

TECHNICAL REPORT

© The Broadband Forum. All rights reserved.

TR-181

Device Data Model for TR-069

Issue: 2 Amendment 11

Issue Date: July 2016

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 2 of 150

Notice

The Broadband Forum is a non-profit corporation organized to create guidelines for broadband

network system development and deployment. This Broadband Forum Technical Report has

been approved by members of the Forum. This Broadband Forum Technical Report is not

binding on the Broadband Forum, any of its members, or any developer or service provider. This

Broadband Forum Technical Report is subject to change, but only with approval of members of

the Forum. This Technical Report is copyrighted by the Broadband Forum, and all rights are

reserved. Portions of this Technical Report may be copyrighted by Broadband Forum members.

THIS SPECIFICATION IS BEING OFFERED WITHOUT ANY WARRANTY

WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NONINFRINGEMENT IS

EXPRESSLY DISCLAIMED. ANY USE OF THIS SPECIFICATION SHALL BE MADE

ENTIRELY AT THE IMPLEMENTER'S OWN RISK, AND NEITHER the Forum, NOR ANY

OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER

TO ANY IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE

WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE USE OF THIS

SPECIFICATION.

Broadband Forum Technical Reports may be copied, downloaded, stored on a server or

otherwise re-distributed in their entirety only, and may not be modified without the advance

written permission of the Broadband Forum.

The text of this notice must be included in all copies of this Broadband Forum Technical Report.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 3 of 150

TR Issue History

Issue Number Approval

Date

Publication

Date

Issue Editor Changes

Issue 2 May 2010 Paul Sigurdson,

Broadband Forum

William Lupton,

2Wire

Original. Defines version

2.0 of the TR-069 Device

data model (Device:2.0).

Issue 2

Amendment 1

November

2010

 Paul Sigurdson,

Broadband Forum

William Lupton,

2Wire

Added support for Software

Module Management in the

data model (no change to

this document). Defines

version 2.1 of the TR-069

Device data model

(Device:2.1).

Issue 2

Amendment 2

February

2011

 Paul Sigurdson,

Broadband Forum

William Lupton,

Pace

Added support for IPv6 and

Firewall in the data model

(added IPv6 and Firewall

Appendices to this

document). Defines version

2.2 of the TR-069 Device

data model (Device:2.2).

Issue 2

Amendment 3

July 2011 This update to TR-181 did

not update this document;

only the XML data model

was updated.

Added support for proxy

management and alias-

based addressing.

Issue 2

Amendment 4

November

2011

 William Lupton,

Pace
This update to TR-181 did

not update this document;

only the XML data model

was updated.

Added support for G.hn and

Optical interfaces in the

data model, and additional

WiFi parameters (updated

interface stack figures).

Defines version 2.4 of the

TR-069 Device data model

(Device:2.4).

Issue 2

Amendment 5

May 2012 William Lupton,

Pace

Added support for IPsec and

bulk data collection in the

data model (added

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 4 of 150

Issue Number Approval

Date

Publication

Date

Issue Editor Changes

Tunneling Annex and IPsec

Appendix to this document).

Defines version 2.5 of the

TR-069 Device data model

(Device:2.5).

Issue 2

Amendment 6

November

2012

18 January

2013

Tim Carey,

Alcatel-Lucent

Added support M2M SCL

Administration as an

Appendix.

Defines version 2.6 of the

TR-069 Device data model

(Device: 2.6).

Issue 2

Amendment 7

11

November

2013

17 January

2014

Apostolos

Papageorgiou,

NEC

William Lupton,

Cisco

Added ZigBee and Provider

Bridge data models

(including theory of

operation); also added

additional WiFi statistics,

and other minor changes;

added backup/restore theory

of operation.

Defines version 2.7 of the

TR-069 Device data model

(Device: 2.7).

Issue 2

Amendment 8

8

September

2014

15

September

2014

William Lupton,

Cisco

Added LLDP and HTIP

home network topology

discovery parameters,

G.997.1-2012 DSL

parameters, various WiFi

parameters (associated

device statistics, retry limits,

reports, QoS), IPv6-related

IP diagnostics parameters,

and other minor changes;

updated G.hn data model to

align with G.9962; updated

Annex B on tunneling, and

added GRE and MAP data

models (including theory of

operation); added PCP data

model (including theory of

operation); added Cellular

interface data model.

Defines version 2.8 of the

TR-069 Device data model

(Device: 2.8).

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 5 of 150

Issue Number Approval

Date

Publication

Date

Issue Editor Changes

Issue 2

Amendment 9

1

December

2014

11 February

2015

Douglas Knisely,

Qualcomm, Inc
This update to TR-181 did

not update this document;

only the XML data model

was updated.

Added support forWiFi

MAC Address Filtering,

fixes for Traceroute, IEEE

1905 data model and

incorporated new

components from TR-143

Amendment 1

Issue 2

Amendment 10

9

November

2015

13

November

2015

Klaus Wich,

Axiros

Added data model updates:

- MQTT model

- Bulk data over HTTP

- DNS Server updates

- new diagnostics state

Issue 2

Amendment 11

18 July

2016

12 August

2016

Klaus Wich,

Axiros

Mark Tabry,

Google

Added G.fast data model

(including theory of

operation).

Data model additions:

- LED status model

- Layer 2 tunnel support for

IP diagnostics model

- DSL G.fast model

- Management Frame

Protection support for WiFi

model

- WPS 2.0 support for WiFi

model

- User interface toggle

- User interface messaging

model

- ConnectionRequest HTTP

service toggle

- DNS fallback support for

XMPP connections

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 6 of 150

Comments or questions about this Broadband Forum Technical Report should be directed to

help@broadband-forum.org.

Editors Klaus Wich

Mark Tabry

Axiros

Google

Broadband User Services

Work Area Directors

Jason Walls

John Blackford

QA Cafe

Arris

mailto:help@broadband-forum.org

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 7 of 150

Table of Contents

EXECUTIVE SUMMARY .. 13

1 PURPOSE AND SCOPE .. 14

1.1 PURPOSE .. 14

1.2 SCOPE .. 14

2 REFERENCES AND TERMINOLOGY .. 19

2.1 CONVENTIONS ... 19
2.2 REFERENCES .. 19
2.3 DEFINITIONS .. 22

2.4 ABBREVIATIONS .. 23

3 TECHNICAL REPORT IMPACT ... 24

3.1 ENERGY EFFICIENCY .. 24
3.2 IPV6 ... 24
3.3 SECURITY ... 24
3.4 PRIVACY .. 24

4 ARCHITECTURE .. 25

4.1 INTERFACE LAYERS ... 25

4.2 INTERFACE OBJECTS ... 26
4.2.1 Lower Layers .. 28
4.2.2 Administrative and Operational Status ... 29

4.2.3 Stacking and Operational Status .. 30
4.2.4 Vendor-specific Interface Objects ... 30

4.3 INTERFACESTACK TABLE .. 31

5 PARAMETER DEFINITIONS ... 35

ANNEX A BRIDGING AND QUEUING .. 36

A.1 QUEUING AND BRIDGING MODEL .. 36

A.1.1 Packet Classification .. 36
A.1.1.1 Classification Order.. 37

A.1.1.2 Dynamic Application Specific Classification.. 38
A.1.1.3 Classification Outcome ... 39
A.1.2 Policing ... 39
A.1.3 Queuing and Scheduling ... 39
A.1.4 Bridging .. 40

A.1.4.1 Filtering .. 41
A.1.4.2 Filter Order ... 41

A.2 DEFAULT LAYER 2/3 QOS MAPPING .. 42
A.3 URN DEFINITIONS FOR APP AND FLOW TABLES .. 43

A.3.1 App ProtocolIdentifier .. 43
A.3.2 Flow Type.. 43
A.3.3 Flow TypeParameters ... 44

ANNEX B TUNNELING .. 45

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 8 of 150

B.1 OVERVIEW ... 45

B.2 DETAILS ... 48

APPENDIX I EXAMPLE RG QUEUING ARCHITECTURE .. 52

APPENDIX II USE OF BRIDGING OBJECTS FOR VLAN TAGGING 54

II.1 TAGGED LAN TO TAGGED WAN TRAFFIC (VLAN BRIDGING) 55
II.2 TAGGED LAN TO TAGGED WAN TRAFFIC (SPECIAL CASE WITH VLAN ID

TRANSLATION)... 56
II.3 UNTAGGED LAN TO TAGGED WAN TRAFFIC ... 59
II.4 INTERNALLY GENERATED TO TAGGED WAN TRAFFIC .. 61

II.5 OTHER ISSUES .. 62
II.5.1 More than one Downstream Interface in a Bridge ... 62
II.5.2 802.1D (Re)-marking .. 64

II.5.3 More than one VLAN ID Tag Admitted on the Same Downstream Interface 65

APPENDIX III WI-FI THEORY OF OPERATION.. 68

III.1 MULTI-RADIO AND MULTI-BAND WI-FI RADIO DEVICES .. 68

III.2 DEFINITIONS .. 68
III.3 NUMBER OF INSTANCES OF WIFI.RADIO OBJECT ... 69

III.4 SUPPORTEDFREQUENCYBANDS AND OPERATINGFREQUENCYBAND 69
III.5 BEHAVIOR OF DUAL-BAND RADIOS WHEN OPERATINGFREQUENCYBAND CHANGED 69
III.6 SUPPORTEDSTANDARDS AND OPERATINGSTANDARDS .. 70

III.7 DIFFERENT TYPES OF WIFI ERRORS... 70

APPENDIX IV USE CASES ... 73

IV.1 CREATE A WAN CONNECTION .. 73

IV.2 MODIFY A WAN CONNECTION .. 73

IV.3 DELETE A WAN CONNECTION ... 74
IV.4 DISCOVER WHETHER THE DEVICE IS A GATEWAY .. 74

IV.5 PROVIDE EXTENDED HOME NETWORKING TOPOLOGY VIEW... 75
IV.6 DETERMINE CURRENT INTERFACES CONFIGURATION .. 75
IV.7 CREATE A WLAN CONNECTION .. 75

IV.8 DELETE A WLAN CONNECTION .. 76
IV.9 CONFIGURE A DHCP CLIENT AND SERVER .. 76

IV.9.1 DHCP Client Configuration (ACME devices) .. 76
IV.9.2 DHCP Server Configuration (gateway).. 76

IV.10 RECONFIGURE AN EXISTING INTERFACE .. 77
IV.11 BACKUP / RESTORE USING VENDOR CONFIGURATION FILES 78

APPENDIX V IPV6 DATA MODELING THEORY OF OPERATION........................ 82

V.1 IPV6 OVERVIEW .. 82
V.2 DATA MODEL OVERVIEW .. 83
V.3 ENABLING IPV6 ... 86
V.4 CONFIGURING UPSTREAM IP INTERFACES ... 87

V.4.1 Configuration Messages Sent Out the Upstream IP Interface.............................. 87
V.4.2 IPv6 Prefixes ... 87
V.4.3 IPv6 Addresses .. 88

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 9 of 150

V.5 CONFIGURING DOWNSTREAM IP INTERFACES ... 88

V.5.1 IPv6 Prefixes ... 89
V.5.2 IPv6 Addresses .. 90

V.6 DEVICE INTERACTIONS .. 90

V.6.1 Active Configuration ... 90
V.6.2 Monitoring .. 91

V.7 CONFIGURING IPV6 ROUTING AND FORWARDING .. 92
V.8 CONFIGURING IPV6 ROUTING AND FORWARDING .. 92

APPENDIX VI 6RD THEORY OF OPERATION ... 97

VI.1 RFC 5969 CONFIGURATION PARAMETERS ... 97
VI.2 INTERNAL CONFIGURATION PARAMETERS ... 97
VI.3 IPV4 ADDRESS SOURCE ... 97

VI.4 SENDING ALL TRAFFIC TO THE BORDER RELAY SERVER ... 98
VI.5 INTERNAL TREATMENT OF IPV6 PACKETS ... 99

APPENDIX VII DUAL-STACK LITE THEORY OF OPERATION 101

VII.1 INTERNAL TREATMENT OF IPV4 PACKETS ... 101

APPENDIX VIII ADVANCED FIREWALL EXAMPLE CONFIGURATION 103

APPENDIX IX IPSEC THEORY OF OPERATION ... 107

IX.1 IPSEC ... 108
IX.2 IPSEC.FILTER ... 108

IX.3 IPSEC.PROFILE ... 109
IX.4 IPSEC.TUNNEL ... 110

IX.5 IPSEC.IKEV2SA .. 110

IX.6 IPSEC.IKEV2SA.CHILDSA .. 110

APPENDIX X ETSI M2M REMOTE ENTITY MANAGEMENT THEORY OF

OPERATION 111

X.1 ETSI M2M AREA NETWORKS ... 114
X.2 TR-069 DEVICE MODEL AND FUNCTIONALITY FOR ETSI M2M REM 115

X.2.1 TR-069 Device Model and Functionality for ETSI M2M REM 116
X.3 TR-069 DEVICE MODEL AND FUNCTIONALITY FOR ETSI M2M REM 116

X.3.1 M2M Service SCL Execution Environment ... 116
X.3.2 ETSIM2M Object .. 117

APPENDIX XI PROVIDER BRIDGE THEORY OF OPERATION 125

XI.1 RESIDENTIAL DOMAIN SCENARIO .. 127

XI.2 DEVICE TRAFFIC SCENARIO ... 128

XI.3 PUBLIC AND ROAMING DOMAIN SCENARIOS ... 128
XI.4 PROVISIONING PROVIDER BRIDGES.. 128

XI.4.1 Associating Customer Edge Ports with Customer Network Ports 128

APPENDIX XII ZIGBEE THEORY OF OPERATION ... 130

XII.1 CWMP MANAGEMENT USING THE ZIGBEE DATA MODEL .. 130
XII.2 CWMP PROXYING MECHANISMS AND THE ZIGBEE DATA MODEL 132

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 10 of 150

APPENDIX XIII PORT CONTROL PROTOCOL THEORY OF OPERATION 133

XIII.1 CONFIGURATION AND MONITORING OF THE PCP SERVER .. 135
XIII.2 MONITORING AND SETTING RULES SET BY THE PCP CLIENT 135
XIII.3 RAPID RECOVERY ... 136

APPENDIX XIV GRE TUNNEL THEORY OF OPERATION 138

XIV.1 L2 PAYLOAD OVER GRE ... 138
XIV.2 L3 PAYLOAD OVER GRE ... 141

APPENDIX XV MAP THEORY OF OPERATION ... 143

XV.1 MAP CONFIGURATION PARAMETERS .. 143

XV.2 INTERNAL TREATMENT OF IPV4 PACKETS ... 144

APPENDIX XVI G.FAST THEORY OF OPERATION ... 147

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 11 of 150

List of Figures

Figure 1 – Device:2 Data Model Structure – Overview ... 15
Figure 2 – Device:2 Data Model Structure – Device Level .. 16

Figure 3 – Device:2 Data Model Structure – Interface Stack and Networking Technologies 17
Figure 4 – Device:2 Data Model Structure – Applications and Protocols 18
Figure 5 – OSI Layers and Interface Objects ... 26
Figure 6 – Interface LowerLayers... 29
Figure 7 – Ignoring a Vendor-specific Interface Object in the Stack ... 31

Figure 8 – Ignoring a Vendor-specific Interface Object in the Stack (multiple sub-objects) 31
Figure 9 – Simple Router Example (Interfaces Visualized) ... 33
Figure 10 – Queuing Model of a Device .. 36
Figure 11 – Tunneling Overview .. 45

Figure 12 – Tunneling Overview (Showing Forwarding Decisions).. 46
Figure 13 – Sample Flow of Upstream Tunneled Traffic through the Device 47

Figure 14 – Sample Flow of Downstream Tunneled Traffic through the Device 47
Figure 15 – General Layer 3 Tunneling Interface Stack ... 48

Figure 16 – General Layer 3 Tunneling (from Figure 12) .. 49
Figure 17 – L2TP Interface Stack Example .. 50
Figure 18 – General Layer 2 Tunneling Interface Stack ... 51

Figure 19 – Queuing and Scheduling Example for RG .. 53
Figure 20 – Examples of VLAN configuration based on Bridging and VLAN Termination

objects ... 54
Figure 21 – Bridge 1 model .. 55
Figure 22 – Bridge 2 model .. 57

Figure 23 – Bridge 3 model .. 60

Figure 24 – VLAN Termination model .. 62
Figure 25 – Bridge 1 model .. 63
Figure 26 – Example of VLAN configuration in a 2 box scenario ... 66

Figure 27 – Bridge 1,2,3 model .. 66
Figure 28 – WiFi functions within layers ... 71

Figure 29 - Device User Configuration Backup ... 79
Figure 30 - Device User Configuration Restore ... 81

Figure 31 – Relationship of Protocols to Data Model .. 85
Figure 32 – Internal Relationships of IPv6 Addresses and Prefixes ... 86
Figure 33 – Sample 6rd Routing and Forwarding .. 100
Figure 34 – Sample DS-Lite Routing and Forwarding ... 102
Figure 35 – IPsec Data Model Objects ... 107

Figure 36 – ETSI High Level Functional Architecture .. 111
Figure 37 – M2M SCL Functional Architecture Framework ... 112

Figure 38 – M2M REM Service Capability .. 113
Figure 39 - ETSI M2M Devices and Gateways .. 114
Figure 40 - Example M2M Network .. 121
Figure 41 - M2M Device Discovery for Proxy Management ... 122
Figure 42 – ETSI M2M Data Model Structure ... 123
Figure 43 – Provider Bridge Scenarios ... 126

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 12 of 150

Figure 44 – Provider Bridge Components .. 127

Figure 45 – Usage of the data model to manage ZigBee devices with TR-069 130
Figure 46 – Example sequence diagram of ZigBee management with TR-069 131
Figure 47 – Example of a PCP Client embedded in the RG ... 133

Figure 48 – Example of a PCP Client embedded in a device, with PCP Proxy in the RG 134
Figure 49 – VLAN Traffic over GRE ... 138
Figure 50 – L2 over GRE Tunnel ... 139
Figure 51 – IP over IP GRE Encapsulation .. 141
Figure 52 – L3 over GRE Tunnel ... 142

Figure 53 – MAP-T Architecture .. 143
Figure 54 – Sample MAP Routing and Forwarding ... 145
Figure 55 – Sample MAP Routing and Forwarding (Interface Stack) 146
Figure 56 – PTM Link for DSL mode Line .. 147

Figure 57 – PTM Link for FAST mode Line .. 148
Figure 58 – PTM Link Bonding Groups for FAST mode Lines ... 149

Figure 59 – PTM Link Bonding Groups for DSL mode Lines ... 150

List of Tables

Table 1 – Simple Router Example (InterfaceStack table) .. 32
Table 2 – Simple Router Example (Interface LowerLayers) .. 34

Table 3 – Default Layer 2/3 QoS Mapping .. 42
Table 4 – ProtocolIdentifer URNs .. 43
Table 5 – Flow TypeParameters values for flow type urn:dslforum-org:pppoe 44

Table 6 – Tagged LAN to tagged WAN configuration .. 55

Table 7 – Tagged LAN to tagged WAN configuration (VLAN ID translation) 57
Table 8 – Untagged LAN to tagged WAN configuration ... 60
Table 9 – Internally generated to tagged WAN configuration ... 62

Table 10 – Configuration to be added to Table 6 ... 63
Table 11 – 802.1D (re-)marking ... 64

Table 12 – More than one VLAN ID tag admitted on the same Downstream interface 66
Table 13 – RFC 5969 Configuration Parameter Mapping .. 97

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 13 of 150

Executive Summary

TR-181 Issue 2 defines version 2 of the TR-069 [2] Device data model (Device:2). The Device:2

data model applies to all types of TR-069-enabled devices, including End Devices, Residential

Gateways, and other Network Infrastructure Devices. It represents a next generation evolution

that supersedes both Device:1 and InternetGatewayDevice:1.

The evolution to Device:2 was necessary in order resolve some fundamental limitations in the

InternetGatewayDevice:1 data model, which proved to be inflexible and caused problems in

representing complex device configurations. However, in defining this next generation data

model, care has been taken to ensure that all InternetGatewayDevice:1 and Device:1

functionality has been covered. Legacy installations can continue to make use of the

InternetGatewayDevice:1 and Device:1 data models, which are still valid.

The Device:2 data model defined in this Technical Report consists of a set of data objects

covering things like basic device information, time-of-day configuration, network interface and

protocol stack configuration, routing and bridging management, throughput statistics, and

diagnostic tests. It also defines a baseline profile that specifies a minimum level of data model

support.

The cornerstone of the Device:2 data model is the interface stacking mechanism. Network

interfaces and protocol layers are modeled as independent data objects that can be stacked, one

on top of the other, into whatever configuration a device might support.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 14 of 150

1 Purpose and Scope

1.1 Purpose

This Technical Report defines version 2 of the TR-069 [2] Device data model (Device:2). The

Device:2 data model applies to all types of TR-069-enabled devices, including End Devices,

Residential Gateways, and other Network Infrastructure Devices. It represents a next generation

evolution that supersedes both Device:1 and InternetGatewayDevice:1.

The evolution to Device:2 was necessary in order resolve some fundamental limitations in the

InternetGatewayDevice:1 data model, which proved to be inflexible and caused problems in

representing complex device configurations. However, in defining this next generation data

model, care has been taken to ensure that all InternetGatewayDevice:1 and Device:1

functionality has been covered. Legacy installations can continue to make use of the

InternetGatewayDevice:1 and Device:1 data models, which are still valid.

1.2 Scope

The Device:2 data model defined in this Technical Report consists of a set of data objects

covering things like basic device information, time-of-day configuration, network interface and

protocol stack configuration, routing and bridging management, throughput statistics, and

diagnostic tests. It also defines a baseline profile that specifies a minimum level of data model

support.

The cornerstone of the Device:2 data model is the interface stacking mechanism. Network

interfaces and protocol layers are modeled as independent data objects (a.k.a. interface objects)

that can be stacked, one on top of the other, into whatever configuration a device might support.

Figure 1 illustrates the top-level Device:2 data model structure. Figure 2, Figure 3, and Figure 4

illustrate the data model structure in greater detail. See Section 5 for the complete list of objects.

 Interface objects are indicated by a “dashed” background pattern.

 Objects that reference interface objects are indicated by a “dotted” background pattern.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 15 of 150

Figure 1 – Device:2 Data Model Structure – Overview

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 16 of 150

Figure 2 – Device:2 Data Model Structure – Device Level

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 17 of 150

Figure 3 – Device:2 Data Model Structure – Interface Stack and Networking Technologies

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 18 of 150

Figure 4 – Device:2 Data Model Structure – Applications and Protocols

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 19 of 150

2 References and Terminology

2.1 Conventions

In this Technical Report, several words are used to signify the requirements of the specification.

These words are always capitalized. More information can be found be in RFC 2119 [1].

MUST This word, or the term “REQUIRED”, means that the definition is an

absolute requirement of the specification.

MUST NOT This phrase means that the definition is an absolute prohibition of the

specification.

SHOULD This word, or the term “RECOMMENDED”, means that there could exist

valid reasons in particular circumstances to ignore this item, but the full

implications need to be understood and carefully weighed before choosing a

different course.

SHOULD NOT This phrase, or the phrase “NOT RECOMMENDED” means that there could

exist valid reasons in particular circumstances when the particular behavior

is acceptable or even useful, but the full implications need to be understood

and the case carefully weighed before implementing any behavior described

with this label.

MAY This word, or the term “OPTIONAL”, means that this item is one of an

allowed set of alternatives. An implementation that does not include this

option MUST be prepared to inter-operate with another implementation that

does include the option.

The key words “DEPRECATED” and “OBSOLETED” in this Technical Report are to be

interpreted as defined in TR-106 [3].

2.2 References

The following references are of relevance to this Technical Report. At the time of publication,

the editions indicated were valid. All references are subject to revision; users of this Technical

Report are therefore encouraged to investigate the possibility of applying the most recent edition

of the references listed below.

A list of currently valid Broadband Forum Technical Reports is published at www.broadband-

forum.org.

[1] RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, IETF, 1997

[2] TR-069 Amendment 5, CPE WAN Management Protocol, Broadband Forum, 2013

[3] TR-106 Amendment 7, Data Model Template for TR-069-Enabled Devices, Broadband

Forum, 2013

[4] RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, IETF, 2005

http://www.broadband-forum.org/
http://www.broadband-forum.org/
http://www.ietf.org/rfc/rfc2119.txt
http://www.broadband-forum.org/technical/download/TR-069_Amendment-5.pdf
http://www.broadband-forum.org/technical/download/TR-106_Amendment-7.pdf
http://www.ietf.org/rfc/rfc3986.txt

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 20 of 150

[5] XML Schema Part 0: Primer Second Edition, W3C, 2004

[6] RFC 2863, The Interfaces Group MIB, IETF, 2000

[7] X.200, Information technology - Open Systems Interconnection - Basic Reference Model:

The basic model, ITU-T, 1994

[8] 802.1D-2004, Media Access Control (MAC) Bridges, IEEE, 2004

[9] 802.1Q-2011, Media Access Control (MAC) Bridges and Virtual Bridge Local Area

Networks, IEEE, 2011

[10] RFC 2597, Assured Forwarding PHB Group, IETF, 1999

[11] RFC 3246, An Expedited Forwarding PHB (Per-Hop Behavior), IETF, 2002

[12] RFC 3261, SIP: Session Initiation Protocol, IETF, 2002

[13] RFC 3435, Media Gateway Control Protocol (MGCP) - Version 1.0, IETF, 2003

[14] RFC 4566, SDP: Session Description Protocol, IETF, 2006

[15] RFC 2453, RIP Version 2, IETF, 1998

[16] RFC 2460, Internet Protocol Version 6 (IPv6) Specification, IETF, 1998

[17] RFC 2464, Transmission of IPv6 Packets over Ethernet Networks, IETF, 1998

[18] RFC 3315, Dynamic Host Configuration Protocol for IPv6 (DHCPv6), IETF, 2003

[19] RFC 3633, IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP) version

6, IETF, 2003

[20] RFC 4191, Default Router Preferences and More-Specific Routes, IETF, 2005

[21] RFC 4193, Unique Local IPv6 Unicast Addresses, IETF, 2005

[22] RFC 4861, Neighbor Discovery for IP version 6 (IPv6), IETF, 2007

[23] RFC 4862, IPv6 Stateless Address Autoconfiguration, IETF, 2007

[24] RFC 5072, IP Version 6 over PPP, IETF, 2007

[25] RFC 5969, IPv6 Rapid Deployment on IPv4 Infrastructures (6rd) – Protocol Specification,

IETF, 2010

[26] RFC 6106, IPv6 Router Advertisement Options for DNS Configuration, IETF, 2010

[27] RFC 6333, Dual-Stack Lite Broadband Deployments Following IPv4 Exhaustion, IETF,

2011

[28] RFC 6334, Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Options for Dual-

Stack Lite, IETF, 2011

[29] TR-101, Migration to Ethernet Based DSL Aggregation, Broadband Forum, 2006

[30] TR-124 Issue 2, Functional Requirements for Broadband Residential Gateway Devices,

Broadband Forum, 2010

[31] TR-177, IPv6 in the context of TR-101, Broadband Forum, 2010

[32] TR-187, IPv6 for PPP Broadband Access, Broadband Forum, 2010

http://www.w3.org/TR/xmlschema-0
http://tools.ietf.org/rfc/rfc2863
http://www.itu.int/rec/T-REC-X.200-199407-I/en
http://standards.ieee.org/getieee802/download/802.1D-2004.pdf
http://standards.ieee.org/getieee802/download/802.1Q-2005.pdf
http://tools.ietf.org/rfc/rfc2597
http://tools.ietf.org/rfc/rfc3246
http://tools.ietf.org/rfc/rfc3261
http://tools.ietf.org/rfc/rfc3435
http://tools.ietf.org/rfc/rfc4566
http://tools.ietf.org/rfc/rfc2453
http://tools.ietf.org/rfc/rfc2460
http://tools.ietf.org/rfc/rfc2464
http://tools.ietf.org/rfc/rfc3315
http://tools.ietf.org/rfc/rfc3633
http://tools.ietf.org/rfc/rfc4191
http://tools.ietf.org/rfc/rfc4193
http://tools.ietf.org/rfc/rfc4861
http://tools.ietf.org/rfc/rfc4862
http://tools.ietf.org/rfc/rfc5072
http://tools.ietf.org/rfc/rfc5969
http://tools.ietf.org/rfc/rfc6106
http://tools.ietf.org/html/rfc6333
http://tools.ietf.org/html/rfc6334
http://www.broadband-forum.org/technical/download/TR-101.pdf
http://www.broadband-forum.org/technical/download/TR-124_Issue-2.pdf
http://www.broadband-forum.org/technical/download/TR-177.pdf
http://www.broadband-forum.org/technical/download/TR-187.pdf

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 21 of 150

[33] ICSA Baseline Modular Firewall Certification Criteria, Baseline module – version 4.1,

ICSA Labs, 2008

[34] ICSA Residential Modular Firewall Certification Criteria, Required Services Security

Policy – Residential Category module – version 4.1, ICSA Labs, 2008

[35] RFC 4301, Security Architecture for the Internet Protocol, IETF, 2005

[36] RFC 4302, IP Authentication Header (AH), IETF, 2005.

