controller and Agent have a direct connection. In other deployment scenarios, the messages
exchanged by the Controller and Agent traverse multiple intermediate MTP Proxies. The latter
deployment scenario typically occurs when the Agent or Controller is deployed outside the
proximal or Local Area Network. In both types of scenarios, the End-to-End (E2E) message
exchange capabilities of USP permit the:

• Exchange of USP Records within an E2E Session Context that allows for:

– Integrity protection for non-payload fields

– Protected and unprotected payloads

– Segmentation and reassembly of E2E Messages that would be too large to transfer
through the intermediate MTP Proxies.

• Exchange of USP Records without an E2E Session Context that allows for:

– Integrity protection for non-payload fields

– Unprotected payloads or protected payloads where the payload protection security
mechanism doesn’t require a concept of a session (e.g., COSE)

Protected payloads provide a secure message exchange (confidentiality, integrity and identity
authentication) through exchange of USP Messages that are secured by the originating and
receiving USP Endpoints.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 84 of 249

Note - the requirements below reference Objects and Parameters used to manage the E2E Session.
These are specified in the Device:2 Data Model for USP Agents.

12.1 USP Record Encapsulation

The USP Record Message is defined as the Message Transfer Protocol (MTP) payload,
encapsulating a sequence of datagrams that comprise the USP Message as well as providing
additional metadata needed for integrity protection, payload protection and delivery of fragmented
USP Messages. Additional metadata fields are used to identify the E2E session context, determine
the state of the segmentation and reassembly function, acknowledge received datagrams, request
retransmissions, and determine the type of encoding and security mechanism used to encode the
USP Message.

Following are the fields contained within a USP Record. When not explicitly set or included in the
Record, the fields have a default value based on the type of field. For strings, the default value is an
empty byte string. For numbers (uint64) and enumerations, the default value is 0. For repeated
bytes, the default value is an empty byte string. The term “Optional” means it is not necessary to
include the field in a sent Record. The receiving Endpoint will use default values for fields not
included in a received Record. “Required” fields are always included. A Record without a
“Required” field will fail to be processed by a receiving Endpoint. “Repeated” fields can be
included any number of times, including zero.

12.1.1 Record Definition

Note: This version of the specification defines Record in Protocol Buffers v3 (see encoding). This
part of the specification may change to a more generic description (normative and non-normative)
if further encodings are specified in future versions.

string version

Required. Version (Major.Minor) of the USP Protocol (i.e., “1.0” or “1.1”).

string to_id

Required. Receiving/Target USP Endpoint Identifier.

R-E2E.1 - A receiving USP Endpoint MUST ignore any Record that does not contain its own
Endpoint Identifier as the to_id.

string from_id

Required. Originating/Source USP Endpoint Identifier.

enum PayloadSecurity payload_security

https://usp-data-models.broadband-forum.org/

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 85 of 249

Optional. An enumeration of type PayloadSecurity. When the payload is present, this indicates the
protocol or mechanism used to secure the payload (if any) of the USP Message. The value of TLS12
means TLS 1.2 or later (with backward compatibility to TLS 1.2) will be used to secure the payload
(see “TLS Payload Encapsulation” section).

Valid values are:

PLAINTEXT (0)
TLS12 (1)

bytes mac_signature

Optional. When integrity protection of non-payload fields is performed, this is the message
authentication code or signature used to ensure the integrity of the non-payload fields of the USP
Record.

bytes sender_cert

Optional. The PEM encoded certificate of the sending USP Endpoint used to provide the signature
in the mac_signature field, when integrity protection is used and the payload security mechanism
doesn’t provide the mechanism to generate the mac_signature.

oneof record_type

Required. This field contains one of the types given below:

NoSessionContextRecord no_session_context

SessionContextRecord session_context

12.1.1.1 NoSessionContextRecord fields

The following describe the fields included if record_type is no_session_context.

bytes payload

Required. The USP Message.

12.1.1.2 SessionContextRecord fields

The following describe the fields included if record_type is session_context.

uint64 session_id

Required. This field is the Session Context identifier.

uint64 sequence_id

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 86 of 249

Required. Datagram sequence identifier. Used only for exchange of USP Records with an E2E
Session Context. The field is initialized to 1 when starting a new Session Context and incremented
after each sent USP Record.

Note: Endpoints maintain independent values for received and sent sequence_id for a Session
Context, based respectively on the number of received and sent records.

uint64 expected_id

Required. This field contains the next sequence_id the sender is expecting to receive, which
implicitly acknowledges to the recipient all transmitted datagrams less than expected_id. Used
only for exchange of USP Records with an E2E Session Context.

uint64 retransmit_id

Optional. Used to request a USP Record retransmission by a USP Endpoint to request a missing
USP Record using the missing USP Record’s anticipated sequence_id. Used only for exchange of
USP Records with an E2E Session Context.

R-E2E.2 – A USP Record with record_type = session_context MUST contain either a payload, a
retransmit_id, or both fields.

enum PayloadSARState payload_sar_state

Optional. An enumeration of type PayloadSARState. When payload is present, indicates the
segmentation and reassembly state represented by the USP Record. Valid values are:

NONE (0)
BEGIN (1)
INPROCESS (2)
COMPLETE (3)

enum PayloadSARState payloadrec_sar_state

Optional. An enumeration of type PayloadSARState. When payload segmentation is being
performed, indicates the segmentation and reassembly state represented by an instance of the
payload datagram. If payload_sar_state = 0 (or is not included or not set), then
payloadrec_sar_state will be 0 (or not included or not set). Valid values are:

NONE (0)
BEGIN (1)
INPROCESS (2)
COMPLETE (3)

repeated bytes payload

Optional. This repeated field is a sequence of zero, one, or multiple datagrams. It contains the
Message, in either PLAINTEXT or encrypted format. When using TLS12 payload security there will

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 87 of 249

be a payload field for each encrypted TLS record. When using PLAINTEXT payload security there
will be a single payload field for any Message being sent.

12.2 Exchange of USP Records within an E2E Session Context

When exchanging USP Records within an E2E Session Context, record_type of
session_context is used, and all required parameters for record_type of session_context are
supplied.

12.2.1 Establishing an E2E Session Context

For the exchange of USP Records within an E2E Session Context to happen between two USP
Endpoints, an E2E Session Context (Session Context) is established between the participating USP
Endpoints. The Session Context is uniquely identified within the USP Endpoint by the combination
of the Session Identifier and remote USP Endpoint’s Identifier.

In USP, either a Controller or an Agent can begin the process of establishing a Session Context.
This is done by the Controller or Agent sending a USP Record with a session_id field that is not
currently associated with the Agent/Controller combination and a sequence_id field value of 1.

R-E2E.3 – Session Context identifiers MUST be generated by the USP Endpoint that originates the
session such that it is greater than 1 and scoped to the remote USP Endpoint.

When a Session Context had been previously established between an Agent and Controller and the
remote USP Endpoint receives a USP Record with a different session_id field, the remote USP
Endpoint will restart the Session Context using the new session_id field.

R-E2E.4 – When a USP Endpoint receives a USP Record from another USP Endpoint where there
is no established Session Context, and the USP Record includes a Session Context identifier, the
USP Endpoint MUST start a new Session Context for the remote USP Endpoint, and initialize the
sequence_id field to 1.

R-E2E.5 – At most one (1) Session Context is established between an Agent and Controller.

R-E2E.6 – When a USP Endpoint receives a USP Record from a remote USP Endpoint with a
different Session Context identifier than was previously established, the USP Endpoint MUST start
a new Session Context for the remote USP Endpoint, and initialize the sequence_id field to 1.

Note: Implementations need to consider if outstanding USP Messages that have not been
transmitted to the remote USP Endpoint need to be transmitted within the newly established Session
Context.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 88 of 249

12.2.1.1 Session Context Expiration

Sessions Contexts have a lifetime and can expire. The expiration of the Session Context is handled
by the Device.LocalAgent.Controller.{i}.E2ESession.SessionExpiration Parameter in
the Agent. If the Agent does not see activity (an exchange of USP Records) within the Session
Context, the Agent considers the Session Context expired and for the next interaction with the
Controller a new Session Context is established.

R-E2E.7 – When a Session Context between a Controller or Agent expires the Agent MUST
initiate a new Session Context upon the next interaction with the remote USP Endpoint or from a
Session Context request by the remote USP Endpoint.

12.2.1.2 Exhaustion of Sequence Identifiers

USP Endpoints identify the USP Record using the sequence_id field. When the sequence_id
field for a USP Record that is received or transmitted by a USP Endpoint nears the maximum value
that can be handled by the USP Endpoint, the USP Endpoint will attempt to establish a new Session
Context in order to avoid a rollover of the sequence_id field.

R-E2E.8 – When a USP Endpoint receives a USP Record with a value of the sequence_id field
that is within 10,000 of the maximum size for the data type of the sequence_id field, the USP
Endpoint MUST establish a new Session Context with the remote USP Endpoint.

R-E2E.9 – When a USP Endpoint transmits a USP Record with a value of the sequence_id field
that is within 10,000 of the maximum size for the data type of the sequence_id field, the USP
Endpoint MUST establish a new Session Context with the remote USP Endpoint upon its next
contact with the remote USP Endpoint.

12.2.1.3 Failure Handling in the Session Context

In some situations, (e.g., TLS negotiation handshake) the failure to handle a received USP Record is
persistent, causing an infinite cycle of “receive failure/request->session/establish->session/receive-
>failure” to occur. In these situations, the Agent enforces a policy as defined in this section
regarding establishment of failed Session Contexts or failed interactions within a Session Context.
The policy is controlled by the Device.LocalAgent.Controller.{i}.E2ESession.Enable
Parameter.

R-E2E.10 – When retrying USP Records, the Agent MUST use the following retry algorithm to
manage the retransmission Session Context establishment procedure:

The retry interval range is controlled by two Parameters, the minimum wait interval and the interval
multiplier, each of which corresponds to a data model Parameter, and which are described in the
table below. The factory default values of these Parameters MUST be the default values listed in the
Default column. They MAY be changed by a Controller with the appropriate permissions at any
time.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 89 of 249

• Descriptive
Name • Symbol • Default • Data Model Parameter Name

• Minimum
wait
interval

• m • 5 seconds • Device.LocalAgent.Controller.{i}.E2ESession.

• Interval
multiplier

• k • 2000 • Device.LocalAgent.Controller.{i}.E2ESession.

• Retry
Count

• Default
Wait
Interval
Range
(min-
max
second
s)

• Actual Wait
Interval
Range
(min-max
seconds)

• #1 • 5-10 • m -
m.(k/1000)

• #2 • 10-20 • m.(k/1000)
-
m.(k/1000)2

• #3 • 20-40 • m.(k/1000)2
-
m.(k/1000)3

• #4 • 40-80 • m.(k/1000)3
-
m.(k/1000)4

• #5 • 80-160 • m.(k/1000)4
-
m.(k/1000)5

• #6 • 160-
320

• m.(k/1000)5
-
m.(k/1000)6

• #7 • 320-
640

• m.(k/1000)6
-
m.(k/1000)7

• #8 • 640-
1280

• m.(k/1000)7
-
m.(k/1000)8

• #9 • 1280-
2560

• m.(k/1000)8
-
m.(k/1000)9

• #10 and
subsequent

• 2560-
5120

• m.(k/1000)9
-

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 90 of 249

m.(k/1000)1
0

R-E2E.11 - Beginning with the tenth retry attempt, the Agent MUST choose from the fixed
maximum range. The Agent will continue to retry a failed session establishment until a USP
message is successfully received by the Agent or until the SessionExpiration time is reached.

R-E2E.12 – Once a USP Record is successfully received, the Agent MUST reset the Session
Context retry count to zero for the next Session Context establishment.

R-E2E.13 – If a reboot of the Agent occurs, the Agent MUST reset the Session Context retry count
to zero for the next Session Context establishment.

12.2.2 USP Record Exchange

Once a Session Context is established, USP Records are created to exchange payloads in the
Session Context. USP Records are uniquely identified by their originating USP Endpoint Identifier
(from_id), Session Context identifier (session_id) and USP Record sequence identifier
(sequence_id).

12.2.2.1 USP Record Transmission

When an originating USP Endpoint transmits a USP Record, it creates the USP Record with a
monotonically increasing sequence identifier (sequence_id).

R-E2E.14 – When an originating USP Endpoint transmits a USP Record, it MUST set the sequence
identifier of the first transmitted USP Record in the Session Context to 1.

R-E2E.15 – When an originating USP Endpoint transmits additional USP Records, the originating
USP Endpoint MUST monotonically increase the sequence identifier from the last transmitted USP
Record in the Session Context by one (1).

To communicate the sequence identifier of the last USP Record received by a receiving USP
Endpoint to the originating USP Endpoint, whenever a USP Endpoint transmits a USP Record the
originating USP Endpoint communicates the next sequence identifier of a USP Record it expects to
receive in the expected_id field. The receiving USP Endpoint uses this information to maintain its
buffer of outgoing (transmitted) USP Records such that any USP Records with a sequence identifier
less than the expected_id can be removed from the receiving USP Endpoints buffer of transmitted
USP Records for this Session Context.

R-E2E.16 – When an originating USP Endpoint transmits a USP Record, the originating USP
Endpoint MUST preserve it in an outgoing buffer, for fulfilling retransmit requests, until the
originating USP Endpoint receives a USP Record from the receiving USP Endpoint with a greater
expected_id.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 91 of 249

R-E2E.17 – When an originating USP Endpoint transmits a USP Record, the originating USP
Endpoint MUST inform the receiving USP Endpoint of the next sequence identifier in the Session
Context for a USP Record it expects to receive.

12.2.2.2 Payload Security within the Session Context

The value of the payload_security field defines the type of payload security that is performed in
the Session Context. Once a Session Context is established the payload security stays the same
throughout the lifetime of the Session Context.

R-E2E.18 – The originating USP Endpoint MUST use the same value in the payload_security
field for all USP Records within a Session Context.

12.2.2.3 USP Record Reception

USP Records received by a USP Endpoint have information that is used by the receiving USP
Endpoint to process:

1. The payload contained within the USP Record,

2. A request to retransmit a USP Record, and

3. The contents of the outgoing buffer to clear the USP Records that the originating USP
Endpoint has indicated it has received from the receiving USP Endpoint.

As USP Records can be received out of order or not at all, the receiving USP Endpoint only begins
to process a USP Record when the sequence_id field of the USP Record in the Session Context is
the sequence_id field that the receiving USP Endpoint expects to receive. The following figure
depicts the high-level processing for USP Endpoints that receive a USP Record.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 92 of 249

Figure E2E.1 – Processing of received USP Records

R-E2E.19 – The receiving USP Endpoint MUST ensure that the value in the payload_security
field for all USP Records within a Session Context is the same and fail the USP Record if the value
of the payload_security field is different.

R-E2E.20 – Incoming USP Records MUST be processed per the following rules:

1. If the USP Record contains a sequence_id field larger than the next expected_id value, the
USP Record is added to an incoming buffer of unprocessed USP Records.

2. If the sequence_id less that the next expected_id, the Endpoint MUST gracefully ignore the
USP Record.

3. If the sequence_id matches the expected_id, for the USP Record and any sequential USP
Records in the incoming buffer:

1. If a payload is set, it is passed to the implementation for processing based on the type
of payload in the payload_security and payload_encoding fields and if the payload
requires reassembly according to the values of the payload_sar_state and
payloadrec_sar_state fields.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 93 of 249

2. If a retransmit_id field is set, the USP Record with the sequence identifier of the
retransmit_id field is resent from the outgoing buffer.

4. The expected_id field for new outgoing records is set to sequence_id field + 1 of this USP
Record.

12.2.2.3.1 Failure Handling of Received USP Records Within a Session
Context

When a receiving USP Endpoint fails to either buffer or successfully process a USP Record, the
receiving USP Endpoint initiates a new Session Context.

R-E2E.21 – When a USP Endpoint that receives a USP Record within a Session Context that fails
to buffer or successfully process (e.g., decode, decrypt, retransmit) the USP Endpoint MUST start a
new Session Context.

12.2.2.4 USP Record Retransmission

An Agent or Controller can request to receive USP Records that it deems as missing at any time
within the Session Context. The originating USP Endpoint requests a USP Record from the
receiving USP Endpoint by placing the sequence identifier of the requested USP Record in the
retransmit_id field of the USP Record to be transmitted.

The receiving USP Endpoint will determine if USP Record exists and then re-send the USP Record
to the originating USP Endpoint.

If the USP Record doesn’t exist, the USP Endpoint that received the USP Record will consider the
USP Record as failed and perform the failure processing as defined in section Failure Handling of
Received USP Records.

To guard against excessive requests to retransmit a specific USP Record, the USP Endpoint checks
to see if the number of times the USP Record has been retransmitted is greater than or equal to
maximum times a USP Record can be retransmitted as defined in the
Device.LocalAgent.Controller.{i}.E2ESession.MaxRetransmitTries Parameter. If this
condition is met, then the USP Endpoint that received the USP Record with the retransmit request
will consider the USP Record as failed and perform the failure processing as defined in section
Failure Handling of Received USP Records.

12.2.3 Guidelines for Handling Session Context Restarts

A Session Context can be restarted for a number of reasons (e.g., sequence id exhaustion, errors,
manual request). When a Session Context is restarted, the USP Endpoints could have USP Records
that have not been transmitted, received or processed. This section provides guidance for USP
Endpoints when the Session Context is restarted.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 94 of 249

The originating endpoint is responsible for determining the policy for recovering from USP Records
that were not transmitted. For example, the policy could be to resend the USP Message conveyed
through the USP Record, or to simply discard the USP Message.

R-E2E.22 – The receiving USP endpoint MUST successfully process the USP Record through the
expected_id field that it last transmitted in the previous session.

When a USP Endpoint receives a USP Record that cannot pass an integrity check or that has an
incorrect value in the session_id element, the Session Context is restarted.

R-E2E.23 – USP Records that do not pass integrity checks MUST be silently ignored and the
receiving USP Endpoint MUST restart the Session Context.

This allows keys to be distributed and enabled under the old session keys and then request a session
restarted under the new keys.

R-E2E.24 – USP Records that pass the integrity check but have an invalid value in the session_id
field MUST be silently ignored and the receiving USP Endpoint MUST restart the Session Context.

12.2.4 Segmented Message Exchange

In many complex deployments, a USP Message will be transferred across Message Transfer
Protocol (MTP) proxies that are used to forward the USP Message between Controllers and Agents
that use different transport protocols.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 95 of 249

Figure E2E.2 – Example E2E Deployment Scenario

Since USP can use different types of MTPs, some MTPs place a constraint on the size of the USP
Message that it can transport. For example, in the above figure, if the ACS Controller would want to
exchange USP Messages with the Smart Home Gateway, either a STOMP connection or the
STOMP and CoAP connections could be used. Since many STOMP server and other broker MTP
implementations have a constraint for the size of message that it can transfer, the Controller and
Agent implements a mechanism to segment or break up the USP Message into small enough
“chunks” that will permit transmission of the USP Message through the STOMP server and then be
reassembled at the receiving endpoint. When this Segmentation and Reassembly function is
performed by Controller and Agent, it removes the possibly that the message may be blocked (and
typically) dropped by the intermediate transport servers. A Segmentation and Reassembly example
is shown in the figure below where the ACS Controller segments the USP Message within the USP
Record into segments of 64K bytes because the STOMP MTP endpoint (in this example) can only
handle messages up to 64K bytes.

While the sequence_id field identifies the USP Record sequence identifier within the context of a
Session Context and the retransmit_id field provides a means of a receiving USP Endpoint to
indicate to the transmitting USP Endpoint that it needs a specific USP Record to ensure information
fields are processed in a first-in-first-out (FIFO) manner, the Segmentation and Reassembly

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 96 of 249

function allows multiple payloads to be segmented by the transmitting USP Endpoint and
reassembled by the receiving USP Endpoint by augmenting the USP Record with additional
information fields without changing the current semantics of the USP Record’s field definitions.
This is done using the payload_sar_state and payloadrec_sar_state fields in the USP Record
to indicate status of the segmentation and reassembly procedure. This status along with the existing
sequence_id, expected_id and retransmit_id fields and the foreknowledge of the E2E
maximum transmission unit MaxUSPRecordSize Parameter in the Agent’s Controller table provide
the information needed for two USP Endpoints to perform segmentation and reassembly of
payloads conveyed by USP Records. In doing so, the constraint imposed by MTP Endpoints (that
could be intermediate MTP endpoints) that do not have segmentation and reassembly capabilities
are alleviated. USP Records of any size can now be conveyed across any USP MTP endpoint as
depicted below:

Figure E2E.3 – E2E Segmentation and Reassembly

Note: the 65k size limit is not inherent to the STOMP protocol. It is merely provided here as an
example.

12.2.4.1 SAR function algorithm

The following algorithm is used to provide the SAR function.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 97 of 249

12.2.4.1.1 Originating USP Endpoint

For each USP Message segment the Payload:

1. Compose the USP Message.

2. If payload_security is TLS12, encrypt the USP Message. TLS will segment the encrypted
Message per the maximum allowed TLS record size.

1. If all TLS records + Record header elements are less than the maximum allowed USP
Record size, then a single USP Record is sent.

2. Otherwise segmentation of the USP Record will need to be done.

1. If the record size of a single TLS record + USP Record header elements is less
than the maximum allowed USP Record size, exactly one TLS record can be
included in a USP Record.

2. If the TLS record size + Record header elements is greater than the maximum
allowed USP Record size, the TLS record is segmented across multiple USP
Records.

3. If the Message is transmitted using PLAINTEXT and the Message + Record header elements are
greater than the maximum allowed USP Record size, the USP Record is segmented.

4. Set the payload_sar_state field for each transmitted Record.

1. If there is only one Record, payload_sar_state = NONE (0).

2. If there is more than one USP Record, the payload_sar_state field is set to BEGIN
(1) on the first Record, COMPLETE (3) on the last Record, and INPROCESS (2) on all
Records between the two.

5. Set the payloadrec_sar_state field for each transmitted Record.

1. If there is only one Record or one Secure Message Exchange TLS record per USP
Record, payloadrec_sar_state = NONE (0).

2. If Secure Message Exchange TLS records or a PLAINTEXT payload are segmented
across multiple USP Records, payloadrec_sar_state = BEGIN (1) on a Record that
contains the initial segment of a TLS record or PLAINTEXT payload, COMPLETE (3) on
a Record that contains the final segment of a TLS record or PLAINTEXT payload, and
INPROCESS (2) on all Records containing segments between initial and final segments
of a TLS record or PLAINTEXT payload.

6. Each Record is sent (within a Session Context) using the procedures defined in the USP
Record Message Exchange section above.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 98 of 249

The effect of the above rules for PLAINTEXT payloads or for Secure Message Exchange with a
single TLS record is that payloadrec_sar_state will be the same as payload_sar_state for all
Records used to communicate the USP Message.

Note: The maximum allowed USP Record size can be exposed via the data model using the
MaxUSPRecordSize parameter.

12.2.4.1.2 Receiving Endpoint

For each USP Message reassemble the segmented payload:

1. When a USP Record that indicates segmentation has started, store the USP Records until a
USP Record is indicated to be complete. A completed segmentation is where the USP Record’s
payload_sar_state and payloadrec_sar_state have a value of COMPLETE (3).

2. Follow the procedures in USP Record Retransmission to retransmit any USP Records that were
not received.

3. Once the USP Record is received that indicates that the segmentation is complete, reassemble
the payload by appending the payloads using the monotonically increasing sequence_id
field’s value from the smaller number to larger sequence numbers. The reassembly keeps the
integrity of the instances of the payload field’s payload records. To keep the integrity of the
payload record, the payload record is reassembled using the payloadrec_sar_state values.

4. Reassembly of the payload that represents the USP Message is complete.

If the segmentation and reassembly fails for any reason, the USP Endpoint that received the
segmented USP Records will consider the last received USP Record as failed and perform the
failure processing as defined in section Failure Handling of Received USP Records.

12.2.4.2 Segmentation Examples

The following examples show the values assigned to payload_sar_state and
payloadrec_sar_state fields for various permutations of payload_security, and maximum
USP Record size and Secure Message Exchange maximum TLS record size relative to the size of
the USP Message. The examples are not exhaustive.

Case 1: payload_security = PLAINTEXT, single USP Record

Conditions:

1. Maximum USP Record size > size of (USP Message + USP Record header)

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 99 of 249

Case 2: payload_security = PLAINTEXT, fragmented across multiple USP Records

Conditions:

1. Maximum USP Record size < size of (USP Message + USP Record header)

Case 3: payload_security = TLS12, single TLS record, single USP Record

Conditions:

1. Maximum TLS record size > size of (USP Message + TLS record header)

2. Maximum USP Record size > size of USP Message + size of TLS record header + size of USP
record header

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 100 of 249

Case 4: Payload_security = TLS12, all TLS records in a single USP Record

Conditions:

1. Maximum TLS record size < size of (USP Message + TLS record header)

2. Maximum USP Record size > size of all TLS records + size of USP record header

Case 5: Payload_security = TLS12, single TLS record fragmented across multiple USP
Records

Conditions:

1. Maximum TLS record size > size of (USP Message + TLS record header)

2. Maximum USP Record size < size of (TLS record + USP Record header)

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 101 of 249

Case 6: Payload_security = TLS12, multiple TLS records, one TLS record per USP Record

Conditions:

1. Maximum TLS record size < size of (USP Message + TLS record header)

2. Maximum USP Record size > maximum TLS record size + size of USP Record header

3. Maximum USP Record size < size of USP Message + size of TLS record header + size of USP
record header

Case 7: Payload_security = TLS12, multiple TLS records, some TLS records fragmented
across multiple USP Records

Conditions:

1. Maximum TLS record size < size of (USP Message + TLS record header)

2. Maximum USP Record size < size of (some TLS records + USP Record header)

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 102 of 249

12.2.5 Handling Duplicate USP Records

Circumstances may arise (such as multiple Message Transfer Protocols, retransmission requests)
that cause duplicate USP Records (those with an identical sequence_id and session_id fields
from the same USP Endpoint) to arrive at the target USP endpoint.

R-E2E.25 - When exchanging USP Records with an E2E Session Context, if a target USP Endpoint
receives a USP Record with duplicate sequence_id and session_id fields from the same
originating USP Endpoint, it MUST gracefully ignore the duplicate USP Record.

12.3 Exchange of USP Records without an E2E Session Context

When the exchange of USP Records without an E2E Session Context is used, the record_type is
set to no_session_context.

R-E2E.26 - A record_type of no_session_context MUST be used for exchange of USP
Records without an E2E Session Context. A non-zero payload MUST be included.

12.3.1 Failure Handling of Received USP Records Without a Session Context

When a receiving USP Endpoint fails to either buffer or successfully process a USP Record, the
receiving USP Endpoint reports a failure.

R-E2E.27 – When a USP Endpoint that receives a USP Record without a Session Context that fails
to buffer or successfully process (e.g., decode, decrypt, retransmit) the USP Endpoint MUST report
the failure to the receiving MTP that indicates a “bad request”.

12.4 Validating the Integrity of the USP Record

When a USP Record is transmitted to a USP Endpoint, the transmitting USP Endpoint has the
capability to protect the integrity of the non-payload fields of the USP Record. The payload field is
not part of the generation or verification process, as the expectation is that this element will be
secured using an E2E security protection mechanism (payload_security other than
PLAINTEXT).

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 103 of 249

The integrity of the USP Record is required to be validated when the USP Record cannot be
protected by the underlying MTP.

R-E2E.28 - When a USP Record is received or transmitted the following conditions MUST apply
for the USP Record to be considered protected by the underlying MTP:

• The MTP is encrypted per requirements in the applicable MTP section

• The peer MTP certificate contains an Endpoint ID and this Endpoint ID is the same as the USP
Record from_id field.

• The peer MTP certificate is that of a Trusted Broker.

R-E2E.29 – Unless protected by the underlying MTP, when a USP Endpoint transmits a USP
Record, the USP Endpoint MUST protect the integrity of the non-payload portion of the USP
Record.

R-E2E.30 – When a USP Endpoint receives a USP Record, the USP Endpoint MUST verify the
integrity of the non-payload portion of the USP Record when the USP Record contains the
mac_signature field or the USP Endpoint is not protected by the underlying MTP.

The integrity of the non-payload fields is accomplished by the transmitting USP Endpoint
generating a Message Authentication Code (MAC) or signature of the non-payload fields which is
then placed into the mac_signature field where the receiving USP Endpoint then verifies the MAC
or signature as appropriate. The method to generate and validate MAC or signature depends on the
value of the payload_security field. If the value of the payload_security field is PLAINTEXT
then the integrity validation method always uses the signature method described in section Using
the Signature Method to Validate the Integrity of USP Records. If the value of the
payload_security field is TLS12 then the validation method that is used is dependent on whether
the TLS handshake has been completed. If the TLS handshake has not been completed, the
signature method described in section Using the Signature Method to Validate the Integrity of USP
Records is used otherwise the MAC method described in section Using TLS to Validate the
Integrity of USP Records is used.

12.4.1 Using the Signature Method to Validate the Integrity of USP Records

When the transmitting USP Endpoint protects the integrity of the non-payload fields of the USP
Record using the signature method in this section, the non-payload fields are protected by signing a
hash of the non-payload fields using the private key of the sending USP Endpoint’s certificate. The
receiving USP Endpoint then verifies the integrity using either the public key of the certificate in
the USP Record sender_cert field or of the certificate used for Secure Message Exchange.

This signature method uses a SHA-256 hash algorithm that generates a signature for the hash using
the Digital Signature Standard (DSS) scheme as defined in FIPS PUB 186-4 Digital Signature
Standard (DSS). To reduce the burden of requiring a strong source of randomness, the signature
algorithm may apply the method described in RFC 6979 to deterministically derive encryption
parameters.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://tools.ietf.org/html/rfc6979

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 104 of 249

R-E2E.31 – When using the signature method to protect the integrity of the non-payload portion of
the USP Record, the transmitting USP Endpoint MUST protect the integrity using the ECDSA
scheme as defined in FIPS PUB 186-4 Digital Signature Standard (DSS), using the SHA-256 hash
algorithm, as defined in FIPS PUB 180-4 Secure Hash Standard (SHS), to sign and verify the
protection. The transmitting USP Endpoint MUST create the signature using the private key of the
transmitting USP Endpoint’s certificate. The receiving USP Endpoint MUST verify the signature
using the public key of the transmitted sender’s certificate.

12.4.2 Using TLS to Validate the Integrity of USP Records

When the transmitting and receiving USP Endpoints have established a TLS session between the
USP Endpoints, the transmitting USP Endpoint no longer needs to generate a signature or transmit
the sender’s certificate with the USP Record. Instead the transmitting USP Record generates a MAC
that is verified by the receiving USP Endpoint. The MAC ensures the integrity of the non-payload
fields of the USP Record. The MAC mechanism used in USP for this purpose is the SHA-256
keyed-Hash Message Authentication Code (HMAC) algorithm. The key used for the HMAC
algorithm uses a Key Derivation Function (KDF) in accordance with RFC
5869(https://tools.ietf.org/html/rfc5869) and requires the following inputs to be known by the USP
Endpoints involved in the generation and validation of the MAC: length of the output MAC, salt,
key and application context information (i.e., KDF info field). The application context information
uses a constant value for all USP implementations (“USP_Record”) and the length is fixed at 32
octets. The salt and key inputs are based on the underlying mechanism used to protect the payload
of the USP Record. For TLS, the salt and key are taken from the TLS session once TLS negotiation
is completed. The input key to the KDF uses the master key of the TLS session. The salt depends on
role played by the USP Endpoint in the TLS Session (i.e., TLS session’s client or server random).

R-E2E.32 – When generating or validating the MAC or signature to protect the integrity of the USP
Record, the sequence of the non-payload fields MUST use the field identifier of the USP Record’s
protobuf specification proceeding from lowest to highest. The non-payload fields in the Record
definition (other than the mac_signature field itself) MUST be used first and then the fields of the
SessionContextRecord if applicable.

R-E2E.32.1 – When generating or validating the MAC or signature, all non-payload fields MUST
be appended as byte arrays and fed into the MAC or signature generation function with the
following conditions:

• uint64 types MUST be passed as 8 bytes in big endian ordering

• uint32 types MUST be passed as 4 bytes in big endian ordering

• enum types MUST be treated as uint32

• string types MUST be passed as UTF-8 encoded byte array

• bytes types MUST be passed as is

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 105 of 249

R-E2E.33 – If using the TLS MAC method to protect the integrity of a USP Record, and a USP
Endpoint receives a USP Record, the USP Endpoint MUST verify the MAC using the SHA-256
HMAC algorithm for the non-payload portion of the USP Record.

R-E2E.34 – If using the TLS MAC method to protect the integrity of a USP Record, when
generating or validating the MAC of the USP Record, the sequence of the non-payload fields
MUST use the field identifier of the USP Record’s protobuf specification proceeding from lowest to
highest.

R-E2E.35 – If using the TLS MAC method to protect the integrity of a USP Record, when
generating or validating the MAC of the USP Record, the USP Endpoint MUST derive the key
using the KDF as defined in RFC 5869(https://tools.ietf.org/html/rfc5869).

R-E2E.36 – If using the TLS MAC method to protect the integrity of a USP Record, when
generating or validating the MAC of the USP Record, the USP Endpoint MUST use the application
context information value of “USP_Record”.

R-E2E.37 – If using the TLS MAC method to protect the integrity of a USP Record, when
generating or validating the MAC of the USP Record, the USP Endpoint MUST use the MAC
length of 32.

R-E2E.38 – If using the TLS MAC method to protect the integrity of a USP Record, when
generating or validating the MAC of the USP Record and the USP Endpoint uses TLS to secure the
payload of the USP Record, the USP Endpoint MUST derive the key from the negotiated TLS
session’s master key.

R-E2E.39 – If using the TLS MAC method to protect the integrity of a USP Record, when
generating the MAC of the USP Record and the USP Endpoint uses TLS to secure the payload of
the USP Record, the USP Endpoint MUST use TLS session’s client or server random for the salt
depending on the role the USP Endpoint plays in the TLS session (i.e., the TLS client uses the client
random and the TLS server uses the server random).

12.5 Secure Message Exchange

While message transport bindings implement point-to-point security, the existence of broker-based
message transports and transport proxies creates a need for end-to-end security within the USP
protocol. End-to-end security is established by securing the payloads prior to segmentation and
transmission by the originating USP Endpoint and the decryption of reassembled payloads by the
receiving USP Endpoint. The indication whether and how the USP Message has been secured is via
the payload_security field. This field defines the security protocol or mechanism applied to the
USP payload, if any. This section describes the payload security protocols supported by USP.

12.5.1 TLS Payload Encapsulation

USP employs TLS as one security mechanism for protection of USP payloads in Agent-Controller
message exchanges.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 106 of 249

While traditionally deployed over reliable streams, TLS is a record-based protocol that can be
carried over datagrams, with considerations taken for reliable and in-order delivery. To aid
interoperability, USP endpoints are initially limited to a single cipher specification, though future
revisions of the protocol may choose to expand cipher support.

