

TR-208 Performance Test Plan For In-Premises Powerline Communication Systems

Issue: 3 Issue Date: November 2019

© Broadband Forum. All rights reserved.

Notice

The Broadband Forum is a non-profit corporation organized to create guidelines for broadband network system development and deployment. This Technical Report has been approved by members of the Forum. This Technical Report is subject to change. This Technical Report is copyrighted by the Broadband Forum, and all rights are reserved. Portions of this Technical Report may be copyrighted by Broadband Forum members.

Intellectual Property

Recipients of this Technical Report are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property rights of which they may be aware that might be infringed by any implementation of this Technical Report, or use of any software code normatively referenced in this Technical Report, and to provide supporting documentation.

Terms of Use

1. License

Broadband Forum hereby grants you the right, without charge, on a perpetual, non-exclusive and worldwide basis, to utilize the Technical Report for the purpose of developing, making, having made, using, marketing, importing, offering to sell or license, and selling or licensing, and to otherwise distribute, products complying with the Technical Report, in all cases subject to the conditions set forth in this notice and any relevant patent and other intellectual property rights of third parties (which may include members of Broadband Forum). This license grant does not include the right to sublicense, modify or create derivative works based upon the Technical Report except to the extent this Technical Report includes text implementable in computer code, in which case your right under this License to create and modify derivative works is limited to modifying and creating derivative works of such code. For the avoidance of doubt, except as qualified by the preceding sentence, products implementing this Technical Report are not deemed to be derivative works of the Technical Report.

2. NO WARRANTIES

THIS TECHNICAL REPORT IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NONINFRINGEMENT IS EXPRESSLY DISCLAIMED. ANY USE OF THIS TECHNICAL REPORT SHALL BE MADE ENTIRELY AT THE IMPLEMENTER'S OWN RISK, AND NEITHER THE BROADBAND FORUM, NOR ANY OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE USE OF THIS TECHNICAL REPORT.

3. THIRD PARTY RIGHTS

Without limiting the generality of Section 2 above, BROADBAND FORUM ASSUMES NO RESPONSIBILITY TO COMPILE, CONFIRM, UPDATE OR MAKE PUBLIC ANY THIRD PARTY ASSERTIONS OF PATENT OR OTHER INTELLECTUAL PROPERTY RIGHTS THAT MIGHT NOW OR IN THE FUTURE BE INFRINGED BY AN IMPLEMENTATION OF THE TECHNICAL REPORT IN ITS CURRENT, OR IN ANY FUTURE FORM. IF ANY SUCH RIGHTS ARE DESCRIBED ON THE TECHNICAL REPORT, BROADBAND FORUM TAKES NO POSITION AS TO THE VALIDITY OR INVALIDITY OF SUCH ASSERTIONS, OR THAT ALL SUCH ASSERTIONS THAT HAVE OR MAY BE MADE ARE SO LISTED.

The text of this notice must be included in all copies of this Technical Report.

Issue History

lssue Number	Approval Date	Publication Date	Issue Editor	Changes
1	24 August 2015	11 September 2015	Marcos Martínez, MaxLinear Inc	Original
2	13 March 2017	5 May 2017	Marcos Martínez, MaxLinear Inc	General Updates and inclusion of application tests
3	26 November 2019	26 November 2019	Marcos Martínez, MaxLinear Inc	Inclusion of additional tests and general updates

Comments or questions about this Broadband Forum Technical Report should be directed to info@broadband-forum.org.

Editor:	Marcos Martínez Vázquez, MaxLinear Inc
Work Area Director(s):	Herman Verbueken, Nokia Dong Wei
Project Stream Leader(s):	Marcos Martínez Vázquez, MaxLinear Inc

Table of Contents

Executive Summary	9
1 Purpose and Scope	10
1.1 Purpose 1.2 Scope	
2 References and Terminology	11
 2.1 Conventions	12 13
3 Technical Report Impact	15
 3.1 Energy Efficiency 3.2 Security 3.3 Privacy 	15
4 Throughput at different layers	16
5 Test Environment	17
5.1 PLC Test Configuration5.2 Requirements of the Test Configuration	
6 DUT Requirements	18
 6.1 DUT requirements 6.2 Frequency Bands 6.3 Notching 6.3.1 Notches specifications over power lines 6.4 Mains 	18 18 <i>18</i>
7 Equipment for Testing	21
 7.1 Equipment specifications	21 25 25 25 30
8 Test list	31
9 Test Setups	33
9.1 Test Lab Set Ups 9.1.1 Setup S-S1 9.1.2 Setup S-S2 9.1.3 Setup S-S4 9.1.4 Setup S-M1 9.1.5 Setup S-M2 9.1.6 Setup S-M4	33 34 34 34 34

9.1.7 S	etup S-NN1	.34
9.1.8 S	etup S-NN2	.35
9.1.9 S	etup S-NN3	
9.1.10	Setup S-NN4	
9.1.11	Setup S-MN1	
9.1.12	Setup S-MN2	
9.1.13	Relay Setup	.36
9.1.14	Setup S-PSD1	.37
9.1.15	Setup S-APP1	.37
9.2 Note	ches	38
9.3 Traf	fic configuration	38
	raffic configuration 1 – timed ping	
	raffic configuration 2 – continuous ping	
	raffic configuration 3 – continuous traffic (UDP)	
	raffic configuration 4 – continuous traffic (TCP)	
	raffic configuration 5 – RFC2544 Throughput	
	raffic Configuration 6 – Security Setup 2 Nodes	
	raffic Configuration 7 – Security Setup 3 Nodes	
9.3.8 T	raffic Configuration 8 – Multicast UDP streams	.41
	raffic Configuration 9 – Unicast UDP streams	
	affic Configuration 10 – Unicast TCP streams (high priority)	
9.3.11 Tra	affic Configuration 11 – Unicast TCP streams (default priority)	42
	ologies under test	
	5	
10 Tes	t description	44
		4 -
	bughput Performance tests	45
10.1.1	Rate vs Attenuation tests	
10.1.2	Bidirectional traffic	
10.2 Neig	hbouring Networks	53
10.2 Neig 10.2.1	ghbouring Networks Rate in NN conditions	.53 . <i>5</i> 3
10.2 Neig 10.2.1 10.2.2	ghbouring Networks Rate in NN conditions Admission in NN conditions	.53 .53 .61
10.2 Neig 10.2.1 10.2.2 10.3 PSE	ghbouring Networks. Rate in NN conditions Admission in NN conditions	.53 .53 .61 .62
10.2 Neig 10.2.1 10.2.2 10.3 PSE 10.3.1	ghbouring Networks Rate in NN conditions Admission in NN conditions	.53 .53 .61 .62
10.2 Neig 10.2.1 10.2.2 10.3 PSE	ghbouring Networks. Rate in NN conditions Admission in NN conditions	.53 .53 .61 .62 .62
10.2 Neig 10.2.1 10.2.2 10.3 PSE 10.3.1 10.3.2	ghbouring Networks Rate in NN conditions Admission in NN conditions Measurements Validation of PSD	.53 .53 .61 .62 .62 .63
10.2 Neig 10.2.1 10.2.2 10.3 PSE 10.3.1 10.3.2	ghbouring Networks Rate in NN conditions Admission in NN conditions Measurements Validation of PSD Notches	.53 .61 .62 .62 .63 .64
10.2 Neig 10.2.1 10.2.2 10.3 PSE 10.3.1 10.3.2 10.4 Nois 10.4.1	ghbouring Networks Rate in NN conditions Admission in NN conditions Deasurements Validation of PSD Notches Se immunity Noise immunity	.53 .61 .62 .62 .63 .64 .64
10.2 Neig 10.2.1 10.2.2 10.3 PSE 10.3.1 10.3.2 10.4 Nois 10.4.1	ghbouring Networks Rate in NN conditions Admission in NN conditions Measurements Validation of PSD Notches se immunity	53 .53 .61 .62 .62 .63 .64 .64
10.2 Neig 10.2.1 10.2.2 10.3 PSE 10.3.1 10.3.2 10.4 Nois 10.4.1 10.5 Top	ghbouring Networks Rate in NN conditions Admission in NN conditions Deasurements Validation of PSD Notches se immunity Noise immunity Noise immunity Noise stup	.53 .61 .62 .62 .63 .64 .64 .66
10.2 Neig 10.2.1 10.2.2 10.3 PSE 10.3.1 10.3.2 10.4 Nois 10.4.1 10.5 Top 10.5.1 10.5.2	ghbouring Networks Rate in NN conditions Admission in NN conditions Deasurements Validation of PSD Notches se immunity Noise immunity Noise immunity Network setup Relay	.53 .61 .62 .62 .63 .64 .64 .66 .66
10.2 Neig 10.2.1 10.2.2 10.3 PSE 10.3.1 10.3.2 10.4 Nois 10.4.1 10.5 Top 10.5.1 10.5.2 10.6 Traf	ghbouring Networks Rate in NN conditions Admission in NN conditions D Measurements Validation of PSD Notches se immunity Noise immunity Noise immunity Network setup Relay fic	.53 .61 .62 .62 .63 .64 .64 .66 .66 .68
10.2 Neig 10.2.1 10.2.2 10.3 PSE 10.3.1 10.3.2 10.4 Nois 10.4.1 10.5 Top 10.5.1 10.5.2 10.6 Traf 10.6.1	ghbouring Networks Rate in NN conditions Admission in NN conditions D Measurements Validation of PSD Notches. se immunity Noise immunity Noise immunity Noise immunity Network setup Relay fic. Latency	53 .61 62 .62 .63 64 .66 .66 .66 .68 .69
10.2 Neig 10.2.1 10.2.2 10.3 PSE 10.3.1 10.3.2 10.4 Nois 10.4.1 10.5 Top 10.5.1 10.5.2 10.6 Traf 10.6.1 10.6.2	ghbouring Networks Rate in NN conditions Admission in NN conditions D Measurements Validation of PSD Notches. Se immunity Noise immunity Noise immunity Noise immunity Noise immunity Network setup Relay fic. Latency Bursts	53 .53 .61 .62 .62 .63 .64 .66 .66 .68 .69 .70
10.2 Neig 10.2.1 10.2.2 10.3 PSE 10.3.1 10.3.2 10.4 Nois 10.4.1 10.5 Top 10.5.1 10.5.2 10.6 Traf 10.6.1 10.6.2 10.6.3	ghbouring Networks Rate in NN conditions Admission in NN conditions D Measurements Validation of PSD Notches. Se immunity Noise immunity Noise immunity Noise immunity Noise immunity Network setup Relay fic. Latency Bursts Flow maintenance	53 .53 .61 .62 .63 .64 .66 .66 .69 .70 .71
10.2 Neig 10.2.1 10.2.2 10.3 PSE 10.3.1 10.3.2 10.4 Nois 10.4.1 10.5 Top 10.5.1 10.5.2 10.6 Traf 10.6.2 10.6.3 10.6.4	ghbouring Networks. Rate in NN conditions. Admission in NN conditions. D Measurements. Validation of PSD. Notches. Se immunity. Noise immunity. Noise immunity. Network setup. Relay. fic. Latency. Bursts. Flow maintenance. Throughput.	53 .61 .62 .62 .63 .64 .66 .66 .68 .69 .70 .71 .72
10.2 Neig 10.2.1 10.2.2 10.3 PSE 10.3.1 10.3.2 10.4 Nois 10.4.1 10.5 Top 10.5.1 10.5.2 10.6 Traf 10.6.2 10.6.3 10.6.4 10.7 Sec	ghbouring Networks Rate in NN conditions Admission in NN conditions O Measurements Validation of PSD Notches Se immunity Noise immunity Noi	53 .53 .61 .62 .63 .64 .66 .66 .66 .69 .70 .71 .72 .74
10.2 Neig 10.2.1 10.2.2 10.3 PSE 10.3.1 10.3.2 10.4 Nois 10.4.1 10.5 Top 10.5.1 10.5.2 10.6 Traf 10.6.2 10.6.3 10.6.4 10.7 Sec 10.7.1	ghbouring Networks Rate in NN conditions Admission in NN conditions O Measurements Validation of PSD Notches se immunity Noise immunity Noise immunity Relay fic Latency Bursts Flow maintenance Throughput urity Access Control	53 .53 .61 .62 .63 .63 .64 .66 .66 .68 .69 .70 .71 .72 .74 .74
10.2 Neig 10.2.1 10.2.2 10.3 PSE 10.3.1 10.3.2 10.4 Nois 10.4.1 10.5 Top 10.5.1 10.5.2 10.6 Traf 10.6.1 10.6.2 10.6.3 10.6.4 10.7 Sec 10.7.1 10.7.2	ghbouring Networks. Rate in NN conditions. Admission in NN conditions. O Measurements. Validation of PSD. Notches. se immunity Noise immunity. Noise immunity. Noise immunity Indextra transformed and tran	53 .61 .62 .63 .64 .66 .66 .68 .69 .70 .71 .72 .74 .74 .76
10.2 Neig 10.2.1 10.2.2 10.3 PSE 10.3.1 10.3.2 10.4 Nois 10.4.1 10.5 Top 10.5.1 10.5.2 10.6 Traf 10.6.1 10.6.2 10.6.3 10.6.4 10.7 Sec 10.7.1 10.7.2 10.8 QoS	ghbouring Networks Rate in NN conditions Admission in NN conditions O Measurements Validation of PSD Notches se immunity Noise immunity ology Network setup Relay fic Latency Bursts Flow maintenance Throughput urity Access Control Encryption	53 .61 .62 .63 .64 .66 .68 .69 .71 .72 .74 .74 .76
10.2 Neig 10.2.1 10.2.2 10.3 PSE 10.3.1 10.3.2 10.4 Nois 10.4.1 10.5 Top 10.5.1 10.5.2 10.6 Traf 10.6.1 10.6.2 10.6.3 10.6.4 10.7 Sec 10.7.1 10.7.2 10.8 QoS 10.8.1	ghbouring Networks. Rate in NN conditions Admission in NN conditions O Measurements Validation of PSD. Notches se immunity Noise immunity ology Network setup Relay. fic. Latency Bursts Flow maintenance Throughput urity. Access Control. Encryption	53 .61 .62 .63 .64 .66 .66 .69 .71 .72 .74 .74 .78
10.2 Neig 10.2.1 10.2.2 10.3 PSE 10.3.1 10.3.2 10.4 Nois 10.4.1 10.5 Top 10.5.1 10.5.2 10.6 Traf 10.6.1 10.6.2 10.6.3 10.6.4 10.7 Sec 10.7.1 10.7.2 10.8 QoS 10.8.1 10.9 Mult	ghbouring Networks Rate in NN conditions Admission in NN conditions O Measurements Validation of PSD Notches se immunity Noise immunity ology Network setup Relay fic Latency Bursts Flow maintenance Throughput urity Access Control Encryption Seminode Performance	53 .61 .62 .63 .64 .66 .68 .69 .71 .72 .74 .76 .78 .79
10.2 Neig 10.2.1 10.2.2 10.3 PSE 10.3.1 10.3.2 10.4 Nois 10.4.1 10.5 Top 10.5.1 10.5.2 10.6 Traf 10.6.2 10.6.3 10.6.4 10.7 Sec 10.7.1 10.7.2 10.8 QoS 10.8.1 10.9 Mult 10.9.1	ghbouring Networks Rate in NN conditions Admission in NN conditions O Measurements Validation of PSD Notches se immunity Noise immunity ology Network setup Relay fic Latency Bursts Flow maintenance Throughput urity Access Control Encryption Section Multinode Performance	53 .61 .62 .63 .64 .66 .66 .69 .71 .72 .74 .76 .78 .79 .79
10.2 Neig 10.2.1 10.2.2 10.3 PSE 10.3.1 10.3.2 10.4 Nois 10.4.1 10.5 Top 10.5.1 10.5.2 10.6 Traf 10.6.2 10.6.3 10.6.3 10.6.4 10.7 Sec 10.7.1 10.7.2 10.8 QoS 10.8.1 10.9 Mult 10.9.1 10.10 A	ghbouring Networks Rate in NN conditions Admission in NN conditions O Measurements Validation of PSD Notches se immunity Noise immunity ology Network setup Relay fic. Latency Bursts Flow maintenance Throughput urity Access Control GoS inode Performance Multinode Performance pplication Tests	53 .61 .62 .63 .64 .66 .66 .69 .70 .71 .74 .76 .78 .79 .79 .82
10.2 Neig 10.2.1 10.2.2 10.3 PSE 10.3.1 10.3.2 10.4 Nois 10.4.1 10.5 Top 10.5.1 10.5.2 10.6 Traf 10.6.1 10.6.2 10.6.3 10.6.4 10.7 Sec 10.7.1 10.7.2 10.8 QoS 10.8.1 10.9 Mult 10.9.1 10.10 A 10.10 A 10.10.1	ghbouring Networks Rate in NN conditions Admission in NN conditions O Measurements Validation of PSD Notches se immunity Noise immunity ology Network setup Relay fic Latency Bursts Flow maintenance Throughput urity Access Control Encryption Section Multinode Performance	53 .62 .62 .63 .64 .66 .66 .69 .71 .72 .74 .76 .78 .79 .82 .82