[37] RFC 4303, IP Encapsulating Security Payload (ESP), IETF, 2005

[38] RFC 5996, Internet Key Exchange Protocol Version 2 (IKEv2), IETF, 2010

[39] ETSI TS 102 690 v1.1.6, Machine-to-Machine Communications (M2M Functional

Architecture), ETSI, 2012

[40] ETSI TS 102 921 v1.1.6, M2M mIa, dIa and mId Interfaces, ETSI, 2012

[41] ETSI TS 103 093 v1.1.3, Machine to Machine (M2M); BBF TR-069 Compatible Data

Model for ETSI M2M, ETSI, 2012

[42] ZigBee-2007, ZigBee Specification, The ZigBee Alliance, 2007

[43] RFC 6887, Port Control Protocol (PCP), IETF, 2013

[44] RFC 6970, Universal Plug and Play (UPnP) Internet Gateway Device – Port Control

Protocol Interworking Function (IGD-PCP IWF), IETF, 2013

[45] RFC 7291, DHCP Options for the Port Control Protocol (PCP), IETF, 2014

[46] RFC7648, Port Control Protocol (PCP) Proxy Function, IETF, 2015

[47] RFC7448, PCP Server Selection, IETF, 2014

[48] draft-boucadair-pcp-flow-examples, Port Control Protocol (PCP) Flow Examples, IETF,

2013

[49] RFC 2661, Layer Two Tunneling Protocol “L2TP”, IETF, 1999

[50] RFC 2784, Generic Routing Encapsulation (GRE), IETF, 2000

[51] RFC 2890, Key and Sequence Number Extensions to GRE, IETF, 2000

[52] RFC 7597, Mapping of Address and Port with Encapsulation (MAP), IETF, 2014

[53] RFC 7598, DHCPv6 Options for configuration of Softwire Address and Port Mapped

Clients, IETF, 2014

[54] RFC 7599, Mapping of Address and Port using Translation (MAP-T), IETF, 2014

[55] TR-059, DSL Evolution - Architecture Requirements for the Support of QoS-Enabled IP

Services, Broadband Forum, 2013

http://www.icsalabs.com/sites/default/files/baseline.pdf
http://www.icsalabs.com/sites/default/files/residential.pdf
http://tools.ietf.org/html/rfc4301
http://tools.ietf.org/html/rfc4302
http://tools.ietf.org/html/rfc4303
http://tools.ietf.org/html/rfc5996
http://docbox.etsi.org/M2M/Open/Latest_Drafts/00002ed121v116.pdf
http://docbox.etsi.org/M2M/Open/Latest_Drafts/00010ed121v116.pdf
http://docbox.etsi.org/M2M/Open/Latest_Drafts/00016ed121v113.pdf
http://www.zigbee.org/Specifications/ZigBee/download.aspx
http://tools.ietf.org/html/rfc6887
http://tools.ietf.org/html/rfc6970
http://tools.ietf.org/html/rfc7291
https://tools.ietf.org/html/rfc7648
https://tools.ietf.org/html/rfc7488
http://tools.ietf.org/html/draft-boucadair-pcp-flow-examples
http://tools.ietf.org/html/rfc2661
http://tools.ietf.org/html/rfc2784
http://tools.ietf.org/html/rfc2890
http://tools.ietf.org/html/rfc7597
http://tools.ietf.org/html/rfc7598
http://tools.ietf.org/html/rfc7599
http://www.broadband-forum.org/technical/download/TR-059.pdf

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 22 of 150

2.3 Definitions

The following terminology is used throughout this Technical Report.

ACS Auto-Configuration Server. This is a component in the broadband network

responsible for auto-configuration of the CPE for advanced services.

CPE Customer Premises Equipment; refers to any TR-069-enabled [2] device and

therefore covers Residential Gateways, LAN-side End Devices, and other Network

Infrastructure Devices.

Component A named collection of Objects and/or Parameters and/or Profiles that can be

included anywhere within a Data Model.

CWMP CPE WAN Management Protocol. Defined in TR-069 [2], CWMP is a

communication protocol between an ACS and CPE that defines a mechanism for

secure auto-configuration of a CPE and other CPE management functions in a

common framework.

Data Model A hierarchical set of Objects and/or Parameters that define the managed objects

accessible via TR-069 for a particular CPE.

Device Used here as a synonym for CPE.

DM Instance Data Model Schema instance document. This is an XML document that conforms to

the DM Schema and to any additional rules specified in or referenced by the DM

Schema.

DM Schema Data Model Schema. This is the XML Schema [5] that is used for defining data

models for use with CWMP.

Downstream

Interface

A physical interface object whose Upstream parameter is set to false, or an interface

that is associated with such a physical interface via the InterfaceStack. For example, a

downstream IP Interface is an IP.Interface object that is associated with an

Upstream=false physical layer interface.

Interface Object A type of Object that models a network interface or protocol layer. Commonly

referred to as an interface. They can be stacked, one on top of the other, using Path

References in order to dynamically define the relationships between interfaces.

Object A named collection of Parameters and/or other Objects.

Parameter A name-value pair representing a manageable CPE parameter made accessible to an

ACS for reading and/or writing.

Path Reference Describes how a parameter can reference another parameter or object via its path

name (Section A.2.3.4/TR-106 [3]). Such a reference can be weak or strong (Section

A.2.3.6/TR-106 [3]).

Upstream

Interface

A physical interface object whose Upstream parameter is set to true, or an interface

that is associated with such a physical interface via the InterfaceStack. For example,

an upstream IP Interface is an IP.Interface object that is associated with an

Upstream=true physical layer interface.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 23 of 150

2.4 Abbreviations

This Technical Report uses the following abbreviations:

ATM Asynchronous Transfer Mode

CGN Carrier Grade NAT

DHCP Dynamic Host Configuration Protocol

DSL Digital Subscriber Line

IP Internet Protocol

IPsec Internet Protocol Security

M2M Machine to Machine

NAT Network Address Translation

NSCL Network Service Capability Layer

OSI Open Systems Interconnection

PCP Port Control Protocol

PPP Point-to-Point Protocol

PTM Packet Transfer Mode

REM Remote Entity Management

RG Residential Gateway

RPC Remote Procedure Call

SCL Service Capability Layer

SSID Service Set Identifier

TR Technical Report

URI Uniform Resource Identifier [4]

URL Uniform Resource Locator [4]

xREM x (Device or Gateway) Remote Entity Management

ZDO ZigBee Device Object

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 24 of 150

3 Technical Report Impact

3.1 Energy Efficiency

TR-181 Issue 2 Amendment 11 has no impact on Energy Efficiency.

3.2 IPv6

TR-181 Issue 2 Amendment 11 defines IPv6 extensions1 to the Device:2 data model.

3.3 Security

TR-181 Issue 2 Amendment 11 has no impact on Security.

3.4 Privacy

TR-181 Issue 2 Amendment 11 has no impact on Privacy.

1 Introduced in Issue 2 Amendment 2

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 25 of 150

4 Architecture

4.1 Interface Layers

This Technical Report models network interfaces and protocol layers as independent data

objects, generally referred to as interface objects (or interfaces). Interface objects can be stacked,

one on top of the other, using path references in order to dynamically define the relationships

between interfaces.

The interface object and interface stack are concepts inspired by RFC 2863 [6].

Within the Device:2 data model, interface objects are arbitrarily restricted to definitions that

operate at or below the IP network layer (i.e. layers 1 through 3 of the OSI model [7]). However,

vendor-specific interface objects MAY be defined which fall outside this restricted scope.

Figure 5 lists the interface objects defined in the Device:2 data model. The indicated OSI layer is

non-normative; it serves as a guide only, illustrating at what level in the stack an interface object

is expected to appear. However, a CPE need not support or use all interfaces, which means that

the figure does not reflect all possible stacking combinations and restrictions. For example, one

CPE stack might exclude DSL Bonding, while another CPE stack might include DSL Bonding

but exclude Bridging, while still another might include VLANTermination under PPP, or

VLANTermination under IP with no PPP, or even Ethernet Link under IP with no

VLANTermination and no PPP.

NOTE – Throughout this Technical Report, object names are often abbreviated in order to improve

readability. For example, Device.Ethernet.VLANTermination.{i}. is the full name of a Device:2 object, but

might casually be referred to as Ethernet.VLANTermination.{i} or VLANTermination.{i} or

VLANTermination, just so long as the abbreviation is unambiguous (with respect to similarly named

objects defined elsewhere within the data model).

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 26 of 150

Figure 5 – OSI Layers and Interface Objects2 3

4.2 Interface objects

An interface object is a type of network interface or protocol layer. Each type of interface is

modeled by a Device:2 data model table, with a row per interface instance (e.g. IP.Interface.{i}

for IP Interfaces).

Each interface object contains a core set of parameters and objects, which serves as the template

for defining interface objects within the data model. Interface objects can also contain other

parameters and sub-objects specific to the type of interface.

2 Note that, because new minor versions of the Device:2 data model can be defined without re-publishing this

document, the figure is not necessarily up-to-date.
3 The Bridge.{i}.Port.{i} object models both management (upwards facing) Bridge Ports and non-management

(downwards facing) Bridge Ports, where each instance is configured as one or the other. Management Bridge Ports

are stacked above non-management Bridge Ports.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 27 of 150

The core set of parameters consists of:

 Enable The administrative state of the interface (i.e. boolean indicating enabled

or disabled)

 Status The operational state of the interface (i.e. Up, Down, Unknown,

Dormant, NotPresent, LowerLayerDown, Error)

 Alias An alternate name used to identify the interface, which is assigned an

initial value by the CPE but can later be chosen by the ACS

 Name The textual name used to identify the interface, which is chosen by the

CPE

 LastChange The accumulated time in seconds since the interface entered its current

operational state

 LowerLayers A list of path references to interface objects that are stacked

immediately below the interface

Also, a core set of statistics parameters is contained within a Stats sub-object. The definition of

these parameters MAY be customized for each interface type. The core set of parameters within

the Stats sub-object consists of:

 BytesSent The total number of bytes transmitted out of the interface,

including framing characters.

 BytesReceived The total number of bytes received on the interface,

including framing characters.

 PacketsSent The total number of packets transmitted out of the

interface.

 PacketsReceived The total number of packets received on the interface.

 ErrorsSent The total number of outbound packets that could not be

transmitted because of errors.

 ErrorsReceived The total number of inbound packets that contained errors

preventing them from being delivered to a higher-layer

protocol.

 UnicastPacketsSent The total number of packets requested for transmission,

which were not addressed to a multicast or broadcast

address at this layer, including those that were discarded

or not sent.

 UnicastPacketsReceived The total number of received packets, delivered by this

layer to a higher layer, which were not addressed to a

multicast or broadcast address at this layer.

 DiscardPacketsSent The total number of outbound packets, which were chosen

to be discarded even though no errors had been detected

to prevent their being transmitted.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 28 of 150

 DiscardPacketsReceived The total number of inbound packets, which were chosen

to be discarded even though no errors had been detected

to prevent their being delivered.

 MulticastPacketsSent The total number of packets that higher-layer protocols

requested for transmission and which were addressed to a

multicast address at this layer, including those that were

discarded or not sent.

 MulticastPacketsReceived The total number of received packets, delivered by this

layer to a higher layer, which were addressed to a

multicast address at this layer.

 BroadcastPacketsSent The total number of packets that higher-level protocols

requested for transmission and which were addressed to a

broadcast address at this layer, including those that were

discarded or not sent.

 BroadcastPacketsReceived The total number of received packets, delivered by this

layer to a higher layer, which were addressed to a

broadcast address at this layer.

 UnknownProtoPackets-

Received

The total number of packets received via the interface,

which were discarded because of an unknown or

unsupported protocol.

NOTE – The CPE MUST reset an interface's Stats parameters (unless otherwise stated in individual

object or parameter descriptions) either when the interface becomes operationally down due to a previous

administrative down (i.e. the interface's Status parameter transitions to a down state after the interface is

disabled) or when the interface becomes administratively up (i.e. the interface's Enable parameter

transitions from false to true). Administrative and operational status is discussed in Section 4.2.2.

4.2.1 Lower Layers

Each interface object can be stacked on top of zero or more other interface objects, which MUST

be specified using its LowerLayers parameter. By having each interface object, in turn, reference

the interface objects in its lower layer; a logical hierarchy of all interface relationships is built up.

The LowerLayers parameter is a comma-separated list of path references to interface objects.

Each item in the list represents an interface object that is stacked immediately below the

referencing interface. If a referenced interface is deleted, the CPE MUST remove the

corresponding item from this list (i.e. items in the LowerLayers parameter are strong references).

These relationships between interface objects can either be set by management action, in order to

specify new interface configurations, or be pre-configured within the CPE.

A CPE MUST reject any attempt to set LowerLayers values that would result in an invalid or

unsupported configuration. The corresponding fault response from the CPE MUST indicate this

using an Invalid Parameter Value fault code (9007). See Section A.3.2.1/TR-069 [2] for further

details on SetParameterValues fault responses.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 29 of 150

The lowest layer in a fully configured and operational stack is generally the physical interface

(e.g. DSL Line instance representing a DSL physical link). Within these physical interface

objects the LowerLayers parameter will be an empty list, unless some lower layer vendor-

specific interface objects are defined and present. Higher layer interface objects MAY operate

without a physical layer being modeled, however this is a local matter to the CPE.

Figure 6 illustrates the use of the LowerLayers parameter. A, B, C, and D represent interface

objects. Interface A’s LowerLayers parameter references interfaces B and C. Interface B’s

LowerLayers parameter references interface D. Interfaces C and D have no interface references

specified in their LowerLayers parameters. In this way, a multi-layered interface stack is

configured. If the ACS were to delete interface B, then the CPE would update interface A’s

LowerLayers parameter to no longer reference interface B (and interface D would be stranded,

no longer referenced by the now deleted interface B).

Figure 6 – Interface LowerLayers

4.2.2 Administrative and Operational Status

NOTE – Many of the requirements outlined in this section were derived from Section 3.1.13/RFC 2863

[6].

An interface object’s Enable and Status parameters specify the current administrative and

operational status of the interface, respectively. Valid values for the Status parameter are: Up,

Down, Unknown, Dormant, NotPresent, LowerLayerDown, and Error.

The CPE MUST do everything possible in order to follow the operational state transitions as

described below. In some cases these requirements are defined as SHOULD; this is not an

indication that they are optional. These transitions, and the relationship between the Enable

parameter and the Status parameter, are required behavior – it is simply the timing of how long

these state transitions take that is implementation specific.

When the Enable parameter is false the Status parameter SHOULD normally be Down (or

NotPresent or Error if there is a fault condition on the interface). Note that when the Enable

parameter transitions to false, it is possible that the Status parameter’s transition to Down might

occur after a small time lag if the CPE needs to first complete certain operations (e.g. finish

transmitting a packet).

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 30 of 150

When the Enable parameter is changed to true, the Status SHOULD do one of the following:

 Change to Up if and only if the interface is able to transmit and receive network traffic.

 Change to Dormant if and only if the interface is operable, but is waiting for external

actions before it can transmit and receive network traffic.

 Change to LowerLayerDown if and only if the interface is prevented from entering the

Up state because one or more of the interfaces beneath it is down.

 Remain in the Error state if there is an error or other fault condition detected on the

interface.

 Remain in the NotPresent state if the interface has missing (typically hardware)

components.

 Change to Unknown if the state of the interface cannot be determined for some reason.

The Dormant state indicates that the interface is operable, but it is waiting for external events to

occur before it can transmit/receive traffic. When such events occur, and the interface is then

able to transmit/receive traffic, the Status SHOULD change to the Up state. Note that both the

Up and Dormant states are considered healthy states.

The Down, NotPresent, LowerLayerDown, and Error states all indicate that the interface is

down. The NotPresent state indicates that the interface is down specifically because of a missing

(typically hardware) component. The LowerLayerDown state indicates that the interface is

stacked on top of one or more other interfaces, and that this interface is down specifically

because one or more of these lower-layer interfaces is down.

The Error state indicates that the interface is down because an error or other fault condition was

detected on the interface.

4.2.3 Stacking and Operational Status

NOTE – The requirements outlined in this section were derived from Section 3.1.14/RFC 2863 [6].

When an interface object is stacked on top of lower-layer interfaces (i.e. is not a bottommost

layer in the stack), then:

 The interface SHOULD be Up if it is able to transmit/receive traffic due to one or more

interfaces lower down in the stack being Up, irrespective of whether other interfaces

below it are in a non-Up state (i.e. the interface is functioning in conjunction with at least

some of its lower-layered interfaces).

 The interface MAY be Up or Dormant if one or more interfaces lower down in the stack

are Dormant and all other interfaces below it are in a non-Up state.

 The interface is expected to be LowerLayerDown while all interfaces lower down in the

stack are either Down, NotPresent, LowerLayerDown, or Error.

4.2.4 Vendor-specific Interface Objects

Vendor-specific interface objects MAY be defined and used. If such objects are specified by

vendors, they MUST be preceded by X_<VENDOR>_ and follow the syntax for vendor

extensions used for parameter names (as defined in Section 3.3/TR-106 [3]).

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 31 of 150

If the ACS encounters an unknown vendor-specific interface object within a CPE’s interface

stack, rather than responding with a fault, the ACS MUST proceed as if this object’s upper-layer

interfaces were directly linked to its lower-layer interfaces. This applies whether the ACS

encounters such an object via the InterfaceStack table (Section 4.3) or via an interface object’s

LowerLayers parameter.

Figure 7 illustrates a stacked vendor-specific interface object being bypassed by the ACS, where

there is just one object below the vendor-specific object.

IP.Interface.1

Ethernet.Link.1

X_00256D_AB.

Interface.1

IP.Interface.1

Ethernet.Link.1

IP.Interface.1

Ethernet.Link.1

X_00256D_AB.

Interface.1

IP.Interface.1

Ethernet.Link.1

Figure 7 – Ignoring a Vendor-specific Interface Object in the Stack

Figure 8 illustrates a stacked vendor-specific interface object being bypassed by the ACS, where

there are multiple objects below the vendor-specific object.

Bridging.Bridge.1

.Port.1
[ManagementPort=true]

Bridging.Bridge.1

.Port.2
[ManagementPort=false]

X_00256D_AB.

Bridge.1

Bridging.Bridge.1

.Port.3
[ManagementPort=false]

Bridging.Bridge.1

.Port.1
[ManagementPort=false]

Bridging.Bridge.1

.Port.2
[ManagementPort=false]

Bridging.Bridge.1

.Port.1
[ManagementPort=true]

Bridging.Bridge.1

.Port.1
[ManagementPort=true]

Bridging.Bridge.1

.Port.2
[ManagementPort=false]

X_00256D_AB.

Bridge.1

Bridging.Bridge.1

.Port.3
[ManagementPort=false]

Bridging.Bridge.1

.Port.1
[ManagementPort=false]

Bridging.Bridge.1

.Port.2
[ManagementPort=false]

Bridging.Bridge.1

.Port.1
[ManagementPort=true]

Figure 8 – Ignoring a Vendor-specific Interface Object in the Stack (multiple sub-objects)

4.3 InterfaceStack Table

Although the interface stack can be traversed via LowerLayers parameters (as described in

Section 4.2.1 Lower Layers), an alternate mechanism is provided to aid in visualizing the overall

stacking relationships and to quickly access objects within the stack.

The InterfaceStack table is a Device:2 data model object, namely Device.InterfaceStack.{i}. This

is a read-only table whose rows are auto-generated by the CPE based on the current relationships

that are configured between interface objects (via each interface instance’s LowerLayers

parameter). Each table row represents a “link” between a higher-layer interface object

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 32 of 150

(referenced by its HigherLayer parameter) and a lower-layer interface object (referenced by its

LowerLayer parameter). This means that an InterfaceStack table row’s HigherLayer and

LowerLayer parameters will always both be non-null.

NOTE – As a consequence, interface instances that have been stranded will not be represented within the

InterfaceStack table4. It is also likely that multiple, disjoint groups of stacked interface objects will

coexist within the table (for example, each IP interface will be the root of a disjoint group; unused

“fragments”, e.g. a secondary DSL channel with a configured ATM PVC that isn’t attached to anything

above, will linger if they remain interconnected; and finally, partially configured “fragments” can be

present when an interface stack is being set up).

A CPE MUST autonomously add or remove rows in the InterfaceStack table in response to the

following circumstances:

 An interface’s LowerLayers parameter was updated to remove a reference to another

interface (i.e. a “link” is being removed from the stack due to a SetParameterValues

request).

 An interface’s LowerLayers parameter was updated to add a reference to another

interface (i.e. a “link” is being added to the stack due to a SetParameterValues request).

 An interface was deleted that had referenced, or been referenced by, one other interface

(i.e. a “link” is being removed from the stack due to a DeleteObject request).

 An interface was deleted that had referenced, or been referenced by, multiple interfaces

(i.e. multiple “links” are being removed from the stack due to a DeleteObject request).

Once the CPE issues the SetParameterValuesResponse or the DeleteObjectResponse, all

autonomous InterfaceStack table changes associated with the corresponding request (as

described in the preceding paragraph) MUST be available for subsequent commands to operate

on, regardless of whether or not these changes have been applied by the CPE (see TR-069 [2]

Sections A.3.2.1 and A.3.2.7 for background on these RPC methods).

As an example, Table 1 lists an InterfaceStack table configuration imagined for a fictitious,

simple router. Each row in this table corresponds to a row in the InterfaceStack table. The

specified objects and instance numbers are manufactured for the sake of this example; real world

configurations will likely differ.

Table 1 – Simple Router Example (InterfaceStack table)

Row/Instance Higher Layer Interface Lower Layer Interface

1 IP.Interface.1 PPP.Interface.1

2 PPP.Interface.1 Ethernet.Link.1

3 Ethernet.Link.1 ATM.Link.1

4 ATM.Link.1 DSL.Channel.1

5 DSL.Channel.1 DSL.Line.1

6 IP.Interface.2 Ethernet.Link.2

4 An interface instance is considered stranded when it has no lower layer references to or from other interface

instances. Stranded interface instances will be omitted from the InterfaceStack table until such time as they are

stacked, above or below another interface instance, via a LowerLayers parameter reference.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 33 of 150

Row/Instance Higher Layer Interface Lower Layer Interface

7 Ethernet.Link.2 ATM.Link.2

8 ATM.Link.2 DSL.Channel.1

9 IP.Interface.3 Ethernet.Link.3

10 Ethernet.Link.3 Bridging.Bridge.1.Port.1

11 Bridging.Bridge.1.Port.1 Bridging.Bridge.1.Port.2

12 Bridging.Bridge.1.Port.2 Ethernet.Interface.1

13 Bridging.Bridge.1.Port.1 Bridging.Bridge.1.Port.3

14 Bridging.Bridge.1.Port.3 Ethernet.Interface.2

15 Bridging.Bridge.1.Port.1 Bridging.Bridge.1.Port.4

16 Bridging.Bridge.1.Port.4 WiFi.SSID.1

17 WiFi.SSID.1 WiFi.Radio.1

By looking at the rows from the example InterfaceStack table as a whole, we can visualize the

overall stack configuration. Figure 9 shows how this information can be pictured. Interface

instances are represented by colored boxes, while InterfaceStack instances are represented by

numbered circles.

Bridging.Bridge.1

.Port.4
[ManagementPort=false]

IP.Interface.2 IP.Interface.3

router

WAN LAN

L1

L2

L2+

L3

layer

Ethernet.Link.2

WiFi.SSID.1

IP.Interface.1

Ethernet.Link.1

PPP.Interface.1

3

8

9

Ethernet.Link.3

6

7

11

xxx Interface Object

InterfaceStack

entryn

Bridging.Bridge.1.Port.1
[ManagementPort=true]

LAN LAN

Bridging.Bridge.1

.Port.3
[ManagementPort=false]

Bridging.Bridge.1

.Port.2
[ManagementPort=false]

15

1

13

2

4 17

12 14 16

10

WiFi.Radio.1
[Upstream=false]

Ethernet.Interface.2
[Upstream=false]

Ethernet.Interface.1
[Upstream=false]

DSL.Line.1
[Upstream=true]

ATM.Link.1 ATM.Link.2

DSL.Channel.1

5

Figure 9 – Simple Router Example (Interfaces Visualized)

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 34 of 150

Finally, Table 2 completes the example by listing each interface instance and its corresponding

LowerLayers parameter value.

Table 2 – Simple Router Example (Interface LowerLayers)

Interface LowerLayers value

IP.Interface.1 PPP.Interface.1

IP.Interface.2 Ethernet.Link.2

IP.Interface.3 Ethernet.Link.3

PPP.Interface.1 Ethernet.Link.1

Ethernet.Link.1 ATM.Link.1

Ethernet.Link.2 ATM.Link.2

Ethernet.Link.3 Bridging.Bridge.1.Port.1

Bridging.Bridge.1.Port.1 Bridging.Bridge.1.Port.2, Bridging.Bridge.1.Port.3, Bridging.Bridge.1.Port.4

Bridging.Bridge.1.Port.2 Ethernet.Interface.1

Bridging.Bridge.1.Port.3 Ethernet.Interface.2

Bridging.Bridge.1.Port.4 WiFi.SSID.1

ATM.Link.1 DSL.Channel.1

ATM.Link.2 DSL.Channel.1

DSL.Channel.1 DSL.Line.1

DSL.Line.1

Ethernet.Interface.1

Ethernet.Interface.2

WiFi.SSID.1 WiFi.Radio.1

WiFi.Radio.1

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 35 of 150

5 Parameter Definitions

The normative definition of the Device:2 data model is split between several DM Instance

documents (see TR-106 [3] Annex A) and is published at http://www.broadband-

forum.org/cwmp. For a given revision of the data model, the corresponding TR-181 Issue 2

XML document defines the Device:2 model itself and imports additional components from the

other XML documents listed. Each TR-181 Issue 2 HTML document is a report generated from

the XML files, and lists a consolidated view of the Device:2 data model in human-readable form.

http://www.broadband-forum.org/cwmp
http://www.broadband-forum.org/cwmp

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 36 of 150

Annex A Bridging and Queuing

A.1 Queuing and Bridging Model

Figure 10 shows the queuing and bridging model for a device. This model relates to the QoS

object as well as the Bridging and Routing objects. The elements of this model are described in

the following sections.

NOTE – the queuing model described in this Annex is meant strictly as a model to clarify the

intended behavior of the related data objects. There is no implication intended that an

implementation has to be structured to conform to this model.

.

.

.

Class 2

Class 3

Class 4

Class N

EF

AF

Class 1

Queue 1 for connection 1

Queue 2 for connection 1

Policer 1

BE

Queue 3 for connection 1

Ingress
Interface/
Connection

Egress
Interface/
Connection

Policer 2

Class X

Class Y

Class Z

Default

C
la

s
s
ific

a
tio

n

App protocol
handler 1

Flow Type 1

Flow Type 2

Default Flow

Policer 1

Other
Ingress

Interfaces

Other
Non-bridgeable
Egress
Interfaces

R
o
u
tin

g
 (L

a
y
e
r3

F
o
rw

a
rd

in
g
)

Other
Non-bridgeable

Ingress
Interfaces

L
a
y
e
r2

B
rid

g
in

g

L
a
y
e
r2

B
rid

g
in

g

Other
Egress
Interfaces

S
c
h
e
d
u
le

r /S
h
a
p
e
r

Figure 10 – Queuing Model of a Device

A.1.1 Packet Classification

The Classification table within the QoS object specifies the assignment of each packet arriving at

an ingress interface to a specific internal class. This classification can be based on a number of

matching criteria, such as destination and source IP address, destination and source port, and

protocol.

Each entry in the Classification table includes a series of parameters, each indicated to be a

Classification Criterion. Each classification criterion can be set to a specified value, or can be set

to a value that indicates that criterion is not to be used. A packet is defined to match the

classification criteria for that table entry only if the packet matches all of the specified criteria.

That is, a logical AND operation is applied across all classification criteria within a given

Classification table entry.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 37 of 150

NOTE – to apply a logical OR to sets of classification criteria, multiple entries in the

Classification table can be created that specify the same resulting queuing behavior.

For each classification criterion, the Classification table also includes a corresponding “exclude”

flag. This flag can be used to invert the sense of the associated classification criterion. That is, if

this flag is false for a given criterion, the classifier is to include only packets that meet the

specified criterion (as well as all others). If this flag is true for a given criterion, the classifier is

to include all packets except those that meet the associated criterion (in addition to meeting all

other criteria).

For a given entry in the Classification table, the classification is to apply only to the interface

specified by the Interface parameter. This parameter can specify a particular ingress interface or

all sources. Depending on the particular interface, not all classification criteria will be

applicable. For example, Ethernet layer classification criteria would not apply to packets

arriving on a non-bridged ATM VC.

Packet classification is modeled to include all ingress packets regardless of whether they

ultimately will be bridged or routed through the device.

A.1.1.1 Classification Order

The class assigned to a given packet corresponds to the first entry in the Classification table

(given the specified order of the entries in the table) whose matching criteria match the packet.

If there is no entry that matches the packet, the packet is assigned to a default class.

Classification rules are sensitive to the order in which they are applied because certain traffic

might meet the criteria of more than one Classification table entry. The Order parameter is

responsible for identifying the order in which the Classification entries are to be applied.