R-E2E.40 – When using TLS to protect USP payloads in USP Records, USP Endpoints MUST
implement TLS 1.2 or later (with backward compatibility to TLS 1.2) with the ECDHE-ECDSA-
AES128-GCM-SHA256 cipher and P-256 curve.

Note: The cipher listed above requires a USP Endpoint acting as the TLS server to use X.509
certificates signed with ECDSA and Diffie-Hellman key exchange credentials to negotiate the
cipher.

12.5.1.1 Session Handshake

When TLS is used as a payload protection mechanism for USP Message, TLS requires the use of
the Session Context to negotiate its TLS session. The USP Endpoint that initiated the Session
Context will act in the TLS client role when establishing the security layer. The security layer is
constructed using a standard TLS handshake, encapsulated within one or more of the above-defined
USP Record payload datagrams. Per the TLS protocol, establishment of a new TLS session requires
two round-trips.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 107 of 249

Figure E2E.4 – TLS session handshake

R-E2E.41 – USP Endpoints that specify TLS12 in the payload_security field MUST exchange
USP Records within an E2E Session Context.

If the TLS session cannot be established for any reason, the USP Endpoint that received the USP
Record will consider the USP Record as failed and perform the failure processing as defined in
section Failure Handling of Received USP Records.

TLS provides a mechanism to renegotiate the keys of a TLS session without tearing down the
existing session called TLS renegotiation. However, for E2E Message exchange in USP, TLS
renegotiation is ignored.

R-E2E.42 – USP Endpoints MUST ignore requests for TLS renegotiation when used for E2E
Message exchange.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 108 of 249

12.5.1.2 Authentication

USP relies upon peer authentication using X.509 certificates, as provided by TLS. Each USP
endpoint identifier is identified within an X.509 certificate. The rules for authentication are
provided in Authentication and Authorization.

R-E2E.43 – USP Endpoints MUST be mutually authenticated using X.509 certificates using the
USP Endpoint identifier encoded within the X.509 certificates subjectAltName field.

13 Messages
USP contains messages to create, read, update, and delete Objects, perform Object-defined
operations, and allow agents to notify controllers of events. This is often referred to as CRUD with
the addition of O (operate) and N (notify), or CRUD-ON.

Note: This version of the specification defines its messages in Protocol Buffers v3 (see encoding).
This part of the specification may change to a more generic description (normative and non-
normative) if further encodings are specified in future versions.

These sections describe the types of USP messages and the normative requirements for their flow
and operation. USP messages are described in a protocol buffers schema, and the normative
requirements for the individual fields of the schema are outlined below.

13.1 Encapsulation in a USP Record

All USP messages are encapsulated by a USP record. The definition of the USP record portion of a
USP message, and the rules for managing transactional integrity, are described in End to End
Message Exchange.

13.2 Requests, Responses and Errors

The three types of USP messages are Request, Response, and Error.

A request is a message sent from a source USP endpoint to a target USP endpoint that includes
fields to be processed and returns a response or error. Unless otherwise specified, all requests have
an associated response. Though the majority of requests are made from a Controller to an Agent, the
Notify message follows the same format as a request but is sent from an Agent to a Controller.

R-MSG.0 - The target USP endpoint MUST respond to a request message from the source USP
endpoint with either a response message or error message, unless otherwise specified (see Operate
and Notify messages).

R-MSG.1 - The target USP endpoint MUST ignore or send an error message in response to
messages it does not understand.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 109 of 249

R-MSG.2 - When the target USP endpoint is not required to send a response, the MTP endpoint
that received the message MUST gracefully end the MTP message exchange. How the MTP
gracefully ends the MTP message exchange is dependent on the type of MTP.

R-MSG.3 - In any USP Message originating from an Agent, unless otherwise specified, Path
Names reported from the Agent’s Instantiated Data Model MUST use Instance Number Addressing.

13.2.1 Handling Duplicate Messages

Circumstances may arise (such as multiple Message Transfer Protocols) that cause duplicate
messages (those with an identical message ID) to arrive at the target USP endpoint.

R-MSG.4 - If a target USP endpoint receives a message with a duplicate message ID before it has
processed and sent a Response or Error to the original message, it MUST gracefully ignore the
duplicate message.

For messages that require no response, it is up to the target endpoint implementation when to allow
the same message ID to be re-used by the same source USP endpoint.

13.2.2 Example Message Flows

Successful request/response: In this successful message sequence, a Controller sends an Agent a
request. The message header and body are parsed, the message is understood, and the Agent sends a
response with the relevant information in the body.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 110 of 249

Figure MSG.1 - A successful request/response sequence

Failed request/response: In this failed message sequence, a Controller sends an Agent a request. The
message header and body are parsed, but the Agent throws an error. The error arguments are
generated and sent in an error message.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 111 of 249

Figure MSG.2 - A failed request/response sequence

13.3 Message Structure

A Message consists of a header and body. When using protocol buffers, the fields of the header and
body for different messages are defined in a schema and sent in an encoded format from one USP
endpoint to another.

R-MSG.5 - A Message MUST conform to the schemas defined in usp-msg.proto.

Note: When not explicitly set or included in the Message, the fields have a default value based on
the type of field. For strings, the default value is an empty byte string. For booleans, the default
value is “false”. For numbers (fixed32) and enumerations, the default value is 0. For repeated
bytes, the default value is an empty byte string. For a oneof field, none of the allowed values is
assumed if the field is absent. If there is no requirement stating a field must be present, it is not
necessary to include the field in a sent Message. The receiving Endpoint will use default values for
fields not included in a received Message. Any field with a requirement indicating it must be present
is required to always be included. A Message without a required field will fail to be processed by a
receiving Endpoint. “Repeated” fields can be included any number of times, including zero. For
additional information, default values (when fields are missing) are described in Protocol Buffers
v3.

https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3#default
https://developers.google.com/protocol-buffers/docs/proto3#default

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 112 of 249

Every USP message contains a header and a body. The header contains basic destination and
coordination information, and is separated to allow security and discovery mechanisms to operate.
The body contains the message itself and its arguments.

Each of the message types and fields below are described with the field type according to Protocol
Buffers version 3, followed by its name.

13.3.1 The USP Message

Header header

R-MSG.6 - A Message MUST contain exactly one header field.

Body body

The Message Body that must be present in every Message. The Body field contains either a
Request, Response, or Error field.

R-MSG.7 - A Message MUST contain exactly one body field.

13.3.2 Message Header

The message header contains information on source and target of the message, as well as useful
coordination information. Its fields include a message ID, the endpoint identifiers for the source and
target endpoints, an optional reply-to identifier, and a field indicating the type of message.

The purpose of the message header is to provide basic information necessary for the target endpoint
to process the message.

13.3.2.1 Message Header fields

string msg_id

A locally unique opaque identifier assigned by the Endpoint that generated this message.

R-MSG.8 - The msg_id field MUST be present in every Header.

R-MSG.9 - The msg_id field in the Message Header for a Response or Error that is associated with
a Request MUST contain the message ID of the associated request. If the msg_id field in the
Response or Error does not contain the message ID of the associated Request, the response or error
MUST be ignored.

enum MsgType msg_type

This field contains an enumeration indicating the type of message contained in the message body. It
is an enumeration of:

https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 113 of 249

ERROR (0)
GET (1)
GET_RESP (2)
NOTIFY (3)
SET (4)
SET_RESP (5)
OPERATE (6)
OPERATE_RESP (7)
ADD (8)
ADD_RESP (9)
DELETE (10)
DELETE_RESP (11)
GET_SUPPORTED_DM (12)
GET_SUPPORTED_DM_RESP (13)
GET_INSTANCES (14)
GET_INSTANCES_RESP (15)
NOTIFY_RESP (16)
GET_SUPPORTED_PROTO (17)
GET_SUPPORTED_PROTO_RESP (18)

R-MSG.10 - The msg_type field MUST be present in every Header. Though required, it is meant
for information only. In the event this field differs from the req_type or resp_type in the message
body (respectively), the type given in either of those elements SHOULD be regarded as correct.

13.3.3 Message Body

The message body contains the intended message and the appropriate fields for the message type.

Every message body contains exactly one message and its fields. When an Agent is the target
endpoint, these messages can be used to create, read, update, and delete Objects, or execute Object-
defined operations. When a Controller is the target endpoint, the message will contain a notification,
response, or an error.

13.3.3.1 Message Body fields

oneof msg_body

This field contains one of the types given below:

Request request

This field indicates that the Message contains a request of a type given in the Request Message.

Response response

This field indicates that the Message contains a response of a type given in the Response Message.

Error error

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 114 of 249

This field indicates that the Message contains an Error Message.

13.3.3.2 Request fields

oneof req_type

This field contains one of the types given below. Each indicates that the Message contains a
Message of the given type.

Get get
GetSupportedDM get_supported_dm
GetInstances get_instances
Set set
Add add
Delete delete
Operate operate
Notify notify
GetSupportedProtocol get_supported_protocol

13.3.3.3 Response fields

oneof resp_type

This field contains one of the types given below. Each indicates that the Message contains a
Message of the given type.

GetResp get_resp
GetSupportedDMResp get_supported_dm_resp
GetInstancesResp get_instances_resp
SetResp set_resp
AddResp add_resp
DeleteResp delete_resp
OperateResp operate_resp
NotifyResp notify_resp
GetSupportedProtocolResp get_supported_protocol_resp

13.3.3.4 Error fields

fixed32 err_code

This field contains a numeric code indicating the type of error that caused the overall message to
fail.

string err_msg

This field contains additional information about the reason behind the error.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 115 of 249

repeated ParamError param_errs

This field is present in an Error Message in response to an Add or Set message when the
allow_partial field is false and detailed error information is available for each Object or parameter
that have caused the message to report an Error.

13.3.3.4.1 ParamError fields

string param_path

This field contains a Path Name to the Object or parameter that caused the error.

fixed32 err_code

This field contains a numeric code indicating the type of error that caused the message to fail.

string err_msg

This field contains additional information about the reason behind the error.

13.4 Creating, Updating, and Deleting Objects

The Add, Set, and Delete requests are used to create, configure and remove Objects that comprise
Service fields.

13.4.1 Selecting Objects and Parameters

Each Add, Set, and Delete request operates on one or more paths. For the Add request, these paths
are references to Multi-Instance Objects. For all other requests, these paths can contain either
addressing based identifiers that match zero or one Object or search based identifiers that matches
one or more Objects.

For Add and Set requests, each Object address or search is conveyed in an field that also contains a
sub-field listing the parameters to update in the matched Objects.

The Add response contains details about the success or failure of the creation of the Object and the
parameters set during its creation. In addition, it also returns those parameters that were set by the
Agent upon creation of the Object.

For example, a Controller wants to create a new WiFi network on an Agent. It could use an Add
message with the following fields:

allow_partial: false
create_objs {
 obj_path: "Device.WiFi.SSID."
 param_settings {

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 116 of 249

 {
 param: "LowerLayers"
 value: "Device.WiFi.Radio.1."
 required: true}
 {
 param: "SSID"
 value: "NewSSIDName"
 required: true}
 }
 }

The Agent’s response would include the object created (with its instance identifier) and the unique
keys of the created object as defined in Device:2:

created_obj_results {
 requested_path: "Device.WiFi.SSID."
 oper_status {
 oper_success {
 instantiated_path: ""Device.WiFi.SSID.4."
 unique_keys {
 {
 key: "BSSID"
 value: "112233445566"}
 {
 key: "Name"
 value: "GuestNetwork1"}
 {
 key: "Alias"
 value: "cpe-alias-1"}
 }
 }
 }
}

13.4.2 Using Allow Partial and Required Parameters

The Add, Set, and Delete requests contain an field called “allow_partial”. This field determines
whether or not the message should be treated as one complete configuration change, or a set of
individual changes, with regards to the success or failure of that configuration.

For Delete, this is straightforward - if allow_partial is true, the Agent should return a Response
message with affected_paths and unaffected_path_errs containing the successfully deleted
Objects and unsuccessfully deleted objects, respectively. If allow_partial is false, the Agent
should return an Error message if any Objects fail to be deleted.

For the Add and Set messages, parameter updates contain an field called “required”. This details
whether or not the update or creation of the Object should fail if a required parameter fails.

This creates a hierarchy of error conditions for the Add and Set requests, such as:

https://usp-data-models.broadband-forum.org/

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 117 of 249

Parameter Error -> Object Error -> Message Error

If allow_partial is true, but one or more required parameters fail to be updated or configured, the
creation or update of an individual Object fails. This results in an oper_failure in the
oper_status field and updated_obj_result or created_obj_result returned in the Add or Set
response.

If allow_partial is false, the failure of any required parameters will cause the update or creation
of the Object to fail, which will cause the entire message to fail. In this case, the Agent returns an
error message rather than a response message.

Both the oper_failure fields and Error messages contain an field called param_error, which
contains fields of type ParamError. This is so that the Controller will receive the details of failed
parameter updates regardless of whether or not the Agent returned a response message or error
message.

The logic can be described as follows:

• allow_partial

• Required
Paramet
ers

• Required
Paramet
er Failed

• Other
Para
meter
Faile
d • Response/Error

• Oper_status of
Object

• True/False • No • - • No • Response • oper_success
• True/False • No • - • Yes • Response • oper_success
• True/False • Yes • No • No • Response • oper_success
• True/False • Yes • No • Yes • Response • oper_success
• True • Yes • Yes • - • Response • oper_failure
• False • Yes • Yes • - • Error • N/A

13.4.3 The Add Message

The Add message is used to create new Instances of Multi-Instance Objects in the Agent’s
Instantiated Data Model.

13.4.3.1 Add Example

In this example, the Controller requests that the Agent create a new instance in the
Device.LocalAgent.Controller table.

Add Request:
header {
 msg_id: "52867"
 msg_type: ADD
}

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 118 of 249

body {
 request {
 add {
 allow_partial: true
 create_objs {
 obj_path: "Device.LocalAgent.Controller."
 param_settings {
 {
 param: "Enable"
 value: "True"}
 {
 param: "EndpointID"
 value: "controller-temp"}
 }
 }
 }
 }
}

Add Response:
header {
 msg_id: "52867"
 msg_type: ADD_RESP
}
body {
 response {
 add_resp {
 created_obj_results {
 requested_path: "Device.LocalAgent.Controller."
 oper_status {
 oper_success {
 instantiated_path: "Device.LocalAgent.Controller.31185."
 unique_keys {
 key: "EndpointID"
 value: "controller-temp"
 }
 }
 }
 }
 }
 }
}

13.4.3.2 Add Request fields

bool allow_partial

This field tells the Agent how to process the message in the event that one or more of the Objects
specified in the create_objs argument fails creation.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 119 of 249

R-ADD.0 - If the allow_partial field is set to true, and no other exceptions are encountered, the
Agent treats each Object matched in obj_path independently. The Agent MUST complete the
creation of valid Objects regardless of the inability to create or update one or more Objects (see
allow partial and required parameters).

R-ADD.1 - If the allow_partial field is set to false, and no other exceptions are encountered,
the Agent treats each Object matched in obj_path holistically. A failure to create any one Object
MUST cause the Add message to fail and return an Error Message (see allow partial and required
parameters).

repeated CreateObject create_objs

This field contains a repeated set of CreateObject fields.

13.4.3.2.1 CreateObject fields

string obj_path

This field contains an Object Path to a writeable Table in the Agent’s Instantiated Data Model.

R-ADD.2 - The obj_path field in the CreateObject message of an Add Request MUST NOT
contain Search Paths.

repeated CreateParamSetting param_settings

This field contains a repeated set of CreateParamSetting fields.

13.4.3.2.1.1 CreateParamSetting fields

string param

This field contains a relative path to a parameter of the Object specified in obj_path, or a
parameter of a single instance sub-object of the Object specified in obj_path.

string value

This field contains the value of the parameter specified in the param field that the Controller would
like to configure as part of the creation of this Object.

bool required

This field specifies whether the Agent should treat the creation of the Object specified in obj_path
as conditional upon the successful configuration of this parameter (see allow partial and required
parameters).

R-ADD.3 - If the required field is set to true, a failure to update this parameter MUST result in a
failure to create the Object.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 120 of 249

13.4.3.3 Add Response fields

repeated CreatedObjectResult created_obj_results

A repeated set of CreatedObjectResult fields for each CreateObject field in the Add message.

13.4.3.3.1 CreatedObjectResult fields

string requested_path

This field returns the value of obj_paths in the CreateObject message associated with this
CreatedObjectResult.

OperationStatus oper_status

The field contains a message of type OperationStatus that specifies the overall status for the
creation of the Object specified in requested_path.

13.4.3.3.1.1 OperationStatus fields

oneof oper_status

This field contains one of the types given below. Each indicates that the field contains a message of
the given type.

OperationFailure oper_failure

This message is used when the object given in requested_path failed to be created.

OperationSuccess oper_success

13.4.3.3.1.2 OperationFailure fields

fixed32 err_code

This field contains a numeric code indicating the type of error that caused the Object creation to
fail. A value of 0 indicates the Object was created successfully.

string err_msg

This field contains additional information about the reason behind the error.

13.4.3.3.1.3 Operation Success fields

string instantiated_path

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 121 of 249

This field contains the Object Instance Path of the created Object.

repeated ParameterError param_errs

This field returns a repeated set of ParameterError messages.

R-ADD.4 - If any of the parameters and values specified in the param_settings field fail to
configure upon creation, this set MUST include one field describing each of the failed parameters
and the reason for their failure.

map<string, string> unique_keys

This field contains a map of the local name and value for each supported parameter that is part of
any of this Object’s unique keys.

R-ADD.5 - If the Controller did not include some or all of a unique key that the Agent supports in
the param_settings field, the Agent MUST assign values to the unique key(s) and return them in
the unique_keys.

R-ADD.6 - If the Controller does not have Read permission on any of the parameters specified in
unique_keys, these parameters MUST NOT be returned in this field.

13.4.3.3.1.4 ParameterError fields

string param

This field contains the Relative Parameter Path to the parameter that failed to be set.

fixed32 err_code

This field contains the error code of the error that caused the parameter set to fail.

string err_msg

This field contains text related to the error specified by err_code.

13.4.3.4 Add Message Supported Error Codes

Appropriate error codes for the Add message include 7000-7019, 7026, and 7800-7999.

13.4.4 The Set Message

The Set Message is used to update the Parameters of existing Objects in the Agent’s Instantiated
Data Model.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 122 of 249

13.4.4.1 Set Example

In this example the Controller requests that the Agent change the value of the FriendlyName
Parameter in the Device.DeviceInfo. Object.

Set Request:
header {
 msg_id: "19220"
 msg_type: SET
}
body {
 request {
 set {
 allow_partial: true
 update_objs {
 obj_path: "Device.DeviceInfo."
 param_settings {
 param: "FriendlyName"
 value: "MyDevicesFriendlyName"
 required: true
 }
 }
 }
 }

Set Response:
header {
 msg_id: "19220"
 msg_type: SET_RESP
}
body {
 response {
 set_resp {
 updated_obj_results {
 requested_path: "Device.DeviceInfo."
 oper_status {
 oper_success {
 updated_inst_results {
 affected_path: "Device.DeviceInfo."
 updated_params {
 {
 key: "FriendlyName"
 value: "MyDevicesFriendlyName"
 }
 }
 }
 }
 }
 }
 }

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 123 of 249

 }
}

13.4.4.2 Set Request fields

bool allow_partial

This field tells the Agent how to process the message in the event that one or more of the Objects
matched in the obj_path fails to update.

R-SET.0 - If the allow_partial field is set to true, and no other exceptions are encountered, the
Agent treats each UpdateObject message obj_path independently. The Agent MUST complete
the update of valid Objects regardless of the inability to update one or more Objects (see allow
partial and required parameters).

Note: This may cause some counterintuitive behavior if there are no required parameters to be
updated. The Set Request can still result in a Set Response (rather than an Error Message) if
allow_partial is set to true.

R-SET.1 - If the allow_partial field is set to false, and no other exceptions are encountered, the
Agent treats each UpdateObject message obj_path holistically. A failure to update any one Object
MUST cause the Set message to fail and return an Error message (see allow partial and required
parameters).

repeated UpdateObject update_objs

This field contains a repeated set of UpdateObject messages.

13.4.4.2.1 UpdateObject fields

string obj_path

This field contains an Object Path, Instance Path, or Search Path to Objects or Object Instances in
the Agent’s Instantiated Data Model.

repeated UpdateParamSetting param_settings

The field contains a repeated set of UpdatedParamSetting messages.

13.4.4.2.1.1 UpdateParamSetting fields

string param

This field contains the local name of a parameter of the Object specified in obj_path.

string value

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 124 of 249

This field contains the value of the parameter specified in the param field that the Controller would
like to configure.

bool required

This field specifies whether the Agent should treat the update of the Object specified in obj_path
as conditional upon the successful configuration of this parameter.

R-SET.2 - If the required field is set to true, a failure to update this parameter MUST result in a
failure to update the Object (see allow partial and required parameters).

13.4.4.3 Set Response

repeated UpdatedObjectResult updated_obj_results

This field contains a repeated set of UpdatedObjectResult messages for each UpdateObject
message in the associated Set Request.

13.4.4.3.1 UpdatedObjectResult fields

string requested_path

This field returns the value of updated_obj_results in the UpdateObject message associated
with this UpdatedObjectResult.

OperationStatus oper_status

The field contains a message of type OperationStatus that specifies the overall status for the
update of the Object specified in requested_path.

13.4.4.3.1.1 OperationStatus fields

oneof oper_status

This field contains a message of one of the following types.

OperationFailure oper_failure

Used when the Object specified in requested_path failed to be updated.

OperationSuccess oper_success

13.4.4.3.1.2 OperationFailure fields

fixed32 err_code

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 125 of 249

This field contains a numeric code indicating the type of error that caused the Object update to fail.

string err_msg

This field contains additional information about the reason behind the error.

repeated UpdatedInstanceFailure updated_inst_failures

This field contains a repeated set of messages of type UpdatedInstanceFailure.

13.4.4.3.1.3 UpdatedInstanceFailure fields

string affected_path

This field returns the Object Path or Object Instance Path of the Object that failed to update.

repeated ParameterError param_errs

This field contains a repeated set of ParameterError messages.

13.4.4.3.1.4 ParameterError fields

string param

This field contains the Parameter Path to the parameter that failed to be set.

fixed32 err_code

This field contains the error code of the error that caused the parameter set to fail.

string err_msg

This field contains text related to the error specified by err_code.

13.4.4.3.1.5 OperationSuccess fields

repeated UpdatedInstanceResult updated_inst_results

This field contains a repeated set of UpdatedInstanceResult messages.

13.4.4.3.1.6 UpdatedInstanceResult fields

string affected_path

This field returns the Object Path or Object Instance Path of the updated Object.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 126 of 249

repeated ParameterError param_errs

This field contains a repeated set of ParameterError messages.

map<string, string> updated_params

This field returns a set of key/value pairs containing a path (relative to the affected_path) to each
of the updated Object’s parameters, their values, plus sub-Objects and their values that were
updated by the Set Request.

R-SET.3 - If the Controller does not have Read permission on any of the parameters specified in
updated_params, these parameters MUST NOT be returned in this field.

Note: If the Set Request configured a parameter to the same value it already had, this parameter is
still returned in the updated_params.

13.4.4.3.1.7 ParameterError fields

string param

This field contains the Parameter Path to the parameter that failed to be set.

fixed32 err_code

This field contains the error code of the error that caused the parameter set to fail.

string err_msg

This field contains text related to the error specified by err_code.

13.4.4.4 Set Message Supported Error Codes

Appropriate error codes for the Set message include 7000-7016, 7020, 7021, 7026, and 7800-7999.

13.4.5 The Delete Message

The Delete Message is used to remove Instances of Multi-Instance Objects in the Agent’s
Instantiated Data Model.

13.4.5.1 Delete Example

In this example, the Controller requests that the Agent remove the instance in
Device.LocalAgent.Controller table that has the EndpointID value of “controller-temp”.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 127 of 249

Delete Request:
header {
 msg_id: "24799"
 msg_type: DELETE
}
body {
 request {
 delete {
 obj_paths: "Device.LocalAgent.Controller.[EndpointID=="controller-
temp"]."
 }
 }
}

Delete Response:
header {
 msg_id: "24799"
 msg_type: DELETE_RESP
}
body {
 response {
 delete_resp {
 deleted_obj_results {
 requested_path: "Device.LocalAgent.Controller.[EndpointID=="controller-
temp"]."
 oper_status {
 oper_success {
 affected_paths {
 {
 "Device.LocalAgent.Controller.31185."}
 {
 "Device.LocalAgent.Controller.31185.E2ESession."}
 }
 }
 }
 }
 }
}

13.4.5.2 Delete Request fields

bool allow_partial

This field tells the Agent how to process the message in the event that one or more of the Objects
specified in the obj_path argument fails deletion.

R-DEL.0 - If the allow_partial field is set to true, and no other exceptions are encountered, the
Agent treats each entry in obj_path independently. The Agent MUST complete the deletion of

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 128 of 249

valid Objects regardless of the inability to delete one or more Objects (see allow partial and
required parameters).

R-DEL.1 - If the allow_partial field is set to false, and no other exceptions are encountered, the
Agent treats each entry in obj_path holistically. A failure to delete any one Object MUST cause
the Delete message to fail and return an Error message (see allow partial and required parameters).

repeated string obj_paths

This field contains a repeated set of Object Instance Paths or Search Paths.

13.4.5.3 Delete Response fields

repeated DeletedObjectResult deleted_obj_results

This field contains a repeated set of DeletedObjectResult messages.

13.4.5.3.1 DeletedObjectResult fields

string requested_path

This field returns the value of the entry of obj_paths (in the Delete Request) associated with this
DeleteObjectResult.

OperationStatus oper_status

This field contains a message of type OperationStatus.

13.4.5.3.1.1 OperationStatus fields

oneof oper_status

This field contains a message of one of the following types.

OperationFailure oper_failure

Used when the Object specified in requested_path failed to be deleted.

OperationSuccess oper_success

13.4.5.3.1.2 OperationFailure fields

Note: Since the OperationSuccess message of the Delete Response contains an
unaffected_path_errs, the OperationStatus will only contain an OperationFailure message

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 129 of 249

if the requested_path did not match any existing Objects (error 7016) or was syntactically
incorrect (error 7008).

fixed32 err_code

This field contains a numeric code indicating the type of error that caused the delete to fail. A value
of 0 indicates the Object was deleted successfully.

string err_msg

This field contains additional information about the reason behind the error.

13.4.5.3.1.3 OperationSuccess fields

repeated string affected_paths

This field returns a repeated set of Path Names to Object Instances.

R-DEL.2 - If the Controller does not have Read permission on any of the Objects specified in
affected_paths, these Objects MUST NOT be returned in this field.

R-DEL.2a - If the requested_path was valid (i.e., properly formatted and in the Agent’s supported
data model) but did not resolve to any objects in the Agent’s instantiated data model, the Agent
MUST return an OperationSuccess for this requested_path, and include an empty set for
affected_path.

repeated UnaffectedPathError unaffected_path_errs

This field contains a repeated set of messages of type UnaffectedPathError.

R-DEL.3 - If any of the Object Instances specified in the obj_paths field fail to delete, this set
MUST include one UnaffectedPathError message for each of the Object Instances that failed to
Delete.

R-DEL.4 - If the Controller does not have Read permission on any of the Objects specified in
unaffected_paths, these Objects MUST NOT be returned in this field.

13.4.5.3.1.4 UnaffectedPathError fields

string unaffected_path

This field returns the Path Name to the Object Instance that failed to be deleted.

fixed32 err_code

This field contains the error code of the error that caused the deletion of this object to fail.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 130 of 249

string err_msg

This field contains text related to the error specified by err_code.

13.4.5.4 Delete Message Supported Error Codes

Appropriate error codes for the Delete message include 7000-7008, 7015, 7016, 7018, 7024, 7026
and 7800-7999.

13.5 Reading an Agent’s State and Capabilities

An Agent’s current state and capabilities are represented in its data model. The current state is
referred to as its Instantiated Data Model, while the data model that represents its set of capabilities
is referred to as its Supported Data Model. Messages exist to retrieve data from both the instantiated
and Supported Data Models.

13.5.1 The Get Message

The basic Get message is used to retrieve the values of a set of Object’s parameters in order to learn
an Agent’s current state. It takes a set of search paths as an input and returns the complete tree of
parameters, plus the parameters of all sub-Objects, of any Object matched by the specified
expressions. The search paths specified in a Get request can also target individual parameters within
Objects to be returned.

Note: Those familiar with Broadband Forum TR-069 will recognize this behavior as the difference
between “partial paths” and “complete paths”. This behavior is replicated in USP for the Get
message for each path that is matched by the expression(s) supplied in the request.

Note: Each search path is intended to be evaluated separately, and the results from a given search
path are returned in an field dedicated to that path. As such, it is possible that the same information
may be returned from more than one search path. This is intended, and the Agent should treat each
search path atomically.

The response returns an entry for each Path Name resolved by the path given in requested_path.
If a path expression specified in the request does not match any valid parameters or Objects, the
response will indicate that this expression was an “invalid path”, indicating that the Object or
parameter does not currently exist in the Agent’s Supported Data Model.

For each resolved Path Name, a ResolvedPathResult message is given in the Response. This
ResolvedPathResult contains the resolved_path, followed by a list of parameters
(result_params) of both the resolved_path Object and all of its sub-objects, plus their values. If
there are no parameters, result_params may be empty. These Parameter Paths are Relative Paths
to the resolved_path.

https://www.broadband-forum.org/technical/download/TR-069.pdf

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 131 of 249

13.5.1.1 Get Examples

For example, a Controller wants to read the data model to learn the settings and stats of a single
WiFi SSID, “HomeNetwork” with a BSSID of “00:11:22:33:44:55”. It could use a Get request with
the following fields:

Get {
 param_paths {
 "Device.WiFi.SSID.[SSID=="Homenetwork"&&BSSID==00:11:22:33:44:55]."
 }
}

In response to this request the Agent returns all parameters, plus sub-Objects and their parameters,
of the addressed instance. The Agent returns this data in the Get response using a field for each of
the requested paths. In this case:

GetResp {
 req_path_results {
 requested_path:
"Device.WiFi.SSID.[SSID=="Homenetwork"&&BSSID=00:11:22:33:44:55]."
 err_code : 0
 err_msg :
 resolved_path_results {
 resolved_path : "Device.WiFi.SSID.1."
 result_params {
 {
 key: "Enable"
 value: "True"}
 {
 key: "Status"
 value: "Up"}
 {
 key: "Name"
 value: "Home Network"}
 {
 key: "LastChange"
 value: "864000"}
 {
 key: "BSSID"
 value: "00:11:22:33:44:55"}
 {
 key: "Stats.BytesSent"
 value: "24901567"}
 {
 key: "Stats.BytesReceived"
 value: "892806908296"}

 (etc.)
 }

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 132 of 249

 }
 }

In another example, the Controller only wants to read the current status of the WiFi network with
the SSID “HomeNetwork” with the BSSID of 00:11:22:33:44:55. It could use a Get request with
the following fields:

Get {
 param_paths {
 "Device.WiFi.SSID.[SSID=="Homenetwork"&&BSSID==00:11:22:33:44:55].Status"
 }
}

In response to this request the Agent returns only the Status parameter and its value.

 GetResp {
 req_path_results {
 requested_path:
"Device.WiFi.SSID.[SSID=="Homenetwork"&&BSSID==00:11:22:33:44:55].Status"
 err_code : 0
 err_msg :
 resolved_path_results {
 resolved_path : "Device.WiFi.SSID.1."
 result_params {
 key: "Status"
 value: "Up"
 }
 }
 }
 }

Lastly, using wildcards or another Search Path, the requested path may resolve to more than one
resolved path. For example for a Request sent to an Agent with two WiFi.SSID instances:

 Get {
 param_paths {
 "Device.WiFi.SSID.*.Status"
 }
 }

The Agent’s GetResponse would be:

 GetResp {
 req_path_results {
 requested_path: "Device.WiFi.SSID.*."
 err_code : 0
 err_msg :
 resolved_path_results {
 resolved_path : "Device.WiFi.SSID.1."
 result_params {

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 133 of 249

 key: "Status"
 value: "Up"
 }

 resolved_path : "Device.WiFi.SSID.2."
 result_params {
 key: "Status"
 value: "Up"
 }
 }
 }
 }

In an example with full USP message header and body, the Controller requests all parameters of the
MTP table entry that contains the Alias value “CoAP-MTP1”, and the value of the Enable
parameter of the Subscription table where the subscription ID is “boot-1” and the Recipient
parameter has a value of “Device.LocalAgent.Controller.1”:

Get Request:

header {
 msg_id: "5721"
 msg_type: GET
}
body {
 request {
 get {
 param_paths: "Device.LocalAgent.MTP.[Alias=="CoAP-MTP1"]."
 param_paths: "Device.LocalAgent.Subscription.[ID=="boot-
1"&&Recipient=="Device.LocalAgent.Controller.1"].Enable"
 }
 }
}

Get Response:
header {
 msg_id: "5721"
 msg_type: GET_RESP
}
body {
 response {
 get_resp {
 req_path_results {
 requested_path: "Device.LocalAgent.MTP.[Alias=="CoAP-MTP1"]."
 resolved_path_results {
 resolved_path: "Device.LocalAgent.MTP.5156." {
 {
 key: "Alias"
 value: "CoAP-MTP1"}
 {

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 134 of 249

 key: "Enable"
 value: "False"}
 {
 key: "EnableMDNS"
 value: "True"}
 {
 key: "Protocol"
 value: "CoAP"}
 {
 key: "Status"
 value: "Inactive"}
 }
 }

 resolved_path_results {
 resolved_path: "Device.LocalAgent.MTP.5156.CoAP."
 result_params {
 {
 key: "CheckPeerID"
 value: "False"}
 {
 key: "EnableEncryption"
 value: "True"}
 {
 key: "Host"
 value: "127.0.0.1"}
 {
 key: "IsEncrypted"
 value: "False"}
 {
 key: "Path"
 value: "/e/agent"}
 {
 key: "Port"
 value: "5684"}
 {
 key: "ValidatePeerCertificate"
 value: "True"}
 }
 }
 resolved_path_results {
 resolved_path: "Device.LocalAgent.MTP.5156.STOMP."
 result_params {
 {
 key: "Destination"}
 {
 key: "Reference"}
 }
 }
 }

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 135 of 249

 req_path_results {
 requested_path: "Device.LocalAgent.Subscription.[ID=="boot-
1"&&Recipient=="Device.LocalAgent.Controller.1"].Enable"
 resolved_path_results {
 resolved_path: "Device.LocalAgent.Subscription.6629."
 result_params {
 key: "Enable"
 value: "True"
 }
 }
 }
 }
 }
}

13.5.1.2 Get Request fields

repeated string param_paths

This field is a set of Object Paths, Instance Paths, Parameter Paths, or Search Paths to Objects,
Object Instances, and Parameters in an Agent’s Instantiated Data Model.

13.5.1.3 Get Response fields

repeated RequestedPathResult req_path_results

A repeated set of RequestedPathResult messages for each of the Path Names given in the
associated Get request.

