

 TECHNICAL REPORT

© The Broadband Forum. All rights reserved.

TR-154
TR-069 Data Model XML User Guide

Issue: 1

Issue Date: March 2012

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 2 of 232

Notice

The Broadband Forum is a non-profit corporation organized to create guidelines for broadband

network system development and deployment. This Broadband Forum Technical Report has

been approved by members of the Forum. This Broadband Forum Technical Report is not

binding on the Broadband Forum, any of its members, or any developer or service provider. This

Broadband Forum Technical Report is subject to change, but only with approval of members of

the Forum. This Technical Report is copyrighted by the Broadband Forum, and all rights are

reserved. Portions of this Technical Report may be copyrighted by Broadband Forum members.

This Broadband Forum Technical Report is provided AS IS, WITH ALL FAULTS. ANY

PERSON HOLDING A COPYRIGHT IN THIS BROADBAND FORUM TECHNICAL

REPORT, OR ANY PORTION THEREOF, DISCLAIMS TO THE FULLEST EXTENT

PERMITTED BY LAW ANY REPRESENTATION OR WARRANTY, EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY:

(A) OF ACCURACY, COMPLETENESS, MERCHANTABILITY, FITNESS FOR A

 PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE;

(B) THAT THE CONTENTS OF THIS BROADBAND FORUM TECHNICAL REPORT ARE

 SUITABLE FOR ANY PURPOSE, EVEN IF THAT PURPOSE IS KNOWN TO THE

 COPYRIGHT HOLDER;

(C) THAT THE IMPLEMENTATION OF THE CONTENTS OF THE TECHNICAL REPORT

 WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

 TRADEMARKS OR OTHER RIGHTS.

By using this Broadband Forum Technical Report, users acknowledge that implementation may

require licenses to patents. The Broadband Forum encourages but does not require its members

to identify such patents. For a list of declarations made by Broadband Forum member

companies, please see http://www.broadband-forum.org. No assurance is given that licenses to

patents necessary to implement this Technical Report will be available for license at all or on

reasonable and non-discriminatory terms.

ANY PERSON HOLDING A COPYRIGHT IN THIS BROADBAND FORUM TECHNICAL

REPORT, OR ANY PORTION THEREOF, DISCLAIMS TO THE FULLEST EXTENT

PERMITTED BY LAW (A) ANY LIABILITY (INCLUDING DIRECT, INDIRECT, SPECIAL,

OR CONSEQUENTIAL DAMAGES UNDER ANY LEGAL THEORY) ARISING FROM OR

RELATED TO THE USE OF OR RELIANCE UPON THIS TECHNICAL REPORT; AND (B)

ANY OBLIGATION TO UPDATE OR CORRECT THIS TECHNICAL REPORT.

Broadband Forum Technical Reports may be copied, downloaded, stored on a server or

otherwise re-distributed in their entirety only, and may not be modified without the advance

written permission of the Broadband Forum.

The text of this notice must be included in all copies of this Broadband Forum Technical Report.

http://www.broadband-forum.org/

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 3 of 232

Issue History

Issue Number Issue Date Issue Editor Changes

1 March 2012 Paul Sigurdson, Broadband Forum Original

Comments or questions about this Broadband Forum Technical Report should be directed to

info@broadband-forum.org.

Editor Paul Sigurdson Broadband Forum

BroadbandHome™

Working Group Chairs

Greg Bathrick

Jason Walls

PMC-Sierra

QA Cafe

Chief Editor Michael Hanrahan Huawei Technologies

mailto:info@broadband-forum.org

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 4 of 232

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 10

1 PURPOSE AND SCOPE ... 11

1.1 PURPOSE.. 11
1.2 SCOPE ... 12

2 REFERENCES AND TERMINOLOGY .. 13

2.1 CONVENTIONS ... 13
2.2 REFERENCES.. 15
2.3 DEFINITIONS ... 16
2.4 ABBREVIATIONS ... 17

3 TECHNICAL REPORT IMPACT ... 18

3.1 ENERGY EFFICIENCY .. 18
3.2 IPV6 ... 18
3.3 SECURITY ... 18
3.4 PRIVACY ... 18

4 INTRODUCTION TO DEFINING CWMP DATA MODELS USING XML ... 19

4.1 NAMING CONVENTION FOR DM XML DATA MODEL FILES ... 19
4.2 NATURAL PROGRESSION OF DM DATA MODELS .. 20
4.3 SURVEY OF EXISTING XML/XSD FILES ... 21

5 DM XML DATA MODEL BASICS.. 24

5.1 ROOT ELEMENT ... 24
5.2 XML CATALOG .. 25
5.3 DEFINING ROOT DATA MODELS ... 27

5.3.1 Key Points – New Root Data Model .. 27
5.3.2 Basic Walkthrough – Defining a New Root Data Model .. 27
5.3.3 Key Points – Amended Root Data Model .. 35
5.3.4 Basic Walkthrough – Defining an Amendment to a Root Data Model.. 37

5.4 DEFINING SERVICE DATA MODELS .. 41
5.4.1 Key Points – New Service Data Model... 41
5.4.2 Basic Walkthrough – Defining a New Service Data Model ... 41
5.4.3 Key Points – Amended Service Data Model ... 46
5.4.4 Basic Walkthrough – Defining an Amendment to a Service Data Model .. 47

5.5 DEFINING VENDOR-SPECIFIC DATA MODELS ... 52
5.5.1 Defining a Vendor-Specific Extension to a Standard Data Model ... 52
5.5.2 Defining a Vendor-Specific Service Data Model ... 53

6 DM XML DATA MODEL TUTORIALS ... 54

6.1 BIBLIOGRAPHY ... 54
6.1.1 Adding Reusable Bibliography Reference Elements ... 54
6.1.2 Adding Data-Model Specific Bibliography Reference Elements .. 55
6.1.3 Citing a Bibliographic Reference ... 56

6.2 NAMED DATA TYPES ... 58
6.2.1 Define a Basic Named Data Type.. 58
6.2.2 Define a Derived Named Data Type .. 59

6.3 IMPORT ... 61
6.3.1 Import a Named Data Type .. 62

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 5 of 232

6.3.2 Import a Data Model ... 62
6.3.3 Import a Component .. 63

6.4 MODEL .. 66
6.4.1 Define a New Data Model .. 66
6.4.2 Extend an Existing Data Model ... 67
6.4.3 Fixing Errata in an Existing Data Model .. 68

6.5 OBJECT (DEFINITION) .. 70
6.5.1 Defining a Single-Instance Object ... 70
6.5.2 Defining a Multi-Instance Object (table) ... 72

6.5.2.1 Variable-Sized Read-Only Table ..73
6.5.2.2 Variable-Sized Writable Table (ACS Managed) ..74
6.5.2.3 Fixed-Sized Table ...76
6.5.2.4 Unique Key for a Table ...76

6.5.3 Updating an Existing Object Definition ... 78
6.6 PARAMETER (DEFINITION) .. 81

6.6.1 Defining a Parameter (The Basics) .. 81
6.6.1.1 Syntax Using a Built-In Primitive Data Type ...82
6.6.1.2 Syntax Using a Named Data Type ...83
6.6.1.3 Refining a Data Type Using Facets ..84
6.6.1.4 Default Value ...87
6.6.1.5 Active Notify and Forced Inform ...88

6.6.2 Number-of-Entries Parameter .. 89
6.6.3 Hidden-Valued Parameter .. 89
6.6.4 Command Parameter ... 90
6.6.5 List-Valued Parameter ... 91
6.6.6 Reference Parameter ... 93

6.6.6.1 Path-Reference Parameter ...94
6.6.6.2 Instance-Reference Parameter ...97
6.6.6.3 Enumeration-Reference Parameter ..98

6.6.7 Updating an Existing Parameter Definition ... 100
6.7 COMPONENT .. 103

6.7.1 Defining and Using a Component ... 103
6.7.2 Importing and Using a Component ... 106
6.7.3 Updating an Existing Component ... 106

6.8 PROFILE ... 110
6.8.1 Defining a New Profile ... 110
6.8.2 Updating an Existing Profile ... 111
6.8.3 Defining a New Profile by Extension ... 112

6.9 DESCRIPTION... 114
6.9.1 Defining a Description .. 114
6.9.2 Updating an Existing Description.. 116
6.9.3 Laying Out Descriptions ... 117

6.9.3.1 Whitespace Pre-processing .. 117
6.9.3.2 Markup.. 118

6.10 STATUS: DEPRECATE, OBSOLETE, DELETE ... 120

7 DT XML DATA MODEL TUTORIALS .. 122

7.1 BIBLIOGRAPHY ... 123
7.2 IMPORT ... 124

7.2.1 Import a Named Data Type .. 124
7.2.2 Import a Data Model ... 125

7.3 MODEL .. 127
7.3.1 Supporting One DM Model... 127
7.3.2 Supporting Multiple DM Models .. 128

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 6 of 232

7.4 OBJECT .. 129
7.4.1 Supporting Single-Instance Objects .. 129
7.4.2 Supporting Multi-Instance Objects ... 129

7.5 PARAMETER .. 132
7.5.1 Supporting Parameters (The Basics) ... 132

7.5.1.1 Supported Syntax and its Data Type ... 133
7.5.1.2 Supported Data Type Using Facets ... 134
7.5.1.3 Default Value ... 135

7.5.2 List-Valued Parameter ... 136
7.5.3 Path-Reference Parameter ... 137

7.6 ANNOTATION .. 139
7.7 FEATURE .. 140

APPENDIX I – REFERENCE: DATA MODEL XML SCHEMA.. 141

I.1 DOCUMENT ELEMENT .. 141
I.2 DESCRIPTION ELEMENT ... 142
I.2.1 WHITESPACE PRE-PROCESSING .. 143
I.2.2 MARKUP .. 144
I.2.3 TEMPLATES ... 145
I.3 IMPORT ELEMENT .. 151
I.3.1 IMPORT SUB-ELEMENTS .. 152
I.4 DATATYPE ELEMENT (DEFINITION) .. 154
I.5 BIBLIOGRAPHY ELEMENT ... 155
I.5.1 BIBLIOGRAPHY REFERENCE ELEMENT ... 156
I.6 COMPONENT ELEMENT (DEFINITION) ... 157
I.7 COMPONENT ELEMENT (REFERENCE) ... 158
I.8 MODEL ELEMENT .. 159
I.9 OBJECT ELEMENT (DEFINITION) .. 161
I.9.1 OBJECT UNIQUEKEY ELEMENT.. 165
I.10 PARAMETER ELEMENT (DEFINITION) ... 166
I.10.1 PARAMETER SYNTAX ELEMENT ... 168
I.10.2 SYNTAX LIST ELEMENT ... 170
I.10.3 SYNTAX DATATYPE ELEMENT (REFERENCE) .. 171
I.10.4 SYNTAX DEFAULT ELEMENT ... 173
I.11 PROFILE ELEMENT .. 174
I.11.1 PROFILE OBJECT ELEMENT (REFERENCE).. 177
I.11.2 PROFILE PARAMETER ELEMENT (REFERENCE) .. 178
I.12 BUILT-IN PRIMITIVE DATA TYPE ELEMENTS ... 180
I.13 DATA TYPE FACETS ... 182
I.13.1 SIZE ELEMENT ... 183
I.13.2 INSTANCEREF ELEMENT .. 184
I.13.3 PATHREF ELEMENT.. 186
I.13.4 RANGE ELEMENT .. 189
I.13.5 ENUMERATION ELEMENT ... 190
I.13.6 ENUMERATIONREF ELEMENT ... 192
I.13.7 PATTERN ELEMENT .. 194
I.13.8 UNITS ELEMENT .. 195

APPENDIX II – REFERENCE: DEVICE TYPE XML SCHEMA .. 196

II.1 DOCUMENT ELEMENT .. 196
II.2 ANNOTATION ELEMENT... 197
II.3 FEATURE ELEMENT .. 197

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 7 of 232

II.4 IMPORT ELEMENT .. 198
II.4.1 IMPORT SUB-ELEMENTS .. 199
II.5 BIBLIOGRAPHY ELEMENT ... 200
II.5.1 BIBLIOGRAPHY REFERENCE ELEMENT ... 201
II.6 MODEL ELEMENT .. 202
II.7 OBJECT ELEMENT .. 203
II.8 PARAMETER ELEMENT .. 205
II.8.1 PARAMETER SYNTAX ELEMENT .. 206
II.8.2 SYNTAX LIST ELEMENT .. 207
II.8.3 SYNTAX DATATYPE ELEMENT .. 209
II.8.4 SYNTAX DEFAULT ELEMENT .. 210
II.9 BUILT-IN PRIMITIVE DATA TYPE ELEMENTS ... 211
II.10 DATA TYPE FACETS ... 214
II.10.1 SIZE ELEMENT ... 214
II.10.2 PATHREF ELEMENT.. 215
II.10.3 RANGE ELEMENT .. 217
II.10.4 ENUMERATION ELEMENT ... 218
II.10.5 PATTERN ELEMENT .. 218

APPENDIX III – REFERENCE: DEVICE TYPE FEATURES XML SCHEMA .. 220

III.1 FEATURE NAMES .. 220

APPENDIX IV – REFERENCE: DATA MODEL REPORT XML SCHEMA .. 221

IV.1 DMR ATTRIBUTES .. 221

APPENDIX V – PROCESSING DATA MODELS, VALIDATING AND REPORTING 226

V.1 XML SCHEMAS AND DATA MODEL DEFINITIONS .. 226
V.2 XML EDITOR .. 226
V.3 XML SCHEMA VERIFIER ... 226
V.4 BBF REPORT TOOL ... 227
V.4.1 COMMAND LINE VERSION .. 227
V.4.2 GUI VERSION .. 229
V.5 PUBLISHED BBF DATA MODEL REPORTS .. 230

INDEX .. 231

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 8 of 232

List of Tables

Table 1 – DM document attributes... 141
Table 2 – DM document sub-elements ... 142
Table 3 – DM description attributes .. 143
Table 4 – Description Markup .. 144
Table 5 – Description Templates ... 146
Table 6 – DM import attributes ... 152
Table 7 – DM import sub-elements .. 152
Table 8 – DM import’s sub-element attributes ... 152
Table 9 – DM dataType attributes... 154
Table 10 – DM dataType sub-elements ... 155
Table 11 – DM bibliography sub-elements .. 156
Table 12 – DM bibliography reference attributes .. 156
Table 13 – DM bibliography reference sub-elements ... 156
Table 14 – DM definition-based component attributes ... 157
Table 15 – DM definition-based component sub-elements.. 158
Table 16 – DM reference-based component attributes ... 159
Table 17 – DM model attributes ... 160
Table 18 – DM model sub-elements .. 161
Table 19 – DM definition-based object attributes .. 161
Table 20 – DM definition-based object sub-elements .. 164
Table 21 – DM uniqueKey attributes .. 165
Table 22 – DM uniqueKey sub-elements ... 165
Table 23 – DM uniqueKey parameter attributes ... 165
Table 24 – DM definition-based parameter attributes ... 166
Table 25 – DM definition-based parameter sub-elements.. 168
Table 26 – DM parameter syntax attributes .. 169
Table 27 – DM parameter syntax sub-elements ... 169
Table 28 – DM syntax list attributes ... 170
Table 29 – DM syntax list sub-elements .. 171
Table 30 – DM syntax dataType attributes .. 172
Table 31 – DM syntax dataType sub-elements ... 172
Table 32 – DM syntax default attributes .. 173
Table 33 – DM syntax default sub-elements ... 174
Table 34 – DM profile attributes ... 175
Table 35 – DM profile sub-elements .. 176
Table 36 – DM profile object attributes .. 177
Table 37 – DM profile object sub-elements ... 178
Table 38 – DM profile parameter attributes ... 179
Table 39 – DM profile parameter sub-elements .. 180
Table 40 – DM primitive data type elements ... 180
Table 41 – DM data type facet elements .. 183
Table 42 – DM facet sub-elements .. 183
Table 43 – DM size attributes .. 183
Table 44 – DM instanceRef attributes .. 184
Table 45 – DM pathRef attributes ... 186
Table 46 – DM range attributes ... 190
Table 47 – DM enumeration attributes .. 191
Table 48 – DM enumerationRef attributes ... 192
Table 49 – DM pattern attributes ... 194
Table 50 – DM units attributes ... 195

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 9 of 232

Table 51 – DT document attributes .. 196
Table 52 – DT document sub-elements .. 196
Table 53 – DT feature attributes .. 198
Table 54 – DT feature sub-elements ... 198
Table 55 – DT import attributes .. 198
Table 56 – DT import sub-elements ... 199
Table 57 – DT import sub-element attributes ... 199
Table 58 – DT bibliography sub-elements ... 200
Table 59 – DT bibliography reference attributes .. 201
Table 60 – DT bibliography reference sub-elements ... 201
Table 61 – DT model attributes... 202
Table 62 – DT model sub-elements ... 202
Table 63 – DT object attributes .. 203
Table 64 – DT object sub-elements ... 205
Table 65 – DT parameter attributes ... 205
Table 66 – DT parameter sub-elements .. 206
Table 67 – DT parameter syntax sub-elements .. 206
Table 68 – DT syntax list attributes .. 208
Table 69 – DT syntax list sub-elements ... 208
Table 70 – DT syntax dataType attributes ... 209
Table 71 – DT syntax dataType sub-elements .. 210
Table 72 – DT syntax default attributes ... 210
Table 73 – DT syntax default sub-elements .. 211
Table 74 – DT primitive data type elements... 212
Table 75 – DT data type facet elements ... 214
Table 76 – DT facet sub-elements ... 214
Table 77 – DT size attributes ... 215
Table 78 – DT pathRef attributes .. 215
Table 79 – DT range attributes... 217
Table 80 – DT enumeration attributes ... 218
Table 81 – DT pattern attributes .. 219
Table 82 – DMR attributes ... 221

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 10 of 232

Executive Summary

TR-154 provides guidance in writing TR-069 XML Data Models that conform to the DM or DT

Schemas defined in TR-106 [3]. The XML Data Models produced using these schemas are used

for very different purposes; a DM Data Model defines all possible objects and parameters that

are available for a particular TR-069 Data Model, while a DT Data Model cites those objects and

parameters that a CPE actually supports for a given DM Data Model.

An XML Data Model that conforms to the DM Schema represents a complete definition of

objects and parameters that are available for use with TR-069. Both the Broadband Forum and

vendor companies define these DM Data Models; the Broadband Forum defines the standard

Data Models (e.g. Device:2) while vendor companies can define extensions to the standard Data

Models. Vendor companies and SDOs can also define entirely new (vendor-specific) Service

Data Models that are unrelated to any of those defined by the Broadband Forum.

An XML Data Model that conforms to the DT Schema describes the supported Data Model for a

particular type of device (i.e. it specifies the subset of objects and parameters that a CPE supports

for a given DM Data Model). Device vendors specify and publish these DT Data Models. This is

external to the Broadband Forum, which has no involvement with supported Data Models.

TR-154 also discusses the Broadband Forum Report Tool, which is used to validate XML Data

Models and to generate their HTML and XML Data Model reports. XML Data Models are not

easily read by humans; the Report Tool can generate reports that fully describe a Data Model in a

concise and readable format.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 11 of 232

1 Purpose and Scope

1.1 Purpose

TR-154 provides guidance in writing TR-069 XML Data Models that conform to the DM or DT

Schemas defined in TR-106 [3]. The XML Data Models produced using these schemas are used

for very different purposes; a DM Data Model defines all possible objects and parameters that

are available for a particular TR-069 Data Model, while a DT Data Model cites those objects and

parameters that a CPE actually supports for a given DM Data Model.

An XML Data Model that conforms to the DM Schema represents a complete definition of

objects and parameters that are available for use with TR-069. Both the Broadband Forum and

vendor companies define these DM Data Models; the Broadband Forum defines the standard

Data Models (e.g. Device:2) while vendor companies can define extensions to the standard Data

Models. Vendor companies and SDOs can also define entirely new (vendor-specific) Service

Data Models that are unrelated to any of those defined by the Broadband Forum.

An XML Data Model that conforms to the DT Schema describes the supported Data Model for a

particular type of device (i.e. it specifies the subset of objects and parameters that a CPE supports

for a given DM Data Model). Device vendors specify and publish these DT Data Models. This is

external to the Broadband Forum, which has no involvement with supported Data Models.

The following diagram illustrates the relationships between the DM and DT Instances used by a

CPE, and how they tie into the CPE’s instantiated Data Model:

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 12 of 232

1.2 Scope

Section 4 introduces the reader to DM Data Models. It discusses the XML and XSD files that the

Broadband Forum has already published, the progression of Data Models over time, as well as

“housekeeping” matters such as naming conventions.

Section 5 provides a high-level overview of how DM Data Models are defined. It describes the

root element common to all such XML files, the use of XML catalogs in order to more easily

indicate where supporting files are located, and basic walkthroughs in defining Root and Service

Data Models from the ground up.

Section 6 dives into the details of defining DM Data Models. It discusses the “hows” and “whys”

of using the various XML elements and attributes permitted by the DM Schema. Note that the

DM Schema itself is specified in Appendix I. While Appendix IV is a reference for the DM

Report Schema, an ancillary schema that can be used within DM Data Models in order to

provide additional information to reporting tools.

Section 7 dives into the details of defining DT Data Models. It discusses the “hows” and “whys”

of using the various XML elements and attributes permitted by the DT Schema. Note that the DT

Schema itself is specified in Appendix II. While Appendix III is a reference for the DT Features

Schema, an ancillary schema that can be used within DT Data Models in order to indicate

supported features.

Appendix V discusses XML tools, one being the BBF Report Tool which is used to validate

XML Data Models and to generate their HTML and XML Data Model reports. XML Data

Models are not easily read by humans; the Report Tool can generate reports that describe a Data

Model in a concise and readable format.

Note – Readers of this Technical Report are expected to be familiar with the Data Model guidelines
specified in TR-106 [3]. Furthermore, they should have a basic understanding of XML and XML

namespaces [10].

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 13 of 232

2 References and Terminology

TR-154 is solely informative and therefore does not contain any normative text. There are no

conventions relating to requirements. TR-154 does provide information on requirements

specified in other Broadband Forum documents.

2.1 Conventions

XML

XML examples within TR-154 comply with the XML 1.0 Specification [10]. These examples

will be discussed in terms of their elements and attributes. Wikipedia describes elements and

attributes based on markup and tags, as follows
1
:

 Markup and Content – The characters which make up an XML document are divided

into markup and content. Markup and content may be distinguished by the application of

simple syntactic rules. All strings which constitute markup either begin with the character

"<" and end with a ">", or begin with the character "&" and end with a ";". Strings of

characters which are not markup are content.

 Tag – A markup construct that begins with "<" and ends with ">". Tags come in three

flavors: start-tags, for example <section>, end-tags, for example </section>, and

empty-element tags, for example <line-break/>.

 Element – A logical document component that either begins with a start-tag and ends

with a matching end-tag or consists only of an empty-element tag. The characters

between the start- and end-tags, if any, are the element's content, and may contain

markup, including other elements, which are called child elements. An example of an

element is <Greeting>Hello, world.</Greeting>. Another is <line-

break/>.

 Attribute – A markup construct consisting of a name/value pair that exists within a start-

tag or empty-element tag. In the example (below) the element img has two attributes,

src and alt: <img src="madonna.jpg" alt='Foligno Madonna, by

Raphael'/>. Another example would be <step number="3">Connect A to

B.</step> where the name of the attribute is number and the value is "3".

Ellipsis

XML examples throughout TR-154 are abbreviated in order to improve readability and to focus

on the topic at hand. This is indicated using an ellipsis (…). Whenever an ellipsis is seen within

an example, it should be assumed that text has been omitted at that location.