The following rules apply to the use and setting of the Order parameter:

 Order goes in order from 1 to n, where n is equal to the number of entries in the

Classification table. 1 is the highest precedence, and n the lowest. For example, if entries

with Order of 4 and 7 both have rules that match some particular traffic, the traffic will be

classified according to the entry with the 4.

 The CPE is responsible for ensuring that all Order values are unique and sequential.

o If an entry is added (number of entries becomes n+1), and the value specified for

Order is greater than n+1, then the CPE will set Order to n+1.

o If an entry is added (number of entries becomes n+1), and the value specified for

Order is less than n+1, then the CPE will create the entry with that specified value,

and increment the Order value of all existing entries with Order equal to or greater

than the specified value.

o If an entry is deleted, the CPE will decrement the Order value of all remaining entries

with Order greater than the value of the deleted entry.

o If the Order value of an entry is changed, then the value will also be changed for other

entries greater than or equal to the lower of the old and new values, and less than the

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 38 of 150

larger of the old and new values. If the new value is less than the old, then these other

entries will all have Order incremented. If the new value is greater than the old, then

the other entries will have Order decremented and the changed entry will be given a

value of <new value>-1. For example, an entry is changed from 8 to 5. The existing 5

goes to 6, 6 to 7, and 7 to 8. If the entry goes from 5 to 8, then 6 goes to 5, 7 to 6, and

the changed entry is 7. This is consistent with the behavior that would occur if the

change were considered to be an Add of a new entry with the new value, followed by

a Delete of the entry with the old value.

A.1.1.2 Dynamic Application Specific Classification

In some situations, traffic to be classified cannot be identified by a static set of classification

criteria. Instead, identification of traffic flows might require explicit application awareness. The

model accommodates such situations via the App and Flow tables in the QoS object.

Each entry in the App table is associated with an application-specific protocol handler, identified

by the ProtocolIdentifier, which contains a URN. For a particular CPE, the AvailableAppList

parameter indicates which protocol handlers that CPE is capable of supporting, if any. A list of

standard protocol handlers and their associated URNs is specified in Section A.3, though a CPE

can also support vendor-specific protocol handlers as well. Multiple App table entries can refer

to the same ProtocolIdentifier.

The role of the protocol handler is to identify and classify flows based on application awareness.

For example, a SIP protocol handler might identify a call-control flow, an audio flow, and a

video flow. The App and Flow tables are used to specify the classification outcome associated

with each such flow.

For each App table entry there can be one or more associated Flow table entries. Each flow table

entry identifies a type of flow associated with the protocol handler. The Type parameter is used

to identify the specific type of flow associated with each entry. For example, a Flow table entry

for a SIP protocol handler might refer only to the audio flows associated with that protocol

handler. A list of standard flow type values is given in Section A.3, though a CPE can also

support vendor-specific flow types.

A protocol handler can be defined as being fed from the output of a Classification table entry.

That is, a Classification entry can be used to single out control traffic to be passed to the protocol

handler, which then subsequently identifies associated flows. Doing so allows more than one

instance of a protocol handler associated with distinct traffic. For example, one could define two

App table entries associated with SIP protocol handlers. If the classifier distinguished control

traffic to feed into each handler based on the destination IP address of the SIP server, this could

be used to separately classify traffic for different SIP service providers. In this case, each

instance of the protocol handler would identify only those flows associated with a given service.

Note that the Classification table entry that feeds each protocol handler wouldn’t encompass all

of the flows; only the traffic needed by the protocol handler to determine the flows—typically

only the control traffic.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 39 of 150

A.1.1.3 Classification Outcome

Each Classification entry specifies a tuple composed of either:

 A TrafficClass and (optionally) a Policer, or

 An App table entry

Each entry also specifies:

 Outgoing DiffServ and Ethernet priority marking behavior

 A ForwardingPolicy tag that can be referenced in the Routing table to affect packet

routing (note that the ForwardingPolicy tag affects only routed traffic)

Note that the information associated with the classification outcome is modeled as being carried

along with each packet as it flows through the system.

If a packet does not match any Classification table entry, the DefaultTrafficClass,

DefaultPolicer, default markings, and default ForwardingPolicy are used.

If a TrafficClass/Policer tuple is specified, classification is complete. If, however, an App is

specified, the packet is passed to the protocol handler specified by the ProtocolIdentifier in the

specified App table entry for additional classification (see Section A.1.1.2). If any of the

identified flows match the Type specified in any Flow table entry corresponding to the given

App table entry (this correspondence is indicated by the App identifier), the specified tuple and

markings for that Flow table entry is used for packets in that flow. Other flows associated with

the application, but not explicitly identified, use the default tuple and markings specified for

that App table entry.

A.1.2 Policing

The Policer table defines the policing parameters for ingress packets identified by either a

Classification table entry (or the default classification) or a dynamic flow identified by a protocol

handler identified in the App table.

Each Policer table entry specifies the packet handling characteristics, including the rate

requirements and behavior when these requirements are exceeded.

A.1.3 Queuing and Scheduling

The Queue table specifies the number and types of queues, queue parameters, shaping behavior,

and scheduling algorithm to use. Each Queue table entry specifies the TrafficClasses with which

it is associated, and a set of egress interfaces for which a queue with the corresponding

characteristics needs to exist.

NOTE – If the CPE can determine that among the interfaces specified for a queue to exist,

packets classified into that queue cannot egress to a subset of those interfaces (from

knowledge of the current routing and bridging configuration), the CPE can choose not to

instantiate the queue on those interfaces.

NOTE – Packets classified into a queue that exit through an interface for which the queue is not

specified to exist, will instead use the default queuing behavior. The default queue itself

will exist on all egress interfaces.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 40 of 150

The model defined here is not intended to restrict where the queuing is implemented in an actual

implementation. In particular, it is up to the particular implementation to determine at what

protocol layer it is most appropriate to implement the queuing behavior (IP layer, Ethernet MAC

layer, ATM layer, etc.). In some cases, however, the QoS configuration would restrict the choice

of layer where queuing can be implemented. For example, if a queue is specified to carry traffic

that is bridged, then it could not be implemented as an IP-layer queue.

NOTE – care needs to be taken to avoid having multiple priority queues multiplexed onto a

single connection that is rate shaped. In such cases, the possibility exists that high

priority traffic can be held back due to rate limits of the overall connection exceeded by

lower priority traffic. Where possible, each priority queue will be shaped independently

using the shaping parameters in the Queue and Shaping table.

The scheduling parameters defined in the Queue table apply to the first level of what might be a

more general scheduling hierarchy. This specification does not specify the rules that an

implementation needs to apply to determine the most appropriate scheduling hierarchy given the

scheduling parameters defined in the Queue table.

As an example, take a situation where the output of four distinct queues is to be multiplexed into

a single connection, and two entries share one set of scheduling parameters while the other two

entries share a different set of scheduling parameters. In this case, it might be appropriate to

implement this as a scheduling hierarchy with the first two queues multiplexed with a scheduler

defined by the first pair, and the second two queues being multiplexed with a scheduler defined

by the second pair. The lower layers of this scheduling hierarchy cannot be directly determined

from the content of the Queue table.

A.1.4 Bridging

NOTE – from the point of view of a bridge, packets arriving into the bridge from the local router

(either upstream or downstream) are treated as ingress packets, even though the same

packets, which just left the router, are treated as egress from the point of view of the

router. For example, a Filter table entry might admit packets on ingress to the bridge

from a particular IP interface, which means that it admits packets on their way out of the

router over this layer 3 connection.

For each interface, the output of the classifier is modeled to feed a set of 802.1D [8] or 802.1Q

[9] layer 2 bridges as specified by the Bridging object. Each bridge specifies layer 2

connectivity between one or more layer 2 downstream and/or upstream interfaces, and optionally

one or more layer 3 connections to the local router.

Each bridge corresponds to a single entry in the Bridge table of the Bridging object. The Bridge

table contains the following sub-tables:

 Port table: models the Bridge ports, which are either management ports (modeling layer

3 connections to the local router) or non-management ports (modeling connections to

layer 2 interfaces). Bridge ports are stackable interface objects (see Section 4.2).

 VLAN table: models the Bridge VLANs (relevant only to 802.1Q bridges).

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 41 of 150

 VLANPort table: for each VLAN, defines the ports that comprise its member set

(relevant only to 802.1Q bridges).

A.1.4.1 Filtering

Traffic from a given interface (or set of interfaces) can be selectively admitted to a given Bridge,

rather than bridging all traffic from that interface. Each entry in the Filter table includes a series

of classification criteria. Each classification criterion can be set to a specified value, or can be

set to a value that indicates that criterion is not to be used. A packet is admitted to the Bridge

only if the packet matches all of the specified criteria. That is, a logical AND operation is

applied across all classification criteria within a given Filter table entry.

NOTE – to apply a logical OR to sets of classification criteria, multiple entries in the Filter table

can be created that refer to the same interfaces and the same Bridge table entry.

NOTE – a consequence of the above rule is that, if a packet does not match the criteria of any of

the enabled Filter table entries, then it will not be admitted to any bridges, i.e. it will be

dropped. As a specific example of this, if none of the enabled Filter table entries

reference a given interface, then all packets arriving on that interface will be dropped.

For each classification criterion, the Filter table also includes a corresponding “exclude” flag.

This flag can be used to invert the sense of the associated classification criterion. That is, if this

flag is false for a given criterion, the Bridge will admit only packets that meet the specified

criterion (as well as all other criteria). If this flag is true for a given criterion, the Bridge will

admit all packets except those that meet the associated criterion (in addition to meeting all other

criteria).

Note that because the classification criteria are based on layer 2 packet information, if the

selected port for a given Filter table entry is a layer 3 connection from the local router, the layer

2 classification criteria do not apply.

A.1.4.2 Filter Order

Any packet that matches the filter criteria of one or more filters is admitted to the Bridge

associated with the first entry in the Filter table (relative to the specified Order).

The following rules apply to the use and setting of the Order parameter:

 The Order goes in order from 1 to n, where n is equal to the number of filters. 1 is the highest

precedence, and n the lowest.

 The CPE is responsible for ensuring that all Order values among filters are unique and

sequential.

o If a filter is added (number of filters becomes n+1), and the value specified for Order

is greater than n+1, then the CPE will set Order to n+1.

o If a filter is added (number of entries becomes n+1, and the value specified for Order

is less than n+1, then the CPE will create the entry with that specified value, and

increment the Order value of all existing filters with Order equal to or greater than the

specified value.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 42 of 150

o If a filter is deleted, the CPE will decrement the Order value of all remaining filters

with Order greater than the value of the deleted entry.

o If the Order value of a filter is changed, then the value will also be changed for other

filters greater than or equal to the lower of the old and new values, and less than the

larger of the old and new values. If the new value is less than the old, then these other

entries will all have Order incremented. If the new value is greater than the old, then

the other entries will have Order decremented and the changed entry will be given a

value of <new value>-1. For example, an entry is changed from 8 to 5. The existing 5

goes to 6, 6 to 7, and 7 to 8. If the entry goes from 5 to 8, then 6 goes to 5, 7 to 6, and

the changed entry is 7. This is consistent with the behavior that would occur if the

change were considered to be an Add of a new filter with the new value, followed by

a Delete of the filter with the old value.

A.2 Default Layer 2/3 QoS Mapping

Table 3 presents a “default” mapping between layer 2 and layer 3 QoS. In practice, it is a

guideline for automatic marking of DSCP (layer 3) based upon Ethernet Priority (layer 2) and the

other way around. Please refer to the QoS Classification table’s DSCPMark and

EthernetPriorityMark parameters (and related parameters) for configuration of a default

automatic DSCP / Ethernet Priority mapping.

Automatic marking of DSCP or Ethernet Priority is likely only in the following cases:

 WAN LAN: to map DSCP (layer 3) to Ethernet Priority (layer 2)

 LAN WAN: to map Ethernet Priority (layer 2) to DSCP (layer 3)

Automatic marking in the LAN LAN case is unlikely, since LAN QoS is likely to be

supported only at layer 2, and LAN DSCP values, if used, will probably be a direct

representation of Ethernet Priority, e.g. Ethernet Priority shifted left by three bits.

In the table, grayed and bolded items are added to allow two-way mapping between layer 2 and

layer 3 QoS (where the mapping is ambiguous, the grayed values SHOULD be ignored and the

bolded values SHOULD be used). If, when mapping from layer 3 to layer 2 QoS, the DSCP

value is not present in the table, the mapping SHOULD be based only on the first three bits of

the DSCP value, i.e. on DSCP & 111000.

Table 3 – Default Layer 2/3 QoS Mapping

Layer 2 Layer 3

Ethernet Priority Designation DSCP Per Hop Behavior

001 (1) BK 000000 (0x00) Default

010 (2) spare 000000 (0x00)

000 (0) BE
000000 (0x00)
000000 (0x00)

Default
CS0

011 (3) EE

001110 (0x0e)
001100 (0x0c)
001010 (0x0a)
001000 (0x08)

AF13
AF12
AF11
CS1

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 43 of 150

100 (4) CL

010110 (0x16)
010100 (0x14)
010010 (0x12)
010000 (0x10)

AF23
AF22
AF21
CS2

101 (5) VI

011110 (0x1e)
011100 (0x1c)
011010 (0x1a)
011000 (0x18)

AF33
AF32
AF31
CS3

110 (6) VO

100110 (0x26)
100100 (0x24)
100010 (0x22)
100000 (0x20)

AF43
AF42
AF41
CS4

110 (6) VO
101110 (0x2e)
101000 (0x28)

EF
CS5

111 (7) NC
110000 (0x30)
111000 (0x38)

CS6
CS7

A.3 URN Definitions for App and Flow Tables

A.3.1 App ProtocolIdentifier

Table 4 lists the URNs defined for the QoS App table’s ProtocolIdentifier parameter. Additional

standard or vendor-specific URNs can be defined following the standard syntax for forming

URNs.

Table 4 – ProtocolIdentifer URNs
URN Description

urn:dslforum-org:sip Session Initiation Protocol (SIP) as defined by RFC 3261 [12]

urn:dslforum-org:h.323 ITU-T Recommendation H.323

urn:dslforum-org:h.248 ITU-T Recommendation H.248 (MEGACO)

urn:dslforum-org:mgcp Media Gateway Control Protocol (MGCP) as defined by RFC 3435 [13]

urn:dslforum-org:pppoe Bridged sessions of PPPoE

A.3.2 Flow Type

A syntax for forming URNs for the QoS Flow table’s Type parameter is defined for the Session

Description Protocol (SDP) as defined by RFC 4566 [14]. Additional standard or vendor-

specific URNs can be defined following the standard syntax for forming URNs.

A URN to specify an SDP flow is formed as follows:
urn:dslforum-org:sdp-[MediaType]-[Transport]

[MediaType] corresponds to the “media” sub-field of the “m” field of an SDP session description.

[Transport] corresponds to the “transport” sub-field of the “m” field of an SDP session description.

Non-alphanumeric characters in either field are removed (e.g., “rtp/avp” becomes “rtpavp”).

For example, the following would be valid URNs referring to SDP flows:
urn:dslforum-org:sdp-audio-rtpavp

urn:dslforum-org:sdp-video-rtpavp

urn:dslforum-org:sdp-data-udp

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 44 of 150

For flow type URNs following this convention, there is no defined use for TypeParameters,

which SHOULD be left empty.

For the ProtocolIdentifier urn:dslforum-org:pppoe, a single flow type is defined referring to the

entire PPPoE session. The URL for this flow type is:
urn:dslforum-org:pppoe

A.3.3 Flow TypeParameters

For the flow type urn:dslforum-org:pppoe, Table 5 specifies the defined TypeParameter values.

Table 5 – Flow TypeParameters values for flow type urn:dslforum-org:pppoe
Name Description of Value

ServiceName The PPPoE service name.

If specified, only bridged PPPoE sessions designated for the named service
would be considered part of this flow.

If this parameter is not specified, or is empty, bridged PPPoE associated with
any service considered part of this flow.

ACName The PPPoE access concentrator name.

If specified, only bridged PPPoE sessions designated for the named access
concentrator would be considered part of this flow.

If this parameter is not specified, or is empty, bridged PPPoE associated with
any access concentrator considered part of this flow.

PPPDomain The domain part of the PPP username.

If specified, only bridged PPPoE sessions in which the domain portion of the
PPP username matches this value are considered part of this flow.

If this parameter is not specified, or is empty, all bridged PPPoE sessions are
considered part of this flow.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 45 of 150

Annex B Tunneling

B.1 Overview

Consider a device that provides a layer 3 tunnel endpoint. Some packets will need to be en-

tunneled and then will leave the device in the tunnel. Other packets will arrive at the device in

the tunnel and will need to be de-tunneled. This is illustrated in Figure 11, in which green

indicates application traffic, yellow indicates an IP interface, and pink indicates a tunnel

(carrying green application traffic).

Figure 11 – Tunneling Overview

The Figure highlights three decisions:

1. Whether to en-tunnel an upstream packet.

2. Whether to de-tunnel a downstream packet.

3. To which egress interface to send an outgoing packet.

This egress interface decision is just a normal forwarding decision. By separately modeling the

Tunnel interface and the Tunnel, the Device:2 data model is able to present the en-tunnel

decision as also being a forwarding decision. The de-tunnel decision is not really a decision at

all, because it happens automatically as a result of normal packet processing.

This modeling approach imposes no restrictions on the device implementation; it is just how the

en-tunnel and de-tunnel decisions are modeled.

 Each Tunnel instance models a tunnel and has one or more Tunnel interface children,

each of which models a flow / session within that tunnel. These Tunnel interface children

are stackable interface objects.

 Upstream traffic that is to be en-tunneled is routed to a Tunnel interface instance, is

passed to the parent Tunnel instance, is encapsulated, and then arrives on the Tunnel

instance.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 46 of 150

 Downstream traffic that is to be de-tunneled is passed to a Tunnel instance, is de-

encapsulated, and then arrives on the appropriate child Tunnel interface instance.

 Traffic arriving on a Tunnel or on a Tunnel interface is classified, marked, policed,

bridged, routed and queued in the same way as traffic arriving on any other interface.

NOTE – a Tunnel is not a stackable interface object, because it breaks the layering order and can

be regarded as separating two different protocol stacks, one of which acts as a carrier for the

other. This is clearly illustrated in Figure 15 and the other interface stack Figures.

NOTE – even though a Tunnel is not an interface, it can be referenced by QoS classification

rules. Traffic arriving on a Tunnel instance, i.e. packets that have just been encapsulated, is

conceptually similar to locally-generated traffic.

In summary, the decision to en-tunnel a packet is a forwarding decision to send a packet to an IP

interface that is stacked above a Tunnel interface instance, and the decision to de-tunnel a packet

is a consequence of the fact that it is addressed to the CPE and is therefore passed to a Tunnel

instance. Figure 12 extends Figure 11 by expanding the tunnel into a Tunnel IP interface, a

Tunnel interface, and the Tunnel instance, thereby showing where these two decisions are made.

Figure 12 – Tunneling Overview (Showing Forwarding Decisions)

NOTE – the existing 6rd, DS-Lite and IPsec data models use a less flexible approach in which

the Tunnel interfaces are not explicitly modeled, and a separate non-stackable Tunnel table

references auto-created Tunnel/Tunneled IP interface pairs. See B.2 for further details.

NOTE – the Tunnel interface and Tunnel approach is more flexible because (a) it supports

multiple flows / sessions with a tunnel (e.g. GRE traffic flows or L2TP sessions), (b) it supports

additional encapsulation layers between the Tunnel IP interface and the Tunnel interface (e.g.

PPP for L2TP), and (c) it supports layer 2 tunneling use cases (traffic is bridged directly to the

Tunnel interface and there is no Tunnel IP interface). See B.2 for further details.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 47 of 150

Figure 13 and Figure 14 show upstream and downstream examples of how the Tunnel interface

and Tunnel instances are used to describe the traffic path through the device for both untunneled

and tunneled packets.

Figure 13 – Sample Flow of Upstream Tunneled Traffic through the Device

Figure 14 – Sample Flow of Downstream Tunneled Traffic through the Device

The less flexible (Tunnel,Tunneled) IP interface mechanism is used in the following three cases:

 IPv6rd (Appendix VI) Device.IPv6rd.

 DS-Lite (Appendix VII) Device.DSLite.

 IPsec (Appendix IX) Device.IPsec.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 48 of 150

The flexible Tunnel interface and Tunnel mechanism is used for the following two cases and will

be used for modeling all future tunneling scenarios:

 GRE (Appendix XIV) Device.GRE.

 MAP (Appendix XV) Device.MAP.

B.2 Details

Figure 15 shows the interface stack for a general layer 3 tunneling scenario. Compare with

Figure 16, which is derived from Figure 12. It can be seen that each Figure presents a different

view of the same thing.

Figure 15 – General Layer 3 Tunneling Interface Stack

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 49 of 150

Figure 16 – General Layer 3 Tunneling (from Figure 12)

NOTE – IP.Interface.3 is labeled as Type=Normal in Figure 15 but as Tunnel IP interface in

Figure 16. IP interface Type=Tunnel was defined specifically for the (Tunnel,Tunneled) IP

interface mechanism and is not needed because IP.Interface.3 is stacked above TT.Tunnel.1.-

Interface.1.

Figure 15 is general in that it is independent of the tunnel technology, but it doesn’t illustrate all

the possibilities. If supported by the tunnel technology:

 A Tunnel can have multiple Tunnel interface children, each of which models a flow or

session. In this case the Tunnel interface object is multi-instance.

 There can be additional encapsulation layers between the Tunnel IP interface(s) and the

Tunnel interface(s).

Figure 17 shows an L2TP [44] example that illustrates both of the above.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 50 of 150

Figure 17 – L2TP Interface Stack Example

Some tunneling technologies support layer 2 tunnels, in which the tunnel payload is a layer 2

packet. Figure 18 shows the interface stack for a general layer 2 tunneling scenario. This is

conceptually similar to the layer 3 case, but a bridge port rather than an IP interface is stacked

above the Tunnel interface.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 51 of 150

Figure 18 – General Layer 2 Tunneling Interface Stack

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 52 of 150

Appendix I Example RG Queuing Architecture

The queuing and scheduling discipline envisioned upstream for the RG is shown in Figure 19,

taken from the description of TR-059 [55].

There are multiple access sessions supported in this model, however, all traffic is classified and

scheduled in a monolithic system. So, while it might appear at first that the Diffserv queuing and

scheduling might apply only to IP-aware access – in fact all access, IP, Ethernet, or PPP is

managed by the same system that adheres to the Diffserv model.

For example, at the bottom of the figure, BE treatment is given to the non-IP-aware access

sessions (PPPoE started behind the RG or delivered to an L2TP tunnel delivery model). This

queue might be repeated several times in order to support fairness among multiple PPPoE

accesses – or it can be a monolithic queue with separate rate limiters applied to the various

access sessions.

The PTA access is a single block of queues. This is done because NSP access typically works

with a single default route to the NSP, and managing more than one simultaneously at the RG

would be perilous. The ∑ rate limiter would limit the overall access traffic for a service provider.

Rate limiters are also shown within the EF and AF service classes because the definition of those

Diffserv types is based on treating the traffic differently when it falls into various rates.

Finally, at the top of the diagram is the ASP access block of queues. In phase 1A, these queues

are provisioned and provide aggregate treatment of traffic mapped to them. In phase 1B, it will

become possible to assign AF queues to applications to give them specific treatment instead of

aggregate treatment. The EF service class can also require a high degree of coordination among

the applications that make use of it so that its maximum value is not exceeded.

Notable in this architecture is that all the outputs of the EF, AF, and BE queues are sent to a

scheduler (S) that pulls traffic from them in a strict priority fashion. In this configuration EF

traffic is, obviously, given highest precedence and BE is given the lowest. The AF service

classes fall in-between.

Note that there is significant interest in being able to provide a service arrangement that would

allow general Internet access to have priority over other (bulk rate) services.5 Such an

arrangement would be accomplished by assigning the bulk rate service class to BE and by

assigning the default service class (Internet access) as AF with little or no committed information

rate.

Given this arrangement, the precedence of traffic shown in the figure is arranged as:

1. EF – red dotted line

5 This “bulk rate” service class would typically be used for background downloads and potentially for peer-to-peer

applications as an alternative to blocking them entirely.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 53 of 150

2. AF – blue dashed line (with various precedence among AF classes as described in RFC

2597 [10])

3. BE – black solid line

Data In

Data Out

Classifier

PPP Access (BE or AF)

EF

PTA

Access

(es)

BE

AF1

ASP

Access

S

AF2

AF4

AF3

EF

BE

AF1

AF2

AF4

AF3

RL

RL

RL

∑

RL

as per RFC 2597

as per RFC 2598

RL

RL

Data In

Data Out

Classifier

PPP Access (BE or AF)

EF

PTA

Access

(es)

BE

AF1

ASP

Access

S

AF2

AF4

AF3

EF

BE

AF1

AF2

AF4

AF3

RL

RL

RL

∑

RL

as per RFC 2597

as per RFC 2598

RL

RL

Figure 19 – Queuing and Scheduling Example for RG

In Figure 19 the following abbreviations apply:
ASP – Application Service Provider

PTA – PPP Terminated Aggregation

PPP – Point-to-Point Protocol

EF – Expedited Forwarding – as defined in RFC 3246 [11]

AF – Assured Forwarding – as defined in RFC 2597 [10]

BE – Best Effort forwarding

RL – Rate Limiter

∑RL – Summing Rate Limiter (limits multiple flows)

S – Scheduler

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 54 of 150

Appendix II Use of Bridging Objects for VLAN Tagging

In the case of an Ethernet upstream Interface or a VDSL2 upstream Interface based on PTM-

EFM, 802.1Q Tagging can be used to tag egress traffic. This choice enables a multi-VLAN

architecture in order to deploy a multi-service configuration (high speed Internet, VoIP, Video

Phone, IPTV, etc.), where one VLAN or a group of VLANs are associated with each service. If

802.1Q tagging on the upstream interface is used, it is necessary to have a way to associate

incoming upstream 802.1Q tagged or untagged traffic or internally generated traffic (PPPoE,

IPoE connections) to the egress (and vice-versa). The solution is to apply coherent bridging

rules.

Regarding different traffic bridging rules, the possible cases are characterized as follows:

 Tagged LAN to tagged WAN traffic (pure VLAN bridging), with VLAN ID translation

as a special case

 Untagged LAN to tagged WAN traffic

 Internally generated to tagged WAN traffic

To better understand the different cases, refer to Figure 20 and to the following examples.

WAN

Eth # 1

Eth # 2

VoIP

Phone

Video

Phone

STB

Eth # 3

VLANID = x

VLANID = y

VLANID = x

VLANID = z

VLANID = k No VLANID

PPPoE

VLANID = j
VLAN Termination # 1

Bridge # 3

Bridge # 1

LAN

Bridge # 2

WAN

Eth # 1

Eth # 2

VoIP

Phone

Video

Phone

STB

Eth # 3

VLANID = x

VLANID = y

VLANID = x

VLANID = z

VLANID = k No VLANID

PPPoE

VLANID = j
VLAN Termination # 1

Bridge # 3

Bridge # 1

LAN

Bridge # 2

Figure 20 – Examples of VLAN configuration based on Bridging and VLAN Termination

objects

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 55 of 150

II.1 Tagged LAN to Tagged WAN Traffic (VLAN Bridging)

Ethernet port 1 (instance Device.Ethernet.Interface.2) might be dedicated to VoIP service,

receiving VLAN ID x tagged traffic from a VoIP phone, and this port would be included in the

same bridge dedicated to VoIP service on the upstream interface (instance

Device.Ethernet.Interface.1), identified with the same VLAN ID x.

To achieve this, an interface-based bridge would be created using the Bridging object. A Bridge

table entry would be created with entries for Ethernet port 1 and the upstream interface and for

the VLAN ID x associated with VoIP.

The Bridging model is depicted in Figure 21, while the configuration rules for this situation are

summarized in Table 6.

WAN LAN 1

Bridging.Bridge.1.Port.1
[ManagementPort=true]

Bridging.Bridge.1

.Port.2
[ManagementPort=false]

Ethernet.Interface.2
[Upstream=false]

Ethernet.Interface.1
[Upstream=true]

Bridging.Bridge.1

.Port.3
[ManagementPort=false]

WAN LAN 1

Bridging.Bridge.1.Port.1
[ManagementPort=true]

Bridging.Bridge.1

.Port.2
[ManagementPort=false]

Ethernet.Interface.2
[Upstream=false]

Ethernet.Interface.1
[Upstream=true]

Bridging.Bridge.1

.Port.3
[ManagementPort=false]

Bridging.Bridge.1.Port.1
[ManagementPort=true]

Bridging.Bridge.1

.Port.2
[ManagementPort=false]

Ethernet.Interface.2
[Upstream=false]

Ethernet.Interface.1
[Upstream=true]

Bridging.Bridge.1

.Port.3
[ManagementPort=false]

Figure 21 – Bridge 1 model

Table 6 – Tagged LAN to tagged WAN configuration
Description Bridging TR-069 Configuration

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 56 of 150

Bridge between WAN and LAN 1

interfaces with VLANID=x

[Define VLANx]

Device.Bridging.Bridge.1.VLAN.1 -

Name VLANx

VLANID X

[Define Ingress Port2-3 – Create an entry for the upstream and downstream

port]:

Device.Bridging. Bridge.1.Port.2 -

PVID x

Name Port2

AcceptableFrameTypes AdmitOnlyVLANTagged

Device.Bridging. Bridge.1.Port.3 -

PVID x

Name Port3

AcceptableFrameTypes AdmitOnlyVLANTagged

[Associate Egress Port2-3 to VLANx - Create an entry for the upstream and

downstream port]

Device.Bridging.Bridge.1.VLANPort.1 -

VLAN VLANx

Port Port2

Untagged false

Device.Bridging.Bridge.1.VLANPort.2 -

VLAN VLANx

Port Port3

Untagged false

II.2 Tagged LAN to Tagged WAN Traffic (Special Case with VLAN ID

Translation)

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 57 of 150

Ethernet port 2 (instance Device.Ethernet.Interface.3) might be dedicated to Video Phone

service, receiving VLAN ID y tagged traffic from a Video phone, and this port would be

included in the same bridge dedicated to Video Phone service on the upstream interface (instance

Device.Ethernet.Interface.1), identified by a different VLAN ID (VLAN ID z). In this case a

VLAN translation needs to be performed.