13.5.1.3.1 RequestedPathResult field

string requested_path

This field contains one of the Path Names or Search Paths given in the param_path field of the
associated Get Request.

fixed32 err_code

This field contains a numeric code indicating the type of error that caused the Get to fail on this
path. A value of 0 indicates the path could be read successfully.

R-GET.0 - If requested_path contains a Path Name that does not match any Object or Parameter
in the Agent’s Supported Data Model, the Agent MUST use the 7026 - Invalid Path error in
this RequestedPathResult.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 136 of 249

R-GET.1 - If the Controller making the Request does not have Read permission on an Object or
Parameter matched through the requested_path field, the Object or Parameter MUST be treated
as if it is not present in the Agent’s Supported data model.

string err_msg

This field contains additional information about the reason behind the error.

repeated ResolvedPathResult resolved_path_results

This field contains one message of type ResolvedPathResult for each path resolved by the Path
Name or Search Path given by requested_path.

R-GET.1a - If the requested_path is valid (i.e., properly formatted and in the Agent’s supported
data model) but did not resolve to any objects in the Agent’s instantiated data model, the
resolved_path_results set MUST be empty and is not considered an error.

13.5.1.3.1.1 ResolvedPathResult fields

string resolved_path

This field contains a Path Name to an Object or Object Instance that was resolved from the Path
Name or Search Path given in requested_path.

R-GET.2 - If the requested_path included a Path Name to a Parameter, the resolved_path
MUST contain only the Path Name to the parent Object or Object Instance of that parameter.

map<string, string> result_params

This field contains a set of mapped key/value pairs listing a Parameter Path (relative to the Path
Name in resolved_path) to each of the parameters and their values, plus sub-objects and their
values, of the Object given in resolved_path.

R-GET.3 - If the requested_path included a Path Name to a Parameter, result_params MUST
contain only the Parameter included in that path.

R-GET.4 - If the Controller does not have Read permission on any of the parameters specified in
result_params, these parameters MUST NOT be returned in this field. This MAY result in this
field being empty.

13.5.1.3.1.2 Get Message Supported Error Codes

Appropriate error codes for the Get message include 7000-7006, 7008, 7010, 7026 and 7800-7999.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 137 of 249

13.5.2 The GetInstances Message

The GetInstances message takes a Path Name to an Object and requests that the Agent return the
Instances of that Object that exist and possibly any Multi-Instance sub-Objects that exist as well as
their Instances. This is used for getting a quick map of the Multi-Instance Objects (i.e., tables) the
Agent currently represents, and their unique keys, so that they can be addressed and manipulated
later.

GetInstances takes one or more Path Names to Multi-Instance Objects in a Request to an Agent. In
addition, both GetInstances and GetSupportedDM (below) make use of a flag called
first_level_only, which determines whether or not the Response should include all of the sub-
Objects that are children of the Object specified in obj_path. A value of true means that the
Response should return data only for the Object specified. A value of false means that all sub-
Objects should be resolved and returned.

13.5.2.1 GetInstances Examples

For example, if a Controller wanted to know only the current instances of WiFi SSID Objects that
exist on an Agent (that has 3 SSIDs), it would send a GetInstances Request as:

 GetInstances {
 obj_paths : "Device.WiFi.SSID."
 bool first_level_only : true
 }

The Agent’s Response would contain:

 GetInstancesResp {
 req_path_results {
 requested_path : "Device.WiFi.SSID."
 err_code : 0
 err_msg :
 curr_insts {
 instantiated_obj_path : "Device.WiFi.SSID.1."
 unique_keys {
 {
 key : "Alias"
 value : "UserWiFi1"}
 {
 key : "Name"
 value : "UserWiFi1"}
 {
 key : "SSID"
 value : "SecureProviderWiFi"}
 {
 key : "BSSID"
 value : "00:11:22:33:44:55"}
 }

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 138 of 249

 instantiated_obj_path : "Device.WiFi.SSID.2."
 unique_keys {
 {
 key : "Alias"
 value : "UserWiFi2"}
 {
 key : "Name"
 value : "UserWiFi2"}
 {
 key : "SSID"
 value : "GuestProviderWiFi"}
 {
 key : "BSSID"
 value : "00:11:22:33:44:55"}
 }
 }
 }
 }

In another example, the Controller wants to get all of the Instances of the
Device.WiFi.AccessPoint table, plus all of the instances of the AssociatedDevice Object and AC
Object (sub-Objects of AccessPoint). It would issue a GetInstances Request with the following:

 GetInstances {
 obj_paths : "Device.WiFi.AccessPoint."
 bool first_level_only : false
 }

The Agent’s Response will contain an entry in curr_insts for all of the Instances of the
Device.WiFi.AccessPoint table, plus the Instances of the Multi-Instance sub-Objects
.AssociatedDevice. and .AC.:

 GetInstancesResp {
 req_path_results {
 requested_path : "Device.WiFi.AccessPoint."
 err_code : 0
 err_msg :
 curr_insts {
 instantiated_obj_path : "Device.WiFi.AccessPoint.1."
 unique_keys {
 {
 key : "Alias"
 value : "SomeAlias"}
 {
 key : "SSIDReference"
 value : "Device.WiFi.SSID.1"}
 }
 instantiated_obj_path : "Device.WiFi.AccessPoint.2."
 unique_keys :
 {

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 139 of 249

 key : "Alias"
 value : "SomeAlias"}
 {
 key : "SSIDReference"
 value : "Device.WiFi.SSID.2"}
 instantiated_obj_path :
"Device.WiFi.AccessPoint.1.AssociatedDevice.1."
 unique_keys {
 key : "MACAddress"
 value : "11:22:33:44:55:66"
 }

 instantiated_obj_path : "Device.WiFi.AccessPoint.1.AC.1."
 unique_keys {
 key : "AccessCategory"
 value : "BE"
 }

 instantiated_obj_path :
"Device.WiFi.AccessPoint.2.AssociatedDevice.1."
 unique_keys {
 key : "MACAddress"
 value : "11:22:33:44:55:66"
 }

 instantiated_obj_path : "Device.WiFi.AccessPoint.2.AC.1."
 unique_keys {
 key : "AccessCategory"
 value : "BE"
 }
 }
 }
 }

Or more, if more Object Instances exist.

13.5.2.2 GetInstances Request fields

repeated string obj_paths

This field contains a repeated set of Path Names or Search Paths to Multi-Instance Objects in the
Agent’s Instantiated Data Model.

bool first_level_only

This field, if true, indicates that the Agent should return only those instances in the Object(s)
matched by the Path Name or Search Path in obj_path, and not return any child objects.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 140 of 249

13.5.2.3 GetInstances Response fields

repeated RequestedPathResult req_path_results

This field contains a RequestedPathResult message for each Path Name or Search

string requested_path

This field contains one of the Path Names or Search Paths given in obj_path of the associated
GetInstances Request.

fixed32 err_code

This field contains a numeric code indicating the type of error that caused the Get to fail on this
path. A value of 0 indicates the path could be read successfully.

R-GIN.0 - If the Controller making the Request does not have Read permission on an Object or
Parameter matched through the requested_path field, the Object or Parameter MUST be treated
as if it is not present in the Agent’s Supported Data Model.

string err_msg

This field contains additional information about the reason behind the error.

repeated CurrInstance curr_insts

This field contains a message of type CurrInstance for each Instance of all of the Objects matched
by requested_path that exists in the Agent’s Instantiated Data Model.

13.5.2.3.1.1 CurrInstance fields

string instantiated_obj_path

This field contains the Instance Path Name of the Object Instance.

map<string, string> unique_keys

This field contains a map of key/value pairs for all supported parameters that are part of any of this
Object’s unique keys.

R-GIN.1 - If the Controller does not have Read permission on any of the parameters specified in
unique_keys, these parameters MUST NOT be returned in this field.

13.5.2.4 GetInstances Error Codes

Appropriate error codes for the GetInstances message include 7000-7006, 7008, 7016, 7018, 7026
and 7800-7999.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 141 of 249

13.5.3 The GetSupportedDM Message

GetSupportedDM is used to retrieve the Objects, Parameters, Events, and Commands in the Agent’s
Supported Data Model. This allows a Controller to learn what an Agent understands, rather than its
current state.

The GetSupportedDM is different from other USP messages in that it deals exclusively with the
Agent’s Supported Data Model. This means that Path Names to Multi-Instance Objects only address
the Object itself, rather than Instances of the Object, and those Path Names that contain Multi-
Instance objects in the Path use the {i} identifier to indicate their place in the Path Name.

For example, a Path Name to the AssociatedDevice Object (a child of the .WiFi.AccessPoint
Object) would be addressed in the Supported Data Model as:

Device.WiFi.AccessPoint.{i}.AssociatedDevice. or
Device.WiFi.AccessPoint.{i}.AssociatedDevice.{i}.

Both of these syntaxes are supported and equivalent. The Agent’s Response returns the Path Name
to the Object in the associated Device Type document as specified in TR-106.

13.5.3.1 GetSupportedDM Examples

For example, the Controller wishes to learn the WiFi capabilities the Agent represents. It could
issue a GetSupportedDM Request as:

 GetSupportedDM{
 obj_paths : "Device.WiFi."
 first_level_only : false
 return_commands : false
 return_events : false
 return_params : false
 }

The Agent’s Response would be:

GetSupportedDMResp {
 req_obj_results {
 req_obj_path : "Device.WiFi."
 err_code : 0
 err_msg :
 data_model_inst_uri : "urn:broadband-forum-org:tr-181-2-12-0"
 supported_objs {
 {
 supported_obj_path : "Device.WiFi."
 access : OBJ_READ_ONLY
 is_multi_instance : false}
 {
 supported_obj_path : "Device.WiFi.Radio.{i}."

https://www.broadband-forum.org/technical/download/TR-106_Amendment-8.pdf

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 142 of 249

 access : ADD_DELETE (1)
 is_multi_instance : true
 supported_obj_path : "Device.WiFi.Radio.{i}.Stats"
 access : ADD_DELETE (1)
 is_multi_instance : true}
 {
 supported_obj_path : "Device.WiFi.SSID.{i}."
 access : ADD_DELETE (1)
 is_multi_instance : true
 supported_obj_path : "Device.WiFi.SSID.{i}.Stats"
 access : ADD_DELETE (1)
 is_multi_instance : true}
 {
 supported_obj_path : "Device.WiFi.AccessPoint.{i}."
 access : ADD_DELETE (1)
 is_multi_instance : true}
 {
 supported_obj_path : "Device.WiFi.AccessPoint.{i}.Security."
 access : ADD_DELETE (1)
 is_multi_instance : true}
 {
 supported_obj_path : "Device.WiFi.AccessPoint.{i}.WPS."
 access : ADD_DELETE (1)
 is_multi_instance : true}
 {
 supported_obj_path : "Device.WiFi.AccessPoint.{i}.AssociatedDevice.{i}."
 access : ADD_DELETE (1)
 is_multi_instance : true}
 {
 supported_obj_path :
"Device.WiFi.AccessPoint.{i}.AssociatedDevice.{i}.Stats."
 access : ADD_DELETE (1)
 is_multi_instance : true}
 {
 supported_obj_path : "Device.WiFi.AccessPoint.{i}.AC.{i}."
 access : ADD_DELETE (1)
 is_multi_instance : true}
 {
 supported_obj_path : "Device.WiFi.AccessPoint.{i}.AC.{i}.Stats."
 access : ADD_DELETE (1)
 is_multi_instance : true}
 {
 supported_obj_path : "Device.WiFi.AccessPoint.{i}.Accounting."
 access : ADD_DELETE (1)
 is_multi_instance : true}
 {
 supported_obj_path : "Device.WiFi.EndPoint.{i}."
 access : ADD_DELETE (1)
 is_multi_instance : true}

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 143 of 249

 // And continued, for Device.WiFi.EndPoint.{i}. sub-objects such as
Device.WiFi.EndPoint.{i}.Stats., Device.WiFi.EndPoint.{i}.Security., etc.
 }
 }
}

In another example request:

 GetSupportedDM{
 obj_paths : "Device.WiFi."
 first_level_only : true
 return_commands : true
 return_events : true
 return_params : true
 }

The Agent’s respose would be:

 GetSupportedDMResp {
 req_obj_results {
 req_obj_path : "Device.WiFi."
 err_code : 0
 err_msg :
 data_model_inst_uri : "urn:broadband-forum-org:tr-181-2-12-0"
 supported_objs {
 supported_obj_path : "Device.WiFi."
 access : OBJ_READ_ONLY
 is_multi_instance : false
 supported_params {
 {param_name : "RadioNumberOfEntries"
 acces : PARAM_READ_ONLY}
 {param_name : "SSIDNumberOfEntries"
 acces : PARAM_READ_ONLY}
 // Continued for all Device.WiFi. parameters
 }
 supported_commands {
 command_name : NeighboringWiFiDiagnostic()
 output_arg_names {"Result.{i}.Radio" "Result.{i}.SSID"
 "Result.{i}.BSSID" "Result.{i}.Mode" "Result.{i}.Channel"
 // Continued for other NeighboringWiFiDiagnostic() output
arguments
 }
 }
 //followed by its immediate child objects with no details
 {
 supported_obj_path : "Device.WiFi.Radio.{i}."
 access : ADD_DELETE (1)
 is_multi_instance : true}
 {
 supported_obj_path : "Device.WiFi.SSID.{i}."

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 144 of 249

 access : ADD_DELETE (1)
 is_multi_instance : true}
 {
 supported_obj_path : "Device.WiFi.AccessPoint.{i}."
 access : ADD_DELETE (1)
 is_multi_instance : true}
 {
 supported_obj_path : "Device.WiFi.EndPoint.{i}."
 access : ADD_DELETE (1)
 is_multi_instance : true}
 }
 }
 }

13.5.3.2 GetSupportedDM Request fields

repeated obj_paths

This field contains a repeated set of Path Names to Objects in the Agent’s Supported Data Model.

bool first_level_only

This field, if true, indicates that the Agent should return only those objects matched by the Path
Name or Search Path in obj_path and its immediate (i.e., next level) child objects. The list of child
objects does not include commands, events, or parameters of the child objects regardless of the
values of the following elements:

bool return_commands

This field, if true, indicates that, in the supported_objs, the Agent should include a
supported_commands field containing Commands supported by the reported Object(s).

bool return_events

This field, if true, indicates that, in the supported_objs, the Agent should include a
supported_events field containing Events supported by the reported Object(s).

bool return_params

This field, if true, indicates that, in the supported_objs, the Agent should include a
supported_params field containing Parameters supported by the reported Object(s).

13.5.3.3 GetSupportedDMResp fields

repeated RequestedObjectResult req_obj_results

This field contains a repeated set of messages of type RequestedObjectResult.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 145 of 249

13.5.3.3.1 RequestedObjectResult fields

string req_obj_path

This field contains one of the Path Names given in obj_path of the associated GetSupportedDM
Request.

fixed32 err_code

This field contains a numeric code indicating the type of error that caused the Get to fail on this
path. A value of 0 indicates the path could be read successfully.

R-GSP.0 - If the Controller making the Request does not have Read permission on an Object or
Parameter matched through the requested_path field, the Object or Parameter MUST be treated
as if it is not present in the Agent’s Supported Data Model.

string err_msg

This field contains additional information about the reason behind the error.

string data_model_inst_uri

This field contains a Uniform Resource Identifier (URI) to the Data Model associated with the
Object specified in obj_path.

repeated SupportedObjectResult supported_objs

The field contains a message of type SupportedObjectResult for each reported Object.

13.5.3.3.1.1 SupportedObjectResult fields

string supported_obj_path

This field contains the Path Name of the reported Object.

ObjAccessType access

The field contains an enumeration of type ObjAccessType specifying the access permissions that
are specified for this Object in the Agent’s Supported Data Model. This usually only applies to
Multi-Instance Objects. This may be further restricted to the Controller based on rules defined in the
Agent’s Access Control List. It is an enumeration of:

OBJ_READ_ONLY (0)
OBJ_ADD_DELETE (1)
OBJ_ADD_ONLY (2)
OBJ_DELETE_ONLY (3)

bool is_multi_instance

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 146 of 249

This field, if true, indicates that the reported Object is a Multi-Instance Object.

repeated SupportedParamResult supported_params

The field contains a message of type SupportedParamResult for each Parameter supported by the
reported Object. If there are no Parameters in the Object, this should be an empty list.

repeated SupportedCommandResult supported_commands

The field contains a message of type SupportedCommandResult for each Command supported by
the reported Object. If there are no Parameters in the Object, this should be an empty list.

repeated SupportedEventResult supported_events

The field contains a message of type SupportedEventResult for each Event supported by the
reported Object. If there are no Parameters in the Object, this should be an empty list.

13.5.3.3.1.2 SupportedParamResult fields

string param_name

This field contains the local name of the Parameter.

ParamAccessType access

The field contains an enumeration of type ParamAccessType specifying the access permissions that
are specified for this Parameter in the Agent’s Supported Data Model. This may be further restricted
to the Controller based on rules defined in the Agent’s Access Control List. It is an enumeration of:

PARAM_READ_ONLY (0)
PARAM_READ_WRITE (1)
PARAM_WRITE_ONLY (2)

13.5.3.3.1.3 SupportedCommandResult fields

string command_name

This field contains the local name of the Command.

repeated string input_arg_names

This field contains a repeated set of local names for the input arguments of the Command.

repeated string output_arg_names

This field contains a repeated set of local names for the output arguments of the Command.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 147 of 249

13.5.3.3.1.4 SupportedEventResult

string event_name

This field contains the local name of the Event.

repeated string arg_names

This field contains a repeated set of local names for the arguments of the Event.

13.5.3.4 GetSupportedDM Error Codes

Appropriate error codes for the GetSupportedDM message include 7000-7006, 7008, 7016, 7026,
and 7800-7999.

Note - when using error 7026 (invalid path), it is important to note that in the context of
GetSupportedDM this applies to the Agent’s Supported Data Model.

13.5.4 GetSupportedProtocol

The GetSupportedProtocol message is used as a simple way for the Controller and Agent to learn
which versions of USP each supports to aid in interoperability and backwards compatibility.

13.5.4.1 GetSupportedProtocol Request fields

string controller_supported_protocol_versions

A comma separated list of USP Protocol Versions (major.minor) supported by this Controller.

13.5.4.2 GetSupportedProtocolResponse fields

string agent_supported_protocol_versions

A comma separated list of USP Protocol Versions (major.minor) supported by this Agent.

13.6 Notifications and Subscription Mechanism

A Controller can use the Subscription mechanism to subscribe to certain events that occur on the
Agent, such as a parameter change, Object removal, wake-up, etc. When such event conditions are
met, the Agent sends a Notify message to the Controller.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 148 of 249

13.6.1 Using Subscription Objects

Subscriptions are maintained in instances of the Multi-Instance Subscription Object in the USP data
model. The normative requirements for these Objects are described in the data model parameter
descriptions for Device.LocalAgent.Subscription.{i}. in Device:2.

R-NOT.0 - The Agent and Controller MUST follow the normative requirements defined in the
Device.LocalAgent.Subscription.{i}. Object specified in Device:2.

Note: Those familiar with Broadband Forum TR-069 will recall that a notification for a value
change caused by an Auto-Configuration Server (ACS - the CWMP equivalent of a Controller) are
not sent to the ACS. Since there is only a single ACS notifying the ACS of value changes it requested
is unnecessary. This is not the case in USP: an Agent should follow the behavior specified by a
subscription, regardless of the originator of that subscription.

13.6.1.1 ReferenceList Parameter

All subscriptions apply to one or more Objects or parameters in the Agent’s Instantiated Data
Model. These are specified as Path Names or Search Paths in the ReferenceList parameter. The
ReferenceList parameter may have different meaning depending on the nature of the notification
subscribed to.

For example, a Controller wants to be notified when a new WiFi station joins the WiFi network. It
uses the Add message to create a subscription Object instance with
Device.WiFi.AccessPoint.1.AssociatedDevice. specified in the ReferenceList parameter
and ObjectCreation as the NotificationType.

In another example, a Controller wants to be notified whenever an outside source changes the SSID
of a WiFi network. It uses the Add message to create a subscription Object instance with
Device.WiFi.SSID.1.SSID specified in the ReferenceList and ValueChange as the
NotificationType.

13.6.2 Responses to Notifications and Notification Retry

The Notify request contains a flag, send_resp, that specifies whether or not the Controller should
send a response message after receiving a Notify request. This is used in tandem with the
NotifRetry parameter in the subscription Object - if NotifRetry is true, then the Agent sends its
Notify requests with send_resp : true, and the Agent considers the notification delivered when it
receives a response from the Controller. If NotifRetry is false, the Agent does not need to use the
send_resp flag and should ignore the delivery state of the notification.

If NotifRetry is true, and the Agent does not receive a response from the Controller, it begins
retrying using the retry algorithm below. The subscription Object also uses a NotifExpiration
parameter to specify when this retry should end if no success is ever achieved.

https://usp-data-models.broadband-forum.org/
https://usp-data-models.broadband-forum.org/
https://www.broadband-forum.org/technical/download/TR-069.pdf

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 149 of 249

R-NOT.1 - When retrying notifications, the Agent MUST use the following retry algorithm to
manage the retransmission of the Notify request.

The retry interval range is controlled by two Parameters, the minimum wait interval and the interval
multiplier, each of which corresponds to a data model Parameter, and which are described in the
table below. The factory default values of these Parameters MUST be the default values listed in the
Default column. They MAY be changed by a Controller with the appropriate permissions at any
time.

• Descriptive
Name • Symbol • Default • Data Model Parameter Name

• Minimum
wait
interval

• m • 5 seconds • Device.Controller.{i}.USPRetryMinimumWaitInt

• Interval
multiplier

• k • 2000 • Device.Controller.{i}.USPRetryIntervalMultip

• Retry
Count

• Default
Wait
Interval
Range
(min-
max
second
s)

• Actual Wait
Interval
Range
(min-max
seconds)

• #1 • 5-10 • m -
m.(k/1000)

• #2 • 10-20 • m.(k/1000)
-
m.(k/1000)2

• #3 • 20-40 • m.(k/1000)2
-
m.(k/1000)3

• #4 • 40-80 • m.(k/1000)3
-
m.(k/1000)4

• #5 • 80-160 • m.(k/1000)4
-
m.(k/1000)5

• #6 • 160-
320

• m.(k/1000)5
-
m.(k/1000)6

• #7 • 320-
640

• m.(k/1000)6
-
m.(k/1000)7

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 150 of 249

• #8 • 640-
1280

• m.(k/1000)7
-
m.(k/1000)8

• #9 • 1280-
2560

• m.(k/1000)8
-
m.(k/1000)9

• #10 and
subsequent

• 2560-
5120

• m.(k/1000)9
-
m.(k/1000)1
0

R-NOT.2 - Beginning with the tenth retry attempt, the Agent MUST choose from the fixed
maximum range. The Agent will continue to retry a failed notification until it is successfully
delivered or until the NotifExpiration time is reached.

R-NOT.3 - Once a notification is successfully delivered, the Agent MUST reset the retry count to
zero for the next notification message.

R-NOT.4 - If a reboot of the Agent occurs, the Agent MUST reset the retry count to zero for the
next notification message.

13.6.3 Notification Types

There are several types events that can cause a Notify request. These include those that deal with
changes to the Agent’s Instantiated Data Model (ValueChange, ObjectCreation,
ObjectDeletion), the completion of an asynchronous Object-defined operation
(OperationComplete), a policy-defined OnBoardRequest, and a generic Event for use with
Object-defined events.

13.6.3.1 ValueChange

The ValueChange notification is subscribed to by a Controller when it wants to know that the value
of a single or set of parameters has changed from the state it was in at the time of the subscription or
to a state as described in an expression, and then each time it transitions from then on for the life of
the subscription. It is triggered when the defined change occurs, even if it is caused by the
originating Controller.

13.6.3.2 ObjectCreation and ObjectDeletion

These notifications are used for when an instance of the subscribed to Multi-Instance Objects is
added or removed from the Agent’s Instantiated Data Model. Like ValueChange, this notification is
triggered even if the subscribing Controller is the originator of the creation or deletion.

The ObjectCreation notification also includes the Object’s unique keys and their values as data in
the notification.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 151 of 249

13.6.3.3 OperationComplete

The OperationComplete notification is used to indicate that an asynchronous Object-defined
operation finished (either successfully or unsuccessfully). These operations may also trigger other
Events defined in the data model (see below).

13.6.3.4 OnBoardRequest

An OnBoardRequest notification is used by the Agent when it is triggered by an external source to
initiate the request in order to communicate with a Controller that can provide on-boarding
procedures and communicate with that Controller (likely for the first time).

R-NOT.5 - An Agent MUST send an OnBoardRequest notify request in the following
circumstances:

1. When the SendOnBoardRequest() command is executed. This sends the notification request
to the Controller that is the subject of that operation. The SendOnBoardRequest() operation is
defined in the Device:2 Data Model. This requirement applies only to those Controller table
instances that have their .Enabled parameter set to true.

2. When instructed to do so by internal application policy (for example, when using DHCP
discovery defined above).

Note: as defined in the Subscription table, OnBoardRequest is not included as one of the
enumerated types of a Subscription, i.e., it is not intended to be the subject of a Subscription.

R-NOT.6 If a response is required, the OnBoardRequest MUST follow the Retry logic defined
above.

13.6.3.5 Event

The Event notification is used to indicate that an Object-defined event was triggered on the Agent.
These events are defined in the data model and include what parameters, if any, are returned as part
of the notification.

13.6.3.6 Notify Examples

In this example, a Controller has subscribed to be notified of changes in value to the
Device.DeviceInfo.FriendlyName parameter. When it is changed, the Agent sends a Notify
Request to inform the Controller of the change.

Notify Request:
header {
 msg_id: "33936"
 msg_type: NOTIFY

https://usp-data-models.broadband-forum.org/

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 152 of 249

}
body {
 request {
 notify {
 subscription_id: "vc-1"
 send_resp: true
 value_change {
 param_path: "Device.DeviceInfo.FriendlyName"
 param_value: "MyDevicesFriendlyName"
 }
 }
 }
}

Notify Response:
header {
 msg_id: "33936"
 msg_type: NOTIFY_RESP
}
body {
 response {
 notify_resp {
 subscription_id: "vc-1"
 }
 }
}

In another example, the event “Boot!”, defined in the Device. object, is triggered. The Agent sends
a Notify Request to the Controller(s) subscribed to that event.

Notify Request
header {
 msg_id: "26732"
 msg_type: NOTIFY
}
body {
 request {
 notify {
 subscription_id: "boot-1"
 send_resp: true
 event {
 obj_path: "Device."
 event_name: "Boot!"
 params {
 {
 key: "Cause"
 value: "LocalReboot"}
 {
 key: "CommandKey"}
 {

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 153 of 249

 key: "Parameter.1.Path"
 value: "Device.LocalAgent.Controller.1.Enable"}
 {
 key: "Parameter.1.Value"
 value: "True"}
 }
 }
 }
 }
}

Notify Response:
header {
 msg_id: "26732"
 msg_type: NOTIFY_RESP
}
body {
 response {
 notify_resp {
 subscription_id: "boot-1"
 }
 }
}

13.6.4 The Notify Message

13.6.4.1 Notify Request fields

string subscription_id

This field contains the locally unique opaque identifier that was set by the Controller when it
created the Subscription on the Agent.

R-NOT.7 - The subscription_id field MUST contain the Subscription ID of the Subscription
Object that triggered this notification. If no subscription_id is available (for example, for
OnBoardRequest notifications), this field MUST be set to an empty string.

bool send_resp

This field lets the Agent indicate to the Controller whether or not it expects a response in
association with the Notify request.

R-NOT.8 - When send_response is set to false, the Controller SHOULD NOT send a response or
error to the Agent. If a response is still sent, the responding Controller MUST expect that any such
response will be ignored.

oneof notification

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 154 of 249

Contains one of the following Notification messages:

Event event
ValueChange value_change
ObjectCreation obj_creation
ObjectDeletion obj_deletion
OperationComplete oper_complete
OnBoardRequest on_board_req

13.6.4.1.1 Event fields

string obj_path

This field contains the Object or Object Instance Path of the Object that caused this event (for
example, Device.LocalAgent.).

string event_name

This field contains the name of the Object defined event that caused this notification (for example,
Boot!).

map<string, string> parameters

This field contains a set of key/value pairs of parameters associated with this event.

13.6.4.1.2 ValueChange fields

string param_path

This field contains the Path Name of the changed parameter.

string param_value

This field contains the value of the parameter specified in param_path.

13.6.4.1.3 ObjectCreation fields

string obj_path

This field contains the Path Name of the created Object instance.

map<string, string> unique_keys

This field contains a map of key/value pairs for all supported parameters that are part of any of this
Object’s unique keys.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 155 of 249

13.6.4.1.4 ObjectDeletion fields

string obj_path

This field contains the Path Name of the deleted Object instance.

13.6.4.1.5 OperationComplete fields

string command_name

This field contains the local name l of the Object defined command that caused this notification
(i.e., Download()).

string obj_path

This field contains the Object or Object Instance Path to the Object that contains this operation.

string command_key

This field contains the command key set during an Object defined Operation that caused this
notification.

oneof operation_resp

Contains one of the following messages:

OutputArgs req_output_args
CommandFailure cmd_failure

13.6.4.1.5.1 OutputArgs fields

map<string, string> output_args

This field contains a map of key/value pairs indicating the output arguments (relative to the
command specified in the command_name field) returned by the method invoked in the Operate
message.

13.6.4.1.5.2 CommandFailure fields

fixed32 err_code

This field contains the error code of the error that caused the operation to fail. Appropriate error
codes for CommandFailure include 7002-7008, 7016, 7022, 7023, and 7800-7999.

string err_msg

This field contains additional (human readable) information about the reason behind the error.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 156 of 249

13.6.4.1.6 OnBoardRequest fields

string oui

This field contains the Organizationally Unique Identifier associated with the Agent.

string product_class

This field contains a string used to provide additional context about the Agent.

string serial_number

This field contains a string used to provide additional context about the Agent.

string agent_supported_protocol_versions

A comma separated list of USP Protocol Versions (major.minor) supported by this Agent.

13.6.4.2 Notify Response fields

string subscription_id

This field contains the Subscription ID that was received with the Notify Request.

R-NOT.9 - The subscription_id field MUST contain same Subscription ID as was presented in
the Notify Request. If the subscription_id field does not match the Subscription ID of the
Subscription Object that triggered this notification, this Response MUST be ignored.

13.6.4.3 Notify Error Codes

Appropriate error codes for the Notify message include 7000-7006, and 7800-7999.

13.7 Defined Operations Mechanism

Additional methods (operations) are and can be defined in the USP data model. Operations are
generally defined on an Object, using the “command” attribute, as defined in TR-106. The
mechanism is controlled using the Operate message in conjunction with the Multi-Instance Request
Object.

13.7.1 Synchronous Operations

A synchronous operation is intended to complete immediately following its processing. When
complete, the output arguments are sent in the Operate response. If the send_resp flag is false, the
Controller doesn’t need the returned information (if any), and the Agent does not send an Operate
Response.

https://www.broadband-forum.org/technical/download/TR-106_Amendment-8.pdf

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 157 of 249

Figure OPR.1 - Operate Message Flow for Synchronous Operations

13.7.2 Asynchronous Operations

An asynchronous operation expects to take some processing on the system the Agent represents and
will return results at a later time. When complete, the output arguments are sent in a Notify
(OperationComplete) request to any Controllers that have an active subscription to the operation
and Object(s) to which it applies.

When a Controller using the Operate request specifies an operation that is defined as asynchronous,
the Agent creates an instance of the Request Object in its data model, and includes a reference to the
created Object in the Operate response. If the send_resp flag is false, the Controller doesn’t need
the Request details, and intends to ignore it.

The lifetime of a Request Object expires when the operation is complete (either by success or
failure). An expired Request Object is removed from the Instantiated Data Model.

R-OPR.0 - When an Agent receives an Operate Request that addresses an asynchronous operation,
it MUST create a Request Object in the Request table of its Instantiated Data Model (see Device:2).
When the Operation is complete (either success or failure), it MUST remove this Object from the
Request table.

If any Controller wants a notification that an operation has completed, it creates a Subscription
Object with the NotificationType set to OperationComplete and with the ReferenceList
parameter including a path to the specified command. The Agent processes this Subscription when
the operation completes and sends a Notify message, including the command_key value that the
Controller assigned when making the Operate request.

A Controller can cancel a request that is still present in the Agent’s Device.LocalAgent.Request.
table by invoking the Device.LocalAgent.Request.{i}.Cancel() command through another
Operate message.

https://usp-data-models.broadband-forum.org/

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 158 of 249

Figure OPR.2 - Operate Message Flow for Asynchronous Operations

13.7.2.1 Persistance of Asynchronous Operations

Synchronous Operations do not persist across a reboot or restart of the Agent or its underlying
system. It is expected that Asynchronous Operations do not persist, and a command that is in
process when the Agent is rebooted can be expected to be removed from the Request table, and is
considered to have failed. If a command is allowed or expected to be retained across a reboot, it will
be noted in the command description.

13.7.3 Operate Requests on Multiple Objects

Since the Operate request can take a path expression as a value for the command field, it is possible
to invoke the same operation on multiple valid Objects as part of a single Operate request.
Responses to requests to Operate on more than one Object are handled using the OperationResult
field type, which is returned as a repeated set in the Operate Response. The success or failure of the
operation on each Object is handled separately and returned in a different OperationResult entry.
For this reason, operation failures are never conveyed in an Error message - in reply to an Operate
request, Error is only used when the message itself fails for one or more reasons, rather than the
operation invoked.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 159 of 249

Note: This specification does not make any requirement on the order in which commands on
multiple objects selected with a path expression are executed.

R-OPR.1 - When processing Operate Requests on multiple Objects, an Agent MUST NOT send an
Error message due to a failed operation. It MUST instead include the failure in the cmd_failure
field of the Operate response.

R-OPR.2 - For asynchronous operations the Agent MUST create a separate Request Object for
each Object and associated operation matched in the command field.

13.7.4 Event Notifications for Operations

When an operation triggers an Event notification, the Agent sends the Event notification for all
subscribed recipients as described above.

13.7.5 Concurrent Operations

If an asynchronous operation is triggered multiple times by one or more Controllers, the Agent has
the following options:

1. Deny the new operation (with, for example, 7005 Resources Exceeded)

2. The operations are performed in parallel and independently.

3. The operations are queued and completed in order.

R-OPR.3 - When handling concurrently invoked operations, an Agent MUST NOT cancel an
operation already in progress unless explicitly told to do so by a Controller with permission to do so
(i.e., via the Device.LocalAgent.Request.{i}.Cancel() operation).

13.7.6 Operate Examples

In this example, the Controller requests that the Agent initiate the SendOnBoardRequest() operation
defined in the Device.LocalAgent.Controller. object.