1 http://en.wikipedia.org/wiki/XML

http://en.wikipedia.org/wiki/XML

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 14 of 232

An example of this is shown below in the XML Path discussion; the ellipsis indicates that, in

practice, the model element would include content between its start- and end-tags (e.g. child

elements).

Referring to Objects

Throughout this Working Text, object names are often abbreviated in order to improve

readability. For example, Device.Ethernet.VLANTermination.{i}. is the full name of a Device:2

object, but might casually be referred to as Ethernet.VLANTermination.{i} or

VLANTermination.{i} or VLANTermination, just so long as the abbreviation is unambiguous

(with respect to similarly named objects defined elsewhere within the corresponding Data

Model).

XML Path

In TR-154, an xml-path shorthand notation is sometimes used to more easily refer to specific

elements and attributes within the XML.

For example, the xml-path document/model relates to the model elements depicted in the

expanded XML shown below. And the xml-path document/model/@name relates to the

model element’s name attribute.

<document>

 <model name="Device:2.0">…</model>

</document>

This notation is based on the standard XPath notation defined by [13].

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 15 of 232

2.2 References

The following references are of relevance to this Technical Report. At the time of publication,

the editions indicated were valid. All references are subject to revision; users of this Technical

Report are therefore encouraged to investigate the possibility of applying the most recent edition

of the references listed below.

A list of currently valid Broadband Forum Technical Reports is published at www.broadband-

forum.org.

Document Title Source Year

[1] TR-069 Amendment 4 CPE WAN Management

Protocol

Broadband Forum 2011

[2] TR-104 Provisioning Parameters for

VoIP CPE

Broadband Forum 2005

[3] TR-106 Amendment 6 Data Model Template for TR-

069-Enabled Devices

Broadband Forum 2011

[4] TR-143 Enabling Network Throughput

Performance Tests and

Statistical Monitoring

Broadband Forum 2008

[5] TR-157 Amendment 5 Component Objects for CWMP Broadband Forum 2011

[6] TR-181 Issue 1, TR-181

Issue 2 Amendment 2

Device Data Model for TR-069 Broadband Forum 2010,

2011

[7] RFC 2648 A URN Namespace for IETF

Documents

IETF 1999

[8] RFC 3986 Uniform Resource Identifier

(URI): Generic Syntax

IETF 2005

[9] Organizationally Unique

Identifiers (OUIs)

 IEEE

[10] Extensible Markup

Language (XML) 1.0

(Fourth Edition)

 W3C 2008

[11] XML Schema Part 0:

Primer Second Edition

 W3C 2004

[12] XML Schema Part 2:

Datatypes Second Edition

 W3C 2004

[13] XML Path Language

(XPath) Version 1.0

 W3C 1999

http://www.broadband-forum.org/
http://www.broadband-forum.org/
http://www.ietf.org/rfc/rfc2648.txt
http://www.ietf.org/rfc/rfc3986.txt
http://standards.ieee.org/faqs/OUI.html
http://standards.ieee.org/faqs/OUI.html
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 16 of 232

2.3 Definitions

The following terminology is used throughout this Technical Report.

ACS Auto-Configuration Server. This is a component in the broadband

network responsible for auto-configuration of the CPE for

advanced services.

Component A named collection of Objects and/or Parameters and/or Profiles

that can be included anywhere within a Data Model.

CPE Customer Premises Equipment; refers to any TR-069-enabled [1]

device and therefore covers both Internet Gateway devices and

LAN-side end devices.

Data Model A hierarchical set of Objects and/or Parameters that define the

managed objects accessible via TR-069 [1].

Device Used here as a synonym for CPE.

DM Instance Data Model Schema instance document. This is an XML document

that conforms to the DM Schema and to any additional rules

specified in or referenced by the DM Schema.

DM Schema Data Model Schema. This is the XML Schema that is used for

defining Data Models for use with CWMP.

DMR Schema Data Model Report Schema. This is the XML Schema that is used

for enhancing Data Models with presentation and reporting specific

attributes.

DT Instance Device Type Schema instance document. This is an XML

document that conforms to the DT Schema and to any additional

rules specified in or referenced by the DT Schema.

DT Schema Device Type Schema. This is the XML Schema that is used for

describing a Device’s Supported Data Model.

Instantiated Data Model The Data Model that currently exists on an individual CPE. This

refers to the Object instances and/or Parameters that currently exist

within the Data Model.

Object An internal node in the name hierarchy, i.e., a node that can have

Object or Parameter children. An Object name is a Path Name.

Parameter A name-value pair that represents part of a CPE’s configuration or

status. A Parameter name is a Path Name.

Path Name Object or Parameter path name. A name that has a hierarchical

structure similar to files in a directory, with each level separated by

a “.” (dot).

Report Tool Broadband Forum Report Tool. A Perl script that can validate a

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 17 of 232

DM or DT Data Model, and generate an associated HTML report

file (a human-readable representation of the XML).

Root Object The top-level Object of a CPE’s Data Model that contains all of the

manageable Objects. The name of the Root Object is either

“Device” or “InternetGatewayDevice”.

Service Object The top-most Object associated with a specific service within which

all Objects and Parameters associated with the service are

contained.

Supported Data Model The Data Model that is supported by all CPE of a given make,

model and firmware version. This refers to the Objects and/or

Parameters that have code support in the current firmware. Note

that TR-106 [3] further divides this concept into base vs. current

supported Data Model.

Template A Template is a kind of markup. It is encoded within a DM

Instance description (or DT Instance annotation) as text enclosed in

double curly braces ({}). Processing tools can replace such

Template references with template-dependent text.

XML Schema An XML schema [11] describes the valid structure of a class of

XML documents. An XML schema is specified using the XML

Schema Definition (XSD) language.

2.4 Abbreviations

This Technical Report uses the following abbreviations:

BBF Broadband Forum.

CWMP CPE WAN Management Protocol [1].

DM Data Model

DT Device Type

RFP Request For Proposal

SDO Standards Developing Organization

URI Uniform Resource Identifier [8].

URL Uniform Resource Locator [8].

XML Extensible Markup Language [10].

XSD XML Schema Definition [11].

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 18 of 232

3 Technical Report Impact

3.1 Energy Efficiency

TR-154 has no impact on energy efficiency.

3.2 IPv6

TR-154 has no impact on IPv6.

3.3 Security

TR-154 has no impact on security.

3.4 Privacy

TR-154 has no impact on privacy.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 19 of 232

4 Introduction to Defining CWMP Data Models Using XML

A TR-069 Data Model is a hierarchical set of Objects and/or Parameters that define the managed

objects accessible via TR-069. All of the TR-069 Data Models are defined using a standard XML

Schema.

An XML Data Model that conforms to the DM Schema (as defined in Annex A.3/TR-106 [3])

represents a complete definition of objects and parameters that are available for use with CWMP.

Both the Broadband Forum and vendor companies define these DM Data Models; the Broadband

Forum defines the standard Data Models (e.g. Device:2) while vendor companies can define

extensions to the standard Data Models.

A DM Data Model can consist of one or more XML files that together define a particular version

of a Root or Service Data Model. Each version of a Data Model is specified within a primary

XML file, but can also import additional information from supporting XML files. Note that all

such files conform to the DM Schema, and so each file is a DM Instance.

Note – DM Data Models (and DM Instances) are discussed further in Sections 5 and 6. These should not

be confused with DT Data Models (and DT Instances), discussed in Section 7, which CPE vendors
instead use to describe their Supported Data Models.

4.1 Naming Convention for DM XML Data Model Files

In the next section we survey some of the published XML files. Each is named according to the

Technical Report that defines it. This naming convention is described by the form dd-nnn-i-a-

c.xml, where

dd document type (i.e. tr)

nnn document number (e.g. 098, 106, 181)

i document issue number (e.g. 1, 2)

a document amendment number (e.g. 0, 1, 2)

c document corrigendum number (e.g. 0, 1, 2)

For example, TR-143 Issue 1 Amendment 0 Corrigendum 2 would declare its Data Model in tr-

143-1-0-2.xml. TR-181 Issue 2 Amendment 1 Corrigendum 0 would declare its Data Model in

tr-181-2-1-0.xml.

Note – Whenever a Data Model file is referenced without the corrigendum portion of the name, this
implies that the latest corrigendum should be used. So, tr-143-1-0.xml is the same as tr-143-1-0-2.xml

when corrigendum 2 is the latest revision of TR-143 (Issue 1 Amendment 0).

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 20 of 232

4.2 Natural Progression of DM Data Models

A new Data Model starts out at version 1.0. Later on, backwards compatible updates (e.g. adding

new, or updating existing, objects and parameters) can be made in version 1.1, a minor revision

to the Data Model. Additional backwards compatible revisions can follow in this way with Data

Model versions 1.2, 1.3, and so on. Generally, each such revision is associated with its own

Broadband Forum technical report amendment.

For example, TR-106 (Issue 1 Amendment 0) defined version 1.0 of the Device Data Model (i.e.

Device:1.0), declared in tr-106-1-0-0.xml. When backwards compatible changes were needed in

the Data Model, then an amendment of TR-106 was created (i.e. TR-106 Issue 1 Amendment 1)

in which version 1.1 of the Device Data Model was defined (i.e. Device:1.1), declared in tr-106-

1-1-0.xml.

Note – Following the progression of the Device:1 and InternetGatewayDevice:1 Data Models can be

challenging since later revisions to these Data Models were defined in completely different technical
reports (e.g. different revisions to the Device:1 Data Model can be found in TR-106, TR-143, TR-157,

and TR-181 Issue 1). However, going forward, each Root and Service Data Model will always be defined

within its corresponding technical report only (and its subsequent amendments).

When changes to a Data Model are limited to correcting errata, then these changes can instead be

defined within a corrigendum release (of the relevant amendment). A corrigendum does not

result in a new minor revision to the Data Model, but does result in a new physical XML file

which will contain the previous definitions (from the file being corrected) as well as the new

errata changes. This can be thought of as a re-release of the previous XML file that serves as a

replacement. Note that this differs from an amendment release, which does result in a new minor

revision to the Data Model, and the corresponding new XML file only contains changes (does

not re-specify definitions from earlier revisions).

For example, TR-143 (Issue 1 Amendment 0) defined the Device:1.2 Data Model (declared in tr-

143-1-0-0.xml). TR-143 had two subsequent corrigenda releases for Issue 1 Amendment 0. TR-

143 (Issue 1 Amendment 0) Corrigendum 2 still defines the Device:1.2 Data Model (albeit with

errata corrections and editorial changes added in), however this re-release is declared in tr-143-1-

0-2.xml. Since each corrigenda revision is a replacement, if you want to reference the latest

corrigendum you do not want to have to know its name, hence the rule that any reference to the

file tr-143-1-0.xml should be interpreted as the latest corrigendum defined for TR-143 Issue 1

Amendment 0.

When a Data Model requires non-backwards compatible changes (e.g. moving and redefining

objects within the object hierarchy – a re-architecture), then a new major version of the Data

Model is started. The new major version is not tied to the previous version. As far as the

definitions are concerned, it is like starting over.

For example, TR-181 Issue 2 defines version 2.0 of the Device Data Model (i.e. Device:2.0),

declared in tr-181-2-0-0.xml. The Device:2.0 Data Model has no ties to the Device:1.0 Data

Model. Backwards compatible updates to the Device:2.0 Data Model will progress in a similar

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 21 of 232

fashion as was described earlier (e.g. TR-181 Issue 2 Amendment 1 defined the new minor

revision Device:2.1 and is declared in tr-181-2-1-0.xml, and so forth).

4.3 Survey of Existing XML/XSD Files

The available XML Schemas and Data Model definitions for the TR-069 suite of documents are

listed online at http://www.broadband-forum.org/cwmp.

Below we discuss this family of XML/XSD files. This is not a complete list since existing Data

Models and schemas will be revised over time, and new Data Models can also be defined.

Supporting files: These files contain information that can be imported into Data Models. These

files are not versioned when updated.

tr-069-1-0-0-types.xml Contains normative definitions of named (i.e. not built-in)

data types that can be used in Data Model definitions.

Note: This file is not meant to be versioned when updated

(the fact that its name includes “1-0-0” is an unfortunate

artifact).

tr-069-biblio.xml Contains a centralized set of bibliographic references for all

TR-069 Data Model definitions to use.

Note: This file is not versioned when updated.

Schema files: Schemas that can be versioned include an x-y suffix in their name, where x is the

major version number and y is the minor version number. Note that each revision of a particular

schema defines the complete schema (i.e. later revisions do not depend on previous versions for

their definitions).

cwmp-datamodel-1-0.xsd

cwmp-datamodel-1-1.xsd

cwmp-datamodel-1-2.xsd

cwmp-datamodel-1-3.xsd

cwmp-datamodel-1-4.xsd

TR-069 Data Model Definition Schema (DM Schema). DM

Instances define TR-069 Data Models using this schema.

Note: Each schema revision replaces the version that came

before it (the latest revision should be used by new DM

Instances). Older DM Schema revisions remain because they

may have been statically associated with existing DM

Instances.

cwmp-datamodel-report.xsd TR-069 Data Model Report Schema (DMR Schema). Non-

normative definitions that can be used in DM Instances to

provide additional information to reporting tools.

cwmp-devicetype-1-0.xsd

cwmp-devicetype-1-1.xsd

TR-069 Device Type Schema (DT Schema). DT Instances

describe individual devices’ support for TR-069 Data Models.

Note: Each schema revision replaces the version that came

before it (the latest revision should be used by new DT

Instances). Older DT Schema revisions remain because they

may have been statically associated with existing DT

Instances.

http://www.broadband-forum.org/cwmp

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 22 of 232

cwmp-devicetype-features.xsd TR-069 (DT) Device Type Features Schema. Defines device

features that can be described in DT Instances.

Root Data Models: Each XML file defines a specific revision to the Device:1, Device:2, or

InternetGatewayDevice:1 Data Models. The Data Model version numbering scheme is

MODEL:x.y, where x is the major version number and y is the minor version number. Minor

(backwards compatible) revisions only contain new content defined since the previous version of

the Data Model (i.e. changes and additions). Therefore, the complete definition of a Data Model

(e.g. all of Device:1) is the union of all its minor revisions.

InternetGatewayDevice:1

tr-069-1-0-0.xml

tr-098-1-0-0.xml

tr-098-1-1-0.xml

tr-143-1-0-2.xml

tr-098-1-2-0.xml

tr-157-1-0-0.xml

tr-157-1-1-0.xml

tr-157-1-2-0.xml

tr-157-1-3-0.xml

tr-098-1-3-0.xml

InternetGatewayDevice:1.0 root object definition

InternetGatewayDevice:1.1

InternetGatewayDevice:1.2

InternetGatewayDevice:1.3

InternetGatewayDevice:1.4

InternetGatewayDevice:1.5

InternetGatewayDevice:1.6

InternetGatewayDevice:1.7

InternetGatewayDevice:1.8

InternetGatewayDevice:1.9

Device:1

tr-106-1-0-0.xml

tr-106-1-1-0.xml

tr-143-1-0-2.xml

tr-106-1-2-0.xml

tr-157-1-0-0.xml

tr-157-1-1-0.xml

tr-181-1-0-0.xml

tr-157-1-2-0.xml

tr-157-1-3-0.xml

tr-181-1-1-0.xml

Device:1.0 root object definition

Device:1.1

Device:1.2

Device:1.2
2

Device:1.3

Device:1.4

Device:1.5

Device:1.6

Device:1.7

Device:1.8

Device:2

tr-181-2-0-1.xml

tr-181-2-1-0.xml

tr-181-2-2-0.xml

tr-181-2-3-0.xml

Device:2.0 root object definition

Device:2.1

Device:2.2

Device:2.3

2 Extends the (like-named/versioned) Device:1.2 Data Model already defined in TR-143 Amendment 1. Basically,

this is an update to Device:1.2 without incrementing the model’s minor version number. This was done (in this one

case) since the updates were purely editorial. This is not the norm.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 23 of 232

Note – The tr-143 and tr-157 XML files define reusable component objects for CWMP managed devices.
Also, going forward, new revisions of the InternetGatewayDevice:1 Data Model will always be defined in

a tr-098-1-a-c.xml file, new revisions of the Device:1 Data Model will always be defined in a tr-181-1-a-

c.xml file, and new revisions of the Device:2 Data Model will always be defined in a tr-181-2-a-c.xml file
(where a and c are integers corresponding to the amendment and corrigendum of the revision).

Service Data Models: The revision and version numbering scheme used for Root Data Models

also applies to Service Data Models.

tr-104-1-0-0.xml VoiceService:1.0 service object definition

tr-135-1-0-0.xml

tr-135-1-1-0.xml

STBService:1.0 service object definition

STBService:1.1 service object definition

tr-140-1-0-2.xml

tr-140-1-1-0.xml

StorageService:1.0 service object definition

StorageService:1.1 service object definition

tr-196-1-0-0.xml

tr-196-1-1-0.xml

FAPService:1.0 service object definition

FAPService:1.1 service object definition

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 24 of 232

5 DM XML Data Model Basics

5.1 Root Element

Each XML document has exactly one root element. For DM Instances, this is the document

element (Appendix I.1). It encloses all other elements and therefore is the sole parent element to

all the other elements.

The following listing is an example of the document element taken from tr-181-2-3-0.xml:
<?xml version="1.0" encoding="UTF-8"?>

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-4"

 xmlns:dmr="urn:broadband-forum-org:cwmp:datamodel-report-0-1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:broadband-forum-org:cwmp:datamodel-1-4

 http://www.broadband-forum.org/cwmp/cwmp-datamodel-1-4.xsd

 urn:broadband-forum-org:cwmp:datamodel-report-0-1

 http://www.broadband-forum.org/cwmp/cwmp-datamodel-report.xsd"

 spec="urn:broadband-forum-org:tr-181-2-3-0"

 file="tr-181-2-3-0.xml">

 ...

</dm:document>

This is a complete (albeit empty) document. Note the following:

 The first line is standard. All XML documents have an <?xml> declaration element that

looks similar to this in the first line. All Broadband Forum XML documents use UTF-8

encoding.

 dm:document is the root element. All XML documents have a single root (top-level)

element whose name is determined by the corresponding XML Schema. “dm” means

“Data Model” (it references xmlns:dm) and is the namespace for the document.
Note: The name “dm” is the convention used within Broadband Forum XML documents; it really could be

anything (e.g. “tns” meaning “This NameSpace” is a common namespace used by some organizations).

 xmlns:dm defines the dm in dm:document, and references the DM Schema

namespace defined by Annex A.3/TR-106 [3] and declared in cwmp-datamodel-1-

4.xsd.
Note: The value specified should correspond to the namespace of the latest DM Schema file available at
the time of writing.

 xmlns:dmr references the DM Report Schema namespace declared in cwmp-

datamodel-report.xsd. This attribute is optional; it need only be included if DM

Report Schema elements or attributes are used within the document.

 xmlns:xsi declares the standard xsi (XML Schema Instance) namespace. This value

is fixed by the W3C standards organization.

 xsi:schemaLocation tells XML editing tools where to find the XML Schemas.

Each namespace used within the document (see the xmlns attributes above) will have a

corresponding entry here. The convention is to specify an absolute path for each XSD file

(which is helpful with XML catalogs; see Section 5.2).
Note: Published Broadband Forum XSD files are available at http://www.broadband-forum.org/cwmp/.

 spec is an attribute defined by DM Schema. Its value indicates the Broadband Forum

specification that corresponds to this document. See Appendix A.2.1.1/TR-106 [3] for

http://www.broadband-forum.org/cwmp/

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 25 of 232

guidelines in specifying this value (e.g. the spec value for TR-181 Issue 2 Amendment

3 Corrigendum 0 is urn:broadband-forum-org:tr-181-2-3-0).

 file is an attribute defined by DM Schema. Its value corresponds to the XML file

containing this document. See Appendix A.2.1.1/TR-106 [3] for guidelines in specifying

this value (e.g. the file value for TR-181 Issue 2 Amendment 3 Corrigendum 0 is tr-

181-2-3-0.xml).

Note – A DM Instance document’s top-level file and spec attributes include the corrigendum of the

corresponding Broadband Forum specification. This is the only time that corrigenda are included in such

attributes. Everywhere else in a document (e.g. on import elements where an external document is

being referenced), the corrigenda is omitted from file and spec attributes. The assumption is that the

latest corrigendum will always be referenced.

5.2 XML Catalog

An XML catalog
3
 provides a mapping from standard URLs to specific local directories on a

given machine. For example, a catalog can be used to locate XSD schema files when processing

an XML file such as a DM Instance document. This adds a degree of flexibility. Once an XML

editor or processing tool has been set up to use a catalog, if the location of the XSD files change,

then the catalog can be updated to point to the new location (while the DM Instance documents

continue to reference the standard URLs).

As explained in Section 5.1, a DM Instance document’s schemaLocation attribute will use

absolute URLs that have a standard prefix. This is illustrated in the following partial listing.

<dm:document

 ...

 xsi:schemaLocation="urn:broadband-forum-org:cwmp:datamodel-1-4

 http://www.broadband-forum.org/cwmp/cwmp-datamodel-1-4.xsd

 urn:broadband-forum-org:cwmp:datamodel-report-0-1

 http://www.broadband-forum.org/cwmp/cwmp-datamodel-report.xsd"

 ...>

The published XSD schema files are found on the Broadband Forum website at

http://www.broadband-forum.org/cwmp/. When this is not convenient (for example, a new XSD

file has not been published yet, or we want to reference the schema files locally rather than over

the network) then a catalog can be used to redirect an XML editor or processing tool.

The following listing illustrates a simple XML catalog. Its systemIdStartString and

rewritePrefix attributes indicate that any URL of the form “http://www.broadband-

forum.org/cwmp/” will be re-written as “./”. Note that the rewrite prefix is relative to the

directory that contains the XML catalog. Since this value is “./”, it means that the XML catalog

should be placed in the same directory as the schema files.

<?xml version="1.0"?>

<!DOCTYPE catalog PUBLIC "-//OASIS//DTD Entity Resolution XML Catalog V1.0//EN"

"http://www.oasis-open.org/committees/entity/release/1.0/catalog.dtd">

<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">

 <rewriteSystem systemIdStartString="http://www.broadband-forum.org/cwmp/"

3 See http://en.wikipedia.org/wiki/XML_Catalog for additional information regarding XML catalogs.

http://www.broadband-forum.org/cwmp/
http://en.wikipedia.org/wiki/XML_Catalog

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 26 of 232

 rewritePrefix="./"/>

</catalog>

Note that neither the catalog nor the DM Instance documents reference each other. Rather, the

catalog is employed by setting up an XML editor (or processing tool) to reference it, whereby

URLs within subsequent XML files viewed by the editor (or processing tool) will be resolved

accordingly.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 27 of 232

5.3 Defining Root Data Models

5.3.1 Key Points – New Root Data Model

The following table outlines the XML elements necessary to define a very basic, initial version

of a Root Data Model. For details regarding these elements, see Appendix I.

document Root element. Note that spec attribute value corresponds to the Broadband

Forum specification that defined the Data Model.

import Used to import content from supporting XML files. In the simple/base case,

this is used to import bibliography references and named data type definitions.

model The very first version of a Data Model should be version 1.0. A higher major

version is used if the model being defined is a non-backwards compatible

revision to an earlier versioned model of the same base name (c.f. Device:1.0

and Device:2.0)

object The name attribute will always be used (never the base attribute). This is

because only new objects are being defined.

Note: An empty Services object is defined in the initial version of each Root

Data Model (just under the top-level object). This serves as the parent object

for service objects defined by Service Data Models (e.g. VoiceService)

parameter The name attribute will always be used (never the base attribute). This is

because only new parameters are being defined.

profile The name attribute will always be used (never the base attribute or the

extends attribute). This is because only new profiles are being defined.