To achieve this, a bridge would be created using the Bridging object. A Bridge table entry would

be created along with two associated Filter object entries for {Ethernet port 2/VLAN ID z} and

{upstream interface/VLAN ID y}. The Filter identifies the ingress interface and causes the

ingress frames to be bridged to the egress VLAN, permitting VLAN-ID translation.

The Bridging model is depicted in Figure 22, while the configuration rules for this situation are

summarized in Table 7.

Bridging.Bridge.2.Port.1
[ManagementPort=true]

Bridging.Bridge.2

.Port.2
[ManagementPort=false]

Ethernet.Interface.3
[Upstream=false]

Ethernet.Interface.1
[Upstream=true]

WAN LAN 2

Bridging.Bridge.2

.Port.3
[ManagementPort=false]

Bridging.Bridge.2.Port.1
[ManagementPort=true]

Bridging.Bridge.2

.Port.2
[ManagementPort=false]

Ethernet.Interface.3
[Upstream=false]

Ethernet.Interface.1
[Upstream=true]

WAN LAN 2

Bridging.Bridge.2

.Port.3
[ManagementPort=false]

Figure 22 – Bridge 2 model

Table 7 – Tagged LAN to tagged WAN configuration (VLAN ID translation)
Description Bridging TR-069 Configuration

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 58 of 150

Description Bridging TR-069 Configuration

Tagged LAN 2 to tagged WAN

traffic (and vice versa) (special

case with VLAN ID translation)

upstream VLAN-ID=z

downstream VLAN-ID=y

[Define VLANy and VLANz]

Device.Bridging.Bridge.2.VLAN.1

Name VLANy

VLANID y

Device.Bridging.Bridge.2.VLAN.2

Name VLANz

VLANID z

[Define Ingress Port2 – Create an entry for upstream port]:

Device.Bridging.Bridge.2.Port.2

PVID Z

Name Port2

AcceptableFrameTypes AdmitOnlyVLANTagged

[Define Ingress Port3 – Create an entry for the downstream port]:

Device.Bridging.Bridge.2.Port.3

PVID y

Name Port3

AcceptableFrameTypes AdmitOnlyVLANTagged

 [Associate Egress Port2 to VLANz - Create an entry for upstream port]

Device.Bridging.Bridge.2.VLANPort.1 -

VLAN VLANz

Port Port2

Untagged false

[Associate Egress Port3 to VLANy - Create an entry for each downstream

port]

Device.Bridging.Bridge.2.VLANPort.2 -

VLAN VLANy

Port Port3

Untagged false

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 59 of 150

Description Bridging TR-069 Configuration

[Define filter on upstream: ingress from Port 2 is associated with VLANy]

Device.Bridging.Filter.1. -

Bridge VLANy

Interface Port2

 [Define filter on downstream: ingress from Port 3 is associated with VLANz]

Device.Bridging.Filter.2. -

Bridge VLANz

Interface Port3

II.3 Untagged LAN to Tagged WAN Traffic

Ethernet port 3 (instance Device.Ethernet.Interface.4) might be dedicated to IPTV service,

receiving untagged traffic from a STB, and this port would be included in the same bridge

dedicated to IPTV service on the upstream interface (instance Device.Ethernet.Interface.1),

identified with the VLAN ID k.

To achieve this, an interface-based bridge would be created using the Bridging object. A Bridge

table entry would be created, associating in the same bridge untagged frames on Ethernet port 3

with tagged frames on the upstream interface.

The Bridging model is depicted in Figure 23, while the configuration rules for this situation are

summarized in Table 8.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 60 of 150

Bridging.Bridge.3.Port.1
[ManagementPort=true]

Bridging.Bridge.3

.Port.2
[ManagementPort=false]

Ethernet.Interface.4
[Upstream=false]

Ethernet.Interface.1
[Upstream=true]

WAN LAN 3

Bridging.Bridge.3

.Port.3
[ManagementPort=false]

Bridging.Bridge.3.Port.1
[ManagementPort=true]

Bridging.Bridge.3

.Port.2
[ManagementPort=false]

Ethernet.Interface.4
[Upstream=false]

Ethernet.Interface.1
[Upstream=true]

WAN LAN 3

Bridging.Bridge.3

.Port.3
[ManagementPort=false]

Figure 23 – Bridge 3 model

Table 8 – Untagged LAN to tagged WAN configuration
Description Bridging TR-069 Configuration

Untagged LAN 3 to tagged WAN

(VLAN-ID=k) traffic

[Define VLANk]

Device.Bridging.Bridge.3.VLAN.1

Name VLANk

VLANID k

 [Define Ingress Port2 – Create an entry for upstream port]:

Device.Bridging.Bridge.3.Port.2

PVID k

Name Port2

AcceptableFrameTypes AdmitOnlyVLANTagged

[Define Ingress Port3 – Create an entry for the downstream port]:

Device.Bridging.Bridge.3.Port.3

Name Port3

AcceptableFrameTypes AdmitAll

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 61 of 150

Description Bridging TR-069 Configuration

[Associate Egress Port2 to VLANk - Create an entry for upstream port]

Device.Bridging.Bridge.3.VLANPort.1 -

VLAN VLANk

Port Port2

Untagged false

 [Associate Egress Port3 to VLANk - Create an entry for each downstream

port]

Device.Bridging.Bridge.3.VLANPort.2 -

VLAN VLANk

Port Port3

Untagged true

II.4 Internally Generated to Tagged WAN Traffic

A CPE PPPoE internal session (instance Device.PPP.Interface.1) might be dedicated to

Management service and this logical interface would encapsulate/de-encapsulate its outgoing or

incoming traffic in the VLAN ID j, dedicated to Management service.

To achieve this, instead of using a bridging object, a VLAN Termination interface would be

created (Device.Ethernet.VLANTermination.1). The Bridging model is depicted in Figure 24,

while the configuration rules for this situation are summarized in Table 9.

Ethernet.Link.1

device

Ethernet.VLANTermination.1

Ethernet.Interface.1
[Upstream=true]

IP.Interface.1

WAN

PPP.Interface.1

Ethernet.Link.1

device

Ethernet.VLANTermination.1

Ethernet.Interface.1
[Upstream=true]

IP.Interface.1

WAN

PPP.Interface.1

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 62 of 150

Figure 24 – VLAN Termination model

Table 9 – Internally generated to tagged WAN configuration
Description VLAN Termination TR-069 Configuration

[DefineVLAN Termination on top of Ethernet Link]

Device.Ethernet.VLANTermination.1

VLANID j

LowerLayers Ethernet.Link.1

II.5 Other Issues

The previous rules can be applied to allow all combinations of traffic. If the subscriber’s services

are modified, the Bridging configuration might need to be modified accordingly.

It can be interesting to detail the configuration of three special cases:

 More than one downstream interface in a bridge

 802.1D (re-)marking

 More than one VLAN ID tag for the same downstream interface

II.5.1 More than one Downstream Interface in a Bridge

Referring to the example in Section II.1, Tagged LAN to tagged WAN traffic (VLAN bridging),

consider adding other Ethernet interfaces (e.g. Ethernet ports 3 and 4 = instance Device.

Ethernet.Interface.3/4) to the Video Phone service. The behavior is the same as for the existing

Ethernet port 2 (instance Device.Ethernet.Interface.2).

To achieve this, new entries need to be added for interface Eth-3 and Eth-4. The Bridging model

is depicted in Figure 25, while the configuration rules for this situation are summarized in Table

6 and Table 10.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 63 of 150

Bridging.Bridge.1.Port.1
[ManagementPort=true]

Bridging.Bridge.1

.Port.2
[ManagementPort=false]

Ethernet.Interface.2
[Upstream=false]

Ethernet.Interface.1
[Upstream=true]

Ethernet.Interface.3
[Upstream=false]

WAN LAN 1 LAN 2

Bridging.Bridge.1

.Port.3
[ManagementPort=false]

Bridging.Bridge.1

.Port.4
[ManagementPort=false]

Ethernet.Interface.4
[Upstream=false]

LAN 3

Bridging.Bridge.1

.Port.5
[ManagementPort=false]

Bridging.Bridge.1.Port.1
[ManagementPort=true]

Bridging.Bridge.1

.Port.2
[ManagementPort=false]

Ethernet.Interface.2
[Upstream=false]

Ethernet.Interface.1
[Upstream=true]

Ethernet.Interface.3
[Upstream=false]

WAN LAN 1 LAN 2

Bridging.Bridge.1

.Port.3
[ManagementPort=false]

Bridging.Bridge.1

.Port.4
[ManagementPort=false]

Ethernet.Interface.4
[Upstream=false]

LAN 3

Bridging.Bridge.1

.Port.5
[ManagementPort=false]

Figure 25 – Bridge 1 model

Table 10 – Configuration to be added to Table 6
Description Bridging TR-069 Configuration

Bridge between WAN and LAN

2/LAN 3 interfaces with

VLANID=x

(Configuration to be added to

Table 6)

[Define Ingress Port4-5 – Create an entry for the other downstream ports]:

Device.Bridging. Bridge.1.Port.4 -

PVID x

Name Port4

AcceptableFrameTypes AdmitOnlyVLANTagged

Device.Bridging. Bridge.1.Port.5 -

PVID x

Name Port5

AcceptableFrameTypes AdmitOnlyVLANTagged

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 64 of 150

[Associate Egress Port4-5 to VLANx - Create an entry for the downstream

ports]

Device.Bridging.Bridge.1.VLANPort.3 -

VLAN VLANx

Port Port4

Untagged false

Device.Bridging.Bridge.1.VLANPort.4 -

VLAN VLANx

Port Port5

Untagged false

II.5.2 802.1D (Re)-marking

The 802.1Q Tag includes the 802.1D user priority bits field. All the previous cases can also be

extended to mark (or re-mark) this 802.1D field. To achieve this, there are different

configuration options; one of them is to use the DefaultUserPriority or PriorityRegeneration

fields in the Bridge Port object. For untagged frames, more complex rules can be defined

referring to the QoS Classification, using the PriorityTagging value. The Bridging configuration

rules for marking egress traffic on the upstream interface are summarized in Table 11. Compare

it with Table 6.

Table 11 – 802.1D (re-)marking
Description Bridging TR-069 Configuration

802.1D (re-)marking

Remark all WAN egress traffic

[Mark the ingress frames with Default user Priority, in this case 0]

Device.Bridging. Bridge.1. Port.2.

DefaultUserPriority 0

[Remark each ingress priority value (0,1,2,3,4,5,6,7) with the priority

regeneration string, in this case (0,0,0,0,4,4,4,4)]

Device.Bridging. Bridge.1. Port.2.

PriorityRegeneration 0,0,0,0,4,4,4,4

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 65 of 150

[In case of ingress untagged frames, for more complex classification, QoS

object are referred. In this case remark with 0]

Device.Bridging. Bridge.1. Port.2.

PriorityTagging true

Device.QoS. Classification. {i}.

EthernetPriorityMark 0

II.5.3 More than one VLAN ID Tag Admitted on the Same Downstream

Interface

Another scenario that can be further detailed is the case of more than one VLAN ID tag admitted

on the same downstream interface. A practical example would be a 2 box scenario, with a User

Device generating traffic segregated in multiple VLANs (e.g. a router offering services to the

customer), and a Residential Gateway, providing upstream connectivity to the Access Network,

with the connection between the two pieces of equipment using an Ethernet interface.

In this case, we assume the User Device is able to tag the different traffic flows, segregating the

different services (Voice, Video, …) into different VLANs. The Residential Gateway needs, on

the same downstream interface, to be able to receive different VLAN ID and correctly forward or

translate to the upstream interface (and vice versa). To achieve this, appropriate Bridging objects

need to be configured.

WAN

Eth # 1 User

Device

VLANID = x

VLANID = y

VLANID = x

VLANID = y

VLANID = k

Bridge # 2

Bridge # 1

LAN

VLANID = z
Bridge # 3

WAN

Eth # 1 User

Device

VLANID = x

VLANID = y

VLANID = x

VLANID = y

VLANID = k

Bridge # 2

Bridge # 1

LAN

VLANID = z
Bridge # 3

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 66 of 150

Figure 26 – Example of VLAN configuration in a 2 box scenario

Referring to Figure 26 as an example, assume the case of three VLANs (VLAN ID=x,y,z)

offered by a User Device to the Residential Gateway on the same downstream interface (Eth #1).

The Residential Gateway bridges two of them (VLAN ID=x,y) and translates the other one

(VLAN ID=z) to the upstream interface (VLAN ID=k).

On the Residential Gateway, this can be achieved using a combination of the Bridging objects

detailed in the preceding sections, with 3 bridge entries and their related entries. Refer to Figure

27 for the Bridging model and Table 12 for the global configuration.

Bridging.Bridge.2.Port.1
[ManagementPort=true]

Bridging.Bridge.2

.Port.2
[ManagementPort=false]

Ethernet.Interface.2
[Upstream=false]

Ethernet.Interface.1
[Upstream=true]

WAN LAN 1

Bridging.Bridge.2

.Port.3
[ManagementPort=false]

Bridging.Bridge.1.Port.1
[ManagementPort=true]

Bridging.Bridge.1

.Port.2
[ManagementPort=false]

Bridging.Bridge.1

.Port.3
[ManagementPort=false]

Bridging.Bridge.3.Port.1
[ManagementPort=true]

Bridging.Bridge.3

.Port.2
[ManagementPort=false]

Bridging.Bridge.3

.Port.3
[ManagementPort=false]

Bridging.Bridge.2.Port.1
[ManagementPort=true]

Bridging.Bridge.2

.Port.2
[ManagementPort=false]

Ethernet.Interface.2
[Upstream=false]

Ethernet.Interface.1
[Upstream=true]

WAN LAN 1

Bridging.Bridge.2

.Port.3
[ManagementPort=false]

Bridging.Bridge.1.Port.1
[ManagementPort=true]

Bridging.Bridge.1

.Port.2
[ManagementPort=false]

Bridging.Bridge.1

.Port.3
[ManagementPort=false]

Bridging.Bridge.3.Port.1
[ManagementPort=true]

Bridging.Bridge.3

.Port.2
[ManagementPort=false]

Bridging.Bridge.3

.Port.3
[ManagementPort=false]

Figure 27 – Bridge 1,2,3 model

Table 12 – More than one VLAN ID tag admitted on the same Downstream interface
Description Bridging TR-069 Configuration

More than one VLAN ID tag

admitted on the same downstream

interface

The configuration is the sum of Sections II.1 and II.2, but on the downstream

side the lower layer to be configured for each Bridge Port is always:

Ethernet.Interface.2

Device.Bridging. Bridge.1. Port.3.

LowerLayers Ethernet.Interface.2

Device.Bridging. Bridge.2. Port.3.

LowerLayers Ethernet.Interface.2

Device.Bridging. Bridge.3. Port.3.

LowerLayers Ethernet.Interface.2

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 67 of 150

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 68 of 150

Appendix III Wi-Fi Theory of Operation

This section discusses the theory of operations for various technologies in the Wi-Fi domain

found within the Device:2 data model.

III.1 Multi-radio and Multi-band Wi-Fi Radio Devices

The WiFi.Radio object description says “This object models an 802.11 wireless radio on a

device. If the device can establish more than one connection simultaneously (e.g. a dual radio

device), a separate WiFi.Radio instance will be used for representing each physical radio of the

device.”

The following sections clarify when multiple WiFi.Radio instances are needed, and the impact

on their underlying parameters in the case of multi-radio and/or multi-band devices.

III.2 Definitions

Each physical radio allows the transmission and reception of data on a single Wi-Fi channel at a

given time. A single-radio device is able to transmit/receive a packet at a given time only on one

Wi-Fi channel. Similarly, a dual-radio device is able to simultaneously transmit/receive data on

two Wi-Fi channels. In general, a device with N radios is able to simultaneously transmit/receive

data on N Wi-Fi channels.

An important point is that Wi-Fi can operate at two different frequency bands, 2.4 GHz and 5

GHz, as follows:

 Wi-Fi technologies based on IEEE 802.11b/g standard operate on the 2.4 GHz frequency

band.

 Wi-Fi technologies based on IEEE 802.11a/ac standard operate on the 5 GHz frequency

band.

 Wi-Fi technologies based on IEEE 802.11n standard operate on both the 2.4 and 5 GHz

frequency bands.

Radios that operate at a single frequency band (e.g. 2.4 GHz only 802.11b/g devices) are called

single-band radios. Radios that can operate at both 2.4 and 5 GHz frequency bands (e.g.

802.11a/b/g/n/ac devices) are called dual-band radios.

A dual-band device can be a single-radio device if it can be configured to operate at 2.4 or 5 GHz

frequency bands. However, only a single frequency band is used to transmit/receive at a given

time. In such a case the device has a single physical radio that is dual-band.

Also, a dual-radio single-band device can exist (although uncommon) if both radios are single-

band.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 69 of 150

III.3 Number of Instances of WiFi.Radio Object

Given the definitions above, a separate WiFi.Radio instance will be used for each physical radio

of the device, i.e. one instance for a single-radio device, two instances for dual-radio devices, and

so on. A single WiFi.Radio instance will therefore be used for a dual-band single-radio device.

Each WiFi.Radio instance is configured separately and is, in general, completely independent of

other instances.

III.4 SupportedFrequencyBands and OperatingFrequencyBand

The frequency band used by a WiFi device is an important parameter. With first generations of

WiFi technologies, the specific frequency band was linked to the IEEE standard in use (i.e.

802.11b/g are 2.4 GHz standards, while 802.11a is a 5 GHz standard). With the introduction of

the IEEE 802.11n standard, which can work both at 2.4 and 5 GHz, two specific parameters are

used to indicate the supported frequency bands and the operating frequency band.

SupportedFrequencyBands is a list-valued parameter, containing one item for single-band radios

(either 2.4GHz or 5GHz) and two items for dual-band radios (both 2.4GHz and 5GHz).

The OperatingFrequencyBand parameter specifies which frequency band is currently being used

by a dual-band radio (i.e. set to one of the two items listed in the SupportedFrequencyBands

parameter). For single-band radios, OperatingFrequencyBand always has the same value as

SupportedFrequencyBands (since only one frequency band is supported).

III.5 Behavior of Dual-band Radios when OperatingFrequencyBand

Changed

When the configured operating frequency band of a dual-band radio is changed (i.e. the value of

the OperatingFrequencyBand parameter is modified), this has an impact on other parameters

within the WiFi.Radio object.

The Channel parameter has to be changed, since channels for the 2.4 GHz frequency band are in

the range 1-14, while channels for the 5 GHz frequency band can be in the range of 36-165 (for

example). The expected behavior is that, upon modifying the OperatingFrequencyBand

parameter, the device automatically selects a new channel that is valid for the new frequency

band (according to some vendor-specific selection procedure).

Other related parameters of significance for the Channel properties are AutoChannelEnable,

OperatingChannelBandwidth and CurrentOperatingChannelBandwidth.

Persistence of the Channel parameter value for the previous frequency band is not required. For

example, if OperatingFrequencyBand is later changed back to 5GHz, a new valid value for the

Channel parameter is automatically selected by the device, but this value need not be the same as

was selected the last time OperatingFrequencyBand was set to 5GHz.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 70 of 150

Other parameters whose values can be impacted when the OperatingFrequencyBand changes,

include: ExtensionChannel, PossibleChannels, SupportedStandards, OperatingStandards,

IEEE80211hSupported, and IEEE80211hEnabled. If the current value is no longer valid, the

device will automatically select a valid new value according to some vendor-specific procedure,

and the old value need not persist.

III.6 SupportedStandards and OperatingStandards

The SupportedStandards parameter is a list of all IEEE 802.11 physical layer modes supported

by the devices. Wi-Fi is in general backward compatible, so 802.11g devices are also 802.11b

devices, 802.11n devices are also 802.11b/g devices (if operating at 2.4 GHz), and 802.11n

devices are also 802.11a devices (if operating at 5 GHz).

For dual-band radios, the OperatingFrequencyBand parameter is used for switching the operating

frequency band. For this reason SupportedStandards only includes those values corresponding to

operation in the frequency band indicated by the OperatingFrequencyBand parameter. For

example, for dual-band 802.11a/b/g/n devices, SupportedStandards can be b, g, n when

OperatingFrequencyBand is 2.4GHz and a, n, ac when OperatingFrequencyBand is 5GHz.

The OperatingStandards parameter is used to limit operation to a subset of physical modes

supported. For example, an 802.11b/g/n radio will have b, g, n value for the SupportedStandards

parameter, but can be configured to operate only with 802.11n by setting the OperatingStandards

parameter to n.

III.7 Different Types of WiFi Errors

This section first describes the different WiFi data units and the layers where they apply.

The MAC Service Data Unit (MSDU) is the service data unit that is received from the logical

link control (LLC) sub-layer which lies above the medium access control (MAC) sub-layer in the

protocol stack.

The MAC protocol data unit (MPDU) is a message exchanged between MAC entities in a

communication system. “WiFi frames” refer to MPDUs and WiFi counters are counts of

MPDUs.

The Physical Layer Convergence Procedure (PLCP) protocol data unit (PPDU) corresponds with

the bits that are actually transmitted across the physical layer.

The MSDU is the frame that interfaces to higher layers, while the MPDU is the frame that is

actually transmitted through the wireless medium, excluding the physical layer overhead. The

MPDU is the MSDU plus MAC layer overhead (header, FCS, etc.). The PPDU is the MPDU

plus physical layer overhead (preamble, PHY header, etc.).

The number of errored MPDUs is the number of MPDUs without corresponding ACKs. In most

cases, the number of MSDUs is the same as the number of MPDUs. However, if fragmentation is

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 71 of 150

enabled, then one MSDU can become multiple MPDUs, and there is one ACK per MPDU, hence

multiple ACKs for one MSDU.

With frame aggregation in 802.11n, multiple MPDUs become one aggregated MPDU (A-

MPDU). There is usually one block ACK for each A-MPDU, and only the errored MPDU(s) can

be retransmitted selectively. In this case the WiFi counters will count the original MPDUs and

not the A-MPDUs.

To avoid confusion that may be caused by fragmentation or frame aggregation, “WiFi frames” or

packets are all considered here to be MPDUs and WiFi counters refer to MPDUs.

Figure 28 explains the process of the MSDU/MPDU flow structure through the MAC layer of

the WiFi receiver.

Replay detection (Optional)

MSDU Integrity validation (Optional)

Defragmentation, Re-assembly

Decryption

Filtering duplicate frames, fragments

MAC header and CRC validation (2)

PLCP validation (1)

LLC/SNAP

R
ec

ei
ve

 p
ro

ce
ss

in
g MSDU

MPDU

PPDU

Figure 28 – WiFi functions within layers

PLCPErrorCount: This error occurs at point (1) in Figure 28, and is the first error type that can

be counted. The PLCPErrorCount is the number of errors in the PLCP headers of the received

MPDUs, which is the number of frames for which the parity check of the PLCP header failed.

There are two errors that happen at point (2) of the wireless reception:

FCSErrorCount: This error occurs at point (2) in Figure 28. After the MPDU passes the PLCP

header check, it is passed onto MAC layer validation. The FCSErrorCount is the number of

frames for which the Frame Check Sequence (FCS) at the end of the MAC frame was in error.

InvalidMACCount: This error also occurs at point (2) in Figure 28. The MAC header of the

MPDU has a field called ‘Protocol Version’. Currently, it is set to ‘0’. If this number is anything

but 0, or the frame type is not data/control/management,’ the InvalidMACCount is incremented.

After verifying that the frame was received without errors, the WiFi receiver will then check if

the frame was designated for its own use or not (still MAC layer).

PacketsOtherReceived: This counter is used to catch those MPDUs that are not addressed to this

radio. This can be assessed by checking if the ‘Address 1’ field of the 802.11 MAC header

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 72 of 150

contains a MAC address that is associated with this radio, if not then ‘PacketsOtherReceived’ is

incremented.

After this step, the AP can also discard duplicate frames or fragments among the frames

addressed to it, to simplify higher-level processing.

The ErrorsReceived count is the sum of the PLCPErrorCount plus the FCSErrorCount plus the

InvalidMACCount.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 73 of 150

Appendix IV Use Cases

This section presents a number of management-related use cases that correspond to typical ACS

activities.

IV.1 Create a WAN Connection

The ACS can create the objects in the interface stack bottom-up. Each time a new higher-layer

object is created, the link with the underlying interface object needs to be set. The layer 1

interface, in this case a DSL.Channel and DSL.Line object, will already exist (ACS can not

create physical interfaces).

1. The ACS uses AddObject to create a new ATM.Link object, a new Ethernet.Link object,

a new PPP.Interface object, and a new IP.Interface object.

2. The LowerLayers parameter in an existing DSL.Channel object is already linked to an

existing DSL.Line object (ACS can not configure this linkage).

3. The ACS uses SetParameterValues to configure the new objects including enabling the

objects and using the LowerLayers parameters as follows:

a. Setting the LowerLayers parameter in the ATM.Link object to link it to an

existing DSL.Channel object that is configured with ATM encapsulation (i.e. the

read-only LinkEncapsulationUsed parameter in the DSL.Channel object is set to

one of the ATM-related enumeration values).

b. Setting the LowerLayers parameter in the Ethernet.Link object to link it to the

ATM.Link object.

c. Setting the LowerLayers parameter in PPP.Interface object to link it to the

Ethernet.Link object.

d. Setting the LowerLayers parameter in IP.Interface object to link it to the

PPP.Interface object.

4. The CPE updates the InterfaceStack table automatically. The stack looks like this:

IP.Interface PPP.Interface Ethernet.Link ATM.Link DSL.Channel

DSL.Line.

5. Note that the ACS might also want to update other related objects, including the NAT

object, the Routing.Router object, or various QoS and Bridging tables. VLANs might

also need to be created.

IV.2 Modify a WAN Connection

In this use case the ACS needs to modify an existing WAN connection, in order to insert a new

layer in the stack or to change some portion of the interface stack. This is not the management

WAN connection. For the purposes of this example, the ACS is changing the WAN connection

in use case IV.1 to make use of PTM rather than ATM-based aggregation.

1. The ACS uses AddObject to create a new PTM.Link object.

2. The ACS uses SetParameterValues to configure the objects, including enabling the new

PTM.Link object and using the LowerLayers parameter as follows:

a. Setting the LowerLayers parameter in the PTM.Link object to link it to an

existing DSL.Channel object that is configured with PTM encapsulation (i.e. the

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 74 of 150

read-only LinkEncapsulationUsed parameter in the DSL.Channel object is set to

one of the PTM-related enumeration values).

b. Setting the LowerLayers parameter in the Ethernet.Link object to refer to the

PTM.Link object rather than the ATM.Link object.

c. Setting the LowerLayers parameter in the IP.Interface object to refer to the

Ethernet.Link object rather than the PPP.Interface object.

3. The CPE updates the InterfaceStack table automatically. The stack looks like this:

IP.Interface Ethernet.Link PTM.Link DSL.Channel DSL.Line.

4. Note that the ACS might also want to update other related objects, including the Bridging

table. The ACS might also want to delete the existing PPP.Interface and ATM.Link

objects.

IV.3 Delete a WAN Connection

Assume that we want to delete the WAN connection as it is configured in use case IV.1.

1. The ACS uses DeleteObject to delete the IP.Interface object.

2. The ACS uses DeleteObject to delete the PPP.Interface object.

3. The ACS uses DeleteObject to delete the Ethernet.Link object.

4. As each of these objects is deleted, the InterfaceStack is adjusted automatically by the

CPE.

5. Any strong references to the deleted objects, e.g. in Device.QoS classification rules, will

automatically be set to empty strings.

IV.4 Discover whether the Device is a Gateway

Many operators want to determine if a particular device is a “gateway” or not. The term

“gateway”, however, is rather vague; usually the operator wants to know one (or more) of the

following things:

1. If the device terminates the WAN connection(s).

2. If the device is responsible for providing DHCP addresses to the other devices in the

home.

3. If the device provides functionality such as NAT or routing capabilities.

In order to determine if the device terminates a WAN connection, the ACS might look for an

interface object with a technology that is by definition WAN (such as DSL) or for a technology

that could be a WAN termination technology (such as Ethernet or MoCA).

In order to determine if the device is responsible for providing addresses to other devices in the

home, the ACS could check for the existence of the DHCP Server object. The existence of the

Host table also indicates that the device is aware of Hosts, by whatever means they’re addressed.