Operate Request:
header {
 msg_id: "42314"
 msg_type: OPERATE
}
body {
 request {
 operate {
 command:
"Device.LocalAgent.Controller.[EndpointID=="controller"].SendOnBoardRequest()"
 command_key: "onboard_command_key"

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 160 of 249

 send_resp: true
 }
 }
}

Response:
header {
 msg_id: "42314"
 msg_type: OPERATE_RESP
}
body {
 response {
 operate_resp {
 operation_results {
 executed_command: "Device.LocalAgent.Controller.1.SendOnBoardRequest()"
 }
 }
 }
}

13.7.7 The Operate Message

13.7.7.1 Operate Request fields

string command

This field contains a Command Path or Search Path to an Object defined Operation in one or more
Objects.

string command_key

This field contains a string used as a reference by the Controller to match the operation with
notifications.

bool send_resp

This field lets the Controller indicate to Agent whether or not it expects a response in association
with the operation request.

R-OPR.4 - When send_resp is set to false, the target Endpoint SHOULD NOT send a response
or error to the source Endpoint. If a response is still sent, the responding Endpoint MUST expect
that any such response will be ignored.

map<string, string> input_args

This field contains a map of key/value pairs indicating the input arguments (relative to the
command path in the command field) to be passed to the method indicated in the command field.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 161 of 249

13.7.7.2 Operate Response fields

repeated OperationResult operation_results

This field contains a repeated set of OperationResult messages.

13.7.7.2.1 OperationResult fields

string executed_command

This field contains a Command Path to the Object defined Operation that is the subject of this
OperateResp message.

oneof operate_resp

This field contains a message of one of the following types.

 string req_obj_path
 OutputArgs req_output_args
 CommandFailure cmd_failure

13.7.7.2.1.1 Using req_obj_path

The req_obj_path field, when used as the operate_resp, contains an Object Instance Path to the
Request Object created as a result of this asynchronous operation.

13.7.7.2.1.2 OutputArgs fields

map<string, string> output_args

This field contains a map of key/value pairs indicating the output arguments (relative to the
command specified in the command field) returned by the method invoked in the Operate message.

13.7.7.2.1.3 CommandFailure fields

fixed32 err_code

This field contains the error code of the error that caused the operation to fail.

string err_msg

This field contains additional (human readable) information about the reason behind the error.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 162 of 249

13.7.7.3 Operate Message Error Codes

Appropriate error codes for the Operate message include 7000-7008, 7012 7015, 7016, 7022, and
7800-7999.

13.8 Error Codes

USP uses error codes with a range 7000-7999 for both Controller and Agent errors. The errors
appropriate for each message (and how they must be implemented) are defined in the message
descriptions below.

• Code • Name • Applicability • Description
• 7000 • Message

failed
• Error

Message
• This error indicates a general failure

that is described in an err_msg field.
• 7001 • Message not

supported
• Error

Message
• This error indicates that the attempted

message was not understood by the
target endpoint.

• 7002 • Request
denied (no
reason
specified)

• Error
Message

• This error indicates that the target
endpoint cannot or will not process
the message.

• 7003 • Internal error • Error
Message

• This error indicates that the message
failed due to internal hardware or
software reasons.

• 7004 • Invalid
arguments

• Error
Message

• This error indicates that the message
failed due to invalid values in the
USP message.

• 7005 • Resources
exceeded

• Error
Message

• This error indicates that the message
failed due to memory or processing
limitations on the target endpoint.

• 7006 • Permission
denied

• Error
Message

• This error indicates that the source
endpoint does not have the
authorization for this action.

• 7007 • Invalid
configuration

• Error
Message

• This error indicates that the message
failed because processing the message
would put the target endpoint in an
invalid or unrecoverable state.

• 7008 • Invalid path
syntax

• any
requested_pa
th

• This error indicates that the Path
Name used was not understood by the
target endpoint.

• 7009 • Parameter
action failed

• Set • This error indicates that the parameter
failed to update for a general reason
described in an err_msg field.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 163 of 249

• 7010 • Unsupported
parameter

• Add, Set • This error indicates that the requested
Path Name associated with this
ParamError did not match any
instantiated parameters.

• 7011 • Invalid type • Add, Set • This error indicates that the requested
value was not of the correct data type
for the parameter.

• 7012 • Invalid value • Add, Set • This error indicates that the requested
value was not within the acceptable
values for the parameter.

• 7013 • Attempt to
update non-
writeable
parameter

• Add, Set • This error indicates that the source
endpoint attempted to update a
parameter that is not defined as a
writeable parameter.

• 7014 • Value conflict • Add, Set • This error indicates that the requested
value would result in an invalid
configuration based on other
parameter values.

• 7015 • Operation
error

• Add, Set,
Delete

• This error indicates a general failure
in the creation, update, or deletion of
an Object that is described in an
err_msg field.

• 7016 • Object does
not exist

• Add, Set • This error indicates that the requested
Path Name associated with this
OperationStatus did not match any
instantiated Objects.

• 7017 • Object could
not be created

• Add • This error indicates that the operation
failed to create an instance of the
specified Object.

• 7018 • Object is not a
table

• Add • This error indicates that the requested
Path Name associated with this
OperationStatus is not a Multi-
Instance Object.

• 7019 • Attempt to
create non-
creatable
Object

• Add • This error indicates that the source
endpoint attempted to create an
Object that is not defined as able to be
created.

• 7020 • Object could
not be updated

• Set • This error indicates that the requested
Object in a Set request failed to
update.

• 7021 • Required
parameter
failed

• Add, Set • This error indicates that the request
failed on this Object because one or
more required parameters failed to

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 164 of 249

update. Details on the failed
parameters are included in an
associated ParamError message.

• 7022 • Command
failure

• Operate • This error indicates that an command
initiated in an Operate Request failed
to complete for one or more reasons
explained in the err_msg field.

• 7023 • Command
canceled

• Operate • This error indicates that an
asynchronous command initiated in
an Operate Request failed to complete
because it was cancelled using the
Cancel() operation.

• 7024 • Delete failure • Delete • This error indicates that this Object
Instance failed to be deleted.

• 7025 • Object exists
with duplicate
key

• Add • This error indicates that an Object
tried to be created with a unique keys
that already exist, or the unique keys
were configured to those that already
exist.

• 7026 • Invalid path • Any • This error indicates that the Object or
Parameter Path Name specified does
not match any Objects or Parameters
in the Agent’s Supported Data Model

• 7027 • Invalid
Command
Arguments

• Operate • This error indicates that an Operate
message failed due to invalid or
unknown arguments specified in the
command.

• 7100-
7199

• USP Record
error codes

• - • These errors are listed and described
in (Message Transfer
Protocols)[/specification/mtp/].

• 7800-
7999

• Vendor
defined error
codes

• - • These errors are vendor defined.

13.8.1 Vendor Defined Error Codes

Implementations of USP MAY specify their own error codes for use with Errors and Responses.
These codes use the 7800-7999 series. There are no requirements on the content of these errors.

14 Authentication and Authorization
1.

USP contains mechanisms for Authentication and Authorization, and Encryption. Encryption can be
provided at the MTP layer, the USP layer, or both. Where Endpoints can determine (through

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 165 of 249

Authentication) that the termination points of the MTP and USP messages are the same, MTP
encryption is sufficient to provide end-to-end encryption and security. Where the termination points
are different (because there is a proxy or other intermediate device between the USP Endpoints),
USP layer Secure Message Exchange is required, or the intermediate device must be a trusted part
of the end-to-end ecosystem.

14.1 Authentication

Authentication of Controllers is done using X.509 certificates as defined in RFC 5280 and RFC
6818. Authentication of Agents is done either by using X.509 certificates or shared secrets. X.509
certificates, at a minimum, need to be usable for MTP security with TLS or DTLS protocols. It is
recommended that Agents implement the ability to encrypt all MTPs using one of these two
protocols, enable it by default, and not implement the ability to disable it.

In order to support various authentication models (e.g., trust Endpoint identity and associated
certificate on first use; precise Endpoint identity is indicated in a certificate issued by a trusted
Certificate Authority; trust that MTP connection is being made to a member of a trusted domain as
verified by a trusted Certificate Authority (CA)), this specification provides guidance based on
conditions under which the Endpoint is operating, and on the Endpoint’s policy for storing
certificates of other Endpoints or certificates of trusted CAs. The
Device.LocalAgent.Certificate object can be implemented if choosing to expose these stored
certificates through the data model. See the Theory of Operations, Certificate Management
subsection, below for additional information.

R-SEC.0 - Prior to processing a USP Message from a Controller, the Agent MUST either:

• have the Controller’s certificate information and have a cryptographically protected connection
between the two Endpoints, or

• have a Trusted Broker’s certificate information and have a cryptographically protected
connection between the Agent and the Trusted Broker

TLS and DTLS both have handshake mechanisms that allow for exchange of certificate
information. If the MTP connection is between the Agent and Controller (for example, without
going through any application-layer proxy or other intermediate application-layer middle-box), then
a secure MTP connection will be sufficient to ensure end-to-end protection, and the USP Record
can use payload_security “PLAINTEXT” encoding of the Message. If the middle-box is part of a
trusted end-to-end ecosystem, the MTP connection may also be considered sufficient. Otherwise,
the USP Record will use Secure Message Exchange.

Whether a Controller requires Agent certificates is left up to the Controller implementation.

14.2 Role Based Access Control (RBAC)

It is expected that Agents will have some sort of Access Control List (ACL) that will define
different levels of authorization for interacting with the Agent’s data model. This Working Text

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc6818
https://tools.ietf.org/html/rfc6818

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 166 of 249

refers to different levels of authorization as “Roles”. The Agent may be so simple as to only support
a single Role that gives full access to its data model; or it may have just an “untrusted” Role and a
“full access” Role. Or it may be significantly more complex with, for example, “untrusted” Role,
different Roles for parents and children in a customer household, and a different Role for the service
provider Controller. These Roles may be fully defined in the Agent’s code, or Role definition may
be allowed via the data model.

R-SEC.1 - An Agent MUST confirm a Controller has the necessary permissions to perform the
requested actions in a Message prior to performing that action.

R-SEC.1a - Agents SHOULD implement the Controller object with the AssignedRole parameter
(with at least read-only data model definition) and InheritedRole parameter (if allowed Roles can
come from a trusted CA), so users can see what Controllers have access to the Agent and their
permissions. This will help users identify rogue Controllers that may have gained access to the
Agent.

See the Theory of Operations, Roles (Access Control) and Assigning Controller Roles subsections,
below for additional information on data model elements that can be implemented to expose
information and allow control of Role definition and assignment.

14.3 Trusted Certificate Authorities

An Endpoint can have a configured list of trusted Certificate Authority (CA) certificates. The Agent
policy may trust the CA to authorize authenticated Controllers to have a specific default Role, or the
policy may only trust the CA to authenticate the Controller identity. The Controller policy may
require an Agent certificate to be signed by a trusted CA before the Controller exchanges USP
Messages with the Agent.

R-SEC.2 - To confirm a certificate was signed by a trusted CA, the Endpoint MUST contain
information from one or more trusted CA certificates that are either pre-loaded in the Endpoint or
provided to the Endpoint by a secure means. At a minimum, this stored information will include a
certificate fingerprint and fingerprint algorithm used to generate the fingerprint. The stored
information MAY be the entire certificate.

This secure means can be accomplished through USP (see Theory of Operations, Certificate
Management subsection, making use of the Device.LocalAgent.Certificate object), or through
a mechanism external to USP. The stored CA certificates can be root or intermediate CAs.

R-SEC.3 - Where a CA is trusted to authenticate Controller identity, the Agent MUST ensure the
URN form of the Controller Endpoint ID is in the Controller certificate subjectaltName with a
type uniformResourceIdentifier attribute, and this matches the USP Record from_id.

R-SEC.4 - Where a CA is trusted to authorize a Controller Role, the Agent MUST ensure the URN
form of the Controller Endpoint ID (that matches the USP Record from_id) is in the Controller
certificate subjectaltName with a type uniformResourceIdentifier attribute.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 167 of 249

Note that trusting a CA to authorize a Controller Role requires the Agent to maintain an association
between a CA certificate and the Role(s) that CA is trusted to authorize. If the Agent allows CAs to
authorize Roles, the Agent will need to identify specific CA certificates in a Controller’s chain of
trust that can authorize Roles. The specific Role(s) associated with such a CA certificate can then be
inherited by the Controller. The Device.LocalAgent.ControllerTrust.Credential object can
be implemented to expose and allow control over trust and authorization of CAs.

Note that if an Agent supports and has enabled a Trust on First Use (TOFU) policy, it is possible for
Controllers signed by unknown CAs to be granted the “untrusted role”. See Figures SEC.4 and
SEC.5 and the penultimate bullet in the Assigning Controller Roles section below for more
information related to TOFU and the “untrusted” role.

14.4 Trusted Brokers

An Endpoint can have a configured list of Trusted Broker certificates. The Endpoint policy would
be to trust the broker to vouch for the identity of Endpoints it brokers – effectively authenticating
the from_id contained in a received USP Record. The Agent policy may trust the broker to
authorize all Controllers whose Records transit the broker to have a specific default Role.

R-SEC.4a - To confirm a certificate belongs to a Trusted Broker, the Endpoint MUST contain
information from one or more Trusted Broker certificates that are either pre-loaded in the Endpoint
or provided to the Endpoint by a secure means. This stored information MUST be sufficient to
determine if a presented certificate is the Trusted Broker certificate.

This secure means of loading certificate information into an Agent can be accomplished through
USP (see Theory of Operations section related to Certificate Management), or through a mechanism
external to USP.

Note that trusting a broker to authorize a Controller Role requires the Agent to maintain an
association between a Trusted Broker certificate and the Role(s) that Trusted Broker is trusted to
authorize. The Device.LocalAgent.ControllerTrust.Credential object can be implemented
to expose and allow control over identifying Trusted Brokers. The AllowedUses parameter is used
to indicate whether an entry is a Trusted Broker.

14.5 Self-Signed Certificates

R-SEC.5 - An Endpoint that generates a self-signed certificate MUST place the URN form of its
Endpoint ID in a certificate subjectaltName with a type uniformResourceIdentifier attribute.

Self-signed certificates supplied by Controllers can only be meaningfully used in cases where a
person is in a position to provide Authorization (what Role the Controller is trusted to have).
Whether or not an Agent allows self-signed certificates from a Controller is a matter of Agent
policy.

R-SEC.6 - If an Agent allows Controllers to provide self-signed certificates, the Agent MUST
assign such Controllers an “untrusted” Role on first use.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 168 of 249

That is, the Agent will trust the certificate for purpose of encryption, but will heavily restrict what
the Controller is authorized to do. See Figures SEC.4 and SEC.5 and the penultimate bullet in the
Assigning Controller Roles section below for more information related to TOFU and the
“untrusted” role.

R-SEC.7 - If an Agent allows Controllers to provide self-signed certificates, the Agent MUST have
a means of allowing an external entity to change the Role of each such Controller.

Controller policy related to trust of Agent self-signed certificates is left to the Controller.
Controllers may be designed to refuse self-signed certificates (thereby refusing to control the
Agent), they may have a means of allowing a person to approve controlling the Agent via the
Controller, or they may automatically accept the Agent.

R-SEC.8 - An Endpoint that accepts self-signed certificates MUST maintain the association of
accepted certificate and Endpoint IDs.

Self-signed certificates require a “trust on first use” (TOFU) policy when using them to authenticate
an Endpoint’s identity. An external entity (a trusted Controller or user) can then authorize the
authenticated Endpoint to have certain permissions. Subsequent to the first use, this same self-
signed certificate can be trusted to establish the identity of that Endpoint. However, authentication
of the Endpoint can only be subsequently trusted if the association of certificate to identity is
remembered (i.e., it is known this is the same certificate that was used previously by that Endpoint).
If it is not remembered, then every use is effectively a first use and would need to rely on an
external entity to authorize permissions every time. The Device.LocalAgent.Certificate object
can be implemented if choosing to expose and allow control of remembered certificates in the data
model.

14.6 Agent Authentication

R-SEC.9 - Controllers MUST authenticate Agents either through X.509 certificates, a shared secret,
or by trusting a Trusted Broker to vouch for Agent identity.

When authentication is done using X.509 certificates, it is up to Controller policy whether to allow
for Agents with self-signed certificates or to require Agent certificates be signed by a CA.

Note that allowing use of, method for transmitting, and procedure for handling shared secrets is
specific to the MTP used, as described in Message Transfer Protocols. Shared secrets that are not
unique per device are not recommended as they leave devices highly vulnerable to various attacks –
especially devices exposed to the Internet.

R-SEC.10 - An Agent certificate MUST contain the URN form of the Agent Endpoint ID in the
subjectaltName with a type uniformResourceIdentifier attribute.

R-SEC.10a - The certificate subjectaltName value MUST be used to authenticate the USP
Record from_id for any Records secured with an Agent certificate.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 169 of 249

Agent certificates can be used to secure Records by encrypting at the MTP layer Message Transfer
Protocols enryption and/or encrypting at the USP layer Secure Message Exchange.

Some Controller implementations may allow multiple Agents to share a single certificate with a
wildcarded Endpoint ID.

R-SEC.11 - If a single certificate is shared among multiple Agents, those Agents MUST include a
wild-carded instance-id in the Endpoint ID in the subjectaltName with identical authority-
scheme and authority-id.

Use of a shared certificate is not recommended, and which portion of the instance-id can be
wildcarded may be specific to the authorizing CA or to the authority-id and authority-scheme
values of the Endpoint ID. Wildcards can only be allowed in cases where the assigning entity is
explicitly identified. Controllers are not required to support wildcarded certificates.

R-SEC.12 - If a wildcard character is present in the instance-id of an Endpoint ID in a certificate
subjectaltName, the authority-scheme MUST be one of “oui”, “cid”, “pen”, “os”, or “ops”. In
the case of “os” and “ops”, the portion of the instance-id that identifies the assigning entity
MUST NOT be wildcarded.

14.7 Challenge Strings and Images

It is possible for the Agent to allow an external entity to change a Controller Role by means of a
Challenge string or image. This Challenge string or image can take various forms, including having
a user supply a passphrase or a PIN. Such a string could be printed on the Agent packaging, or
supplied by means of a SMS to a phone number associated with the user account. These Challenge
strings or images can be done using USP operations. Independent of how challenges are
accomplished, following are some basic requirements related to Challenge strings and images.

R-SEC.13 - The Agent MAY have factory-default Challenge value(s) (strings or images) in its
configuration.

R-SEC.14 - A factory-default Challenge value MUST be unique to the Agent. Re-using the same
passphrase among multiple Agents is not permitted.

R-SEC.15 - A factory-default Challenge value MUST NOT be derivable from information the
Agent communicates about itself using any protocol at any layer.

R-SEC.16 - The Agent MUST limit the number of tries for the Challenge value to be supplied
successfully.

R-SEC.17 - The Agent SHOULD have policy to lock out all use of Challenge values for some time,
or indefinitely, if the number of tries limit is exceeded.

See the Theory of Operations, Challenges subsection, below for a description of data model
elements that need to be implemented and are used when doing challenges through USP operations.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 170 of 249

14.8 Analysis of Controller Certificates

An Agent will analyze Controller certificates to determine if they are valid, are appropriate for
authentication of Controllers, and to determine what permissions (Role) a Controller has. The Agent
will also determine whether MTP encryption is sufficient to provide end-to-end protection of the
Record and Message, or if USP layer Secure Message Exchange is required.

The diagrams in this section use the database symbol to identify where the described information
can be represented in the data model, if an implementation chooses to expose this information
through the USP protocol.

14.8.1 Receiving a USP Record

R-SEC.19 - An Agent capable of obtaining absolute time SHOULD wait until it has accurate
absolute time before contacting a Controller. If an Agent for any reason is unable to obtain absolute
time, it can contact the Controller without waiting for accurate absolute time. If an Agent chooses to
contact a Controller before it has accurate absolute time (or if it does not support absolute time), it
MUST ignore those components of the Controller certificate that involve absolute time, e.g. not-
valid-before and not-valid-after certificate restrictions.

R-SEC.20 - An Agent that has obtained accurate absolute time MUST validate those components of
the Controller certificate that involve absolute time.

R-SEC.21 – An Agent MUST clear all cached encryption session and Role authorization
information when it reboots.

R-SEC.22 - When an Agent receives a USP Record, the Agent MUST execute logic that achieves
the same results as in the decision flows from Figures SEC.1 and SEC.2.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 171 of 249

Figure SEC.1 – Receiving a USP Record

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 172 of 249

Figure SEC.2 – USP Record without USP Layer Secure Message Exchange

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 173 of 249

14.8.2 Sending a USP Record

R-SEC.23 - When an Agent sends a USP Record, the Agent MUST execute logic that achieves the
same results as in the decision flow from Figure SEC.3.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 174 of 249

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 175 of 249

Figure SEC.3 – Sending a USP Record

14.8.3 Checking a Certificate Containing an Endpoint ID

R-SEC.24 - When an Agent analyzes a Controller certificate for authentication and determining
permissions (Role), the Agent MUST execute logic that achieves the same results as in the decision
flows from Figures SEC.4 and SEC.5.

R-SEC.25 - When determining the inherited Role to apply based on Roles associated with a trusted
CA, only the first matching CA in the chain will be used.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 176 of 249

Figure SEC.4 – Checking a Certificate Containing an Endpoint ID

Figure SEC.5 – Determining the Role

14.8.4 Using a Trusted Broker

Support for Trusted Broker logic is optional.

R-SEC.26 - If Trusted Brokers are supported, and a Trusted Broker is encountered (from the
optional “Trusted Broker cert?” decision diamonds in Figures SEC.2 or SEC.3), the Agent MUST
execute logic that achieves the same results as in the decision flows from Figure SEC.6 for a
received USP Record and Figure SEC.7 for sending a USP Record.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 177 of 249

Figure SEC.6 - Trusted Broker with Received Record

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 178 of 249

Figure SEC.7 - Trusted Broker Sending a Record

14.9 Theory of Operations

The following theory of operations relies on objects, parameters, events, and operations from the
LocalAgent Object of the Device:2 Data Model.

https://usp-data-models.broadband-forum.org/

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 179 of 249

14.9.1 Data Model Elements

These data model elements play a role in reporting on and allowing control of trusted Controllers
and the permissions they have to read and write parts of the Agent’s data model, and allowing an
Agent to establish trust with a Controller.

• LocalAgent.Controller.{i}.AssignedRole parameter

• LocalAgent.Controller.{i}.InheritedRole parameter

• LocalAgent.Controller.{i}.Credential parameter

From component ControllerTrust:

• Object LocalAgent.ControllerTrust.

• Parameters UntrustedRole, BannedRole, TOFUAllowed, TOFUInactivityTimer

• Commands RequestChallenge(), ChallengeResponse()

• Object LocalAgent.ControllerTrust.Role.{i}.

• Object LocalAgent.ControllerTrust.Credential.{i}.

• Object LocalAgent.ControllerTrust.Challenge.{i}.

The Object LocalAgent.Certificate. can be used to manage Controller and CA certificates,
along with the LocalAgent.AddCertificate() and
LocalAgent.Controller.{i}.AddMyCertificate() commands.

For brevity, Device.LocalAgent is not placed in front of all further object references in this
Security section. However, all objects references are under Device.LocalAgent. This section does
not describe use of parameters under other top level components.

14.9.2 Roles (Access Control)

Controller permissions are conveyed in the data model through Roles.

14.9.2.1 Role Definition

A Role is described in the data model through use of the ControllerTrust.Role.{i}. object.
Each entry in this object identifies the Role it describes, and has a Permission. sub-object for the
Targets (data model paths that the related permissions apply to), permissions related to parameters,
objects, instantiated objects, and commands identified by the Targets parameter, and the relative
Order of precedence among Permission. entries for the Role (the larger value of this parameter
takes priority over an entry with a smaller value in the case of overlapping Targets entries for the
Role).

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 180 of 249

The permissions of a Role for the specified Target entries are described by Param, Obj,
InstantiatedObj, and CommandEvent parameters. Each of these is expressed as a string of 4
characters where each character represents a permission (“r” for Read, “w” for Write, “x” for
Execute“, and”n" for Notify). The 4 characters are always presented in the same order in the string
(rwxn) and the lack of a permission is signified by a “-” character (e.g., r--n). How these
permissions are applied to parameters, objects, and various Messages is described in the data model
description of these parameters.

An Agent that wants to allow Controllers to define and modify Roles will implement the
ControllerTrust.Role.{i}. object with all of the parameters listed in the data model. In order
for a Controller to define or modify Role entries, it will need to be assigned a Role that gives it the
necessary permission. Care should be taken to avoid defining this Role’s permissions such that an
Agent with this Role can modify the Role and no longer make future modifications to the
ControllerTrust.Role.{i}. object.

A simple Agent that only wants to inform Controllers of pre-defined Roles (with no ability to
modify or define additional Roles) can implement the ControllerTrust.Role. object with read-
only data model definition for all entries and parameters. A simple Agent could even implement the
object with read-only data model definition and just the Alias and Role parameters, and no
Permission. sub-object; this could be sufficient in a case where the Role names convey enough
information (e.g., there are only two pre-defined Roles named "Untrusted" and "FullAccess").

14.9.2.2 Special Roles

Two special Roles are identified by the UntrustedRole and BannedRole parameters under the
ControllerTrust. object. An Agent can expose these parameters with read-only data model
implementation if it simply wants to tell Controllers the names of these specific Roles.

The UntrustedRole is the Role the Agent will automatically assign to any Controller that has not
been authorized for a different Role. Any Agent that has a means of allowing a Controller’s Role to
be changed (by users through a Challenge string, by other Controllers through modification of
Controller.{i}.AssignedRole, or through some other external means) and that allows
“unknown” Controllers to attach will need to have an “untrusted” Role defined; even if the identity
of this Role is not exposed to Controllers through implementation of the UntrustedRole parameter.

The BannedRole (if implemented) is assigned automatically by the Agent to Controllers whose
certificates have been revoked. If it is not implemented, the Agent can use the UntrustedRole for
this, as well. It is also possible to simply implement policy for treatment of invalid or revoked
certificates (e.g., refuse to connect), rather than associate them with a specific Role. This is left to
the Agent policy implementation.

14.9.2.3 A Controller’s Role

A Controller’s assigned Roles can be conveyed by the Controller.{i}.AssignedRole parameter.
This parameter is a list of all Role values assigned to the Controller through means other than

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 181 of 249

ControllerTrust.Credential.{i}.Role. A Controller’s inherited Roles (those inherited from
ControllerTrust.Credential.{i}.Role as described in the next section) need to be maintained
separately from assigned Roles and can be conveyed by the Controller.{i}.InheritedRole
parameter. Where multiple assigned and inherited Roles have overlapping Targets entries, the
resulting permission is the union of all assigned and inherited permissions. For example, if two
Roles have the same Targets with one Role assigning the Targets Param a value of r--- and the
other Role assigning Param a value of ---n, the resulting permission will be r--n. This is done
after determining which ControllerTrust.Role.{i}.Permission.{i} entry to apply for each
Role for specific Targets, in the case where a Role has overlapping Permission.{i}.Targets
entries for the same Role.

For example, Given the following ControllerTrust.Role.{i}. entries:

 i=1, Role = "A"; Permission.1.: Targets = "Device.LocalAgent.", Order = 3,
Param = "r---"
 i=1, Role = "A"; Permission.2.: Targets = "Device.LocalAgent.Controller.",
Order = 55, Param = "r-xn"
 i=3, Role = "B"; Permission.1: Targets = "Device.LocalAgent.", Order = 20,
Param = "r---"
 i=3, Role = "B"; Permission.5: Targets = "Device.LocalAgent.Controller.",
Order = 78, Param = "----"

and Device.LocalAgent.Controller.1.AssignedRole = “Device.LocalAgent.
ControllerTrust.Role.1., Device.LocalAgent. ControllerTrust.Role.3.”

When determining permissions for the Device.LocalAgent.Controller. table, the Agent will
first determine that for Role A Permission.2 takes precedence over Permission.1 (55 > 3). For B,
Permission.5 takes precedence over Permission.1 (78 > 20). The union of A and B is “r-xn” + “—-”
= “r-xn”.

14.9.2.4 Role Associated with a Credential or Challenge

The ControllerTrust.Credential.{i}.Role parameter value is inherited by Controllers whose
credentials have been validated using the credentials in the same entry of the
ControllerTrust.Credential.{i}. table. Whenever ControllerTrust.Credential.{i}. is
used to validate a certificate, the Agent writes the current value of the associated
ControllerTrust.Credential.{i}.Role into the Controller.{i}.InheritedRole parameter.
For more information on use of this table for assigning Controller Roles and validating credentials,
see the sections below.

The ControllerTrust.Challenge.{i}.Role parameter is a Role that is assigned to Controllers
that send a successful ChallengeResponse() command. For more information on use of
challenges for assigning Controller Roles, see the sections below.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 182 of 249

14.9.3 Assigning Controller Roles

As mentioned above, the Controller.{i}.AssignedRole parameter can be used to expose the
Controller’s assigned Role via the data model.

Note: Even if it is not exposed through the data model, the Agent is expected to maintain knowledge
of the permissions assigned to each known Controller.

Controllers can be assigned Roles through a variety of methods, depending on the data model
elements an Agent implements and the Agent’s coded policy. Note that it is possible for an Agent to
maintain trusted CA credentials with associated permissions (as described by the
ControllerTrust.Credential.{i}. object) and various default permission definitions (as
identified by the UntrustedRole and BannedRole parameters) without exposing these through the
data model. If the data is maintained but not exposed, the same methods can still be used.

Figures SEC.4 and SEC.5 in the above Analysis of Controller Certificates section identify points in
the decision logic where some of the following calls to data model parameters can be made. The
following bullets note when they are identified in one of these figures.

• Another Controller (with appropriate permission) can insert a Controller (including the
AssignedRole parameter value) into the Controller.{i}. table, or can modify the
AssignedRole parameter of an existing Controller.{i}. entry. The InheritedRole value
cannot be modified by another Controller.

• If credentials in an entry in a ControllerTrust.Credential.{i}.Credential parameter
with an associated ControllerTrust.Credential.{i}.Role parameter are used to
successfully validate the certificate presented by the Controller, the Controller inherits the Role
from the associated ControllerTrust.Credential.{i}.Role. The Agent writes this value
to the Controller.{i}.InheritedRole parameter. This step is shown in Figure SEC.5.

• A Controller whose associated certificate is revoked by a CA can be assigned the role in
BannedRole, if this parameter or policy is implemented. In this case, the value of BannedRole
must be the only value in Controller.{i}.AssignedRole (all other entries are removed) and
Controller.{i}.InheritedRole must be empty (all entries are removed). This step is
shown in Figure SEC.4.In the case of a Controller that has not previously been assigned a Role
or who has been assigned the value of UntrustedRole:

• If the Controller’s certificate is validated by credentials in a
ControllerTrust.Credential.{i}.Credential parameter but there is no associated
ControllerTrust.Credential.{i}.Role parameter (or the value is empty) and
Controller.{i}.AssignedRole is empty, then the Controller is assigned the role in
UntrustedRole (written to the Controller.{i}.AssignedRole parameter). This step is
shown in Figure SEC.5. Note that assigning UntrustedRole means there needs to be some
implemented way to elevate the Controller’s Role, either by another Controller manipulating
the Role, implementing Challenges, or some non-USP method.

• If the Controller’s certificate is self-signed or is validated by credentials not in
ControllerTrust.Credential.{i}., the Agent policy may be to assign the role in

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 183 of 249

UntrustedRole. The optional policy decision (whether or not to allow Trust on First Use
(TOFU), which can be codified in the data model with the ControllerTrust.TOFUAllowed flag)
is shown in Figure SEC.4; Figure SEC.5 shows the Role assignment.

• If the Agent implements the RequestChallenge() and ChallengeResponse() commands, a
Controller assigned the role in UntrustedRole can have permission to read one or more
ControllerTrust.Challenge.{i}.Alias and Description values and issue the commands.
Roles with more extensive permissions can have permission to read additional
ControllerTrust.Challenge.{i}.Alias and Description values. A successful Challenge
results in the Controller being assigned the associated Role value.

14.9.4 Controller Certificates and Certificate Validation

When an Agent is presented with a Controller’s certificate, the Agent will always attempt to
validate the certificate to whatever extent possible. Figures SEC.4 and SEC.5 in Analysis of
Controller Certificates identify points in the decision logic where data model parameters can be
used to influence policy decisions related to Controller certificate analysis.

Note that it is possible for an Agent to maintain policy of the type described by the UntrustedRole,
BannedRole, and the information described by ControllerTrust.Credential.{i}. and
Controller.{i}.Credential without exposing these through the data model. If the policy
concepts and data are maintained but not exposed, the same methods can still be used. It is also
possible for an Agent to have policy that is not described by any defined data model element.

14.9.5 Challenges

An Agent can implement the ability to provide Controllers with challenges via USP, in order to be
trusted with certain Roles. It is also possible to use non-USP methods to issue challenges, such as
HTTP digest authentication with prompts for login and password.

To use the USP mechanism, the RequestChallenge() and ChallengeResponse() commands and
ControllerTrust.Challenge.{i}. object with at least the Alias, Role, and Description
parameters needs to be implemented. The functionality implied by the other
ControllerTrust.Challenge.{i}. parameters needs to be implemented, but does not have to be
exposed through the data model.

A Controller that sends a Get message on Device.ControllerTrust.Challenge.{i}. will
receive all entries and parameters that are allowed for its current assigned Role. In the simplest case,
this will be a single entry and only Alias and Description will be supplied for that entry. It is
important to restrict visibility to all other implemented parameters to highly trusted Roles, if at all.

The Controller can display the value of Description to the user and allow the user to indicate they
want to request the described challenge. If multiple entries were returned, the user can be asked to
select which challenge they want to request, based on the description. An example of a description
might be “Request administrative privileges” or “Request guest privilege”.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 184 of 249

When the user indicates to the Controller which challenge they want, the Controller sends
RequestChallenge() with the path name of the Challenge object instance associated with the
desired Description. The Agent replies with the associated Instruction, InstructionType,
ValueType and an auto-generated ChallengeID. The Controller presents the value of Instruction
to the user (in a manner appropriate for InstructionType). Examples of an instruction might be
“Enter passphrase printed on bottom of device” or “Enter PIN sent to registered email address”. The
user enters a string per the instructions, and the Controller sends this value together with the
ChallengeID in ChallengeResponse().

If the returned value matches Value, the Agent gives a successful response - otherwise it returns an
unsuccessful response. If successful, the ControllerTrust.Challenge.{i}.Role replaces an
UntrustedRole in Controller.{i}.AssignedRole or is appended to any other
Controller.{i}.AssignedRole value.

The number of times a ControllerTrust.Challenge.{i}. entry can be consecutively failed
(across all Controllers, without intermediate success) is defined by Retries. Once the number of
failed consecutive attempts equals Retries, the ControllerTrust.Challenge.{i}. cannot be
retried until after LockoutPeriod has expired.

Type values other than Passphrase can be used and defined to trigger custom mechanisms, such as
requests for emailed or SMS-provided PINs.

14.9.6 Certificate Management

If an Agent wants to allow certificates associated with Controllers and CAs to be exposed through
USP, the Agent can implement the Controller.{i}.Credential and
ControllerTrust.Credential.{i}.Credential parameters, which require implementation of
the LocalAgent.Certificate. object. Allowing management of these certificates through USP
can be accomplished by implementing LocalAgent.AddCertificate(),
Controller.{i}.AddMyCertificate() and Certificate.{i}.Delete() commands.