5.3.2 Basic Walkthrough – Defining a New Root Data Model

This section outlines the basic steps involved in writing a Root Data Model from scratch (i.e. an

initial version of a Root Data Model, not an update to an existing Root Data Model). Examples

include:

 InternetGatewayDevice:1.0 (declared in tr-069-1-0-0.xml)

 Device:1.0 (declared in tr-106-1-0-0.xml)

 Device:2.0 (declared in tr-181-2-0-0.xml)

This walkthrough is an example of writing the Device:2.0 Data Model.

To begin, the XML Data Model file contains one document element (as required for all DM

Instance documents). Note that the spec attribute references the specification that defined the

Data Model, TR-181 Issue 2 in this case. Also, the DM Schema v1.2 specified by the dm and

schemaLocation attributes was the latest version available when the Device:2.0 Data Model

was written
4
.

4 Note that the required document/@file attribute is not specified. This is because it is part of DM Schema v1.4.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 28 of 232

<?xml version="1.0" encoding="UTF-8"?>

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:broadband-forum-org:cwmp:datamodel-1-2 cwmp-datamodel-1-2.xsd”

 spec="urn:broadband-forum-org:tr-181-2-0-0">

 ...

</dm:document>

Add a document description and model element. The model name (i.e. Device:2.0) is assigned a

minor version number of 0 since this is the initial version of the Data Model.
 <description>Device:2.0 Data Model.</description>

 <model name="Device:2.0">

 ...

 </model>

Putting it all together we have:
<?xml version="1.0" encoding="UTF-8"?>

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:broadband-forum-org:cwmp:datamodel-1-2 cwmp-datamodel-1-2.xsd”

 spec="urn:broadband-forum-org:tr-181-2-0-0">

 <description>Device:2 Data Model.</description>

 <model name="Device:2.0">

 ...

 </model>

</dm:document>

Now add the top-level object within the model. The four attributes specified on the object

(name, access, minEntries, and maxEntries) are mandatory for objects.
 <object name="Device." access="readOnly" minEntries="1" maxEntries="1">

 <description>The top-level object for a Device.</description>

 ...

 </object>

Add a parameter within the Device object. Notice that we have also included a description

element immediately under the object and parameter elements. Descriptions can be

included within almost any element. Note that description when used is always the first

child element; e.g. the object description comes before the object parameters or any other

elements within the object). The two attributes specified on the parameter (name and access)

are mandatory for parameters.
 <object name="Device." access="readOnly" minEntries="1" maxEntries="1">

 <description>The top-level object for a Device.</description>

 <parameter name="InterfaceStackNumberOfEntries" access="readOnly">

 <description>{{numentries}}</description>

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

 </object>

Note the use of the {{numentries}} Template in the above description. In this case, it is

equivalent to text such as “The number of entries in the InterfaceStack table”. For details see

Section 6.6.2.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 29 of 232

A Services (single-instance) object will be defined in each Root Data Model. Note that we do not

define objects or parameters under the Services object; these are placed here by a CPE at run-

time from objects and parameters defined in the Service Data Models (e.g. TR-104 defines the

VoiceService:1.0 service objects).
 <object name="Device.Services." access="readOnly" minEntries="1" maxEntries="1">

 <description>This object contains general services information.</description>

 </object>

Putting it all together we have:
<?xml version="1.0" encoding="UTF-8"?>

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:broadband-forum-org:cwmp:datamodel-1-2 cwmp-datamodel-1-2.xsd”

 spec="urn:broadband-forum-org:tr-181-2-0-0">

 <description>Device:2 Data Model.</description>

 <model name="Device:2.0">

 <object name="Device." access="readOnly" minEntries="1" maxEntries="1">

 <description>The top-level object for a Device.</description>

 <parameter name="InterfaceStackNumberOfEntries" access="readOnly">

 <description>{{numentries}}</description>

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

 </object>

 <object name="Device.Services." access="readOnly" minEntries="1" maxEntries="1">

 <description>This object contains general services information.</description>

 </object>

 </model>

</dm:document>

Note that all object elements are defined immediately under the model element (i.e. object

elements sharing a common hierarchy are not physically nested). However, an object’s position

within the object hierarchy is clear since its name is in fact a Path Name.

Now continue to build up the object hierarchy. Define the Ethernet object below the Device

object. This hierarchy is indicated using a Path Name value within the Ethernet object’s name

attribute (i.e. “Device.Ethernet.” indicates that this Ethernet object sits within the Device object).
 <object name="Device.Ethernet." access="readOnly" minEntries="1" maxEntries="1">

 <description>Ethernet object. This object models...</description>

 ...

 </object>

Add the Ethernet.Interface table (a multi-instance object) and its associated

InterfaceNumberOfEntries parameter. Points of interest with this table include the presence of

the numEntriesParameter attribute and the value of the maxEntries attribute. Note that

the numEntriesParameter attribute (and its corresponding parameter definition) is always

specified for a table that has a variable number of entries.
 <object name="Device.Ethernet." access="readOnly" minEntries="1" maxEntries="1">

 ...

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 30 of 232

 <parameter name="InterfaceNumberOfEntries" access="readOnly">

 <description>{{numentries}}</description>

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

 </object>

 <object name="Device.Ethernet.Interface.{i}." access="readOnly"

numEntriesParameter="InterfaceNumberOfEntries" minEntries="0"

maxEntries="unbounded">

 <description>Ethernet interface table. This table models...</description>

 ...

 </object>

Add the Ethernet.Link table. Points of interest include the presence of the

numEntriesParameter attribute and the enableParameter attribute. The

enableParameter attribute indicates the name of the parameter that will enable and disable a

table entry; this attribute is required on writable tables when new entries must be configured with

a unique key value prior to being enabled. Note that read-only tables can also define an enable

parameter, but there is no need to declare the corresponding enableParameter attribute.
 <object name="Device.Ethernet." access="readOnly" minEntries="1" maxEntries="1">

 ...

 <parameter name="LinkNumberOfEntries" access="readOnly">

 <description>{{numentries}}</description>

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

 </object>

 <object name="Device.Ethernet.Link.{i}." access="readWrite"

numEntriesParameter="LinkNumberOfEntries" enableParameter="Enable"

minEntries="0" maxEntries="unbounded">

 <description>Ethernet link layer table. This table models...</description>

 <parameter name="Enable" access="readWrite">

 <description>Enables or disables the link.</description>

 <syntax>

 <boolean/>

 </syntax>

 </parameter>

 ...

 </object>

Putting it all together we have:

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 31 of 232

<?xml version="1.0" encoding="UTF-8"?>

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:broadband-forum-org:cwmp:datamodel-1-2 cwmp-datamodel-1-2.xsd”

 spec="urn:broadband-forum-org:tr-181-2-0-0">

 <description>Device:2 Data Model.</description>

 <model name="Device:2.0">

 <object name="Device." access="readOnly" minEntries="1" maxEntries="1">

 <description>The top-level object for a Device.</description>

 <parameter name="InterfaceStackNumberOfEntries" access="readOnly">

 <description>{{numentries}}</description>

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

 </object>

 <object name="Device.Services." access="readOnly" minEntries="1" maxEntries="1">

 <description>This object contains general services information.</description>

 </object>

 <object name="Device.Ethernet." access="readOnly" minEntries="1" maxEntries="1">

 <description>Ethernet object. This object models...</description>

 <parameter name="InterfaceNumberOfEntries" access="readOnly">

 <description>{{numentries}}</description>

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

 <parameter name=" LinkNumberOfEntries " access="readOnly">

 <description>{{numentries}}</description>

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

 </object>

 <object name="Device.Ethernet.Interface.{i}." access="readOnly"

numEntriesParameter="InterfaceNumberOfEntries" minEntries="0" maxEntries="unbounded">

 <description>Ethernet interface table. This table models...</description>

 ...

 </object>

 <object name="Device.Ethernet.Link.{i}." access="readWrite" numEntriesParameter="LinkNumberOfEntries"

enableParameter="Enable" minEntries="0" maxEntries="unbounded">

 <description>Ethernet link layer table. This table models...</description>

 <parameter name="Enable" access="readWrite">

 <description>Enables or disables the link.</description>

 <syntax>

 <boolean/>

 </syntax>

 </parameter>

 ...

 </object>

 </model>

</dm:document>

Add unique keys to the Ethernet.Interface and Ethernet.Link tables. Note that a table’s unique

key references a corresponding parameter definition within the table (e.g. Name parameter). See

Section 6.5.2.4 re: functional vs. non-functional keys.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 32 of 232

 <object name="Device.Ethernet.Interface.{i}." access="readOnly"

numEntriesParameter="InterfaceNumberOfEntries" minEntries="0" maxEntries="unbounded">

 ...

 <uniqueKey functional="false">

 <parameter ref="Name"/>

 </uniqueKey>

 <parameter name="Name" access="readOnly">

 <description>The textual name of the interface as assigned by the CPE.</description>

 <syntax>

 <string>

 <size maxLength="64"/>

 </string>

 </syntax>

 </parameter>

 ...

 </object>

 <object name="Device.Ethernet.Link.{i}." access="readWrite"

numEntriesParameter="LinkNumberOfEntries" enableParameter="Enable" minEntries="0"

maxEntries="unbounded">

 ...

 <uniqueKey functional="false">

 <parameter ref="Name"/>

 </uniqueKey>

 <parameter name="Name" access="readOnly">

 <description>The textual name of the link as assigned by the CPE.</description>

 <syntax>

 <string>

 <size maxLength="64"/>

 </string>

 </syntax>

 </parameter>

 ...

 </object>

Import the bibliography XML file (allows bibliography references to be cited from within

description elements throughout the document). Also import the data types XML file. Both

are supporting XML files that can be used by Data Models. These import elements go below

the document element and above the model element. Specify the specific data types to be

imported (i.e. only need to import those data types that will actually be used within the

document).
 <import file="tr-069-biblio.xml" spec="urn:broadband-forum-org:tr-069-biblio"/>

 <import file="tr-106-1-0-types.xml" spec="urn:broadband-forum-org:tr-106-1-0">

 <dataType name="IPPrefix"/>

 <dataType name="IPAddress"/>

 <dataType name="IPv4Address"/>

 <dataType name="MACAddress"/>

 </import>

Now update object and parameter definitions to make use of the imported bibliography and data

type files. Points of interest include the {{bibref|RFC2863}} description Template which

references an entry from the imported bibliography XML, and the dataType element which

references a named type from the imported data types XML.
 <object name="Device.Ethernet.Link.{i}." ...>

 ...

 <parameter name="Enable" access="readWrite">

 <description>

 Enables or disables the link.

 This parameter is based on ''ifAdminStatus'' from {{bibref|RFC2863}}.

 </description>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 33 of 232

 ...

 </parameter>

 <parameter name="MACAddress" access="readOnly">

 <description>The MAC address used for packets sent via this interface.</description>

 <syntax>

 <dataType ref="MACAddress"/>

 </syntax>

 </parameter>

 </object>

Add a couple of profiles. Note that objects and parameters within a profile element do not

define new objects/parameters; rather, they reference existing objects and parameters defined

earlier within the Data Model (via the ref attribute). Also note the requirement attribute,

which is used to declare additional requirements on these objects and parameters.

Every Data Model should probably have a Baseline profile. Other profiles can be defined based

on use cases. Often, profiles are used to describe requirements in RFPs.
 <profile name="Baseline:1">

 <object ref="Device." requirement="present">

 <parameter ref="InterfaceStackNumberOfEntries" requirement="readOnly"/>

 </object>

 ...

 </profile>

 <profile name="EthernetLink:1">

 <object ref="Device.Ethernet." requirement="present">

 <parameter ref="LinkNumberOfEntries" requirement="readOnly"/>

 </object>

 <object ref="Device.Ethernet.Link.{i}." requirement="createDelete">

 <parameter ref="Enable" requirement="readWrite"/>

 <parameter ref="Name" requirement="readOnly"/>

 <parameter ref="MACAddress" requirement="readOnly"/>

 ...

 </object>

 </profile>

Putting it all together we have:

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 34 of 232

<?xml version="1.0" encoding="UTF-8"?>

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:broadband-forum-org:cwmp:datamodel-1-2 cwmp-datamodel-1-2.xsd”

 spec="urn:broadband-forum-org:tr-181-2-0-0">

 <description>Device:2 Data Model.</description>

 <import file="tr-069-biblio.xml" spec="urn:broadband-forum-org:tr-069-biblio"/>

 <import file="tr-106-1-0-types.xml" spec="urn:broadband-forum-org:tr-106-1-0">

 <dataType name="IPPrefix"/>

 <dataType name="IPAddress"/>

 <dataType name="IPv4Address"/>

 <dataType name="MACAddress"/>

 </import>

 <model name="Device:2.0">

 <object name="Device." access="readOnly" minEntries="1" maxEntries="1">

 <description>The top-level object for a Device.</description>

 <parameter name="InterfaceStackNumberOfEntries" access="readOnly">

 <description>{{numentries}}</description>

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

 </object>

 <object name="Device.Services." access="readOnly" minEntries="1" maxEntries="1">

 <description>This object contains general services information.</description>

 </object>

 <object name="Device.Ethernet." access="readOnly" minEntries="1" maxEntries="1">

 <description>Ethernet object. This object models...</description>

 <parameter name="InterfaceNumberOfEntries" access="readOnly">

 <description>{{numentries}}</description>

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

 <parameter name=" LinkNumberOfEntries " access="readOnly">

 <description>{{numentries}}</description>

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

 </object>

 <object name="Device.Ethernet.Interface.{i}." access="readOnly"

numEntriesParameter="InterfaceNumberOfEntries" minEntries="0" maxEntries="unbounded">

 <description>Ethernet interface table. This table models...</description>

 <uniqueKey functional="false">

 <parameter ref="Name"/>

 </uniqueKey>

 <parameter name="Name" access="readOnly">

 <description>The textual name of the interface as assigned by the CPE.</description>

 <syntax>

 <string>

 <size maxLength="64"/>

 </string>

 </syntax>

 </parameter>

 ...

 </object>

 <object name="Device.Ethernet.Link.{i}." access="readWrite" numEntriesParameter="LinkNumberOfEntries"

enableParameter="Enable" minEntries="0" maxEntries="unbounded">

 <description>Ethernet link layer table. This table models...</description>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 35 of 232

 <uniqueKey functional="false">

 <parameter ref="Name"/>

 </uniqueKey>

 <parameter name="Enable" access="readWrite">

 <description>

 Enables or disables the link.

 This parameter is based on ''ifAdminStatus'' from {{bibref|RFC2863}}.

 </description>

 <syntax>

 <boolean/>

 </syntax>

 </parameter>

 <parameter name="Name" access="readOnly">

 <description>The textual name of the link as assigned by the CPE.</description>

 <syntax>

 <string>

 <size maxLength="64"/>

 </string>

 </syntax>

 </parameter>

 <parameter name="MACAddress" access="readOnly">

 <description>The MAC address used for packets sent via this interface.</description>

 <syntax>

 <dataType ref="MACAddress"/>

 </syntax>

 </parameter>

 ...

 </object>

 <profile name="Baseline:1">

 <object ref="Device." requirement="present">

 <parameter ref="InterfaceStackNumberOfEntries" requirement="readOnly"/>

 </object>

 ...

 </profile>

 <profile name="EthernetLink:1">

 <object ref="Device.Ethernet." requirement="present">

 <parameter ref="LinkNumberOfEntries" requirement="readOnly"/>

 </object>

 <object ref="Device.Ethernet.Link.{i}." requirement="createDelete">

 <parameter ref="Enable" requirement="readWrite"/>

 <parameter ref="Name" requirement="readOnly"/>

 <parameter ref="MACAddress" requirement="readOnly"/>

 ...

 </object>

 </profile>

 </model>

</dm:document>

5.3.3 Key Points – Amended Root Data Model

The following table outlines the basic XML elements necessary to define a minor revision

(amendment) to a Root Data Model. This applies whether it is the first or the n
th

 revision. For

details regarding these elements, see Appendix I.

document Root element. Note that spec attribute value corresponds to the Broadband

Forum specification that defined the Data Model.

import Used to import the previous version of the Data Model (in this way, elements

defined in previous versions of the Data Model are made “visible” in the

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 36 of 232

current version of the Data Model).

Also used to import content from supporting XML files. In the simple/base

case, this is used to import named data type definitions.

No need to import the bibliography XML file, as it will carry over as part of

importing the previous version of the Data Model.

model Both the name and base attribute will be used together to create a new

version of the Data Model that is being extended.

Such a Data Model revision should increment the Data Model’s minor version

number by one (the major version should remain unchanged, as the intent here

is to indicate a backwards compatible update to the previous version of the

Data Model).

object The name attribute will be used to define new objects. The base attribute

will be used to update existing objects that were defined in an earlier version

of the Data Model.

parameter The name attribute will be used to define new parameters. The base

attribute will be used to update existing parameters that were defined in an

earlier version of the Data Model.

profile The name attribute will be used to define new profiles. Both the name and

base attribute will be used together to create a new version of existing

profiles that were defined in an earlier version of the Data Model.

In a minor revision to a Data Model, only items that are updated or added (e.g. objects,

parameters, profiles) will appear in the document. Items that were defined in a previous minor

version of the Data Model, and that are not changing in this revision, will not be included in this

new revision’s XML file.

Note that items that are being updated do not need to be completely re-specified (only the

changes need to be specified). This applies to an item’s contained elements and optional

attributes, where omitted elements and attributes signify “no change” from how they were

defined in a previous revision
5
. For example, a table defintion (multi-instance object) that is

only being updated to include a new parameter will not re-specify its optional

numEntriesParameter attribute, nor will it re-define its uniqueKey element, nor will it

specify existing parameters that have not changed. Such elements and optional attributes would

only be included if they need to be updated in some way.

5 When an item is updated, an omitted optional attribute (e.g. object/@status) is treated as “no change” from its

previous definition. This is not the case when an item is first defined; where, an omitted optional attribute implies

some default value (e.g. object/@status=”current” by default).

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 37 of 232

5.3.4 Basic Walkthrough – Defining an Amendment to a Root Data Model

This section outlines the basic steps involved in extending an existing Root Data Model (i.e.

creating a minor revision). This applies whether it is the first or n
th

 revision to the Data Model.

Examples include:

 InternetGatewayDevice:1.4 (declared in tr-098-1-2-0.xml)

 Device:1.5 (declared in tr-181-1-0-0.xml)

 Device:2.2 (declared in tr-181-2-2-0.xml)

The main differences in writing an amendment, rather than an initial, Root Data Model are:

 The previous version of the Data Model needs to be imported

 The model/@base attribute references the previous version of the Data Model that was

imported.

 For object, parameter, and profile definitions being updated, their object/@base,

parameter/@base, and profile/@base attributes are used to reference the previous

definition.

 For descriptions being updated, the description/@action attribute indicates how the

specified description will be applied to its previous definition (i.e. prefix, append,

replace).

This walkthrough is an example of writing the Device:2.2 Data Model.

To begin, the XML Data Model file contains one document element (as required for all DM

Instance documents). Note that the spec attribute references the specification that defined the

Data Model, TR-181 Issue 2 Amendment 2 in this case. Also, the DM Schema v1.3 specified by

the dm and schemaLocation attributes was the latest version available when the Device:2.2

Data Model was written
6
.

<?xml version="1.0" encoding="UTF-8"?>

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:broadband-forum-org:cwmp:datamodel-1-3 cwmp-datamodel-1-3.xsd”

 spec="urn:broadband-forum-org:tr-181-2-2-0">

 <description>Device:2.2 Data Model.</description>

 ...

</dm:document>

Import previous version of the Data Model (i.e. import Device:2.1 from TR-181 Issue 2

Amendment 1), and then define the new Device:2.2 version of the Data Model which will be

based on (built on top of) the existing definitions imported from Device:2.1.

The model element uses its base attribute to indicate which Data Model (and version) is being

extended, and its name attribute to indicate the name (and version) of the updated Data Model.

Note that the Data Model’s minor version is incremented by one.
 <import file="tr-181-2-1.xml" spec="urn:broadband-forum-org:tr-181-2-1">

 <model name="Device:2.1"/>

 </import>

6 Note that the required document/@file attribute is not specified. This is because it is part of DM Schema v1.4.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 38 of 232

 <model name="Device:2.2" base=”Device:2.1”>

 ...

 </model>

Import named data types that will be referenced in this revision of the Data Model.
 <import file="tr-106-1-0-types.xml" spec="urn:broadband-forum-org:tr-106-1-0">

 <dataType name="IPv6Address"/>

 <dataType name="IPv6Prefix"/>

 <dataType name="IPv4Address"/>

 <dataType name="MACAddress"/>

 </import>

Putting it all together we have:
<?xml version="1.0" encoding="UTF-8"?>

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:broadband-forum-org:cwmp:datamodel-1-3 cwmp-datamodel-1-3.xsd”

 spec="urn:broadband-forum-org:tr-181-2-2-0">

 <description>Device:2.2 Data Model.</description>

 <import file="tr-106-1-0-types.xml" spec="urn:broadband-forum-org:tr-106-1-0">

 <dataType name="IPv6Address"/>

 <dataType name="IPv6Prefix"/>

 <dataType name="IPv4Address"/>

 <dataType name="MACAddress"/>

 </import>

 <import file="tr-181-2-1.xml" spec="urn:broadband-forum-org:tr-181-2-1">

 <model name="Device:2.1"/>

 </import>

 <model name="Device:2.2" base=”Device:2.1”>

 ...

 </model>

 ...

</dm:document>

Define an update to the existing ManagementServer object and to its existing

ConnectionRequestURL parameter. Notice the use of the base attribute to reference existing

objects and parameters. Update the parameter description by appending additional text to the end

of its existing description (the action attribute set to “append” stipulates this behavior; cf. the

“prefix” and “replace” action values).

Note that we are re-specifying the object and parameter attributes (e.g. access, minEntries,

forcedInform, etc.) in order to mirror the original definition of these elements, and because

in some cases these are required attributes and it would be a schema violation to omit them. We

do not specify the object description (since we are not making changes to the existing text), and

we do not specify the parameter syntax (since nothing in its syntax changed).
 <object base="Device." access="readOnly" minEntries="1" maxEntries="1">

 </object>

 <object base="Device.ManagementServer." access="readOnly" minEntries="1" maxEntries="1">

 <parameter base="ConnectionRequestURL" access="readOnly" forcedInform="true"

activeNotify="forceDefaultEnabled">

 <description action="append">

 Note: If the ''host'' portion of the URL is a literal IPv6 address then it MUST be...

 </description>

 </parameter>

 </object>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 39 of 232

Define a new parameter under an existing object defined in an earlier version of the Data Model.

Again, reference the existing object using the base attribute rather than name (i.e. declare

rather than define). Note that defining new parameters in an amendment is done in the usual way

using the name attribute. In this example we are defining a parameter that is a list of enumerated

items.
 <object base="Device.DNS." access="readOnly" minEntries="1" maxEntries="1">

 <parameter name="SupportedRecordTypes" access="readOnly">

 <description>The DNS record types that are supported by the device.</description>

 <syntax>

 <list/>

 <string>

 <enumeration value="A"/>

 <enumeration value="AAAA"/>

 <enumeration value="SRV"/>

 <enumeration value="PTR"/>

 </string>

 </syntax>

 </parameter>

 </object>

Update an existing profile. The profile element uses the name attribute to define the new

profile, but in this case the base attribute is also used to reference the existing profile that is

being extended. The name of the profile is suffixed with its version number. The updated profile

version number is one greater than the previous version. Objects and parameters declared within

the profile are simply references (see ref attribute) to the actual object and parameters that were

defined earlier in the Data Model.
 <profile name="Baseline:2" base="Baseline:1">

 <object ref="Device.DNS." requirement="present">

 <parameter ref="SupportedRecordTypes" requirement="readOnly"/>

 </object>

 </profile>

Putting it all together we have:

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 40 of 232

<?xml version="1.0" encoding="UTF-8"?>

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:broadband-forum-org:cwmp:datamodel-1-3 cwmp-datamodel-1-3.xsd”

 spec="urn:broadband-forum-org:tr-181-2-2-0">

 <description>Device:2.2 Data Model.</description>

 <import file="tr-106-1-0-types.xml" spec="urn:broadband-forum-org:tr-106-1-0">

 <dataType name="IPv6Address"/>

 <dataType name="IPv6Prefix"/>

 <dataType name="IPv4Address"/>

 <dataType name="MACAddress"/>

 </import>

 <import file="tr-181-2-1.xml" spec="urn:broadband-forum-org:tr-181-2-1">

 <model name="Device:2.1"/>

 </import>

 <model name="Device:2.2" base=”Device:2.1”>

 ...