	10.10.3	3 Self-generated video	86
11	С	Conclusion	
Ann	ex A:	TR-208 combinations	

Table of Figures

Figure 1: Universal PLC splitter schematic	~
Figure 2: Example of Power Combiner diagram	3
Figure 3: Slope filter connection	
Figure 4:	4
Figure 5: Channel emulator black box	6
Figure 6: Example solution for channel emulation	6
Figure 7: N2 noise	8
Figure 8: N3 noise	
Figure 9: N4 noise	9
Figure 10: Setup S-S1	3
Figure 11: Setup S-S4	4
Figure 12: Setup S-NN1	
Figure 13: Setup S-NN2	6
Figure 14: Setup S-PSD1	
Figure 15: General description of S-APP1 setup	
Figure 16: Description of S-APP1 setup	8

Table of Tables

Table 1: Throughput Definitions	16
Table 2: PLC Types by Frequency Range	18
Table 3: International amateur radio bands in the frequency range 0-100 MHz	19
Table 4: International broadcast bands	19
Table 5: Aeronautical mobile bands	20
Table 6: Radio astronomy bands	20
Table 7: Noise Types	25
Table 8: Spectrum analyzer configuration for f ≤ 30MHz	30
Table 9: Spectrum analyzer configuration for f > 30MHz	
Table 10: List of Tests by type	31
Table 11: List of setups	
Table 12: Traffic configuration 3 options	39
Table 13: Traffic configuration 8 options	40
Table 14: Traffic configuration 5 options	40
Table 15: List of topologies	42
Table 16: UDP point to point throughput: Test procedure	45
Table 17: TCP point to point throughput: Test procedure	46
Table 18: UDP point to point throughput under noise: Test procedure	47
Table 19: TCP point to point throughput under noise: Test procedure	48
Table 20: UDP bidirectional traffic. No noise: Test procedure	49
Table 21: TCP bidirectional traffic. No noise: Test procedure	50
Table 22: Variable UDP traffic: Test procedure	51
Table 23: Variable TCP traffic: Test procedure	
Table 24: UDP, 2 networks: Test procedure	53
Table 25: TCP, 2 networks: Test procedure	55
Table 26: UDP, 3 networks: Test procedure	57
Table 27: TCP, 3 networks: Test procedure	59
Table 28: Joining a new node to an already established network	61
Table 29: PSD measurement 100 kHz-200 MHztest procedure	
Table 30: Notch validation test procedure	
Table 31: Noise immunity and performance: Test procedure	64
Table 32: On/Off Impulsive noise immunity and performance: Test procedure	65
Table 33: Network setup: Test procedure	66

Table 34: Joining a new node to an already established network: Test procedure	67
Table 35: Round-trip latency: Test procedure	69
Table 36: Ability to deal with bursty traffic: Test procedure	70
Table 37: Flow maintenance: Test procedure	
Table 38: Maximum throughput with no frame loss for Unidirectional Traffic : Test procedure	72
Table 39: Maximum throughput with no frame loss for Bidirectional Traffic: Test procedure	73
Table 40: Access Control: Test procedure	74
Table 41: P2P Encryption: Test procedure	76
Table 42: P2P Encryption in a multinode network: Test procedure	77
Table 43: QoS: Test procedure	78
Table 44: Multinode, UDP: Test procedure	79
Table 45: Multinode, TCP: Test procedure	81
Table 46: IPTV Video	82
Table 47: VoD video – Configuration 1 (TCP)	
Table 48: VoD video – Configuration 2 (UDP)	85
Table 49: File sharing	86
Table 50: Subset of test configurations for TR-208	88

Executive Summary

Broadband powerline communication systems (PLC) are a key element of home networking since they provide a fast, flexible and reliable communication link between the different devices present in the home.

One of the main particularities of the usage of PLC systems is the difficulty to test them since, because of the specificities of the powerline medium in terms of noises, coupling methods and variety of topologies, it has been traditionally difficult to reproduce tests results and thus to compare different implementation performances. This disparity makes the task of comparing the performance of different implementations difficult for operators.

In order to address this challenge, this document is aimed to provide industry, operators, and test labs with a well-defined test bed and an established set of tests that enable a performance comparison between PLC products and technologies that can be independently verified.

Updates for Issue 2 include:

- General corrections in the test procedures
- Definition of traffic conditions
- Inclusion of application-oriented tests
- Inclusion of slope filter in the setup
- Test setups update
- Testing of modems over SISO/MIMO channels

Updates for Issue 3 include:

- Inclusion of annex on number of test combinations reduction
- Test setup update
- Inclusion of AC-synchronous impedance change effect
- Inclusion of zero-cross detector in the setups
- General corrections in the test procedures

1 Purpose and Scope

1.1 Purpose

This document is aimed to provide industry, operators, and test labs with a well-defined test bed and an established set of tests that enable a performance comparison between powerline products and technologies that can be independently verified.

Testing of wireline home-network transceivers from different vendors or technologies should be possible in a repeatable and reproducible fashion.

1.2 Scope

This document initially focuses on powerline communications (PLC) home network performance testing. Other mediums are for further study.

This document specifically focuses on performance testing. For this, this document provides a real world evaluation method that enables independent (or Operator) test lab evaluation of different products and technologies.

The main categories of tests included in this document are:

- **Throughput performances**: Testing the performance of powerline systems under different conditions of noise, attenuation of the line and electrical infrastructure.
- **Neighboring networks**: Testing of the behavior of the powerline system in presence of a neighboring network of the same technology under different attenuation conditions
- **PSD measurements**: Measurement of transmit PSD in-band and out of band for the system under test.
- **Noise immunity**: Testing the behavior of the system under different noise conditions.
- **Topology**: Testing the ability of the system to handle the topology of the network and its evolution over time.
- **Traffic**: Testing the capacity of the system to handle different traffic types and maintaining the QoS of that traffic.
- Security: Testing the capacity of the system to provide at least minimal security features.
- **QoS**: Quality of service performance tests
- **Multinode performance**: Testing the capacity of the system to operate in a network with multiple active nodes.
- **Application tests**: Testing the capacity of the system to distribute application streams to a user (e.g. IPTV)

Finally, an annex is provided in a separate excel sheet with a template of a test report that will facilitate comparison of the results obtained between different products and technologies.

2 References and Terminology

2.1 Conventions

In this Technical Report, several words are used to signify the requirements of the specification. These words are always capitalized. More information can be found be in RFC 2119 [2].

SHALL	This word, or the term "REQUIRED", means that the definition is an absolute requirement of the specification.
SHALL NOT	This phrase means that the definition is an absolute prohibition of the specification.
SHOULD	This word, or the term "RECOMMENDED", means that there could exist valid reasons in particular circumstances to ignore this item, but the full implications need to be understood and carefully weighed before choosing a different course.
SHOULD NOT	This phrase, or the phrase "NOT RECOMMENDED" means that there could exist valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full implications need to be understood and the case carefully weighed before implementing any behavior described with this label.
MAY	This word, or the term "OPTIONAL", means that this item is one of an allowed set of alternatives. An implementation that does not include this option MUST be prepared to inter-operate with another implementation that does include the option.

2.2 References

The following references are of relevance to this Technical Report. At the time of publication, the editions indicated were valid. All references are subject to revision; users of this Technical Report are therefore encouraged to investigate the possibility of applying the most recent edition of the references listed below. A list of currently valid Broadband Forum Technical Reports is published at www.broadband-forum.org.

Doc	ument	Title	Source	Year
[1]	<u>RFC2544</u>	Benchmarking Methodology for Network Interconnect Devices	IETF	1999
[2]	<u>RFC 2119</u>	Key words for use in RFCs to Indicate Requirement Levels	IETF	1997
[3]	<u>RFC2474</u>	Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers	IETF	1998

2.3 Definitions

The following terminology is used throughout this Technical Report.

- **Pairing** Pairing two devices refers to the process that results in both devices interchanging the encryption keys in order to establish secure communications in a network
- **PLC Node** Any network device that contains a powerline transceiver capable of operating over premises power-line wiring (either making use of two conductors or three conductors).

2.4 Abbreviations

This Technical Report uses the following abbreviations:

AC AWGN	Alternating Current Additive white Gaussian noise
BW	Bandwidth
DSCP	Differentiated Services Code Point
DUT	Device Under Test
EMI	Electromagnetic interference
HF	High-Frequency
IEC	International Electrotechnical Comission
L	Live
MIMO	Multiple Inputs; Multiple Outputs
Ν	Neutral
OFDM	Orthogonal Frequency Division Multiplexing
PE	Protective Earth
PC	Power Combiner
PLC	Powerline Communications
PLR	Packet Loss Rate
PSD	Power Spectral Density
PVC	Polyvinyl chloride
RFI	Radio Frequency interference
SISO	Single Input; Single Output
UPLC	Universal PLC splitter
VAC	Volts Alternating Current
XPUT	Throughput
ZCD	Zero-Cross Detector

3 Technical Report Impact

3.1 Energy Efficiency

TR-208 has no impact on energy efficiency.

3.2 Security

TR-208 has no impact on security.

3.3 Privacy

Any issues regarding privacy are not affected by TR-208.

4 Throughput at different layers

Table 1: Throughput Definitions		
Throughput Type	Definition	
PHY layer throughput	Bits transmitted over the physical medium over a given period. This throughput is usually provided by the DUT. It can be instantaneous (instantaneous PHY layer throughput) or estimated (average PHY layer throughput), when the DUT takes into account the estimated resources that are allocated to the transmitter.	
Ethernet PHY Throughput	Bits transmitted over the Ethernet connector of the DUT over a given period. This metric is usually provided by an external entity (traffic analyzer) and does not take into account the Ethernet overhead (headers, signalling, etc).	
Aggregated PHY PHY Layer throughput in both directions of a bidirectional link		
Estimated Average PHY Throughput Aggregated PHY Throughput divided by 2.		
	The PHY Throughput deviation (in %) in a bidirectional link is calculated through the formula:	
PHY Throughput	DEVIATION = $\frac{AVG-MIN}{AGG} \times 100$ where,	
Deviation	 AVG is the Estimated Average PHY Throughput 	
	• MIN = Min($XPUT_{1\rightarrow 2}, XPUT_{2\rightarrow 1}$)	
	AGG is the Aggregated PHY Throughput	
Application Throughput	Bits transmitted by a given application over the communication system under study over a given time. This metric is usually provided by an external entity (program running on a computer) and does not take into account the application layer overhead (headers, signalling, etc)	

Whenever one of the above throughput definitions is qualified with the word "normalized" we will refer to the throughput normalized over a 1 MHz bandwidth using the formula:

$$XPUT_{NORM} = \frac{XPUT}{BW}$$

Where,

- XPUT_{NORM}= Throughput (in Mbits/s per MHz) under a normalized bandwidth of 1 MHz
- XPUT = Throughput in Mbits/s
- BW = Bandwidth in MHz allowed to be used by the system (starting at 2 MHz and ending at the frequency corresponding to the maximum sub-carrier allowed to be used by the system)

5 Test Environment

Testing of PLC devices should be possible using a methodology that is standardized and findings reproducible.

Testing shall be held in a shielded environment where RFI and EMI ingress is negligible across the full 1 MHz to 100 MHz frequency range.

5.1 PLC Test Configuration

Section 9 of this document provides the different setups that have to be used during the test process.

5.2 Requirements of the Test Configuration

Cable simulation, traffic configurations, attenuators, loads, noise disturbers, mains, and test environment are clearly defined and should be adhered to. Any deviation from the program shall be noted in any published test report.

6 **DUT Requirements**

6.1 DUT requirements

When possible, commercially available systems shall be used for testing.

6.2 Frequency Bands

High-Frequency (HF) PLC modems generally work in two frequency ranges. Only OFDM-based PLC is considered in this evaluation document. Some HF OFDM PLC modems used a frequency range of 2 to 30 MHz, while other PLC modems use a frequency range from 2 up to 100 MHz. The following table shows the types of HF PLC considered here.

PLC technology bandwidth	Short name	Start Frequency	End Frequency
25 MHz	PLC-1A	2	25
30 MHz	PLC-1B	2	30
50 MHz	PLC-2	2	50
67 MHz	z PLC-3 2		67
80 MHz	PLC-4	2	80
86 MHz	PLC-5	2	86
100 MHz	PLC-6	2	100

 Table 2: PLC Types by Frequency Range

Note – Previous table is based on currently available products based on different PLC technologies. This list may be updated in the future as needed.

6.3 Notching

6.3.1 Notches specifications over power lines

For the tests to be of "real world" validity, the international ham notches should be enabled in the devices under test (DUTs). If these notches are not enabled, it shall be reported clearly in any published test results.

6.3.1.1 International amateur radio bands

Band start (kHz)	Band stop (kHz)
1 800	2 000
3 500	4 000
7 000	7 300
10 100	10 150
14 000	14 350
18 068	18 168
21 000	21 450
24 890	24 990
28 000	29 700
50 000	54 000

Table 3: International amateur radio bands in the frequency range 0-100 MHz

6.3.1.2Additional radio frequency bands

Additional (optional) radio frequency bands where PSD reduction may be required by national regulations:

Band start (kHz)	Band stop (kHz)
2 300	2 498
3 200	3 400
3 900	4 000
4 750	5 060
5 900	6 200
7 200	7 450
9 400	9 900
11 600	12 100
13 570	13 870
15 100	15 800

Table 4: International broadcast bands

17 480	17 900
18 900	19 020
21 450	21 850
25 670	26 100

Table 5: Aeronautical mobile bands

Band start (kHz)	Band stop (kHz)
2 850	3 150
3 400	3 500
3 800	3 950
4 650	4 850
5 450	5 730
6 525	6 765
8 815	9 040
10 005	10 100
11 175	11 400
13 200	13 360
15 010	15 100
17 900	18 030
21 924	22 000
23 200	23 350

Table 6: Radio astronomy bands

Band start (kHz)	Band stop (kHz)
13 360	13 410
25 550	25 670

In case these additional (optional) notches are applied to the DUT, it shall be clearly indicated in the test report.

6.4 Mains

The mains in different countries vary from 100 to 240 Volts AC at 50 or 60 Hz, one or three phase. For the repeatability and reproducibility of test results as of phase and timing of the noises and loads it is mandatory that the power source in different test labs is constant and stable and conformant. This is defined for repeatability of test results.

Two voltage/frequency pairs are considered for this test plan 110 VAC - 60 Hz and 220 VAC - 50 Hz.

7 Equipment for Testing

7.1 Equipment specifications

The test tools shall meet the requirements specified in the following clauses. Any variation from these requirements shall be noted in any published test report.

The frequency bands used for testing PLC modems shall be from 2 MHz to 100 MHz (See Table 6-1), therefore all test equipment must be capable of covering this frequency range.

7.1.1 Attenuators, Filters, Adapters

Characteristic impedance (Z_0) of 50 Ohms will be assumed for all the attenuators, coaxial cables, splitters and power combiners mentioned in this document.

7.1.1.1Variable attenuator

An attenuator is a passive device that is used to reduce the power of the signal received at its input. Within the scope of this document, the value of the power reduction (attenuation) is usually required to be programmable (Variable Attenuator).

Variable Attenuators used in the different setups shall:

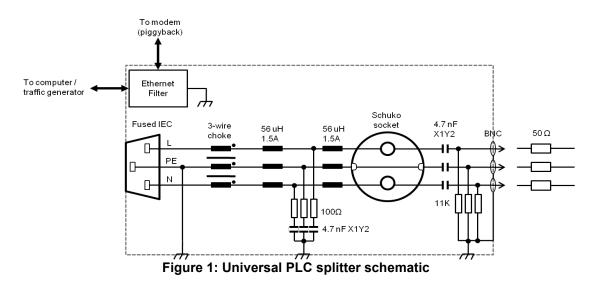
- Cover attenuation values from 8 to 100 dB in 1 dB steps
- Frequency response shall be uniform (flat) ± 1.0 dB from 1 MHz to 100 MHz

7.1.1.2Splitter

Within the scope of this document, a splitter is a 3dB power combiner/divider: a passive device that connects three segments of a coaxial medium combining/dividing the power of the signals that pass through this device.

7.1.1.3Filters

Within the scope of this document, a filter is a passive device that is used to remove all unwanted frequency components (at least those that could affect the PLC frequency bands) from/to the AC supply. Usually, the filter provides a plug towards the main AC supply and a socket to provide "clean" AC supply to the powerline test setup (at least in the PLC frequency bands).


7.1.1.4PLC to coax

The use of PLC to coax equipment is deprecated.

7.1.1.5Universal PLC splitter

The Universal PLC splitter (UPLC) is an equipment that allows to transfer the powerline signal (transmitted either through 2 or 3 wires) that is being sent over a powerline cable into the three different coaxial conductors (corresponding to L, N and PE).

The following schematic shows an example of how such a device may be implemented:

Before using the Universal PLC splitter in any of the setups described in this document, the equipment needs to be calibrated.

7.1.1.6 Power Combiner

Within the scope of this document, a power combiner is a device that allows combining a generated noise signal and the normal signal on a coaxial line.

An example diagram of a power combiner made with three splitters in shown in Figure 1.

The power combiner offers three ports. Two of them (e.g. A and B) are connected to the line while the third port (C) shall be connected to the noise source.