The existence of the ManageableDevice table within the ManagementServer object also indicates

that the device serves as the DHCP server for the TR-069 managed device exchange defined in

TR-069 [2] Annex G, which is also often an indication of “gateway” functionality.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 75 of 150

In order to determine if the device provides functionality such as NAT or a router, the ACS

would check for the existence of an enabled NAT or Routing.Router object.

IV.5 Provide Extended Home Networking Topology View

Another use case is to determine the topology of the home network behind the gateway. For a

generic understanding of the network, the Host table provides information such as the layer 2 and

layer 3 interfaces via which the Host is connected as well as DHCP lease information for each

connected Host.

If the operator is interested in UPnP devices in the home network, the UPnP.Discovery tables

(RootDevice, Device, and Service) provide that information in addition to the Host table entries

that correspond to a particular UPnP Root Device, Device, or Service. Finally, the

ManageableDevice table provides information about the TR-069 managed devices that the CPE

has learned about through the DHCP message exchange defined in TR-069 [2] Annex G.

IV.6 Determine Current Interfaces Configuration

One of the most fundamental ACS tasks is to determine the general picture of the interfaces for a

device so that it can understand which WAN and LAN side connections exist. In the

InternetGatewayDevice:1 data model, for example, the ACS would use the GetParameterNames

and/or GetParameterValues RPCs to find the available WANDevice, WANConnectionDevice,

and WAN**Connection instances, with hierarchical containment implying interface layers. In

the Device:2 data model, it would work this way:

1. The ACS would issue a GetParameterValues for the InterfaceStack table. This table

would provide a list of all the Interface connections. The ACS could use this table to

build up the general picture of the Interfaces that are part of the current configuration.

2. If the ACS is interested in the specifics of an individual interface, it can then go and issue

GetParameterNames or GetParameterValues for the interfaces of interest.

IV.7 Create a WLAN Connection

In this use case the ACS creates a new WLAN connection. For the purposes of illustration, in

this example the ACS will create a new SSID object to link to an existing radio (a new SSID

object implies a different SSID value than those used by existing WiFi connections). The layer 1

interface, in this case a WiFi.Radio object, will already exist (ACS can not create physical

interfaces).

1. The ACS uses AddObject to create a new WiFi.SSID object and WiFi.AccessPoint

object.

2. The ACS uses SetParameterValues to configure the new WiFi.SSID object, including

enabling it and setting the value of the LowerLayers parameter to reference the device’s

WiFi.Radio object.

3. The ACS uses SetParameterValues to add the new WiFi.SSID object to the LowerLayers

parameter of an existing non-management Bridging.Bridge.{i}.Port object, as

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 76 of 150

appropriate. Note: a non-management bridge port is indicated when its ManagementPort

parameter is set to false.

4. The ACS uses SetParameterValues to configure the new WiFi.AccessPoint object,

including enabling it and setting the value of its SSIDReference parameter to reference

the WiFi.SSID object.

5. The CPE updates the InterfaceStack table automatically.

6. Note that the ACS might also want to update other related objects; also, if there were no

appropriate existing bridge port to which to connect the SSID, the ACS might need to

create that object as well.

IV.8 Delete a WLAN Connection

In this use case the ACS deletes the SSID created in use case IV.7.

1. The ACS uses DeleteObject to delete the WiFi.SSID object and WiFi.AccessPoint object.

2. The CPE automatically updates the InterfaceStack table.

3. Note that if the radio has no other SSIDs configured, this would operationally disable the

wireless interface.

IV.9 Configure a DHCP Client and Server

In this use case, the ACS wants to configure a DHCP server to provide private 192.168.1.x IP

addresses to most home network (HN) devices, but to obtain IP addresses from the network for

HN devices that present an option 60 (vendor class ID) value that begins with “ACME”.

The ACME devices are remotely managed, so the ACS will also configure the DHCP clients on

those devices and the DHCP server on the gateway.

IV.9.1 DHCP Client Configuration (ACME devices)

The ACME devices are quite simple. Each has a single wired Ethernet port and a single IP

interface.

A DHCP Client object is created and configured as follows:

DHCPv4.Client.1.Enable true

DHCPv4.Client.1.Interface Device.IP.Interface.1

DHCPv4.Client.1.SentOption.1.Enable true

DHCPv4.Client.1.SentOption.1.Tag 60

DHCPv4.Client.1.SentOption.1.Value “ACME Widget” (as hexBinary)

IV.9.2 DHCP Server Configuration (gateway)

The gateway is also relatively simple. Its downstream IP interface is IP.Interface.1.

A DHCP Server object is created and configured as follows:

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 77 of 150

DHCPv4.Server.Enable true

DHCPv4.Relay.Enable true

DHCPv4.Relay.Forwarding.1.Enable true

DHCPv4.Relay.Forwarding.1.Interface Device.IP.Interface.1

DHCPv4.Relay.Forwarding.1.VendorClassID “ACME”

DHCPv4.Relay.Forwarding.1.VendorClassIDMode “Prefix”

DHCPv4.Relay.Forwarding.1.LocallyServed false

DHCPv4.Relay.Forwarding.1.DHCPServerIPAddress 1.2.3.4

DHCPv4.Server.Pool.1.Enable true

DHCPv4.Server.Pool.1.Interface Device.IP.Interface.1

DHCPv4.Server.Pool.1.MinAddress 192.168.1.64

DHCPv4.Server.Pool.1.MaxAddress 192.168.1.254

DHCPv4.Server.Pool.1.ReservedAddresses 192.168.1.128, 192.168.1.129

DHCPv4.Server.Pool.1.SubnetMask 255.255.255.0

If a DHCP request includes an option 60 value that begins with “ACME”, the request is

forwarded to the DHCP server at 1.2.3.4. All other requests are served locally from the pool

192.168.1.64 - 192.168.1.254 (excluding 192.168.1.128 and 192.168.1.129).

IV.10 Reconfigure an Existing Interface

The ACS might want to reconfigure an existing Interface to provide alternate routing

functionality. For the purposes of this illustration, an existing Ethernet Interface that is

configured for the downstream-side will be reconfigured as an upstream Ethernet Interface

replacing an existing DSL Interface.

The current configuration on the upstream side looks like:

IP.Interface.1 Ethernet.Link.1 ATM.Link.1 DSL.Channel.1 DSL.Line.1

The current configuration on the downstream side contains:

 IP.Interface.2 Ethernet.Link.2 Bridging.Bridge.1.Port.1 (ManagementPort=true)

 Bridging.Bridge.1.Port.1 LowerLayers parameter has two references:

o Bridging.Bridge.1.Port.2

o Bridging.Bridge.1.Port.3

 Bridging.Bridge.1.Port.2 LowerLayers parameter has a reference of Ethernet.Interface.1

 Bridging.Bridge.1.Port.3 LowerLayers parameter has a reference of Ethernet.Interface.2

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 78 of 150

The ACS would follow these steps to reconfigure the Ethernet.Interface:

1. Determine which Ethernet.Interface is to be reconfigured. For the purpose of this

illustration we will use Ethernet.Interface.1.

2. Use GetParameterValues to retrieve the InterfaceStack.

3. Find the higher-layer Interface of Ethernet.Interface.1 by finding the InterfaceStack entry

that has Ethernet.Interface.1 as the LowerLayer. The HigherLayer parameter of the

identified InterfaceStack instance will be the Interface we are interested in, for the

purpose of this illustration we found Bridging.Bridge.1.Port.2.

4. Use DeleteObject to remove Bridging.Bridge.1.Port.2. This removal will automatically

clean up the InterfaceStack instances that connect Bridging.Bridge.1.Port.1

Bridging.Bridge.1.Port.2 and Bridging.Bridge.1.Port.2 Ethernet.Interface.1. Also, it

will remove Bridging.Bridge.1.Port.2 from the LowerLayers parameter contained within

Bridging.Bridge.1.Port.1.

5. Find the DSL.Line reference within the LowerLayer parameter of the InterfaceStack.

6. Follow the InterfaceStack up to the Ethernet.Link reference by looking at the

HigherLayer parameter in the current InterfaceStack instance and then finding the

InterfaceStack instance containing that Interface within the LowerLayer parameter until

the HigherLayer reference is the Ethernet.Link Interface. For the purpose of this

illustration, we found Ethernet.Link.1.

7. Use SetParameterValues to reconfigure the LowerLayers parameter of Ethernet.Link.1

such that its value is “Device.Ethernet.Interface.1” instead of “Device.ATM.Link.1”.

8. The CPE updates the InterfaceStack table and sets the Upstream parameter to true on the

Ethernet.Interface.1 instance automatically.

9. Note that the ACS might also want to update other related objects, including the NAT

object, the Routing.Router object, or various QoS and Bridging tables. VLANs might

also need to be created.

After the CWMP Session is completed and the CPE commits the configuration, the upstream

side will look like:

IP.Interface.1 Ethernet.Link.1 Ethernet.Interface.1

IV.11 Backup / Restore Using Vendor Configuration Files

In certain troubleshooting scenarios, a Device that has its user configuration modified in a

manner that cannot be easily restored by setting individual parameters can have the Device’s user

configuration restored by applying a previous user configuration to the Device. When

performing a backup and restoration of configuration files, the ACS can correlate the instance

number of the VendorConfigFile retrieved during backup (Upload RPC) operation with the URL

of the restore (Download) operation. The following sequence diagrams depict a backup and

restoration scenario that correlates these attributes of a configuration file.

Figure 29 depicts a message sequence scenario where a configuration is backed up from the

Device to the ACS.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 79 of 150

ACS Device

1: GPV(Device.DeviceInfo.VendorConfigFile., Device.DeviceInfo.

Device.SoftwareModules.DeploymentUnit.)

2: Upload(FileType: 3 Vendor Configuration File x)

1a: GPVResponse() – Store parameters

1b: Create snapshot

For each configuration file x with UseForBackupRestore=true

3: TransferComplete

3a: Update state of snapshot

Figure 29 - Device User Configuration Backup

Step 1: Retrieve instances and values of VendorConfigFile and DeviceInfo:

The parameter values of the DeviceInfo and VendorConfigFile provide the information

necessary to restore a Device to a point in time. Minimally the information needed to create a

snapshot includes:

 Device.DeviceInfo.ManufacturerOUI

 Device.DeviceInfo.ProductClass

 Device.DeviceInfo.SerialNumber

 Device.DeviceInfo.HardwareVersion

 Device.DeviceInfo.SoftwareVersion

 Device.DeviceInfo.VendorConfigFile.{i}. (Entire object)

 Device.SoftwareModules.DeploymentUnit.{i}.UUID

 Device.SoftwareModules.DeploymentUnit.{i}.Alias

 Device.SoftwareModules.DeploymentUnit.{i}.Name

 Device.SoftwareModules.DeploymentUnit.{i}.Version

 Device.SoftwareModules.DeploymentUnit.{i}.VendorConfigList

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 80 of 150

Note: Only instances of DeploymentUnit with VendorConfigFile instances with the

UseForBackupRestore parameter set to the value true as items in the instance’s

VendorConfigList parameter will need to be backed up.

This information is necessary as restoring Device configurations with different hardware

versions, software versions or deployment units that existed at the time of the backup can result

in a failed restoration attempt or a corrupted Device.

Step 1a: The parameters returned by the Device in the GetParameterValuesResponse are used to

create a “snapshot” of the Device. The definition of what is needed to create a snapshot and how

a snapshot is administered in an ACS is implementation specific.

Step 2: Backup each configuration file defined by the Device in the VendorConfigFile table with

the UseForBackupRestore parameter set to the value “true” using the Upload RPC with a File

Type “3 Vendor Configuration File x” where “x” is the instance number of the file in the

VendorConfigFile table.

Note: An ACS can also have additional information, outside step 1, to discern which

configuration files are necessary to restore a Device, as well as the order in which the

configuration files need to be restored where dependencies exist between the configuration files

within the potential snapshot.

Step 3, 3a: Upon completion of the transfer for each file via the Transfer Complete event, the

ACS will update the state of the snapshot. The lifecycle and state management of the snapshot by

an ACS is implementation specific.

At this point a Device snapshot exists that can be used to restore a Device to this point in time.

Figure 30 depicts a message sequence scenario where a configuration is restored to the Device

from the ACS

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 81 of 150

ACS Device

2: Download (FileType: 3 Vendor Configuration File, URL=1a URL)

For each configuration file x

3a: TransferComplete

1: Retrieve the URL of the configuration file

3: Download and apply configuration file

2a: DownloadResponse (Status,...)

For each configuration file x

Figure 30 - Device User Configuration Restore

Step 1: For each user configuration file in the snapshot, retrieve the information for the location

of the configuration file.

Step 2, 2a: Download the configuration using the File Type “3 Vendor Configuration File” and

the location of the configuration file. Note: Other elements (e.g., credentials) might be required

but are outside the scope of this sequence. When downloaded, a VendorConfigFile instance with

the same value for Name or Alias (if supported and present) will update the corresponding

instance in the VendorConfigFile table and will not create a new entry within the table.

Step 3, 3a: The Device performs the download of each configuration file and responds with a

Transfer Complete event.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 82 of 150

Appendix V IPv6 Data Modeling Theory of Operation

The Device:2 data model supports IPv66 via various IPv6-specific objects and parameters that

are designed to be used with other IP version neutral and IPv4-specific objects and parameters.

This Appendix briefly reviews all the relevant objects and parameters, and then presents some

example configurations.

V.1 IPv6 Overview

The IETF published RFC 2460 [16], Internet Protocol, Version 6 (IPv6) Specification in 1998.

Since then, it has published a variety of RFCs to create a suite of protocols (and extensions to

protocols) for operating, managing, and configuring IPv6 networks and devices. In addition there

are RFCs that document transition mechanisms (to transition from IPv4 to IPv6) and best current

practices (that describe which RFCs to implement depending on what a device is or needs to do).

The Broadband Forum has published several Technical Reports describing IPv6 architectures

and device requirements. Specifically, TR-124 Issue 2 [30] includes IPv6 requirements for

Residential Gateways (RGs), TR-177 [31] describes migration to IPv6 in the context of TR-101

[29], and TR-187 [32] describes an architecture for IPv6 for PPP Broadband Access. The TR-

181i2 IPv6 Data Model is intended to ensure that TR-069-managed [2] End Devices, RGs, and

other Network Infrastructure Devices can be managed and configured, consistent with the

requirements listed in these documents.

The basic elements of IPv6 data modeling involve information on IPv6 capabilities, and enabling

those capabilities on devices and device interfaces (see Section V.3), configuring addresses,

prefixes , and configuration protocols on upstream and downstream interfaces (see Sections V.4

and V.5), interacting with other devices on the Local Area Network (LAN) (see Section V.6),

and configuring IPv6 routing and forwarding information (see Section V.7).

Configuration protocols include Neighbor Discovery (ND; RFC 4861 [22]) and DHCPv6 (RFC

3315 [18]). Neighbor Discovery includes several messages that are important to configuration,

including Router Solicitation (RS) [sent by devices looking for routers], Router Advertisement

(RA) [sent by routers to other devices on the LAN], Neighbor Solicitation (NS) [used to identify

if any other device on the LAN is using the same IPv6 address, and used to see if previously

detected devices are still present; the latter is called Neighbor Unreachability Detection (NUD)],

and Neighbor Advertisement (NA) [used to respond to a NS sent to one of the device’s IPv6

addresses]. These messages are central to the stateless address autoconfiguration (SLAAC)

mechanism described in RFC 4862 [23]. SLAAC is expected to be the primary means of IPv6

address configuration for devices inside a home network. RFC 4191 [20] extended the RA

message to support a RouteInformation option. RFC 6106 [26] extended the RA message to

support sending Recursive DNS Servers (RDNSS) information for DNS configuration.

6 Introduced in Amendment 2

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 83 of 150

DHCPv6 can also be used for IPv6 address provisioning, through its IA_NA option. DHCPv6

was extended by RFC 3633 [19] to provide the IA_PD option for delegating IPv6 prefixes to

routers (that the routers can then use to provide IPv6 addresses to other devices on the LAN, or

to further sub-delegate to other routers inside the LAN). Both IA_NA and IA_PD require the

DHCPv6 server to maintain state for these assignments (since they have lifetimes, can expire,

and require renewal). DHCPv6 can also supply a variety of stateless configuration options,

including recursive DNS server information. RGs can have both DHCPv6 client and server, and

it may be desirable for some of the stateless options to be passed through from the client to the

server.

Interfaces that support IPv6 will have more than one IPv6 address. IPv6 interfaces are always

required to have a link-local address (described in RFC 4862 [23]). Other IPv6 addresses may be

acquired through SLAAC, DHCPv6 IA_NA, or they may be statically configured. Routers may

acquire prefixes (for use with address assignment in the LAN) from DHCPv6 IA_PD, static

configuration, or by generating their own Unique Local Address (ULA) prefixes from a self-

generated ULA Global ID (RFC 4193 [21]).

Because of the various IPv6 addresses that devices can have, maintaining good routing table and

IPv6 forwarding information is critical. Route information can be obtained from received RA

messages (both by noting that the sending device is a router, and from the RouteInformation

option) as well as other protocols.

V.2 Data Model Overview

This Theory of Operations focuses on data modeling for the purpose of establishing upstream

and downstream connectivity for TR-069-enabled [2] devices, and for configuration of IPv6-

related parameters. This is not an exhaustive description of data model changes made in support

of IPv6, and only intends to describe the working of elements that are not readily obvious.

The following tables are key to IPv6 data modeling:

 IP

o IP.Interface

 IP.Interface.IPv6Address

 IP.Interface.IPv6Prefix

 PPP.Interface

 Routing.Router

o Routing.Router.IPv6Forwarding

o Routing.RouteInformation.InterfaceSetting

 NeighborDiscovery.InterfaceSetting

 RouterAdvertisement.InterfaceSetting

o RouterAdvertisement.InterfaceSetting.Option

 Hosts.Host

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 84 of 150

 DHCPv6

o DHCPv6.Client

 DHCPv6.Client.Server

 DHCPv6.Client.SentOption

 DHCPv6.Client.ReceivedOption

o DHCPv6.Server

 DHCPv6.Server.Pool

 DHCPv6.Server.Pool.Client

o DHCPv6.Server.Pool.Client.IPv6Address

o DHCPv6.Server.Pool.Client.IPv6Prefix

o DHCPv6.Server.Pool.Client.Option

 DHCPv6.Server.Pool.Option

Note that the following tables have separate theories of operation, and are not described again

here:

 IPv6rd.InterfaceSetting

 DSLite.InterfaceSetting

Firewall includes some IPv6 elements that are not described, since it does not interact with tables

other than an association with IP.Interface. As such, its IPv6 usage is considered straightforward,

and explanation is considered unnecessary.

Similarly, DNS.Client.Server is not described.

Use of DHCPv6 elements of Bridging.Filter are also not described, as there is no conceptual

difference between how they are used and how DHCPv4 elements are used.

Figure 31 shows the relationship of IPv6 configuration messages to devices and the tables used

to configure the protocol messages and store the responses.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 85 of 150

Figure 31 – Relationship of Protocols to Data Model

Figure 32 shows internal relationships of parts of the data model involved in IPv6 addresses and

IPv6 prefixes. The following sections describe in greater detail how these various tables are

populated.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 86 of 150

Figure 32 – Internal Relationships of IPv6 Addresses and Prefixes

V.3 Enabling IPv6

The IP IPv6Capable parameter indicates whether the device supports IPv6. IP.IPv6Enable

controls enabling IPv6 is on the device. IPv6 can only be enabled on a device with

IPv6Capable=true. IPv6Status indicates whether IPv6 has been enabled on the device.

Per TR-124 Issue 2 [30], the upstream interface can be configured to establish an IPv6

connection either over PPP (PPPoA or PPPoE) or directly over Ethernet. Both mechanisms

require an IP.Interface instance with IPv6Enable set to true. When using PPP, a PPP.Interface

instance must have IPv6CPEnable set to true (which can only occur if PPP.SupportedNCPs

includes IPv6CP in its list of Network Control Protocols (NCPs)).

Enabling IPv6 on specific downstream or upstream interfaces requires that IP.Interface instances

have IPv6Enable set to true.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 87 of 150

V.4 Configuring Upstream IP Interfaces

An upstream IP Interface is an IP.Interface that is associated with an Upstream=true physical

interface, via the InterfaceStack. Every Upstream=true physical interface that will be used to

support routed IPv6 traffic will have an upstream IP Interface for each distinct upstream IPv6

connection that is established over that physical interface.

Upstream IPv6 connections can be established on an upstream IP Interface either through

internal logic (for well-known addresses and the link-local address), static configuration, or

dynamically through received Router Advertisement (RA) messages or DHCPv6 client

behaviors. Received RA and DHCPv6 messages can contain configuration information for more

than just establishing the upstream IP interface. The data model allows for the storage of

additional configuration information sent by one of these protocols.

V.4.1 Configuration Messages Sent Out the Upstream IP Interface

The device can be configured to send Router Solicitation and DHCPv6 client messages out an

upstream IP interface.

 A device that is configured to send Router Solicitation messages out an upstream IP

interface will have a NeighborDiscovery.InterfaceSetting instance whose Interface is the

related upstream IP.Interface, and with RSEnable=true.

 A device that is configured to send DHCPv6 client requests out an upstream IP interface

will have a DHCPv6.Client instance whose Interface is the related upstream IP.Interface,

and with Enable=true. RequestAddresses indicates whether IA_NA is to be requested,

RequestPrefixes indicates whether IA_PD is to be requested, and RequestedOptions

identifies which other options are to be requested. DHCPv6.Client.Server,

DHCPv6.Client.SentOption, and DHCPv6.Client.ReceivedOption are populated as

appropriate, as described in the data model.

V.4.2 IPv6 Prefixes

IP.Interface.IPv6Prefix instances on upstream IP interfaces are used to store all prefixes received

in RA messages on the interface (with Origin of RouterAdvertisement), prefixes delegated by

DHCPv6 IA_PD (with Origin of PrefixDelegation), statically configured IPv6 prefixes (but only

the ones that are intended to be sub-divided for use on downstream interfaces with sent RA

messages or DHCPv6 server functions), and WellKnown prefixes, as appropriate (such as certain

well-known multicast prefixes, where the device joins the multicast group for that prefix on that

interface).

RouterAdvertisement prefixes with Autonomous=true are used to create an IPv6Address instance

on the interface, and can be used to create routes in Routing.Router.IPv6Forwarding.

RouterAdvertisement prefixes with OnLink=true can also be used to create routes in

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 88 of 150

Routing.Router.IPv6Forwarding. Prefixes received in a RA RouteInformation option are not

stored with the interface, but rather in an instance of Routing.RouteInformation.InterfaceSetting.

PrefixDelegation prefixes and Static prefixes are not directly used on the upstream IP interface.

They are prefixes that are intended to be sub-divided for use on the device’s downstream

interfaces, either by the DHCPv6 server for IA_NA or IA_PD, sent in RA messages (as on-link

and/or autonomous prefixes), or used to self-assign addresses to other interfaces on the device.

Non IA_PD prefixes received in DHCPv6 options are not stored with the upstream IP interface.

Prefixes for static routes are entered directly into Routing.Router.IPv6Forwarding and do not

need to also have upstream IP interface IPv6Prefix entries.

It is often desirable to configure information about delegated prefixes before they have been

delegated (for example, that a particular /64 of that prefix is to be used on the downstream

interface for address assignment). In order to allow for the referencing of not-yet-existing-but-

expected delegated prefixes, an Origin=Static IPv6Prefix entry is created of

Type=PrefixDelegation. When a device receives a delegated prefix, it is expected to first look for

such Static entries and populate them with the delegated prefix information, instead of creating a

new IPv6Prefix instance of Origin=PrefixDelegation. How these references are configured on

downstream interfaces is discussed in Section V.5.1.

V.4.3 IPv6 Addresses

IPv6 link-local addresses on an upstream IP Interface are generally internally generated,

although they can be configured statically, when necessary (when the internal default link-local

address fails Duplicate Address Detection (DAD)). A properly configured upstream IP.Interface

instance will have a IP.Interface.IPv6Address instance for its link-local address. This will have

Origin of AutoConfigured (if internally generated per RFC 4862 [23]) or Static (if statically

configured by some management entity).

IPv6 addresses that are created via stateless address autoconfiguration (SLAAC), as defined in

RFC 4862 (from received RA messages that contain prefix(es) with Autonomous=true) cause the

device to create a IP.Interface.IPv6Address instance with Origin of AutoConfigured. IPv6

addresses assigned via DHCPv6 IA_NA cause the device to create a IP.Interface.IPv6Address

instance with Origin of DHCPv6. Statically created IPv6 addresses will have Origin of Static. If

any of these addresses are Global Unicast Addresses (GUA), they can be used to originate and

terminate traffic to/from either the downstream or the upstream, independent of which physical

interface they are associated with.

V.5 Configuring Downstream IP Interfaces

A downstream IP Interface is a IP.Interface that is associated with an Upstream=false physical

interface, via the InterfaceStack. As noted in the definition of the Upstream parameter, “For an

End Device, Upstream will be true for all interfaces.” This means that only RGs or (possibly)

other Network Infrastructure Devices will have downstream IP Interfaces.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 89 of 150

V.5.1 IPv6 Prefixes

IP.Interface.IPv6Prefix instances on downstream IP interfaces are used to store all prefixes that

are either on-link for that downstream IP interface, or can be delegated to or used by routers

connected to that downstream IP interface. On-link prefixes include prefixes that are included in

Router Advertisement (RA) messages for SLAAC (Autonomous prefixes), those used as

DHCPv6 address pools, and those used for static addressing by End Devices that connect to that

downstream IP interface.

The device can have a Unique Local Address (ULA) /48 prefix defined in IP.ULAPrefix. In

general, the device will generate its own ULA /48 prefix, although this value could be configured

directly by the user or through TR-069 [2]. If ULA addressing is to be supported on a

downstream interface, then IP.Interface.ULAEnable must be true. The ULA /48 prefix can be

associated with any downstream IP interface, and can be sub-divided to provide ULA prefixes on

multiple downstream IP interfaces (by assigning longer prefixes from the ULA /48 prefix to

these downstream IP interfaces). When the device creates a ULA prefix on a downstream

interface, it creates an IPv6Prefix instance with Origin=AutoConfigured.

RGs that are configured to act as routers need to know which prefixes to include in their sent

Router Advertisement (RA) messages and to be used in DHCPv6 server pools. These prefixes

need to be associated with the downstream IP interface for those

RouterAdvertisement.InterfaceSetting and DHCPv6.Server.Pool instances. These prefixes can be

statically configured on the downstream IP interface, or they can be automatically generated

from prefixes on an upstream IP interface with Origin of PrefixDelegation or Static, or they can

be generated from the ULA /48 prefix (as described in the previous paragraph). Prefixes that are

automatically (by internal code) derived from prefixes on an upstream IP interface with Origin of

PrefixDelegation or Static, will point to that upstream IP interface in ParentPrefix and have

Origin of Child.

It is often desirable to pre-configure information about prefixes on a downstream IP interface

that are to be derived from delegated (on the upstream interface) prefixes. This will need to be

done before that prefix has been delegated and without knowledge of what that prefix will be. A

derived-from-not-yet-existing-but-expected-delegated-prefix downstream IP interface IPv6Prefix

entry will have Origin=Static and Type=Child, and will have ParentPrefix pointing to an

upstream IP interface IPv6Prefix instance (that is Origin=Static and Type= PrefixDelegation).

When a device receives a delegated prefix and populates the upstream IP interface IPv6Prefix

instance, and needs to generate downstream IP interface prefixes from that delegated prefix, it is

expected to first look for such Static Child entries and populate them with the derived prefix

information, instead of creating a new IPv6Prefix instance of Origin=Child. How the referenced

parent prefixes are configured on upstream IP interfaces is discussed in Section V.4.2.

If the device receives RA messages on downstream IP interfaces, autonomous and on-link

prefixes in such received RA message Prefix Information options can also be recorded in

IP.Interface.IPv6Prefix. At this time, there is no additional guidance for using the information in

these RA messages received on downstream interfaces. They are simply stored, to provide

information about other devices in the home network.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 90 of 150

V.5.2 IPv6 Addresses

As with the upstream IP interfaces, IPv6 link-local addresses on a downstream IP interface are

generally internally generated, although they can be configured statically, when necessary (when

the internal default link-local address fails Duplicate Address Detection (DAD)). A properly

configured downstream IPv6 connection will have a IP.Interface instance with a

IP.Interface.IPv6Address instance for its link-local address. This will have Origin of

AutoConfigured (if internally generated per RFC 4862 [23]) or Static (if statically configured by

some management entity).

If the device has a Unique Local Address (ULA) prefix that it is advertising and/or sub-

delegating to devices on the LAN, then it needs to have at least one address from this prefix

assigned to downstream IP interfaces that expect to support usage of the ULA.

If the device did not receive an address on its upstream IP interface (from DHCPv6 or SLAAC),

but it was delegated a prefix (DHCPv6 IA_PD), then it is expected to assign an address from a

prefix (Origin=Child or Type=Child) derived from that delegated prefix to one of its non-

upstream interfaces. This IPv6Address instance will have Origin of AutoConfigured. This

address can be used for originating and terminating messages to and from either the downstream

or the upstream interfaces.