 <object base="Device.ManagementServer." access="readOnly" minEntries="1" maxEntries="1">

 <parameter base="ConnectionRequestURL" access="readOnly" forcedInform="true"

activeNotify="forceDefaultEnabled">

 <description action="append">

 Note: If the ''host'' portion of the URL is a literal IPv6 address then it MUST be ...

 </description>

 </parameter>

 </object>

 <object base="Device.DNS." access="readOnly" minEntries="1" maxEntries="1">

 <parameter name="SupportedRecordTypes" access="readOnly">

 <description>The DNS record types that are supported by the device.</description>

 <syntax>

 <list/>

 <string>

 <enumeration value="A"/>

 <enumeration value="AAAA"/>

 <enumeration value="SRV"/>

 <enumeration value="PTR"/>

 </string>

 </syntax>

 </parameter>

 </object>

 ...

 <profile name="Baseline:2" base="Baseline:1">

 <object ref="Device.DNS." requirement="present">

 <parameter ref="SupportedRecordTypes" requirement="readOnly"/>

 </object>

 </profile>

 ...

 </model>

 ...

</dm:document>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 41 of 232

5.4 Defining Service Data Models

5.4.1 Key Points – New Service Data Model

The following table outlines the XML elements necessary to define a very basic initial version of

a Service Data Model. For details regarding these elements, see Appendix I.

document Root element. Note that spec attribute value corresponds to the Broadband

Forum specification that defined the Data Model.

import Used to import content from supporting XML files. In the simple/base case,

this is used to import bibliography references and named data type definitions.

model The very first version of a Data Model should be version 1.0. A higher major

version is used if the model being defined is a non-backwards compatible

revision to an earlier versioned model of the same base name (c.f. Device:1.0

and Device:2.0).

The isService attribute will be present and have value “true”.

object The name attribute will always be used (never the base attribute). This is

because only new objects are being defined.

Note: All Service Data Models have a top-level table (e.g. VoiceService.{i}.),

where the table name coincides with the name of the service model. This table

is the root of the service model hierarchy. This differs from the Root Data

Models, which have either the Device or InternetGatewayDevice singleton

object at the root of their hierarchy.

parameter The name attribute will always be used (never the base attribute). This is

because only new parameters are being defined.

Note: All Service Data Models have a top-level number-of-entries parameter

(e.g. VoiceServiceNumberOfEntries) that is associated with the top-level

service table.

profile The name attribute will always be used (never the base attribute or the

extends attribute). This is because only new profiles are being defined.

5.4.2 Basic Walkthrough – Defining a New Service Data Model

This section outlines the basic steps involved in writing a Service Data Model from scratch (i.e.

an initial version of a Service Data Model, not an update to an existing Service Data Model).

Examples include:

 VoiceService:1.0 (declared in tr-104-1-0-0.xml)

 STBService:1.0 (declared in tr-135-1-0-0.xml)

 FAPService:1.0 (declared in tr-196-1-0-0.xml)

In many ways, writing a Service Data Model is quite similar to writing a Root Data Model. The

main differences with a Service Data Model are:

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 42 of 232

 The model element includes the isService attribute, set to true.

 There is a top-level multi-instance object, whose name coincides with the name of the

service model. This is the top of this service model hierarchy.

 There is a top-level number-of-entries parameter that is associated with the top-level

multi-instance service object.

 There is no Device.Services (or InternetGatewayDevice.Services) object, which is only

defined in a Root Data Model.

This walkthrough is an example of writing the VoiceService:1.0 Data Model.

To begin, the XML Data Model file contains one document element (as required for all DM

Instance documents). Note that the spec attribute references the specification that defined the

Data Model, TR-104 Issue 1 in this case. Also, the DM Schema v1.1 specified by the dm and

schemaLocation attributes was the latest version available when the VoiceService:1.0 Data

Model was written
7
.

<?xml version="1.0" encoding="UTF-8"?>

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:broadband-forum-org:cwmp:datamodel-1-0 cwmp-datamodel-1-0.xsd"

 spec="urn:broadband-forum-org:tr-104-1-0-0">

 ...

</dm:document>

Add a document description and model element. The model element uses the isService

attribute to indicate that this is a Service Data Model; the model name is assigned a minor

version number of 0 since this is the initial version of the Data Model.
 <description>VoiceService:1 Data Model.</description>

 <model name="VoiceService:1.0" isService="true">

 ...

 </model>

Import the bibliography XML file (allows bibliography references to be cited from within

description elements throughout the document). Also import the data types XML file.

Specify the specific data types to be imported (i.e. only need to import those data types that will

actually be used within the document). Both of these import elements go below the

document and above the model element.
 <import file="tr-069-biblio.xml" spec="urn:broadband-forum-org:tr-069-biblio"/>

 <import file="tr-106-1-0-types.xml" spec="urn:broadband-forum-org:tr-106-1-0">

 <dataType name="IPAddress"/>

 </import>

Putting it all together

7 Note that the required document/@file attribute is not specified. This is because it is part of DM Schema v1.4.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 43 of 232

<?xml version="1.0" encoding="UTF-8"?>

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:broadband-forum-org:cwmp:datamodel-1-0 cwmp-datamodel-1-0.xsd"

 spec="urn:broadband-forum-org:tr-104-1-0-0">

 <description>VoiceService:1 Data Model.</description>

 <import file="tr-069-biblio.xml" spec="urn:broadband-forum-org:tr-069-biblio"/>

 <import file="tr-106-1-0-types.xml" spec="urn:broadband-forum-org:tr-106-1-0">

 <dataType name="IPAddress"/>

 <dataType name="MACAddress"/>

 </import>

 <model name="VoiceService:1.0" isService="true">

 ...

 </model>

</dm:document>

Add the top-level VoiceService table (a multi-instance object) and its associated top-level

VoiceServiceNumberOfEntries parameter (i.e. these are at the top/root of the object hierarchy).

Note that all Service Data Models have such a top-level table and associated number-of-entries

parameter, where the table name coincides with the name of the Service Data Model. Other

points of interest include the presence of the numEntriesParameter attribute.
 <parameter name="VoiceServiceNumberOfEntries" access="readOnly">

 <description>{{numentries}}</description>

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

 <object name="VoiceService.{i}." access="readOnly" minEntries="0" maxEntries="unbounded"

numEntriesParameter="VoiceServiceNumberOfEntries">

 <description>The top-level object for VoIP CPE.</description>

 <parameter name="VoiceProfileNumberOfEntries" access="readOnly">

 <description>{{numentries}}</description>

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

 </object>

Now continue to build up the object hierarchy. Since this is the initial version of the Data Model,

all objects and parameters are defined using the name attribute. And each object indicates its

relative position within the hierarchy using the path-dot-notation within its name (e.g. an object

with name “VoiceServices.{i}.Capabilities.” indicates that this Capabilities object sits within the

VoiceService.{i} object).

Note the FarEndIPAddress parameter below; it is defined using a dataType element that

references the IPAddress data type. This is possible here because we imported the data types

XML file earlier (which is where the IPAddress data type is actually defined).
 <object name="VoiceService.{i}.Capabilities." access="readOnly" minEntries="1"

maxEntries="1">

 <description>The overall capabilities of the VoIP CPE.</description>

 <parameter name="MaxProfileCount" access="readOnly" activeNotify="canDeny">

 <description>Maximum total number of distinct voice profiles supported.</description>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 44 of 232

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

 ...

 </object>

 <object name="VoiceService.{i}.VoiceProfile.{i}." ...>

 ...

 </object>

 <object name="VoiceService.{i}.VoiceProfile.{i}.Line.{i}." ...>

 ...

 </object>

 <object name="VoiceService.{i}.VoiceProfile.{i}.Line.{i}.Session.{i}." access="readOnly"

minEntries="0" maxEntries="unbounded" >

 <description>Information on each active ...</description>

 ...

 <parameter name="FarEndIPAddress" access="readOnly" activeNotify="canDeny">

 <description>The IP address of far end VoIP device.</description>

 <syntax>

 <dataType ref="IPAddress"/>

 </syntax>

 </parameter>

 </object>

Add a profile. Note that objects and parameters within a profile element do not define new

objects/parameters; rather, they reference existing objects and parameters defined earlier within

the Data Model (via the ref attribute). Also note the requirement attribute, which is used to

declare additional requirements on these objects and parameters.
 <profile name="Endpoint:1">

 <object ref="VoiceService.{i}." requirement="present">

 <parameter ref="VoiceProfileNumberOfEntries" requirement="readOnly"/>

 </object>

 <object ref="VoiceService.{i}.Capabilities." requirement="present">

 <parameter ref="MaxProfileCount" requirement="readOnly"/>

 ...

 </object>

 <object ref="VoiceService.{i}.VoiceProfile.{i}." requirement="createDelete">

 ...

 </object>

 <object ref="VoiceService.{i}.VoiceProfile.{i}.Line.{i}." requirement="createDelete">

 ...

 </object>

 <object ref="VoiceService.{i}.VoiceProfile.{i}.Line.{i}.Session.{i}."

requirement="present">

 ...

 <parameter ref="FarEndIPAddress" requirement="readOnly"/>

 </object>

 ...

 </profile>

Putting it all together

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 45 of 232

<?xml version="1.0" encoding="UTF-8"?>

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:broadband-forum-org:cwmp:datamodel-1-0 cwmp-datamodel-1-0.xsd"

 spec="urn:broadband-forum-org:tr-104-1-0-0">

 <description>VoiceService:1 Data Model.</description>

 <import file="tr-069-biblio.xml" spec="urn:broadband-forum-org:tr-069-biblio"/>

 <import file="tr-106-1-0-types.xml" spec="urn:broadband-forum-org:tr-106-1-0">

 <dataType name="IPAddress"/>

 <dataType name="MACAddress"/>

 </import>

 <model name="VoiceService:1.0" isService="true">

 ...

 <parameter name="VoiceServiceNumberOfEntries" access="readOnly">

 <description>{{numentries}}</description>

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

 <object name="VoiceService.{i}." access="readOnly" minEntries="0" maxEntries="unbounded"

numEntriesParameter="VoiceServiceNumberOfEntries">

 <description>The top-level object for VoIP CPE.</description>

 <parameter name="VoiceProfileNumberOfEntries" access="readOnly">

 <description>{{numentries}}</description>

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

 </object>

 <object name="VoiceService.{i}.Capabilities." access="readOnly" minEntries="1" maxEntries="1">

 <description>The overall capabilities of the VoIP CPE.</description>

 <parameter name="MaxProfileCount" access="readOnly" activeNotify="canDeny">

 <description>Maximum total number of distinct voice profiles supported.</description>

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

 ...

 </object>

 <object name="VoiceService.{i}.VoiceProfile.{i}." ...>

 ...

 </object>

 <object name="VoiceService.{i}.VoiceProfile.{i}.Line.{i}." ...>

 ...

 </object>

 <object name="VoiceService.{i}.VoiceProfile.{i}.Line.{i}.Session.{i}." access="readOnly" minEntries="0"

maxEntries="unbounded" >

 <description>Information on each active ...</description>

 ...

 <parameter name="FarEndIPAddress" access="readOnly" activeNotify="canDeny">

 <description>The IP address of far end VoIP device.</description>

 <syntax>

 <dataType ref="IPAddress"/>

 </syntax>

 </parameter>

 </object>

 ...

 <profile name="Endpoint:1">

 <object ref="VoiceService.{i}." requirement="present">

 <parameter ref="VoiceProfileNumberOfEntries" requirement="readOnly"/>

 </object>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 46 of 232

 <object ref="VoiceService.{i}.Capabilities." requirement="present">

 <parameter ref="MaxProfileCount" requirement="readOnly"/>

 ...

 </object>

 <object ref="VoiceService.{i}.VoiceProfile.{i}." requirement="createDelete">

 ...

 </object>

 <object ref="VoiceService.{i}.VoiceProfile.{i}.Line.{i}." requirement="createDelete">

 ...

 </object>

 <object ref="VoiceService.{i}.VoiceProfile.{i}.Line.{i}.Session.{i}." requirement="present">

 ...

 <parameter ref="FarEndIPAddress" requirement="readOnly"/>

 </object>

 ...

 </profile>

 ...

 </model>

</dm:document>

5.4.3 Key Points – Amended Service Data Model

The following table outlines the basic XML elements necessary to define a minor revision

(amendment) to a Service Data Model. This applies whether it is the first or the n
th

 revision. For

details regarding these elements, see Appendix I.

document Root element. Note that spec attribute value corresponds to the Broadband

Forum specification that defined the Data Model.

import Used to import the previous version of the Data Model (in this way, elements

defined in previous versions of the Data Model are made “visible” in the

current version of the Data Model).

Also used to import content from supporting XML files. In the simple/base

case, this is used to import named data type definitions.

No need to import the bibliography XML file, as it will carry over as part of

importing the previous version of the Data Model.

model Both the name and base attribute will be used together to create a new

version of the Data Model that is being extended.

Such a Data Model revision should increment the Data Model’s minor version

number by one (the major version should remain unchanged, as the intent here

is to indicate a backwards compatible update to the previous version of the

Data Model).

object The name attribute will be used to define new objects. The base attribute

will be used to update existing objects that were defined in an earlier version

of the Data Model.

Note: All Service Data Models have a top-level table (e.g. VoiceService.{i}.),

where the table name coincides with the name of the service model (this will

have been defined in the initial version of the Data Model). This table is the

root of the service model hierarchy.

parameter The name attribute will be used to define new parameters. The base

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 47 of 232

attribute will be used to update existing parameters that were defined in an

earlier version of the Data Model.

Note: All Service Data Models have a top-level number-of-entries parameter

(e.g. VoiceServiceNumberOfEntries) that is associated with the top-level

service table (this will have been defined in the initial version of the Data

Model).

profile The name attribute will be used to define new profiles. Both the name and

base attribute will be used together to create a new version of existing

profiles that were defined in an earlier version of the Data Model.

In a minor revision to a Data Model, only items that are updated or added (e.g. objects,

parameters, profiles) will appear in the document. Items that were defined in a previous minor

version of the Data Model, and that are not changing in this revision, will not be included in this

new revision’s XML file.

Note that items that are being updated do not need to be completely re-specified (only the

changes need to be specified). An item’s omitted elements and optional attributes signify “no

change” from how they were defined in a previous revision. This concept applies to both Root

and Service Data Model amendments (see Section 5.3.3 for further explanation).

5.4.4 Basic Walkthrough – Defining an Amendment to a Service Data Model

This section outlines the basic steps involved in extending an existing Service Data Model (i.e.

creating a minor revision). This applies whether it is the first or n
th

 revision to the Data Model.

Examples include:

 VoiceService:1.1 (declared in tr-104-1-1-0.xml)

 STBService:1.1 (declared in tr-135-1-1-0.xml)

 FAPService:1.1 (declared in tr-196-1-1-0.xml)

The main differences in writing an amendment, rather than an initial, Service Data Model are:

 The previous version of the Data Model needs to be imported

 The model/@base attribute references the previous version of the Data Model that was

imported.

 For object, parameter, and profile definitions being updated, their object/@base,

parameter/@base, and profile/@base attributes are used to reference the previous

definition.

 For descriptions being updated, the description/@action attribute indicates how the

specified description will be applied to its previous definition (i.e. prefix, append,

replace)

This walkthrough is an example of writing the VoiceService:1.1 Data Model.

To begin, the XML Data Model file contains one document element (as required for all DM

Instance documents). Note that the spec attribute references the specification that defined the

Data Model, TR-104 Issue 1 Amendment 1 in this case. Also, the DM Schema v1.3 specified by

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 48 of 232

the dm and schemaLocation attributes was the latest version available when the

VoiceService:1.1 Data Model was written
8
.

This section outlines the basic steps involved in <?xml version="1.0" encoding="UTF-8"?>

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:broadband-forum-org:cwmp:datamodel-1-3 cwmp-datamodel-1-3.xsd"

 spec="urn:broadband-forum-org:tr-104-1-1-0">

 <description>VoiceService:1.1 Data Model.</description>

 ...

</dm:document>

Import previous version of the Data Model (i.e. import VoiceService:1.0 from TR-104 Issue 1),

and then define the new VoiceService:1.1 version of the Data Model which will be based on

(built on top of) the existing definitions imported from VoiceService:1.0.

The model element uses its base attribute to indicate which Data Model (and version) is being

extended, and its name attribute to indicate the name (and version) of the updated Data Model.

Note that the Data Model’s minor version is incremented by one. Note that the model element

uses the isService attribute to indicate that this is a Service Data Model.
 <import file="tr-104-1-0.xml" spec="urn:broadband-forum-org:tr-104-1-0">

 <model name="VoiceService:1.0"/>

 </import>

 <model name="VoiceService:1.1" base="VoiceService:1.0" isService="true">

 ...

 </model>

Import named data types that will be referenced in this revision of the Data Model.
 <import file="tr-106-1-0-types.xml" spec="urn:broadband-forum-org:tr-106-1-0">

 <dataType name="IPAddress"/>

 <dataType name="MACAddress"/>

 </import>

Putting it all together

8 Note that the required document/@file attribute is not specified. This is because it is part of DM Schema v1.4.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 49 of 232

<?xml version="1.0" encoding="UTF-8"?>

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:broadband-forum-org:cwmp:datamodel-1-3 cwmp-datamodel-1-3.xsd"

 spec="urn:broadband-forum-org:tr-104-1-1-0">

 <description>VoiceService:1.1 Data Model.</description>

 <import file="tr-106-1-0-types.xml" spec="urn:broadband-forum-org:tr-106-1-0">

 <dataType name="IPAddress"/>

 </import>

 <import file="tr-104-1-0.xml" spec="urn:broadband-forum-org:tr-104-1-0">

 <model name="VoiceService:1.0"/>

 </import>

 <model name="VoiceService:1.1" base="VoiceService:1.0" isService="true">

 ...

 </model>

 ...

</dm:document>

Define an update to the existing SignalingProtocols parameter under the VoiceServices.{i}.-

Capabilities object. Notice the use of the base attribute to reference existing objects and

parameters. Update the parameter description by appending additional text to the end of its

existing description (the action attribute set to “append” stipulates this behavior; cf. the

“prefix” and “replace” action values).

Note that we are re-specifying the object and parameter attributes (e.g. access, minEntries,

activeNotify, etc.) in order to mirror the original definition of these elements, and because

in some cases these are required attributes and it would be a schema violation to omit them.

Notice that we have not re-specified the object and parameter descriptions (this is because we are

not making changes to the existing description text). However, do note that the parameter’s full

set of pattern facets are re-specified even though we are just adding two new patterns; this is

because a data type facet must be fully specified when changed (see Section 6.6.1.3).

Define the new CallForwarding parameter under the VoiceServices.{i}.Capabilities object.

Notice the use of the name attribute to define a new parameter. Defining new objects and

parameters, or updating existing ones, is done here in the same manner as in any other Data

Model.
 <object base="VoiceService.{i}." access="readOnly" minEntries="0" maxEntries="unbounded">

 </object>

 <object base="VoiceService.{i}.Capabilities." access="readOnly" minEntries="1"

maxEntries="1">

 <parameter base="SignalingProtocols" access="readOnly" activeNotify="canDeny">

 <description action="append">Added enumeration values: "POTS", and "ISDN".</description>

 <syntax>

 <string>

 <pattern value="SIP"/>

 <pattern value="MGCP"/>

 <pattern value="MGCP-NCS"/>

 <pattern value="H\.248"/>

 <pattern value="H\.323"/>

 <pattern value="POTS"/>

 <pattern value="ISDN"/>

 <pattern value="SIP/\d+\.\d+"/>

 <pattern value="MGCP/\d+\.\d+"/>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 50 of 232

 <pattern value="MGCP-NCS/\d+\.\d+"/>

 <pattern value="H\.248/\d+\.\d+"/>

 <pattern value="H\.323/\d+\.\d+"/>

 <pattern value="X_.+"/>

 </string>

 </syntax>

 </parameter>

 <parameter name="CallForwarding" access="readOnly">

 <description>Support for call forwarding.</description>

 <syntax>

 <boolean/>

 </syntax>

 </parameter>

 ...

 </object>

This amendment does not define any profiles.

Putting it all together

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 51 of 232

<?xml version="1.0" encoding="UTF-8"?>

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:broadband-forum-org:cwmp:datamodel-1-3 cwmp-datamodel-1-3.xsd"

 spec="urn:broadband-forum-org:tr-104-1-1-0">

 <description>VoiceService:1.1 Data Model.</description>

 <import file="tr-106-1-0-types.xml" spec="urn:broadband-forum-org:tr-106-1-0">

 <dataType name="IPAddress"/>

 </import>

 <import file="tr-104-1-0.xml" spec="urn:broadband-forum-org:tr-104-1-0">

 <model name="VoiceService:1.0"/>

 </import>

 <model name="VoiceService:1.1" base="VoiceService:1.0" isService="true">

 <object base="VoiceService.{i}." access="readOnly" minEntries="0" maxEntries="unbounded”>

 </object>

 <object base="VoiceService.{i}.Capabilities." access="readOnly" minEntries="1" maxEntries="1">

 <parameter base="SignalingProtocols" access="readOnly" activeNotify="canDeny">

 <description action="append">Added enumeration values: "POTS", and "ISDN".</description>

 <syntax>

 <string>

 <pattern value="SIP"/>

 <pattern value="MGCP"/>

 <pattern value="MGCP-NCS"/>

 <pattern value="H\.248"/>

 <pattern value="H\.323"/>

 <pattern value="POTS"/>

 <pattern value="ISDN"/>

 <pattern value="SIP/\d+\.\d+"/>

 <pattern value="MGCP/\d+\.\d+"/>

 <pattern value="MGCP-NCS/\d+\.\d+"/>

 <pattern value="H\.248/\d+\.\d+"/>

 <pattern value="H\.323/\d+\.\d+"/>

 <pattern value="X_.+"/>

 </string>

 </syntax>

 </parameter>

 <parameter name="CallForwarding" access="readOnly">

 <description>Support for call forwarding.</description>

 <syntax>

 <boolean/>

 </syntax>

 </parameter>

 ...

 </object>

 ...

 </model>

 ...

</dm:document>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 52 of 232

5.5 Defining Vendor-Specific Data Models

5.5.1 Defining a Vendor-Specific Extension to a Standard Data Model

Vendors can extend Broadband Forum Data Models in order to define their own items (e.g.

vendor-specific objects, parameters, enumerations, patterns, profiles). Both Root and Service

Data Models can be extended in this way; such extensions are defined in the same way

Broadband Forum amendments extend Data Models. However, the name assigned to vendor-

specific items will begin with X_<VENDOR>_, where <VENDOR> must be as defined in

Section 3.3/TR-106 [3].

A vendor-specific XML Data Model contains one document element. The document’s file

and spec attributes will have a vendor-specific doc number. The Broadband Forum model to be

extended is imported and used to define the vendor-specific model.

The following listing is an example of a vendor-specific model named X_ACDC73_Device:2.1

(where the vendor’s designation is ACDC73). Note that the Device:2.1 model is imported into

the vendor-specific document, and is used to define the vendor-specific model based on

Device:2.1. The model is extended in order to add a vendor-specific object and parameter.