There is always an attenuation (e.g. 6 dBs in the implementation shown below) between each of the ports that shall be taken into account in the test setups when using the power combiner.

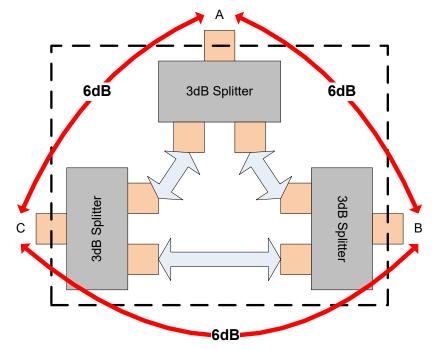


Figure 2: Example of Power Combiner diagram

7.1.1.7 Video source

This module represents the source of video stream. As an easy way to measure throughput and packet loss (main indicator in video streams for objective quality, not needing human assessment) a combination of iperf client and ping tools running on a laptop is used for laboratory trials. Other video sources may be used to assess the subjective quality of the transmission.

Note – Laptop IP Addresses may be assigned by DHCP/SLAAC or fixed for better traceability.

7.1.1.8 Video probe

As in the case of the video source, this module representing the sink of video streams is an iperf server running on a laptop for laboratory tests. Other probes (human-based for example) may be used for subjective assessment (using VLC player for example) and generating video sources from the video source.

Note - Laptop IP Addresses may be assigned by DHCP/SLAAC or fixed for better traceability.

7.1.1.9 Layer 2 switch

A layer 2 switch is used in IPTV application tests to control IGMP/MLD procedures (e.g., generating of IGMP control messages). The configuration shall be the following:

- Use default VLAN ID = 1
- Multicast Filtering must be enabled for all the interfaces

MLD/IGMP snooping must be enabled on all the interfaces

7.1.1.10 Slope filter

In some tests, a slope filter may be added to the variable attenuator to provide a better match to a real powerline channel. In these tests, a slope filter is placed concatenated to the variable attenuator as shown in the following figure:

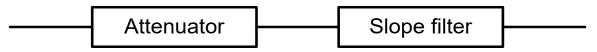
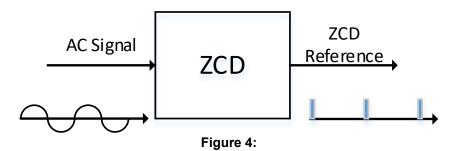


Figure 3: Slope filter connection

The slope filter shall have the following characteristics:

- Monotonically increasing in attenuation from 1 MHz to 100 MHz
- Attenuation of 1 dBs (± 1 dBs) at 1 MHz
- Attenuation of 20 dBs (± 1 dBs) at 100 MHz
- Attenuation of 10 dBs (± 3 dBs) at 30 MHz
- Return loss measured at both ports of the test setup shall be better than 15 dBs in the 2 MHz-100 MHz range.

7.1.1.11 Zero-Cross Detector


Variances at power generators and through the power distribution system and the presence of noise on the line cause the actual power-line frequency supplied to a node to jitter, compared to the nominal 50 or 60 Hz line frequency. This jitter is normally compensated internally by a zero-cross detection function implemented internally to powerline modems.

In order to have a common reference for the powerline modems and the effects emulated in the TR-208 setup (e.g. noise injection), a reference signal shall be extracted from the AC line through an external zerocross detection circuit.

In order to cope with the jitter in the zero-crossing point, the zero-crossing detector should include a smoothing function

The ZCD mechanism and reference signal shall be unique in the TR-208 setup. If several ZCDs are present in the TR-208 setup (e.g. the ZCD mechanism is integrated in the UPLC), only one of them shall be used.

The following figure provides a functional description of such block.

The Zero Cross Detect (ZCD) signal pulse shall be generated on every AC Mains frequency zero crossing events.

To allow for greater accuracy and to support the significant jitter components in noisy powerline environments both rising and falling edges shall meet the following requirements:

- 1) There shall be a single edge in every transition of the single-phase AC Mains.
- 2) The AC Mains shall be in the range of 90 V- 250 V RMS and 47-63 Hz.
- 3) The delay from the AC Mains zero crossing to the ZCD edge transition shall be less than 25 µsec.
- 4) The ZCD signal pulse generated shall be compatible with 50 Ohm-to-1 M Ohm trigger inputs available at test instruments.

7.1.2 Cable Type Definition

A study of the electrical wire types used in different countries shows a large variation of possible wire types that differ in insulation, wire section and copper. The electrical characteristics of a cable that are important for high speed digital transmission are typically the attenuation of the cable, the impedance variation and the delay. The attenuation of a cable is mainly defined by the diameter of the copper conductor. However, given distances of only tens of meters or tens of feet, the wire diameter is not critical for testing PLC devices in an in-home environment.

The impedance of IEC 3-wire electricity cables tends to be around 75 Ohm.

Given the fact that attenuation based on cable diameter is not the crucial factor, and that the impedance of common IEC electrical cable is around 75 Ohm, 1.5 mm² PVC cable with an impedance of 75 Ohm is the cable model used for the tests.

7.1.3 Noise generator

The noise generator of the channel emulator shall be able to emulate the following types of noises:

Noise	Noise Name	Description	Characteristics/Comments
N1	AWGN	AWGN	See clause 7.2.4.1
N2	Narrowband	Ingress noise with FM modulation	See clause 7.2.4.2
N3	Non Cyclo- stationary	Impulsive bursty noise	See clause 7.2.4.3
N4	Cyclo-stationary	Synchronous bursty noise	See clause 7.2.4.4

Table 7: Noise Types

All the noise signal amplitudes ("Amplitude") described in the following clauses take into account any losses introduced by power combiners required for the noise injection. $Z_0 = 50$ Ohms considered for the signal generators.

Note – Use of loads and noises representing devices such as light bulbs, mobile chargers, dimmers, drills and appliances are for further study

7.1.4 Channel emulator

In the framework of this document, a channel emulator is a component (or set of components) that allows to emulate the behavior of a real powerline channel.

The channel emulator shall offer two ports (Ports A and B) connected to two PLC modems, offering as inputs/outputs three coaxial lines corresponding to L,N and PE.

The channel emulator shall include a noise generator function. This noise generator function can be activated/ deactivated in the tests. Section 7.1.3 describes the different noises that need to be generated.

When used, the noise generator shall apply the noise in port B-side and the noise injection shall be synchronized with the ZCD circuit.

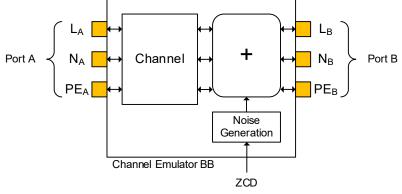
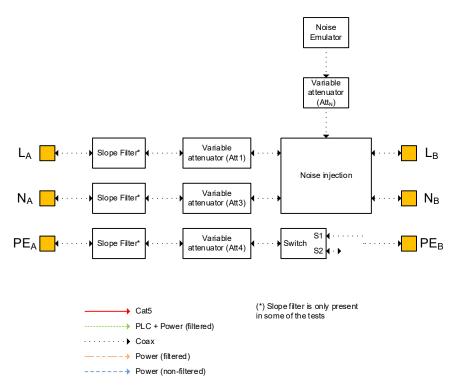



Figure 5: Channel emulator black box

This channel emulator black box has two main parameters:

- ATT_{A-B} is the attenuation desired between port A and port B for all ports (unless otherwise described in the test)
- ATT_N is the attenuation to be applied to the noise before the injection on the line.

WT-208 provides an example of such channel emulator that can be used as a default solution for the tests:

Figure 6: Example solution for channel emulation

The Noise injection box represented in previous figure shall ensure that the noise generated in the noise emulator is injected differentially between lines (L_B, N_B) and that no crosstalk is introduced between lines L_B and N_B . This noise shall be injected without disturbing or changing the characteristics of the signal path. For

this, several techniques may be applied (e.g. through the use of high output impedance injectors connected to L_B and N_B).

A switch may be used to emulate 2-wire channels. Whenever a PLC transmission over a 2-wire channel is being emulated the switch in PE line is left open (Position S_2).

The attenuation of the channel emulator between two ports ATT_{A-B} shall be the sum of the attenuations of the different elements in the path.

 ATT_N is the attenuation to be applied to the noise before the injection on the line.

When using the solution for channel emulator described in this document, the following relationships shall be satisfied:

- "L"line:
 - $\circ \quad \text{ATT}_{A-B} = \text{Att}_1 + \text{Att}_{PC}$
 - "N"line: ○ ATT_{A-B} = Att₃ + Att_{PC} "PE"line:
 - - $\circ \quad \mathsf{ATT}_{\mathsf{A}-\mathsf{B}} = \mathsf{Att}_4 + \mathsf{Att}_{\mathsf{SWITCH}}$

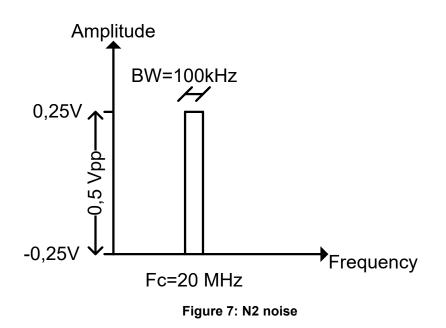
Where:

- Att_{PC} is the attenuation introduced by the power combiner
- Att_{SWITCH} is the attenuation introduced by the switch (if applicable)

Note – In those tests where a slope filter may be applied, it will be placed serially with the attenuation Att_1 , Att_3 and Att_4 . A slope filter is needed for each of the lines.

7.1.4.1 Noise 1 (N1): AWGN

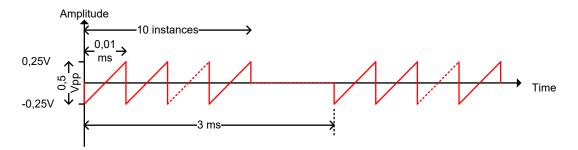
The Additive white Gaussian noise has the following characteristics:

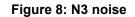

- Noise source: Signal generator
- Amplitude: -100 dBm/Hz

The noise shall be applied from 2 MHz to 100 MHz.

7.1.4.2 Noise 2 (N2): Narrowband noise

The Narrowband noise has the following characteristics:


- Noise source: Signal generator
- Sine signal
- Central frequency: 20 MHz
- Amplitude: 0.5 Vpp
- FM modulation with BW of 100 kHz



7.1.4.3Noise 3 (N3): Non cyclostationary noise

The Non-cyclostationary noise has the following characteristics:

- Noise source: Signal generator
- Ramp signal
- Frequency: 100 kHz
- Amplitude: 0.5 Vpp
- Duration of the burst: 10 cycles
- Period of the burst: 3 ms

7.1.4.4 Noise 4 (N4): Cyclostationary noise

The Cyclostationary noise has the following characteristics:

- Noise source: Signal generator
- Ramp signal
- Frequency: 100 kHz
- Amplitude: 0.5 Vpp
- Duration of the burst: 10 cycles
- Period of the burst: 1/2 AC cycle

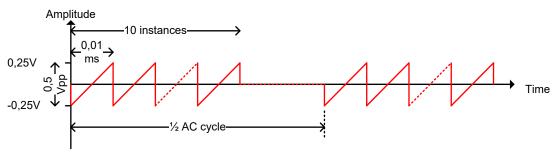


Figure 9: N4 noise

7.1.5 Spectrum analyzer

The spectrum analyzer to be used during PSD measurements shall be configured as follows:

Parameter	Value	Unit				
Start frequency	1	MHz				
Stop frequency	30	MHz				
Resolution Bandwidth (RBW) (Note 1)	9	kHz				
Video bandwidth (VBW)	100	kHz				
RF attenuation (analyzer dependent)	40	dB				
Type of detector	rms	-				
Sweep time 5						
Note 1 – According to CISPR 16-1, the bandwidth of the resolution filter is specified at -6 dB for EMI measurements. Not all spectrum analyzers have this feature						

Table 8: Spectrum analyzer configuration for $f \le 30$ MHz

Table 9: Spectrum analyzer configuration for f > 30MHz	
--	--

Parameter	Value	Unit	
Start frequency	30	MHz	
Stop frequency	100	MHz	
Resolution Bandwidth (RBW) (Note 1)	120	kHz	
Video bandwidth (VBW)	1	MHz	
RF attenuation (analyzer dependent)	40	dB	
Type of detector	rms	-	
Sweep time	5	S	

Note 1 – According to CISPR 16-1, the bandwidth of the resolution filter is specified at -6 dB for EMI measurements. Not all spectrum analyzers have this feature

8 Test list

The tests included in this program are summarized in the following table. The table provides specific test information with the section where the text is described.

): List of Tests by type		
Category	Family	Test ID	Test Descriptor	Section	Setup
		S1	UDP point to point throughput	10.1.1.1	S-S1
		S2	TCP point to point throughput	0	S-S1
	Rate vs Attenuation	S3	UDP point to point throughput under noise	0	S-S2
Throughput Performance		S4	TCP point to point throughput under noise	0	S-S2
		S5	UDP bidirectional no noise	10.1.2.1	S-S1
	Bidirectional	S6	TCP bidirectional no noise	0	S-S1
	traffic	S7	Variable UDP traffic	0	S-S1
		S8	Variable TCP traffic	0	S-S1
		N1	UDP, 2 networks	10.2.1.1	S-NN1
	Rate in NN	N2	TCP, 2 networks	0	S-NN1
Neighboring	conditions	N3	UDP, 3 networks	0	S-NN2
Networks		N4	TCP, 3 networks	0	S-NN2
	Admission in NN conditions	N5	Joining a new node to an already established network	10.2.2.1	S-NN1
PSDMeasurem	Validation of PSD	PS1	PSD measurement 100 KHz-200 MHz	10.3.1.1	S-PSD1
ents	Notches	PS2	Notch validation	10.3.2.1	S-PSD1
		NI1	Noise immunity and performance	10.4.1.1	S-S2
Noise immunity	Noise immunity	NI2	On/Off Impulsive noise immunity and performance	0	S-S2
	Network setup	T1	Network setup	10.5.1.1	S-S1
Topology		T2	Joining a new node to an already established network	0	S-S4
	Delay	T3	Single node relay	10.5.2.1	FFS
	Relay	T4	Multi-node Relay	10.5.2.2	FFS
	Latency	TS1	Round-trip latency	10.6.1.1	S-S1
	Bursts	TS2	Ability to deal with bursty traffic	10.6.2.1	S-S1
	Flow maintenance	TS3	Flow maintenance	10.6.3.1	S-S1
Traffic	Throughput	TS4	Maximum throughput with no frame loss for Unidirectional Traffic	10.6.4.1	S-S1
		TS5	Maximum throughput with no frame loss for Bidirectional Traffic	0	S-S1
	Access Control	SEC1	Access Control	10.7.1.1	S-S4
Security		SEC2	P2P Encryption	10.7.2.1	S-S1
Security	Encryption	SEC3	P2P Encryption in a multinode network	0	S-S4
QoS	QoS	QOS1	QoS	10.8.1	S-S1
Multinode	Multinode	MN1	Multinode, UDP	10.9.1.1	S-MN2
Performance	Performance	MN2	Multinode, TCP	0	S-MN2
Application	IPTV	IPTV-1	IPTV video	10.10.1.1	S-APP1
Application tests	VoD	VoD-1	VoD video. Configuration 1 (TCP)	10.10.2.1	S-APP1
10313	v UD	VoD-2	VoD video. Configuration 2	0	S-APP1

Table 10: List of Tests by type

Category	Family	Test ID	Test Descriptor	Section	Setup
			(UDP)		
	Self-generated video	FS-1	File sharing	10.10.3.1	S-APP1

9 Test Setups

The requirements are to establish a series of tests that provide a near real world test set up while at the same time stressing the technologies to ensure their limitations are understood and that they are able to be compared on a "like for like" basis regarding test set up and parameters

9.1 Test Lab Set Ups

The lab shall set up according to the figures shown in the following sections.

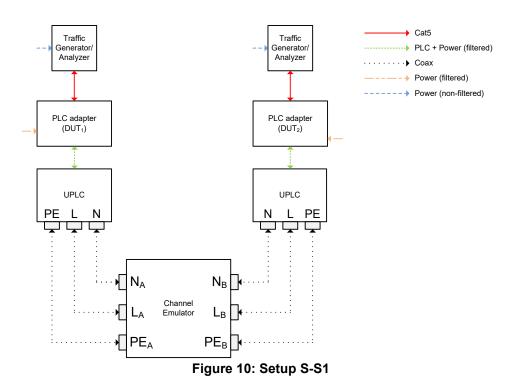
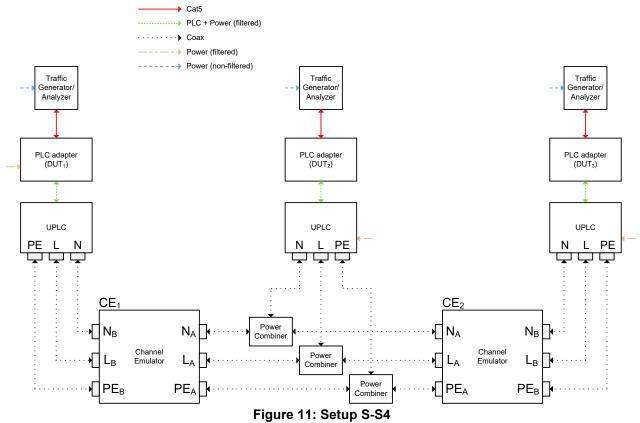

Note that in the following set-ups, there may be a management connection to the DUT. These are excluded from the diagrams for clarity.