V.6 Device Interactions

The RG can interact with other devices on the LAN both by actively sending messages with or

without configuration information, and by passively listening to messages received from other

devices. End Devices can interact with other devices on the LAN by passively listening to

messages received from other devices and by actively performing Neighbor Unreachability

Detection (NUD) to determine if previously detected devices are still reachable.

V.6.1 Active Configuration

To assist in the automated configuration of other devices on the LAN, an RG sends Router

Advertisement (RA) messages and DHCPv6 server messages. This function is associated with

downstream IP interfaces, and thus does not apply to End Devices. As noted in the above section

on downstream IP interfaces, only RGs or other infrastructure devices will have downstream IP

interfaces.

 RouterAdvertisement.InterfaceSetting instances whose Interface is the related

downstream IP.Interface, with Enable=true, define the content of RA messages that get

sent on the downstream IP interface. The RouterAdvertisement.InterfaceSetting instance

will include references to IPv6Prefix entries in the associated downstream IP interface.

These are IPv6Prefix entries of Origin=Child or Origin=Static.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 91 of 150

 DHCPv6.Server.Pool instances whose Interface is the related downstream IP.Interface,

with Enable=true, contain information for filtering DHCPv6 client requests, and identify

the IPv6 prefix(es) (references to IPv6Prefix entries of the associated downstream IP

interface) that provide the pool of IPv6 addresses and IPv6 prefixes available for

assignment from this pool. Information on soliciting clients (including assigned addresses

and prefixes and received option information) is stored in DHCPv6.Server.Pool.Client.

Additional options that are sent to soliciting clients is stored in

DHCPv6.Server.Pool.Option. The PassthroughClient parameter in this table identifies

whether the value of this option is simply passed through from a DHCPv6 client on an

upstream interface.

As noted above, both RouterAdvertisement.InterfaceSetting and DHCPv6.Server.Pool have

references to IPv6Prefix entries. The ManualPrefixes, IANAManualPrefixes and

IAPDManualPrefixes parameters allow for configuration (through TR-069 [2], user interface, or

other means) of prefixes that are to be included in RA messages, and to be used in deriving

DHCPv6 IA_NA and IA_PD offers, respectively. The Prefixes, IANAPrefixes, and IAPDPrefixes

parameters list all of the prefixes that the devices actually does include in these messages. Since

the *ManualPrefixes entries may point to IPv6Prefix entries that are not enabled, it is possible

that not all of those will be included in these parameters’ lists. In addition to the *ManualPrefix

entries, these lists may also include references to prefixes that the device creates or uses

automatically in RA messages or for deriving DHCPv6 IA_NA or IA_PD offers.

There is some flexibility in the modeling of ULA IA_PD prefixes. It is not required to model the

ULA /48 prefix in an IPv6Prefix instance. If the ULA /48 is not represented in an IPv6Prefix

instance and ULAEnable is true for a downstream interface and IAPDEnable is true for a

DHCPv6.Server.Pool instance, then it can be assumed that the device will sub-delegate prefixes

from the ULA /48 prefix. Alternately, the ULA /48 can be included as an AutoConfigured prefix

in a downstream interface, and that IPv6Prefix instance can be referenced in IAPDPrefixes in the

DHCPv6.Server.Pool instance. It is also possible to manually create a Static longer-than-/48

prefix from the ULA prefix in a downstream interface. This Static prefix can then be referenced

in IAPDManualPrefix for a DHCPv6.Server.Pool instance for that interface.

For IA_PD, there is one additional parameter: IAPDAddLength. This parameter is configured to

recommend how many bits should be added to an IAPDPrefixes prefix to create a delegated

prefix offer.

V.6.2 Monitoring

All devices can monitor and record information from messages sent by other devices.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 92 of 150

 Information received in Neighbor Solicitation (NS) and Neighbor Advertisement (NA)

messages sent by other devices is recorded in Hosts.Host.

 In order to actively solicit information from other devices on the LAN, the device can

have a NeighborDiscovery.InterfaceSetting instance whose Interface is the related

downstream IP.Interface, and with NUDEnable=true. To determine whether there are

other routers connected to the LAN that are behaving like IPv6 routers to this same LAN

segment, this InterfaceSetting can also have RSEnable=true. However, it is not

recommended that routers do this until there is better guidance available for routers that

co-exist in a peered environment on the same LAN.

V.7 Configuring IPv6 Routing and Forwarding

IPv6 routing information is stored in instances of Routing.Router.IPv6Forwarding. This

information can in part be derived from Router Advertisement (RA) messages, either directly

from the address of the router sending the RA, or from RA RouteInformation (RFC 4191 [20])

options that may be included in the message. Routing.RouteInformation.InterfaceSetting

instances record received RA RouteInformation options.

V.8 Configuring IPv6 Routing and Forwarding

Following is an example of how a typical RG (one upstream and one downstream interface, with

delegated prefix and IA_NA address, and ULA enabled) might be configured. The corresponding

data model is shown below the figure. Not all parameters are shown, and objects and parameters

that the ACS is likely to have explicitly created or written are shown in bold face (some of these

settings might alternatively be present in the factory default configuration).

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 93 of 150

IP

IP.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 94 of 150

 IPv6Capable = true

 IPv6Enable = true

 IPv6Status = "Enabled"

 ULAPrefix = fd01:2345:6789::/48 # typically generated by CPE

Router Solicitation (Upstream IP interface)

NeighborDiscovery.

 Enable = true

 InterfaceSetting.1.

 Enable = true

 Interface = IP.Interface.1

 RSEnable = true

DHCPv6 Client (Upstream IP interface)

DHCPv6.Client.1

 Enable = true

 Interface = IP.Interface.1

 RequestAddresses = true

 RequestPrefixes = true

Upstream IP interface

- Assumes DHCPv6 IA_PD will be 1080:0:0:800::/56 (this is NOT known at

configuration time).

- Assumes RA(PI) will be 2001:0DB8::/64 (this is NOT known at configuration

time)

- Assumes link-layer address is 55:44:33:22:11:00

[Section 4/RFC 2464[17]],[Section 4.1/RFC 5072[24]]

IP.Interface.1

 Enable = true

 IPv6Enable = true

 # Upstream IP interface IPv6 prefixes

 # - Assumes that the WellKnown Link Local fe80::/10 prefix not modeled

 IPv6Prefix.1

 Enable = true

 Prefix = 1080:0:0:800::/56 # DHCPv6(IA_PD) [RFC 3633[19]]

 Origin = "Static"

 StaticType = "PrefixDelegation"

Upstream IP interface IPv6 addresses (LL, GUA)

 IPv6Address.1

 Enable = true

 IPAddress = fe80::5544:33ff:fe22:1100

 Origin = "AutoConfigured" # LL

 Prefix = ""

 IPv6Address.2

 Enable = true

 IPAddress = 1080:0:0:700::

 Origin = "DHCPv6" # GUA (from IA_NA [RFC 3315[18]])

 Prefix = ""

Downstream IP interface

- Assumes link-layer address is 00:11:22:33:44:55 [Section 4/RFC 2464[17]]

IP.Interface.2

 Enable = true

 IPv6Enable = true

 ULAEnable = true

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 95 of 150

Downstream IP interface IPv6 prefixes

 IPv6Prefix.1

 Enable = true

 Prefix = 1080:0:0:800::/64

 Origin = "Static"

 StaticType = "Child" # IA_PD /64 (for lcl, RA and IA_NA)

 ParentPrefix = IP.Interface.1.IPv6Prefix.1

 ChildPrefixBits = 0:0:0:00::/64

 IPv6Prefix.2

 Enable = true

 Prefix = 1080:0:0:810::/60

 Origin = "Static"

 StaticType = "Child" # IA_PD /60 (for IA_PD)

 ParentPrefix = IP.Interface.1.IPv6Prefix.1

 ChildPrefixBits = 0:0:0:10::/60

IPv6Prefix.3

 Enable = true

 Prefix = fd01:2345:6789::/48

 Origin = "AutoConfigured" # ULA /48

 IPv6Prefix.4

 Enable = true

 Prefix = fd01:2345:6789:0::/64

 Origin = "AutoConfigured" # ULA /64 (for lcl, RA and IA_NA)

 IPv6Prefix.5

 Enable = true

 Prefix = 2001:0db9::/60 # RA(PI) [RFC 4861[22]]

 Origin = "RouterAdvertisement" # from peer router

 Autonomous = true

 OnLink = true

 # Downstream IP interface IPv6 addresses (LL, GUA?, ULA)

 IPv6Address.1

 Enable = true

 IPAddress = fe80::0011:22ff:fe33:4455

 Origin = "AutoConfigured" # LL

 Prefix = ""

 IPv6Address.2

 Enable = false # have upstream GUA so disabled

 IPAddress = 1080:0:0:800::

 Origin = "AutoConfigured" # GUA (from IA_PD /64)

 Prefix = IP.Interface.2.IPv6Prefix.1

 IPv6Address.3

 Enable = true

 IPAddress = fd01:2345:6789::0011:22ff:fe33:4455

 Origin = "AutoConfigured" # ULA (from ULA /64)

 Prefix = IP.Interface.2.IPv6Prefix.4

Router Advertisement (Downstream IP interface)

RouterAdvertisement.

 Enable = true

 InterfaceSetting.1

 Enable = true

 Interface = IP.Interface.2

 ManualPrefixes = IP.Interface.2.IPv6Prefix.2

DHCPv6 server (Downstream IP interface)

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 96 of 150

DHCPv6.Server.

 Enable = true

 Pool.1

 Enable = true

 Interface = IP.Interface.2

 <filter criteria>

 IANAManualPrefixes = IP.Interface.2.IPv6Prefix.1

 IAPDManualPrefixes = IP.Interface.1.IPv6Prefix.1,

 IP.Interface.2.IPv6Prefix.2

 IAPDADDLength = 4

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 97 of 150

Appendix VI 6rd Theory of Operation

See Annex B for general information on how tunneling is modeled.

VI.1 RFC 5969 Configuration Parameters

RFC 5969 [25] describes the general operation of the 6rd protocol and configuration of external

parameters needed to do the protocol. Table 13 shows the 6rd configuration parameters defined

in RFC 5969 and their mapping into the Device:2 data model. Refer to RFC 5969 for further

description on use of these parameters.

Note that while RFC 5969 allows for multiple Border Relay (BR) IPv4 addresses, it does not

describe how a device selects from among these. The device will need to have internal logic to

handle this case, but service providers might wish to ensure that they know what the behavior

will be, if they intend to supply multiple BR addresses.

Table 13 – RFC 5969 Configuration Parameter Mapping

RFC 5969 (Section 7) Configuration

Parameter
Device:2 (IPv6rd.InterfaceSetting.{i}) Parameter

IPv4MaskLen IPv4MaskLength

6rdPrefix
SPIPv6Prefix (expressed with prefix length)

6rdPrefixLen

6rdBRIPv4Address BorderRelayIPv4Addresses

VI.2 Internal Configuration Parameters

AddressSource, TunnelInterface, TunneledInterface, and AllTrafficToBorderRelay parameters

are used to define internal device operation. AddressSource allows the desired source IPv4

address to be selected (to be embedded in the 6rd IPv6 address, after removing IPv4MaskLength

bits from the beginning of the address, and as the source IPv4 address of the encapsulating IPv4

header). TunnelInterface and TunneledInterface allow for internal forwarding, routing,

encapsulation, classification and marking of IPv6 packets. AllTrafficToBorderRelay impacts

determination of the IPv4 destination address of the encapsulating IPv4 header.

VI.3 IPv4 Address Source

In general, it is expected that the device will use the IPv4 address obtained on the upstream

interface as the address that is embedded in the 6rd IPv6 address, and used as the encapsulating

source IPv4 address. However, there could be cases where the device has other public IPv4

addresses assigned to it, and it would be preferable to use one of these. For example, if the

device has a public static IP address assigned to a different interface, it could be desired to use

that address instead of the address assigned to the upstream interface.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 98 of 150

If this parameter is not present, or if it is an empty string, the device will use internal logic to

determine the source IPv4 address. In cases where there is a single upstream interface with an

assigned (e.g. DHCPv4, IPCP, static) IPv4 address, that is the address that will be used.

Note that service providers need to be careful when using alternate addresses. If the alternate

address does not have the same higher order IPv4 bits as other devices that will be supported by

the same 6rd prefix, then the IPv4 mask will need to be zero. Masked IPv4 bits will be the same

for all IPv4 addresses within a 6rd domain, per RFC 5969 [25].

VI.4 Sending All Traffic to the Border Relay Server

The default behavior of a 6rd client device is that all IPv6 packets are encapsulated in IPv4

packets with destination address of a 6rd border relay server, except when the IPv6 destination

address begins with SPIPv6Prefix. When the destination IPv6 address begins with SPIPv6Prefix,

then the encapsulating IPv4 destination address is derived from the IPv6 destination address by

taking the next 32 - IPv4MaskLength bits, pre-pending the bits that are masked (as determined by

its own WAN IPv4 address), and using the resulting IPv4 address as the encapsulating

destination IPv4 address.

For example, if

 the IPv6 destination address is 2001:db8:64c8:200:x:x:x:x [note 64 hex = 100 decimal, c8

hex = 200 decimal, leading zeroes between colons are not shown]

 the SPIPv6Prefix is 2001:db8::/32

 the device’s WAN IPv4 address is 10.100.100.1

 IPv4MaskLength is 8

 advertised-to-LAN SLAAC prefix of 2001:db8:6464:100::/64

…then the encapsulation destination IPv4 address becomes the first 8 bits of the device’s WAN

IPv4 address (10 for an address of 10.100.200.2), plus the next 24 bits (32-8=24) after the

SPIPv6Prefix (next 24 bits are 64c802 hex = 100.200.2 binary). The source encapsulating IPv4

address is 10.100.100.1. The source IPv6 address begins with the prefix 2001:db8:6464:100::/64.

However, if AllTrafficToBorderRelay is True, then all external-bound IPv6 traffic is sent to the

border relay.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 99 of 150

This Boolean field is reflected in the routing table. If the value is False (default behavior), then

the IPv6 routing table for this example (with a border relay IPv4 address of 10.0.0.1) would

include the following entries:

::/0 -> 6rd-tunnel-interface-int0 via 2001:db8:0:100::

(default route to border relay)

2001:db8::/32 -> 6rd-tunnel-interface-int0

(direct connect to 6rd tunnel interface if the first 32 bits of

destination address match SPIPv6Prefix)

2001:db8:6464:100::/64 -> Ethernet0 (downstream interface)

If the AllTrafficToBorderRelay field is true, then the 2nd entry above does not exist

VI.5 Internal Treatment of IPv6 Packets

Since a device can have multiple upstream and multiple downstream interfaces, the model

supports a logical representation of the internal virtual 6rd IPv6 interface according to the

general pattern described in Annex B.

The internal virtual 6rd IPv6 interface is modeled as (TunnelInterface,TunneledInterface).

The IPv6Forwarding entries (which correspond to the routing table entries mentioned above) will

route traffic between the downstream IPv6 interfaces and the 6rd IPv6 interface. IPv4Forwarding

entries are unaffected.

Figure 33 shows the flow of tunneled 6rd traffic through the downstream, upstream, and the

logical tunnel interfaces. Noted in the figure are sample values for the various IP.Interface

entries that would be needed.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 100 of 150

Figure 33 – Sample 6rd Routing and Forwarding

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 101 of 150

Appendix VII Dual-Stack Lite Theory of Operation

See Annex B for general information on how tunneling is modeled.

RFC 6333 [27] describes the general operation of the dual-stack lite (DS-Lite) technology and

configuration of external parameters needed to do the protocol. RFC 6334 [28] defines an AFTR

(Address Family Transition Router) name DHCPv6 option that maps to an EndpointName

parameter in the Device:2 data model7.

EndpointName is a variable length field, containing a Fully Qualified Domain Name that refers

to the AFTR the client is requested to establish a connection with. EndpointName can be

assigned statically (e.g. present in the factory default configuration or set by the ACS) or

dynamically (via DHCPv6). If both statically and dynamically assigned, then the

EndpointAssignmentPrecedence parameter indicates whether it is the static configuration or the

DHCPv6 configuration that is actually applied to EndpointName.

EndpointAddress is a 128 bit field, containing one IPv6 address. The tunnel EndpointAddress

specifies the location of the remote tunnel endpoint, expected to be located at an AFTR.

EndpointAddress can be assigned statically (e.g. present in the factory default configuration or

set by the ACS) or dynamically (via DNS lookup when EndpointName is set). If both statically

and dynamically assigned, then the EndpointAssignmentPrecedence parameter indicates whether

it is the static configuration or the DHCPv6-derived configuration that is actually applied to

EndpointAddress.

When EndpointName is assigned, the name is looked up (resolved) and the corresponding IPv6

address is set in EndpointAddress.

When DS-Lite is running in the CPE, the NAT function is disabled between the LAN and

DSLite interface.

VII.1 Internal Treatment of IPv4 Packets

Since a device can have multiple upstream and multiple downstream interfaces, the model

supports a logical representation of the internal virtual DS-Lite IPv4 interface according to the

general pattern described in Annex B.

The internal virtual DS-Lite IPv4 interface is modeled as (TunnelInterface,TunneledInterface).

The IPv4Forwarding entries will route traffic between the downstream IPv4 interfaces and the

DS-Lite IPv4 interface. IPv6Forwarding entries are unaffected.

7 Introduced in Amendment 2

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 102 of 150

Figure 34 shows the flow of tunneled DS-Lite traffic through the downstream, upstream, and

logical tunnel interfaces. Noted in the figure are sample values for the various IP.Interface

entries that would be needed.

Figure 34 – Sample DS-Lite Routing and Forwarding

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 103 of 150

Appendix VIII Advanced Firewall Example Configuration

This Appendix presents an advanced firewall example that illustrates settings corresponding to

the following predefined Firewall.Config levels:

 High: The firewall implements the “Traffic Denied Inbound” and “Minimally Permit

Common Services Outbound” components of the ICSA residential certification's

Required Services Security Policy [34]. If DoS and vulnerability protections are

implemented [33], these are enabled.

 Low: All Outbound traffic and pinhole-defined Inbound traffic is allowed. If DoS and

vulnerability protections are implemented [33], these are enabled.

Firewall.

Enable = true

Config = "Advanced"

AdvancedLevel = Firewall.Level.1

Type = "Stateful"

Firewall.Level.1.

Name = "High"

Description = "Deny Inbound and minimally permit Outbound"

Order = 1

Chain = Firewall.Chain.1

DefaultPolicy = "Drop"

Firewall.Level.2.

Name = "Low"

Description = "Allow all Outbound and pinhole-defined Inbound"

Order = 2

Chain = Firewall.Chain.2

DefaultPolicy = "Drop"

Firewall.Chain.1.

Name = "High (Deny Inbound and minimally permit Outbound)"

Creator = "Defaults"

Rule.1.

Order = 1

Description = "Telnet"

Target = "Accept"

DestInterface = IP.Interface.1 # upstream facing IP interface

Protocol = 6 # TCP

DestPort = 23

Rule.2.

Order = 2

Description = "FTP"

Target = "Accept"

DestInterface = IP.Interface.1 # upstream facing IP interface

Protocol = 6 # TCP

DestPort = 21

Rule.3.

Order = 3

Description = "HTTP"

Target = "Accept"

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 104 of 150

DestInterface = IP.Interface.1 # upstream facing IP interface

Protocol = 6 # TCP

DestPort = 80

Rule.4.

Order = 4

Description = "HTTPS"

Target = "Accept"

DestInterface = IP.Interface.1 # upstream facing IP interface

Protocol = 6 # TCP

DestPort = 443

Rule.5.

Order = 5

Description = "SMTP"

Target = "Accept"

DestInterface = IP.Interface.1 # upstream facing IP interface

Protocol = 6 # TCP

DestPort = 25

Rule.6.

Order = 6

Description = "DNS"

Target = "Accept"

DestInterface = IP.Interface.1 # upstream facing IP interface

Protocol = 17 # UDP

DestPort = 53

Rule.7.

Order = 7

Description = "POP3"

Target = "Accept"

DestInterface = IP.Interface.1 # upstream facing IP interface

Protocol = 6 # TCP

DestPort = 110

Rule.8.

Order = 8

Description = "IMAP"

Target = "Accept"

DestInterface = IP.Interface.1 # upstream facing IP interface

Protocol = 6 # TCP

DestPort = 143

Firewall.Chain.2.

Name = "Low (Allow all Outbound and pinhole-defined Inbound)"

Creator = "Defaults"

Rule.1.

Order = 1

Description = "Outbound"

Target = "Accept"

DestInterface = IP.Interface.1 # upstream facing IP interface

Rule.2.

Order = 2

Description = "Allow IPsec AH"

Target = "Accept"

SourceInterface = IP.Interface.1 # upstream facing IP interface

IPVersion = 6 # IPv6

Protocol = 51 # AH

Rule.3.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 105 of 150

Order = 3

Description = "Allow IPsec ESP"

Target = "Accept"

SourceInterface = IP.Interface.1 # upstream facing IP interface

IPVersion = 6 # IPv6

Protocol = 50 # ESP

Rule.4.

Order = 4

Description = "Allow IPsec key exchange"

Target = "Accept"

SourceInterface = IP.Interface.1 # upstream facing IP interface

IPVersion = 6 # IPv6

Protocol = 17 # UDP

DestPort = 500

Rule.5.

Order = 5

Description = "UPnP Port Mapping"

Target = "TargetChain"

TargetChain = Firewall.Chain.3

SourceInterface = IP.Interface.1 # upstream facing IP interface

Rule.6.

Order = 6

Description = "UPnP IPv6 Firewall"

Target = "TargetChain"

TargetChain = Firewall.Chain.4

SourceInterface = IP.Interface.1 # upstream facing IP interface

Rule.7.

Order = 7

Description = "User Interface"

Target = "TargetChain"

TargetChain = Firewall.Chain.5

SourceInterface = IP.Interface.1 # upstream facing IP interface

Firewall.Chain.3.

Name = "UPnP Port Mapping (dynamic rules)"

Creator = "PortMapping"

Rule.1.

Order = 1

Description = "SSH"

Target = "Accept"

SourceInterface = IP.Interface.1 # upstream facing IP interface

IPVersion = 4 # IPv4

Protocol = 6 # TCP

DestPort = 22

Firewall.Chain.4.

Name = "UPnP IPv6 Firewall (dynamic rules)"

Creator = "WANIPv6FirewallControl"

Rule.1.

Order = 1

Description = "HTTP"

Target = "Accept"

SourceInterface = IP.Interface.1 # upstream facing IP interface

IPVersion = 6 # IPv6

Protocol = 6 # TCP

DestIP = 1080:0:0:800::1

DestPort = 80

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 106 of 150

Firewall.Chain.5.

Name = "User Interface"

Creator = "UserInterface"

Rule.1.

Order = 1

Description = "SMTP server"

Target = "Accept"

SourceInterface = IP.Interface.1 # upstream facing IP interface

IPVersion = 4 # IPv4

Protocol = 6 # TCP

DestIP = 192.168.1.4

DestPort = 25

Rule.2.

Order = 2

Description = "DMZ"

Target = "Accept"

SourceInterface = IP.Interface.1 # upstream facing IP interface

IPVersion = 4 # IPv4

DestIP = "192.168.1.5" # IPv4 address of LAN device that recvs

 # all unsolicited inbound IPv4 traffic

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 107 of 150

Appendix IX IPsec Theory of Operation

See Annex B for general information on how tunneling is modeled.

The Device:2 data model includes an IPsec (RFC 4301 [35]) object that supports the

configuration of Encapsulating Security Payload (ESP; RFC 4303 [37]) and Authentication

Header (AH; RFC 4302 [36]) in tunnel mode (Section 3.2/RFC 4301). Use of IKEv2 (RFC 5996

[38]) is assumed. The IPsec object does not currently support static configuration of tunnels and

child Security Associations (SAs).

Figure 35 illustrates the main IPsec objects and their relationships.

Figure 35 – IPsec Data Model Objects

In the Figure, instances of the colored objects (Filter.{i} and Profile.{i}) are created and

populated by the ACS. Instances of all other objects are handled by the CPE as IPsec tunnels are

created and deleted. References between objects are shown:

 Solid lines indicate references that are populated by the ACS, and dashed lines indicate

references that are handled by the CPE.

 A reference marked “(U)” is a unique key, which implies a 1-1 relationship, e.g. only one

Tunnel instance can reference a given (Tunnel,Tunneled) IP.Interface pair.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 108 of 150

 Other references imply n-1 relationships, e.g. multiple Filter instances can reference a

given Profile instance.

Typical usage is as follows:

 The factory default configuration can contain static instances of the various objects.

 The ACS creates and configures Filter and Profile instances. Filter instances model

IPsec Security Policy Database (SPD) selection criteria and Profile instances model SPD

processing info. Each Filter instance references a Profile instance so a single Profile

instance can, if desired, be shared by several Filter instances.

 When the ACS enables a Filter instance, the CPE determines whether a new tunnel is

needed in order to carry the traffic that matches that filter. It is possible that an existing

tunnel can carry the traffic.

 If a new tunnel is needed, the CPE immediately creates a Tunnel instance that references

a newly-created (Tunnel,Tunneled) IP Interface pair. This corresponds exactly to the

general tunneling approach that is described in Annex B.

 Each Tunnel instance also references all of the currently-enabled Filter instances that

require it to exist.

 Classification and forwarding rules can now be defined, regardless of whether the tunnels

have yet been established. ForwardingPolicy is both a QoS Classification result and an

IPsec Filter result (it’s in the Policy table), and so can, as explained in Annex B, affect

the forwarding decision and thus whether or not a given packet will be en-tunneled or de-

tunneled.

 When a tunnel needs to become active, e.g. as a result of traffic that matches one of the

Filter instances, the CPE will establish it and will create the appropriate IKEv2SA and

ChildSA objects.

 When a tunnel no longer needs to be active, the CPE will delete the ChildSA and

IKEv2SA objects. This will affect the status of the Tunnel instance and

(Tunnel,Tunneled) IP Interface pair but will not delete them.

The remainder of this Appendix consists of a brief summary of the various IPsec data model

objects.

IX.1 IPsec

The top-level object has an Enable parameter that enables and disables the IPsec sub-system,

various capability parameters, e.g. supported encryption algorithms, and global IPsec statistics.

IX.2 IPsec.Filter

The Filter table models IPsec Security Policy Database (SPD) selection criteria. Refer to

Section 4.4.1/RFC 4301 [35] for further details.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 109 of 150

SPD filtering is performed for all packets that might need to cross the IPsec boundary. Refer to

Section 3.1/RFC4301 for further details. Given that IPsec operates at the IP level, this means that

SPD filtering conceptually occurs after bridging and before routing.

This table is conceptually quite similar to the QoS Classification table in that entries are ordered,

associated with an ingress interface, include selection criteria, and specify the action to be taken

for matching packets.

Instances of the Filter table can be created statically by the CPE, or can be created and deleted

by the ACS as needed. Each instance includes the following (this is not a complete list):

 Enable: to enable and disable the entry.

 Status: to indicate the status of the entry.

 Order: to control and indicate the order of the entry.

 Interface, AllInterfaces: to control and indicate with which interfaces the entry is

associated.

 DestIP: to select packets by destination IP address.

 SourceIP: to select packets by source IP address.

 Protocol: to select packets by IP protocol.

 DestPort: to select packets by destination port.

 SourcePort: to select packets by source port.

 Discard: whether to discard matching packets.

 Profile: the Profile instance that governs how non-discarded matching packets will be

treated.

IX.3 IPsec.Profile

The Profile table models IPsec Security Policy Database (SPD) processing info. Refer to

Section 4.4.1/RFC 4301 [35] for further details. Each Filter instance references a Profile

instance. It would be possible to include the processing info directly in each Filter instance, but

use of a separate table allows Profile entries to be shared between Filter instances.

Instances of the Profile table can be created statically by the CPE, or can be created and deleted

by the ACS as needed. Each instance includes the following (this is not a complete list):

 MaxChildSAs: the maximum number of Child SAs per IKEv2 session (and therefore per

IPsec tunnel); this provides a simple way of controlling the extent to which existing

tunnels can be re-used.

 RemoteEndpoints: an ordered list of remote tunnel endpoints that are to be used when

establishing an IPsec tunnel corresponding to this Profile instance.

 ForwardingPolicy: an opaque (ACS-chosen) value that provides a feed-forward

mechanism that allows the SPD filtering decision to affect the forwarding decision. QoS

classification uses the same mechanism.

 Protocol: the “child” security protocol, i.e. AH or ESP.

 IKEv2AuthenticationMethod: a reference to a CPE certificate or other CPE credentials.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 110 of 150

 IKEv2AllowedEncryptionAlgorithms (etc): encryption algorithm that IKEv2 is permitted

to negotiate; also several other “allowed” parameters that define acceptable IKEv2, AH

and ESP algorithms.

 DSCPMarkPolicy (etc): various settings that govern how packets should be tunneled.

IX.4 IPsec.Tunnel

The Tunnel table that models IPsec tunnels. Instances are created and deleted by the CPE as

needed. A (Tunnel,Tunneled) IP Interface pair8 is always created at the same time as an IPsec

Tunnel instance and has the same lifetime; the Tunnel IP Interface contains generic IP interface

settings, e.g. Enable, Status and generic Stats, and the IPSec Tunnel instance contains IPsec-

specific settings, e.g. additional Stats.