<?xml version="1.0" encoding="UTF-8"?>

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-4"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:broadband-forum-org:cwmp:datamodel-1-4 cwmp-datamodel-1-4.xsd"

 file="acdc73_tr-181-2-1-0.xml" spec="urn:acdc73:tr-181-2-1-0">

 <description>Device:2.1 Data Model with vendor extensions.</description>

 ...

 <import file="tr-181-2-1.xml" spec="urn:broadband-forum-org:tr-181-2-1">

 <model name="Device:2.1"/>

 </import>

 <model name="X_ACDC73_Device:2.1" base="Device:2.1">

 <object name="Device.ManagementServer.X_ACDC73_ExampleObject." ... >

 <description>...</description>

 <parameter name="ExampleParameter" ...>

 <description>...</description>

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

 ...

 </object>

 ...

 </model>

</dm:document>

In the above example, ExampleParameter is a vendor-specific parameter but its name does not

include the vendor prefix. This is because its parent object is vendor-specific. Vendor-specific

items (e.g. objects, parameters, enumerations) will not be named with a vendor prefix when their

parent object or parameter is vendor-specific. In other words, this vendor-prefix naming rule

only applies to the boundary between the Broadband Forum items and vendor-specific items.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 53 of 232

5.5.2 Defining a Vendor-Specific Service Data Model

Vendors can also define entirely new Service Data Models independent of the Broadband Forum

models. In this case, the entire model is vendor-specific.

Defining such a vendor-specific Service Data Model is done in the same way as defining a

Broadband Forum Service Data Model (see Section 5.4). The only difference is that the top-level

items will be named with an X_<VENDOR>_ prefix, where <VENDOR> must be as defined in

Section 3.3/TR-106 [3]. The following items will be named with a vendor prefix:

 The model.

 The top-level number-of-entries parameter.

 The top-level multi-instance service object.

Note that items defined within the top-level multi-instance object (e.g. objects, parameters,

enumerations) will not be named with a vendor prefix.

The following listing is an example of such a vendor-specific Service Data Model (where the

vendor’s designation is ACDC73). Note that document’s file and spec attributes have a

vendor-specific doc number.

<?xml version="1.0" encoding="UTF-8"?>

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-4"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:broadband-forum-org:cwmp:datamodel-1-4 cwmp-datamodel-1-4.xsd"

 file="acdc73_example-1-0-0.xml" spec="urn:acdc73:example-1-0-0">

 <description>Vendor ExampleService:1.0 Data Model.</description>

 ...

 <model name="X_ACDC73_ExampleService:1.0" isService="true">

 <parameter name="X_ACDC73_ExampleServiceNumberOfEntries" access="readOnly">

 <description>{{numentries}}</description>

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

 <object name="X_ACDC73_ExampleService.{i}." access="readOnly" minEntries="0" maxEntries="unbounded"

 numEntriesParameter="X_ACDC73_ExampleServiceNumberOfEntries">

 <description>...</description>

 <parameter name="ExampleParameter" ...>

 <description>...</description>

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

 ...

 </object>

 </model>

</dm:document>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 54 of 232

6 DM XML Data Model Tutorials

This section provides guidance in defining DM Instance documents (called DM Instances for

short). These documents are XML files that comply with the DM Schema (Appendix I). They are

defined by the Broadband Forum in order to specify standard Data Models and by CPE vendors

in order to specify vendor-specific Data Models. Such Data Models represent objects and

parameters available to a range of device types (i.e. not specific to a particular device type).

A DM Data Model can be specified using multiple DM Instance documents. This will include a

primary DM Instance document (that defines the latest revision of a given model), previous DM

Instance documents (that define the previous revisions of the model if present), as well as

supporting DM Instance documents (that define elements such as components, data types, and

bibliography). See Sections 4 and 5 for further introductory materials regarding DM Instances

and Data Models.

Note – DM Instances (and DM Data Models) should not be confused with DT Instances (and DT Data

Models), discussed in Section 7, which instead describe a CPE vendor’s Supported Data Model for a
particular device type.

6.1 Bibliography

Bibliography references are defined using the bibliography/reference element (I.5.1).

There are two ways to define bibliography references:

 within the central bibliography file, or

 within a given Data Model file

Regardless of where a bibliography reference is defined, it can be cited from within descriptions

in the same manner.

Note – Defining references within the central bibliography file means that they can be reused across Data
Models.

Note – The DM Schema indicates that bibliographies are defined under a document element, which

means that they can be defined within any XML file. This might be useful when a draft document is in
development. However, the convention is to limit bibliography definitions to the central bibliography file

for all published documents.

6.1.1 Adding Reusable Bibliography Reference Elements

The centralized, global bibliography is defined in tr-069-biblio.xml. This file lists both

Broadband Forum and external specifications that are cited in the various XML Data Models. It

most cases, it is best to use this central file to define bibliography reference elements.

The following listing illustrates the layout and key elements found in tr-069-biblio.xml (see I.5

for details on the bibliography element). Two bibliography references are defined in this

example, RFC 4122 and TR-181i2a1.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3" ...

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 55 of 232

 spec="urn:broadband-forum-org:tr-069-biblio">

 <bibliography>

 ...

 <reference id="RFC4122">

 <name>RFC 4122</name>

 <title>A Universally Unique Identifier (UUID) URN Namespace</title>

 <organization>IETF</organization>

 <category>RFC</category>

 <date>2005</date>

 <hyperlink>http://tools.ietf.org/rfc/rfc4122.txt</hyperlink>

 </reference>

 ...

 <reference id="TR-181i2a1">

 <name>TR-181 Issue 2 Amendment 1</name>

 <title>Device Data Model for TR-069</title>

 <organization>Broadband Forum</organization>

 <category>TR</category>

 <date>2010</date>

 </reference>

 ...

 <bibliography>

</dm:document>

To add a new bibliography reference to tr-069-biblio.xml, simply insert a bibliography/-

reference element and its related sub-elements. At a minimum, the reference needs to include

an id, name, title, and should also include organization, category, date, and

hyperlink where applicable. Broadband Forum bibliography references do not need to

include a hyperlink to the published specification, since this information is well-known and can

be generated by the Report Tool.

The id is intended to uniquely identify a bibliography reference across all DM Instance

documents (i.e. it should be globally unique). Appendix A.2.4/TR-106 [3] specifies a set of rules

used to determine the standard id value for specifications published by various SDOs. These

rules can be summarized through example
9
:

 “TR-181” refers to BBF technical report TR-181 Issue 1 (Amendment 0)

 “TR-106a2” refers to BBF technical report TR-106 Issue 1 Amendment 2

 “TR-181i2a1” refers to BBF technical report TR-181 Issue 2 Amendment 1

 “RFC4078” refers to IETF RFC 4078

 “802.1D-2004” refers to IEEE 802.1D-2004

 “G.998.3” refers to ITU-T G.998.3

This id is used by XML Data Models in order to cite specific references from within

description elements.

Note – A Data Model file will need to import tr-069-biblio.xml in order to use its bibliography.

6.1.2 Adding Data-Model Specific Bibliography Reference Elements

Defining bibliography references from within a given Data Model file is accomplished in much

the same way as is done using tr-069-biblio.xml (see 6.1.1). Although extending tr-069-

biblio.xml is preferred, if the reference is highly specific to the Data Model in question then it

9 An id value will not contain space characters. An id value for a Broadband Forum technical report will not include

the corrigendum; the latest corrigendum is always assumed.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 56 of 232

can be defined directly within the Data Model file. But doing this means that this bibliography

reference cannot be reused by other (unrelated) Data Models.

The following listing illustrates the definition a bibliography reference from within a Data Model

file (see I.5 for details on the bibliography element).

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3" ...

 spec="urn:broadband-forum-org:tr-135-1-1-0">

 ...

 <import file="tr-069-biblio.xml" spec="urn:broadband-forum-org:tr-069-biblio"/>

 ...

 <bibliography>

 ...

 <reference id="RFC4078">

 <name>RFC 4078</name>

 <title>The TV-Anytime Content Reference Identifier (CRID)</title>

 <organization>IETF</organization>

 <category>RFC</category>

 <hyperlink>http://www.ietf.org/rfc/rfc4078.txt</hyperlink>

 </reference>

 ...

 <bibliography>

 <model...> ... </model>

</dm:document>

A new bibliography reference is defined within the document using a bibliography/-

reference element. This is exactly the same as in the tr-069-biblio.xml file.

The bibliography element comes after the description and import elements (if

present), and before other top-level elements such as model and component.

Note – In the above listing, importing tr-069-biblio.xml is optional. Doing so is only necessary if the
Data Model cites references defined in that file.

Note – Be careful not to duplicate references already defined within the central tr-069-biblio.xml file.

The Report Tool includes a warnbibref setting to warn against such duplications (see V.4.1).

6.1.3 Citing a Bibliographic Reference

Bibliography references can be cited from within any description element in the Data

Model; for example, from within object descriptions, parameter descriptions, enumeration

descriptions, etc. This is done by using a {{bibref}} Template (see I.2.3).

In order to cite a bibliographic reference, the reference definition must be “visible” from within

the local file making the citation. This is accomplished by either importing the file that defines

the reference or by defining the reference directly within the local Data Model file.

In the following Data Model listing, the global bibliography file tr-069-biblio.xml is imported in

order to gain access to its defined reference elements. Then the EnabledOptions parameter

description cites TR-069 Table 48 using the notation {{bibref|TR-069|Table 48}}. The

second part of the Template is the id of the bibliographic reference being cited, and the (optional)

third part of the Template is free-form text indicating a specific area of the document being cited.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 57 of 232

In this case it is Table 48, however, this value will vary depending on the area of the

document being cited (e.g. Section, Appendix, Annex, Table, Figure, etc.).

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-0" ...

 spec="urn:broadband-forum-org:tr-069-1-0-0">

 ...

 <import file="tr-069-biblio.xml" spec="urn:broadband-forum-org:tr-069-biblio"/>

 ...

 <model...>

 <object ...>

 <parameter name="EnabledOptions" access="readOnly">

 <description>... as described in {{bibref|TR-069|Table 48}}.</description>

 </parameter>

 ...

 </object>

 ...

</model>

</dm:document>

In the following Data Model listing, bibliography reference RFC 4078 is defined directly within

the local file. Then the ContentReferenceId parameter description cites RFC 4078 using the

notation {{bibref|RFC4078}}. The RFC4078 portion is the id of the bibliographic

reference being cited. In this case the reference is visible (available to be used within bibref

Templates) because it is defined directly within the local file.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3" ...

 spec="urn:broadband-forum-org:tr-135-1-1-0">

 ...

 <bibliography>

 <reference id="RFC4078">

 <name>RFC 4078</name>

 <title>The TV-Anytime Content Reference Identifier (CRID)</title>

 <organization>IETF</organization>

 <category>RFC</category>

 <hyperlink>http://www.ietf.org/rfc/rfc4078.txt</hyperlink>

 </reference>

 ...

 <bibliography>

 <model...>

 <object ...>

 ...

 <parameter name="ContentReferenceId" access="readOnly">

 <description>Unique Content Item reference as defined in {{bibref|RFC4078}}</description>

 ...

 </parameter>

 </object>

 ...

</model>

</dm:document>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 58 of 232

6.2 Named Data Types

A named data type is a custom data type that is usually defined within the central tr-106-1-0-0-

types.xml file using the top-level dataType element (I.4). This should not be confused with the

dataType element that can appear within parameter definitions, which is just a data type

reference (a reference to a named data type defined elsewhere) rather than a data type definition.

A named data type should be defined when there is a set of data requirements that can apply to a

range of parameters. For example, an IP address or a MAC address. By defining and using a

named data type, it guarantees that these data requirements will be applied consistently.

A named data type is defined in terms of one of the built-in primitive data types (e.g.

unsignedInt), or defined in terms of another named data type from which it inherits part of its

definition.

The two varieties of named data types can be characterized as: basic and derived. A derived type

will inherit from another named data type (either basic or derived). A basic type inherits nothing

and is defined using one of the built-in primitive data types.

The ultimate purpose in defining a named data type is in specifying a parameter’s type (i.e.

within a parameter/syntax/dataType element). Using a named data type is a consistent

way to associate a set of data requirements with a parameter. See Section 6.6.1.2 for details.

Note – The DM Schema indicates that named data types are defined under a document element, which

means that data types can be defined within any XML file. This might be useful when a draft document is

in development. However, the convention is to limit data type definitions to the central tr-106-1-0-0-

types.xml file for all published documents.

Note – The tr-106-1-0-0-types.xml file name does not change when it is updated.

Note – A Data Model file will need to import tr-106-1-0-0-types.xml in order to use its data types. See
Section 6.3.1 for details.

6.2.1 Define a Basic Named Data Type

A basic named data type is defined using one (and only one) of the built-in primitive types.

These built-in types are (see I.12):

 base64

 boolean

 dateTime

 hexBinary

 int

 long

 string

 unsignedInt

 unsignedLong

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 59 of 232

To add a new data type to tr-106-1-0-0-types.xml, simply insert a dataType element and its

related sub-elements (I.4). At a minimum, the data type needs to include a name, a

description, and exactly one built-in type.

The following listing illustrates the definition of the StatsCounter32 data type (defined using the

primitive unsignedInt type).

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3" ...

 spec="urn:broadband-forum-org:tr-106-1-0-0">

 ...

 <dataType name="StatsCounter32">

 <description>A 32-bit statistics parameter, e.g. a byte counter.</description>

 <unsignedInt/>

 </dataType>

 ...

</dm:document>

The description is optional but recommended, and can be used to specify additional data

requirements. The name must be unique as it is used to identify the data type across Data

Models. The name must begin with an upper-case letter, in order to avoid confusion with built-in

data types.

The following listing illustrates the definition of the MACAddress data type (defined using the

primitive string type).

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3" ...

 spec="urn:broadband-forum-org:tr-106-1-0-0">

 ...

 <dataType name="MACAddress">

 <description>All MAC addresses are ... strings of 12 hexadecimal digits</description>

 <string>

 <size maxLength="17"/>

 <pattern value=""/>

 <pattern value="([0-9A-Fa-f][0-9A-Fa-f]:){5}([0-9A-Fa-f][0-9A-Fa-f])"/>

 </string>

 </dataType>

 ...

</dm:document>

Note that the built-in primitive type (e.g. string) can itself contain sub-elements (referred to as

facets). See Appendix I.12 for details regarding the built-in data type elements and their sub-

element facets. In the example above, the string is restricted to a maximum length of 17, and

conforms to a regex
10

 pattern of empty or 6 colon-separated pairs of hex digits.

6.2.2 Define a Derived Named Data Type

A derived named data type inherits its base definition from another (inherited) named data type.

This is specified using the dataType/@base attribute. The base attribute cannot reference a

built-in primitive data type.

10 See XML Schema Part 2 [12] Appendix F for details on XML Schema regular expressions.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 60 of 232

To add a new data type to tr-106-1-0-0-types.xml, simply insert a dataType element and its

related sub-elements (I.4). At a minimum, a derived data type needs to include a name and

base attribute, and a description. The description is optional, but recommended.

The name must be unique, as it is used to identify the data type across Data Models. It must also

begin with an upper-case letter in order to avoid confusion with built-in data types. The base

attribute indicates the name of the existing named data type on which to base the new definition

(i.e. the existing data type being inherited).

A derived data type is a restriction of the data type it is inheriting. Either its description will

specify such restrictions, or (preferably) the data type will contain facet sub-elements that define

these restrictions explicitly. See Appendix I.13 for details regarding data type facets. Common

facets used within named data types include: size, range, units, pattern, and enumeration.

The following listing illustrates the definition of two named data types: IPAddress (a basic type

defined with the primitive string type) and IPv4Address (a derived type that inherits from

IPAddress). The facets within the IPv4Address data type indicate that the string has a max length

of 15 (rather than 45 characters) and must conform to a specific regex
11

 pattern.

<!DOCTYPE cwmp-datamodel-entities [

 <!ENTITY dot "\.">

 <!ENTITY octet "(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])"> <!-- 0 to 255 -->

]>

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3" ...

 spec="urn:broadband-forum-org:tr-106-1-0-0">

 ...

 <dataType name="IPAddress">

 <description>

 IP address, i.e. IPv4 address (or IPv4 subnet mask) or IPv6 address.

 </description>

 <string>

 <size maxLength="45"/>

 </string>

 </dataType>

 <dataType name="IPv4Address" base="IPAddress">

 <description>

 IPv4 address (or subnet mask).

 Can be any IPv4 address that is permitted by the ''IPAddress'' data type.

 </description>

 <size maxLength="15"/>

 <pattern value=""/>

 <pattern value="(&octet;˙){3}&octet;"/>

 </dataType>

 ...

</dm:document>

Note – In the above example, the IPv4Address named data type is derived from an existing data type (i.e.
from the IPAddress named data type). In such cases the base type restriction rules of Section A.2.3.8/TR-

106 [3] must be obeyed. Base type restriction means that a valid value of a derived data type will always

be a valid value for its base type.

11 See XML Schema Part 2 [12] Appendix F for details on XML Schema regular expressions.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 61 of 232

6.3 Import

The import element (I.3) is used to import, into a local document, elements defined in other

documents. By doing so, these imported elements are made visible (to be referenced) within the

local document.

In other words, an element that is defined in an external document can be imported into a local

document and then referenced throughout that local document (seemingly as if it were defined

locally) even though the actual definition of that element does not appear directly within the

local document.

Elements that can be imported:

 Bibliography (an entire bibliography, not specific items within the bibliography)

 Named data types

 Models

 Components

Each import element will specify the file and spec of the external document from which imports

are being obtained (via the import/@file and import/@spec attributes, respectively)
12

.

There will be one (and only one) top-level import element for each such document. Within an

import element, what is actually imported from the associated document is specified by some

combination of import/dataType, import/model, and import/component sub-

elements (i.e. one for each distinct element being imported from the associated document).

Note that a document’s spec value is specified in its top-level spec attribute. When a document

is referenced via an import element, this is the corresponding value to be used in the local

document’s import/@spec attribute. However, the convention is to omit the corrigendum

portion of the referenced document’s spec value. For example, if the referenced document’s spec

value is “urn:broadband-forum-org:tr-181-2-0-1” then the value specified in the local

document’s import/@spec attribute should be “urn:broadband-forum-org:tr-181-2-0”. The

corrigendum is also omitted from the import/@file attribute value. The implication is that

the external document’s latest corrigendum will always be imported.

In the following example, an import element imports tr-069-biblio.xml (the central

bibliography) into the TR-196 document. Importing a DM Instance’s bibliography is a special

case, where only the top-level import element need be specified.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-0" ...

 spec="urn:broadband-forum-org:tr-196-1-0-0">

 <description>...</description>

 <import file="tr-069-biblio.xml" spec="urn:broadband-forum-org:tr-069-biblio"/>

 ...

</dm:document>

12 Specifying the import/@spec attribute is optional but recommended. It is used by the Report Tool in order to

assist with validation. A mismatch between this and the external document's spec attribute is regarded as an error.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 62 of 232

The import element comes after the description element (if present), and before other

top-level elements such as bibliography, model, and component.

Note – Importing a bibliography is a bit different than importing other types of items, in that a

bibliography is immediately made visible within the local document via the import element alone.

However, when importing other types of items (i.e. data types, models, components), each such item must

be specified within the import element in order to be considered.

6.3.1 Import a Named Data Type

Note – The file tr-106-1-0-0-types.xml is the centralized document that contains named data type
definitions. Generally, named data types should be defined there and be imported into other documents as

needed. Defining named data types directly within other documents is not recommended.

A named data type is imported into a local document using the import element (I.3), which

indicates the file to import from, and the import/dataType element, which indicates the

specific data type to import. The dataType element is repeated for each named data type to be

imported.

Note that once a named data type has been imported into a local document, it is visible within

that document, and can be used for example in defining Data Model parameters.

The following example shows the IPAddress and MACAddress named data types being imported

(from tr-106-1-0-types.xml) into the TR-104 document.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-0" ...

 spec="urn:broadband-forum-org:tr-104-1-0-0">

 <description>...</description>

 <import file="tr-069-biblio.xml" spec="urn:broadband-forum-org:tr-069-biblio"/>

 <import file="tr-106-1-0-types.xml" spec="urn:broadband-forum-org:tr-106-1-0">

 <dataType name="IPAddress"/>

 <dataType name="MACAddress"/>

 </import>

 ...

</dm:document>

The import/@file attribute indicates the name of the import file. The import/@spec

attribute indicates the spec value of the import file. The import/dataType/@name attribute

indicates the name of the data type to be imported from the import file.

Note – In the above example, tr-069-biblio.xml is also being imported. This is completely unrelated to
importing named data types, but was included simply as an illustration of how multiple file imports

appear within a document.

6.3.2 Import a Data Model

A Data Model is imported into a local document using the import element (I.3), which

indicates the file to import from, and the import/model element, which indicates the specific

model:version to import. The model element is repeated for each Data Model to be imported.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 63 of 232

Note that once a Data Model has been imported into a local document, it is visible within that

document, and can be used for example in defining the next revision of that Data Model.

In the following example the STBService:1.0 Data Model is imported into the local document,

via the import/model element. It imports STBService:1.0 in order to then define the model’s next

revision (STBService:1.1), via the top-level model element (which needs to reference the

imported model).

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3" ...

 spec="urn:broadband-forum-org:tr-135-1-1-0">

 <description>...</description>

 <import file="tr-135-1-0.xml" spec="urn:broadband-forum-org:tr-135-1-0">

 <model name="STBService:1.0"/>

 </import>

 ...

 <model name="STBService:1.1" base="STBService:1.0" isService="true">

 ...

 </model>

</dm:document>

The import/@file attribute indicates the name of the import file. The import/@spec

attribute indicates the spec value of the import file. The import/model/@name attribute

indicates the name and version of the model to be imported from the import file.

It is also valid to import multiple Data Models from the same file. The following example

illustrates the import of both Device:1.3 and InternetGatewayDevice:1.5 from tr-157-1-0.xml.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-0" ...

 spec="urn:broadband-forum-org:tr-157-1-1-0">

 <description>...</description>

 <import file="tr-157-1-0.xml" spec="urn:broadband-forum-org:tr-157-1-0">

 ...

 <model name="Device:1.3"/>

 <model name="InternetGatewayDevice:1.5"/>

 </import>

 ...

 <model name="Device:1.4" base="Device:1.3">

 ...

 </model>

 <model name="InternetGatewayDevice:1.6" base="InternetGatewayDevice:1.5">

 ...

 </model>

</dm:document>

6.3.3 Import a Component

A component is imported into a local document using the import element (I.3), which indicates

the file to import from, and the import/component element, which indicates the specific

component to import. The component element is repeated for each component to be imported.

Note that once a component has been imported into a local document, it is visible within that

document and can be used for example to reference the component’s content locally.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 64 of 232

The reason a component is being imported into the local document affects how the component

element needs to be specified. There are two main reasons to import a component:

 To use it in the Data Model; i.e. insert into the local document’s model the objects and

parameters defined within the imported component.

 To update its definition (re-define it); i.e. define a new component (of the same name)

based on the imported component, in order to modify its objects and parameters.

In addition, a component can also be imported into a local document simply to bring its

definition forward. This is done when a previous version of the document defined the

component. Doing so will include the component in the local document’s namespace so a future

version can import it from here without needing to know the version in which it was last

modified. The convention is for a given document to import all components defined in any

previous version of that document.

To Use It:

A “to use it” component import is characterized by having a component element with just a

name attribute specified. In the following example three components are imported (from the TR-

143 document) into the local document in this fashion. It imports these components in order to

later use them within local definitions of components and/or models (not shown here; see 6.7.2).