Table 11: List of setups	
Setup	Clause
S-S1	9.1.1
S-S2	9.1.2
S-S4	9.1.3
S-NN1	9.1.7
S-NN2	9.1.8
S-MN2	9.1.12
Relay setup	9.1.13
S-PSD1	9.1.14

Table 11: List of setups

9.1.1 Setup S-S1

The following shall be the test bed set up for the tests with no interference.


Note – Noise injection is implemented in the channel emulator (see clause 7.1.4)

9.1.2 Setup S-S2

This setup is deprecated.

9.1.3 Setup S-S4

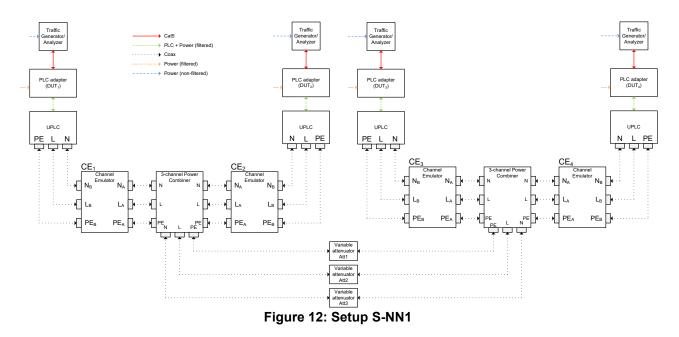
The following shall be the test bed set up for the tests needing three nodes.

Note - Noise injection is implemented in the channel emulator (see clause 7.1.4)

9.1.4 Setup S-M1

This setup is deprecated

9.1.5 Setup S-M2


This setup is deprecated

9.1.6 Setup S-M4

This setup is deprecated

9.1.7 Setup S-NN1

This setup is used to show the performance of two neighbouring networks of the same technology.

Note - Noise injection is implemented in the channel emulator (see clause 7.1.4)

9.1.8 Setup S-NN2

This setup is used to show the performance of three neighbouring networks of the same technology.

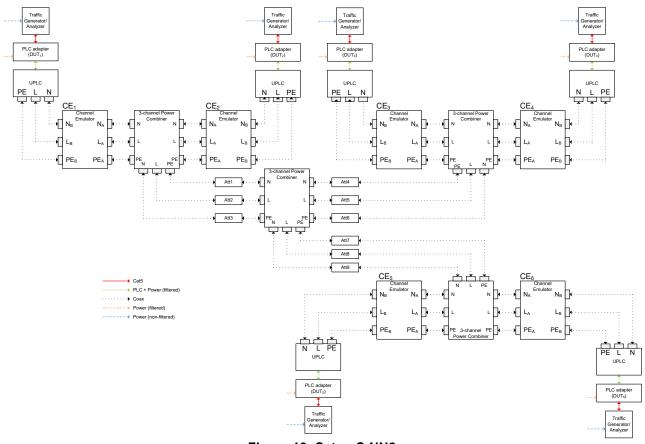


Figure 13: Setup S-NN2

Note - Noise injection is implemented in the channel emulator (see clause 7.1.4)

9.1.9 Setup S-NN3

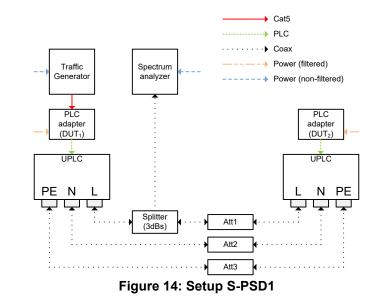
This setup is deprecated

9.1.10 Setup S-NN4

This setup is deprecated

9.1.11 Setup S-MN1

This setup is deprecated


9.1.12 Setup S-MN2

This setup is deprecated

9.1.13 Relay Setup

This section is for further study

9.1.14 Setup S-PSD1

This section describes the setup that shall be used for PSD tests.

Note – In this setup, the Splitter can be connected to the line to be measured (L, N, PE) **Note** – If DUT_1 is capable of transmitting frames autonomously, DUT_2 is not needed in this setup.

9.1.15 Setup S-APP1

This section describes the setup that shall be used for video application tests.

The general approach is to build a setup with 6 nodes:

- A source node, connected to a video source emulating the source of the video streams.
- **Five video probes**, connected to the video stream (emulating STBs) that will analyze the quality of the video streams arriving to the receiver.

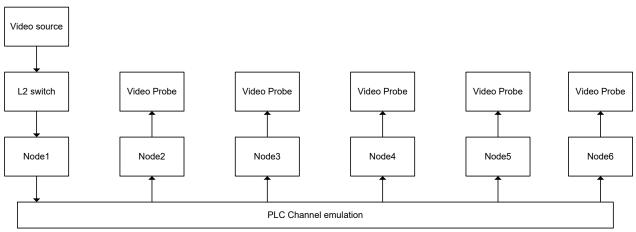


Figure 15: General description of S-APP1 setup

As in the cases of previous tests, the PLC channel can be modeled in different ways. For WT-208 purposes, the PLC signal is usually transformed into its coaxial equivalent through the use of UPLCs in order to better control the attenuations and be able to inject controlled external sources of noises and model infrastructure

effects (lack of one cable, etc...). However, the coax-based PLC channel emulation can be replaced by a full powerline network for simple tests by the operator.

The following figure shows a full view of this setup:



Figure 16: Description of S-APP1 setup

Note – The previous figure does not show all the three lines of the coax connection. The UPLC shall be connected through three coaxial lines.

9.2 Notches

The DUT shall be configured to mask sub-carriers for the bands specified in 6.3.1.1 Additional notches may be applied to the DUT. In that case, these additional notches shall be clearly indicated in the test report.

9.3 Traffic configuration

This section presents different traffic configurations. Each of these traffic configurations can be used during the tests described in section 10.

In this section, we will use the following terminology:

- a.a.a.a (IPv4) or a.a.a.a.a.a.a.a (IPv6) = IP address of the device connected to Node A
- b.b.b.b (IPv4) or b.b.b.b.b.b.b.b (IPv6) = IP address of the device connected to Node B
- c.c.c.c (IPv4) or c.c.c.c.c.c (IPv6) = IP address of the device connected to Node C

In the rest of the document, IPv4 will be used unless otherwise specified; however, it can be replaced by IPv6 when needed.

This general configuration shall be used unless otherwise specified:

- Layer2 packet type: Ethernet Class II
- Ethertype: 0x0800 (IPv4) or 0x86DD (IPv6)

Note – only the same machines, without changes between tests, should be used for comparison purposes unless clearly noted in published results

The traffic priorities shall be the same for all traffic streams, unless changed within a specific test.

9.3.1 Traffic configuration 1 – timed ping

From a PC set up a timed ping in the direction Node A -> Node B using the following command:

- Windows: ping b.b.b.b -n T
- Linux: ping b.b.b.b -w T

where T = time of the ping test in seconds

9.3.2 Traffic configuration 2 – continuous ping

For a packet size P, and interval I (in seconds), from a PC set up a continuous ping in the direction Node A - > Node B using the following command:

- Windows: ping b.b.b.b –t -l P
- Linux: ping b.b.b.b -s P -i I

Notes:

- Packet size = IP header (20 bytes) + ICMP header (8 bytes) + payload; P specifies the payload size only.
- 2. Stop ping using CTRL+C
- 3. Unless otherwise specified, a packet size of P =1514 bytes and an interval I = 1s shall be used
- 4. The interval cannot be set in Windows ping and is fixed at 1s

9.3.3 Traffic configuration 3 – continuous traffic (UDP)

Traffic analyzer to record packet loss and traffic generator generating UDP traffic with the following packet sizes (unless stated otherwise):

	3A	3B	3C
Packet size (including CRC)	1500 bytes	512 bytes	64 bytes

Table 12: Traffic configuration 3 options

9.3.4 Traffic configuration 4 – continuous traffic (TCP)

Traffic analyzer to record packet loss and traffic generator generating TCP traffic with the following packet sizes and TCP window sizes (unless stated otherwise):

Table 13: Traffic configuration 8 options						
	TCP window Size 64K			TCP window Size 128K		
	4A	4A 4B 4C			4E	4F
Packet size (including CRC)	1500 bytes	512 bytes	64 bytes	1500 bytes	512 bytes	64 bytes

Table 13: Traffic configuration 8 options

9.3.5 Traffic configuration 5 – RFC2544 Throughput

Traffic analyzer and generator executing RFC2544 Throughput test to record maximum throughput with no packet loss for the following settings (unless stated otherwise):

Table 14: Tranic configuration 5 options		
Frame sizes	64, 128, 256, 512, 1024, 1280, 1518 (bytes)	
Trial Duration	60 seconds	
Frame Format	UDP Echo Request with enough data to fill out	
	the required frame size	
Load Type	Binary Search	
Acceptable Frame Loss	0%	
Initial Rate	500 Mbps	
Minimum Rate	10 Mbps	
Maximum Rate	700 Mbps	
Resolution	1 Mbps	

Table 14: Traffic configuration 5 options

9.3.6 Traffic Configuration 6 – Security Setup 2 Nodes

For a packet size P, and interval I (in seconds), set up a continuous ping in the directions Node A to Node B using the following command:

- Windows: ping x.x.x.x –t -l P
- Linux: ping x.x.x.x -s P –i I

Notes:

- 1. Packet size = IP header (20 bytes) + ICMP header (8 bytes) + payload; P specifies the payload size only.
- 2. Stop ping using CTRL+C
- 3. Unless otherwise specified, a packet size of P =1514 bytes and an interval I = 1s shall be used
- 4. The interval cannot be set in Windows ping and is fixed at 1s

9.3.7 Traffic Configuration 7 – Security Setup 3 Nodes

For a packet size P, and interval I (in seconds), set up a continuous ping in the directions Node A to Node B, Node A to Node C, Node B to Node C using the following command:

- Windows: ping x.x.x.x –t -l P
- Linux: ping x.x.x.x -s P –i I

Notes:

- 1. Packet size = IP header (20 bytes) + ICMP header (8 bytes) + payload; P specifies the payload size only.
- 2. Stop ping using CTRL+C
- 3. Unless otherwise specified, a packet size of P =1514 bytes and an interval I = 1s shall be used
- 4. The interval cannot be set in Windows ping and is fixed at 1s

9.3.8 Traffic Configuration 8 – Multicast UDP streams

Setup one/several multicast flows from a video source (e.g., IPTV Header) to a video sink (e.g. IPTV Probe) using an iperf client/server.

On the video header side (iperf client) use the following command:

iperf -c <Multicast address> -u -b 30M -S 0xA0 -i 1 - t 30 > <LOG_FILE>

On the video probe side (iperf server), use the following command:

iperf -s -u -B <MCAST_ADDRESS> -S 0xA0 -i1> <LOG_FILE>

<*MCAST_ADDRESS*> represents the address of the multicast stream being reproduced. <LOG> Represents a log file name

Note – Modifier -S 0xA0 will stream video with highest priority (Priority 5 = 0xA0). **Note –** -b 30M will generate streams of 30 Mbit/s

The use of this configuration requires the use of an IGMP query generator function in the network (like a router).

9.3.9 Traffic Configuration 9 – Unicast UDP streams

Setup one/several unicast flows from a video source to a video sink using an iperf client/server.

On the video header side (iperf client) use the following command:

iperf -c <IP_ADDRESS> -u -b 30M -S 0xA0 -i 1 -t 30 > <LOG_FILE>

On the video probe side (iperf server), use the following command:

iperf -s -u -S 0xA0 -i 1 > <LOG_FILE>

<*IP_ADDRESS*> represents the address of the iperf server.<LOG> Represents a log file name

Note – Modifier -S 0xA0 will stream video with highest priority (Priority 5 = 0xA0). **Note –** -b 30M will generate streams of 30 Mbit/s

The use of this configuration requires the use of an IGMP query generator function in the network (like a router).

9.3.10 Traffic Configuration 10 – Unicast TCP streams (high priority)

Setup one/several unicast flows from a video source to a video sink using an iperf client/server.

On the video header side (iperf client) use the following command:

On the video probe side (iperf server), use the following command:

iperf -s -S 0xA0 -i 1 > <LOG_FILE>

<IP_ADDRESS> represents the address of the iperf server <LOG> Represents a log file name

Note – Modifier -S 0xA0 will stream video with highest priority (Priority 5 = 0xA0).

9.3.11 Traffic Configuration 11 – Unicast TCP streams (default priority)

Setup one/several unicast flows from a source to a video sink using an iperf client/server.

On the transmitter side (iperf client) use the following command:

On the receiver side (iperf server), use the following command:

</P_ADDRESS> represents the address of the iperf server <LOG> represents a log file name

9.4 Topologies under test

The setups described in this test plan may be used to emulate either a 2-wire or a 3-wire transmission channel, depending of the presence of a protective earth line (PE).

The user of this test plan shall decide which combinations of the channel and the DUTs are meaningful for the purposes of the test and report it in the test report.

The following table summarizes these combinations and may be used as a guideline to choose which ones are to be included in the test plan.

Trx Node mode	Rx Node mode	Channel	Scenario	Comment
SISO	SISO	2-wire	Testing the capacity of SISO modems to operate over legacy wiring	Typical case
		3-wire	Testing the capacity of SISO modems over new wiring	

Table 15: List of topologies

		2-wire	N/A	
SISO	MIMO	3-wire	Testing MIMO receiver capacities over new wiring	
	2-wire	Testing MIMO transmitter capacities over legacy wiring		
MIMO	SISO	3-wire	Testing MIMO transmitter capacities over legacy wiring	
		2-wire	Testing the capacity of MIMO modems to operate on legacy wiring (only one channel)	
MIMO	MIMO	3-wire	Testing the capacity of MIMO modes to operate on new wiring (2 channels)	Typical case

10 Test description

In the following tests the way to verify certain vendor specific items depend on monitoring tool provided by each vendor. It is assumed in each test that tool exists and provides the corresponding information. The information assumed to be provided by each vendor is:

- Network creation status
- Devices registered/associated to a network
- Time that takes a device to join a network
- Mechanism to perform pairing of two devices

10.1 Throughput Performance tests

10.1.1 Rate vs Attenuation tests

10.1.1.1 UDP point to point throughput

Test ID	S1	
Test Name	UDP point to point throughput under different attenuations	
Purpose	Calculate UDP throughput in a context of two nodes with programmable	
	attenuation.	
Test Setup	S-S1	
Traffic configuration(s)	3A; 3B; 3C	
Device requirements	None	
Initial conditions	No noise is applied	
Procedure	 Power-up DUT1. Verify that it creates a network Power-up DUT2. Verify that it is registered in the network created in step 1 Connect the traffic generator to DUT1 (transmitter) and traffic analyzer to DUT2 (receiver). Configure the attenuation (Att_{A-B}) to a minimum level of attenuation studied (e.g. 10 dB) Send traffic during 1 minute for channel estimation to complete (increase traffic till the channel is saturated) Send traffic generator to generate a stream of traffic configuration 3A with maximum bandwidth Run a traffic test from DUT1 to DUT2 at 100% utilization of the channel for 10s and record the throughput in Mbit/s Repeat steps 5 to 7 increasing Att_{A-B} with steps of 10 dBs till the maximum attenuation studied (e.g. 90 dBs) Repeat steps 5 to 9 with traffic configuration 3B instead of 3A in step 6 Repeat steps 1 to 11 exchanging DUT1 and DUT2 	
	13. Repeat steps 1 to 12 adding a slope filter to the setup	
Captured metrics	 Capture received throughput at traffic analyzer and record the results in the corresponding report table. 	

Table 16: UDP	noint to i	point throughput:	Test procedure
		some un ougriput.	