To allow a Controller to check whether the Agent has correct certificates, the
Certificate.{i}.GetFingerprint() command can be implemented.

14.9.7 Application of Modified Parameters

It is possible that various parameters related to authentication and authorization may change that
would impact cached encrypted sessions and Role permissions for Controllers. Example of such
parameters include Controller.{i}.AssignedRole, Controller.{i}.Credential,
ControllerTrust.Role. definition of a Role, and ControllerTrust.Credential.{i}.Role.

There is no expectation that an Agent will apply these changes to cached sessions. It is up to the
Agent to determine whether or not it will detect these changes and flush cached session information.
However, it is expected that a reboot will clear all cached session information.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 185 of 249

15 Annex A - HTTP Bulk Data Collection

Note - This Annex is a translation from the HTTP Bulk Data Collection mechanism specified in
Annex A of Broadband Forum TR-157, which was carried over into Amendment 6 of TR-069. The
text here has been altered to fit with USP concepts.

This section discusses the Theory of Operation for the collection and transfer of bulk data using
USP, HTTP and the BulkData object defined in Device:2, to a Bulk Data Collector utilizing:

• HTTP/HTTPS for the transfer of collected data

• CSV and JSON for the encoding of collected data to be transferred

The Agent configuration that enables the collection of bulk data using HTTP is defined using the
BulkData component objects explained here. During this explanation, there will be references to
data model objects specific to Device:2; that specification should be used for reference.

15.1 Enabling HTTP/HTTPS Bulk Data Communication

HTTP/HTTPS communication between the Agent and Bulk Data Collector is enabled by
configuring the BulkData.Profile object for the HTTP/HTTPS transport protocol adding and
configuring a new BulkData.Profile object instance using the Add message. For example:

.BulkData.Profile.1

.BulkData.Profile.1.Enable=true

.BulkData.Profile.1.Protocol = "HTTP"

.BulkData.Profile.1.ReportingInterval = 300

.BulkData.Profile.1.TimeReference = "0001-01-01T00:00:00Z"

.BulkData.Profile.1.HTTP.URL = "https://bdc.acme.com/somedirectory"

.BulkData.Profile.1.HTTP.Username = "username"

.BulkData.Profile.1.HTTP.Password = "password"

.BulkData.Profile.1.HTTP.Method = "POST"

.BulkData.Profile.1.HTTP.UseDateHeader = true

The configuration above defines a profile that transfers data from the Agent to the Bulk Data
Collector using secured HTTP. In addition the Agent will provide authentication credentials
(username, password) to the Bulk Data Collector, if requested by the Bulk Data Collector. Finally,
the Agent establishes a communication session with the Bulk Data Collector every 300 seconds in
order to transfer the data defined by the .BulkData.Report. object instance.

Note - When a Bulk Data Collection Profile is either created or updated the Agent performs
permission checks against the objects and parameters in existence at the time of the operation,
utilizing the permissions assocated with the operating Controller.

https://www.broadband-forum.org/technical/download/TR-157.pdf
https://www.broadband-forum.org/technical/download/TR-069.pdf
https://usp-data-models.broadband-forum.org/
https://usp-data-models.broadband-forum.org/

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 186 of 249

Once the communication session is established between the Agent and Bulk Data Collector the data
is transferred from the Agent using the POST HTTP method with a HTTP Date header and no
compression.

R-BULK.0 - In many scenarios Agents will utilize “chunked” transfer encoding. As such, the Bulk
Data Collector MUST support the HTTP transfer-coding value of “chunked”.

15.1.1 Use of the URI Query Parameters

The HTTP Bulk Data transfer mechanism allows parameters to be used as HTTP URI query
parameters. This is useful when Bulk Data Collector utilizes the specific parameters that the Agent
reports for processing (e.g., logging, locating directories) without the need for the Bulk Data
Collector to parse the data being transferred.

R-BULK.1 - The Agent MUST transmit the device’s Manufacturer OUI, Product Class and Serial
Number or the USP Endpoint ID as part of the URI query parameters. The data model parameters
are encoded as:

.DeviceInfo.ManufacturerOUI -> oui

.DeviceInfo.ProductClass -> pc

.DeviceInfo.SerialNumber -> sn

.LocalAgent.EndpointID -> eid

As such, the values of the device’s OUI, Serial Number and Product Class are formatted in the
HTTP request URI as follows:

POST https://<bulk data collector url>?oui=00256D&pc=Z&sn=Y

If the USP Endpoint ID is used the HTTP request URI is formatted as:

POST https://<bulk data collector url>?eid=os::000256:asdfa99384

Note - If the USP Endpoint ID should be transmitted together with the device’s Manufacturer OUI,
Product Class and Serial Number (e.g. to distinguish multiple bulk data collection instances on the
same device), then the USP Endpoint ID has to be configured as additional URI parameter in the
.BulkData.Profile.{i}.HTTP.RequestURIParameter.{i}. table.

Configuring the URI query parameters for other parameters requires that instances of a
.BulkData.Profile.{i}.HTTP.RequestURIParameter object instance be created and configured
with the requested parameters. The additional parameters are appended to the required URI query
parameters.

Using the example to add the device’s current local time to the required URI parameters, the HTTP
request URI would be as follows:

POST https://<bulk data collector url>?oui=00256D&pc=Z&sn=Y&ct=2015-11-
01T11:12:13Z

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 187 of 249

By setting the following parameters using the Add message as follows:

.BulkData.Profile.1.HTTP.RequestURIParameter 1.Name ="ct"

.BulkData.Profile.1.HTTP.RequestURIParameter.1.Reference
="Device.Time.CurrentLocalTime"

15.1.2 Use of HTTP Status Codes

The Bulk Data Collector uses standard HTTP status codes, defined in the HTTP specification, to
inform the Agent whether a bulk data transfer was successful. The HTTP status code is set in the
response header by the Bulk Data Collector. For example, “200 OK” status code indicates an upload
was processed successfully, “202 Accepted” status code indicates that the request has been
accepted for processing, but the processing has not been completed, “401 Unauthorized” status
code indicates user authentication failed and a “500 Internal Server Error” status code
indicates there is an unexpected system error.

15.1.2.1 HTTP Retry Mechanism

R-BULK.2 - When the Agent receives an unsuccessful HTTP status code and the HTTP retry
behavior is enabled, the Agent MUST try to redeliver the data. The retry mechanism employed for
the transfer of bulk data using HTTP uses the same algorithm as is used for USP Notify retries.

The retry interval range is controlled by two Parameters, the minimum wait interval and the interval
multiplier, each of which corresponds to a data model Parameter, and which are described in the
table below. The factory default values of these Parameters MUST be the default values listed in the
Default column. They MAY be changed by a Controller with the appropriate permissions at any
time.

• Descriptive
Name • Symbol • Default • Data Model Parameter Name

• Minimum
wait
interval

• m • 5 seconds • Device.BulkData.Profile.{i}.HTTP.RetryMinimu

• Interval
multiplier

• k • 2000 • Device.BulkData.Profile.{i}.HTTP.RetryInterv

• Retry
Count

• Default
Wait
Interval
Range
(min-
max
second
s)

• Actual Wait
Interval
Range
(min-max
seconds)

• #1 • 5-10 • m -

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 188 of 249

m.(k/1000)
• #2 • 10-20 • m.(k/1000)

-
m.(k/1000)2

• #3 • 20-40 • m.(k/1000)2
-
m.(k/1000)3

• #4 • 40-80 • m.(k/1000)3
-
m.(k/1000)4

• #5 • 80-160 • m.(k/1000)4
-
m.(k/1000)5

• #6 • 160-
320

• m.(k/1000)5
-
m.(k/1000)6

• #7 • 320-
640

• m.(k/1000)6
-
m.(k/1000)7

• #8 • 640-
1280

• m.(k/1000)7
-
m.(k/1000)8

• #9 • 1280-
2560

• m.(k/1000)8
-
m.(k/1000)9

• #10 and
subsequent

• 2560-
5120

• m.(k/1000)9
-
m.(k/1000)1
0

R-BULK.3 - Beginning with the tenth retry attempt, the Agent MUST choose from the fixed
maximum range. The Agent will continue to retry a failed bulk data transfer until it is successfully
delivered or until the next reporting interval for the data transfer becomes effective.

R-BULK.4 - Once a bulk data transfer is successfully delivered, the Agent MUST reset the retry
count to zero for the next reporting interval.

R-BULK.5 - If a reboot of the Agent occurs, the Agent MUST reset the retry count to zero for the
next bulk data transfer.

15.1.3 Use of TLS and TCP

The use of TLS to transport the HTTP Bulk Data is RECOMMENDED, although the protocol
MAY be used directly over a TCP connection instead. If TLS is not used, some aspects of security

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 189 of 249

are sacrificed. Specifically, TLS provides confidentiality and data integrity, and allows certificate-
based authentication in lieu of shared secret-based authentication.

R-BULK.6 - Certain restrictions on the use of TLS and TCP are defined as follows:

• The Agent MUST support TLS version 1.2 or later (with backward compatibility to TLS 1.2).

• If the Collection Server URL has been specified as an HTTPS URL, the Agent MUST
establish secure connections to the Collection Server, and MUST start the TLS session
negotiation with TLS 1.2 or later.

Note - If the Collection Server does not support TLS 1.2 or higher with a cipher suite supported by
the Agent, it may not be possible for the Agent to establish a secure connection to the Collection
Server.

Note - TLS_RSA_WITH_AES_128_CBC_SHA is the only mandatory TLS 1.2 cipher suite.

• The Agent SHOULD use the RFC 6066 Server Name TLS extension to send the host portion
of the Collection Server URL as the server name during the TLS handshake.

• If TLS 1.2 (or a later version) is used, the Agent MUST authenticate the Collection Server
using the certificate provided by the Collection Server. Authentication of the Collection Server
requires that the Agent MUST validate the certificate against a root certificate. To validate
against a root certificate, the Agent MUST contain one or more trusted root certificates that are
either pre-loaded in the Agent or provided to the Agent by a secure means outside the scope of
this specification. If as a result of an HTTP redirect, the Agent is attempting to access a
Collection Server at a URL different from its pre-configured Collection Server URL, the Agent
MUST validate the Collection Server certificate using the redirected Collection Server URL
rather than the pre-configured Collection Server URL.

• If the host portion of the Collection Server URL is a DNS name, this MUST be done according
to the principles of RFC 6125, using the host portion of the Collection Server URL as the
reference identifier.

• If the host portion of the Collection Server URL is an IP address, this MUST be done by
comparing the IP address against any presented identifiers that are IP addresses.

Note - the terms “reference identifier” and “presented identifier” are defined in RFC 6125. Note -
wildcard certificates are permitted as described in RFC 6125

• A Agent capable of obtaining absolute time SHOULD wait until it has accurate absolute time
before contacting the Collection Server. If a Agent for any reason is unable to obtain absolute
time, it can contact the Collection Server without waiting for accurate absolute time. If a Agent
chooses to contact the Collection Server before it has accurate absolute time (or if it does not
support absolute time), it MUST ignore those components of the Collection Server certificate
that involve absolute time, e.g. not-valid-before and not-valid-after certificate restrictions.

https://tools.ietf.org/html/rfc6066
https://tools.ietf.org/html/rfc6125
https://tools.ietf.org/html/rfc6125
https://tools.ietf.org/html/rfc6125

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 190 of 249

• Support for Agent authentication using client-side certificates is NOT RECOMMENDED.
Instead, the Collection Server SHOULD authenticate the Agent using HTTP basic or digest
authentication to establish the identity of a specific Agent.

15.2 Encoding of Bulk Data

Bulk Data that is transferred to the Bulk Data Collector from the Agent using HTTP/HTTPS is
encoded using a specified encoding type. For HTTP/HTTPS the supported encoding types are CSV
and JSON. The encoding type is sent a media type with the report format used for the encoding. For
CSV the media type is text/csv as specified in RFC 4180 and for JSON the media type is
application/json as specified in RFC 7159. For example, a CSV encoded report using
charset=UTF-8 would have the following Content-Type header:

Content-Type: text/csv; charset=UTF-8

R-BULK.7 - The “media-type” field and “charset” parameters MUST be present in the Content-
Type header.

In addition the report format that was used for encoding the report is included as a HTTP custom
header with the following format:

BBF-Report-Format: <ReportFormat>

The field is represented as a token.

For example a CSV encoded report using a ReportFormat for ParameterPerRow would have the
following BBF-Report-Format header:

BBF-Report-Format: "ParameterPerRow"

R-BULK.8 - The BBF-Report-Format custom header MUST be present when transferring data to
the Bulk Data Collector from the Agent using HTTP/HTTPS.

15.2.1 Using Wildcards to Reference Object Instances in the Report

When the Agent supports the use of the Wildcard value “*” in place of instance identifiers for the
Reference parameter, then all object instances of the referenced parameter are encoded. For
example to encode the “BroadPktSent” parameter for all object instances of the MoCA Interface
object the following will be configured:

 .BulkData.Profile.1.Parameter.1.Name = ""
 .BulkData.Profile.1.Parameter.1.Reference =
"Device.MoCA.Interface.*.Stats.BroadPktSent"

https://tools.ietf.org/html/rfc4180
https://tools.ietf.org/html/rfc7159

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 191 of 249

15.2.2 Using Alternative Names in the Report

Alternative names can be defined for the parameter name in order to shorten the name of the
parameter. For example instead of encoding the full parameter name
“Device.MoCA.Interface.1.Stats.BroadPktSent” could be encoded with a shorter name
“BroadPktSent”. This allows the encoded data to be represented using the shorter name. This
would be configured as:

.BulkData.Profile.1.Parameter.1.Name = "BroadPktSent"

.BulkData.Profile.1.Parameter.1.Reference =
"Device.MoCA.Interface.1.Stats.BroadPktSent"

In the scenario where there are multiple instances of a parameter (e.g.,
“Device.MoCA.Interface.1.Stats.BroadPktSent”,
“Device.MoCA.Interface.2.Stats.BroadPktSent”) in a Report, the content of the Name
parameter SHOULD be unique (e.g., BroadPktSent1, BroadPktSent2).

15.2.2.1 Using Object Instance Wildcards and Parameter Partial Paths with
Alternative Names

Wildcards for Object Instances can be used in conjunction with the use of alternative names by
reflecting object hierarchy of the value of the Reference parameter in the value of the Name
parameter.

R-BULK.9 - When the value of the Reference parameter uses a wildcard for an instance identifier,
the value of the Name parameter (as used in a report) MUST reflect the wild-carded instance
identifiers of the parameters being reported on. Specifically, the value of the Name parameter
MUST be appended with a period (.) and then the instance identifier. If the value of the Reference
parameter uses multiple wildcard then each wild-carded instance identifier MUST be appended in
order from left to right.

For example, for a device to report the Bytes Sent for the Associated Devices of the device’s WiFi
Access Points the following would be configured:

.BulkData.Profile.1.Parameter.1.Name = "WiFi_AP_Assoc_BSent"

.BulkData.Profile.1.Parameter.1.Reference =
"Device.WiFi.AccessPoint.*.AssociatedDevice.*.Stats.BytesSent"

Using this configuration a device that has 2 WiFi Access Points (with instance identifiers 1 and 3)
each with 2 Associated Devices (with instance identifiers 10 and 11), would contain a Report with
following parameter names:

WiFi_AP_Assoc_BSent.1.10
WiFi_AP_Assoc_BSent.1.11
WiFi_AP_Assoc_BSent.3.10
WiFi_AP_Assoc_BSent.3.11

Object or Object Instance paths can also be used to report all parameters of the associated Object.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 192 of 249

R-BULK.10 - When the value of the Reference parameter is an Object Path, the value of the Name
parameter (as used in a report) MUST reflect the remainder of the parameter path. Specifically, the
value of Name parameter MUST be appended with a “.” and then the remainder of the parameter
path.

For example, for a device to report the statistics of a WiFi associated device object instance the
following would be configured:

.BulkData.Profile.1.Parameter.1.Name = "WiFi_AP1_Assoc10"

.BulkData.Profile.1.Parameter.1.Reference =
"Device.WiFi.AccessPoint.1.AssociatedDevice.10.Stats."

Using the configuration the device’s report would contain the following parameter names:

WiFi_AP1_Assoc10.BytesSent
WiFi_AP1_Assoc10.BytesReceived
WiFi_AP1_Assoc10.PacketsSent
WiFi_AP1_Assoc10.PacketsReceived
WiFi_AP1_Assoc10.ErrorsSent
WiFi_AP1_Assoc10.RetransCount
WiFi_AP1_Assoc10.FailedRetransCount
WiFi_AP1_Assoc10.RetryCount
WiFi_AP1_Assoc10.MultipleRetryCount

It is also possible for the value of the Reference parameter to use both wildcards for instance
identifiers and be a partial path. For example, for device to report the statistics for the device’s WiFi
associated device, the following would be configured:

.BulkData.Profile.1.Parameter.1.Name = "WiFi_AP_Assoc"

.BulkData.Profile.1.Parameter.1.Reference =
"Device.WiFi.AccessPoint.*.AssociatedDevice.*.Stats."

Using this configuration a device that has 1 WiFi Access Point (with instance identifier 1) with 2
Associated Devices (with instance identifiers 10 and 11), would contain a Report with following
parameter names:

WiFi_AP_Assoc.1.10.BytesSent
WiFi_AP_Assoc.1.10.BytesReceived
WiFi_AP_Assoc.1.10.PacketsSent
WiFi_AP_Assoc.1.10.PacketsReceived
WiFi_AP_Assoc.1.10.ErrorsSent
WiFi_AP_Assoc.1.10.RetransCount
WiFi_AP_Assoc.1.10.FailedRetransCount
WiFi_AP_Assoc.1.10.RetryCount
WiFi_AP_Assoc.1.10.MultipleRetryCount
WiFi_AP_Assoc.1.11.BytesSent
WiFi_AP_Assoc.1.11.BytesReceived
WiFi_AP_Assoc.1.11.PacketsSent
WiFi_AP_Assoc.1.11.PacketsReceived
WiFi_AP_Assoc.1.11.ErrorsSent

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 193 of 249

WiFi_AP_Assoc.1.11.RetransCount
WiFi_AP_Assoc.1.11.FailedRetransCount
WiFi_AP_Assoc.1.11.RetryCount
WiFi_AP_Assoc.1.11.MultipleRetryCount

15.2.3 Processing of Content for Failed Report Transmissions

When the content (report) cannot be successfully transmitted, including retries, to the data collector,
the NumberOfRetainedFailedReports parameter of the BulkData.Profile object instance
defines how the content should be disposed based on the following rules:

• When the value of the NumberOfRetainedFailedReports parameter is greater than 0, then
the report for the current reporting interval is appended to the list of failed reports. How the
content is appended is dependent on the type of encoding (e.g., CSV, JSON) and is described
further in corresponding encoding section.

• If the value of the NumberOfRetainedFailedReports parameter is -1, then the Agent will
retain as many failed reports as possible.

• If the value of the NumberOfRetainedFailedReports parameter is 0, then failed reports are not
to be retained for transmission in the next reporting interval.

• If the Agent cannot retain the number of failed reports from previous reporting intervals while
transmitting the report of the current reporting interval, then the oldest failed reports are
deleted until the Agent is able to transmit the report from the current reporting interval.

• If the value BulkData.Profile object instance’s EncodingType parameter is modified any
outstanding failed reports are deleted.

15.2.4 Encoding of CSV Bulk Data

R-BULK.11 - CSV Bulk Data SHOULD be encoded as per RFC 4180, MUST contain a header line
(column headers), and the media type MUST indicate the presence of the header line.

For example: Content-Type: text/csv; charset=UTF-8; header=present

In addition, the characters used to separate fields and rows as well as identify the escape character
can be configured from the characters used in RFC 4180.

Using the HTTP example above, the following configures the Agent to transfer data to the Bulk
Data Collector using CSV encoding, separating the fields with a comma and the rows with a new
line character, by setting the following parameters:

.BulkData.Profile.1.EncodingType = "CSV"

.BulkData.Profile.1 CSVEncoding.FieldSeparator = ","

.BulkData.Profile.1.CSVEncoding.RowSeparator="
"

.BulkData.Profile.1.CSVEncoding.EscapeCharacter="""

https://tools.ietf.org/html/rfc4180
https://tools.ietf.org/html/rfc4180

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 194 of 249

15.2.4.1 Defining the Report Layout of the Encoded Bulk Data

The layout of the data in the reports associated with the profiles allows parameters to be formatted
either as part of a column (ParameterPerColumn) or as a distinct row (ParameterPerRow) as
defined below. In addition, the report layout allows rows of data to be inserted with a timestamp
stating when the data is collected.

Using the HTTP example above, the following configures the Agent to format the data using a
parameter as a row and inserting a timestamp as the first column entry in each row using the “Unix-
Epoch” time. The information is configured by setting the following parameters:

.BulkData.Profile.1.CSVEncoding.ReportFormat ="ParameterPerRow"

.BulkData.Profile.1.CSVEncoding.RowTimestamp ="Unix-Epoch"

The report format of “ParameterPerRow” MUST format each parameter using the ParameterName,
ParameterValue and ParameterType in that order. The ParameterType MUST be the
parameter’s base data type as described in TR-106.

15.2.4.2 Layout of Content for Failed Report Transmissions

When the value of the NumberOfRetainedFailedReports parameter of the BulkData.Profile
object instance is -1 or greater than 0, then the report of the current reporting interval is appended to
the failed reports. For CSV Encoded data the content of new reporting interval is added onto the
existing content without any header data.

15.2.4.3 CSV Encoded Report Examples

15.2.4.3.1 CSV Encoded Reporting Using ParameterPerRow Report Format

Using the configuration examples provided in the previous sections the configuration for a CSV
encoded HTTP report using the ParameterPerRow report format:

.BulkData.Profile.1

.BulkData.Profile.1.Enable=true

.BulkData.Profile.1.Protocol = "HTTP"

.BulkData.Profile.1.ReportingInterval = 300

.BulkData.Profile.1.TimeReference = "0001-01-01T00:00:00Z"

.BulkData.Profile.1.HTTP.URL = "https://bdc.acme.com/somedirectory"

.BulkData.Profile.1.HTTP.Username = "username"

.BulkData.Profile.1.HTTP.Password = "password"

.BulkData.Profile.1.HTTP.Compression = "Disabled"

.BulkData.Profile.1.HTTP.Method = "POST"

.BulkData.Profile.1.HTTP.UseDateHeader = true

.BulkData.Profile.1.EncodingType = "CSV"

.BulkData.Profile.1 CSVEncoding.FieldSeparator = ","

.BulkData.Profile.1.CSVEncoding.RowSeparator="
"

https://www.broadband-forum.org/technical/download/TR-106_Amendment-8.pdf

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 195 of 249

.BulkData.Profile.1.CSVEncoding.EscapeCharacter="""

.BulkData.Profile.1.CSVEncoding.ReportFormat ="ParameterPerRow"

.BulkData.Profile.1.CSVEncoding.ReportTimestamp ="Unix-Epoch"

.BulkData.Profile.1.Parameter.1.Name = ""

.BulkData.Profile.1.Parameter.1.Reference =
"Device.MoCA.Interface.1.Stats.BroadPktSent"
.BulkData.Profile.1.Parameter.2.Name = ""
.BulkData.Profile.1.Parameter.2.Reference =
"Device.MoCA.Interface.1.Stats.BytesReceived"
.BulkData.Profile.1.Parameter.3.Name = ""
.BulkData.Profile.1.Parameter.3.Reference =
"Device.MoCA.Interface.1.Stats.BytesSent"
.BulkData.Profile.1.Parameter.4.Name = ""
.BulkData.Profile.1.Parameter.4.Reference =
"Device.MoCA.Interface.1.Stats.MultiPktReceived"

The resulting CSV encoded data would look like:

ReportTimestamp,ParameterName,ParameterValue,ParameterType
1364529149,Device.MoCA.Interface.1.Stats.BroadPktSent,25248,unsignedLong
1364529149,Device.MoCA.Interface.1.Stats.BytesReceived,200543250,unsignedLong
1364529149, Device.MoCA.Interface.1.Stats.Stats.BytesSent,7682161,unsignedLong
1364529149,Device.MoCA.Interface.1.Stats.MultiPktReceived,890682272,unsignedLon
g

15.2.4.3.2 CSV Encoded Reporting Using ParameterPerColumn Report
Format

Using the configuration examples provided in the previous sections the configuration for a CSV
encoded HTTP report using the ParameterPerColumn report format:

.BulkData.Profile.1

.BulkData.Profile.1.Enable=true

.BulkData.Profile.1.Protocol = "HTTP"

.BulkData.Profile.1.ReportingInterval = 300

.BulkData.Profile.1.TimeReference = "0001-01-01T00:00:00Z"

.BulkData.Profile.1.HTTP.URL = "https://bdc.acme.com/somedirectory"

.BulkData.Profile.1.HTTP.Username = "username"

.BulkData.Profile.1.HTTP.Password = "password"

.BulkData.Profile.1.HTTP.Compression = "Disabled"

.BulkData.Profile.1.HTTP.Method = "POST"

.BulkData.Profile.1.HTTP.UseDateHeader = true

.BulkData.Profile.1.EncodingType = "CSV"

.BulkData.Profile.1 CSVEncoding.FieldSeparator = ","

.BulkData.Profile.1.CSVEncoding.RowSeparator="
"

.BulkData.Profile.1.CSVEncoding.EscapeCharacter="""

.BulkData.Profile.1.CSVEncoding.ReportFormat ="ParameterPerColumn"

.BulkData.Profile.1.CSVEncoding.ReportTimestamp ="Unix-Epoch"

.BulkData.Profile.1.Parameter.1.Name = "BroadPktSent"

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 196 of 249

.BulkData.Profile.1.Parameter.1.Reference =
"Device.MoCA.Interface.1.Stats.BroadPktSent"
.BulkData.Profile.1.Parameter.2.Name = "BytesReceived"
.BulkData.Profile.1.Parameter.2.Reference =
"Device.MoCA.Interface.1.Stats.BytesReceived"
.BulkData.Profile.1.Parameter.3.Name = "BytesSent"
.BulkData.Profile.1.Parameter.3.Reference =
"Device.MoCA.Interface.1.Stats.BytesSent"
.BulkData.Profile.1.Parameter.4.Name = "MultiPktReceived"
.BulkData.Profile.1.Parameter.4.Reference =
"Device.MoCA.Interface.1.Stats.MultiPktReceived"

The resulting CSV encoded data with transmission of the last 3 reports failed to complete would
look like:

ReportTimestamp,BroadPktSent,BytesReceived,BytesSent,MultiPktReceived
1364529149,25248,200543250,7682161,890682272
1464639150,25249,200553250,7683161,900683272
1564749151,25255,200559350,7684133,910682272
1664859152,25252,200653267,7685167,9705982277

15.2.5 Encoding of JSON Bulk Data

Using the HTTP example above, the Set message is used to configure the Agent to transfer data to
the Bulk Data Collector using JSON encoding as follows:

.BulkData.Profile.1.EncodingType = "JSON"

15.2.5.1 Defining the Report Layout of the Encoded Bulk Data

Reports that are encoded with JSON Bulk Data are able to utilize different report format(s) defined
by the JSONEncoding object’s ReportFormat parameter as defined below.

In addition, a “CollectionTime” JSON object can be inserted into the report instance that defines
when the data for the report was collected.

The following configures the Agent to encode the data using a parameter as JSON Object named
“CollectionTime” using the “Unix-Epoch” time format:

.BulkData.Profile.1.JSONEncoding.ReportTimestamp ="Unix-Epoch"

Note: The encoding format of “CollectionTime” is defined as an JSON Object parameter encoded
as: "CollectionTime":1364529149

Reports are defined as an Array of Report instances encoded as:

"Report":[{...},{...}]

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 197 of 249

Note: Multiple instances of Report instances may exist when previous reports have failed to be
transmitted.

15.2.5.2 Layout of Content for Failed Report Transmissions

When the value of the NumberOfRetainedFailedReports parameter of the BulkData.Profile
object instance is -1 or greater than 0, then the report of the current reporting interval is appended to
the failed reports. For JSON Encoded data the report for the current reporting interval is added onto
the existing appended as a new “Data” object array instance as shown below:

"Report": [
{Report from a failed reporting interval},
{Report from the current reporting interval}
]

15.2.5.3 Using the ObjectHierarchy Report Format

When a BulkData profile utilizes the JSON encoding type and has a JSONEncoding.ReportFormat
parameter value of “ObjectHierarchy”, then the JSON objects are encoded such that each object
in the object hierarchy of the data model is encoded as a corresponding hierarchy of JSON Objects
with the parameters (i.e., parameterName, parameterValue) of the object specified as name/value
pairs of the JSON Object.

For example the translation for the leaf object “Device.MoCA.Interface.*.Stats.” would be:

 {
 "Report": [
 {
 "Device": {
 "MoCA": {
 "Interface": {
 "1": {
 "Stats": {
 "BroadPktSent": 25248,
 "BytesReceived": 200543250,
 "BytesSent": 25248,
 "MultiPktReceived": 200543250
 }
 },
 "2": {
 "Stats": {
 "BroadPktSent": 93247,
 "BytesReceived": 900543250,
 "BytesSent": 93247,
 "MultiPktReceived": 900543250
 }
 }

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 198 of 249

 }
 }
 }
 }
]
 }

Note: The translated JSON Object name does not contain the trailing period “.” of the leaf object.

15.2.5.4 Using the NameValuePair Report Format

When a BulkData profile utilizes the JSON encoding type and has a JSONEncoding.ReportFormat
parameter value of “NameValuePair”, then the JSON objects are encoded such that each parameter
of the data model is encoded as an array instance with the parameterName representing JSON name
token and parameterValue as the JSON value token.

For example the translation for the leaf object “Device.MoCA.Interface.*.Stats.” would be:

{
 "Report": [
 {
 "Device.MoCA.Interface.1.Stats.BroadPktSent": 25248,
 "Device.MoCA.Interface.1.Stats.BytesReceived": 200543250,
 "Device.MoCA.Interface.1.Stats.BytesSent": 25248,
 "Device.MoCA.Interface.1.Stats.MultiPktReceived": 200543250,
 "Device.MoCA.Interface.2.Stats.BroadPktSent": 93247,
 "Device.MoCA.Interface.2.Stats.BytesReceived": 900543250,
 "Device.MoCA.Interface.2.Stats.BytesSent": 93247,
 "Device.MoCA.Interface.2.Stats.MultiPktReceived": 900543250
 }
]
}

Note: The translated JSON Object name does not contain the trailing period “.” of the leaf object.

15.2.5.5 Translating Data Types

JSON has a number of basic data types that are translated from the base data types defined in TR-
106. The encoding of JSON Data Types MUST adhere to RFC 7159.

TR-106 named data types are translated into the underlying base TR-106 data types. Lists based on
TR-106 base data types utilize the JSON String data type.

• TR-106 Data Type • JSON Data Type
• base64 • String: base64 representation of the binary data.
• boolean • Boolean

https://www.broadband-forum.org/technical/download/TR-106_Amendment-8.pdf
https://www.broadband-forum.org/technical/download/TR-106_Amendment-8.pdf
https://tools.ietf.org/html/rfc7159

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 199 of 249

• dateTime • String represented as an ISO-8601 timestamp.
• hexBinary • String: hex representation of the binary data.
• int, long, unsignedInt, unsignedLong • Number
• string • String

15.2.5.6 JSON Encoded Report Example

Using the configuration examples provided in the previous sections the configuration for a JSON
encoded HTTP report:

.BulkData.Profile.1

.BulkData.Profile.1.Enable=true

.BulkData.Profile.1.Protocol = "HTTP"

.BulkData.Profile.1.ReportingInterval = 300

.BulkData.Profile.1.TimeReference = "0001-01-01T00:00:00Z"

.BulkData.Profile.1.HTTP.URL = "https://bdc.acme.com/somedirectory"

.BulkData.Profile.1.HTTP.Username = "username"

.BulkData.Profile.1.HTTP.Password = "password"

.BulkData.Profile.1.HTTP.Compression = "Disabled"

.BulkData.Profile.1.HTTP.Method = "POST"

.BulkData.Profile.1.HTTP.UseDateHeader = true

.BulkData.Profile.1.EncodingType = "JSON"

.BulkData.Profile.1.JSONEncoding.ReportFormat ="ObjectHierarchy"

.BulkData.Profile.1.JSONEncoding.ReportTimestamp ="Unix-Epoch"

.BulkData.Profile.1.Parameter.1.Reference = "Device.MoCA.Interface.*.Stats."

The resulting JSON encoded data would look like:

{
 "Report": [
 {
 "CollectionTime": 1364529149,
 "Device": {
 "MoCA": {
 "Interface": {
 "1": {
 "Stats": {
 "BroadPktSent": 25248,
 "BytesReceived": 200543250,
 "BytesSent": 25248,
 "MultiPktReceived": 200543250
 }
 },
 "2": {
 "Stats": {
 "BroadPktSent": 93247,
 "BytesReceived": 900543250,
 "BytesSent": 93247,

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 200 of 249

 "MultiPktReceived": 900543250
 }
 }
 }
 }
 }
 }
]
}

If the value of the .BulkData.Profile.1.JSONEncoding.ReportFormat parameter was
“NameValuePair”, the results of the configuration would be:

{
 "Report": [
 {
 "CollectionTime": 1364529149,
 "Device.MoCA.Interface.1.Stats.BroadPktSent": 25248,
 "Device.MoCA.Interface.1.Stats.BytesReceived": 200543250,
 "Device.MoCA.Interface.1.Stats.BytesSent": 25248,
 "Device.MoCA.Interface.1.Stats.MultiPktReceived": 200543250,
 "Device.MoCA.Interface.2.Stats.BroadPktSent": 93247,
 "Device.MoCA.Interface.2.Stats.BytesReceived": 900543250,
 "Device.MoCA.Interface.2.Stats.BytesSent": 93247,
 "Device.MoCA.Interface.2.Stats.MultiPktReceived": 900543250
 }
]
}

16 Appendix I - Software Module Management
1. Lifecycle Manage

2. Software Modules

1. Deployment Units

2. Execution Units

3. Execution Environment Concepts

4. Fault Model

1. DU Faults

2. EU Faults

This section discusses the Theory of Operation for Software Module Management using USP and
the Software Module object defined in the Root data model.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 201 of 249

As the home networking market matures, devices in the home are becoming more sophisticated and
more complex. One trend in enhanced device functionality is the move towards more standardized
platforms and execution environments (such as Java, Linux, OSGi, Docker, etc.). Devices
implementing these more robust platforms are often capable of downloading new applications
dynamically, perhaps even from third-party software providers. These new applications might
enhance the existing capabilities of the device or enable the offering of new services.

This model differs from previous device software architectures that assumed one monolithic
firmware that was downloaded and applied to the device in one action.