IX.5 IPsec.IKEv2SA

Each entry in the IKEv2SA table models a single IKEv2 SA pair and uniquely references a

Tunnel instance. Unlike Tunnel instances, which exist regardless of whether the tunnel is active,

IKEv2SA instances exist only when the IKEv2 SA pair exists, i.e. they exist only when the tunnel

is active.

IX.6 IPsec.IKEv2SA.ChildSA

The ChildSA table models child SA pairs. It is a child of the corresponding IKEv2SA instance

and so exists only when the IKEv2SA instance exists.

8 i.e. an IP Interface instance with Type = “Tunnel”, and another IP Interface instance with Type = “Tunneled”.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 111 of 150

Appendix X ETSI M2M Remote Entity Management

Theory of Operation

Figure 36 below depicts the high level ETSI M2M functional architecture defined in section 4 of

ETSI TS 102 690 [39]. The Data Models defined [41] are used within TR-069 enabled Devices

and Gateways within the Device and Gateway domain.

M2M Area
Network

M2M Applications

M2M
Management

Functions M2M Service Capabilities

Core Network (CN)

Network
Management

Functions

 Access Network

Network Domain

M2M

Applications

 M2MService

Capabilities

M2M Gateway

M2M Area

Network

M2M
Device

M2M

Applications

 M2M Service
Capabilities

 M2M Device

Device and Gateway

Domain

Figure 36 – ETSI High Level Functional Architecture

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 112 of 150

Within the Device and Gateway Domain, the M2M Device and Gateway contains 2 functional

components as defined in the ETSI M2M Functional Architecture [39]:

 M2M Service Capabilities: M2M functions that are to be shared by different M2M

Applications.

 M2M Applications: Applications that run the service logic and use M2M Service

Capabilities.

Interactions between components within the ETSI architecture are defined using reference

points. Figure 37 below illustrates the Service Capability Layer (SCL) mId reference point that is

of interest. A full explanation of the SCL reference points is provided in section 5 of the ETSI

M2M Functional Architecture [39].

M2M Device/M2M Gateway

M2M Service Capabilities Layer

M2M Applications

mIa

Communication modules

M2M Applications

dIa

M2M

 Service

Capabilities

Layer

Core Network B
Core Network A

Core Network Connection

mId

Figure 37 – M2M SCL Functional Architecture Framework

The M2M Device or Gateway SCL provides capabilities (functionality) for the following areas:

 Application Enablement (xAE)

 Generic Communication (xGC)

 Reachability, Addressing and Repository (xRAR)

 Communication Selection (xCS)

 Remote Entity Management (xREM)

 SECurity (xSEC)

 History and Data Retention (xHDR)

 Transaction Management (xTM)

 Compensation Broker (xCB)

 Telco Operator Exposure (xTOE)

 Interworking Proxy (xIP)

NOTE - The « x » designates a capability is used in the context of the Device (D) or Gateway

(G).

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 113 of 150

The Data Model in [40] reflects the device management objects and parameters necessary to

implement xREM functionality across the mId reference point as defined in Annex E of the ETSI

Functional Architecture [39] is depicted in Figure 38. In this instance, the Device Mgmt Client is

considered a CWMP endpoint interface and the Device Mgmt Server is considered the ACS

interface. In most situations, these endpoints and servers have an interface between the native

Device, Gateway or Server environment and the SCL. In addition, the dIa reference point, using

RESTful procedures, is used to discover M2M D’ Devices and M2M Applications as well as

proxy selected xREM management functions.

Figure 38 – M2M REM Service Capability

NOTE - The mId reference point in this scenario would support CWMP for the exchange of

“mgmtObjs” using the xREM procedures between SCLs while continuing to support the ETSI

RESTful procedures (e.g., container management) for the exchange of other resources across the

mId reference point.

Within the ESTI M2M Functional Architecture, the xREM is responsible for the following

management functions:

 General Management: Provides retrieval of information related to the M2M Device or

Gateway that hosts the ETSI M2M Service Capability Layer (SCL).

 Configuration Management: Provides configuration of the M2M Device or Gateway’s

capabilities in order to support ETSI M2M Services and Applications.

 Diagnostics and Monitoring Management: Provides diagnostic tests and

retrieves/receives alerts associated with the M2M Device or Gateway that hosts the SCL.

 Software Management: Maintains software associated with the SCL and M2M services.

 Firmware Management: Maintain firmware associated with the M2M Device or Gateway

that hosts the SCL.

 Area Network Management: Maintains devices on the M2M Area Network associated

with the SCL.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 114 of 150

 SCL Administration: Provides administration capabilities in order to configure and

maintain a SCL within the M2M Device or Gateway.

Within the customer premises, equipment is categorized within the ETSI M2M framework as a:

 M2M Gateway: A Gateway that runs M2M Application(s) using M2M Service

Capabilities.

 M2M Device: A Device that runs applications using M2M capabilities and network

domain functions. Depending on M2M capabilities of the M2M Device, the M2M Device

is defined as a:

o Device (D): provides M2M Service Capabilities (DSCL) that communicates to an

NSCL using the mId reference point and to DA using the dIa reference point

o Device' (D'): hosts a Device Application (DA) that communicates to a GSCL

using the dIa reference point. D' does not implement ETSI M2M Service

Capabilities

 Non-ETSI M2M complaint device (d): A device that connects to a SCL through the

SCL’s Interworking Proxy capability.

Figure 39 - ETSI M2M Devices and Gateways

X.1 ETSI M2M Area Networks

In the ETSI framework D’ and d Devices that connect to a SCL within a M2M Device or

Gateway are said to be “attached devices” and are organized by M2M Area Networks within the

SCL. The mechanism that a M2M Gateway uses to identify M2M Area Networks and their

associated devices is implementation specific.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 115 of 150

X.2 TR-069 Device Model and Functionality for ETSI M2M REM

Annex B of the ETSI M2M Functional Architecture [39] provides a cross reference between the

xREM management functions and the object instances and RPCs required to implement the

management functionality. The following is a summary of the objects, services, components,

RPCs and optional TR-069 functionality required by the ETSI M2M xREM solution.

The ETSI M2M xREM solution in Annex E of the ETSI M2M Managed Objects [40] defines a

cross reference of the following ETSI resources to existing TR-069 Data Models. These ETSI

resources are:

 etsiDeviceInfo

 etsiDeviceCapability

 etsiMemory

 etsiTrapEvent

 etsiPerformanceLog

 etsiFirmware

 etsiSoftware

 etsiReboot

The implementation of these resources the use of the following objects from the data model:

 DeviceInfo.

 WiFi.

 SmartCardReaders.

 USB.

 HomePlug.

 MoCa.

 UPA.

 UPnP.

 Hosts.

 SoftwareModules.

 FaultMgmt. (Use for etsiTrapEvent)

 SelfTestDiagnostics.

 DeviceInfo.VendorLogFile. (Use for etsiPerformanceLog)

 ManagementServer.EmbeddedDevice.

 ManagementServer.VirtualDevice.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 116 of 150

X.2.1 TR-069 Device Model and Functionality for ETSI M2M REM

In addition to the mandatory RPCs defined in TR-069 [2], the ETSI M2M xREM solution

requires that a M2M Device or Gateway implement the following optional RPCs according to

Section 9.2.1.11 of [39]:

 Upload method

 ScheduleDownload method

 ScheduleInform method

 ChangeDUState method

 FactoryReset method

X.3 TR-069 Device Model and Functionality for ETSI M2M REM

In addition to reusing objects and parameters, the ETSI M2M xREM solution defines extensions

to the resource model for the following ETSI resources by defining extensions to the data model

for the following ETSI resources:

 etsiSclMo

 etsiAreaNwkInfo

 etsiAreaNwkDeviceInfo

These resources provide administration of the SCL in order for the SCL in the Device or

Gateway to communicate with SCLs in the network. In addition, these resources provide

administration of the SCL for M2M Devices within the local M2M area network attached to a

Device or Gateway in order to communicate with associated network SCLs.

The ETSI M2M Services Device model defines the ETSIM2M service in support of the xREM

functionality.

X.3.1 M2M Service SCL Execution Environment

CPEs that provide software execution capabilities have the option to implement the Gateway

Service Capabilities Layer and Gateway Applications as software modules. When a SCL is

implemented as a software module, each instance of the GSCL and GA would be represented as

individual Deployment Units with the associated software and configuration files. For the GSCL

the vendor configuration file could contain configuration elements (e.g., M2M Node Id, NSCL

List) that would be returned from or necessary to perform the M2M Service Bootstrap and

Service Connection Procedures.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 117 of 150

X.3.2 ETSIM2M Object

The ETSIM2M objects provide administration of the SCL instantiated within a Device or

Gateway.

The primary administration functions of the service are to:

 Maintain the set of Network SCLs (NSCL) that the M2M Device or Gateway SCL is

registered.

 Maintain the set of NSCLs to which the M2M Device or Gateway will “announce” local

resources.

 Maintain a list of Store and Forward (SAF) policies associated with the access network

provider for message handling between M2M Devices in the area network and the NSCL.

 Maintain a list of Store and Forward (SAF) policies associated with the access network

provider for message handling between the gateway and the NSCL.

 Maintain a list of Store and Forward (SAF) policies associated with the M2M service

provider for message handling between M2M Devices in the area network and the NSCL.

 Maintain a list of Store and Forward (SAF) policies associated with the M2M service

provider for message handling between the gateway and the NSCL.

 Discovery and Maintenance of M2M Area Networks.

 Discovery and Maintenance of M2M Devices.

NOTE - As a SCL instance within a M2M Device or Gateway is associated with one M2M

service provider, the M2M Device or Gateway is capable of maintaining multiple SCL instances.

X.3.2.1 M2M Service Bootstrap and Service Connection Procedures

In the ETSI M2M system, the M2M (Device or Gateway) Node must establish the capability to

connect with a M2M Network Node before the SCLs are permitted to be registered using M2M

Service Bootstrap and Service Connection procedures.

The M2M Service Bootstrap and Service Connection procedures are defined in section 8.2 of the

ETSI M2M Functional Architecture [39] and describe how some of the credentials are shared

and obtained in order to establish a connections (e.g, HTTP TLS-PSK) during the exchange of

RESTFul information over the mId reference point.

X.3.2.2 Rules for Instantiating a SCL Instance

A M2M Node is not modeled as a device management entity but is considered a logical

representation of the M2M components in the M2M Device, M2M Gateway or the M2M Core.

Such components include:

 One instance of a SCL

 An optional M2M Service Bootstrap procedure

 A M2M Service Connection procedure

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 118 of 150

A M2M Node is identified by a globally unique identifier, the M2M-Node-ID.

In addition to the logical representation of a M2M Node, the following are constraints of a M2M

Node that reflect on why a M2M Device or Gateway would instantiate multiple SCL instances:

 A M2M Node is owned by one M2M Service Provider.

 A M2M Node is instantiated upon M2M Bootstrap procedure or pre-provisioning the

M2M Device or Gateway with a M2M Service Provider.

 Multiple M2M Nodes MAY be instantiated on the same M2M Device or Gateway by

performing multiple M2M Bootstrap procedures either with the same M2M Service

Provider or with different M2M Service Providers.

X.3.2.3 SCL Addressing

When a SCL is instantiated the SCL is provided a SCL-ID using the M2M Service Bootstrap

procedure or through an out-of-band mechanism. Table 7.1 of the ETSI M2M Functional

Architecture [39] describes the characteristics of the SCL-ID.

When a M2M Device or Gateway SCL registers with a NSCL, the NSCL maintains the

following information in its resource tree for the SCL that allows the NSCL to identify and

contact the M2M Device or Gateway SCL:

 SCL-ID that globally unique and MAY be the same as the M2M-Node-ID.

 M2MPoCs contactInfo of the M2M Device or Gateway SCL – This MAY be the FQDN,

IP Address and port information or it MAY be other information that the M2M Service

Provider can use to ask the network access provider for an IP Address.

X.3.2.4 SCL Registration

In order to communicate requests between the M2M Device or Gateway SCL and the NSCL, the

M2M Device or Gateway SCL registers with the NSCL. Section 9.3.2.6.2 of the ETSI M2M

Functional Architecture [39] describes the registration process including how attributes such as

the SCLID, search strings and expiration times are provisioned. In order for a M2M Device or

Gateway SCL to register with the NSCL, the M2M Device or Gateway SCL must be provisioned

with a list of potential NSCLs that the M2M Device or Gateway SCL is registered. In addition to

the list of NSCLs, the M2M Device or Gateway SCL also has parameters to manage when a

M2M Device or Gateway SCL re-registers with the NSCL. The M2M Device or Gateway SCL

also has the capability to be requested to re-register with the NSCL through its TR-069 interface.

X.3.2.5 Discovery of M2M Devices through the SCL

Using the control plane, the M2M Device or Gateway SCL provides the capability to return a list

of resources that the M2M Device or Gateway has discovered. Filtering MUST be performed on

a subset of the offered resources' attributes using a query string. A match, that MAY include

ranges, is performed on the query string, and a successful response is returned with a URI(s) list

for resources that contains the matching attributes. Section 9.3.2.27 of the ETSI M2M Functional

Architecture [39] describes this procedure. The M2M Device or Gateway MAY be provisioned

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 119 of 150

through the TR-069 interface to either limit the number of URIs discovered by the device or

define the maximum size allowed for a discovery result.

X.3.2.6 De/Announcing M2M Devices through the SCL

One capability of the M2M Device or Gateway SCL control plane is to announce or de-announce

M2M resources (e.g., access rights, applications) to NSCL(s) to which the M2M Device or

Gateway SCL has registered if the SCL is contained within the “AnnounceToSCLList”. Section

9.3.2.28 of the ETSI M2M Functional Architecture [39] describes this procedure. The

“AnnouncedToSCLList” is maintained through the TR-069 interface.

X.3.2.7 SCL Store and Forward Policies

The M2M Device or Gateway SCL is responsible for handling requests from an attached M2M

Device or itself and the NSCL. The handling of the requests is based on criteria within the

request (e.g., Request category [RCAT], Tolerable Request Processing Delay [TRPDT]) as well

as conditions within the M2M Device or Gateway SCL (e.g., pending requests, access network

availability).

There are two types of SCL store and forward (SAF) policies:

 Access Network Provider SAF Policies

 Service Provider SAF Policies

The SAF policies are organized into instances of Policy sets. The selection of which Policy sets

are used by the M2M Device or Gateway SCL is determined by the PolicyScope attribute of the

Policy set.

Section 9.3.1.5 of the ETSI M2M Functional Architecture [39] describes this procedure. These

policies are maintained through the TR-069 interface.

X.3.2.7.1 Access Network Provider SAF Policies

Access Network Provider SAF policies are used by M2M Device or Gateway SCLs to determine

if an Access Network is to be used when forwarding requests from the M2M Device or Gateway

SCL to the NSCL. The determination of which Access network to use is based on:

 Schedule of RCAT values versus time: The M2M Device or Gateway SCL is provisioned

with information from the NSCL for the access network provider regarding when it is

appropriate to forward requests of a given RCAT value.

 Blocking of access attempts after failure to establish connectivity: The M2M Device or

Gateway SCL is provisioned with information from the NSCL for the access network

provider regarding the period of time over which attempts to establish connectivity over

its access network are not appropriate after the previous attempt to establish connectivity

over the corresponding access network has failed. The period of time to block attempts to

establish connectivity can be a function of the number of consecutive previous attempts

to establish connectivity over this access network.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 120 of 150

NOTE - An Access Network Provider SAF is identified from the Access Network Provider name

parameter.

X.3.2.7.2 M2M Service Provider SAF Policies

M2M Service Provider Store and Forward (SAF) policies are used by M2M Device or Gateway

SCLs to determine to forward a request to NSCL. The determination if the request is forwarded

is based on the:

 Wait time as function of number of pending requests: The M2M Device or Gateway SCL

is provisioned with information from the NSCL for the service provider regarding how

many pending requests of a given range of RCAT values are sufficient to forward the

aggregated request to the NSCL. The ranges of RCAT values for different policies cannot

overlap.

 Wait time as function of amount of pending request data: The M2M Device or Gateway

SCL is provisioned with information from the NSCL for the service provider regarding a

threshold of consumed storage (memory) in the M2M Device or Gateway SCL that is

needed to buffer data for pending requests of a given range of RCAT values. The ranges

of RCAT values for different policies cannot overlap.

 Selection among appropriate access networks: The M2M Device or Gateway SCL is

provisioned with information from the NSCL for the service provider regarding how to

select an access network for making an attempt to establish connectivity from an ordered

list of possible access networks for a given range of RCAT values. The ranges of RCAT

values for different policies cannot overlap.

 Default values for TRPDT and RCAT: The M2M Device or Gateway SCL is provisioned

with information from the NSCL for the service provider regarding the TRPDT and

RCAT values to use if they are not provided by the request issuer.

X.3.2.8 Area Network Discovery and Maintenance

The M2M Device or Gateway SCL discovers properties of instances of M2M Area Networks as

well as the Devices (D’, d) associated with a M2M Area Network. A M2M Area Network is a

logical entity in that an instance of an Area Network can span one or more physical interfaces of

the M2M Device or Gateway. In addition, a M2M Gateway can provide connectivity to more

than one instance of the same type of M2M Area Network. Examples of M2M Area Networks

include: Personal Area Network technologies such as IEEE 802.15.x, Zigbee, Bluetooth, IETF

ROLL, ISA100.11a or local networks such as PLC, M-BUS, Wireless M-BUS and KNX.

A M2M Area Network is maintained as instances of an AreaNwkInstance. Each

AreaNwkInstance maintains opaque properties of the Area Network using Property instances of

name/value pairs. In addition, the AreaNwkInstance also maintains a list of references to

instances of AreaNwkDeviceInfoInstance table that are associated with the Area Network.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 121 of 150

X.3.2.9 M2M Device Discovery and Maintenance

The M2M Device or Gateway maintains a list of discovered M2M Devices (D’, d) that are

attached to the SCL. A discovered M2M Device that is associated with more than one

AreaNwkInstance is represented as multiple instances of AreaNwkDeviceInfoInstance objects.

Figure 40 - Example M2M Network

In Figure 40, an M2M Gateway has two (2) SCL instances that manage three (3) M2M Devices.

Each M2M Device is represented in the Root Data Model’s Hosts.Host table. The M2M Devices

are represented by the AreaNwkDeviceInfoInstance object that was discovered within a context

of an AreaNwkInstance of a SCL. As a M2M Device is capable of being discovered through

multiple M2M Area Networks, different instances of the AreaNwkDeviceInfoInstance could

reference the same or different Host table entry.

Each AreaNwkDeviceInfoInstance maintains a reference to an AreaNwkInstance object as well

as properties specific to the device and area network association (e.g., SleepInterval). In addition,

each AreaNwkDeviceInfoInstance maintains opaque properties of the device using Property

instances of name/value pairs.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 122 of 150

X.3.2.9.1 M2M Device Discovery and Maintenance

M2M Devices are able to be managed through the TR-069 Embedded Object and Virtual Device

Proxy management capabilities. In these scenarios the AreaNwkDeviceInfoInstances are known

as Discovered Devices.

In the scenario where a M2M Device (D’, d) is discovered as part of an Embedded or Virtual

Device, the AreaNwkDeviceInfoInstance is maintained as an item in the

DiscoveryProtocolReference parameter of the Embedded or Virtual Device using one or more of

the protocols listed in the DiscoveryProtocol parameter. Figure 41 describes the scenario where

the M2M Devices are discovered using the ETSI-M2M protocols.

Figure 41 - M2M Device Discovery for Proxy Management

X.3.2.10 SCL Configuration

The ETSI M2M Data Model includes the capability to provision the SCL with objects and

parameters necessary for the SCL to host resources and transfer messages between M2M

Devices and Gateway Applications and the NSCL. This section describes the minimal

configuration necessary for an SCL to:

 Host resources

 Transfer messages

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 123 of 150

Figure 42 – ETSI M2M Data Model Structure

Figure 42 depicts the objects within an ETSI SCL instance.

For deployments where the SCL will only host resources, the following resources must be

provisioned:

SCL.{1}.

Enable = true

However for deployments where the SCL will transfer messages between M2M Applications and

the NSCL, each SCL must have:

 An enabled SCL

 An enabled default SAFPolicySet

 At least 1 enabled ANPPolicy with an enabled Schedule for each of the enabled

RequestCategory. There is one enabled RequestCategory instance for each possible

RCAT value (e.g., 8 possible values in ETSI release 1.0)

 Within the M2MSPPolicy, there is one enabled RequestCategory instance for each

possible RCAT value (e.g., 8 possible values in ETSI release 1.0)

As such the following resources must be provisioned:

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 124 of 150

SCL.{1}.

Enable = true

SCL.{1}.SAFPolicySet.{1}.

 Enable = true

 PolicyScope= default

SCL.{1}.SAFPolicySet.{1}.ANPPolicy.{1}.

 Enable = true

 ANName = AccessNetworkProviderName

SCL.{1}.SAFPolicySet.{1}.ANPPolicy.{1}.RequestCategory.{1}.

 Enable = true

 RCAT = RCAT1

SCL.{1}.SAFPolicySet.{1}.ANPPolicy.{1}.RequestCategory.{1}.Schedule.{1}.

 Enable = true

 Schedules = * * * * *

.

.

SCL.{1}.SAFPolicySet.{1}.ANPPolicy.{1}.RequestCategory.{7}.

 Enable = true

 RCAT = RCAT7

SCL.{1}.SAFPolicySet.{1}.ANPPolicy.{1}.RequestCategory.{7}.Schedule.{1}.

 Enable = true

 Schedules = * * * * *

SCL.{1}.SAFPolicySet.{1}.M2MSPPolicy.RequestCategory.{1}.

 Enable = true

 RCAT = RCAT7

 RankedANList = AccessNetworkProviderName

.

.

SCL.{1}.SAFPolicySet.{1}.M2MSPPolicy.RequestCategory.{7}.

 Enable = true

 RCAT = RCAT7

 RankedANList = AccessNetworkProviderName

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 125 of 150

Appendix XI Provider Bridge Theory of Operation

A Provider Bridge is defined in 802.1Q-2011 [9] as either a Provider Edge Bridge (PEP) or an S-

VLAN Bridge. A PEP provides the capability to stack VLAN tags with the inner tag being the C-

TAG and the outer tag being the S-TAG. An S-VLAN Bridge provides a mechanism to process

a S-TAG but does not utilize the mechanism to stack C-VLAN tags. The Provider Bridge model

supports both of these types of Provider Bridges through the use of the ProviderBridge and

VLANTermination objects.

Regarding different traffic bridging rules for Provider Bridges, the possible cases are

characterized as follows:

 Provider Edge Bridge as a pure VLAN Bridge

 Stacked VLAN termination in a routed environment

 Internally generated to tagged WAN traffic as a S-VLAN Termination

These scenarios are portrayed in Figure 43, where:

 Residential Domain traffic is treated as a Stacked VLAN termination in a routed

environment

 Public Domain and Roaming Domain traffic is treated as a Provider Edge Bridge in a

pure VLAN Bridge environment

 Internally generated Device traffic is treated as a S-VLAN termination in a routed

environment

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 126 of 150

Ethernet

SSIDb SSIDc

Wi-Fi

Interface

Residential Domain Public Domain Roaming Domain

SSIDa

DSL

Device

Untagged

Provider Edge Bridge

S-VLANy

C-VLANa

Provider Edge Bridge

S-VLANz

C-VLANa

Customer Bridge

(Untagged)

VLAN

Termination

S-VLANx

C-VLANa

Router

VLAN

Termination

S-VLANu

Figure 43 – Provider Bridge Scenarios

In order to model the traffic scenarios in Figure 43, the use of the VLANTermination and

Bridging Objects are used.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 127 of 150

Provider Bridge: Edge

Bridge:802.1d

Port_SSIDaPort_Eth

Management

Port

Bridge: SVLAN

VLANx

Bridge: CVLAN

Public

VLANa

CE

Port_SSIDb

Pvid a

CN

Port_y_a

Pvid y

Bridge: CVLAN

Roaming

VLANa

CN

Port_z_a

Pvid z

PN

Port_y_z

Ethernet SSIDa SSIDb SSIDc

Device

Router

IP Intf

Bridge_a

IP Intf

Device

DSL_PTM_EthernetLink

VLAN(y,a) VLAN(z,a)

VLAN(y,a)
VLAN(z,a)

VLAN(a)VLAN(a)

CE

Port_SSIDc

Pvid a

CE – Customer Edge

CN – Customer Network

PN – Provider Network

IP Intf

Residential

VLANTermination: CVLAN

VLANa

VLAN(a)

VLANTermination: SVLAN

VLANx

VLAN(x,a)

Layer3

Forwardi

ng Rule

VLANTermination: SVLAN

VLANu

VLAN(u)

Figure 44 – Provider Bridge Components

XI.1 Residential Domain Scenario

In the Residential Domain scenario untagged traffic is routed from the Ethernet and SSIDa

interfaces and tagged with a customer VLAN tag (C-TAG) of VLANa and then double tagged

with a Service Provider VLAN tag (S-TAG) of VLANx. This requires the use of:

 802.1d Bridge instance: This object bridges the residential domain traffic to the Router.

 Layer3 Forwarding Rule: This object ensures that traffic between the Bridge and

VLANTermination objects is forwarded to the correct interface. The Rule utilizes the IP

Interfaces of the Bridge (IP Intf: Bridge_a) and Residential Domain (IP Intf: Residential)

 VLANTermination object (C-TAG): The C-TAG is applied and removed for traffic

egress and ingress to the IP Intf: Residential interface.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 128 of 150

 VLANTermination object (S-TAG): The S-TAG is applied and removed for traffic from

and to the C-VLAN termination object.

XI.2 Device Traffic Scenario

In the Device Traffic scenario untagged traffic is routed from the Device and tagged with a

Service Provider VLAN tag (S-TAG) of VLANu. This requires the use of:

 VLANTermination object (S-TAG): The S-TAG is applied and removed for traffic egress

and ingress to the IP Intf: Device interface.

XI.3 Public and Roaming Domain Scenarios

In the Public and Roaming Domain scenarios untagged traffic is bridged from the SSIDb and

SSIDc interfaces and tagged with a customer VLAN tag (C-TAG) of VLANa and then double

tagged with a Service Provider VLAN tag (S-TAG) of VLANy and VLANz respectively. This

requires the use of:

 ProviderBridge instance: This object contains and references the customer and service

provider bridge components.

 Bridge instance (Customer Public): This object bridges and tags (C-TAG) traffic in the

Public Domain to the service provider bridge component.

 Bridge instance (Customer Roaming): This object bridges and tags (C-TAG) traffic in the

Roaming Domain to the service provider bridge component.

 Bridge instance (Service Provider): This object add and removes a service provider tag

(S-TAG) for customer tagged traffic (C-VLAN) from the Pubic and Roaming Domains.

XI.4 Provisioning Provider Bridges

A Provider Bridge provides support for Provider Bridges and Provider Edge Bridges as defined

in 802.1Q-2011. The difference between a Provider Bridge and a Provider Edge Bridge is that a

Provider Edge Bridge incorporates a C-TAG and S-TAG while a Provider Bridge has a S-TAG.

The data model differentiates which type of provider using the Type parameter of the

ProviderBridge.{i} object.

When configuring the components of a Provider Bridge, the Bridge instance associated with the

SVLAN component will have its Device.Bridging.Bridge.{i}.Port.{i}. objects provisioned as

either ProviderNetworkPort or a CustomerNetworkPort. Likewise, the CVLAN component(s)

will have its Device.Bridging.Bridge.{i}.Port.{i}. objects provisioned as CustomerEdgePorts.

XI.4.1 Associating Customer Edge Ports with Customer Network Ports

Ports of type CustomerEdgePort are associated with ports of type CustomerNetworkPort by

assigning the ports of type CustomerNetworkPort and ports of type CustomerEdgePort to the

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 129 of 150

port membership (Bridging.Bridge.{i}.VLANPort.{i}.) of the S-VLAN for the Bridge instance

of the S-VLAN component.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 130 of 150

Appendix XII ZigBee Theory of Operation

This section explains how the ZigBee TR-069 data model can be used for the management of

ZigBee devices.

XII.1 CWMP management using the ZigBee data model

Figure 45 and Figure 46 present the principle and an example basic sequence for the

management of ZigBee devices using the TR-069 ZigBee data model. The ZigBee protocol is

specified in [42].

The ZigBee devices reside behind a CPE proxy and communicate with the ACS via this CPE

proxy. The CPE proxy normally resides in a device such as a broadband router, i.e., a home

gateway or an enterprise gateway, and it has a proxy function to translate CWMP messages to

ZDO (ZigBee Device Object) function invocations based on the ZigBee data model. The proxy

function translates the messages by using a mapping of ZigBee data model objects and CWMP

methods to ZDO functions and their parameters. A ZigBee management example using TR-069

is shown in Figure 45.