10.1.1.2 TCP point to point throughput

Test ID	S2		
Test Name	TCP point to point throughput under different attenuations		
Purpose	Calculate TCP throughput in a context of two nodes with programmable attenuation.		
Test Setup	S-S1		
Traffic configuration(s)	4A; 4B; 4C; 4D; 4E; 4F		
Device requirements	None		
Initial conditions	No noise is applied		
Procedure	1. Power-up DUT1. Verify that it creates a network		
	 Power-up DUT2. Verify that it is registered in the network created in step 1 		
	 Connect the traffic generator to DUT1 (transmitter) and traffic analyzer to DUT2 (receiver). 		
	 Configure the attenuator Att_{A-B} to a minimum level of attenuation studied (e.g 10 dBs) 		
	5. Send traffic during 1 minute for channel estimation to complete (increase traffic till the channel is saturated)		
	 Set the traffic generator to generate a stream of traffic configuration 4A with maximum bandwidth 		
	 Run a traffic test from DUT1 to DUT2 at 100% utilization of the channel for 10s and record the throughput in Mbit/s 		
	 Repeat steps 5 to 7 increasing Att1_{A-B} with steps of 10 dBs till the maximum attenuation studied (e.g. 90 dBs) 		
	9. Repeat steps 5 to 8 with traffic configurations 4B instead of 4A in step 6 10. Repeat steps 5 to 8 with traffic configuration 4C instead of 4A in step 6		
	11. Repeat steps 5 to 8 with traffic configuration 4D instead of 4A in step 6		
	12. Repeat steps 5 to 8 with traffic configuration 4E instead of 4A in step 6		
	13. Repeat steps 5 to 8 with traffic configuration 4F instead of 4A in step 6		
	14. Repeat steps 1 to 13 exchanging DUT1 and DUT2		
Contured metrics	15. Repeat steps 1 to 14 adding a slope filter to the setup		
Captured metrics	 Capture received throughput at traffic analyzer and record the results in the corresponding report table 		

Table 17: TCP point to point throughput: Test procedure

10.1.1.3 UDP point to point throughput under noise

Test ID	S3	
Test Name	UDP point to point throughput under different attenuations and noises	
Purpose	Calculate UDP throughput in a context of two nodes with programmable attenuation and noise.	
Test Setup	S-S1	
Traffic configuration(s)	3A; 3B; 3C	
Device requirements	None	
Initial conditions	None	
Procedure	1. Power-up DUT1. Verify that it creates a network	
	 Power-up DUT2. Verify that it is registered in the network created in step 1 	
	3. Connect the traffic generator to DUT1 (transmitter) and traffic analyzer to DUT2 (receiver).	
	4. Create the noise (N1)	
	5. Configure the attenuator Att_{A-B} to an attenuation of 20 dBs and attenuation Att_N to 0 dBs	
	 Send traffic during 1 minute for channel estimation to complete (increase traffic till the channel is saturated) 	
	 Send traffic from DUT₂ to DUT₁ during 10 seconds for address learning to complete. 	
	8. Set the traffic generator to generate a stream of traffic configuration 3A with maximum bandwidth	
	 Run a traffic test from DUT1 to DUT2 at 100% utilization of the channel for 10s and record the throughput in Mbit/s 	
	10. Repeat steps 5 to 9 with Att _{A-B} =50 dBs and Att _N =0 dBs	
	11. Repeat steps 5 to 9 with Att _{A-B} =70 dBs and Att _N =20 dBs	
	12. Repeat steps 5 to 11 with traffic configuration 3B instead of 3A in step 7	
	13. Repeat steps 5 to 11 with traffic configuration 3C instead of 3A in step 7	
	14. Repeat steps 1 to 13 with noises, N2, N3, and N4	
Captured metrics	 Capture received throughput at traffic analyzer and record the results in the corresponding report table. 	

 Table 18: UDP point to point throughput under noise: Test procedure

10.1.1.4 TCP point to point throughput under noise

Test ID	S4		
Test Name	TCP point to point throughput under different attenuations and noises		
Purpose	Calculate TCP throughput in a context of two nodes with programmable		
	attenuation and noise.		
Test Setup	S-S1		
Traffic configuration(s)	4A; 4B; 4C;4D;4E;4F		
Device requirements	None		
Initial conditions	None		
Procedure	 Power-up DUT1. Verify that it creates a network 		
	 Power-up DUT2. Verify that it is registered in the network created in step 1 		
	 Connect the traffic generator to DUT1 (transmitter) and traffic analyzer to DUT2 (receiver). 		
	4. Create the noise (N1)		
	5. Configure the attenuator Att_{A-B} to an attenuation of 20 dBs and attenuation Att_N to an attenuation of 0 dBs		
	 Send traffic during 1 minute for channel estimation to complete (increase traffic till the channel is saturated) 		
	7. Set the traffic generator to generate a stream of traffic configuration 4A with maximum bandwidth		
	 Run a traffic test from DUT1 to DUT2 at 100% utilization of the channel for 10s and record the throughput in Mbit/s 		
	9. Repeat steps 5 to 8 with Att _{A-B} =50 dBs and Att _N =0 dBs		
	10. Repeat steps 5 to 8 with Att_{A-B} =70 dBs and Att_2 =20 dBs		
	11. Repeat steps 5 to 10 with traffic configuration 4B instead of configuration 4A in step 7		
	12. Repeat steps 5 to 10 with traffic configuration 4C instead of configuration 4A in step 7		
	13. Repeat steps 5 to 10 with traffic configuration 4D instead of configuration 4A in step 7		
	14. Repeat steps 5 to 10 with traffic configuration 4E instead of configuration 4A in step 7		
	15. Repeat steps 5 to 10 with traffic configuration 4F instead of configuration 4A in step 7		
	16. Repeat steps 1 to 15 with noises N2, N3, and N4		
Captured metrics	 Capture received throughput at traffic analyzer and record the results in the corresponding report table 		

 Table 19: TCP point to point throughput under noise: Test procedure

10.1.2 Bidirectional traffic

10.1.2.1 UDP bidirectional traffic. No noise

Table 20	: UDP bidirectional traffic. No noise: Test procedure
	01

Test ID	S5
Test Name	UDP bidirectional throughput under different attenuations
Purpose	Calculate UDP throughput in a context of two nodes with programmable
	attenuation
Test Setup	S-S1
Traffic configuration(s)	3A; 3B; 3C
Device requirements	None
Initial conditions	No noise.
Procedure	 Power-up DUT1. Verify that it creates a network Power-up DUT2. Verify that it is registered in the network created in step 1 Connect one traffic generator/analyzer to DUT1 and traffic generator/analyzer to DUT2 Configure the attenuation Att_{A-B} to a minimum level of attenuation studied (e.g 10 dBs) Send traffic during 1 minute from the two traffic generators for channel estimation to complete (increase traffic till the channel is saturated) Set the traffic generators to generate a stream of traffic configuration 3A with maximum bandwidth Run a traffic test from DUT1 to DUT2 and from DUT₂ to DUT₁ at 100% utilization of the channel for 10s and record the throughput in Mbit/s Repeat steps 5 to 7 with Att_{A-B}=20 dBs Repeat steps 5 to 7 with Att_{A-B}=70 dBs Repeat steps 5 to 10 with traffic configuration 3B instead of configuration 3A in step 6 Repeat steps 1 to 12 adding a slope filter to the setup
Captured metrics	 Capture received throughput at traffic analyzers, Aggregated throughput, Estimated Average throughput and Throughput deviations and record the results in the corresponding report table.

10.1.2.2 TCP bidirectional traffic. No noise

Test ID	S6
Test Name	TCP bidirectional throughput under different attenuations
Purpose	Calculate UDP throughput in a context of two nodes with programmable
1 uipose	attenuation
Test Setup	S-S1
Traffic configuration(s)	4A; 4B; 4C; 4D;4E;4F
Device requirements	None
Initial conditions	No noise
Procedure	
	1. Power-up DUT1. Verify that it creates a network
	 Power-up DUT2. Verify that it is registered in the network created in step 1
	 Connect one traffic generator/analyzer to DUT₁ and traffic generator/analyzer to DUT₂
	 Configure the attenuation Att_{A-B} to a minimum level of attenuation studied (e.g 10 dBs)
	5. Send traffic during 1 minute from the two traffic generators for channel estimation to complete (increase traffic till the channel is saturated)
	6. Set the traffic generators to generate a stream of traffic configuration 3A with maximum bandwidth
	7. Run a traffic test from DUT ₁ to DUT ₂ and from DUT ₂ to DUT ₁ at 100% utilization of the channel for 10s and record the throughput in Mbit/s
	8. Repeat steps 5 to 7 with Att _{A-B} = 20dBs
	9. Repeat steps 5 to 7 with $Att_{A-B} = 50 \text{ dBs}$
	10. Repeat steps 5 to 7 with Att_{A-B} = 70 dBs
	11. Repeat steps 5 to 10 with traffic configuration 4B instead of
	configuration 4A in step 6
	 12. Repeat steps 5 to 10 with traffic configuration 4C instead of configuration 4A in step 6
	 Repeat steps 5 to 10 with traffic configuration 4D instead of configuration 4A in step 6
	 14. Repeat steps 5 to 10 with traffic configuration 4E instead of configuration 4A in step 6
	 15. Repeat steps 5 to 10 with traffic configuration 4F instead of configuration 4A in step 6Repeat steps 1 to 15 adding a slope filter to the setup
Captured metrics	 Capture received throughput at traffic analyzer s, Aggregated PHY throughput, Estimated Average PHY throughput and PHY Throughput deviations and record the results in the corresponding report table.

 Table 21: TCP bidirectional traffic. No noise: Test procedure

10.1.2.3 Variable UDP Traffic

Test ID	S7
Test Name	
	UDP bidirectional throughput under different conditions of traffic
Purpose	Calculate UDP throughput in a context of two nodes with different traffic
	conditions
Test Setup	S-S1
Traffic configuration(s)	3A; 3B; 3C
Device requirements	None
Initial conditions	No noise
Procedure	 Power-up DUT₁. Verify that it creates a network Power-up DUT₂. Verify that it is registered in the network created in step 1 Connect one traffic generator/analyzer to DUT₁ and traffic generator/analyzer to DUT₂ Configure the attenuation Att_{A-B} to an attenuation of 40 dBs Send during 1 minute traffic from the two traffic generators for channel estimation to complete (increase traffic till the channel is saturated) Set the traffic generators to generate a stream of traffic configuration 3A with a Tx Rate of 10 Mb/s Run a traffic test from DUT₁ to DUT₂ for 10s and record the received throughput in Mbit/s Repeat steps 5 to 7 with steps of 20 Mbit/s for Tx Rate in the traffic generators until one of the links does not accept more traffic (e.g., when Ethernet frames start to be lost) Repeat steps 5 to 8 with traffic configuration 3C instead of configuration 3A in step 6 Repeat steps 5 to 8 with traffic configuration 3C instead of configuration 3A in step 6
	11. Repeat steps 1-10 changing the direction of the traffic (DUT ₂ to DUT ₁)
Captured metrics	 Capture received throughput at traffic analyzer and record the results in the corresponding report table

 Table 22: Variable UDP traffic: Test procedure

10.1.2.4 Variable TCP Traffic

Test ID	S8
Test Name	TCP bidirectional throughput under different conditions of traffic
Purpose	Calculate TCP throughput in a context of two nodes with different traffic
	conditions
Test Setup	S-S1
Traffic configuration(s)	4A; 4B; 4C;4D;4E;4F
Device requirements	None
Initial conditions	No noise
Procedure	 Power-up DUT₁. Verify that it creates a network Power-up DUT₂. Verify that it is registered in the network created in step 1 Connect one traffic generator/analyzer to DUT₁ and traffic generator/analyzer to DUT₂ Configure the attenuation Att_{A-B} to an attenuation of 40 dBs Send traffic during 1 minute from the two traffic generators for channel estimation to complete (increase traffic till the channel is saturated) Set the traffic generators to generate a stream of traffic configuration 4A with a Tx Rate of 10 Mb/s Run a traffic test from DUT₁ to DUT₂ for 10s and record the received throughput in Mbit/s Repeat steps 5 to 7 with steps of 20 Mbit/s for Tx Rate in the traffic generators until one of the links does not accept more traffic (e.g., when Ethernet packets start to be lost) Repeat steps 5 to 8 with traffic configuration 4C instead of configuration 4A in step 6 Repeat steps 5 to 8 with traffic configuration 4D instead of configuration 4A in step 6 Repeat steps 5 to 8 with traffic configuration 4D instead of configuration 4A in step 6 Repeat steps 5 to 8 with traffic configuration 4D instead of configuration 4A in step 6
	13. Repeat steps 5 to 8 with traffic configuration 4F instead of configuration 4A in step 6
	14. Repeat steps 1-13 changing the direction of the traffic (DUT ₂ to DUT ₁)
Captured metrics	1. Capture received throughput at traffic analyzer and record the results in the corresponding report table

Table 23: Variable TCP traffic: Test procedure

10.2 Neighbouring Networks

10.2.1 Rate in NN conditions

10.2.1.1 UDP, 2 networks

	Table 24: UDP, 2 networks: Test procedure
Test ID	N1
Test Name	UDP bidirectional throughput under different conditions of traffic in presence of 1 NN
Purpose	Calculate UDP throughput (Network 1, Technology 1) in a context of two nodes with different traffic conditions in presence of a neighbouring network (Network 2) of the same technology (Technology 1).
Test Setup	S-NN1
Traffic configuration(s)	3A; 3B; 3C
Device requirements	DUT1, DUT2, DUT3 and DUT4
Initial conditions	$\begin{array}{l} CE_1: Att_{A-B} = 15 \; dBs; \; AttN = 0 dBs; \\ CE_2: \; Att_{A-B} = 15 \; dBs; \; Att_{N} = 0 dBs; \\ CE_3: \; Att_{A-B} = 15 \; dBs; \; Att_{N} = 0 dBs; \\ CE_4: \; Att_{A-B} = 15 \; dBs; \; Att_{N} = 0 dBs; \\ Attenuator \; Att_1, \; Att_2 \; and \; Att_3 \; set \; to \; 70 \; dBs. \\ No noise \end{array}$
Procedure	 Power-up DUT₁. Verify that it creates a network (Network 1) Power-up DUT₂. Verify that it is registered in the network created in step 1
	 3. Power-up DUT₃. Verify that it creates a network (Network 2) 4. Power-up DUT₄. Verify that it is registered in the network created in step 3 5. Connect one traffic generator/analyzer to DUT₁ and traffic
	 6. Connect one traffic generator/analyzer to DUT₂ 6. Connect one traffic generator/analyzer to DUT₃ and traffic generator/analyzer to DUT₄
	 7. Send traffic during 1 minute from the two traffic generators for channel estimation to complete (increase traffic till the channel is saturated) 8. Set the traffic generators to generate a stream of traffic configuration 3A with a Tx Rate of 10 Mb/s
	 9. Run a traffic test from DUT₁ to DUT₂ for 10s and record the received throughput in Mbit/s
	10. Run a traffic test from DUT_3 to DUT_4 for 10s and record the received throughput in Mbit/s
	11. Repeat steps 8 to 11 with steps of 20 Mbit/s for Tx Rate in the traffic generators until one of the links does not accept more traffic (e.g., when Ethernet frames start to be lost)
	12. Repeat steps 7 to 11 with $Att_1=Att_2=Att_3=60dBs$
	13. Repeat steps 7 to 11 with $Att_1=Att_2=Att_3=50 dBs$
	14. Repeat steps 7 to 11 with $Att_1=Att_2=Att_3=40dBs$
	15. Repeat steps 7 to 11 with Att ₁ =Att ₂ =Att ₃ = 30dBs
	16. Repeat steps 7 to 11 with $Att_1 = Att_2 = Att_3 = 20 dBs$
	17. Repeat steps 7 to 11 with Att ₁ =Att ₂ =Att ₃ = 10dBs

	18. Repeat steps 7 to 11 with Att ₁ =Att ₂ =Att ₃ = 0dBs
	 Repeat steps 7 to 18 with traffic configuration 3B instead of configuration 3A in step 8
	20. Repeat steps 7 to 18 with traffic configuration 3C instead of configuration 3A in step 8
	21. Repeat steps 1 to 20 with Att _{A-B} =20dBs for all CEs
	22. Repeat steps 1 to 20 with Att _{A-B} =25dBs for all CEs
	23. Repeat steps 1 to 20 with Att _{A-B} =30dBs for all CEs
	24. Repeat steps 1 to 20 with Att _{A-B} =35dBs for all CEs
	25. Repeat steps 1-24 changing the direction of the traffic (DUT ₂ to DUT ₁ and DUT ₄ to DUT ₃)
Captured metrics	 Capture received throughput at traffic analyzer and record the results in the corresponding report table

10.2.1.2 TCP, 2 networks

	Table 25: TCP, 2 networks: Test procedure
Test ID	N2
Test Name	TCP bidirectional throughput under different conditions of traffic in presence of 1 NN
Purpose	Calculate TCP throughput (Network 1, Technology 1) in a context of two nodes with different traffic conditions in presence of a neighbouring network (Network 2) of the same technology (Technology 1).
Test Setup	S-NN1
Traffic configuration(s)	4A; 4B; 4C
Device requirements	DUT_1 , DUT_2 , DUT_3 and DUT_4
Initial conditions	$\begin{array}{l} CE_1: Att_{A-B} = 15 \text{ dBs; AttN=0dBs;} \\ CE_2: Att_{A-B} = 15 \text{ dBs; AttN=0dBs;} \\ CE_3: Att_{A-B} = 15 \text{ dBs; AttN=0dBs;} \\ CE_4: Att_{A-B} = 15 \text{ dBs; AttN=0dBs;} \\ CE_4: Att_{A-B} = 15 \text{ dBs; AttN=0dBs;} \\ Attenuator Att1, Att2 \text{ and Att3 set to 70 dBs} \end{array}$
	No noise
Procedure	 Power-up DUT₁. Verify that it creates a network (Network 1) Power-up DUT₂. Verify that it is registered in the network created in step
	 Power-up DUT₃. Verify that it creates a network (Network 2) Power-up DUT₄. Verify that it is registered in the network created in step 3
	 Connect one traffic generator/analyzer to DUT1 and traffic generator/analyzer to DUT2
	 Connect one traffic generator/analyzer to DUT3 and traffic generator/analyzer to DUT₄
	7. Send traffic during 1 minute from the two traffic generators for channel estimation to complete (increase traffic till the channel is saturated)
	8. Set the traffic generators to generate a stream of traffic configuration 4A with a Tx Rate of 10 Mb/s
	9. Run a traffic test from DUT ₁ to DUT ₂ for 10s and record the received throughput in Mbit/s
	10. Run a traffic test from DUT_3 to DUT_4 for 10s and record the received throughput in Mbit/s
	11. Repeat steps 8 to 11 with steps of 20 Mbit/s for Tx Rate in the traffic generators until one of the links does not accept more traffic (e.g., when Ethernet frames start to be lost)
	12. Repeat steps 7 to 11 with $Att_1=Att_2=Att_3=60$ dBs
	13. Repeat steps 7 to 11 with Att ₁ =Att ₂ =Att ₃ = 50dBs
	14. Repeat steps 7 to 11 with Att ₁ =Att ₂ =Att ₃ = 40dBs
	15. Repeat steps 7 to 11 with Att ₁ =Att ₂ =Att ₃ = 30dBs
	16. Repeat steps 7 to 11 with $Att_1=Att_2=Att_3=20dBs$
	17. Repeat steps 7 to 11 with $Att_1=Att_2=Att_3=10$ dBs
	18. Repeat steps 7 to 11 with $Att_1=Att_2=Att_3=0dBs$
	 19. Repeat steps 7 to 18 with traffic configurations 4B instead of configuration 3A in step 8
	20. Repeat steps 7 to 18 with traffic configurations 4C instead of configuration 3A in step 8

	21. Repeat steps 1 to 20 with Att _{A-B} =20dBs for all CEs 22. Repeat steps 1 to 20 with Att _{A-B} =25dBs for all CEs 23. Repeat steps 1 to 20 with Att _{A-B} =30dBs for all CEs 24. Repeat steps 1 to 20 with Att _{A-B} =35dBs for all CEs
	25. Repeat steps 1-24 changing the direction of the traffic (DUT ₂ to DUT ₁ and DUT ₄ to DUT ₃)
Captured metrics	 Capture received throughput at traffic analyzer and record the results in the corresponding report table.