That sophistication is a double-edged sword for developers, application providers, and service
providers. On one hand, these devices are able to offer new services to customers and therefore
increase the revenue per customer, help companies differentiate, and reduce churn with “sticky”
applications that maintain interest. On the other hand, the increased complexity creates more
opportunities for problems, especially as the users of these home-networking services cease to be
early adopters and move into the mainstream. It is important that the increased revenue opportunity
is not offset with growing activation and support costs.

In order to address the need of providing more compelling dynamic applications on the device while
ensuring a smooth “plug and play” user experience, it is necessary for manufacturers, application
providers, and service providers to make use of USP to remotely manage the life cycle of these
applications, including install, activation, configuration, upgrade, and removal. Doing so ensures a
positive user experience, improves service time-to-market, and reduces operational costs related
with provisioning, support, and maintenance.

16.1 Lifecycle Management

There are a number of possible actions in managing the lifecycle of these dynamic applications.
One might want to install a new application on the device for the user. One might want to update
existing applications when new versions or patches are available. One might want to start and/or
stop these applications as well. Finally, it may be necessary to uninstall applications that are no
longer needed (or perhaps paid for) by the user.

The specifics of how applications run in different environments vary from platform to platform. In
order to avoid lifecycle management tailored to each specific operating environment, USP-based
software management defines abstract state models and abstract software module concepts as
described in the following sections. These concepts are not tied to any particular platform and
enable USP to manage dynamic software on a wide range of devices in a wide range of
environments.

16.2 Software Modules

A Software Module is any software entity that will be installed on a device. This includes modules
that can be installed/uninstalled and those that can be started and stopped. All software on the

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 202 of 249

device is considered a software module, with the exception of the primary firmware, which plays a
different enough role that it is considered a separate entity.

A software module exists on an Execution Environment (EE), which is a software platform that
supports the dynamic loading and unloading of modules. It might also enable the dynamic sharing
of resources among entities, but this differs across various execution environments. Typical
examples include Linux, Docker, OSGi, .NET, Android, and Java ME. It is also likely that these
environments could be “layered,” i.e., that there could be one primary environment such as Linux
on which one or more OSGi frameworks are stacked. This is an implementation specific decision,
however, and USP-based module management does not attempt to enable management of this
layering beyond exposing which EE a given environment is layered on top of (if any). USP-based
Software Module Management also does not attempt to address the management of the primary
firmware image, which is expected to be managed via the device’s Firmware Image objects defined
in the Root data model.

Software modules come in two types: Deployment Units (DUs) and Execution Units (EUs). A DU
is an entity that can be deployed on the EE. It can consist of resources such as functional EUs,
configuration files, or other resources. Fundamentally it is an entity that can be Installed, Updated,
or Uninstalled. Each DU can contain zero or more EUs but the EUs contained within that DU
cannot span across EEs. An EU is an entity deployed by a DU, such as services, scripts, software
components, or libraries. The EU initiates processes to perform tasks or provide services.
Fundamentally it is an entity that can be Started or Stopped. EUs also expose configuration for the
services implemented, either via standard Software Module Management related data model objects
and parameters or via EU specific objects and parameters.

It is possible that Software Modules can have dependencies on each other. For example a DU could
contain an EU that another DU depends on for functioning. If all the resources on which a DU
depends are present and available on an EE, it is said to be Resolved. Otherwise the EUs associated
with that DU might not be able to function as designed. It is outside the scope of Software Module
Management to expose these dependencies outside of indicating whether a particular DU is
RESOLVED or not.

16.2.1 Deployment Units

Below is the state machine diagram1 for the lifecycle of DUs.

1 This state machine diagram refers to the successful transitions caused by the USP commands that change the DU state
and does not model the error cases.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 203 of 249

Figure SMM.1 – Deployment Unit State Diagram

This state machine shows 5 individual states (3 of which are transitory) and 3 explicitly triggered
state transitions.

The explicit transitions among the non-transitory states are triggered by the USP commands:
InstallDU(), Update() and Uninstall() or triggered via means other than the USP commands
(e.g. user-triggered or device-triggered).

The explicit transitions include:

1 - Install, which initiates the process of Installing a DU. The device might need to transfer a file
from the location indicated by a URL in the method call. Once the resources are available on the
device, the device begins the installation process:

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 204 of 249

• In the Installing state, the DU is in the process of being Installed and will transition to that state
unless prevented by a fault. Note that the Controller has the option to choose which EE to
install a particular DU to, although it can also leave that choice up to the device. If the
Controller does specify the EE, it is up to the Controller to specify one that is compatible with
the DU it is attempting to Install (e.g., an OSGi framework for an OSGi bundle).

• In the Installed state, the DU has been successfully downloaded and installed on the relevant
EE. At this point it might or might not be Resolved. If it is Resolved, the associated EUs can
be started; otherwise an attempt to start the associated EUs will result in a failure. How
dependencies are resolved is implementation and EE dependent.

R-SMM.0- An installed DU MUST persist across reboots. The DU persists until it is Uninstalled.

2 - Update, which initiates a process to update a previously existing DU. As with Install, the device
might need to transfer a file from the location indicated by a URL in the respective command. If no
URL is provided in the command, the device uses the last URL stored in the DeploymentUnit table
(including any related authentication credentials) used from either Install or a previous Update.
Once the resources are available on the device, the device begins the updating process:

• In the Updating state, the DU is in the process of being Updated and will transition to the
Installed state. As with initial installation, the DU might or might not have dependencies
resolved at this time.

• During the Updating state, the associated EUs that had been in the Active state transition to
Idle during the duration of the Update. They are automatically restarted once the Update
process is complete.

3 - Uninstall, which initiates the process of uninstalling the DU and removing the resources from
the device. It is possible that a DU to be Uninstalled could have been providing shared
dependencies to another DU; it is possible therefore that the state of other DUs and/or EUs could be
affected by the DU being Uninstalled.

• In the Uninstalling state, the DU is in the process of being Uninstalled and will transition to
that state unless prevented by a fault.

• In the Uninstalled state, the DU is no longer available as a resource on the device. Garbage
clean up of the actual resources are EE and implementation dependent. In many cases, the
resource(s) will be removed automatically at the time of un-installation. The removal of any
associated EUs is part of DU clean up.

R-SMM.1 - The device MUST complete the requested operation within 24 hours of responding to
the InstallDU(), Update() or Uninstall() command. If the device has not been able to
complete the operation request within that 24 hour time window, it MUST consider the operation in
error and send the appropriate error message to the operation in the DUStateChange! event. If a DU
state change fails, the device MUST NOT attempt to retry the state change on its own initiative, but
instead MUST report the failure of the command in the DUStateChange! event.

The inventory of available DUs along with their current state can be found in the SoftwareModules
service element found in the Root data model, i.e., the

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 205 of 249

SoftwareModules.DeploymentUnit.{i}object. This object contains a list of all the DUs currently
on the device, along with pertinent information such as DU identifiers, current state, whether the
DU is Resolved, information about the DU itself such as vendor and version, the list of associated
EUs, and the EEs on which the particular DU is installed.

DUs have a number of identifiers, each contributed by a different actor in the ecosystem:

• A Universally Unique Identifier (UUID) either assigned by the Controller or generated by the
device at the time of Installation. This identifier gives the management server a means to
uniquely identify a particular DU across the population of devices on which it is installed. A
DU will, therefore, have the same UUID on different devices, but there can be no more than
one DU with the same UUID and version installed to an EE on a particular device. See UUID
Generation below for more information.

• A Deployment Unit Identifier (DUID) assigned by the EE on which it is deployed; this
identifier is specific to the particular EE, and different EEs might have different logic for the
assigning of this value. A Name assigned by the author of the DU.

The creation of a particular DU instance in the data model occurs during the Installation process. It
is at this time that the DUID is assigned by the EE. Upon Uninstall, the data model instance will be
removed from the DU table once the resource itself has been removed from the device. Since
garbage clean up is EE and implementation dependent, it is therefore possible that a particular DU
might never appear in the data model in the Uninstalled state but rather disappear at the time of the
state transition. It is also possible that an event, such as a reboot, could be necessary before the
associated resources are removed.

16.2.1.1 UUID Generation

An important aspect of the UUID is that it might be generated by either the Controller and provided
to the device as part of the Install command, or generated by the device either if the Controller does
not provide a UUID in the Install command or if the DU is Installed outside USP-based
management, such as at the factory or via a LAN-side mechanism (e.g. UPnP DM). Because the
UUID is meant to uniquely identify a DU across a population of devices, it is important that the
UUID be the same whether generated by the Controller or the device. In order to ensure this, the
UUID is generated (whether by Controller or device) according to the rules defined by RFC 4122
Version 5 (Name-Based) and the Device:2 Data Model. The following are some possible scenarios:

• The DU is Installed via USP with a Controller generated UUID and is subsequently
Updated/Uninstalled via USP. All post-Install management actions require the UUID to
address the DU, which is retained across version changes.

• The DU is factory Installed with a device generated UUID and is subsequently
Updated/Uninstalled via USP. In this case the Controller can either choose to generate this
UUID if it has access to the information necessary to create it or to learn the UUID by
interrogating the data model.

https://tools.ietf.org/html/rfc4122
https://usp-data-models.broadband-forum.org/

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 206 of 249

• The DU is Installed via USP with a Controller generated UUID and is subsequently
Updated/Uninstalled via a LAN-side mechanism. In this scenario it is possible that the LAN-
side mechanism is unaware of the UUID and uses its own protocol-specific mechanism to
identify and address the DU. The UUID, however, is still retained across version changes. If
DUStateChange! events are subscribed to by the Controller for the device, the device also
sends that event (containing the UUID) to the subscribed Controllers once the LAN-side
triggered state change has completed.

• The DU is Installed via USP but the Controller provides no UUID in the InstallDU()
command. In this case the device generates the UUID, which must be used by the Controller in
any future USP-based Updates or Uninstalls. Depending on its implementation, the Controller
might choose to generate the UUID at the time of the future operations, learn the value of the
UUID from the DUStateChange! event for the InstallDU(), Update() or Uninstall()
command, or learn it by interrogating the data model.

The DU is Installed via a LAN-side mechanism and is subsequently Updated/Uninstalled via USP.
Since it is likely that the LAN-side mechanism does not provide a Version 5 Name-Based UUID in
its protocol-specific Install operation, it is expected that the device generates the UUID in this case
when it creates the DU instance in the data model. Depending on its implementation, the Controller
might choose to generate the UUID for later operations if it has access to the information necessary
to create it, learn the UUID from the DUStateChange! event, if subscribed, or learn it by
interrogating the instantiated data model.

16.2.2 Execution Units

Below is the state machine diagram2 for the lifecycle of EUs.

2 This state machine diagram refers to the successful transitions caused by the SetRequestedState() command
within the ExecutionUnit table and does not model the error cases.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 207 of 249

Figure SMM.2 – Execution Unit State Diagram

This state machine shows 4 states (2 of them transitory) and two explicitly triggered state
transitions.

The state transitions between the non-transitory states are triggered by executing the
SoftwareModules.ExecutionUnit.{i}.SetRequestedState() command. The explicit
transitions are as follows:

• In order to Start an EU, the Controller sends a SetRequestedState() command with the
RequestedState parameter set to Active. The EU enters the Starting state, during which it
takes any necessary steps to move to the Active state, and it will transition to that state unless
prevented by a fault. Note that an EU can only be successfully started if the DU with which it
is associated has all dependencies Resolved. If this is not the case, then the EU’s status remains
as Idle, and the ExecutionFaultCode and ExecutionFaultMessage parameters are updated
appropriately.

• In order to Stop an EU, the Controller sends a SetRequestedState() command with the
RequestedState parameter set to Idle. The EU enters the Stopping state, during which it takes
any necessary steps to move to the Idle state, and then transitions to that state.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 208 of 249

• It is also possible that the EU could transition to the Active or Idle state without being
explicitly instructed to do so by a Controller (e.g., if the EU is allowed to AutoStart, in
combination with the run level mechanism, or if operation of the EU is disrupted because of a
later dependency error). A Controller can be notified of these autonomous state changes by
creating a Subscription.{i}. object instance for a ValueChange notification type that
references the SoftwareModules.ExecutionUnit.{i}.Status parameter.

The inventory of available EUs along with their current state can be found in the SoftwareModules
service element found in the Root data model; i.e., the SoftwareModules.ExecutionUnit.{i}
object. This object contains a list of all the EUs currently on the device along with accompanying
status and any current errors as well as resource utilization related to the EU, including memory and
disk space in use.

EUs have a number of identifiers, each contributed by a different actor in the ecosystem:

• An Execution Unit Identifier (EUID) assigned by the EE on which it is deployed; this identifier
is specific to the particular EE, and different EEs might have different logic for assigning this
value. There can be only one EU with a particular EUID.

• A Name provided by the developer and specific to the associated DU.

• A Label assigned by the EE; this is a locally defined name for the EU.

The creation of a particular EU instance in the data model occurs during the Installation process of
the associated DU. It is at this time that the EUID is assigned by the EE as well. The configuration
exposed by a particular EU is available from the time the EU is created in the data model, whether
or not the EU is Active. Upon Uninstall of the associated DU, it is expected that the EU would
transition to the Idle State, and the data model instance would be removed from the EU table once
the associated resources had been removed from the device. Garbage clean up, however, is EE and
implementation dependent.

Although the majority of EUs represent resources such as scripts that can be started or stopped,
there are some inert resources, such as libraries, which are represented as EUs. In this case, these
EUs behave with respect to the management interface as a “regular” EU. In other words, they
respond successfully to Stop and Start commands, even though they have no operational meaning
and update the SoftwareModules.ExecutionUnit.{i}.Status parameter accordingly. In most
cases the Status would not be expected to transition to another state on its own, except in cases
where its associated DU is Updated or Uninstalled or its associated EE is Enabled or Disabled, in
which cases the library EU acts as any other EU.

The EUs created by the Installation of a particular DU might provide functionality to the device that
requires configuration by a Controller. This configuration could be exposed via the USP data model
in five ways:

1. Service data model (if, for example, the EU provides VoIP functionality, configuration would
be exposed via the Voice Service data model defined in TR-104).

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 209 of 249

2. Standard objects and parameters in the device’s root data model (if, for example, the EU
provides port mapping capability, the configuration would be exposed via the port mapping
table defined in the Device Data Model for TR-069 Devices and USP Agents).

3. Instances of standard objects in the Root or any Service data model, (if, for example, the EU
provides support for an additional Codec in a VoIP service).

4. Vendor extension objects and parameters that enhance and extend the capabilities of standard
objects (if, for example, the EU provides enhanced UserInterface capabilities)

5. Standalone vendor extension objects that are directly controlled objects of the EU (for
example, a new vendor specific object providing configuration for a movies on demand
service).

In all cases the GetSupportedDM and GetInstances messages can be used to retrieve the associated
supported data model along with the corresponding object instances.

All data model services, objects, and parameters related to a particular EU come into existence at
the time of Installation or Update of the related DU, The related data model disappears from the
device’s data model tree at the time of Uninstall and clean up of the related DU resources. It is
possible that the device could encounter errors during the process of discovering and creating EUs;
if this happens, it is not expected that the device would roll back any data model it has created up
until this point but would rather set the ExecutionFaultCode of the EU to “Unstartable.” In this
case, it is not expected that any faults (with the exception of System Resources Exceeded) would
have been generated in response to the Install or Update operation. See below for more information
on EU faults.

The configuration of EUs could be backed up and restored using vendor configuration files. The EU
object in the data model contains a parameter, which is a path reference to an instance in the vendor
config file table in the Root data model. This path reference indicates the vendor config file
associated with the configuration of the particular EU from which the associated object instance
could be backed up or restored using respective commands for that object instance.

It is also possible that applications could have dedicated log files. The EU object also contains a
parameter, which is a path reference to an instance in the log file table in the root data model. This
path reference indicates the log file associated with a particular EU from which the referenced
object instance could be retrieved using the Upload command for that object instance.

16.3 Execution Environment Concepts

As discussed above, an EE is a software platform that supports the dynamic loading and unloading
of modules. A given device can have multiple EEs of various types and these EEs can be layered on
top of each other. The following diagram gives a possible implementation of multiple EEs.

https://usp-data-models.broadband-forum.org/

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 210 of 249

Figure SMM.3 – Possible Multi-Execution Environment Implementation

In this example, the device exposes its Linux Operating System as an EE and has two different
OSGi frameworks layered on top of it, all of which are modeled as separate ExecEnv object
instances. In order to indicate the layering to a Controller, the two OSGi framework objects
(.ExecEnv.2 and .ExecEnv.3) would populate the Exec.Env.{i}.Parent parameter with a path
reference to the Linux object (.ExecEnv.1). The Linux EE object would populate that parameter
with an empty string to indicate that it is not layered on top of any managed EE.

Multiple versions of a DU can be installed within a single EE instance, but there can only be one
instance of a given version at a time. In the above diagram, there are two versions of DU1, v1.0 and
v1.2 installed on .ExecEnv.2. If an attempt is made to update DU1 to version 1.2, or to install
another DU with version 1.0 or 1.2, on ExecEnv.2, the operation will fail.

A DU can also be installed to multiple EEs. In the above example, DU1 is installed both to
ExecEnv.2and ExecEnv.3. The Installation is accomplished by sending two separate InstallDU()
commands where one command’s ExecEnvRef parameter has a value of “.ExecEnv.2” and the
other command’s ExecEnvRef parameter as a value of “.ExecEnv.3” ; note that the USP Controller
is required to handle cases where there is an expectation that the installation of both deployment
units is atomic.

When DUs are Updated, the DU instances on all EEs are affected. For example, in the above
diagram, if DU1 v.1.0 is updated to version 2.0, the instances on both .ExecEnv.2 and .ExecEnv.3
will update to version 2.0.

For Uninstall, a Controller can either indicate the specific EE from which the DU should be
removed, or not indicate a specific EE, in which case the DU is removed from all EEs.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 211 of 249

An EE can be enabled and disabled by a Controller. Reboot of an EE is accomplished by first
disabling and then later enabling the EE. When an EE instance is disabled by a Controller, the EE
itself shuts down. Additionally, any EUs associated with the EE automatically transition to Stopped
and the ExecutionFaultCode parameter value is Unstartable. The state of the associated DUs
remains the same. If a USP command that changes the DU state is attempted on any of the DUs
associated with a disabled EE, the operation fails and an “Invalid value” error is returned in the
DUStateChange! event for the affected DU instance. It should be noted if the Operating System of
the device is exposed as an EE, disabling it could result in the device being put into a non-
operational and non-manageable state. It should also be noted that disabling the EE on which the
USP agent resides can result in the device becoming unmanageable via USP.

Note that the above is merely an example; whether a device supports multiple frameworks of the
same type and whether it exposes its Operating System as an Execution Environment for the
purposes of management is implementation specific.

16.4 Fault Model

Faults can occur at a number of steps in the software module process. The following sections
discuss Deployment Unit faults and Execution Unit faults.

16.4.1 DU Faults

There are two basic types of DU faults: Operation failures and USP message errors that are the
result of the invoking the InstallDU(),Update(),UninstallDU(), Reset(), SetRunLevel() and
SetRequestedState() commands.

16.4.1.1 Install Faults

Most Install faults will be recognized before resources or instances are created on the device. When
there is an Operation failure at Install, there are no resources installed on the device and no DU (or
EU) instances are created in the data model. Similarly, if there are any command failures, besides
System Resources Exceeded, there are no resources installed on the device and no DU (or EU)
instances created in the data model.

There are a number of command failures defined for Installation. The first category is those faults
associated with the file server or attempt to transfer the DU resource and are the same as those
defined for the existing InstallDU() and Update() commands. These include:

• Userinfo element being specified in the URL

• The URL being unavailable (either because the host cannot be reached or because the resource
is unavailable)

• Authentication failures due to incorrectly supplied credentials

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 212 of 249

• The URL transport method specified not being supported by the device or server

• The file transfer being interrupted (because of a device reboot or loss of connectivity, for
example)

The second category of faults relate to issues with the DU and the Execution Environment. These
are specific to Software Module Management and include:

• The EE reference specified by a Controller in the InstallDU() command does not exist in the
data model. Note that the Controller can simply omit the EE reference in the request and allow
the deice to choose the destination.

• The EE being disabled. This fault can occur when the InstallDU() command explicitly
specifies a disabled EE. If there is no EE specified in the request, this fault could occur because
the only possible destination EE for the DU (the only OSGi framework instance in the case of
an OSGi bundle, for example) is disabled. The device is expected to make every attempt not to
use a disabled EE in this scenario, however.

• Any mismatch existing between the DU and the EE (attempting to install a Linux package on
an OSGi framework instance, for example). This fault can occur when the request explicitly
specifies a mismatching EE. If there is no EE specified in the request, this fault could occur
when there is no EE at all on the device that can support the DU.

• A DU of the same version already existing on the EE.

Finally there are a number of faults related to the DU resource itself. These include:

• The UUID in the request not matching the format specified in RFC 4122 Version 5 (Name-
based).

• A corrupted DU resource, or the DU not being installable for other reasons, such as not being
signed by any trusted entity

• The installation of the DU requiring more system resources, such as disk space, memory, etc.,
than the device has available. Note that this error is not to be used to indicate that more
operations have been requested than the device can support, which is indicated by the
Resourced Exceeded error (described above).

16.4.1.2 Update Faults

When there is a fault on an Update of a DU of any kind, the DU remains at the version it was before
the attempted DU state change, and it also remains in the Installed state (i.e., it is not Uninstalled).
If for any reason the a Controller wishes to remove a DU after an unsuccessful Update, it must do
so manually using an Uninstall() command. When there is a USP message error for the Update,
there are no new resources installed on the device and no DU (or EU) instances are changed in the
data model. Similarly, if there are any Operation failures, besides System Resources Exceeded,
there are no new resources installed on the device and no DU (or EU) instances are changed in the

https://tools.ietf.org/html/rfc4122

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 213 of 249

data model. The state of any associated EUs or any dependent EUs in the event of an Update failure
is EE and implementation dependent.

There are a number of Operation failures defined for Update of a DU. The first category is those
faults associated with the file server or attempt to transfer the DU resource and are the same as
those defined for the existing Update() command. These include:

• Userinfo element being specified in the URL

• The URL being unavailable (either because the host cannot be reached or because the resource
is unavailable)

• Authentication failures due to incorrectly supplied credentials

• The URL transport method specified not being supported by the device or server

• The file transfer being interrupted (because of a device reboot or loss of connectivity, for
example)

The second category of faults relate to issues with the DU and the Execution Environment. These
are specific to Software Module Management and include:

• The EE on which the targeted DU resides being disabled. This fault can occur when the request
explicitly specifies the UUID of a DU on a disabled EE or when the request explicitly specifies
a URL last used by a DU on a disabled EE. If neither the URL nor UUID was specified in the
request, this fault can occur when at least one DU resides on a disabled EE.

• Any mismatch existing between the DU and the EE. This fault occurs when the content of the
updated DU does not match the EE on which it resides (for example, an attempt is made to
Update a Linux package with a DU that is an OSGi bundle).

• Updating the DU would cause it to have the same version as a DU already installed on the EE.

• The version of the DU not being specified in the request when there are multiple versions
installed on the EE.

Finally there are a number of faults related to the DU resource itself. These include:

• The UUID in the request not matching the format specified in RFC 4122 Version 5 (Name-
Based).

• A corrupted DU resource, or the DU not being installable for other reasons, such as not being
signed by any trusted entity

• The DU cannot be found in the data model. This fault can occur when the request explicitly
specifies the UUID (or combination of UUID and version) of a DU that is unknown. It can also
occur when the request does not specify a UUID but explicitly specifies a URL that has never
been used to previously Install or Update a DU.

• Attempting to downgrade the DU version.

https://tools.ietf.org/html/rfc4122

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 214 of 249

• Attempting to Update a DU not in the Installed state.

• Updating the DU requiring more system resources, such as disk space, memory, etc., than the
device has available. Note that this error is not to be used to indicate that more operations have
been requested than the device can support, which is indicated by the Resourced Exceeded
USP error (described above).

16.4.1.3 Uninstall Faults

When there is a fault due to the Uninstall of a DU fault of any kind, the DU does not transition to
the Uninstalled state and no resources are removed from the device. No changes are made to the
EU-related portions of the data model (including the EU objects themselves and the related objects
and parameters that came into existence because of this DU).

There are Operation failures defined for Uninstall of a DU. They are as follows:

• The EE on which the targeted DU resides is disabled. Note that if the Uninstall operation
targets DUs across multiple EEs, this fault will occur if at least one of the EEs on which the
DU resides is disabled.

• The DU cannot be found in the data model. If the EE is specified in the request, this error
occurs when there is no UUID (or UUID and version) matching the one requested for the
specified EE. If there is no EE specified in the request, this error occurs when there is no
UUID matching the one in the requested on any EE in the data model, or, if the version is also
specified in the request, then this error occurs when there is no DU with this combination of
UUID and version on any EE in the data model.

• The UUID in the request not matching the format specified in RFC 4122 Version 5 (Name-
Based).

• The DU caused an EE to come into existence on which at least 1 DU is Installed.

16.4.2 EU Faults

EU state transitions are triggered by the SetRequestedState() command. One type of EU fault is
a USP error message sent in response to USP operate message for the SetRequestedState()
command. The USP Error message defined are therefore simply a subset of the errors defined for
the generic USP Operate message(e.g., Request Denied, Internal Error).

Note that there is one case specific to Software Module Management: if a Controller tries to Start an
EU on a disabled EE using the SetRequestedState() command, the device returns a “7012
Invalid Value” error response to the command request.

There are also Software Module Management specific faults indicated in the ExecutionFaultCode
and ExecutionFaultMessage parameters in the data model. In addition to providing software
module specific fault information, this parameter is especially important in a number of scenarios:

https://tools.ietf.org/html/rfc4122

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 215 of 249

• Errors that occur at a later date than the original USP message, such as a Dependency Failure
that occurs several days after successful Start of an EU because a DU providing dependencies
is later Uninstalled.

• State transition errors that are triggered by the Autostart/Run level mechanism.

• “Autonomous” state transitions triggered outside the purview of USP, such as by a LAN-side
protocol.

The faults in the ExecutionFaultCode parameter are defined as follows:

• FailureOnStart – the EU failed to start despite being requested to do so by the Controller.

• FailureOnAutoStart – the EU failed to start when enabled to do so automatically.

• FailureOnStop – the EU failed to stop despite being requested to do so by the Controller.

• FailureWhileActive – an EU that had previously successfully been started either via an
explicit transition or automatically later fails.

• DependencyFailure – this is a more specific fault scenario in which the EU is unable to start
or stops at a later date because of unresolved dependencies

• Unstartable – some error with the EU resource, its configuration, or the state of the
associated DU or EE, such as the EE being disabled, prevents it from being started.

When the EU is not currently in fault, this parameter returns the value NoFault. The
ExecutionFaultMessage parameter provides additional, implementation specific information
about the fault in question. The ExecutionFaultCode and ExecutionFaultMessage parameters
are triggered parameters. In other words, it is not expected that an Controller could read this
parameter before issuing a USP message and see that there was a Dependency Failure that it would
attempt to resolve first. If a Controller wants a notification when these parameters change, the
Controller can subscribe to the ValueChange notification type with the parameters for the
referenced EU.

17 Appendix I - Firmware Management of Devices with USP Agents
1. Getting the firmware image onto the device

2. Using multiple firmware images

1. Switching firmware images

2. Performing a delayed firmware upgrade

3. Recovering from a failed upgrade

Many manufacturers build and deploy devices that are able to support multiple firmware images
(i.e. multiple firmware images can be installed on an Agent at the same time). There are at least a
couple of advantages to this strategy:

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 216 of 249

1. Having multiple firmware images installed improves the robustness and stability of the device
because, in all likelihood, one of the installed images will be stable and bootable. Should a
device not be able to boot a newly installed firmware image, it could have the ability to attempt
to boot from a different firmware image, thus allowing the device to come back online.

2. Support for multiple firmware images offers the ability for the service provider to have a new
firmware downloaded (but not activated) to the device at any point during the day, then
perhaps requiring only a Set message and an Operate message to invoke the Reboot command
at some later time (perhaps during a short maintenance window or when the device is idle) to
cause the device to switch over to the new firmware. Along with reducing the impact on the
subscriber, the ability to spread the download portion a firmware upgrade over a longer period
of time (eg, the entire day or over several days) can help minimize the impact of the upgrade
on the provider’s network.

This Appendix discusses how to utilize the firmware image table on a device to support firmware
upgrades whether the device supports multiple instances or just a single instance.

17.1 Getting the firmware image onto the device

A Controller can download a firmware image to an Agent by invoking the Download() command
(via the Operate message) found within an instance of the Device.FirmwareImage.{i}. data
model table. The Download() command will cause the referenced file to be downloaded into the
firmware image instance being operated on, and it will cause that file to be validated by the Agent
(the validation process would include any normal system validate of a firmware image as well as
the check sum validation provided in the Download() command).

If an Agent only supports a single firmware image instance then a Controller would invoke the
Download() command on that active firmware image instance using the AutoActivate argument
to immediately activate the new firmware after it has been downloaded. Neither the
Device.DeviceInfo.BootFirmwareImage parameter nor the
Device.DeviceInfo.FirmwareImage.{i}.Activate() command would typically be
implemented by a device that only supports a single firmware image instance.

If an Agent supports more than a single firmware image instance then a Controller would typically
invoke the Download() command on a non-active firmware image instance in an effort of
preserving the current firmware image in case of an error while upgrading the firmware. A firmware
image instance is considered active if it is the currently running firmware image.

17.2 Using multiple firmware images

This section discusses the added functionality available when a device supports two or more
instances in the Device.FirmwareImage.{i}. data model table.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 217 of 249

17.2.1 Switching firmware images

Once a device has multiple firmware images downloaded, validated, and available, a Controller can
use the data model to query what images are on the device, which image is active, and configure
which image to activate.

A Controller can activate a new firmware image by following one of two different procedures: (A)
the Controller can modify the Device.DeviceInfo.BootFirmwareImage parameter to point to the
Device.DeviceInfo.FirmwareImage.{i}. object instance that contains the desired firmware
image and then reboot the device by invoking an Operate message with a Reboot() command or
(B) the Controller can invoke an Operate message with an Activate() command against the
desired FirmwareImage instance.

When attempting to get a device to switch to a different firmware image, it is recommended that the
Controller either subscribe to a ValueChange notification on the DeviceInfo.SoftwareVersion
parameter or subscribe to the Boot! Event notification. If the Software Version value has not
changed or the Boot! Event’s FirmwareUpdated argument is false, it could be an indication that
the device had problems booting the target firmware image.

17.2.2 Performing a delayed firmware upgrade

One of the benefits to having support for multiple firmware images on a device is that it provides an
opportunity to push a firmware image to a device and then have the device switch to that image at a
later time. This functionally allows a service provider to push a firmware image to a set of devices
at any point during the day and then use a maintenance window to switch all of the target devices to
the target firmware.

This ability is of value because normally the download of the firmware and the switch to the new
image would both have to take place during the maintenance window. Bandwidth limitations may
have an impact on the number of devices that can be performing the download at the same time. If
this is the case, the number of devices that can be upgrading at the same time may be lower than
desired, requiring multiple maintenance windows to complete the upgrade. However, support for
multiple firmware images allows for the service provider to push firmware images over a longer
period of time and then use a smaller maintenance window to tell the device to switch firmware
images. This can result is shorter system-wide firmware upgrades.

17.2.3 Recovering from a failed upgrade

Another benefit of having multiple firmware images on a device is that if a device cannot boot into
a target firmware image because of some problem with the image, the device could then try to boot
one of the other firmware images.

When there are two images, the device would simply try booting the alternate image (which,
ideally, holds the previous version of the firmware). If there are more than two images, the device
could try booting from any of the other available images. Ideally, the device would keep track of

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 218 of 249

and try to boot from the previously known working firmware (assuming that firmware is still
installed on the device).

Should the device boot a firmware image other than that specified via the
Device.DeviceInfo.BootFirmwareImage parameter, it is important that the device not change the
value of the Device.DeviceInfo.BootFirmwareImage parameter to point to the currently-running
firmware image object. If the device was to change this parameter value, it could make
troubleshooting problems with a firmware image switch more difficult.

It was recommended above that the Controller keep track of the value of
Device.DeviceInfo.SoftwareVersion parameter or the FirmwareActivation enumerated value
in the Boot! Event’s Cause argument. If the version changes unexpectedly or a
FirmwareActivation cause is detected, it could be an indication that the device had problems
booting a particular firmware image.

18 Appendix III - Device Proxy
This appendix describes a Theory of Operations for the Device.ProxiedDevice. object defined in
the Device:2 Data Model.

The Device.ProxiedDevice table is defined as:

“Each entry in the table is a ProxiedDevice object that is a mount
point. Each ProxiedDevice represents distinct hardware Devices.
ProxiedDevice objects are virtual and abstracted representation of
functionality that exists on hardware other than that which the Agent
is running.”

An implementation of the Device.ProxiedDevice. object may be used in an IoT Gateway that
proxies devices that are connected to it via technologies other tha USP such as Z-Wave, ZigBee,
Wi-Fi, etc. By designating a table of ProxiedDevice objects, each defined as a mount point, this
allows a data model with objects that are mountable to be used to represent the capabilities of each
of the ProxiedDevice table instances.

For example, if Device.WiFi. and Device.TemperatureSensor. objects modeled by the Agent,
the Device.ProxiedDevice.1.WiFi.Radio.1. models a distinctly separate hardware device and
has no relationship with Device.WiFi.Radio.1.. The ProxiedDevice objects may each represent
entirely different types of devices each with a different set of objects. The
ProxiedDevice.1.TemperatureSensor.1. object has no physical relationship to
ProxiedDevice.2.TemperatureSensor.1. as they represent temperature sensors that exist on
separate hardware. The mount point allows Device.ProxiedDevice.1.WiFiRadio. and
Device.ProxiedDevice.1.TemperatureSensor. to represent the full set of capabilities for the
device being proxied. This provides a Controller a distinct path to each ProxiedDevice object.

19 Appendix IV - Proxying
1. Proxying Building Block Functions

https://usp-data-models.broadband-forum.org/

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 219 of 249

2. Discovery Proxy

3. Connectivity Proxy

4. Message Transfer Protocol (MTP) Proxy

1. MTP Header Translation Algorithms

2. CoAP / STOMP MTP Proxy Example Message Flow

5. USP to Non-USP Proxy

This appendix describes a variety of proxies that can be created and deployed in order to enhance
the USP experience.

The types of proxies described are:

• Discovery Proxy: proxies discovery and advertisement; does not proxy USP messages

• Connectivity Proxy: proxies USP messages at the IP layer; does not care about MTP or USP
message headers or content; may do message caching for sleeping devices

• MTP Proxy: proxies USP messages at the MTP layer and below; does not care about USP
Message headers or content; may do message caching for sleeping devices [Note: The MTP
Proxy may choose to look at the USP Record to get information related to USP Endpoints,
especially when proxying WebSocket MTP.]

• USP to Non-USP Proxy: Proxies between USP and a non-USP management or control
protocol

19.1 Proxying Building Block Functions

These proxies are comprised of one or more of the building block functions described in the Table
PRX.1.