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-1">

 <description>...</description>

 ...

 <import file="tr-143-1-0.xml" spec="urn:broadband-forum-org:tr-143-1-0">

 <component name="DownloadDiagnostics_Device2"/>

 <component name="UploadDiagnostics_Device2"/>

 <component name="UDPEchoConfig"/>

 </import>

 ...

 <model ...>

 ...

 </model>

</dm:document>

The import/@file attribute indicates the name of the import file. The import/@spec

attribute indicates the spec value of the import file. In the “to use it” case, the

import/component/@name attribute indicates the name of the component both as it will be

referenced in the local document and as it is defined in the remote document.

When a component is imported simply using the import/component/@name attribute (as

with the previous example), then it is referenced in the local document by the same name that it

is defined by in the remote document. Such component imports cannot be updated within the

local document because of a naming conflict: the name that would need to be assigned to a new

version of the component is already assigned to the imported component.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 65 of 232

To Re-define It:

A “to re-define it” component import is characterized by having a component element with

both a name attribute and a ref attribute. In the following example, the UserInterface

component is imported (from the TR-181i2a1 document) into the local document in this fashion.

It imports this component in order to later extend it within the local document (not shown here;

see 6.7.3).

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3" ...

 spec="urn:broadband-forum-org:tr-181-2-2-0">

 <description>...</description>

 ...

 <import file="tr-181-2-1.xml" spec="urn:broadband-forum-org:tr-181-2-1">

 <component name="_UserInterface" ref="UserInterface"/>

 ...

 </import>

 ...

 <model ...>

 ...

 </model>

</dm:document>

In the “to re-define it” case, the import/component/@name attribute indicates the name of

the component as it is referenced in the local document, and the import/component/@ref

attribute indicates the name of the existing component defined in the remote document. The two

names must differ; the convention is to name the local (imported) component the same as the

remote component but to prefix the local component’s name with an underscore.

Such component imports are free to be updated (in a new component definition) because there is

no naming conflict as is found with the “to use it” case described above. How components are

updated is beyond the scope of this section; see Section 6.7.3 for details.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 66 of 232

6.4 Model

A Data Model contains a collection of objects and/or parameters that defines the managed

objects accessible via TR-069 [1] for a CPE. There are two types: Root Data Models and Service

Data Models.

The model element (I.8) is used to define such Data Models. Further, it is used to define both

new Data Models and to define revisions to existing Data Models.

Regardless of the type of Data Model being defined, the model element will always specify the

name and version of the Data Model. This is done using the model/@name attribute, where the

name and version are represented as a single value in the form Name:Major.Minor (e.g.

Device:2.0). The versioning rules outlined in Section 2.2/TR-106 [3] apply.

Note – The convention is that a document either defines components or a model (or else is a support file).
A model file could define local components (whose names should begin with underscore) if it is

convenient to do so.

6.4.1 Define a New Data Model

A new Data Model is the initial definition of the model; it is not based on an existing model

definition. As such, it cannot have the same name and major version number as an existing Data

Model.

Usually a new Data Model is given a name that is different from any of the existing Data

Models, and is assigned major version 1 and minor version 0 (e.g. Something:1.0 is an entirely

new Data Model). However, a new Data Model that is similar (but incompatible) with an

existing Data Model can be given the same name but a different major version number (e.g.

Device:2.0 is a new Data Model that is incompatible with the existing Device:1.0 Data Model).

In either case, the minor version number will be 0.

Generally a new Data Model is defined within a new XML file (DM Instance document).

The following example illustrates the definition of a fictitious Something:1.0 Service Data

Model (indicated by the model/@name attribute). Note that its major version is 1 and its minor

version is 0. Also note that the model/@isService attribute set to true stipulates that it is a

Service Data Model.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3" ...

 spec="urn:broadband-forum-org:tr-999-1-0-0">

 <description>...</description>

 <import file="tr-069-biblio.xml" spec="urn:broadband-forum-org:tr-069-biblio"/>

 ...

 <model name="Something:1.0" isService="true">

 ...

 </model>

</dm:document>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 67 of 232

The following example illustrates the definition of the Device:2.0 Root Data Model (indicated by

the model/@name attribute). Note that its major version is incremented to 2 as compared to the

Device:1 Data Model, and its minor version is 0. Also note that model/@isService attribute

has been omitted, since it defaults to false when a model is first defined.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-0">

 <description>...</description>

 <import file="tr-069-biblio.xml" spec="urn:broadband-forum-org:tr-069-biblio"/>

 ...

 <model name="Device:2.0">

 ...

 </model>

</dm:document>

Regardless of whether defining a new (initial) Root Data Model or Service Data Model, the

model/@name attribute specifies a name and major version that is unique across all Data

Models and its minor version should be 0.

Note – A DM Instance’s document/@spec attribute value indicates the TR issue in which the model

was published. In the listing above, Device:2.0 was initially published in TR-181 Issue 2, hence its spec

value ends with the text tr-181-2-0-0.

Note – In the above examples, the central bibliography tr-069-biblio.xml is being imported. This is not

absolutely necessary here, but it is recommended that all new (initial) Data Models import this
bibliography file.

6.4.2 Extend an Existing Data Model

In order to extend an existing (published) Data Model, a new revision of the Data Model has to

be defined that is based on the previous version.

Such revisions are generally made within a new XML file (document) that imports the previous

model version. This means that the file containing the new revision will only specify the changes

it is making to the Data Model and will not repeat what has already been defined in previous

versions.

Each new revision has the same name and major version number as its predecessor, but its minor

version number will be incremented by one.

The following example illustrates the definition of the Device:2.1 model (a revision to the

Device:2.0 model). Note that the existing Device:2.0 model is first imported from a remote file

in order to make it visible within the local document. Therefore the model element is used in

two ways: to import the predecessor model, and to define the new revision.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3" ...

 spec="urn:broadband-forum-org:tr-181-2-1-0">

 <description>...</description>

 <import file="tr-181-2-0.xml" spec="urn:broadband-forum-org:tr-181-2-0">

 ...

 <model name="Device:2.0"/>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 68 of 232

 </import>

 ...

 <model name="Device:2.1" base="Device:2.0">

 ...

 </model>

</dm:document>

In defining the new model revision, the model/@name attribute indicates the revision’s name

and version (Device:2.1), and the model/@base attribute indicates the predecessor’s name and

version (Device:2.0).

As a Data Model is revised over time, a chain of model revisions will develop where each

subsequent revision is based on (and imports from) its immediate predecessor. This linkage

between revisions can be illustrated with the following example:

 Device:2.0 is the initial definition of the Device:2 Data Model.

 Device:2.1 is the first revision of the Device:2 Data Model, and is based on Device:2.0.

 Device:2.2 is the second revision of the Devcie:2 Data Model, and is based on

Device:2.1.

 And so on.

Note – Generally each revision to a Data Model is published within the scope of its own TR amendment.

For example, Device:2.0 was initially released in TR-181 Issue 2, Device:2.1 was released in TR-181
Issue 2 Amendment 1, and Device:2.2 was released in TR-181 Issue 2 Amendment 2.

Note – For model-related documents, the document/@spec attribute value indicates the TR

amendment in which the model was published. In the listing above, Device:2.1 was published in TR-181

Issue 2 Amendment 1, hence its spec value ends with the text tr-181-2-1-0.

6.4.3 Fixing Errata in an Existing Data Model

When errata are found within an existing (published) Data Model, such as inaccuracies with

object and parameter definitions and descriptions, these mistakes can be fixed without revving

the model’s minor version.

This is done by republishing the document containing the flawed model definition (in its

entirety) within a TR corrigendum. The new edition is a corrected copy of the flawed model,

with the version number unchanged. This serves as a drop-in replacement for the defective

model previously published.

The replacement model can include corrections and possibly non-functional editorial cleanup
13

.

Such model replacements are generally made within a new XML file (document).

The following example illustrates the definition of the Device:2.0 replacement model. It is a

corrected copy of the original Device:2.0 model. Note the document/@spec attribute value;

its tr-181-2-0-1 suffix indicates that this document was released with TR-181 Issue 2

Corrigendum 1.

13 An alternative would be to defer fixing the errata until the next amendment of the associated TR, so that

corrections would instead be folded in with the next planned revision to the Data Model (see 6.4.2).

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 69 of 232

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-1">

 <description>...</description>

 ...

 <import ...>

 ...

 <component ...>

 ...

 <model name="Device:2.0">

 ...

 </model>

</dm:document>

The original Device:2.0 model was defined in tr-181-2-0-0.xml (as part of TR-181 Issue 2), and

its document/@spec attribute value ends with tr-181-2-0-0. The replacement Device:2.0

model was defined in tr-181-2-0-1.xml (as part of TR-181 Issue 2 Corrigendum 1), and its

document/@spec attribute value ends with tr-181-2-0-1. The file name and spec value

indicate that a corrigendum has been released.

The above example is highly abbreviated, but a few things should be observed:

 All of the definitions from the original document are included within the replacement

document (but may vary depending on the corrections made).

 The document/@spec attribute value differs from the original document. For

example, it indicates that the new document is tr-181-2-0-1; i.e. the portion of the number

indicating corrigendum has been incremented.

 The model/@name attribute value is unchanged; i.e. the minor version number has not

been incremented. Nor does the replacement model depend on the version of the model

that it replaces. Note that the model/@base attribute value (not shown; only present

when extending a model) will also be unchanged.

The simple rule is that the only changes will be: update the version history comment, increment

the document’s top-level spec and file attributes with the new corrigendum number, and

make the actual fixes within the document.

Note – The Report Tool is corrigendum aware; its default behavior is to look for (favor) the latest

corrigendum of a model. For example, TR-140 defines the StorageService:1.0 model along with two
subsequent corrigenda that correct some errata (in tr-140-1-0-0.xml, tr-140-1-0-1.xml, and tr-140-1-0-

2.xml). So, for a particular model version (e.g. StorageService:1.0), only the variant defined in its latest

corrigendum will be considered. This should be the behavior for anything (i.e. tool, process, etc.) that
ever accesses a DM Instance.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 70 of 232

6.5 Object (definition)

An object, and its contained parameters, defines a managed object accessible via TR-069 [1]. It

is defined within a document using the object element (I.9). This should not be confused with

the object element that appears within profiles, which is just an object reference (a reference to

an object defined elsewhere) rather than an object definition.

An object can be defined within a model or a component. However, this has little bearing in how

the guts of an object are defined.

Objects can be logically organized into an object hierarchy (similar to a directory tree but where

each node in the hierarchy is an object). This is done in order to imply a relationship (or

grouping) between objects. The hierarchy rules outlined in Section 2.1/TR-106 [3] apply.

An object’s location within a hierarchy is implied by its name, which is specified by its

object/@name attribute. Objects are named using a hierarchical form similar to a directory

path. The name of a particular object is represented by the concatenation of each successive node

in the hierarchy separated with a “.” (dot), starting at the trunk of the hierarchy and leading to the

leaves. For example, “Device.DSL.Diagnostics.” is the full path name of the Diagnostics object

which sits within the DSL object which in turn sits within the Device object (the latter being the

root of this particular hierarchy). An object is uniquely identified within an object hierarchy by

such a path name
14

. The general name notation outlined in Section 3.1/TR-106 [3] applies. Also

note that the best practice is for the name of each node in the object hierarchy to start with an

uppercase letter.

Objects can be single-instance or multi-instance; the latter is often referred to as a table since

each object instance can be thought of as a row (or entry) within a table. Note that all object

names end with a “.” (dot), whether single or multi-instance.

Note – Much of this section, examples and text, is slanted toward the initial definition of an object.
Updating an existing object definition is very similar but comes with a few differences, which are

discussed in Section 6.5.3.

Note – The examples throughout this section are of objects defined within models. The mechanism is
almost identical in defining objects within components. The main difference with component objects is

with how their full path name is resolved (see Section 6.7).

6.5.1 Defining a Single-Instance Object

A single-instance object is defined within a model or a component using the object element

(I.9).

14 Note that an object definition within a root model has its object/@name attribute set to a full path name, while

an object definition within a service model (or component) has its object/@name attribute set to a partial path

name. This is because the trunk of a service model (or component) is not the root of a Data Model, and so these

objects must be placed somewhere within a Root Data Model’s hierarchy before they can be used. This is done for

component objects at definition time, and is done for service objects by a CPE at run-time.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 71 of 232

An initial object definition includes a name, plus an indication of whether the object is read-only

or read-write (from the ACS point of view), and the number of instances of that object that can

exist within a CPE. This corresponds to the following required object attributes: name, access,

minEntries, maxEntries.

For a single-instance object, the following restrictions apply:

 Its name ends with a “.” (dot). For example, “Device.ManagementServer.”.

 It has read-only access from the ACS point of view. This is indicated by the

object/@access attribute, which is always set to “readOnly”.

 There is never more than one instance of the object within a CPE. This is indicated by the

object/@minEntries and object/@maxEntries attributes. The max entries

attribute will always be 1. The min entries attribute will usually be 1, but can be 0 under

special circumstances (see the “mutually exclusive” discussion below).

The following example illustrates the definition of the single-instance “Device.” object. Note that

its name ends with a dot, its access is read-only, and its max entries is 1; these are the hallmarks

of a single-instance object.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-0">

 ...

 <model name="Device:2.0">

 ...

 <object name="Device." access="readOnly" minEntries="1" maxEntries="1">

 <description>The top-level object for a Device.</description>

 ...

 </object>

 ...

 </model>

</dm:document>

Each object should have a description. This is defined by the object/description element. In the

above example, this is simply the text “The top-level object for a Device”. However, an object

description can describe in detail how the object is used, and can document additional normative

requirements.

The following example illustrates the use of “mutually exclusive” objects (i.e. where

object/@minEntries is set to “0”). This is when two or more such objects occur within a

table definition (a multi-instance object), and where it only makes sense for one of these objects

to be present in a given table entry (object instance). Also referred to as “1 of n” objects.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-0" ...

 spec="urn:broadband-forum-org:tr-069-1-0-0">

 ...

 <model name="InternetGatewayDevice:1.0">

 ...

 <object name="InternetGatewayDevice.WANDevice.{i}.WANDSLInterfaceConfig."

 access="readOnly" minEntries="0" maxEntries="1">

 ...

 </object>

 <object name="InternetGatewayDevice.WANDevice.{i}.WANEthernetInterfaceConfig."

 access="readOnly" minEntries="0" maxEntries="1">

 ...

 </object>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 72 of 232

 ...

 </model>

</dm:document>

In the above example, we see a DSL and an Ethernet object within the WANDevice.{i} table. By

defining these objects as minEntries=0, it allows the CPE to have only one of them present

in any given WANDevice.{i} table entry. This makes sense, as we would not expect one WAN

interface to support both DSL and Ethernet at the same time.

Note – An object will also contain parameter definition elements. This is not shown in the above
examples. See Section 6.6 for further details.

6.5.2 Defining a Multi-Instance Object (table)

A multi-instance object (table) is defined within a model or a component using the object

element (I.9).

An initial object definition includes a name, plus an indication of whether the object is read-only

or read-write (from the ACS point of view), and the number of instances of that object that can

exist within a CPE. This corresponds to the following required object attributes: name, access,

minEntries, maxEntries.

For a multi-instance object, the following restrictions apply:

 Its object/@name attribute ends with the placeholder node name “{i}” followed by a

“.” (dot). For example, “Device.InterfaceStack.{i}.”. In an instantiated Data Model (on

an individual CPE), each placeholder is replaced by an instance identifier (i.e. an instance

number or instance alias, which uniquely identifies an instance within a table).

 Its object/@maxEntries attribute is an integer > 1 or is the keyword “unbounded”.

Note that its object/@minEntries attribute will be an integer 0 but cannot be

greater than max entries. For example, a table with min entries of 2 and max entries of 10

is valid, but min entries of 10 and max entries of 2 would be invalid.

A table can have read-only or read-write access, indicated by its object/@access attribute.

When object/@access is “readOnly” the ACS can retrieve object instances from the CPE,

but only the CPE can add and delete object instances. When object/@access is “readWrite”

it is possible (makes sense) for the ACS to also be able to add and/or delete object instances.

Note – Even when object/@access is “readWrite”, a given CPE implementation might not allow the

ACS to add and delete object instances, or it might allow only add or only delete, or only delete of some

instances.

For example, it does not make sense for the ACS to create an Ethernet.Interface.{i} instance or a

WiFi.Radio.{i} instance (so they have object/@access=readOnly), but it does make

sense for the ACS to create a NAT.PortMapping.{i} instance even though a given CPE

implementation might not support that (so it has object/@access=readWrite).

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 73 of 232

The following listing illustrates some common forms of table definitions. Each has a name

ending in “{i}.” and has max entries > 1; these are the hallmarks of a multi-instance object. Note

that these tables would actually have additional attributes and elements (i.e. number of entries

and unique keys), but these have been omitted here; to be discussed in the next sections.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-0" ...

 spec="urn:broadband-forum-org:tr-069-1-0-0">

 ...

 <model name="InternetGatewayDevice:1.0">

 ...

 <object name="InternetGatewayDevice.DeviceInfo.VendorConfigFile.{i}."

 access="readOnly" minEntries="0" maxEntries="unbounded" ...>

 ...

 </object>

 <object name="InternetGatewayDevice.Layer3Forwarding.Forwarding.{i}."

 access="readWrite" minEntries="0" maxEntries="unbounded" ...>

 ...

 </object>

 <object name="InternetGatewayDevice.LANDevice.{i}.WLANConfiguration.{i}.WEPKey.{i}."

 access="readOnly" minEntries="4" maxEntries="4">

 ...

 </object

 ...

 </model>

</dm:document>

In the above example, we see the following tables defined:

 VendorConfigFile.{i} – This is a read-only, variable-sized table that can have 0 or more

entries (min entries is 0, max entries is unbounded). To define a variable-sized table that

allows 1 or more entries, for example, simply set object/@minEntries to 1. See

Section 6.5.2.1 for additional information regarding such tables.

 Forwarding.{i} – This is a writable, variable-sized table that can have 0 or more entries.

Its configuration is similar to the previous example, except its read-write access means

that an ACS can (possibly) add and delete instances. See Section 6.5.2.2 for additional

information regarding such tables.

 WEPKey.{i} – This is a fixed-sized table (min entries equals max entries). Such tables

always have read-only access. See Section 6.5.2.3 for additional information regarding

fixed-sized tables.

6.5.2.1 Variable-Sized Read-Only Table

A variable-sized table is simply a multi-instance object (see 6.5.2) whose max entries is greater

than its min entries (i.e. attribute object/@maxEntries > object/@minEntries).

When max entries is “unbounded” it is always regarded as being greater than min entries.

In an instantiated Data Model, the current number of instances present for each table is stored in

a parameter defined in the table’s parent object (i.e. one level up in the object hierarchy). The

table’s object/@numEntriesParameter attribute references this parameter. The

convention is to name such parameters using the name of the table followed by the text

“NumberOfEntries”.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 74 of 232

The following example defines the VendorConfigFile.{i} table. Its object/@numEntries-

Parameter attribute references the table’s associated “number of entries” parameter. This

parameter is defined in the table’s parent object (in the DeviceInfo object), and is named

VendorConfigFileNumberOfEntries according to the naming rule outlined above.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-0" ...

 spec="urn:broadband-forum-org:tr-069-1-0-0">

 ...

 <model name="InternetGatewayDevice:1.0">

 ...

 <object name="InternetGatewayDevice.DeviceInfo."

 access="readOnly" minEntries="1" maxEntries="1">

 <parameter name="VendorConfigFileNumberOfEntries" access="readOnly">

 <description>{{numentries}}</description>

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

 ...

 </object>

 <object name="InternetGatewayDevice.DeviceInfo.VendorConfigFile.{i}."

 access="readOnly" minEntries="0" maxEntries="unbounded"

 numEntriesParameter="VendorConfigFileNumberOfEntries">

 ...

 </object>

 ...

 </model>

</dm:document>

Note that the object/@numEntriesParameter attribute value is simply the name of the

referenced parameter; this value does not include the parameter’s path.

Things to note about the “number of entries parameter”:

 There is always one such parameter for each variable-sized table; it is always present in

the table’s parent object.

 It should always be named according to the rule outlined above (i.e. name of table +

NumberOfEntries)

 It always has read-only access

 It always has a description of at least “{{numentries}}”. This is a Template that the

Report Tool will expand into the appropriate text (see I.2.3). Note that additional

descriptive text may be included after the Template as needed.

 Its data type is always an unsignedInt.

Note – See Section 6.5.2.2 about tables with an “enable” parameter. While it is possible for a read-only

table to have an “enable” parameter (indicating whether an entry is enabled/disabled), read-only tables do

not need to specify the object/@enableParameter attribute.

6.5.2.2 Variable-Sized Writable Table (ACS Managed)

Defining a variable-sized writable table includes all of the same steps outlined in the previous

section, in defining a variable-sized read-only table. However, there are a few additional

requirements when the table’s access is read-write.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 75 of 232

The ACS can manage the table itself by adding and deleting object instances. A common use

case is to have a new table entry be disabled until it is properly configured or until it is needed at

a later time. This is accomplished by having a writable parameter within the table that indicates

whether a table entry is enabled or disabled; it is often named Enable, but need not be. The

table’s object/@enableParameter attribute can reference this parameter in order to

declare (and enforce) its presence.

The following example
15

 defines the Forwarding.{i} table. Its object/@numEntries-

Parameter attribute references the table’s associated “number of entries” parameter. This

parameter is defined in the table’s parent object (in the Layer3Forwarding object). The

object/@enableParameter attribute references the table’s Enable parameter.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-0" ...

 spec="urn:broadband-forum-org:tr-069-1-0-0">

 ...

 <model name="InternetGatewayDevice:1.0">

 ...

 <object name=" InternetGatewayDevice.Layer3Forwarding."

 access="readOnly" minEntries="1" maxEntries="1">

 <parameter name="ForwardNumberOfEntries" access="readOnly">

 <description>{{numentries}}</description>

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

 ...

 </object>

 <object name="InternetGatewayDevice.Layer3Forwarding.Forwarding.{i}."

 access="readWrite" minEntries="0" maxEntries="unbounded"

 numEntriesParameter="ForwardNumberOfEntries" enableParameter="Enable">

 ...

 <parameter name="Enable" access="readWrite">

 <description>...</description>

 <syntax>

 <boolean/>

 </syntax>

 </parameter>

 ...

 </object>

 ...

 </model>

</dm:document>

Note that the table’s object/@enableParameter attribute value is simply the name of the

referenced parameter within the table; this value does not include the table’s object path. The

“enable” parameter definition is always contained within the table itself, and is a boolean type

parameter with read-write access.

Note – According to Appendix A.2.8.1/TR-106 [3], the enableParameter attribute needs to be

specified on writable tables (access readWrite) that have a functional unique key. Note that such tables

15 Note that the “number of entries” parameter in this example is named ForwardNumberOfEntries (rather than the

expected ForwardingNumberOfEntires). This is in violation of the naming convention for such parameters, but it

cannot be corrected now due to backwards compatibility constraints on published Data Models.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 76 of 232

require enabled entries to be unique (while disabled entries need not be unique). By requiring an enable

parameter here, this ensures that new entries can be properly (uniquely) configured prior to being enabled.
See Section 6.5.2.4 for information regarding unique keys within tables.

6.5.2.3 Fixed-Sized Table

A fixed-sized table is simply a multi-instance object (see 6.5.2) whose min entries equals its max

entries (i.e. attribute object/@minEntries = object/@maxEntries). As such, it

always has read-only access. Since the table’s number of entries is fixed, there is no need to

specify the object/@numEntriesParameter attribute (nor does the table have an

associated “number of entries” parameter defined).

The following example defines the WEPKey.{i} table. It will have exactly 4 object instances

(entries) based on its min and max entries attributes.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-0" ...

 spec="urn:broadband-forum-org:tr-069-1-0-0">

 ...