10.2.1.3 UDP, 3 networks

	Table 26: UDP, 3 networks: Test procedure
Test ID	N3
Test Name	UDP bidirectional throughput under different conditions of traffic in presence of 2 NN
Purpose	Calculate UDP throughput (Network 1, Technology 1) in a context of two
	nodes with different traffic conditions in presence of two neighbouring
	network (Network 2 and Network 3) of the same technology (Technology 1).
Test Setup	S-NN2
Traffic configuration(s)	3A; 3B; 3C
Device requirements	DUT ₁ , DUT ₂ , DUT ₃ , DUT ₄ , DUT ₅ and DUT ₆
Initial conditions	CE_1 : Att _{A-B} = 15 dBs; AttN=0dBs;
	CE_2 : Att _{A-B} = 15 dBs; Att _N =0dBs;
	CE_3 : Att _{A-B} = 15 dBs; Att _N =0dBs;
	CE_4 : Att _{A-B} = 15 dBs; Att _N =0dBs; CE_5 : Att _{A-B} = 15 dBs; Att _N =0dBs;
	CE_{6} : Att _{A-B} = 15 dBs; Att _N =0dBs; CE_{6} : Att _{A-B} = 15 dBs; Att _N =0dBs;
	Attenuator Att ₁ to Att ₉ set to 25 dBs
	No noise
Procedure	1. Power-up DUT ₁ . Verify that it creates a network (Network 1)
	2. Power-up DUT_2 . Verify that it is registered in the network created in step
	1
	3. Power-up DUT ₃ . Verify that it creates a network (Network 2)
	4. Power-up DUT ₄ . Verify that it is registered in the network created in step 3
	5. Power-up DUT ₅ . Verify that it creates a network (Network 2)
	6. Power-up DUT ₆ . Verify that it is registered in the network created in step 5
	 Connect one traffic generator/analyzer to DUT₁ and traffic generator/analyzer to DUT₂
	 Connect one traffic generator/analyzer to DUT₃ and traffic generator/analyzer to DUT₄
	 Connect one traffic generator/analyzer to DUT₅ and traffic generator/analyzer to DUT₆
	10. Send traffic during 1 minute from the two traffic generators for channel estimation to complete (increase traffic till the channel is saturated)
	11. Set the traffic generators to generate a stream of traffic configuration 3A with a Tx Rate of 10 Mb/s
	12. Run a traffic test from DUT ₁ to DUT ₂ for 10s and record the received throughput in Mbit/s
	13. Run a traffic test from DUT ₃ to DUT ₄ for 10s and record the received throughput in Mbit/s
	14. Run a traffic test from DUT ₅ to DUT ₆ for 10s and record the received throughput in Mbit/s
	15. Repeat steps 10 to 14 with steps of 20 Mbit/s for Tx Rate in the traffic generators until one of the links does not accept more traffic (e.g., when Ethernet frames start to be lost)
	16. Repeat steps 10 to 15, with attenuation Att_1 to Att_9 set to 20dBs
	17. Repeat steps 10 to 15, with attenuation Att_1 to Att_9 set to 15dBs
	18. Repeat steps 10 to 15, with attenuation Att_1 to Att_9 set to 10dBs

	 19. Repeat steps 10 to 15, with attenuation Att₁ to Att₉ set to 5dBs 20. Repeat steps 1 to 19 with traffic configuration 3B instead of configuration 3A in step 11
	21. Repeat steps 1 to 19 with traffic configuration 3C instead of configuration 3A in step 11
	22. Repeat steps 1-21 changing the direction of the traffic (DUT ₂ to DUT ₁ , DUT ₄ to DUT ₃ and DUT ₆ to DUT ₅)
Captured metrics	 Capture received throughput at traffic analyzer and record the results in the corresponding report table

10.2.1.4 TCP, 3 networks

	Table 27: TCP, 3 networks: Test procedure
Test ID	N4
Test Name	TCP bidirectional throughput under different conditions of traffic in presence of 2 NN
Purpose	Calculate TCP throughput (Network 1, Technology 1) in a context of two
	nodes with different traffic conditions in presence of two neighbouring
	network (Network 2 and Network 3) of the same technology (Technology 1).
Test Setup	S-NN2
Traffic configuration(s)	4A; 4B; 4C
Device requirements	DUT_1 , DUT_2 , DUT_3 , DUT_4 , DUT_5 and DUT_6
Initial conditions	CE_1 : Att _{A-B} = 15 dBs; AttN=0dBs;
	CE_2 : Att _{A-B} = 15 dBs; Att _N =0dBs;
	CE_3 : Att _{A-B} = 15 dBs; Att _N =0dBs;
	CE_4 : Att _{A-B} = 15 dBs; Att _N =0dBs;
	CE_5 : Att _{A-B} = 15 dBs; Att _N =0dBs;
	CE_6 : Att _{A-B} = 15 dBs; Att _N =0dBs; Attenuator Att1 to Att9 set to 25 dBs
	No noise
Procedure	
	1. Power-up DUT_1 . Verify that it creates a network (Network 1)
	2. Power-up DUT_2 . Verify that it is registered in the network created in step
	3. Power-up DUT ₃ . Verify that it creates a network (Network 2)
	4. Power-up DUT ₄ . Verify that it is registered in the network created in step 3
	5. Power-up DUT ₅ . Verify that it creates a network (Network 2)
	6. Power-up DUT_6 . Verify that it is registered in the network created in step
	5
	7. Connect one traffic generator/analyzer to DUT_1 and traffic
	generator/analyzer to DUT ₂
	8. Connect one traffic generator/analyzer to DUT_3 and traffic
	generator/analyzer to DUT ₄
	9. Connect one traffic generator/analyzer to DUT ₅ and traffic
	generator/analyzer to DUT ₆
	10. Send traffic during 1 minute from the two traffic generators for channel
	estimation to complete (increase traffic till the channel is saturated)
	11. Set the traffic generators to generate a stream of traffic configuration 3A
	with a Tx Rate of 10 Mb/s 12. Run a traffic test from DUT_1 to DUT_2 for 10s and record the received
	throughput in Mbit/s
	13. Run a traffic test from DUT_3 to DUT_4 for 10s and record the received
	throughput in Mbit/s
	14. Run a traffic test from DUT_5 to DUT_6 for 10s and record the received
	throughput in Mbit/s
	15. Repeat steps 10 to 14 with steps of 20 Mbit/s for Tx Rate in the traffic
	generators until one of the links does not accept more traffic (e.g., when
	Ethernet frames start to be lost)
	16. Repeat steps 10 to 15, with attenuation Att_1 to Att_9 set to 20dBs
	17. Repeat steps 10 to 15, with attenuation Att_1 to Att_9 set to 15dBs
	18. Repeat steps 10 to 15, with attenuation Att_1 to Att_9 set to 10dBs
	19. Repeat steps 10 to 15, with attenuation Att_1 to Att_9 set to 5dBs
	20. Repeat steps 1 to 19 with traffic configuration 4B instead of
	configuration 4A in step 11

	 21. Repeat steps 1 to 19 with traffic configuration 4C instead of configuration 4A in step 11 22. Repeat steps 1-21 changing the direction of the traffic (DUT₂ to DUT₁, DUT₄ to DUT₃ and DUT₆ to DUT₅)
Captured metrics	 Capture received throughput at traffic analyzer and record the results in the corresponding report table

10.2.2 Admission in NN conditions

10.2.2.1 Joining a new node to an already established network

	Joining a new node to an already established network
Test ID	N5
Test Name	Joining a new node to an already established network
Purpose	Study the effect on the joining time of the traffic of a domain in presence of
	a neighbouring network (Network 2) of the same technology (Technology
	1).
Test Setup	S-NN1
Traffic configuration(s)	3A
Device requirements	None
Initial conditions	CE ₁ : Att _{A-B} = 15 dBs; AttN=0dBs;
	CE ₂ : Att _{A-B} = 15 dBs; Att _N =0dBs;
	CE_3 : Att _{A-B} = 15 dBs; Att _N =0dBs;
	CE ₄ : Att _{A-B} = 15 dBs; Att _N =0dBs;
	Attenuator Att1, Att2 and Att3 set to 30 dBs
	No noise
Procedure	1. Power-up DUT ₁ . Verify that it creates a network (Network 1)
	2. Power-up DUT ₃ . Verify that it creates a network (Network 2)
	 Power-up DUT₄. Verify that it is registered in the network created in step 3
	 Power-up DUT₂. Verify that it is registered in the network created in step 1. Record the time it took to register in Network 1
	5. Repeat five times the steps 1 to 4, noting the metrics of step 4 each time and doing an average at the end.
Captured metrics	 Measure the time that took DUT₂ to be incorporated into the network and record the results in the corresponding report table.

Table 28: Joining a new node to an already established network

10.3PSD Measurements

10.3.1 Validation of PSD

10.3.1.1 PSD measurement 100kHz-200 MHz

Test ID	PS1	
Test Name	PSD measurement 100 KHz-200 MHz	
Purpose	Study the PSD injected by a DUT in the 100 KHz-200 MHz range.	
Test Setup	S-PSD1	
Traffic configuration(s)	3A	
Device requirements	None	
Initial conditions	Attenuators Att1 is set to 17dBs Attenuators Att2, Att3 are set to 20 dBs Splitter connected to line L	
	Transmit continuous data with the transceiver active for at least 10% of the time	
Procedure	 Measure the frequency response, attenuation and noise floor of the measurement system Power-up DUT₁. Verify that it creates a network (Network 1) Power-up DUT₂. Verify that it joins Network 1 Measure the PSD in the frequency 100 KHz to 200 MHz (with a step size of 5 KHz). Apply a correction to the measured PSD to account for the response of the measurement system (as measured in step 1 of the configuration procedure) Repeat steps 1 to 4 changing the splitter to lines N and the attenuation values Att₁=Att₃=20dBs; Att₂=17dBs 	
	 Repeat steps 1 to 4 changing the splitter to lines PE and the attenuation values Att₁=Att₂=20dBs; Att₃=17dBs 	
Captured metrics	 Capture PSD injected by DUT₁ over each of the lines and record the results in the corresponding report table. 	

Table 29: PSD measurement 100 kHz-200 MHztest procedure

10.3.2 Notches

10.3.2.1 Notch validation

	Table 30: Notch validation test procedure	
Test ID	PS2	
Test Name	Notches test	
Purpose	Test the ability to configure notches.	
-	Measure the depth of the configured notches	
Test Setup	S-PSD1	
Traffic configuration(s)	3A	
Device requirements	Ability to configure notches	
Initial conditions	Attenuators Att ₁ is set to 17dBs	
	Attenuators Att ₂ , Att ₃ are set to 20 dBs	
	Splitter connected to line L	
	Transmit continuous data with the transceiver active for at least 10% of	
	the time	
	Setup the spectrum analyzer with a resolution bandwidth of 10kHz and with the "maximum hold" function activated.	
Procedure	 Measure the frequency response, attenuation and noise floor of the measurement system. 	
	2. Power-up DUT_1 . Verify that it creates a network (Network 1)	
	3. Power-up DUT_2 . Verify that it joins Network 1	
	 4. Configure the DUT to mask sub-carriers from a band starting at a random frequency (F_{START}) between 3 MHz and the maximum frequency of the modem with a width of 1 MHz 	
	 After a number of sweeps sufficient to capture transmission of all active sub-carriers, store the PSD measured in the in the measurement band F_{START}-4MHz to F_{START}+4MHz. 	
	6. Apply a correction to the measured PSD to account for the response of the measurement system (as measured in step 1 of the configuration procedure).	
	7. Remove the notches	
	8. After a number of sweeps sufficient to capture transmission of all active sub-carriers, store the PSD measured in the measurement band (with a step size of 5 kHz).	
	 Apply a correction to the measured PSD to account for the response of the measurement system (as measured in step 1 of the configuration procedure). 	
	10. Repeat steps 1 to 9 changing the splitter and attenuators to lines N and PE	
Captured metrics	 Capture PSD injected by DUT₁ in a notch over each of the lines and record the results in the corresponding report table. 	

10.4 Noise immunity

10.4.1 Noise immunity

10.4.1.1 Noise immunity and performance

Test ID	NI1	
Test Name	SISO/MIMO Impulsive noise immunity	
Purpose	Measure the immunity and performance against impulsive noise of the	
	technology	
Test Setup	S-S1	
Traffic configuration(s)	3A, 4A	
Device requirements	None	
Initial conditions	Att _N =0dBs. No noise	
Procedure	 Power-up DUT₁. Verify that it creates a network Power-up DUT₂. Verify that it is registered in the network created in step 1 Connect the traffic generator to DUT₁ and traffic analyzer to DUT₂. Configure the attenuator Att_{A-B} to an attenuation of 20 dBs. Configure attenuation Att_N with an attenuation of 50 dBs. Send traffic during 1 minute for channel estimation to complete (increase traffic till the channel is saturated) Set the traffic generator to generate a stream of traffic configuration 3A with a throughput of 100 Mb/s Create the noise (Noise N₁). Capture the number of lost packets and achieved throughput (DUT₁ to DUT₂). Repeat steps 5 to 8 with Att_N =45dBs Repeat steps 5 to 8 with Att_N =35dBs Repeat steps 5 to 8 with Att_N =20dBs Repeat steps 5 to 8 with Att_N =25dBs Repeat steps 5 to 8 with Att_N =20dBs Repeat steps 5 to 8 with Att_N =16dBs Repeat steps 5 to 8 with Att_N =20dBs Repeat steps 5 to 8 with Att_N =10dBs Repeat steps 5 to 8 with Att_N =0dBs Repeat steps 5 to 8 with Att_N =0dBs Repeat steps 1-18 with TCP traffic (configuration 4A instead of configuration 3A in step 6) Repeat steps 1-19 with noise N₂ instead of noise N₁ in step 7 Repeat steps 1-19 with noise N₄ instead of noise N₁ in step 7 Repeat steps 1-22 changing the direction of the traffic (DUT₂ to DUT₁) 	
Captured metrics	1. Capture received throughput and packet loss at traffic analyzer. Record the results in the corresponding report table.	