Table PRX.1: Proxy Building Block Functions

• Function • Description
• L3/4

Translation
Function

• Translates up to and including the IP and transport layer (e.g., UDP,
TCP) protocol headers, while leaving all higher layer protocol headers
and payloads untouched.

• MTP
Translation
Function

• Translates up to and including the Message Transfer Protocol (MTP)
header, while leaving the USP Record untouched. Requires knowledge
of how to bind USP to two or more MTPs.

• USP to non-
USP
Translation
Function

• Translates all headers and the USP Record and USP Message into data
model and headers of another management protocol. Requires proxy to
have an Agent.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 220 of 249

• Caching
Function

• Can hold on to USP Messages intended for Endpoints that are
intermittently connected, until a time when that Endpoint is connected.
The USP Message is not altered, so no Endpoint is required to be
aware of the existence of this function.

• Non-USP
Advertisement
Function

• Responds to discovery queries using protocols other than USP (e.g.,
DNS-SD, DNS, DHCP) on behalf of Endpoints. May include a DNS
Server. See Discovery section for formatting of various non-USP
discovery protocols in the context of USP.

• Non-USP
Discovery
Function

• Discovers Endpoints through discovery queries using protocols other
than USP. See Discovery section for formatting of various non-USP
discovery protocols in the context of USP.

• Agent USP
Advertisement
Function

• Maintains a USP data model table of discovered Agents. Requires an
Agent.

19.2 Discovery Proxy

A Discovery Proxy simply repeats the exact information that it discovers from Endpoints. This is
particularly useful in a multi-segment LAN, where mDNS messages do not cross segment
boundaries. The DNS-SD Discovery Proxy functionality is recommended as a component of a
Discovery Proxy. When used inside a LAN, this would need the Non-USP Discovery Function and
the Non-USP Advertisement Function described in Table PRX.1.

An Agent USP Advertisement Function would be needed to support Endpoints in different networks
(e.g., discovery of Agents on the LAN by a Controller on the WAN).

USP Messages between proxied Endpoints go directly between the Endpoints and do not go across
the Discovery Proxy. The Discovery Proxy has no role in USP outside discovery.

19.3 Connectivity Proxy

This describes proxying of discovery and IP connectivity of Endpoints that need IP address or port
translation to communicate, and/or do not maintain continual IP connectivity. The Connectivity
Proxy may cache USP Messages on behalf of Endpoints that do not maintain continual connectivity.
The USP Message is not processed by the proxy function, but it does go through the proxy for
address translation or so it can be cached, if necessary. Therefore, the connectivity information
provided by the Connectivity Proxy directs IP packets (that contain the USP Records) be sent to the
proxy and not to the destination IP address of the Endpoint being proxied.

Both Endpoints must be using the same MTP. This Proxy translates the IP address (and possibly the
TCP or UDP port) from the Connectivity Proxy to the proxied Endpoint, but does not touch (or
need to understand) the MTP headers or USP Message.

It is also possible to combine the caching functionality with the MTP Proxy, by adding the Caching
Function to the MTP Proxy (see Section 3).

https://tools.ietf.org/html/draft-ietf-dnssd-hybrid

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 221 of 249

In order to serve as a Connectivity Proxy, the following functions (from Table PRX.1) are needed:
1. L3/4 Translation Function 1. Depending on whether the proxy is on the same network as the
proxied Endpoints: 1. Non-USP Discovery Function and/or otherwise determined/configured
knowledge of Agent(s) 1. Non-USP Advertisement Function and/or Agent USP Advertisement
Function

The Connectivity Proxy can also include the Caching Function to support Endpoints with
intermittent connectivity.

19.4 Message Transfer Protocol (MTP) Proxy

This describes proxying between two USP Endpoints that do not support a common MTP. The USP
Record is untouched by the proxy function. MTP and IP headers are changed by the proxy.

In order to serve as a MTP Proxy, the following functions (from Table PRX.1) are needed:

1. MTP Translation Function

2. Depending on whether it is on the same network as the proxied Agents and/or the Controller
that wants to communicate with those Agents:

1. Non-USP Discovery Function and/or otherwise determined/configured knowledge of
Agent(s)

2. Non-USP Advertisement Function and/or Agent USP Advertisement Function

The MTP Proxy can also include the Caching Function to support Endpoints with intermittent
connectivity.

19.4.1 MTP Header Translation Algorithms

In order to implement a meaningful translation algorithm, the MTP Proxy will need to: 1. Maintain
mapping of discovered or configured Endpoint information to information the MTP Proxy generates
or is configured with. This allows it to advertise that Endpoint on a different MTP and to translate
the MTP when it receives a message destined for that Endpoint. 1. Maintain a mapping of received
“reply to” and other connection information to connection and “reply to” information included by
the MTP Proxy in the sent message. This allows it to translate the MTP when it receives a response
message destined for that Endpoint. 1. Identify the target Endpoint for a received message.

The following information will need to be stored in a maintained mapping for an Endpoint:

1. URL -or- the IP Address (es) (IPv4 and/or IPv6) and UDP or TCP ports -or- the socket for an
established connection (note that the information and configured data needed to establish this
connection is out-of-scope of this specification)

2. MTP-specific destination information (including destination resource)

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 222 of 249

1. For CoAP, this is the uri-path of the CoAP server Endpoint resource

2. For WebSocket, this is either an established WebSocket connection or the WebSocket
server Endpoint resource

3. For STOMP, this is the STOMP destination of the Endpoint

4. For MQTT, this is a Topic that is subscribed to by the Endpoint

This mapping information is used to construct important parts of the sent IP, UDP/TCP, and MTP
headers. Other information used to construct these headers may come from the received MTP
Headers or even the received USP Record.

The following table describes possible ways to accomplish the activities for proxying from or to a
particular MTP, and possible sources of information. Other possibilities for proxying between two
MTPs may also exist. This table is not normative and is not intended to constrain implementations.

Table PRX.2: Possible MTP Proxy Methods

• MTP • Activity
• when Proxying

from • when Proxying to
• CoAP • Maintain mapping of

discovered/configure
d info to advertised
info

• store discovered
CoAP path/url/IP
address/port with
“reply to” and/or
connectivity info
for other MTP

• generate a CoAP
uri-path for
discovered info

 • Maintain mapping of
received info

• store received uri-
query reply-to
CoAP parameter
with “reply to”
and/or connectivity
info of the sent
message

• store the supplied
“reply to” and/or
connectivity info
with a generated
CoAP uri-path

 • Identify target USP
Endpoint for a
received message

• possible source:
received CoAP uri-
path

• put value from a
maintained mapping
in uri-path and use
IP address and port
from mapping

• WebSocket • Maintain mapping of
discovered/configure
d info to advertised
info

• store WebSocket
connection info
(and Endpoint ID,
if socket is used for
more than one
Endpoint) with
“reply to” and/or
connectivity info

• establish
WebSocket
connection or
associate Endpoint
with existing
connection, for
discovered info

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 223 of 249

for other MTP
 • Maintain mapping of

received info
• store WebSocket

connection info
(and Endpoint ID,
if socket is used for
more than one
Endpoint) with
“reply to” and/or
connectivity info
for other MTP

• store the supplied
“reply to” and/or
connectivity info
with a WebSocket
connection (and
Endpoint ID, if
socket is used for
more than one
Endpoint)

 • Identify target USP
Endpoint for a
received message

• possible source:
WebSocket
connection
established per
proxied Endpoint
possible source:
to_id in USP
Record

• send over
WebSocket
connection
associated with the
proxied Endpoint

• STOMP • Maintain mapping of
discovered/configure
d info to advertised
info

• store subscribed-to
STOMP destination
with “reply to”
and/or connectivity
info for other MTP

• subscribe to
STOMP destination
for discovered info

 • Maintain mapping of
received info

• store reply-to-dest
STOMP header
(and associated
STOMP
connection) with
“reply to” or socket
info of the sent
message

• store the supplied
“reply to” and/or
connectivity info
with subscribed-to
STOMP destination
and connection

 • Identify target USP
Endpoint for a
received message

• possible source:
received STOMP
destination possible
source: to_id in
USP Record

• put value from
maintained mapping
in STOMP
destination header
and use STOMP
connection from
that mapping

• MQTT • Maintain mapping of
discovered/configure
d info to advertised
info

• store subscribed-to
Topic (Filter) with
“reply to” and/or
connectivity info
for other MTP

• subscribe to MQTT
Topic (Filter) for
discovered info (if
Topic Filter, know
which specific
Topic to use for
“reply to” info)

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 224 of 249

 • Maintain mapping of
received info

• store Response
Topic or other
provided “reply to”
info (and associated
MQTT connection)
with “reply to” or
connectivity info of
the sent message

• store the supplied
“reply to” and/or
connectivity info
with a specific
MQTT Topic
(within subscribed-
to Topic Filter) and
connection

 • Identify target USP
Endpoint for a
received message

• possible source:
received MQTT
PUBLISH Topic
Name possible
source: to_id in
USP Record

• put value from
maintained mapping
in MQTT PUBLISH
Topic Name and use
MQTT connection
from that mapping

Figure PRX.1 shows an example of how an MTP Proxy might be used to proxy between an MTP
used by a Cloud Server in the WAN and an MTP used inside the LAN. It also shows proxying
between MTPs and internal APIs used to communicate with multiple Agents internal to the Services
Gateway.

Figure PRX.1: Example of MTP Proxy in LAN with WAN Controller

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 225 of 249

19.4.2 CoAP / STOMP MTP Proxy Example Message Flow

The following example is provided as a detailed look at a sample CoAP (LAN) / STOMP (WAN)
MTP Proxy to describe one possible way to do discovery, connectivity and security. This example
makes several assumptions as to the nature of the STOMP connection between the MTP Proxy and
the STOMP server, which is completely undefined. It also makes assumptions about implemented,
enabled and configured Agent capabilities.

Assumptions include: * a STOMP connection per proxied device * the STOMP server supplies a
subscribe-dest header in CONNECTED frames (this is optional for a STOMP server) * there exists
some means for the Controller to discover the proxied Agent connection to the STOMP server * the
CoAP Agent does mDNS advertisement (optional but recommended behavior) * the CoAP Agent
and Proxy support and have enabled DTLS * the CoAP Agent has been configured with the Proxy’s
certificate for use as a Trusted Broker. * the proxy uses the subscribe-dest value (supplied by the
STOMP server) as the value for the reply-to-dest header.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 226 of 249

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 227 of 249

Figure PRX.2: CoAP-STOMP MTP Proxy Example Flow

Controller connects to the STOMP server

A / B / C At any point prior to #5 the USP Controller Endpoint ctrl1 connects to STOMP and
subscribes to destination A

• OUT OF SCOPE how the USP Endpoint ctrl1 destination A is discovered by Proxy

• OUT OF SCOPE how the proxied USP Endpoint agent1 STOMP destination Y is discovered
by USP Endpoint ctrl1

Agent appears on network and Proxy allows Controller to communicate with Agent

#1 The USP Endpoint agent1 appears on the network. Proxy receives advertisement and gets the
USP Endpoint identifier “agent1” of the Agent (retrieved from mDNS advertisement see R-DIS.8).

#2 Proxy sends a CONNECT frame to the STOMP server with endpoint-id header of “agent1”.

#3 Proxy receives a subscribe-dest header in the CONNECTED frame identifying the STOMP
destination it needs to subscribe to on behalf of agent1.

#4 The Proxy sends a SUBSCRIBE frame to the STOMP server with destination:Y and stores a
mapping of USP Endpoint agent1 with coaps://<Agent IP>:<port>/agent1 to this STOMP
connection with destination Y.

#5 / #6 USP Endpoint ctrl1 initiates USP message to agent. Proxy creates a STOMP reply-to-dest:A
(on this STOMP connection) to coaps://<Proxy IP>:<port>/destA mapping.

#7/ #7.1 Proxy takes USP Record from the STOMP frame and sends it in a CoAP payload with
CoAP URI coming from the step #4 mapping of STOMP destination Y to coap://<Agent
IP>:<port>/agent1. To secure the communication, the proxy and Agent establish a DTLS session
(exchange certificates) and the Agent determines whether the proxy is a Trusted Broker.

#8 / #8.1 USP Endpoint agent1 sends a USP Record in reply to ctrl1 using CoAP, to coaps://<Proxy
IP>:<port>/destA.

#9 / #10 Proxy takes USP Record from the CoAP payload and sends it in a STOMP SEND frame
using the mapping (created in steps #5 / #6) of coaps://<Proxy IP>:<port>/destA to STOMP
destination A (and associated STOMP connection) created in steps #5 / #6 .

Agent sends Notify Message to Controller

These steps include the following additional assumptions: * Controller has configured Agent with a
notification subscription. * Controller configured Agent with CoAP MTP information for itself. *
Proxy replies to mDNS queries for Controller with “ctrl1” Instance. Controller was able to assume
or otherwise determine that Proxy would do this and that its proxied CoAP connection would be
discoverable by querying for ctrl1._usp-ctrl-coap._udp._local. * Proxy can use the previous reply-
to-dest header value to reach this Controller

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 228 of 249

#11 The Agent sends mDNS query for ctrl1._usp-ctrl-coap._udp._local.

#12 The Proxy response to the Agent includes TXT record with path of coaps://<Proxy
IP>:<port>/ctrl1. This provides a URL for the Agent to use to send a Notify Message to the
Controller.

#13 / #13.1 The Agent sends a Notify Message to Controller at coaps://<Proxy IP>:<port>/ctrl1.

#14 / #15 Proxy takes the USP Record from the CoAP payload and sends it in a STOMP SEND
frame using the mapping (stored in #5 / #6) of coaps://<Proxy IP>:<port>/destA to STOMP
destination:A (and associated STOMP connection).

19.5 USP to Non-USP Proxy

This describes proxying between a Controller and some other management protocol with its own
data model schema (e.g., UPnP DM, ZigBee, NETCONF, RESTCONF). In this case the proxy is
expected to maintain a USP representation of the non-USP data. This requires the proxy to expose
itself as a full Agent to the Controller. See the Device Proxy appendix for the Theory of Operations
for the Device.ProxiedDevice. object defined in the Device:2 Data Model.

In order to serve as a USP to non-USP Proxy, the USP to non-USP Translation Function (from
Table PRX.1) is needed.

20 Appendix V - IoT Data Model Theory of Operation

20.1 Introduction

Since there are thousands of different Internet of Things (IoT) devices, the data model needs a
flexible modular way to support them using generic building block templates. To achieve this, an
IoT device is represented in the data model by sensor and control capabilities:

• Sensor capabilities, which allow reading a state, e.g. a temperature value, a battery level, a
light color, etc.

• Control capabilities, which allow changing a value, e.g. set a temperature, switch a light etc.

The Device:2 data model defines capability objects that reflect capabilities found on many different
devices (example: BinaryControl). By using these objects, a large ecosystem of devices can be
described using a small set of capabilities (see table below).

20.2 IoT data model overview

The figure shows the overall structure of the IoT data model:

https://usp-data-models.broadband-forum.org/
https://usp-data-models.broadband-forum.org/

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 229 of 249

IoT Data Model

Figure IOT.1 - IoT data model structure

The data model defines an IoT Capability table, whose instances describe the IoT device’s exposed
capabilities. The capability table can appear directly under the Device. object (if the IoT device
hosts a USP Agent) or under a Device.ProxiedDevice.{i}. or
Device.ProxiedDevice.{i}.Node.{i}. instance.

20.2.1 IoT Capability table

A capability is represented in the Device.IoTCapability. table as a generic object instance with a
specific class, and an instantiated sub-object depending on this class. The class name is defined by
the sub-object name in a Class parameter for each IoT Capability table entry, to allow the
Controller to detect the instantiated sub-object.

Only one out of the following sub-objects can exist per instance:

• Capability Sub-object • Description
• BinaryControl • Allows setting a binary value (e.g. on or off)
• LevelControl • Allows setting a continuous value in a predefined range

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 230 of 249

• EnumControl • Allows setting a value from a predefined set of values
• BinarySensor • Provides a binary reading value (true/false)
• LevelSensor • Provides a continuous reading value
• MultiLevelSensor • Provides multiple reading values, which belong together
Each IoT capability sub-object has a Type parameter to identify the functionality the capability is
representing. See the Type definition section for details.

20.2.2 Node object table

The Device.Node.{i}. and Device.ProxiedDevice.{i}.Node.{i}. objects are mount points
that provide the ability to support complex devices - that is, a group of capabilities. Each node is a
container for a group of device capabilities that have a direct relationship with each other (sub-
device) and a hierarchal relationship with the top-level. A node may have the same capabilities as
the top-level, but applicable only for the node, with no impact to the top-level. Capabilities for the
top-level node may have an effect on the lower level nodes, such as power.

20.3 Architecture mappings

20.3.1 Individual IoT devices

Stand-alone IoT devices, which are capable of supporting their own USP Agent, provide their own
data models, which expose the IoT sensor and control capabilities of the device:

Figure IOT.2 - IoT individual device models

Each device registers as an individual entity to the USP Controller. With the help of Node objects,
the capabilities can be additionally structured (not shown in the picture).

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 231 of 249

20.3.2 Proxied IoT devices

IoT devices connected over a proxy protocol (e.g. ZigBee) with an IoT control device hosting the
USP Agent are modeled as proxied devices (i.e., using the Device.ProxiedDevice. table) in the
data model of the control device’s USP Agent:

Figure IOT.3 - IoT proxied device model

Each IoT device is represented as a Device.ProxiedDevice.{i}. instance in the data model of
the control device, which exposes its IoT capabilities in the corresponding objects. The capabilities
can be additionally structured with the help of Node object (not shown in the picture).

20.4 IoT data model object details

20.4.1 Common capability parameters

These parameters have the same behavior for all capability sub-objects, where defined.

20.4.1.1 Type definition

Applies to: All capability sub-objects

All capability objects contain a mandatory Type enumeration value.

The Type value is a predefined enumeration value with the goal of giving a unified description of
the capability object. If the Type value requires further detail, the Description parameter may
provided a further definition.

Note: The Type enumeration in the data model can also be extended with vendor-specific values
like all TR-181 parameters, using the rules defined in TR-106.

https://www.broadband-forum.org/technical/download/TR-106_Amendment-8.pdf

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 232 of 249

20.4.1.2 Unit definition

Applies to: LevelControl, LevelSensor, MultilevelSensor

To define the used unit a similar concept as for the type definition is used. The definition consists of
the Unit enumeration value.

The Unit value is a predefined enumeration value with the goal of giving a unified representation of
the used unit.

Note: The Unit enumeration in the data model can also be extended with vendor-specific values
like all TR-181 parameters, using the rules defined in TR-106.

Note - Imperial units are intentionally not modeled in favor of the metric system to increase the
inter-working. If the Controller needs imperial units, it can easily convert the metric units into
imperial ones by using the well-defined conversion routines.

20.4.2 Control Objects

Control objects represent IoT capabilities that involve the manipulation of device or application
states. They include Binary Controls, Level Controls, and Enumerated Controls.

20.4.2.1 BinaryControl

The binary controller defines the simplest type of controller, which allows to switch between two
values like true/false, on/off, full/empty, etc. Its value is modeled as a Boolean, which can be either
true or false.

The minimum definition of a “BinaryControl” consists of:

 IoTCapability.i.Class = "BinaryControl"
 IoTCapability.i.BinaryControl.Type = ...
 IoTCapability.i.BinaryControl.Value = ...

The value can be changed either directly by a USP Set operation, or via The Toggle() command,
which corresponds to the behavior of a switch, changing the value to the other state.

20.4.2.2 LevelControl

The level controller capability allows a continuous change of a value within a predefined range. Its
capabilities are defined by these three mandatory parameters:

• Unit - The unit used for the value

• MinValue - The minimum value the value can be set

https://www.broadband-forum.org/technical/download/TR-106_Amendment-8.pdf

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 233 of 249

• MaxValue - The maximum value the value can be set

Implementations have to provide the minimum and maximum values to allow the controller to
detect what values can be applied.

The minimum definition of a “LevelControl” consists of:

 IoTCapability.i.Class = "LevelControl"
 IoTCapability.i.LevelControl.Type = ...
 IoTCapability.i.LevelControl.Unit = ...
 IoTCapability.i.LevelControl.MinValue = ...
 IoTCapability.i.LevelControl.MaxValue = ...
 IoTCapability.i.LevelControl.Value = ...

The value can be changed either directly by a USP Set operation, or via the step commands.

If the StepUp() command and/or the StepDown() command are implemented, the StepValue
parameter has to be implemented, which indicates the amount of change triggered by a step
command. If resulting value of a step command would exceed the defined range, the operation does
not result in a failure - instead, the result is set to the range limit value.

For example, if a temperature range is defined from 5.5 degC to 25 degC with a step value of 1
degC, a step down from 6 degC would result in 5.5 degC and not in 5 degC.

Additionally, if the lowest possible value is already set, a StepDown() will not change the current
value, since the defined minimum range would be exceeded. The same also applies to the maximum
value and StepUp() command.

20.4.2.3 EnumControl

The enumeration controller capability allows setting one of a set of predefined values. Examples are
mode selections, with more than two modes. If only two values exist, the binary controller object is
preferred.

The minimum definition of an “EnumControl” consists of:

 IoTCapability.i.Class = "EnumControl"
 IoTCapability.i.EnumControl.Type = ...
 IoTCapability.i.EnumControl.ValidValues = <list of possible values>
 IoTCapability.i.EnumControl.Value = <current value>

The value can be changed either directly by a USP Set operation, or via the step commands.

The step commands will cycle through the value range, meaning that if the last valid value is
reached, the next StepUp() command will select the first value of the valid values and vice versa
for the StepDown() command. The valid values are stored in the parameter ValidValues as a
comma-separated list; that order of the list will be followed by the step commands.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 234 of 249

It is possible to implement only one of the step commands, if only one direction is needed.

20.4.3 Sensor Objects

Sensor objects represent IoT capabilities that involve reading or reporting on a device or application
state. They include Binary Sensors, Level Sensors, and Enumerated Sensors, along with support for
thresholds and triggering events.

20.4.3.1 Binary Sensor

The binary sensor object instance supports different kinds of binary sensor operations:

• Simple binary state, e.g. a door or window state

• Threshold trigger, e.g. trigger a Carbon Dioxide Alarm if a certain threshold is exceeded.

• Repeated trigger with grace period, e.g. movement detector.

20.4.3.1.1 Simple binary state sensor

To model a simple sensor, which changes between two distinct states (e.g. a window or door
open/close sensor), only the Value parameter is needed.

The minimum definition of a BinarySensor consists of:

 IoTCapability.i.Class = "BinarySensor"
 IoTCapability.i.BinarySensor.Type = ...
 IoTCapability.i.BinarySensor.Value = {true/false}

The values of true and false represent the two possible Value states. Each time the state changes
the value toggles.

For example, a motion sensor would be modeled as:

 IoTCapability.i.Class = "BinarySensor"
 IoTCapability.i.BinarySensor.Type = "MotionDetected"
 IoTCapability.i.BinarySensor.Value = true

Note that binary sensor types are meaningful for binary state behavior, e.g., “WindowOpen” rather
than “Window”.

20.4.3.1.2 Threshold trigger sensor

To model a sensor, which additionally triggers on a certain threshold, add the Sensitivity
parameter to the definition:

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 235 of 249

 IoTCapability.1.Class = "BinarySensor"
 IoTCapability.1.BinarySensor.Type = "CarbonDioxideDetected"
 IoTCapability.1.BinarySensor.Value = {true/false}
 IoTCapability.1.BinarySensor.Sensitivity = 50

With the Sensitivity parameter, the threshold is controlled. As soon as the measured value
exceeds the threshold, the Value parameter is set to true. As soon as the measured value goes
below the threshold the Value parameter is set to false.

Figure IOT.4 - IoT threshold trigger sensitivity

The sensitivity value is a relative value in the range 0 to 100 percent. The exact meaning depends on
the implementation.

20.4.3.1.3 Trigger time control

If the sensor state, after being triggered, should stay active for a minimum period, the HoldTime
parameter is used:

 IoTCapability.1.Class = "BinarySensor"
 IoTCapability.1.BinarySensor.Type = "CarbonDioxideDetected"
 IoTCapability.1.BinarySensor.Value = {true/false}
 IoTCapability.1.BinarySensor.Sensitivity = 50
 IoTCapability.1.BinarySensor.HoldTime = 5000

This figure shows the effect of the HoldTime parameter on the resulting value:

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 236 of 249

Figure IOT.5 - IoT threshold trigger hold time

If the HoldTime parameter is not implemented or is set to 0, the handling is disabled.

20.4.3.1.4 Repeated trigger with grace period

Some sensors might produce too many triggers, e.g. continuous movement, when only one trigger
in a specific time period is needed. To filter these the RestTime parameter is used:

 IoTCapability.1.Class = "BinarySensor"
 IoTCapability.1.BinarySensor.Type = "CarbonDioxideDetected"
 IoTCapability.1.BinarySensor.Value = {true/false}
 IoTCapability.1.BinarySensor.Sensitivity = 50
 IoTCapability.1.BinarySensor.RestTime = 10000

With this setting, new trigger events are ignored for 10 seconds (10000 miliseconds) after the first
trigger has been detected, resulting in the following pattern:

Figure IOT.6 - IoT threshold trigger rest time

If the RestTime parameter is not implemented or is set to 0, the handling is disabled.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 237 of 249

20.4.3.1.5 Repeated trigger with minimum duration

To get readings with a minimum duration, combine rest and hold times:

 IoTCapability.1.Class = "BinarySensor"
 IoTCapability.1.BinarySensor.Type = "CarbonDioxideDetected"
 IoTCapability.1.BinarySensor.Value = {true/false}
 IoTCapability.1.BinarySensor.Sensitivity = 50
 IoTCapability.1.BinarySensor.HoldTime = 5000
 IoTCapability.1.BinarySensor.RestTime = 10000

Which results in the following pattern:

Figure IOT.7 - IoT threshold trigger minimum duration

20.4.3.2 Level Sensor

The LevelSensor object provides a template for modeling devices that report various levels.
LevelSensor is used to reflect the functionality of a sensor that reports a level in units and supports
different kinds of sensor operation:

• Level reading

• Additional Threshold trigger: e.g., a Battery Alarm is triggered.

20.4.3.2.1 Level reading

To model a level reading, the reading value and its unit are defined. The minimum definition of a
LevelSensor consists of:

 IoTCapability.i.Class = "LevelSensor"
 IoTCapability.i.LevelSensor.Type = ...
 IoTCapability.i.LevelSensor.Unit = ...
 IoTCapability.i.LevelSensor.Value = ...

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 238 of 249

For example, to show the remaining load of a battery in percent, this capability would have the
following values:

 IoTCapability.1.Class = "LevelSensor"
 IoTCapability.1.LevelSensor.Type = "Battery"
 IoTCapability.1.LevelSensor.Unit = "%"
 IoTCapability.1.LevelSensor.Value = 63"

With this definition, the remaining load is expressed in percent, here 63 percent. Since the unit
value is a decimal type it is also possible to specify fractions for the value:

 IoTCapability.1.Class = "LevelSensor"
 IoTCapability.1.LevelSensor.Type = "Battery"
 IoTCapability.1.LevelSensor.Unit = "%"
 IoTCapability.1.LevelSensor.Value = 63.26

This expresses a total remaining load of 63.26 percent.

20.4.3.2.2 Threshold trigger

In cases where not only the actual value is of interest, but also important to know if a predefined
threshold is reached or undershot, the LevelSensor object can be extended with threshold
parameters. Once the LowLevel or HighLevel parameter is true, it will remain true until the
device is reset or the condition no longer exists. This will depend on the particular device.

• Parameter • Type • R/W • Description
• LowLevel • boolean • R • True means that the low level

threshold is reached or undershot.
• LowLevelThreshold • decimal • R/W • The defined low level value.
• HighLevel • boolean • R • True means that the high level

threshold is reached or exceeded.
• HighLevelThreshold • decimal • R/W • The defined high level value.
Table 17 – IoT LevelSensor threshold parameters

When modeling a battery with a LevelSensor object, an additional low level warning (Boolean)
may be supported along with a Low Level threshold that provides a setting for the warning. The
resulting object looks like this:

 IoTCapability.1.Class = "LevelSensor"
 IoTCapability.1.LevelSensor.Type = "Battery"
 IoTCapability.1.LevelSensor.Unit = "%"
 IoTCapability.1.LevelSensor.LowLevelThreshold = 20
 IoTCapability.1.LevelSensor.Value = 19
 IoTCapability.1.LevelSensor.LowLevel = true

Note - For more complex scenarios, like having a grace period, the binary sensor object can be
used instead of the LowLevel or HighLevel Threshold parameters.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 239 of 249

20.4.3.2.3 Multi Level Sensor

A MultiLevelSensor instance models sensors, which provide a set of related values with the same
unit.

The minimum definition of a “MultiLevelSensor” consists of:

 IoTCapability.i.Class = "MultiLevelSensor"
 IoTCapability.i.MultiLevelSensor.Type = ...
 IoTCapability.i.MultiLevelSensor.Unit = ...
 IoTCapability.i.MultiLevelSensor.Values = ...
 IoTCapability.1.MultiLevelSensor.ValueNames = ...

An example is a location reading consisting of the two values longitude and latitude in decimal
degree notation, which have to be read together:

 IoTCapability.1.Class = "MultiLevelSensor"
 IoTCapability.1.MultiLevelSensor.Type = "Location"
 IoTCapability.1.MultiLevelSensor.Unit = "deg"
 IoTCapability.1.MultiLevelSensor.Values = "48.1372056,11.57555"
 IoTCapability.1.MultiLevelSensor.ValueNames = "Latitude,Longitude"

This example uses the parameter ValueNames to provide information about the individual value
meanings.

20.4.3.3 Enum Sensor

An EnumSensor instance provides a reading value from a predefined set of values. This allows
modeling of sensors, which can output discreet values from a predefined set.

The minimum definition of an “EnumSensor” consists of:

 IoTCapability.i.Class = "EnumSensor"
 IoTCapability.i.EnumSensor.Type = ...
 IoTCapability.i.EnumSensor.Unit = ...
 IoTCapability.i.EnumSensor.ValidValues = ...
 IoTCapability.i.EnumSensor.Value = ...

The ValidValues parameter determines the set of values, which will be delivered by the sensor.

For example, a traffic light could be modeled as:

 IoTCapability.1.Class = "EnumSensor"
 IoTCapability.1.EnumSensor.Type = "X_<oui>_TrafficLight"
 IoTCapability.1.EnumSensor.ValidValues = "Red, Yellow, Green"
 IoTCapability.1.EnumSensor.Value = "Green"

20.5 Examples

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 240 of 249

This chapter gives several examples how to model IoT Devices.

20.5.1 Example: A/C Thermostat

This example shows an A/C Thermostat connected over Z-Wave as a proxied device of an IoT
Gateway:

Structure elements:

• IoTCapability.1 (EnumControl) : Operation Mode

• IoTCapability.2 (LevelControl) : Cool Temperature in range from 14 to 25 degC

• IoTCapability.3 (LevelControl) : Heat Temperature in range from 14 to 25 degC

• IoTCapability.4 (LevelControl) : Energy Saving Cool Temperature in range from 14 to 25
degC

• IoTCapability.5 (LevelControl) : Energy Saving Heat Temperature in range from 14 to 25
degC

• IoTCapability.6 (LevelSensor) : Current Temperature

• IoTCapability.7 (EnumControl) : Fan Mode Control

• IoTCapability.8 (EnumSensor) : Current Fan Operating State

Instantiated data model:

 ProxiedDevice.1.Type = "Thermostat"
 ProxiedDevice.1.Online = true
 ProxiedDevice.1.ProxyProtocol = "Z-Wave"

 ProxiedDevice.1.IoTCapabilityNumberOfEntries = 9

 ProxiedDevice.1.IoTCapability.1.Class = "EnumControl"
 ProxiedDevice.1.IoTCapability.1.EnumControl.Type = "ThermostatMode"
 ProxiedDevice.1.IoTCapability.1.EnumControl.Value = "Cool"
 ProxiedDevice.1.IoTCapability.1.EnumControl.ValidValues = "Heat, Cool,
 Energy_heat,
 Energy_cool, Off,
 Auto"

 ProxiedDevice.1.IoTCapability.2.Class = "LevelControl"
 ProxiedDevice.1.IoTCapability.2.LevelControl.Type = "Temperature"
 ProxiedDevice.1.IoTCapability.2.LevelControl.Description =
"TargetCoolTemperature"
 ProxiedDevice.1.IoTCapability.2.LevelControl.Value = 17
 ProxiedDevice.1.IoTCapability.2.LevelControl.Unit = "degC"
 ProxiedDevice.1.IoTCapability.2.LevelControl.MinValue = 14

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 241 of 249

 ProxiedDevice.1.IoTCapability.2.LevelControl.MaxValue = 25

 ProxiedDevice.1.IoTCapability.3.Class = "LevelControl"
 ProxiedDevice.1.IoTCapability.3.LevelControl.Type = "Temperature"
 ProxiedDevice.1.IoTCapability.3.LevelControl.Description =
"TargetHeatTemperature"
 ProxiedDevice.1.IoTCapability.3.LevelControl.Value = 21
 ProxiedDevice.1.IoTCapability.3.LevelControl.Unit = "degC"
 ProxiedDevice.1.IoTCapability.3.LevelControl.MinValue = 14
 ProxiedDevice.1.IoTCapability.3.LevelControl.MaxValue = 25

 ProxiedDevice.1.IoTCapability.4.Class = "LevelControl"
 ProxiedDevice.1.IoTCapability.4.LevelControl.Type = "Temperature"
 ProxiedDevice.1.IoTCapability.4.LevelControl.Description =
"TargetEnergyCoolTemp"
 ProxiedDevice.1.IoTCapability.4.LevelControl.Value = 19
 ProxiedDevice.1.IoTCapability.4.LevelControl.Unit = "degC"
 ProxiedDevice.1.IoTCapability.4.LevelControl.MinValue = 14
 ProxiedDevice.1.IoTCapability.4.LevelControl.MaxValue = 25

 ProxiedDevice.1.IoTCapability.5.Class = "LevelControl"
 ProxiedDevice.1.IoTCapability.5.LevelControl.Type = "Temperature"
 ProxiedDevice.1.IoTCapability.5.LevelControl.Description =
"TargetEnergyHeatTemp"
 ProxiedDevice.1.IoTCapability.5.LevelControl.Value = 19
 ProxiedDevice.1.IoTCapability.5.LevelControl.Unit = "degC"
 ProxiedDevice.1.IoTCapability.5.LevelControl.MinValue = 14
 ProxiedDevice.1.IoTCapability.5.LevelControl.MaxValue = 25

 ProxiedDevice.1.IoTCapability.6.Class = "LevelSensor"
 ProxiedDevice.1.IoTCapability.6.LevelSensor.Type = "Temperature"
 ProxiedDevice.1.IoTCapability.6.LevelSensor.Value = 19.5
 ProxiedDevice.1.IoTCapability.6.LevelSensor.Unit = "degC"

 ProxiedDevice.1.IoTCapability.7.Class = "EnumControl"
 ProxiedDevice.1.IoTCapability.7.EnumControl.Type = "FanMode"
 ProxiedDevice.1.IoTCapability.7.EnumControl.Value = "Low"
 ProxiedDevice.1.IoTCapability.7.EnumControl.ValidValues = "Auto_low, Low,
 Circulation, Off"

 ProxiedDevice.1.IoTCapability.8.Class = "EnumSensor"
 ProxiedDevice.1.IoTCapability.8.EnumSensor.Type = "OperatingState"
 ProxiedDevice.1.IoTCapability.8.EnumSensor.Value = "Cooling"
 ProxiedDevice.1.IoTCapability.8.EnumSensor.ValidValues =
 "Heating, Cooling,
 FanOnly, PendingHeat, PendingCool, VentEconomizer,
 AuxHeating, 2ndStageHeating, 2ndStageCooling,
 2ndStageAuxHeat, 3rdStageAuxHeat"

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 242 of 249

20.5.2 Example: Light with a dimmer and switch

This example shows a dimmable light connected over Z-Wave as proxied device to an IoT
Gateway.