 <model name="InternetGatewayDevice:1.0">

 ...

 <object name="InternetGatewayDevice.LANDevice.{i}.WLANConfiguration.{i}.WEPKey.{i}."

 access="readOnly" minEntries="4" maxEntries="4">

 ...

 </object

 ...

 </model>

</dm:document>

Note – See Section 6.5.2.2 about tables with an “enable” parameter. While it is possible for a read-only
table to have an “enable” parameter (indicating whether an entry is enabled/disabled), read-only tables do

not need to specify the object/@enableParameter attribute.

6.5.2.4 Unique Key for a Table

A unique key for a table is defined using the uniqueKey element (I.9.1). Such a key allows

table entries (object instances) to be uniquely identified. A table can have zero or more such keys

(though, a table with no keys defined is rare).

A unique key element (object/uniqueKey) references the parameters within the table that

together constitute a unique key. Each parameter is referenced using an object/-

uniqueKey/parameter element; this is simply a reference to a parameter that is defined

within the same table (object/parameter).

The unique key elements appear after the description element and before the parameter

definition elements.

In the following example we see a unique key defined within the ManageableDevice.{i} table.

This key references three parameters that are defined within the table (ManufacturerOUI,

SerialNumber, ProductClass). The object/uniqueKey/parameter/@ref attribute value

is the name of a parameter being referenced from the key.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 77 of 232

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-1">

 ...

 <model name="Device:2.0">

 ...

 <object name="Device.ManagementServer.ManageableDevice.{i}."

 access="readOnly" minEntries="0" maxEntries="unbounded" ...>

 <description>...</description>

 ...

 <uniqueKey>

 <parameter ref="ManufacturerOUI"/>

 <parameter ref="SerialNumber"/>

 <parameter ref="ProductClass"/>

 </uniqueKey>

 ...

 <parameter name="ManufacturerOUI" ...>

 <parameter name="SerialNumber" ...>

 <parameter name="ProductClass" ...>

 ...

 </object>

 ...

 </model>

</dm:document>

Each unique key is either functional or non-functional:

 A functional key references at least one parameter that relates to the purpose (or function)

of the table, e.g. a DHCP option tag in a DHCP option table, or an external port number

in a port mapping table.

 A non-functional key references only parameters that do not relate to the purpose (or

function) of the table, e.g. an Alias or Name parameter.

The object/uniqueKey/@functional attribute specifies whether the key is functional

(true) or non-functional (false). If this attribute is omitted then the key is functional by default.

In the previous example, the unique key is defined as a functional key (by default).

The following example builds on the previous example. Here we see a second key defined within

the ManageableDevice.{i} table. It is a non-functional key and consists of only one parameter

(Alias). Note that the Alias parameter does not relate to the purpose of the table (as is expected

for a non-functional key). Both keys can be used to uniquely identify table entries.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-1">

 ...

 <model name="Device:2.0">

 ...

 <object name="Device.ManagementServer.ManageableDevice.{i}."

 access="readOnly" minEntries="0" maxEntries="unbounded" ...>

 <description>...</description>

 <uniqueKey functional="false">

 <parameter ref="Alias"/>

 </uniqueKey>

 <uniqueKey>

 <parameter ref="ManufacturerOUI"/>

 <parameter ref="SerialNumber"/>

 <parameter ref="ProductClass"/>

 </uniqueKey>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 78 of 232

 <parameter name="Alias" ...>

 <parameter name="ManufacturerOUI" ...>

 <parameter name="SerialNumber" ...>

 <parameter name="ProductClass" ...>

 ...

 </object>

 ...

 </model>

</dm:document>

If a table’s key(s) are updated in a subsequent revision to the Data Model, the key(s) need to be

completely re-specified. Otherwise, it would be difficult to differentiate whether the update

means to change an existing key, remove an existing key, or add an additional key.

Note – According to Appendix A.2.8.1/TR-106 [3], a writable table that has a functional unique key must

also have the enableParameter attribute specified within the object element. Note that such tables

require enabled entries to be unique (while disabled entries need not be unique). By requiring an enable

parameter here, this ensures that new entries can be properly (uniquely) configured prior to being enabled.

Note – According to Appendix A.2.8.1/TR-106 [3], non-functional keys are always required to be

unique, regardless of whether the table has an enableParameter, or is enabled or disabled. For a

functional key, and if the table has an enableParameter, the uniqueness requirement applies only to

enabled table entries.

6.5.3 Updating an Existing Object Definition

Sometimes an existing object needs to be updated. This is done using an object element (I.9)

within a new revision of the document that defined the object in question. This implies that the

object’s other parent elements (e.g. model or component) will also be updated.

Note – The syntax for modifying an object is the same as for initially creating it, but there are rules. See
Section A.2.10.2/TR-106 [3] for details.

An update to an object is an object definition that is based on the existing object. This is

characterized by the use of the object/@base attribute, which indicates the path name of the

existing object being updated. Note that the object/@name attribute, which is used in the

initial definition of an object, is not used when updating an object.

The updated definition will contain changes and additions to the existing object. It should not re-

define those portions of the existing object that have not changed. Generally, this means that

optional object attributes that are not changing are not re-specified (e.g. status), and that

elements within the object that are not changing are also not re-specified (e.g. description,

parameter). See Appendix I.9 for a full list of attributes and elements and whether they are

optional or required.

Note – Required object attributes are always specified (i.e. access, minEntries, maxEntries),

regardless of whether or not they are being changed, because if they were not then schema validation

would fail. Optional object attributes, while generally not specified unless they are changing, may be re-

specified if the author deems it appropriate.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 79 of 232

Common reasons to update an object include:

 Change an attribute value; e.g. set status to deprecated or deleted

 Update its description

 Add or update one of its parameters

 Add a unique key to a table

The following example illustrates an update of the IP Interface object (the first listing is the

initial object definition in tr-181-2-0-1 and the second listing is its update in the much later tr-

181-2-2-0). The object was initially defined with a description, a unique key, and several

parameters (including Enable and Status). The object update changes the description, changes the

existing Enable parameter, and adds new parameters (including IPv4Enable). As expected, the

update is within a new document revision and the object’s parent elements are also updated (in

this case, its model).

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-1">

 ...

 <model name="Device:2.0">

 ...

 <object name="Device.IP.Interface.{i}." access="readWrite"

 numEntriesParameter="InterfaceNumberOfEntries" enableParameter="Enable"

 minEntries="0" maxEntries="unbounded">

 <description>IP interface table (a stackable interface object...</description>

 <uniqueKey ...>

 ...

 </uniqueKey>

 ...

 <parameter name="Enable" ...>

 ...

 </parameter>

 <parameter name="Status" ...>

 ...

 </parameter>

 ...

 </object>

 ...

 </model>

</dm:document>

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3" ...

 spec="urn:broadband-forum-org:tr-181-2-2-0">

 ...

 <model name="Device:2.2" base="Device:2.1">

 ...

 <object base="Device.IP.Interface.{i}." access="readWrite"

 minEntries="0" maxEntries="unbounded">

 <description action="append">Each IP interface can be attached to the...</description>

 <parameter base="Enable" ...>

 ...

 </parameter>

 <parameter name="IPv4Enable" ...>

 ...

 </parameter>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 80 of 232

 ...

 </object>

 ...

 </model>

</dm:document>

The above example is highly abbreviated, but a few things should be observed within the

updated document in the second listing:

 The object/@base attribute is used to reference the existing object definition.

 All of the object’s required attributes are present (though none were changed).

 None of the object’s optional attributes are present, since they have not changed. Only

changed attributes need be specified.

 The object description is present because it is being updated. Had it not been updated,

then it would have been omitted.

 The object’s unique key is omitted since it has not changed. Had any part of the unique

key(s) been changed, it would be re-specified in its entirety.

 The existing parameters that are not being updated have been omitted (e.g. Status).

The existing parameters that are being updated are present (e.g. Enable).

 New parameters are defined within the updated object (e.g. IPv4Enable).

Note – In the above example, it is not shown in the second listing, but the previous Device:2.1 model

must be imported before it can be used to define the updated Device:2.2 model. See 6.4.2 for details on
updating an existing model.

When an existing object needs to be deprecated, obsoleted, or deleted, this is done by updating

its object/@status attribute. The object’s description must also be updated to include an

explanation of why the status was changed. See Section 6.10 for details. Note that such a status

update will also apply to the object’s contained items (e.g. child objects and parameters), but

only if this will “promote” a given item’s status to a “higher” value
16

.

16 When an item’s status is modified it must be a “promotion” to a “higher” value, where the lowest to highest

ordering is: current, deprecated, obsoleted, deleted. For example, current can be changed to deprecated, and

obsoleted can be changed to deleted, but deleted cannot be changed back to obsoleted.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 81 of 232

6.6 Parameter (definition)

A parameter represents part of a CPE’s configuration or status, accessible via TR-069 [1]. It is

defined within a DM Instance document using the parameter element (I.10). This should not be

confused with the parameter element that appears within profiles, which is just a parameter

reference (a reference to a parameter defined elsewhere) rather than a parameter definition.

A parameter can be defined within a model
17

, a component, or an object. However, this has little

bearing in how the guts of a parameter are defined.

Parameters are most often defined within the scope of an object. When they are defined outside

an object, they are referred to as top-level parameters and appear within a model or component

before object definitions.

A parameter is uniquely identified by its full path name. This is the concatenation of the full path

name of its parent object (if any)
18

, plus the name of the parameter itself (which is specified by

its parameter/@name attribute). For example, “Device.ManagementServer.EnableCWMP” is

the full path name of the EnableCWMP parameter which sits within the ManagementServer

object. The general name notation outlined in Section 3.1/TR-106 [3] applies.

Each parameter is defined in terms of its data type; e.g. boolean, string, etc. This is specified

within the parameter/syntax element.

Note – Much of this section, examples and text, is slanted toward the initial definition of a parameter.
Updating an existing parameter definition is very similar but comes with a few differences, which are

discussed in Section 6.6.7.

Note – Parameter values are not present within DM Instance documents; these documents contain syntax
definitions not run-time configurations. A parameter definition stipulates the valid syntax of a parameter’s

value (i.e. the type and range of data permitted) rather than the actual run-time value itself.

Note – The examples throughout this section are of parameters defined within models. The mechanism is

almost identical in defining parameters within components. The main difference with component

parameters is with how their full path name is resolved (see Section 6.7).

6.6.1 Defining a Parameter (The Basics)

A parameter is defined within a model, component, or object using the parameter element

(I.10).

An initial parameter definition includes a name, plus an indication of whether the parameter is

read-only or read-write (from the ACS point of view), and the syntax for valid parameter values.

This corresponds to the following required attributes and elements: name, access, syntax.

17 The only occurrence of this is a NumberOfEntries parameter for a Service Data Model.
18 Object path names are discussed in Section 6.5.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 82 of 232

The following restrictions also apply:

 Its name does not include a path (the parameter/@name attribute value does not

permit dot notation). Also note that a parameter name should start with an uppercase

letter.

 Its access can be read-only or writable (the parameter/@access attribute value is

one of: readOnly or readWrite).

 Its syntax can be defined either using one of the built-in primitive data types or using a

named data type. These two options are discussed in Sections 6.6.1.1 and 6.6.1.2 below.

The following example illustrates the definition of the EnableCWMP parameter. It is a writable

parameter that is defined within the scope of the ManagementServer object. Its full path name is

Device.ManagementServer.EnableCWMP. Note that this is an incomplete example since the

syntax details have been omitted (to be discussed in the next sections).

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-0">

 ...

 <model name="Device:2.0">

 ...

 <object name="Device.ManagementServer." ...>

 ...

 <parameter name="EnableCWMP" access="readWrite">

 <description>Enables and disables the CPE's support for CWMP...</description>

 <syntax>

 ...

 </syntax>

 </parameter>

 ...

 </object>

 ...

 </model>

</dm:document>

Each parameter should have a description. This is defined by the parameter/description

element. In the above example, the description begins with the text “Enables or disables the

CPE’s support for CWMP”. A parameter description should describe in detail how the parameter

is used and document additional normative requirements.

6.6.1.1 Syntax Using a Built-In Primitive Data Type

A parameter value’s valid syntax is defined using the parameter syntax element (I.10.1). This

element can specify a parameter’s data type and range of permitted values.

Note – There are two ways to define a parameter’s data type: either via a built-in primitive data type, or

via a reference to a named data type (6.6.1.2). They are mutually exclusive. This section discusses the use
of primitive data types.

There is a set of built-in primitive data type elements that can be used in defining a parameter’s

syntax. These are: base64, boolean, dateTime, hexBinary, int, long, string,

unsignedInt, unsignedLong (see Section I.12 for details on each). One of these elements

will appear within the parameter’s syntax element (e.g. parameter/syntax/boolean); a

parameter’s syntax element can only contain one such primitive data type element.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 83 of 232

The following example illustrates the definition of a parameter with a boolean data type. This is

the same EnableCWMP parameter that was defined earlier, except now the parameter/-

syntax/boolean element is shown. Note that only one primitive data type element appears

within the syntax element.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-0">

 ...

 <model name="Device:2.0">

 ...

 <object name="Device.ManagementServer." ...>

 ...

 <parameter name="EnableCWMP" access="readWrite">

 <description>Enables and disables the CPE's support for CWMP...</description>

 <syntax>

 <boolean/>

 ...

 </syntax>

 </parameter>

 ...

 </object>

 ...

 </model>

</dm:document>

Note – A data type definition within a parameter is referred to as an anonymous data type. An
anonymous data type can only apply to the parameter within which it is defined. See Section A.2.3.2/TR-

106 [3] for additional discussion.

In the above example, the built-in type specified is parameter/syntax/boolean. Defining

a parameter using one of the other built-in types is as simple as replacing this element with one

of the other built-in element types (e.g. parameter/syntax/string).

6.6.1.2 Syntax Using a Named Data Type

A parameter value’s valid syntax is defined using the parameter syntax element (I.10.1). This

element can specify a parameter’s data type and range of permitted values.

Note – There are two ways to define a parameter’s data type: either via a built-in primitive data type
(6.6.1.1), or via a reference to a named data type. They are mutually exclusive. This section discusses the

use of named data types.

A named data type should be used when there is a set of data requirements that can apply to a

range of parameters. For example, an IP address or a MAC address. By defining and using a

named data type, it guarantees that these data requirements will be applied consistently. See

Section 6.2 for details on defining named data types.

A parameter can reference a named data type using the parameter/syntax/dataType

element (I.10.3). The reference is made via its ref or base attribute. The named data type must

already be defined elsewhere (and possibly imported into the local document) before it can be

referenced from the parameter definition.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 84 of 232

The dataType/@ref attribute will reference a named data type when the data type is used as

is (without change). If the parameter’s referenced data type needs to be altered (via facets), then

instead the dataType/@base attribute is used to reference the named data type (see Section

6.6.1.3 for details on refining a data type using facets).

The following example illustrates the definition of a parameter with a named data type. The

parameter/syntax/dataType/@ref attribute references the IPAddress data type. Note

that only one data type element appears within the syntax element; and since the

dataType/@ref attribute is used, facets are not permitted within the dataType element.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-0">

 ...

 <model name="Device:2.0">

 ...

 <object name="Device.IP.ActivePort.{i}." ...>

 ...

 <parameter name="RemoteIPAddress" access="readOnly">

 <description>...</description>

 <syntax>

 <dataType ref="IPAddress"/>

 </syntax>

 </parameter>

 ...

 </object>

 ...

 </model>

</dm:document>

6.6.1.3 Refining a Data Type Using Facets

A parameter’s data type definition can be refined using facets. Facet elements are used within

primitive and named data types to specify different aspects of the data type being defined, such

as string size, numeric range, etc.

The full set of facet elements is: size, range, units, pattern, enumeration,

enumerationRef, instanceRef, pathRef. See Section I.13 for details on using each of

these facets. Additional guidance in defining parameters using reference-based facets is also

provided in Section 6.6.6.

Note that not all facets can be used within all primitive data types. This is also the case within

named data types, since they are derived from primitive data types. Section I.12 Table 40 lists

which facets are valid with each primitive data type. Note that the boolean and dateTime

types have no available facets.

Facet use within parameters is much the same regardless of whether the parameter has a

primitive or named data type. However, when referencing a named data type, the parameter’s

dataType/@base attribute must be specified rather than the dataType/@ref attribute (i.e.

use of the base attribute indicates that the referenced named data type will be altered via facets,

while use of the ref attribute indicates that the named data type is referenced as is without

facets).

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 85 of 232

The following example illustrates some common definitions using facets (within parameters that

have a built-in primitive data type). The first parameter is a string type with maximum length of

256 (uses the size facet). The second parameter is an unsigned integer type with range 1 to

65535, whose value will be measured in seconds (uses multiple facets: range and units).

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-0">

 ...

 <model name="Device:2.0">

 ...

 <object name="Device.ManagementServer." access="readOnly" minEntries="1" maxEntries="1">

 ...

 <parameter name="URL" access="readWrite">

 <description>...</description>

 <syntax>

 <string>

 <size maxLength="256"/>

 </string>

 </syntax>

 </parameter>

 <parameter name="CWMPRetryMinimumWaitInterval" access="readWrite">

 <description>...</description>

 <syntax>

 <unsignedInt>

 <range minInclusive="1" maxInclusive="65535"/>

 <units value="seconds"/>

 </unsignedInt>

 </syntax>

 </parameter>

 ...

 </object>

 ...

 </model>

</dm:document>

And the next example demonstrates the use of a facet within a parameter that has a named data

type (i.e. within the parameter/syntax/dataType element)
19

. The example assumes that

String255 is a named data type that has been defined as a string with max length 255. Use of the

dataType/@base attribute (rather than ref attribute) indicates that the referenced named

data type will be altered via facets. The size facet is then used to restrict the parameter’s max

string length down to 127 characters.

 <parameter name="Example" access="readOnly">

 <description>...</description>

 <syntax>

 <dataType base="String255">

 <size maxLength="127"/>

 </dataType>

 </syntax>

 </parameter>

Note – In the above example, the parameter’s anonymous data type is derived from an existing data type

(i.e. from the String255 named data type). In such cases the base type restriction rules of Section

A.2.3.8/TR-106 [3] must be obeyed. Base type restriction means that a valid value of a new data type will
always be a valid value for its base type.

19 This is a made-up example since it is a scenario not encountered in the published Data Models.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 86 of 232

Certain facets can appear multiple times within a parameter definition, in order to further refine

the parameter’s data type. Such facets are: size, range, enumeration, and pattern.

Multiple size facets are used to indicate different string-length ranges. Multiple range facets are

used to define disjoint integer ranges. Multiple enumeration facets are used to define a set of

valid string values. Multiple pattern facets are used to specify a set of valid string-value patterns.

The following example illustrates several parameters where a particular facet appears multiple

times in its definition. The WEPKey parameter has two valid string length ranges (exactly 5

bytes and exactly 13 bytes). The MSC parameter has two valid integer ranges (the second range

being optionally supported by a CPE). The ManufacturerOUI parameter defines a string type that

only allows values that conform to two patterns (empty string or a six-digit string of hex

characters). The SupportedModes parameter is a string type that only allows values that match

one of its enumerations (i.e. Send, Receive, or Both).

 <parameter name="WEPKey" access="readWrite">

 <description>...</description>

 <syntax>

 <hexBinary>

 <size minLength="5" maxLength="5"/>

 <size minLength="13" maxLength="13"/>

 </hexBinary>

 </syntax>

 </parameter>

 <parameter name="MSC" access="readWrite">

 <description>...</description>

 <syntax>

 <int>

 <range minInclusive="-1" maxInclusive="15"/>

 <range minInclusive="16" maxInclusive="31" optional="true"/>

 </int>

 </syntax>

 </parameter>

 <parameter name="ManufacturerOUI" access="readOnly">

 <description>Unique identifier of the associated gateway. {{pattern}} ...</description>

 <syntax>

 <string>

 <pattern value=""/>

 <pattern value="[0-9A-F]{6}"/>

 </string>

 </syntax>

 </parameter>

 <parameter name="SupportedModes" access="readOnly">

 <description>The supported RIP protocol modes. {{enum}} ...</description>

 <syntax>

 <string>

 <enumeration value="Send"/>

 <enumeration value="Receive"/>

 <enumeration value="Both"/>

 </string>

 </syntax>

 </parameter>

Note – Enumeration-valued parameters can include an {{enum}} Template in their description. This

will be replaced by the Report Tool (when it generates an HTML report) with boilerplate text that

describes the set of valid enumerations (see I.2.3). In the absence of an {{enum}} Template, the

{{noenum}} Template can be used to suppress any default boilerplate text that the Report Tool might

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 87 of 232

generate. For pattern-valued parameters, the same holds true with {{pattern}} and

{{nopattern}}.

6.6.1.4 Default Value

A default value is specified for a parameter using the parameter/syntax/default

element (I.10.4). This element can indicate either a factory default or an object default.

An object default should only be used with parameters that are created when the ACS uses the

AddObject RPC to create an instance. A factory default can potentially be used with any

parameter, but only applies when the parameter’s default value is based on some standard, e.g.

an IETF RFC. Also, if there is a factory default then it also acts as an object default.

The type of default is indicated by the required attribute parameter/syntax/-

default/@type. Possible values for this attribute are: factory or object. The default value

itself is indicated by the required attribute parameter/syntax/default/@value. This

value must be valid for the parameter’s data type.

The following example illustrates a parameter with a factory default. This is the same

EnableCWMP parameter as in the example from Section 6.6.1.1, except now the

parameter/syntax/default element is specified. Note that the default value (true) is

valid for the parameter’s boolean data type.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-0">

 ...

 <model name="Device:2.0">

 ...

 <object name="Device.ManagementServer." access="readOnly" minEntries="1" maxEntries="1">

 ...

 <parameter name="EnableCWMP" access="readWrite">

 <description>Enables and disables the CPE's support for CWMP...</description>

 <syntax>

 <boolean/>

 <default type="factory" value="true"/>

 </syntax>

 </parameter>

 ...

 </object>

 ...

 </model>

</dm:document>

The following example illustrates a parameter with an object default. This is a legitimate use of

an object default since the RekeyingInterval parameter comes about due to the creation of the

AccessPoint.{i} object. Note that the default value (3600) is valid for the parameter’s unsigned

integer data type.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-0">

 ...

 <model name="Device:2.0">

 ...

 <object name="Device.WiFi.AccessPoint.{i}.Security." access="readOnly"

 minEntries="1" maxEntries="1">

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 88 of 232

 ...

 <parameter name="RekeyingInterval" access="readWrite">

 <description>Enables and disables the CPE's support for CWMP...</description>

 <syntax>

 <unsignedInt>

 <default type="object" value="3600"/>

 </syntax>

 </parameter>

 ...

 </object>

 ...

 </model>

</dm:document>

Note that the default element if present must be the last element within the syntax.

6.6.1.5 Active Notify and Forced Inform

Note – See TR-069 [1] for explanation of the Active Notification and Forced Inform mechanisms.

The parameter/@activeNotify attribute is used to define a parameter with active

notification restrictions. This is an optional attribute; if it is omitted when first defining the

parameter it will default to normal (i.e. normal notification capabilities). On subsequent updates

to the parameter definition, this attribute can be omitted (assuming its value does not need to

change).

Possible values for the activeNotify attribute are:

 normal – Indicates parameter has no limitations with respect to active notifications.

 forcedEnabled – Indicates parameter will always have active notification set.

 forcedDefaultEnabled – Indicates parameter will have active notification set by default,

but that it can be disabled.

 canDeny – Indicates that the CPE can deny a request by the ACS to set active notification

on the parameter.