Table 31: Noise in	mmunity and p	performance: Te	st procedure
--------------------	---------------	-----------------	--------------

10.4.1.2 On/Off Impulsive noise immunity and performance

	f Impulsive noise immunity and performance: Test procedure	
Test ID	NI2	
Test Name	On/Off Impulsive noise immunity and performance	
Purpose	Measure the immunity and performance against impulsive noise of the	
	technology and recovery time when noise disappears	
Test Setup	S-S1	
Traffic configuration(s)	3A, 4A	
Device requirements	None	
Initial conditions	Att _N =0dBs. No noise	
Procedure	1. Power-up DUT ₁ . Verify that it creates a network	
	2. Power-up DUT ₂ . Verify that it is registered in the network created in step	
	1	
	3. Connect the traffic generator to DUT_1 (transmitter) and traffic analyzer to	
	DUT_2 (receiver).	
	4. Configure the attenuation Att _{A-B} to an attenuation of 20 dBs. Configure	
	attenuation Att _N with an attenuation of 50 dBs	
	5. Send traffic for 1 minute for channel estimation to complete (increase	
	traffic till the channel is saturated)	
	6. Set the traffic generator to generate a stream of traffic from DUT_1 to	
	DUT ₂ with configuration 3A with a throughput of 100 Mb/s	
	7. Every 120 seconds change the channel conditions by plugging and	
	unplugging the created impulsive noise (Noise N_3)	
	8. Capture the number of lost packets, the throughput at each 120	
	seconds period and the time that takes to recover from low throughput	
	(when noise is present) to high throughput (when noise is OFF)	
	9. Repeat steps 5 to 8 with $Att_N = 45 dBs$	
	10. Repeat steps 5 to 8 with $Att_N = 40 dBs$	
	11. Repeat steps 5 to 8 with Att _N =35dBs	
	12. Repeat steps 5 to 8 with $Att_N = 30 dBs$	
	13. Repeat steps 5 to 8 with Att _N =25dBs	
	14. Repeat steps 5 to 8 with $Att_N = 20 dBs$	
	15. Repeat steps 5 to 8 with $Att_N = 15$ dBs	
	16. Repeat steps 5 to 8 with $Att_N = 10 dBs$	
	17. Repeat steps 5 to 8 with $Att_N = 5 dBs$	
	18. Repeat steps 5 to 8 with $Att_N = 0 dBs$	
	19. Repeat steps 1 to 18 with TCP traffic (configuration 4A instead of configuration 3A in step 6).	
	- · · ·	
Conturad matrice	20. Repeat steps 1-20 changing the direction of the traffic (DUT ₂ to DUT ₁)	
Captured metrics	1. Capture the packets lost	
	2. Capture the throughput at each 120 second period	
	3. Capture recovery time (time that takes to recover the maximum	
	throughput in clean line after a noisy period)	
	4. Record the results in the corresponding report table.	

 Table 32: On/Off Impulsive noise immunity and performance: Test procedure

10.5Topology

10.5.1 Network setup

10.5.1.1 Network setup

	Table 33: Network setup: Test procedure	
Test ID	T1	
Test Name	Network setup	
Purpose	Verify the timings associated to the inclusion of a new node on the network	
Test Setup	S-S1	
Traffic configuration(s)	3A	
Device requirements	None	
Initial conditions	No noise	
Procedure	 Power-up DUT₁. Verify that it creates a network Configure the attenuation Att_{A-B} to an attenuation of 20 dBs Connect the traffic generator to DUT1 (transmitter) and traffic analyzer to DUT₂ (receiver). Power-up DUT₂. Measure the time that takes to incorporate DUT₂ to the network created in step 1 	
Captured metrics	 Measure the time that took DUT₂ to be incorporated into the network. Record the results in the corresponding report table. 	

10.5.1.2 Joining a new node to an already established network

Test ID	T2	
Test Name	Joining a new node to an already established network	
Purpose	Study the effect on the joining time of the traffic of a domain	
Test Setup	S-S4	
Traffic configuration(s)	3A	
Device requirements	None	
Initial conditions	No Noise	
Procedure	 Power-up DUT₁. Verify that it creates a network Power-up DUT₂. Verify that it is registered in the network created in step 1 Configure all CEs with Att_{A-B} = 20 dBs and Att_N=20 dBs. Connect the traffic generator to DUT₁ and traffic analyzer to DUT₂. Send traffic during 1 minute for channel estimation to complete (increase traffic till the channel is saturated) Set the traffic generator to generate a stream of traffic configuration 3A from DUT₁ to DUT₃ with a throughput of 10 Mb/s Power-up DUT₃. Measure the time that takes to incorporate DUT₃ to the network created in step 1. Switch off all the nodes of the network. Repeat five times steps 1 to 8. Repeat steps 1 to 9 for a value of generated traffic on step 6 of 50 Mb/s 12. Repeat steps 1 to 9 for a value of generated traffic on step 6 of 200Mb/s 	
Captured metrics	 Measure the average time that took DUT₃ to be incorporated into the network in each of the traffic conditions (average of 5 measurements). Record the results in the corresponding report table. 	

 Table 34: Joining a new node to an already established network: Test procedure

10.5.2 Relay

10.5.2.1 Single-node relay

This test is for further study

10.5.2.2 Multi-node relay

This test is for further study

10.6 Traffic

10.6.1 Latency

10.6.1.1 Round-trip latency

	Table 35: Round-trip latency: Test procedure	
Test ID	TS1	
Test Name	Round-trip latency	
Purpose	Study the average latency of a network	
Test Setup	S-S1	
Traffic configuration(s)	2	
Device requirements	None	
Initial conditions	No noise	
Procedure	1. Power-up DUT_1 . Verify that it creates a network	
	 Power-up DUT₂. Verify that it is registered in the network created in step 1 	
	3. Configure the attenuation Att _{A-B} to an attenuation of 20 dBs	
	4. Connect the traffic generator to DUT_1 and traffic analyzer to DUT_2 .	
	5. Send traffic for 1 minute for channel estimation to complete (10 Mbit/s unidirectional)	
	6. Set the traffic generator to generate a stream of traffic from DUT ₁ to DUT ₂ using configuration 2	
	7. Measure the roundtrip latency.	
	8. Repeat five times steps 1 to 7, noting the metrics of step 7 each time and doing an average at the end.	
Captured metrics	 Measure the round-trip latency of the continuous ping. Record the results in the corresponding report table. 	

10.6.2 Bursts

10.6.2.1 Ability to deal with bursty traffic

Table 36: Ability to deal with bursty traffic: Test procedure

Test ID	TS2	
Test Name	Ability to deal with bursty traffic	
Purpose	To test the stability of a point to point connection in bursting traffic	
-	conditions.	
Test Setup	S-S1	
Traffic configuration(s)	3A	
Device requirements	None	
Initial conditions	No noise	
Procedure	 Power-up DUT₁. Verify that it creates a network Power-up DUT₂. Verify that it is registered in the network created in step 1 Configure the attenuation Att_{A-B} to an attenuation of 50 dBs Connect the traffic generator to DUT₁ and traffic analyzer to DUT₂. Send traffic during 1 minute for channel estimation to complete (increase traffic till the channel is saturated) Set the traffic generator to generate a stream of 50Mbps from DUT₁ to DUT₂ with traffic configuration 3A (frame length 1500 bytes) during 1 minute Stop the traffic during 1 minute Repeat steps 6 and 7 four times. 	
Captured metrics	 Capture received throughput and packet loss at traffic analyzer. Record the results in the corresponding report table. 	

10.6.3 Flow maintenance

10.6.3.1 Flow maintenance

	Table 37: Flow maintenance: Test procedure	
Test ID	TS3	
Test Name	Flow maintenance	
Purpose	To test the stability of a point to point connection.	
Test Setup	S-S1	
Traffic configuration(s)	3A	
Device requirements	None	
Initial conditions	No noise	
Procedure	 Power-up DUT₁. Verify that it creates a network Power-up DUT₂. Verify that it is registered in the network created in step 	
	 Former up Do 12. Verify that it is registered in the network or dated in step 1 Configure the attenuator Att_{A-B} to an attenuation of 50 dBs Connect the traffic generator to DUT₁ and traffic analyzer to DUT₂. 	
	 Send traffic during 1 minute for channel estimation to complete (increase traffic till the channel is saturated) 	
	 Set the traffic generator to generate a stream of 25Mbps from DUT₁ to DUT₂ with traffic configuration 3A (frame length 1500 bytes) during 8 hours 	
	7. Repeat step 6 for a stream of 50 Mbps instead of 25 Mbps	
	8. Repeat step 6 for a stream of 100 Mbps instead of 25 Mbps	
Captured metrics	 Capture received throughput and packet loss at traffic analyzer. Record the results in the corresponding report table. 	

10.6.4 Throughput

10.6.4.1 Maximum throughput with no frame loss for Unidirectional Traffic

Table 38: Maximum thro	ughput with no frame loss for Unidirectional Traffic : Test procedure
Tastib	TO 4

Test ID	TS4	
Test Name	Maximum throughput with no frame loss for Unidirectional Traffic	
Purpose	The throughput is the fastest rate at which the count of test frames	
	transmitted by the DUT is equal to the number of test frames sent to it by the	
	test equipment (PLR 0%). Based in RFC2544 Throughput test [1].	
Test Setup	S-S1	
Traffic configuration(s)	5	
Device requirements	None	
Initial conditions	No noise	
Procedure	 Power-up DUT₁. Verify that it creates a network Power-up DUT₂. Verify that it is registered in the network created in step 1 Configure the attenuation Att_{A-B} to an attenuation of 50 dBs Connect the traffic generator to DUT₁ and traffic analyzer to DUT₂. Send traffic during 1 minute for channel estimation to complete (increase traffic till the channel is saturated) Send traffic from DUT₂ to DUT₁ during 10 seconds for address learning to complete. Set the traffic generator to generate a stream of traffic from DUT₁ to DUT₂ for each of the frame sizes as described in Table 14 for traffic configuration 5 (Throughput Test as stated in RFC2544, see clause 9.3.5). Set the traffic generator to generate a keep a-live stream of traffic (one short packet per second) from DUT₂ to DUT₁ Repeat steps 3 to 8 for attenuation value Att_{A-B} set to 20 dB instead of 50 dB 	
Captured metrics	 For each frame size: Maximum Rate with 0% frame loss. Record the results in the corresponding report table. 	

10.6.4.2 Maximum throughput with no frame loss for Bidirectional Traffic

Teet ID			
Test ID	TS5		
Test Name	Maximum throughput with no frame loss for Bidirectional Traffic		
Purpose	The throughput is the fastest rate at which the count of test frames		
	transmitted by the DUT is equal to the number of test frames sent to it by the		
	test equipment (PLR 0%). Based in RFC2544 Throughput test [1].		
Test Setup	S-S1		
Traffic configuration(s)	5		
Device requirements	None		
Initial conditions	No noise		
Procedure	 Power-up DUT₁. Verify that it creates a network Power-up DUT₂. Verify that it is registered in the network created in step 1 Configure the attenuation Att_{A-B} to an attenuation of 50 dBs Connect one traffic generator/analyzer to DUT₁ and another traffic generator/analyzer to DUT₂ Send traffic during 1 minute from the two traffic generators for channel estimation to complete (10 Mbit/s each direction) Set each traffic generator to generate a stream of traffic for each of the frame sizes in both directions as described in table Table 14 for traffic configuration 5 (Throughput Test as stated in RFC2544, see clause 9.3.5). Repeat steps 3 to 6 for attenuation value Att_{A-B} set to 20 dB instead of 50 dB 		
Captured metrics	 For each frame size: Maximum Rate in both directions with 0% frame loss. Record the results in the corresponding report table. 		

10.7 Security

10.7.1 Access Control

10.7.1.1 Access Control

	Table 40: Access Control: Test procedure	
Test ID	SEC1	
Test Name	Access Control	
Purpose	Study the access control mechanisms of a network	
Test Setup	S-S4	
Traffic configuration(s)	7	
Device requirements	None	
Initial conditions	$CE_1: Att_{A-B} = 20 \text{ dBs}; Att_N=0 \text{dBs};$ $CE_2: Att_{A-B} = 20 \text{ dBs}; Att_N=0 \text{dBs};$	
	No noise	
Procedure	 Power-up DUT₁. Verify that it creates a network Power-up DUT₂. Verify that it is registered in the network created in step 1 Power-up DUT₃. Verify that it is registered in the network created in step 	
	 Connect the traffic generator and traffic analyzer to DUT₁, DUT₂, and DUT₃. Wait a minute to stabilize 	
	 Wait a minute to stabilize Set the traffic generator to generate a stream of traffic as described in configuration 7 Check that traffic flows among the nodes (no ning loss in any of the 	
	 Check that traffic flows among the nodes (no ping loss in any of the links) Configure DUT₁ to create a new network. 	
	 9. Wait a minute to stabilize 10. Verify that DUT₁ is NOT registered in the network created in step 1 11. Set the traffic generator to generate a stream of traffic as described in configuration 7 	
	 12. Check that traffic flows among DUT₂ and DUT₃ (no ping loss in DUT₂ ↔ DUT₃ link), but not to DUT₁ (100% ping loss in links between DUT₁↔ DUT₃ and between DUT₁↔ DUT₂) 	
	13. Perform a pairing of DUT_2 with DUT_1	
	 14. Wait a minute to stabilize 15. Verify that DUT₂ is registered with DUT₁ in the network created in step 8 16. Set the traffic generator to generate a stream of traffic as described in configuration 7 	
	17. Check that traffic flows among DUT ₁ and DUT ₂ (no ping loss in DUT ₂ ↔ DUT ₃ link), but not to DUT ₃ (100% ping loss in links between DUT ₁ ↔ DUT ₃ and between DUT ₂ ↔ DUT ₃)	
	18. Perform a pairing of DUT_3 with DUT_1 19. Wait a minute to stabilize 20. Verify that DUT_1 , DUT_2 , and DUT_3 are registered in the network created	
	 in step 8 21. Set the traffic generator to generate a stream of traffic as described in configuration 7 	
	22. Traffic flows among the nodes (no ping loss in any of the links)	

Table 40: Access Control: Test procedure

Captured metrics	2.	Check if nodes are registered to their corresponding network at each step Check if traffic only flows (no ping loss) among nodes registered to the same network Record the results in the corresponding report table.
------------------	----	---

10.7.2 Encryption

10.7.2.1 P2P Encryption

Table 41: P2P Encryption: Test procedure
0100

Test ID	Table 41: P2P Encryption: Test procedure	
Test ID	SEC2	
Test Name	P2P Encryption	
Purpose	Study the encryption mechanisms of a P2P network	
Test Setup	S-S1	
Traffic configuration(s)	6	
Device requirements	None	
Initial conditions	CE: Att _{A-B} = 50 dBs ; Att _N =0dBs;	
	No noise	
Procedure	 Power-up DUT₁. Verify that it creates a network. The network may operate either with security enabled or disabled. Power-up DUT₂. Verify that it is registered in the network created in step 1 If communication is not encrypted by default, enable encrypted communication between DUT₁ and DUT₂. Ensure that the same encryption key is used in DUT₁ and DUT₂. Ensure that the same encryption key is used in DUT₁ and DUT₂. After this step, the network operates with security enabled. Connect the traffic generator and traffic analyzer to DUT₁ and DUT₂ Wait a minute to stabilize Set the traffic generator to generate a stream of traffic configuration 6. Traffic flows successfully between the nodes. Ping between DUT₁ and DUT₂ is successful. Configure DUT₁ to use an specific ASCII encryption key different from step 3 Wait a minute to stabilize Verify that DUT₁ is registered in the network created in step 1 Set the traffic generator to generate a stream of traffic configuration 6 Ping between DUT₁ and DUT₂ fails because of different encryption keys on the nodes. Configure DUT₂ to use the same encryption key as in step 7 Wait a minute to stabilize Verify that DUT₂ in the network created in step 1 Set the traffic generator to generate a stream of traffic configuration 6 Traffic flows successfully between DUT₁ and DUT₂. Ping between DUT₁ and DUT₂ is used to generate a stream of traffic configuration 6 	
Captured metrics	 Check if traffic does not flow successfully (ping lost) between nodes using different encryption keys Check if traffic flows successfully (no ping loss) between the nodes registered to the same network and using the same encryption key Record the results in the corresponding report table 	

10.7.2.2 P2P Encryption in a multinode network

Test ID	P2P Encryption in a multinode network: Test procedure SEC3			
Test Name	P2P Encryption in a multinode network			
Purpose	Study the encryption mechanisms of a multinode network			
Test Setup	S-S4			
Traffic configuration(s)	7			
Device requirements	None			
Initial conditions	CE_1 : Att _{A-B} = 20 dBs; Att _N =0dBs;			
	CE_1 : $Att_{A-B} = 20 \text{ dBs}$; $Att_N = 0 \text{ dBs}$; CE_2 : $Att_{A-B} = 20 \text{ dBs}$; $Att_N = 0 \text{ dBs}$;			
	No noise			
Procedure	 Power-up DUT₁. Verify that it creates a network. The network may operate either with security enabled or disabled Power-up DUT₂. Verify that it is registered in the network created in step 1 Power-up DUT₃. Verify that it is registered in the network created in step 1 If communication is not encrypted by default, enable encrypted 			
	 communication among DUT₁, DUT₂ and DUT₃. Ensure that the same encryption key is used in DUT₁, DUT₂, and DUT₃. After this step, the network operates with security enabled 5. Connect the traffic generator and traffic analyzer to DUT₁, DUT₂, and DUT₃. 			
	 6. Wait a minute to stabilize 7. Set the traffic generator to generate a stream of traffic configuration 7 8. Traffic flows successfully among the nodes. Pings between DUT₁ and DUT₂, between DUT₁ and DUT₃, and between DUT₂ and DUT₃ are successful 			
	 9. Configure DUT₁ to use an specific ASCII encryption key different from step 4 10. Wait a minute to stabilize 			
	 Verify that DUT1 is registered in the network created in step 1 Set the traffic generator to generate a stream of traffic configuration 7 Pings between DUT₁ and DUT₂ and between DUT₁ and DUT₃ fail because of different encryption keys on the nodes 			
	14. Configure DUT_2 to use the same encryption key as in step 9 15. Wait a minute to stabilize			
	 16. Verify that DUT₂ is registered in the network created in step 1 17. Set the traffic generator to generate a stream of traffic configuration 7 18. Ping between DUT₁ and DUT₂ is successful and ping between DUT₁ and DUT₃ still fails because of different encryption keys on the nodes 19. Configure DUT₃ to use the same encryption key as in step 9 20. Wait a minute to stabilize 			
	 21. Verify that DUT₃ is registered in the network created in step 1 22. Set the traffic generator to generate a stream of traffic configuration 7 23. Traffic flows successfully among the nodes. Pings between DUT₁ and DUT₂, between DUT₁ and DUT₃, and between DUT₂ and DUT₃ are successful 			
Captured metrics	 Check if traffic does not flow successfully (ping lost) between nodes using different encryption keys Check if traffic flows successfully (no ping loss) between the nodes registered to the same network and using the same encryption key Record the results in the corresponding report table. 			