Structure elements:

• IoTCapability.1 (BinaryControl) : On/Off Switch, expressed as true and false value

• IoTCapability.2 (LevelControl) : Brightness control from 0% to 100%

Instantiated data model:

 ProxiedDevice.2.Type = "Light"
 ProxiedDevice.2.Online = "true"
 ProxiedDevice.2.ProxyProtocol = "Z-Wave"
 ProxiedDevice.2.Name = "GE DimMing
Bulb"
 ProxiedDevice.2.IoTCapabilityNumberOfEntries = 2

 ProxiedDevice.2.IoTCapability.1.Class = "BinaryControl"
 ProxiedDevice.2.IoTCapability.1.BinaryControl.Type = "Switch"
 ProxiedDevice.2.IoTCapability.1.BinaryControl.Value = true

 ProxiedDevice.2.IoTCapability.2.Class = "LevelControl"
 ProxiedDevice.2.IoTCapability.2.LevelControl.Type = "Brightness"
 ProxiedDevice.2.IoTCapability.2.LevelControl.Value = 100
 ProxiedDevice.2.IoTCapability.2.LevelControl.Min = 0
 ProxiedDevice.2.IoTCapability.2.LevelControl.Max = 100
 ProxiedDevice.2.IoTCapability.2.LevelControl.Unit = "%"

20.5.3 Example: Fan

This example shows a simple fan connected over Z-Wave as proxied device to an IoT Gateway.

Structure elements:

• IoTCapability.1 (EnumControl) : Fan state

Instantiated data model:

 ProxiedDevice.3.Type = "Fan"
 ProxiedDevice.3.Online = "true"
 ProxiedDevice.3.ProxyProtocol = "Z-Wave"
 ProxiedDevice.3.name = "GE Fan"
 ProxiedDevice.3.IoTCapabilityNumberOfEntries = 1

 ProxiedDevice.2.IoTCapability.1.Class = "EnumControl"
 ProxiedDevice.3.IoTCapability.1.EnumControl.Type = "FanMode"

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 243 of 249

 ProxiedDevice.3.IoTCapability.1.EnumControl.Value = "Off"
 ProxiedDevice.3.IoTCapability.1.EnumControlValidValues =
 "Off, Low, Medium, High, On, Auto, Smart"

20.5.4 Example: Multi-Sensor strip with a common battery.

The sensors are inserted into the strip and may have their own power switch, battery, energy
consumption and manufacturer.

Instantiated data model:

 ProxiedDevice.4.Type =
"SensorStrip"
 ProxiedDevice.4.Online = true
 ProxiedDevice.4.ProxyProtocol = "Z-Wave"
 ProxiedDevice.4.Name =
"Insertable Sensor Strip"
 ProxiedDevice.4.IoTCapabilityNumberOfEntries = 1
 ProxiedDevice.4.NodeNumberOfEntries = 2

 ProxiedDevice.4.IoTCapability.1.Class =
"LevelSensor"
 ProxiedDevice.4.IoTCapability.1.LevelSensor.Value = 80
 ProxiedDevice.4.IoTCapability.1.LevelSensor.Unit = "%"
 ProxiedDevice.4.IoTCapability.1.LevelSensor.Type =
"Battery"
 ProxiedDevice.4.IoTCapability.1.LevelSensor.LowLevelThreshold = 30
 ProxiedDevice.4.IoTCapability.1.LevelSensor.LowLevel = false

 ProxiedDevice.4.Node.1.Type = "Sensor"
 ProxiedDevice.4.Node.1.IoTCapabilityNumberOfEntries = 1

 ProxiedDevice.4.Node.1.IoTCapability.1.Class =
"BinarySensor"
 ProxiedDevice.4.Node.1.IoTCapability.1.BinarySensor.HoldTime = 0
 ProxiedDevice.4.Node.1.IoTCapability.1.BinarySensor.Sensitivity = 5
 ProxiedDevice.4.Node.1.IoTCapability.1.BinarySensor.RestTime = 10000
 ProxiedDevice.4.Node.1.IoTCapability.1.BinarySensor.Value = false
 ProxiedDevice.4.Node.1.IoTCapability.1.BinarySensor.Type =
"MotionDetected"
 ProxiedDevice.4.Node.1.IoTCapability.1.BinarySensor.LastSensingTime =
1573344000

20.5.5 Example: Ceiling Fan with integrated light

This example shows a ceiling fan with integrated light connected over Z-Wave as proxied device to
an IoT Gateway.

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 244 of 249

Structure elements:

• IoTCapability.1 (BinaryControl) :

• Node.1 : Represents the light control

• .IoTCapability.1 (LevelControl) : Brightness control from 0% to 100%

• .IoTCapability.2 (BinaryControl) : On/Off Switch, expressed as true and false value

• Node.2 : Fan control

• .IoTCapability.1 (EnumControl) : Set fan state

Instantiated data model:

 ProxiedDevice.5.Type = "Fan"
 ProxiedDevice.5.Online = true
 ProxiedDevice.5.ProxyProtocol = "Z-Wave"
 ProxiedDevice.5.Name = "42''
Ceiling Fan"

 ProxiedDevice.5.IoTCapabilityNumberOfEntries = 1
 ProxiedDevice.5.NodeNumberOfEntries = 2

 ProxiedDevice.5.IoTCapability.1.Class =
"BinaryControl"
 ProxiedDevice.5.IoTCapability.1.BinaryControl.Type = "Switch"
 ProxiedDevice.5.IoTCapability.1.BinaryControl.State = true

 ProxiedDevice.5.Node.1.Type = "Light"
 ProxiedDevice.5.Node.1.IoTCapabilityNumberOfEntries = 2

 ProxiedDevice.5.Node.1.IoTCapability.1.Class =
"LevelControl"
 ProxiedDevice.5.Node.1.IoTCapability.1.LevelControl.Type =
"Brightness"
 ProxiedDevice.5.Node.1.IoTCapability.1.LevelControl.Value = 99
 ProxiedDevice.5.Node.1.IoTCapability.1.LevelControl.MinValue = 0
 ProxiedDevice.5.Node.1.IoTCapability.1.LevelControl.MaxValue = 100
 ProxiedDevice.5.Node.1.IoTCapability.1.LevelControl.Unit = "%"

 ProxiedDevice.5.Node.1.IoTCapability.2.Class =
"BinaryControl"
 ProxiedDevice.5.Node.1.IoTCapability.2.BinaryControl.Type = "Switch"
 ProxiedDevice.5.Node.1.IoTCapability.2.BinaryControl.Value = true

 ProxiedDevice.5.Node.2.Type = "Fan"
 ProxiedDevice.5.Node.2.IoTCapabilityNumberOfEntries = 1

 ProxiedDevice.5.Node.2.IoTCapability.1.Class =

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 245 of 249

"EnumControl"
 ProxiedDevice.5.Node.2.IoTCapability.1.EnumControl.Type = "FanMode"
 ProxiedDevice.5.Node.2.IoTCapability.1.EnumControl.Value = "Off"
 ProxiedDevice.5.Node.2.IoTCapability.1.EnumControl.ValidValues = "Off, Low,
 Medium, High,
 Auto, Smart

20.5.6 Example: Power strip

This example shows a power strip with integrated power measurements connected over Z-Wave as
proxied device to an IoT Gateway.

Structure elements:

• IoTCapability.1 (BinaryControl) : On/Off Switch for complete power strip

• IoTCapability.2 (LevelSensor) : Total power reading of strip in KWh.

• Node.1 - 3: Each node represents a power outlet with:

– .IoTCapability.1 (BinaryControl) : On/Off Switch, expressed as true and false value

– .IoTCapability.2 (LevelSensor) : Current power reading of outlet in Watt.

– .IoTCapability.3 (LevelSensor) : Total used power reading of outlet in KWh.

Instantiated data model:

 ProxiedDevice.6.Type = "PowerStrip"
 ProxiedDevice.6.Online = "true"
 ProxiedDevice.6.ProxyProtocol = "Z-Wave"
 ProxiedDevice.6.Name = "3 Plug
Strip"
 ProxiedDevice.6.IoTCapabilityNumberOfEntries = 2
 ProxiedDevice.6.NodeNumberOfEntries = 3

 ProxiedDevice.6.IoTCapability.1.Class =
"BinaryControl"
 ProxiedDevice.6.IoTCapability.1.BinaryControl.Type = "Switch"
 ProxiedDevice.6.IoTCapability.1.BinaryControl.Value = true
 ProxiedDevice.6.IoTCapability.3.Class =
"LevelSensor"
 ProxiedDevice.6.IoTCapability.3 Name = "Total
Accumulated Power"
 ProxiedDevice.6.IoTCapability.3.LevelSensor.Type = "Power"
 ProxiedDevice.6.IoTCapability.3.LevelSensor.Unit = "KWh"
 ProxiedDevice.6.IoTCapability.3.LevelSensor.Value = "2227,56"

 ProxiedDevice.6.Node.1.Type = "Switch"
 ProxiedDevice.6.Node.1.IoTCapabilityNumberOfEntries = 3

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 246 of 249

 ProxiedDevice.6.Node.1.IoTCapability.1.Class =
"BinaryControl"
 ProxiedDevice.6.Node.1.IoTCapability.1.BinaryControl.Type = "Switch"
 ProxiedDevice.6.Node.1.IoTCapability.1.BinaryControl.State = true
 ProxiedDevice.6.Node.1.IoTCapability.2.Class =
"LevelSensor"
 ProxiedDevice.6.Node.1.IoTCapability.2.LevelSensor.Type = "Power"
 ProxiedDevice.6.Node.1.IoTCapability.2.LevelSensor.Unit = "W"
 ProxiedDevice.6.Node.1.IoTCapability.2.LevelSensor.Value = 99
 ProxiedDevice.6.Node.1.IoTCapability.3.Class =
"LevelSensor"
 ProxiedDevice.6.Node.1.IoTCapability.3 Name = "Accumulated
Power"
 ProxiedDevice.6.Node.1.IoTCapability.3.LevelSensor.Type = "Power"
 ProxiedDevice.6.Node.1.IoTCapability.3.LevelSensor.Unit = "KWh"
 ProxiedDevice.6.Node.1.IoTCapability.3.LevelSensor.Value = 390.67

 ProxiedDevice.6.Node.2.Type = "Switch"
 ProxiedDevice.6.Node.2.IoTCapabilityNumberOfEntries = 3
 ProxiedDevice.6.Node.2.IoTCapability.1.Class =
"BinaryControl"
 ProxiedDevice.6.Node.2.IoTCapability.1.BinaryControl.Type = "Switch"
 ProxiedDevice.6.Node.2.IoTCapability.1.BinaryControl.State = true
 ProxiedDevice.6.Node.2.IoTCapability.2.Class =
"LevelSensor"
 ProxiedDevice.6.Node.2.IoTCapability.2.LevelSensor.Type = "Power"
 ProxiedDevice.6.Node.2.IoTCapability.2.LevelSensor.Unit = "W"
 ProxiedDevice.6.Node.2.IoTCapability.2.LevelSensor.Value = 76
 ProxiedDevice.6.Node.2.IoTCapability.3.Class =
"LevelSensor"
 ProxiedDevice.6.Node.2.IoTCapability.3 Name = "Accumulated
Power"
 ProxiedDevice.6.Node.2.IoTCapability.3.LevelSensor.Type = "Power"
 ProxiedDevice.6.Node.2.IoTCapability.3.LevelSensor.Unit = "KWh"
 ProxiedDevice.6.Node.2.IoTCapability.3.LevelSensor.Value = 1783.63

 ProxiedDevice.6.Node.3.Type = "Switch"
 ProxiedDevice.6.Node.3.IoTCapabilityNumberOfEntries = 3
 ProxiedDevice.6.Node.3.IoTCapability.1.Class =
"BinaryControl"
 ProxiedDevice.6.Node.3.IoTCapability.1.BinaryControl.Type = "Switch"
 ProxiedDevice.6.Node.3.IoTCapability.1.BinaryControl.State = true
 ProxiedDevice.6.Node.3.IoTCapability.2.Class =
"LevelSensor"
 ProxiedDevice.6.Node.3.IoTCapability.2.LevelSensor.Type = "Power"
 ProxiedDevice.6.Node.3.IoTCapability.2.LevelSensor.Unit = "W"
 ProxiedDevice.6.Node.3.IoTCapability.2.LevelSensor.Value = 0
 ProxiedDevice.6.Node.3.IoTCapability.3.Class =
"LevelSensor"
 ProxiedDevice.6.Node.3.IoTCapability.3 Name = "Accumulated

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 247 of 249

Power"
 ProxiedDevice.6.Node.3.IoTCapability.3.LevelSensor.Type = "Power"
 ProxiedDevice.6.Node.3.IoTCapability.3.LevelSensor.Unit = "KWh"
 ProxiedDevice.6.Node.3.IoTCapability.3.LevelSensor.Value = 53.26

20.5.7 Example: Battery powered radiator thermostat

This example shows the IoT model for a radiator thermostat with an integrated USP Agent, which is
directly controlled.

Structure elements:

• IoTCapability.1 (EnumControl): Operation Mode

• IoTCapability.2 (EnumControl): Auto/Manual Temperature setting

• IoTCapability.3 (EnumControl): Vacation Temperature setting

• IoTCapability.4 (LevelSensor) : Current Temperature

• IoTCapability.5 (LevelSensor): Valve position

• IoTCapability.6 (LevelSensor): Battery status

Note - All temperature settings are modeled as “EnumControl” to define a range between 4 and
23° degC in steps of 0.5° or an “Off” value.

Instantiated data model:

 Device.DeviceInfo.Description = "Battery powered radiator
 thermostat"

 :

 Device.IoTCapabilityNumberOfEntries = 6

 Device.IoTCapability.1.Class = "EnumControl
 Device.IoTCapability.1.EnumControl.Type = "ThermostatMode"
 Device.IoTCapability.1.EnumControl.ValidValues = "Off, Auto, Manual,
Vacation"
 Device.IoTCapability.1.EnumControl.Value = "Auto" # current mode

 Device.IoTCapability.2.Class = "EnumControl
 Device.IoTCapability.2.Name = "Desired Temperature"
 Device.IoTCapability.2.EnumControl.Type = "TemperatureMode"
 Device.IoTCapability.2.EnumControl.ValidValues = "Off, 4, 4.5, 5.0, 5.5,
 6, 6.5, 7, 7.5, 8, 8.5,
 9, 9.5, 10, 10.5, 11,
 11.5, 12, 12.5, 13, 13.5,
 14, 14.5, 15.0, 15.5, 16,

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 248 of 249

 16.5, 17, 17.5, 18, 18.5,
 19, 19.5, 20, 20.5, 21,
 21.5, 22, 22.5, 23"
 Device.IoTCapability.2.EnumControl.Value = 19 # Requested
temperature

 Device.IoTCapability.3.Class = "EnumControl"
 Device.IoTCapability.3.Name = "Vacation Temperature"
 Device.IoTCapability.3.EnumControl.Type = "TemperatureMode"
 Device.IoTCapability.3.EnumControl.ValidValues = "Off, 4, 4.5, 5.0, 5.5,
 6, 6.5, 7, 7.5, 8, 8.5,
 9, 9.5, 10, 10.5, 11,
 11.5, 12, 12.5, 13, 13.5,
 14, 14.5, 15.0, 15.5, 16,
 16.5, 17, 17.5, 18, 18.5,
 19, 19.5, 20, 20.5, 21,
 21.5, 22, 22.5, 23"
 Device.IoTCapability.3.EnumControl.Value = 12 # Requested
temperature
 # during absence

 Device.IoTCapability.4.Class = "LevelSensor"
 Device.IoTCapability.4.Name = "Current Temperature"
 Device.IoTCapability.4.LevelSensor.Type = "Temperature"
 Device.IoTCapability.4.LevelSensor.Unit = "degC"
 Device.IoTCapability.4.LevelSensor.Value = 19.3 # Current temperature

 Device.IoTCapability.5.Class = "LevelSensor"
 Device.IoTCapability.5.Name = "Valve Position"
 Device.IoTCapability.5.LevelSensor.Type = "Position"
 Device.IoTCapability.5.LevelSensor.Unit = "%"
 Device.IoTCapability.5.LevelSensor.MinValue = 0
 Device.IoTCapability.5.LevelSensor.MaxValue = 100
 Device.IoTCapability.5.LevelSensor.Value = 16 # e.g. 16% valve
 # opening

 Device.IoTCapability.6.Class = "LevelSensor"
 Device.IoTCapability.6.Name = "Local Battery"
 Device.IoTCapability.6.LevelSensor.Type = "Battery"
 Device.IoTCapability.6.LevelSensor.Unit = "%"
 Device.IoTCapability.6.LevelSensor.MinValue = 0
 Device.IoTCapability.6.LevelSensor.MaxValue = 100
 Device.IoTCapability.6.LevelSensor.Value = 82 # e.g. 82% battery
load

User Services Platform (USP) TR-369 Issue 1 Amendment 1

October 2019 © Broadband Forum. All rights reserved 249 of 249

End of Broadband Forum Technical Report TR-369

	Table of Contents
	1 Introduction
	1.1 Legal Notice
	1.1.1 Intellectual Property
	1.1.2 Terms of Use
	1.1.2.1 License
	1.1.2.2 NO WARRANTIES
	1.1.2.3 THIRD PARTY RIGHTS

	1.2 Revision History
	1.2.1 Release 1.1
	1.2.2 Release 1.0.2
	1.2.3 Release 1.0.1
	1.2.4 Release 1.0

	1.3 Editors
	1.4 Acknowledgements
	1.5 Executive Summary
	1.6 Purpose and Scope
	1.6.1 Purpose
	1.6.2 Scope

	1.7 References and Terminology
	1.7.1 Conventions
	1.7.2 References

	2 Definitions
	2.1 Abbreviations

	3 Specification Impact
	3.1 Energy efficiency
	3.2 Security
	3.3 Privacy

	4 Architecture
	4.1 Endpoints
	4.1.1 Agents
	4.1.2 Controllers
	4.1.3 Endpoint Identifier
	4.1.3.1 Use of authority-scheme and authority-id
	4.1.3.2 Use of instance-id

	4.2 Service Elements
	4.2.1 Data Models
	4.2.1.1 Instantiated Data Model
	4.2.1.2 Supported Data Model
	4.2.1.3 Objects
	4.2.1.3.1 Single-Instance Objects
	4.2.1.3.2 Multi-Instance Objects

	4.2.1.4 Parameters
	4.2.1.5 Commands
	4.2.1.6 Events

	4.2.2 Path Names
	4.2.2.1 Relative Paths
	4.2.2.2 Using Instance Identifiers in Path Names
	4.2.2.2.1 Addressing by Instance Number
	4.2.2.2.2 Addressing by Unique Key

	4.2.3 Searching
	4.2.3.1 Searching with Expressions
	4.2.3.1.1 Search Expression Examples

	4.2.3.2 Searching by Wildcard

	4.2.4 Other Path Decorators
	4.2.4.1 Reference Following
	4.2.4.1.1 List of References
	4.2.4.1.2 Search Expressions and Reference Following

	4.2.4.2 Operations and Command Path Names
	4.2.4.2.1 Event Path Names

	4.2.5 Data Model Path Grammar
	4.2.5.1 BNF Diagrams for Instantiated Data Model
	4.2.5.2 BNF Diagrams for Supported Data Model

	5 Discovery and Advertisement
	5.1 Controller Information
	5.2 Required Agent Information
	5.3 Use of DHCP for Acquiring Controller Information
	5.3.1 DHCP Options for Controller Discovery

	5.4 mDNS
	5.5 DNS
	5.5.1 DNS-SD Records
	5.5.2 IANA-Registered USP Service Names
	5.5.3 Example Controller Unicast DNS-SD Resource Records
	5.5.4 Example Agent Multicast DNS-SD Resource Records
	5.5.5 Example Controller Multicast DNS-SD Resource Records

	5.6 Using the SendOnBoardRequest() operation and OnBoardRequest notification

	6 Message Transfer Protocols
	6.1 Supporting Multiple MTPs
	6.2 Securing MTPs
	6.3 Brokered USP Record Errors

	7 CoAP Binding
	7.1 Mapping USP Endpoints to CoAP URIs
	7.2 Mapping USP Records to CoAP Messages
	7.2.1 Handling CoAP Request Success
	7.2.2 Handling CoAP Request Failures

	7.3 MTP Message Encryption

	8 STOMP Binding
	8.1 Handling of the STOMP Session
	8.1.1 Connecting a USP Endpoint to the STOMP Server
	8.1.2 Handling the STOMP Heart Beat Mechanism

	8.2 Mapping USP Endpoints to STOMP Destinations
	8.2.1 Subscribing a USP Endpoint to a STOMP Destination

	8.3 Mapping USP Records to STOMP Frames
	8.3.1 Handling USP Record errors and ERROR Frames
	8.3.2 Handling Other STOMP Frames

	8.4 Discovery Requirements
	8.5 STOMP Server Requirements
	8.6 MTP Message Encryption

	9 WebSocket Binding
	9.1 Mapping USP Endpoints to WebSocket URIs
	9.2 Handling of the WebSocket Session
	9.2.1 Mapping USP Records to WebSocket Messages

	9.3 Handling of WebSocket Frames
	9.3.1 Handling Failures to Deliver USP Records
	9.3.2 Keeping the WebSocket Session Alive
	9.3.3 WebSocket Session Retry

	9.4 MTP Message Encryption

	10 MQTT Binding
	10.1 Connecting a USP Endpoint to the MQTT Server
	10.1.1 CONNECT Flags and Properties
	10.1.2 Keep Alive

	10.2 Subscribing to MQTT Topics
	10.3 Sending the USP Record in a PUBLISH Packet Payload
	10.4 Handling Errors
	10.5 Handling Other MQTT Packets
	10.6 Discovery Requirements
	10.7 MQTT Server Requirements
	10.8 MTP Message Encryption

	11 Message Encoding
	12 End to End Message Exchange
	12.1 USP Record Encapsulation
	12.1.1 Record Definition
	12.1.1.1 NoSessionContextRecord fields
	12.1.1.2 SessionContextRecord fields

	12.2 Exchange of USP Records within an E2E Session Context
	12.2.1 Establishing an E2E Session Context
	12.2.1.1 Session Context Expiration
	12.2.1.2 Exhaustion of Sequence Identifiers
	12.2.1.3 Failure Handling in the Session Context

	12.2.2 USP Record Exchange
	12.2.2.1 USP Record Transmission
	12.2.2.2 Payload Security within the Session Context
	12.2.2.3 USP Record Reception
	12.2.2.3.1 Failure Handling of Received USP Records Within a Session Context

	12.2.2.4 USP Record Retransmission

	12.2.3 Guidelines for Handling Session Context Restarts
	12.2.4 Segmented Message Exchange
	12.2.4.1 SAR function algorithm
	12.2.4.1.1 Originating USP Endpoint
	12.2.4.1.2 Receiving Endpoint

	12.2.4.2 Segmentation Examples

	12.2.5 Handling Duplicate USP Records

	12.3 Exchange of USP Records without an E2E Session Context
	12.3.1 Failure Handling of Received USP Records Without a Session Context

	12.4 Validating the Integrity of the USP Record
	12.4.1 Using the Signature Method to Validate the Integrity of USP Records
	12.4.2 Using TLS to Validate the Integrity of USP Records

	12.5 Secure Message Exchange
	12.5.1 TLS Payload Encapsulation
	12.5.1.1 Session Handshake
	12.5.1.2 Authentication

	13 Messages
	13.1 Encapsulation in a USP Record
	13.2 Requests, Responses and Errors
	13.2.1 Handling Duplicate Messages
	13.2.2 Example Message Flows

	13.3 Message Structure
	13.3.1 The USP Message
	13.3.2 Message Header
	13.3.2.1 Message Header fields

	13.3.3 Message Body
	13.3.3.1 Message Body fields
	13.3.3.2 Request fields
	13.3.3.3 Response fields
	13.3.3.4 Error fields
	13.3.3.4.1 ParamError fields

	13.4 Creating, Updating, and Deleting Objects
	13.4.1 Selecting Objects and Parameters
	13.4.2 Using Allow Partial and Required Parameters
	13.4.3 The Add Message
	13.4.3.1 Add Example
	13.4.3.2 Add Request fields
	13.4.3.2.1 CreateObject fields
	13.4.3.2.1.1 CreateParamSetting fields

	13.4.3.3 Add Response fields
	13.4.3.3.1 CreatedObjectResult fields
	13.4.3.3.1.1 OperationStatus fields
	13.4.3.3.1.2 OperationFailure fields
	13.4.3.3.1.3 Operation Success fields
	13.4.3.3.1.4 ParameterError fields

	13.4.3.4 Add Message Supported Error Codes

	13.4.4 The Set Message
	13.4.4.1 Set Example
	13.4.4.2 Set Request fields
	13.4.4.2.1 UpdateObject fields
	13.4.4.2.1.1 UpdateParamSetting fields

	13.4.4.3 Set Response
	13.4.4.3.1 UpdatedObjectResult fields
	13.4.4.3.1.1 OperationStatus fields
	13.4.4.3.1.2 OperationFailure fields
	13.4.4.3.1.3 UpdatedInstanceFailure fields
	13.4.4.3.1.4 ParameterError fields
	13.4.4.3.1.5 OperationSuccess fields
	13.4.4.3.1.6 UpdatedInstanceResult fields
	13.4.4.3.1.7 ParameterError fields

	13.4.4.4 Set Message Supported Error Codes

	13.4.5 The Delete Message
	13.4.5.1 Delete Example
	13.4.5.2 Delete Request fields
	13.4.5.3 Delete Response fields
	13.4.5.3.1 DeletedObjectResult fields
	13.4.5.3.1.1 OperationStatus fields
	13.4.5.3.1.2 OperationFailure fields
	13.4.5.3.1.3 OperationSuccess fields
	13.4.5.3.1.4 UnaffectedPathError fields

	13.4.5.4 Delete Message Supported Error Codes

	13.5 Reading an Agent’s State and Capabilities
	13.5.1 The Get Message
	13.5.1.1 Get Examples
	13.5.1.2 Get Request fields
	13.5.1.3 Get Response fields
	13.5.1.3.1 RequestedPathResult field
	13.5.1.3.1.1 ResolvedPathResult fields
	13.5.1.3.1.2 Get Message Supported Error Codes

	13.5.2 The GetInstances Message
	13.5.2.1 GetInstances Examples
	13.5.2.2 GetInstances Request fields
	13.5.2.3 GetInstances Response fields
	13.5.2.3.1.1 CurrInstance fields

	13.5.2.4 GetInstances Error Codes

	13.5.3 The GetSupportedDM Message
	13.5.3.1 GetSupportedDM Examples
	13.5.3.2 GetSupportedDM Request fields
	13.5.3.3 GetSupportedDMResp fields
	13.5.3.3.1 RequestedObjectResult fields
	13.5.3.3.1.1 SupportedObjectResult fields
	13.5.3.3.1.2 SupportedParamResult fields
	13.5.3.3.1.3 SupportedCommandResult fields
	13.5.3.3.1.4 SupportedEventResult

	13.5.3.4 GetSupportedDM Error Codes

	13.5.4 GetSupportedProtocol
	13.5.4.1 GetSupportedProtocol Request fields
	13.5.4.2 GetSupportedProtocolResponse fields

	13.6 Notifications and Subscription Mechanism
	13.6.1 Using Subscription Objects
	13.6.1.1 ReferenceList Parameter

	13.6.2 Responses to Notifications and Notification Retry
	13.6.3 Notification Types
	13.6.3.1 ValueChange
	13.6.3.2 ObjectCreation and ObjectDeletion
	13.6.3.3 OperationComplete
	13.6.3.4 OnBoardRequest
	13.6.3.5 Event
	13.6.3.6 Notify Examples

	13.6.4 The Notify Message
	13.6.4.1 Notify Request fields
	13.6.4.1.1 Event fields
	13.6.4.1.2 ValueChange fields
	13.6.4.1.3 ObjectCreation fields
	13.6.4.1.4 ObjectDeletion fields
	13.6.4.1.5 OperationComplete fields
	13.6.4.1.5.1 OutputArgs fields
	13.6.4.1.5.2 CommandFailure fields

	13.6.4.1.6 OnBoardRequest fields

	13.6.4.2 Notify Response fields
	13.6.4.3 Notify Error Codes

	13.7 Defined Operations Mechanism
	13.7.1 Synchronous Operations
	13.7.2 Asynchronous Operations
	13.7.2.1 Persistance of Asynchronous Operations

	13.7.3 Operate Requests on Multiple Objects
	13.7.4 Event Notifications for Operations
	13.7.5 Concurrent Operations
	13.7.6 Operate Examples
	13.7.7 The Operate Message
	13.7.7.1 Operate Request fields
	13.7.7.2 Operate Response fields
	13.7.7.2.1 OperationResult fields
	13.7.7.2.1.1 Using req_obj_path
	13.7.7.2.1.2 OutputArgs fields
	13.7.7.2.1.3 CommandFailure fields

	13.7.7.3 Operate Message Error Codes

	13.8 Error Codes
	13.8.1 Vendor Defined Error Codes

	14 Authentication and Authorization
	14.1 Authentication
	14.2 Role Based Access Control (RBAC)
	14.3 Trusted Certificate Authorities
	14.4 Trusted Brokers
	14.5 Self-Signed Certificates
	14.6 Agent Authentication
	14.7 Challenge Strings and Images
	14.8 Analysis of Controller Certificates
	14.8.1 Receiving a USP Record
	14.8.2 Sending a USP Record
	14.8.3 Checking a Certificate Containing an Endpoint ID
	14.8.4 Using a Trusted Broker

	14.9 Theory of Operations
	14.9.1 Data Model Elements
	14.9.2 Roles (Access Control)
	14.9.2.1 Role Definition
	14.9.2.2 Special Roles
	14.9.2.3 A Controller’s Role
	14.9.2.4 Role Associated with a Credential or Challenge

	14.9.3 Assigning Controller Roles
	14.9.4 Controller Certificates and Certificate Validation
	14.9.5 Challenges
	14.9.6 Certificate Management
	14.9.7 Application of Modified Parameters

	15 Annex A - HTTP Bulk Data Collection
	15.1 Enabling HTTP/HTTPS Bulk Data Communication
	15.1.1 Use of the URI Query Parameters
	15.1.2 Use of HTTP Status Codes
	15.1.2.1 HTTP Retry Mechanism

	15.1.3 Use of TLS and TCP

	15.2 Encoding of Bulk Data
	15.2.1 Using Wildcards to Reference Object Instances in the Report
	15.2.2 Using Alternative Names in the Report
	15.2.2.1 Using Object Instance Wildcards and Parameter Partial Paths with Alternative Names

	15.2.3 Processing of Content for Failed Report Transmissions
	15.2.4 Encoding of CSV Bulk Data
	15.2.4.1 Defining the Report Layout of the Encoded Bulk Data
	15.2.4.2 Layout of Content for Failed Report Transmissions
	15.2.4.3 CSV Encoded Report Examples
	15.2.4.3.1 CSV Encoded Reporting Using ParameterPerRow Report Format
	15.2.4.3.2 CSV Encoded Reporting Using ParameterPerColumn Report Format

	15.2.5 Encoding of JSON Bulk Data
	15.2.5.1 Defining the Report Layout of the Encoded Bulk Data
	15.2.5.2 Layout of Content for Failed Report Transmissions
	15.2.5.3 Using the ObjectHierarchy Report Format
	15.2.5.4 Using the NameValuePair Report Format
	15.2.5.5 Translating Data Types
	15.2.5.6 JSON Encoded Report Example

	16 Appendix I - Software Module Management
	16.1 Lifecycle Management
	16.2 Software Modules
	16.2.1 Deployment Units
	16.2.1.1 UUID Generation

	16.2.2 Execution Units

	16.3 Execution Environment Concepts
	16.4 Fault Model
	16.4.1 DU Faults
	16.4.1.1 Install Faults
	16.4.1.2 Update Faults
	16.4.1.3 Uninstall Faults

	16.4.2 EU Faults

	17 Appendix I - Firmware Management of Devices with USP Agents
	17.1 Getting the firmware image onto the device
	17.2 Using multiple firmware images
	17.2.1 Switching firmware images
	17.2.2 Performing a delayed firmware upgrade
	17.2.3 Recovering from a failed upgrade

	18 Appendix III - Device Proxy
	19 Appendix IV - Proxying
	19.1 Proxying Building Block Functions
	19.2 Discovery Proxy
	19.3 Connectivity Proxy
	19.4 Message Transfer Protocol (MTP) Proxy
	19.4.1 MTP Header Translation Algorithms
	19.4.2 CoAP / STOMP MTP Proxy Example Message Flow

	19.5 USP to Non-USP Proxy

	20 Appendix V - IoT Data Model Theory of Operation
	20.1 Introduction
	20.2 IoT data model overview
	20.2.1 IoT Capability table
	20.2.2 Node object table

	20.3 Architecture mappings
	20.3.1 Individual IoT devices
	20.3.2 Proxied IoT devices

	20.4 IoT data model object details
	20.4.1 Common capability parameters
	20.4.1.1 Type definition
	20.4.1.2 Unit definition

	20.4.2 Control Objects
	20.4.2.1 BinaryControl
	20.4.2.2 LevelControl
	20.4.2.3 EnumControl

	20.4.3 Sensor Objects
	20.4.3.1 Binary Sensor
	20.4.3.1.1 Simple binary state sensor
	20.4.3.1.2 Threshold trigger sensor
	20.4.3.1.3 Trigger time control
	20.4.3.1.4 Repeated trigger with grace period
	20.4.3.1.5 Repeated trigger with minimum duration

	20.4.3.2 Level Sensor
	20.4.3.2.1 Level reading
	20.4.3.2.2 Threshold trigger
	20.4.3.2.3 Multi Level Sensor

	20.4.3.3 Enum Sensor

	20.5 Examples
	20.5.1 Example: A/C Thermostat
	20.5.2 Example: Light with a dimmer and switch
	20.5.3 Example: Fan
	20.5.4 Example: Multi-Sensor strip with a common battery.
	20.5.5 Example: Ceiling Fan with integrated light
	20.5.6 Example: Power strip
	20.5.7 Example: Battery powered radiator thermostat