Figure 45 – Usage of the data model to manage ZigBee devices with TR-069

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 131 of 150

Figure 46 – Example sequence diagram of ZigBee management with TR-069

This example shows how the ACS gets the network address of a ZigBee device by using TR-069

communication based on the ZigBee data model. The ACS performs a “GetParameterValues”

CWMP method call containing the parameter “Device.ZigBee.ZDO.{i}.NetworkAddress” of the

ZigBee data model, which refers to the ZigBee network address. The proxy function in the CPE

proxy changes the received message to a ZDO message that calls some ZDO function on the

ZigBee Coordinator. The ZigBee Coordinator manages the ZigBee devices according to the

called ZDO function and sends the result (the searched network address, in this case) to the

proxy. The proxy function changes the ZDO management result to a CWMP message which is

denoted in Figure 46 as “GetParameterValuesResponse”. The parameter name inside the

parameter list is “Device.ZigBee.ZDO.{i}.NetworkAddress” and the corresponding value is

“0x0fE3” (network address instance).

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 132 of 150

XII.2 CWMP proxying mechanisms and the ZigBee data model

The following two issues related to the proxying of ZigBee devices with the standard TR-069

proxying mechanisms are out of scope of this document:

 Mapping of TR-069 methods plus data model objects/parameters to ZDO functions.

 Description of the exact approaches (and their differences) for proxying a ZigBee device

(i) as a Virtual Device or (ii) as an Embedded Device.

However, the following example explains how the main needs of the proxying mechanisms have

been taken into account and are covered by the designed data model.

Imagine, for example, a ZigBee coordinator that controls a network which contains, among

others, a ZigBee device that is used in a home automation system, i.e., implements the Home

Automation Application Profile (0104). Then, the instantiation of the data model for the CPE

contains, among others, the following two parameter values (note that “ZC” stands for ZigBee

coordinator):

Device.ZigBee.ZDO.1.NodeDescriptor.LogicalType = “ZC”

Device.ZigBee.ZDO.2.ApplicationEndpoint.1.ApplicationProfileId = “0104”

In order to reference and manage these devices with the EmbeddedDevice mechanism, the CPE

instance would simply also include, among others, the following entries:

Device.ManagementServer.EmbeddedDevice.1.Reference

 (pointing to) Device.DeviceInfo.TemperatureStatus.TemperatureSensor.2
Device.ManagementServer.EmbeddedDevice.1.ProtocolReference

 (pointing to) Device.ZigBee.ZDO.2.ApplicationEndpoint.1
Device.ManagementServer.EmbeddedDevice.2.DiscoveryReference

 (pointing to) Device.ZigBee.ZDO.1

For setting the temperature for TemperatureSensor.2, for example, the TR-069 proxy would send

a request through the ZigBee coordinator to the Application endpoint referenced by the

ProxyReference parameter on the EmbeddedDevice instance. As indicated by the value of

Device.ManagementServer.EmbeddedDevice.1.Reference in the above example, multiple

sensors integrated in the same ZigBee device (i.e., same ZDO instance) can be modeled as

different Embedded or Virtual devices while referring to the same ZDO object.

According to the ZigBee protocol, the discovery of ZigBee devices is the responsibility of the

ZigBee coordinator. Thus, a ZDO instance that has a LogicalType=“ZC” can be made a

DiscoveryReference of the various EmbeddedDevice and VirtualDevice instances.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 133 of 150

Appendix XIII Port Control Protocol Theory of Operation

The Port Control Protocol (PCP) allows an IPv6 or IPv4 host to control how incoming IPv6 or

IPv4 packets are translated and forwarded by a Network Address Translator (NAT) or simple

firewall (generically referred to as the “PCP-controlled device”), and also allows a host to

optimize its outgoing NAT keepalive messages.

When a PCP client is embedded in a device, the PCP client can be invoked by:

- Applications running on the device itself (remote access, VoIP…),

- The device GUI,

- The ACS,

- Interworking functions [44] and the PCP proxy that allow applications running on other

end-devices connected to the device to manage the PCP-controlled device.

Figure 47 – Example of a PCP Client embedded in the RG

RG

Internal app.

CWMP client

PCP

Client

GUI

ACS

PCP-Controlled CGN

PCP

C
W

M
P

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 134 of 150

Figure 48 – Example of a PCP Client embedded in a device, with PCP Proxy in the RG

Defining a PCP data model allows the ACS to remotely manage the PCP client including:

- Configuration and monitoring of the PCP client itself,

- Configuration and monitoring of the PCP servers interacting with the client,

- Monitoring PCP Interworking Functions,

- Monitoring and setting rules in the PCP-controlled device from the PCP client.

Whereas the description of objects themselves is enough to understand how to proceed, some

operations need further explanation about the way to manage the objects.

This theory of operation relies on IETF RFCs and drafts:

- RFC 6887 Port Control Protocol (PCP) [43],

- RFC 6970 UPnP IGD-PCP Interworking Function [44],

- DHCP Options for the Port Control Protocol (PCP) [45],

- Port Control Protocol (PCP) Proxy Function [46] ,

- PCP Server Selection [47],

- PCP Flow Examples [48].

The data model allows for more than one PCP client, but those clients operate independently.

Therefore, the text below considers only one PCP client.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 135 of 150

XIII.1 Configuration and monitoring of the PCP Server

Prior to sending its first PCP message, the PCP client determines which server to use as

described in [47]. To do so the PCP client of the CPE can be configured statically (GUI or

CWMP) or via DHCP (v4 or v6).

- When configured via DHCP, the CPE receives a list (at least one) of PCP server

addresses in one or more OPTION_V4_PCP_SERVER or OPTION_V6_PCP_SERVER

DHCP options. Based on the content of these DHCP options, the CPE creates one or

more instances of PCP.Client.{i}.Server (see [45]). The list of addresses provided for

each PCP server is stored in the ServerNameOrAddress and AdditionalServerAddresses

parameters and the Origin parameter is set to either “DHCPv4” or “DHCPv6”.

- When statically configured, one instance of PCP.Client.{i}.Server is created per server,

with the Origin parameter set to “Static”. The server is defined by either an FQDN or an

IP address in ServerNameOrAddress.

Based on these server definitions, the PCP client follows the procedures specified in [47] to

determine the IP Address to be used for each configured PCP server.

- While the PCP client is trying to connect to a PCP server on a given IP address, the

PCP.Client.{i}.Server object’s ServerAddressInUse holds that IP address and its Status is

“Connecting”.

- When the PCP client has successfully received a response from a server, Status becomes

“Enabled” and server-discovered properties (CurrentVersion, Capabilities…) are stored

in the corresponding parameters.

- If the PCP client fails to connect to a given PCP server, ServerAddressInUse remains the

last IP address tried and Status reflects the appropriate error condition.

No conflict or doubt can arise between DHCP and static configurations, because they are

represented in separate PCP.Client.{i}.Server instances, with Origin to record the origin of the

configuration. ServerNameOrAddress is writable by the ACS only if Origin is “Static”.

XIII.2 Monitoring and setting rules set by the PCP client

Once a PCP server has been successfully contacted, the PCP client is ready to set rules in the

corresponding PCP-controlled device. Depending on the use case, the PCP client selects the

appropriate PCP server based on its Capabilities, as described in Section 10 of [43]. It is possible

to define the following mappings:

Inbound Mapping without filters

An inbound mapping is defined by an instance of the PCP.Client.{i}.Server.{i}.InboundMapping

table. It is created by a PCP request with the MAP OpCode, as described in Section 11 of [43].

This is allowed only if PCP.Client.{i}.MAPEnable is “true”.

Inbound Mapping with filters

As above, but additional filters are defined by instances of the PCP.Client.{i}.Server.{i}.In-

boundMapping.{i}.Filter table. Filters are specified in the PCP request using the FILTER option,

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 136 of 150

as described in Section 13.3 of [43]. This is allowed only if PCP.Client.{i}.FILTEREnable is

“true”.

Outbound Mapping

An outbound mapping is defined by an instance of the PCP.Client.{i}.Server.{i}.Outbound-

Mapping table. It is created by a PCP request with the PEER OpCode, as described in Section 12

of [43]. This is allowed only if PCP.Client.{i}.PEEREnable is “true”.

It is possible to define a mapping on behalf of another device. The PCP request uses the

THIRD_PARTY option to create the mapping, as described in Section 13.1 of [43]. This is

allowed only if PCP.Client.{i}.THIRDPARTYStatus is “Enabled”.

These operations can be requested by the device itself (embedded applications, GUI, CWMP…)

or by another device through the UPnP IGD interworking function [44] (if PCP.Client.{i}.UPnP-

IWF.Status is “Enabled”) or the PCP Proxy [46] (if PCP.Client.{i}.PCPProxy.Status is

“Enabled”).

[48] provides a set of examples to illustrate PCP operations. These operations can be monitored

by getting PCP.Client.{i}.Server.{i}.InboundMapping and PCP.Client.{i}.Server.{i}.Outbound-

Mapping objects. The parameters sent by the PCP client in MAP or PEER requests are

represented in corresponding parameters (Lifetime, SuggestedExternalIPAddress, Suggested-

ExternalPort, SuggestedExternalPortEndRange, ProtocolNumber, InternalPort…) of

PCP.Client.Server.{i}.InboundMapping and PCP.Client.Server.{i}.OutboundMapping. The

Origin parameter denotes which mechanism triggered the request:

- “Internal” for an embedded application,

- “Static” for a request issued from the GUI or set using CWMP (see next paragraph),

- “UPnP_IWF” for a UPnP IGD device,

- “PCP_Proxy” for a PCP device.

The parameters received when the PCP-controlled device has processed the request are

represented in corresponding parameters (Lifetime, AssignedExternalIPAddress,

AssignedExternalPort, AssignedExternalPortEndRange…) of PCP.Client.{i}.Server.{i}.In-

boundMapping and PCP.Client.{i}.Server.{i}.OutboundMapping.

To remotely create rules using CWMP, the ACS configures the request to be sent by the PCP

Client. To do so the ACS creates the necessary objects and sets, depending on the operation, the

Lifetime, SuggestedExternalIPAddress, SuggestedExternalPort, SuggestedExternalPortEnd-

Range, ProtocolNumber, InternalPort parameters of PCP.Client.{i}.Server.{i}.InboundMapping

or of PCP.Client.{i}.Server.{i}.OutboundMapping. To monitor the result, the ACS will get

PCP.Client.{i}.Server.{i}.InboundMapping and PCP.Client.{i}.Server.{i}.OutboundMapping

objects to retrieve the parameters received from the PCP-controlled device.

XIII.3 Rapid recovery

A recovery mechanism for situations where the PCP server loses its state is described in Section

14 of [43]. This is usable only if PCP.Client.{i}.ANNOUNCEEnable is “true”.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 137 of 150

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 138 of 150

Appendix XIV GRE Tunnel Theory of Operation

See Annex B for general information on how tunneling is modeled.

RFC 2784 [50] defines a generic mechanism to encapsulate a packet of protocol A (known as the

payload protocol) in a GRE packet. The resulting GRE packet is then encapsulated into a

protocol B (known as the delivery protocol). The result of this operation is a payload packet that

is encapsulated in a GRE tunnel delivered via protocol B. RFC 2890 [51] extends the GRE

header with two optional fields. The Key field provides an identifier to identify flows within the

GRE tunnel. The Sequence Number field is used to maintain the sequence of packets within the

GRE tunnel.

Device:2 models a GRE tunnel using the GRE.Tunnel object. Multiple GRE flows to the same

remote endpoint are possible by defining multiple GRE.Tunnel.{i}.Interface instances within the

same GRE.Tunnel instance.

This Appendix describes the usage of GRE for two scenarios: L2 payload over GRE and L3

payload over GRE.

XIV.1 L2 Payload over GRE

For this example consider a Provider Edge Bridge that discriminates 2 separate VLANs as shown

in Figure 49. In this case the service provider does not support a VLAN infrastructure at the

access node, but does at the core network.

A GRE tunnel is used to preserve the VLAN tagging at the edge to further interconnect the other

VLAN segments. In this scenario, as the remote endpoint is the same in both cases, the VLANs

are modeled as two flows within a single instance of the GRE.Tunnel.{i} object.

In addition, the DSCPMarkPolicy parameter can be used to assign DSCP values to each GRE.-

Tunnel.{i}.Interface instance for QoS treatment in the access network and towards the GRE

concentrator.

GRE Tunnel 1

GRE Tunnel

Interface 1 DSCP 1

(vlan1)

GRE Tunnel

Interface 2 DSCP 2

(vlan2)

Ethernet Interface 2

(vlan1)

TR-069 CPE

Ethernet Interface 3

(vlan2)

Access network

Headend

Figure 49 – VLAN Traffic over GRE

The GRE Tunnel interface layout is shown in Figure 50.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 139 of 150

Figure 50 – L2 over GRE Tunnel

The configuration for this scenario assumes that the WAN Ethernet interface, Ethernet Link and

IP interface objects have been previously configured; likewise the LAN Ethernet and Bridging

objects have been previously configured. This section focuses on the association and

configuration of the GRE tunnel with the WAN IP interface and the Bridge Ports.

The example configuration uses the RFC 2890 [51] Key field to determine the GRE tunnel

interface to which the GRE tunnel will forward packets.

GRE Tunnel

Device.GRE.Tunnel.1.Enable = True

Device.GRE.Tunnel.1.RemoteEndPoints = GRE-IPAddress

Device.GRE.Tunnel.1.DeliveryHeaderProtocol = IPv4

GRE Tunnel Interface 1

Device.GRE.Tunnel.1.Interface.1

Device.GRE.Tunnel.1.Interface.1.Enable = True

Device.GRE.Tunnel.1.Interface.1.KeyIdentifierGenerationPolicy = Provisioned

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 140 of 150

Device.GRE.Tunnel.1.Interface.1.KeyIdentifier = 1

GRE Tunnel Interface 2

Device.GRE.Tunnel.1.Interface.2

Device.GRE.Tunnel.1.Interface.2.Enable = True

Device.GRE.Tunnel.1.Interface.2.KeyIdentifierGenerationPolicy = Provisioned

Device.GRE.Tunnel.1.Interface.2.KeyIdentifier = 2

Associate Bridge Ports with GRE Tunnel Interfaces

Device.Bridging.Bridge.1.Port.1.LowerLayers = Device.GRE.Tunnel.1.Interface.1

Device.Bridging.Bridge.1.Port.2.LowerLayers = Device.GRE.Tunnel.1.Interface.2

Assign the DSCP value to each GRE Tunnel Interface using the GRE.Filter

Device.GRE.Filter.1

Device.GRE.Filter.1.Enable = True

Device.GRE.Filter.1.Order = 1

Device.GRE.Filter.1.Interface = Device.GRE.Tunnel.1.Interface.1

Device.GRE.Filter.1.DSCPMarkPolicy = DSCP1

Device.GRE.Filter.2

Device.GRE.Filter.2.Enable = True

Device.GRE.Filter.2.Order = 2

Device.GRE.Filter.2.Interface = Device.GRE.Tunnel.1.Interface.2

Device.GRE.Filter.2.DSCPMarkPolicy = DSCP2

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 141 of 150

XIV.2 L3 Payload over GRE

This example describes an IP in IP encapsulation where a GRE tunnel takes IPv4 payload and

encapsulates over IPv6.

Figure 51 shows the scenario where an IPv4 LAN network is tunneled in an IPv6 GRE tunnel

that uses IPv6 global addresses.

The GRE tunnels use the default IPv6 WAN interface of the CPE.

Access network

Headend

GRE Tunnel 1

IPv6 delivery packets

IPv4 payload packets

Ethernet Interface 2

(IPv4)

TR-069 CPE

Figure 51 – IP over IP GRE Encapsulation

Figure 52 shows the configuration of a GRE tunnel for an IPv4 Private network attached to a LAN

interface that is encapsulated in the IPv6 packet.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 142 of 150

Figure 52 – L3 over GRE Tunnel

The configuration for this scenario assumes that the WAN and LAN Ethernet interface, Ethernet

Link and IP interface objects have been previously configured. This section focuses on the

association and configuration of the GRE tunnel with the WAN and Tunnel IP interfaces.

GRE Tunnel

Device.GRE.Tunnel.1.Enable = True

Device.GRE.Tunnel.1.RemoteEndPoints = GRE-IPAddress

Device.GRE.Tunnel.1.DeliveryHeaderProtocol = IPv6

GRE Tunnel Interface 1

Device.GRE.Tunnel.1.Interface.1

Device.GRE.Tunnel.1.Interface.1.Enable = True

Associate Tunnel IPv4 Interface with GRE Tunnel Interface

Device.IP.Interface.3.LowerLayers = Device.GRE.Tunnel.1.Interface.1

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 143 of 150

Appendix XV MAP Theory of Operation

See Annex B for general information on how tunneling is modeled.

MAP (Mapping of Address and Port) is a mechanism for transporting IPv4 packets across an

IPv6 network, and a generic mechanism for mapping between IPv6 addresses and IPv4 addresses

and ports. There are two mutually exclusive MAP transport modes, both of which use NAPT44

(modified to use a restricted port range):

 MAP-E (Encapsulation) [52] uses an IPv4-in-IPv6 tunnel.

 MAP-T (Translation) [54] uses stateless NAT64.

Many aspects of the MAP configuration are the same for both MAP-E and MAP-T. [53] defines

DHCPv6 options for configuring MAP parameters, and the Device:2 data model parameters

correspond closely to these parameters.

XV.1 MAP Configuration Parameters

The MAP-T architecture is illustrated in Figure 53. The MAP-E architecture diagram looks very

similar, but differs as follows:

 The CPE’s MAP function involves 6-4 encapsulation rather than 6-4 translation.

 The CPE uses a Border Router (BR) IPv6 address rather than a prefix.

 Non MAP-aware servers (i.e. native IPv6 servers) can’t be reached by IPv4 devices

behind the CPE (i.e. can’t be part of the MAP domain).

Figure 53 – MAP-T Architecture

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 144 of 150

The Device:2 data model models each MAP domain as an instance of the corresponding

MAP.Domain table. The most important domain parameters are:

 TransportMode: “Encapsulation” (MAP-E) or “Translation” (MAP-T).

 WANInterface: the WAN IP interface through which all MAP traffic will flow.

 IPv6Prefix: end-user IPv6 prefix; one of this interface’s prefixes, typically assigned via

DHCPv6 Prefix Delegation.

 BRIPv6Prefix: the Border Router IPv6 prefix (MAP-T mode) or IPv6 address (MAP-E

mode).

 DSCPMarkPolicy: governs DSCP selection when encapsulating / translating.

 PSIDOffset etc: parameters defining Port-sets ([52] Section 5.1).

Each domain has a set of mapping rules ([52] Section 5) with each rule having the following

parameters:

 IPv6Prefix: the IPv6 prefix for this rule.

 IPv4Prefix: the IPv4 prefix for this rule.

 EABitsLength: the length of the EA (Embedded Address) bits for this rule.

 IsFMR: whether this rule is an FMR (Forwarding Mapping Rule).

The mapping rule with the longest match between its IPv6Prefix and the end-user IPv6 prefix is

the BMR (Basic Mapping Rule). This is used to determine the MAP IPv6 address, which is one

of Interface’s addresses and is used for all MAP traffic.

XV.2 Internal Treatment of IPv4 Packets

Since a device can have multiple upstream and multiple downstream interfaces, the model

supports a logical representation of the internal virtual MAP IPv4 interface according to the

general pattern described in Annex B. The IPv4Forwarding entries will route traffic between the

LAN IPv4 interface and the MAP IPv4 interface.

Figure 54 shows the flow of MAP traffic through the various interfaces. Noted in the figure are

sample values for the various IP.Interface entries that would be needed.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 145 of 150

Figure 54 – Sample MAP Routing and Forwarding

Figure 55 shows the corresponding MAP interface stack.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 146 of 150

Figure 55 – Sample MAP Routing and Forwarding (Interface Stack)

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 147 of 150

Appendix XVI G.fast Theory of Operation

G.fast (hereafter referred to as FAST) is a DSL communications technology defined by ITU-T

G.9700, G.9701, and G.997.2.

Devices that support both DSL and FAST (both interfaces’ objects are administratively Enabled)

have the capability to switch from one mode to another. If the device is connected in xDSL mode

(DSL.Line.{i}.status is “Up”), FAST interface is down (FAST.Line.{i}.status is “Not Present” or

“Down”). The InterfaceStack Table needs to reflect the relationship between the PTM interface

and DSL interface as seen in Figure 56. The PTM’s LowerLayers points to DSL.Channel

instance whose status is “Up”.

FAST.Line.1

Enable=“True“
Status=“Down“

DSL.Channel.1

Enable=“True“
Status=“Up“

DSL.Channel.2

Enable=“True“
Status=“NotPresent“

DSL.Line.1

Enable=“True“
Status=“Up“

PTM.Link.1
Lower Layers=DSL.Channel.1

Figure 56 – PTM Link for DSL mode Line

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 148 of 150

In the case when the device is connected in FAST mode, the DSL line is down. The

InterfaceStack Table needs to show that the PTM’s LowerLayers points to the FAST.Line

interface as below:

FAST.Line.1

Enable=“True“
Status=“Up“

DSL.Channel.1
Enable=“True“

Status=“LowerLayerDown“

DSL.Channel.2
Enable=“True“

Status=“LowerLayerDown“

DSL.Line.1

Enable=“True“
Status=“Down“

PTM.Link.1
Lower Layers=FAST.Line.1

Figure 57 – PTM Link for FAST mode Line

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 149 of 150

The same fall back mechanism applies to the bonding of FAST and DSL interfaces. PTM’s

interface is to be stacked on two bonding groups as they are both administrative “Enable”.

However, in the InterfaceStack Table, the PTM interface’s LowerLayers points to the bonding

group that has Operational Status “Up”. In the diagram below, PTM’s LowerLayers points to the

bonding group of FAST.Line, which is currently “Up”. The DSL bonding group instance

corresponding to DSL channels is “Down”.

FAST.Line.2

Enable=“True“
Status=“Up“

DSL.Channel.1
Enable=“True“

Status=“LowerLayerDown“

DSL.Channel.2
Enable=“True“

Status=“LowerLayerDown“

DSL.Line.1

Enable=“True“
Status=“Down“

DSL.Line.2

Enable=“True“
Status=“Down“

FAST.Line.1

Enable=“True“
Status=“Up“

PTM.Link.1
Lower Layers=DSL.BondingGroup.1

DSL.BondingGroup.1
Enable=“True“

Status=“Up“

DSL.BondingGroup.2
Enable=“True“

Status=“LowerLayerDown“

Figure 58 – PTM Link Bonding Groups for FAST mode Lines

In the case where DSL Bonding group is “Up” for non-FAST mode lines, the diagram below

shows PTM’s LowerLayers pointing to the bonding group of DSL.Channel, which is currently

“Up”. The DSL bonding group instance corresponding to FAST Lines is “Down” here.

Device Data Model for TR-069 TR-181 Issue 2 Amendment 11

July 2016 © The Broadband Forum. All rights reserved 150 of 150

FAST.Line.2
Enable=“True“
Status=“Down“

DSL.Channel.1
Enable=“True“

Status=“Up“

DSL.Channel.2
Enable=“True“

Status=“Up“

DSL.Line.1
Enable=“True“

Status=“Up“

DSL.Line.2
Enable=“True“

Status=“Up“

FAST.Line.1
Enable=“True“
Status=“Down“

PTM.Link.1
Lower Layers=DSL.BondingGroup.2

DSL.BondingGroup.1
Enable=“True“

Status=“LowerLayerDown“

DSL.BondingGroup.2
Enable=“True“

Status=“Up“

Figure 59 – PTM Link Bonding Groups for DSL mode Lines

End of Broadband Forum Technical Report TR-181

	Executive Summary
	1 Purpose and Scope
	1.1 Purpose
	1.2 Scope

	2 References and Terminology
	2.1 Conventions
	2.2 References
	2.3 Definitions
	2.4 Abbreviations

	3 Technical Report Impact
	3.1 Energy Efficiency
	3.2 IPv6
	3.3 Security
	3.4 Privacy

	4 Architecture
	4.1 Interface Layers
	4.2 Interface objects
	4.2.1 Lower Layers
	4.2.2 Administrative and Operational Status
	4.2.3 Stacking and Operational Status
	4.2.4 Vendor-specific Interface Objects

	4.3 InterfaceStack Table

	5 Parameter Definitions
	Annex A Bridging and Queuing
	A.1 Queuing and Bridging Model
	A.1.1 Packet Classification
	A.1.1.1 Classification Order
	A.1.1.2 Dynamic Application Specific Classification
	A.1.1.3 Classification Outcome
	A.1.2 Policing
	A.1.3 Queuing and Scheduling
	A.1.4 Bridging
	A.1.4.1 Filtering
	A.1.4.2 Filter Order

	A.2 Default Layer 2/3 QoS Mapping
	A.3 URN Definitions for App and Flow Tables
	A.3.1 App ProtocolIdentifier
	A.3.2 Flow Type
	A.3.3 Flow TypeParameters

	Annex B Tunneling
	B.1 Overview
	B.2 Details

	Appendix I Example RG Queuing Architecture
	Appendix II Use of Bridging Objects for VLAN Tagging
	II.1 Tagged LAN to Tagged WAN Traffic (VLAN Bridging)
	II.2 Tagged LAN to Tagged WAN Traffic (Special Case with VLAN ID Translation)
	II.3 Untagged LAN to Tagged WAN Traffic
	II.4 Internally Generated to Tagged WAN Traffic
	II.5 Other Issues
	II.5.1 More than one Downstream Interface in a Bridge
	II.5.2 802.1D (Re)-marking
	II.5.3 More than one VLAN ID Tag Admitted on the Same Downstream Interface

	Appendix III Wi-Fi Theory of Operation
	III.1 Multi-radio and Multi-band Wi-Fi Radio Devices
	III.2 Definitions
	III.3 Number of Instances of WiFi.Radio Object
	III.4 SupportedFrequencyBands and OperatingFrequencyBand
	III.5 Behavior of Dual-band Radios when OperatingFrequencyBand Changed
	III.6 SupportedStandards and OperatingStandards
	III.7 Different Types of WiFi Errors

	Appendix IV Use Cases
	IV.1 Create a WAN Connection
	IV.2 Modify a WAN Connection
	IV.3 Delete a WAN Connection
	IV.4 Discover whether the Device is a Gateway
	IV.5 Provide Extended Home Networking Topology View
	IV.6 Determine Current Interfaces Configuration
	IV.7 Create a WLAN Connection
	IV.8 Delete a WLAN Connection
	IV.9 Configure a DHCP Client and Server
	IV.9.1 DHCP Client Configuration (ACME devices)
	IV.9.2 DHCP Server Configuration (gateway)

	IV.10 Reconfigure an Existing Interface
	IV.11 Backup / Restore Using Vendor Configuration Files

	Appendix V IPv6 Data Modeling Theory of Operation
	V.1 IPv6 Overview
	V.2 Data Model Overview
	V.3 Enabling IPv6
	V.4 Configuring Upstream IP Interfaces
	V.4.1 Configuration Messages Sent Out the Upstream IP Interface
	V.4.2 IPv6 Prefixes
	V.4.3 IPv6 Addresses

	V.5 Configuring Downstream IP Interfaces
	V.5.1 IPv6 Prefixes
	V.5.2 IPv6 Addresses

	V.6 Device Interactions
	V.6.1 Active Configuration
	V.6.2 Monitoring

	V.7 Configuring IPv6 Routing and Forwarding
	V.8 Configuring IPv6 Routing and Forwarding

	Appendix VI 6rd Theory of Operation
	VI.1 RFC 5969 Configuration Parameters
	VI.2 Internal Configuration Parameters
	VI.3 IPv4 Address Source
	VI.4 Sending All Traffic to the Border Relay Server
	VI.5 Internal Treatment of IPv6 Packets

	Appendix VII Dual-Stack Lite Theory of Operation
	VII.1 Internal Treatment of IPv4 Packets

	Appendix VIII Advanced Firewall Example Configuration
	Appendix IX IPsec Theory of Operation
	IX.1 IPsec
	IX.2 IPsec.Filter
	IX.3 IPsec.Profile
	IX.4 IPsec.Tunnel
	IX.5 IPsec.IKEv2SA
	IX.6 IPsec.IKEv2SA.ChildSA

	Appendix X ETSI M2M Remote Entity Management Theory of Operation
	X.1 ETSI M2M Area Networks
	X.2 TR-069 Device Model and Functionality for ETSI M2M REM
	X.2.1 TR-069 Device Model and Functionality for ETSI M2M REM

	X.3 TR-069 Device Model and Functionality for ETSI M2M REM
	X.3.1 M2M Service SCL Execution Environment
	X.3.2 ETSIM2M Object

	Appendix XI Provider Bridge Theory of Operation
	XI.1 Residential Domain Scenario
	XI.2 Device Traffic Scenario
	XI.3 Public and Roaming Domain Scenarios
	XI.4 Provisioning Provider Bridges
	XI.4.1 Associating Customer Edge Ports with Customer Network Ports

	Appendix XII ZigBee Theory of Operation
	XII.1 CWMP management using the ZigBee data model
	XII.2 CWMP proxying mechanisms and the ZigBee data model

	Appendix XIII Port Control Protocol Theory of Operation
	XIII.1 Configuration and monitoring of the PCP Server
	XIII.2 Monitoring and setting rules set by the PCP client
	XIII.3 Rapid recovery

	Appendix XIV GRE Tunnel Theory of Operation
	XIV.1 L2 Payload over GRE
	XIV.2 L3 Payload over GRE

	Appendix XV MAP Theory of Operation
	XV.1 MAP Configuration Parameters
	XV.2 Internal Treatment of IPv4 Packets

	Appendix XVI G.fast Theory of Operation