 Table 42: P2P Encryption in a multinode network: Test procedure

10.8QoS

10.8.1 QoS

	Table 4	43: (QoS:	Test	procedure
--	---------	-------	------	------	-----------

Test ID	QoS1			
Test Name	Quality of Service Test			
Purpose	Check that the devices are able to prioritize traffic without losing high priority			
	packets.			
Test Setup	S-S1			
Traffic configuration(s)	3A			
Device requirements	None			
Initial conditions	Attenuation Att _{A-B} set to enough attenuation so as the maximum capacity of			
	the channel is approximately half the maximum bandwidth achievable by the			
	devices.			
	No noise.			
Procedure	1. Power-up DUT ₁ . Verify that it creates a network			
	2. Power-up DUT_2 . Verify that it is registered in the network created in step			
	3. Connect the traffic generator to DUT_1 and traffic analyzer to DUT_2 .			
	4. Configure the attenuation Att_{A-B} to an attenuation of 20dBs			
	5. Send traffic during 1 minute for channel estimation to complete			
	(increase traffic till the channel is saturated)			
	6. Wait a minute to stabilize			
	 Set the traffic generator to generate two streams of traffic configuration 3A: 			
	 Stream 1: From DUT₁ to DUT₂ at 800 Mbit/s with DSCP = 000000 (Note 1) 			
	9. Stream2: From DUT_1 to DUT_2 at 100 Mbit/s and at a higher priority than stream 1 with DSCP = 110000 (Note 1).			
	 10. Run a traffic test from DUT₁ to DUT₂ for 60s and record the throughput in Mbit/s 			
	11. Repeat steps 1 to 10 with Stream 1 at 800 Mbit/s and DSCP = 000000, and Stream 2 at 100 Mbit/s and DSCP = 101000			
	12. Repeat steps 1 to 10 with Stream 1 at 800 Mbit/s and DSCP = 001000, and Stream 2 at 100 Mbit/s and DSCP = 100000			
Captured metrics	1. Capture received throughput and packet loss at traffic analyzer for each			
	data stream. Record the results in the corresponding report table.			
Note 1 – For DSCP definition	n, see RFC2474			

10.9 Multinode Performance

10.9.1 Multinode Performance

10.9.1.1 Multinode, UDP

	Table 44: Multinode, UDP: Test procedure	
Test ID	MN1	
Test Name	UDP unidirectional throughput with multiple nodes	
Purpose	Calculate UDP throughput in a context of four nodes	
Test Setup	S-NN1	
Traffic configuration(s)	3A	
Device requirements	DUT_1 , DUT_2 , DUT_3 and DUT_4	
Initial conditions	CE ₁ : Att _{A-B} = 15 dBs; AttN=0dBs;	
	CE_2 : Att _{A-B} = 15 dBs; Att _N =0dBs;	
	CE_3 : Att _{A-B} = 15 dBs; Att _N =0dBs;	
	CE_4 : Att _{A-B} = 15 dBs; Att _N =0dBs;	
	Attenuator Att ₁ , Att ₂ and Att ₃ set to 0 dBs	
Day and have	No noise	
Procedure	1. Power-up DUT ₁ . Verify that it creates a network	
	2. Power-up DUT_2 . Verify that it is registered in the network created in step	
	1	
	3. Power-up DUT ₃ . Verify that it is registered in the network created in step	
	1	
	4. Power-up DUT ₄ . Verify that it is registered in the network created in step	
	1	
	5. Connect one traffic generator/analyzer to each DUT	
	6. Send traffic during 1 minute between all traffic generators for channel	
	estimation to complete (increase traffic till the channel is saturated)	
	7. Send traffic during 10 seconds between all traffic generators for address	
	learning to complete	
	8. Set the traffic generators to generate three streams of traffic	
	configuration 3A, each one with a Tx Rate of 25 Mbps between DUT_1	
	.	
	and the other 3 DUTs (DUT ₁ \rightarrow DUT ₂ , DUT ₁ \rightarrow DUT ₃ and DUT ₁ \rightarrow DUT ₄).	
	9. Run a traffic test for 60s and record the received throughput in Mbit/s for	
	each stream	
	10. Repeat steps 7 to 9 with a stream of 50 Mbps instead of a stream of 25	
	Mbps	
	11. Repeat steps 7 to 9 with stream of 75 Mbps instead of a stream of 25	
	Mbps	
	12. Repeat steps 7 to 9 with stream of 100 Mbps instead of a stream of 25	
	Mbps	
A () ()		
Captured metrics	1. Capture received throughput and packet loss at traffic analyzer for each	
	data stream. Record the results in the corresponding report table.	

Table 44: Multinode, UDP: Test procedure

10.9.1.2 Multinode, TCP

	Table 45: Multinode, TCP: Test procedure	
Test ID	MN2	
Test Name	TCP unidirectional throughput with multiple nodes	
Purpose	Calculate TCP throughput in a context of four nodes	
Test Setup	S-NN2	
Traffic configuration(s)	4A	
Device requirements	DUT_1 , DUT_2 , DUT_3 and DUT_4	
Initial conditions	CE ₁ : Att _{A-B} = 15 dBs; AttN=0dBs;	
	CE ₂ : Att _{A-B} = 15 dBs; Att _N =0dBs;	
	CE ₃ : Att _{A-B} = 15 dBs; Att _N =0dBs;	
	CE ₄ : Att _{A-B} = 15 dBs; Att _N =0dBs;	
	Attenuator Att1, Att2 and Att3 set to 0 dBs	
_	No noise	
Procedure	1. Power-up DUT ₁ . Verify that it creates a network	
	2. Power-up DUT ₂ . Verify that it is registered in the network created in	
	step 1	
	3. Power-up DUT ₃ . Verify that it is registered in the network created in	
	step 1	
	4. Power-up DUT ₄ . Verify that it is registered in the network created in	
	step 1	
	5. Connect one traffic generator/analyzer to each DUT	
	6. Send traffic during 1 minute between all traffic generators for channel	
	.	
	estimation to complete (increase traffic till the channel is saturated)	
	7. Set the traffic generators to generate three streams of traffic	
	configuration 4A , each one with a Tx Rate of 25 Mbps between DUT_1	
	and the other 3 DUTs (DUT ₁ \rightarrow DUT ₂ , DUT ₁ \rightarrow DUT ₃ and DUT ₁ \rightarrow	
	DUT ₄)	
	8. Run a traffic test for 60s and record the received throughput in Mbit/s	
	9. Repeat steps 7 to 8 with a stream of 50 Mbps instead of a stream of	
	25 Mbps	
	10. Repeat steps 7 to 8 with stream of 75 Mbps instead of a stream of 25	
	Mbps	
	11. Repeat steps 7 to 8 with stream of 100 Mbps instead of a stream of 25	
	Mbps	
Captured metrics	1. Capture received throughput and packet loss at traffic analyzer for	
	each data stream. Record the results in the corresponding report	
	table.	

Table 45: Multinode, TCP: Test procedure

10.10Application Tests

10.10.1 IPTV tests

10.10.1.1 IPTV Video

Test ID			
	IPTV-1		
Test Name	IPTV Video		
Purpose	Assess the capacity of the system to reproduce 4K content provided		
	through UDP multicast streams.		
	The test includes: 4 multicast video flows (high priority) and 1 unicast flow		
	(normal priority) to emulate user data.		
	This test is aimed to test the application layer of the system.		
Test Setup	S-APP1		
Traffic configuration(s)	2/8/11		
Device requirements	None		
Initial conditions	Att ₁ = 30dBs; Att ₂ to Att ₆ = 21 dBs		
Procedure	1. Power-up DUTs. Verify that they create a network		
	2. Create 5 traffic flows:		
	Flow 1 (Video):		
	 Configuration 8 		
	 From Node 1 to Node 2. 		
	 Multicast address 225.1.1.1 		
	Flow 2 (Video):		
	 Configuration 8 		
	• From Node 1 to Node 3.		
	 Multicast address 225.1.1.2 		
	Flow 3 (Video):		
	 Configuration 8 		
	• From Node 1 to Node 4.		
	 Multicast address 225.1.1.3 		
	• Flow 4 (Video):		
	 Configuration 8 		
	• From Node 1 to Node 5.		
	 Multicast address 225.1.1.4 		
	• Flow 5 (Data):		
	 Configuration 11 		
	• From Node 6 to Node 1.		
	 Measure the throughput in each of the lines Stop the traffic 		
	5. Launch a traffic configuration 2 (without fixed length) between node 1		
	and each of the probes		
	6. Measure the packet loss in each line		
Captured metrics	1. Capture the throughput in each line (step 3)		

2.	Capture the packet loss in each line (step 6).

10.10.2 VoD tests

10.10.2.1 VoD video – Configuration 1 (TCP)

	Table 47: VoD video – Configuration 1 (TCP)					
Test ID	VoD-1					
Test Name	VoD video – Configuration 1 (TCP)					
Purpose	Assess the capacity of the system to reproduce 4K content provided through TCP unicast streams.					
	The test includes: 4 unicast video flows (high priority) and 1 unicast flow					
	(normal priority) to emulate user data.					
To at Oature	This test is aimed to test the application layer of the system.					
Test Setup Traffic configuration(s)	S-APP1 2/10/11					
Device requirements Initial conditions						
Procedure	Att ₁ = 30dBs; Att ₂ to Att ₆ = 21 dBs					
Procedure	1. Power-up DUTs. Verify that they create a network					
	2. Create 5 traffic flows:					
	Flow 1 (Video):					
	 Configuration 10 					
	 From Node 1 to Node 2. 					
	Flow 2 (Video):					
	 Configuration 10 					
	 From Node 1 to Node 3. 					
	Flow 3 (Video):					
	 Configuration 10 From Node 1 to Node 4. 					
	• Flow 4 (Video):					
	• Configuration 10					
	 From Node 1 to Node 5. 					
	 Flow 5 (Data): 					
	• Configuration 11					
	• From Node 6 to Node 1.					
	3. Measure the throughput in each of the lines					
	4. Stop the traffic					
	5. Launch a traffic configuration 2 (without fixed length) between node 1					
	and each of the probes					
	6. Measure the packet loss in each line					
Captured metrics	1. Capture the throughput in each line (step 3)					
	2. Capture the packet loss in each line (step 6)					

10.10.2.2 VoD video – Configuration 2 (UDP)

Test ID	VoD-2						
Test Name	VoD-2 VoD video – Configuration 2 (UDP)						
Purpose	Assess the capacity of the system to reproduce 4K content provided						
	through UDP unicast streams.						
	ne test includes: 4 unicast video flows (high priority) and 1 unicast flow						
	ormal priority) to emulate user data.						
	This test is aimed to test the functionality above the PHY layer.						
Test Setup	S-APP1						
Traffic configuration(s)	2/9/11						
Device requirements	None						
Initial conditions	Att ₁ = 30dBs; Att ₂ to Att ₆ = 21 dBs						
Procedure	1. Power-up DUTs. Verify that they create a network						
	2. Create 5 traffic flows:						
	Flow 1 (Video):						
	 Configuration 9 						
	 From Node 1 to Node 2. 						
	Flow 2 (Video):						
	 Configuration 9 						
	 From Node 1 to Node 3. 						
	Flow 3 (Video):						
	 Configuration 9 						
	• From Node 1 to Node 4.						
	• Flow 4 (Video):						
	 Configuration 9 						
	\circ From Node 1 to Node 5.						
	Flow 5 (Data): Configuration 11						
	 Configuration 11 From Node C to Node 1 						
	• From Node 6 to Node 1.						
	3. Measure the throughput in each of the lines						
	4. Stop the traffic						
	5. Launch a traffic configuration 2 (without fixed length) between node 1						
	and each of the probes						
	6. Measure the packet loss in each line						
Captured metrics	1. Capture the throughput in each line (step 3)						
	2. Capture the packet loss in each line (step 6).						

 Table 48: VoD video – Configuration 2 (UDP)
 Image: Configuration 2 (UDP)

10.10.3 Self-generated video

10.10.3.1 File sharing

Table 49: File sharing					
Test ID	FS-1				
Test Name	File sharing				
Purpose	Assess the capacity of the system to reproduce 4K content stored within the in-home devices The test includes: 4 unicast video flows (normal priority) and 1 unicast flow (normal priority) to emulate user data. This test is aimed to test the application layer of the system.				
Test Setup	S-APP1				
Traffic configuration(s)	2/11				
Device requirements	None				
Initial conditions	Att ₁ = 30dBs; Att ₂ to Att ₆ = 21 dBs				
Procedure	1. Power-up DUTs. Verify that they create a network				
	2. Create 5 traffic flows:				
	• Flow 1:				
	 Configuration 11 				
	 From Node 2 to Node 5. 				
	• Flow 2:				
	 Configuration 11 				
	• From Node 3 to Node 4.				
	• Flow 3:				
	\circ Configuration 11				
	 From Node 2 to Node 3. 				
	 Flow 4: 				
	• Configuration 11				
	• From Node 4 to Node 6.				
	• Flow 5:				
	 Configuration 11 				
	• From Node 1 to Node 6.				
	3. Measure the throughput in each of the lines				
	4. Stop the traffic				
	5. Launch a traffic configuration 2 (without fixed length) between node 1				
	and each of the probes				
	6. Measure the packet loss in each line				
Captured metrics	1. Capture the throughput in each line (step 3)				
-	2. Capture the packet loss in each line (step 6).				

11 Conclusion

The intent is to show the capabilities of the powerline technology under test in a standardized and repeatable test suite, able to be verified by others. The test lab may publish the results as an independent report to the industry or to an appropriate conference.

Annex A: **TR-208 combinations**

The table below provides a recommended subset of the test configurations for TR-208.

		10301 01	test configuration			
Clause	Title	Test ID	Traffic Configuration	Attenuation	Noise	
10.1	Throughput Performance tests					
10.1.1	Rate vs Attenuation tests					
10.1.1.1	UDP point to point throughput	S1	3A,3B,3C	Att _{A-B} from 10db to 90db @ step of 20db	NA	
10.1.1.2	TCP point to point throughput	S2	4A,4D	Att _{A-B} from 10db to 90db @ step of 20db	NA	
10.1.1.3	UDP point to point throughput under noise	S3	3A	Att _{A-B} = 20db, 50db, 70db	N3,N4	
10.1.1.4	TCP point to point throughput under noise	S4	4A,4D	Att _{A-B} = 20db, 50db, 70db	N3,N4	
10.1.2	Bidirectional traffic					
10.1.2.1	UDP bidirectional traffic. No noise	S5	3A,3B,3C	Att _{A-B} = 20db, 50db, 70db	NA	
10.1.2.2	TCP bidirectional traffic. No noise	S6	4A,4D	Att _{A-B} = 20db, 50db, 70db	NA	
10.1.2.3	Variable UDP Traffic	S7	3A,3B,3C	Att _{A-B} = 40db Traffic from 10Mbps with steps of 20MBps until packets are lost	NA	
10.1.2.4	Variable TCP Traffic	S8	4A,4D	Att _{A-B} = 40db Traffic from 10Mbps with steps of 20Mbps until packets are lost	NA	
10.2	Neighbouring Networks					
10.2.1	Rate in NN conditions					
10.2.1.1	UDP, 2 networks	N1	3A	$\begin{array}{l} \mbox{Att}_{N} = 70,50,30,20 \\ \mbox{Traffic from 10Mbps with} \\ \mbox{steps of 20Mbps until} \\ \mbox{packets are lost} \\ \mbox{Att}_{A-B} \mbox{fixed to 30dB for all} \\ \mbox{CEs} \end{array}$	NA	
10.2.1.2	TCP, 2 networks	N2	4A	Att _N = 70,50,30,20 dB Traffic from 10Mbps with steps of 20Mbps until packets are lost	NA	

Table 50: Subset of test config	ourations for TR-208

				Att _{A-B} fixed with 30dB	
10.2.1.3	UDP, 3 networks	N3	3A	Repeat with Att ₁ to Att9 = 25dB; 15 dB	
10.2.1.4	TCP, 3 networks	N4	4A	Att ₁ to Att9 = 25dB; 15 dB	
10.2.2	Admission in NN conditions				
10.2.2.1	Joining a new node to an already established network	N5	Same as the original test description	Same as the original test description	NA

End of Broadband Forum Technical Report TR-208