The parameter/@forcedInform attribute is used to define a parameter that will be

included in all CWMP Inform messages (i.e. a forced inform parameter). This is an optional

attribute; if it is omitted when first defining the parameter it will default to false (i.e. not forced

inform). On subsequent updates to the parameter definition, this attribute can be omitted

(assuming its value does not need to change).

Possible values for the forcedInform attribute are true (forced inform) or false (not forced

inform).

The following example illustrates a parameter with active notify set to canDeny and forced

inform set to true.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-0">

 ...

 <model name="Device:2.0">

 ...

 <object name="Device.ManagementServer." access="readOnly" minEntries="1" maxEntries="1">

 ...

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 89 of 232

 <parameter name="ParameterKey" access="readOnly"

 activeNotify="canDeny" forcedInform="true">

 ...

 </parameter>

 ...

 </object>

 ...

 </model>

</dm:document>

Note – The activeNotify and forcedInform attributes are often omitted when first defining a

parameter, since their default values (i.e. normal and false) are correct for most new parameter

definitions.

6.6.2 Number-of-Entries Parameter

Each variable-sized table (multi-instance object) requires an associated “number of entries”

parameter, which is defined in the table’s parent object (i.e. one level up in the object hierarchy).

This parameter will indicate the current number of instances present in the table.

The convention is to name such parameters using the name of the associated table followed by

the text “NumberOfEntries”.

Each “number of entries” parameter is read-only and has an unsignedInt data type. Its

description need only be {{numentries}}; this is a description Template which the Report

Tool will replace with boilerplate text (when it generates an HTML report) that denotes the

associated table (see I.2.3). This text will be something like “The number of entries in the

<table> table.”.

The following example snippet defines the VendorConfigFileNumberOfEntries parameter.

Based on its name, the implication is that its associated table is VendorConfigFile.{i}.

 <parameter name="VendorConfigFileNumberOfEntries" access="readOnly">

 <description>{{numentries}}</description>

 <syntax>

 <unsignedInt/>

 </syntax>

 </parameter>

Note – The associated table, not shown here, also requires an object/@numEntriesParameter

attribute that explicitly references the “number of entries” parameter. See Section 6.5.2.1 for details.

6.6.3 Hidden-Valued Parameter

A hidden-valued parameter is a parameter whose value is hidden from the ACS on read back. It

is defined by specifying the parameter/syntax/@hidden attribute as true (I.10.1). This

type of parameter is desired when its value will contain sensitive information, for example, a

password or WEP key.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 90 of 232

A hidden-valued parameter will always read back as the null value for the parameter’s base data

type (see Annex 2.3.5/TR-106 [3]). In summary, each primitive data type has an associated null

value. These null values are defined as follows:

 base64, hexBinary, string: an empty string

 unsignedInt, unsignedLong: 0

 int, long: -1

 boolean: false

 dateTime: 0001-01-01T00:00:00Z (the Unknown Time)

The best practice is to specify the parameter/syntax/@hidden attribute as true when first

defining the parameter. On subsequent updates to the parameter definition, this attribute can be

omitted (assuming its value does not need to change).

The following example defines a hidden-valued parameter, named Password. It is hidden

because the attribute parameter/syntax/@hidden=true. Since its primitive data type is

string, it will read back as an empty string regardless of its actual parameter value.

 <parameter name="Password" access="readWrite">

 <description>...</description>

 <syntax hidden="true">

 <string>

 <size maxLength="256"/>

 </string>

 </syntax>

 </parameter>

6.6.4 Command Parameter

A command parameter is a parameter that is associated with a CPE action; setting the parameter

triggers the action. It is defined by specifying the parameter/syntax/@command attribute

as true (I.10.1).

Such a parameter is not part of the device configuration and will always read back as the null

value for the parameter’s base data type (see Annex 2.3.5/TR-106 [3]). In summary, each

primitive data type has an associated null value. These null values are defined as follows:

 base64, hexBinary, string: an empty string

 unsignedInt, unsignedLong: 0

 int, long: -1

 boolean: false

 dateTime: 0001-01-01T00:00:00Z (the Unknown Time)

The best practice is to specify the parameter/syntax/@command attribute as true when

first defining the parameter. On subsequent updates to the parameter definition, this attribute can

be omitted (assuming its value does not need to change).

The nature of a command parameter means that it will be writable and will typically have a

boolean data type.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 91 of 232

The following example defines a command parameter, named PasswordReset. It is a command

parameter because the attribute parameter/syntax/@command=true. It has a typical

access and syntax for a command parameter.

 <parameter name="PasswordReset" access="readWrite">

 <description>...</description>

 <syntax command="true">

 <boolean/>

 </syntax>

 </parameter>

6.6.5 List-Valued Parameter

A list-valued parameter is specified using the parameter/syntax/list element

(I.10.1/Table 27 and I.10.2); it indicates that the parameter value is a list of items. This is

referred to as a comma-separated list in Section 3.2.3/TR-106 [3]. Such a parameter is always a

string, and its data type specification applies to individual list items rather than the parameter

value as a whole.

The parameter/syntax/list element must be the first element within the syntax,

followed by the data type specification. The items’ data type is either defined as a primitive data

type or a named data type (see Sections 6.6.1.1 and 6.6.1.2, respectively, for details). Note that

the data type elements used here are the same as those used with non-list-valued parameter

definitions.

The number of items permitted in a list is specified using the list element’s minItems and

maxItems attributes. Both are optional attributes; neither, either, or both can be specified.

When first defining a list-valued parameter, these attributes default to 0 and unbounded

(respectively) if they are not specified and there is no implied alternative.

As noted, the parameter value as a whole is always a string. The parameter/syntax/-

list/size facet element can be used to explicitly specify the minimum and maximum length

of this string value, via its minLength and maxLength attributes (see I.13.1). Alternatively,

the maximum length can instead be implied by the maximum number of items and the individual

item lengths (as discussed in Section 3.2.6/TR-106 [3]). The latter is preferred when the number

and length of items is known.

Strictly speaking, it is not necessary to specify a list’s max items or max length, but indicating

some sort of maximum sizing information is good practice. If there is no explicit or implied

maximum length, the default maximum is 16 characters unless otherwise indicated in an

associated parameter description.

Note – List-valued parameters can include a {{list}} Template in their description. This will be

replaced by the Report Tool (when it generates an HTML report) with boilerplate text that describes the

list’s characteristics (see I.2.3). In the absence of a {{list}} Template, the {{nolist}} Template

can be used to suppress any default boilerplate text that the Report Tool might generate.

Example – list with max length:

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 92 of 232

The following example defines a parameter whose value is a list of language codes. The

individual items are strings, as indicated by the parameter/syntax/string element. The

number of possible list items is not specified, so the defaults are assumed (i.e. between 0 and an

unbounded upper range). Since the max number of items is unbounded, the parameter value’s

max length cannot be inferred; hence it is defined explicitly (i.e. it has a minimum length of 0, by

default, and a specified maximum of 256 characters).

 <parameter name="AvailableLanguages" access="readOnly">

 <description>{{list}} List items represent user-interface languages...</description>

 <syntax>

 <list>

 <size maxLength="256"/>

 </list>

 <string/>

 </syntax>

 </parameter>

Note that while the max number of items defaults to unbounded, in practice there is an upper

limit based on the 256 character max length and the fact that items are comma-delimited within

the parameter value.

Example – list with max items (and no max length given):

The following example defines a parameter whose value is a list of MAC addresses (as defined

by the named data type MACAddress). The list’s max number of items is 16. The list’s max

length is not specified, but it is implied given its max items and the fact that a MACAddress has

a max length.

 <parameter name="EndStationMACs" access="readOnly">

 <description>{{list}} List items represent MAC addresses of end stations...</description>

 <syntax>

 <list maxItems="16"/>

 <dataType ref="MACAddress">

 </syntax>

 </parameter>

In the above example, the list’s max length is at least 287 characters (i.e. 16 max items, and each

item has a max length of 17, plus a comma-separator between each item).

Example – enumeration list:

The following example defines a parameter whose value is a list of enumeration items. As

always, the parameter/syntax/list element appears first within the syntax followed by

the data type specification for the individual items. With an enumeration list, the max number

and length of items is implied (i.e. we know how many different enumerations there are and the

length of each), so there is no need to explicitly define the list’s max length or max number of

items (it can be derived).

 <parameter name="PossibleConnectionTypes" access="readOnly">

 <description>{{list}} List items indicate the types of connections...</description>

 <syntax>

 <list/>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 93 of 232

 <string>

 <enumeration value="Phone"/>

 <enumeration value="Coax"/>

 </string>

 </syntax>

 </parameter>

In the above example, there are two enumeration values; so the list’s max items is 2, and its max

length is at least 10 characters given the length of the two items and a comma separator. The min

items is 0 by default. Note that if there are vendor-specific enumerations defined, then the string

max length might be longer.

Example – fixed-sized list:

The following example defines a parameter with a fixed-sized list; it has exactly 8 items where

each item is an unsigned integer between 0 and 7 (e.g. a string value containing a comma-

separated list such as "1,2,0,5,2,8,9,2").

 <parameter name="PriorityRegeneration" access="readWrite">

 <description>{{list}} List items represent user priority regeneration...</description>

 <syntax>

 <list minItems="8" maxItems="8"/>

 <unsignedInt>

 <range minInclusive="0" maxInclusive="7"/>

 </unsignedInt>

 ...

 </syntax>

 </parameter>

6.6.6 Reference Parameter

A reference parameter references another parameter or object. This is defined using a reference

facet (see Annex A.2.3.7/TR-106 [3]) within the parameter’s data type specification. There are

three kinds of reference:

 Path reference: references another parameter or object via a path name (see Section

6.6.6.1). The value of a path-reference parameter represents a specific path name.

 Instance reference: references an object instance (table row) via an instance number (see

Section 6.6.6.2). The value of an instance-reference parameter represents a specific

instance number.

 Enumeration reference: references a list-valued parameter via a path name (see Section

6.6.6.3). The current value of the referenced parameter indicates the valid enumerations

for the enumeration-reference parameter; i.e. the value of the enumeration-reference

parameter is one of the referenced list items or a specified “null” value.

All such parameters need to specify the path name of the parameter or object that they reference.

For instance- and enumeration-reference parameters, the specific path name referenced is

indicated by the parameter definition itself; for path-reference parameters, the parameter

definition might narrow the set of possible path names while its run-time parameter value

actually specifies the specific path name referenced.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 94 of 232

These path names can be full path names or relative path names, as discussed in Annex

A.2.3.4/TR-106 [3]. For example, it might be necessary to reference another parameter in the

current object. Any instance numbers in the parameter’s full path name cannot be known at Data

Model definition time, so this can only be done using a relative path name.

A path name is always associated with a path name scope, which defines the point in the naming

hierarchy relative to which the path name applies. There are three kinds of scope: normal, model,

and object. The preference is to use normal, a hybrid scope which usually gives the desired

behavior based on the format of the path name. Another benefit of using normal scope is that any

leading hash characters (“#”) in the path name will redirect it up one level to the parent of the

current object (or the parent’s parent for two hash characters, and so on)
20

. Path name scope is

discussed in Annex A.2.3.4/TR-106 [3].

Note that an enumeration reference is fundamentally different from the other two kinds of

reference. With path- and instance-reference parameters, the parameter value indicates which

specific parameter or object is being referenced (and will have additional reference info within

its definition). However, an enumeration-reference parameter maintains this reference info solely

within its definition, while its parameter value will be one of the list items from the current value

of the referenced parameter.

Note – Reference parameters can include a {{reference}} Template in their description. This will

be replaced by the Report Tool (when it generates an HTML report) with boilerplate text that describes

the parameter or object being referenced (see I.2.3). In the absence of a {{reference}} Template, the

{{noreference}} Template can be used to suppress any default boilerplate text that the Report Tool

might generate.

6.6.6.1 Path-Reference Parameter

A path-reference parameter references another parameter or object via its path name.

The reference is defined using a pathRef facet element (I.13.3) within the referencing

parameter’s data type specification. Since the parameter’s value will be a specific path name, the

use of pathRef only applies to string and its derived types.

The pathRef element has several attributes that aid in specifying which parameters and objects

will be targeted as candidates for the reference. These are: targetParent,

targetParentScope, targetType, and targetDataType. The most commonly used

targeting attributes are targetParent and targetType.

The set of all parameters and objects that can be referenced is restricted using the optional

pathRef/@targetParent attribute. This attribute can contain a list of path names

indicating which objects to look under; only the immediate children of one of these specified

parent objects can be referenced. If the list is empty (the default), then anything can be

referenced.

20 The path name is always relative to the current object. The # provides a way for it to reference its parent.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 95 of 232

Note – A "{i}" placeholder in a targetParent path name acts as a wild card, and can therefore represent
multiple parent objects. The targetParent path name(s) cannot contain explicit instance numbers

21
.

The targetParent’s path name scope is specified using the optional pathRef/-

@targetParentScope attribute (with possible values: normal, model, object), however, this

should be avoided when possible! The best practice is to use normal scope, the default if this

attribute is omitted when first defining the parameter. Unfortunately there are some cases where

you need to set the scope differently, e.g. where the path name begins with “Device.”.

Note – Normal is a hybrid scope which usually gives the desired behavior (and where the scope of a path
name is implied by the format of the path name itself). If a targetParent path begins with "Device." or

"InternetGatewayDevice." then it is relative to the top of the naming hierarchy. If a targetParent path
begins with a dot then it is relative to the Root or Service Object. Otherwise, a targetParent path is relative

to the current object (and any leading hash characters in a targetParent path will redirect it up one level
to the parent of the current object, or the parent’s parent, and so on for each hash character). Path names
and scope are discussed in more detail in Annex A.2.3.4/TR-106 [3].

The type of item (parameter or object) that can be referenced is specified using the optional

pathRef/@targetType attribute. One of:

 any: either a parameter or an object can be referenced (default)

 parameter: only a parameter can be referenced

 object: any type of object can be referenced

 single: only a single-instance object can be referenced

 table: only a multi-instance object (table) can be referenced

 row: only a multi-instance object instance (table row) can be referenced

When the item to be referenced is a parameter, then the type of parameter to be referenced can be

restricted using the optional pathRef/@targetDataType attribute. This is relevant only

when targetType is configured for parameters (i.e. any or parameter). Possible values for

targetDataType are: any (any data type), base64, boolean, dateTime, hexBinary, integer (any

numeric data type), int, long, string, unsignedInt, unsignedLong, or the name of some named

data type. The default is any if not specified when first defining the parameter.

The reference type, either strong or weak, is specified using the pathRef/@refType

attribute. This is the only required attribute for the pathRef element. Reference type is

discussed in Section A.2.3.6/TR-106 [3]. In summary, a strong reference always either

references a valid parameter or object, or else is a null reference. A weak reference does not

necessarily reference an existing parameter or object.

Note – A null reference indicates that a referencing parameter is not currently referencing anything. The
value that indicates a null reference is the null value for the reference parameter’s base data type (i.e. an

empty string when using pathRef since it is string-based). See Section A.2.3.5/TR-106 [3].

21 This is the exact opposite to how a path name is specified within the reference parameter’s value. The actual

referenced path name cannot contain "{i}" placeholders but may contain explicit instance numbers as needed. This

difference is the distinction between a Data Model definition (where instance numbers are not known) and an

instantiated run-time Data Model (where instance numbers are needed). See Section 3.2.4/TR-106 [3].

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 96 of 232

Note – If the parameter is actually a list of references, then there is no explicit null value. Instread, an

empty list indicates no reference.

The following example defines a reference parameter using a pathRef facet. The

targetType attribute indicates that it will reference a table row, and the targetParent

attribute indicates two tables that this row can come from. Note that targetParent contains

relative path names here, and since they are prefixed with a hash character, they are redirected to

the Device.Bridging object one level up in the naming hierarchy (i.e. the targetParent path names

resolve to Device.Bridging.Bridge. and Device.Bridging.Bridge.{i}.VLAN. respectively) . This

is a strong reference (refType is strong), so the parameter’s value will either be the path name of

a valid object instance or an empty string.

 <object name="Device.Bridging.Filter.{i}." ...>

 ...

 <parameter name="Bridge" access="readWrite">

 <description>{{reference}} ...</description>

 <syntax>

 <string>

 <size maxLength="256"/>

 <pathRef refType="strong"

 targetParent="#.Bridge. #.Bridge.{i}.VLAN." targetType="row"/>

 </string>

 </syntax>

 </parameter>

 ...

 </object>

In the above example, the string has a max length of 256 characters. This is a common practice

with path-reference parameters. If no max length were specified, then the default would have

been 16 characters which would likely be insufficient.

The following example defines a reference parameter named Reference. The targetType

attribute indicates that it will reference a parameter, and the lack of a targetParent attribute

indicates that any parameter can be referenced (i.e. no restriction for which parameter to

reference, just so long as that parameter is defined). Since this is a reference to a parameter, the

targetDataType attribute could have been employed but in this case was not desired. This is

a weak reference (refType is weak), so the parameter’s value need not be a path name to an

existing parameter.

 <parameter name="Reference" access="readWrite">

 <description>{{reference}} ...</description>

 <syntax>

 <string>

 <size maxLength="256"/>

 <pathRef refType="weak" targetType="parameter"/>

 </string>

 </syntax>

 </parameter>

The following example defines a parameter that combines a path-reference with a list, so its value will be

a list of path references. The targetType attribute indicates that each list item will reference a

table row, and the targetParent attribute indicates which table these rows will come from.

Note that targetParent contains a relative path name here, and since it is prefixed with a dot, it is

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 97 of 232

relative to the Root Object (i.e. the targetParent path name resolves to Device.Hosts.Host.). This

is a strong reference (refType is strong), so the list items will be path names of valid object

instances (and invalid items will be removed from the list).

 <object name="Device.ManagementServer.ManageableDevice.{i}." ...>

 ...

 <parameter name="Host" access="readOnly">

 <description>{{list}} {{reference}} ...</description>

 <syntax>

 <list>

 <size maxLength="1024"/>

 </list>

 <string>

 <pathRef refType="strong" targetParent=".Hosts.Host." targetType="row"/>

 </string>

 </syntax>

 </parameter>

 ...

 </object>

In the above example, the list has a max length of 1024 characters. This is a common practice

with list-valued parameters of path references. If no max length were specified, then the default

would have been 16 characters which would likely be insufficient. List-valued parameters are

discussed in Section 6.6.5.

6.6.6.2 Instance-Reference Parameter

Note – The use of a path-reference parameter is preferred over an instance-reference parameter in
referencing a table row. A path-reference parameter is defined to reference a table row by setting its target

type to row.

An instance-reference parameter references an object instance (table row) via its instance

number.

The reference is defined using an instanceRef facet element (I.13.2) within the referencing

parameter’s data type specification. Since the parameter value will be a specific instance number,

the use of instanceRef only applies to int, unsignedInt and their derived types.

The instanceRef/@targetParent attribute specifies the path name of the multi-instance

object (table) of which an instance (row) is to be referenced. This value cannot contain "{i}"

placeholders since it must refer to a specific table. Note that it can still be within another table,

but it must be possible to get there without crossing an “{i}” boundary.

The targetParent’s path name scope can be specified using the optional instanceRef/-

@targetParentScope attribute (with possible values: normal, model, object), however, this

should be avoided when possible! The best practice is to use normal scope, the default if this

attribute is omitted when first defining the parameter. Unfortunately there are some cases where

you need to set the scope differently, e.g. where the path name begins with “Device.”.

Note – Normal is a hybrid scope which usually gives the desired behavior (and where the scope of a path
name is implied by the format of the path name itself). If the targetParent path begins with "Device" or

"InternetGatewayDevice" then it is relative to the top of the naming hierarchy. If the targetParent path

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 98 of 232

begins with a dot then it is relative to the Root or Service Object. Otherwise, the targetParent path is

relative to the current object (and any leading hash characters in the targetParent path will redirect it up
one level to the parent of the current object, or the parent’s parent, and so on for each hash character).

Path names and scope are discussed in more detail in Annex A.2.3.4/TR-106 [3].

The reference type, either strong or weak, is specified using the instanceRef/@refType

attribute. Reference type is discussed in Section A.2.3.6/TR-106 [3]. In summary, a strong

reference always either references a valid object instance or else is a null reference. A weak

reference does not necessarily reference an existing object instance.

Note – A null reference indicates that a referencing parameter is not currently referencing anything. The
value that indicates a null reference is the null value for the reference parameter’s base data type (i.e. 0 for

unsignedInt, -1 for int). See Section A.2.3.5/TR-106 [3].

The targetParent and refType attributes are both required for the instanceRef

element.

The following example defines a reference parameter using an instanceRef facet. The

reference parameter is named ParentID, and it references a row in the IKESA.{i} table. Within

the ParentID parameter, the path name of the referenced table is specified via the

parameter/syntax/unsignedInt/instanceRef/@targetParent attribute. Note

that this is a relative path name, and since it is prefixed with a dot, it is relative to the Service

Object (i.e. the targetParent path name resolves to FAPService.{i}.Transport.Tunnel.IKESA.).

This is a strong reference (refType is strong), so the parameter value will either be a valid

instance number or 0.

 <object name="FAPService.{i}.Transport.Tunnel.IKESA.{i}." ...>

 ...

 </object>

 <object name="FAPService.{i}.Transport.Tunnel.ChildSA.{i}." ...>

 ...

 <parameter name="ParentID" access="readOnly">

 <description>{{reference}} ...</description>

 <syntax>

 <unsignedInt>

 <instanceRef refType="strong" targetParent=".Transport.Tunnel.IKESA."/>

 </unsignedInt>

 </syntax>

 </parameter>

 ...

 </object>

6.6.6.3 Enumeration-Reference Parameter

An enumeration-reference parameter is basically an enumeration parameter which obtains its

valid enumeration values from the runtime value of another parameter (or from a specified “null”

value if the reference parameter is not itself a list). This other parameter is referenced by its path

name and must be list-valued.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 99 of 232

The reference is defined using an enumerationRef facet element (I.13.6) within the referencing

parameter’s data type specification. Since the parameter’s value will be an enumeration value (a

string), the use of enumerationRef only applies to string and its derived types.

The path name of the referenced parameter is specified using the enumerationRef/-

@targetParam attribute. This is the only required attribute for the enumerationRef

element. Its value cannot contain "{i}" placeholders since it has to to reference just one

parameter. The referenced parameter must be a list-valued parameter.

The path name scope can be specified using the enumerationRef/@targetParamScope

attribute (with possible values: normal, model, object), however, this should be avoided when

possible! The best practice is to use normal scope, the default if this attribute is omitted when

first defining the parameter. Unfortunately there are some cases where you need to set the scope

differently, e.g. where the path name begins with “Device.”.

Note – Normal is a hybrid scope which usually gives the desired behavior. If the targetParam path begins

with "Device" or "InternetGatewayDevice" then it is relative to the top of the naming hierarchy. If the
targetParam path begins with a dot then it is relative to the Root or Service Object. Otherwise, the

targetParam path is relative to the current object (and any leading hash characters in the targetParam path

will redirect it up one level to the parent of the current object, or the parent’s parent, and so on for each
hash character). Path names and scope are discussed in more detail in Annex A.2.3.4/TR-106 [3].

The following example defines a reference parameter using an enumerationRef facet. The

reference parameter is named ModeEnabled (towards the bottom), and it references the list-

valued parameter ModesSupported. Within the ModeEnabled parameter, the path name of the

referenced parameter is specified via the parameter/syntax/string/-

enumerationRef/@targetParam attribute. Note that this is a relative path name, and

since it is prefixed with two hash characters, it is redirected to the Device.WiFi.EndPoint.{i}

object two levels up in the naming hierarchy (i.e. the targetParam path name resolves to

Device.WiFi.EndPoint.{i}.Security.ModesSupported).

 <object name="Device.WiFi.EndPoint.{i}.Security." ...>

 ...

 <parameter name="ModesSupported" access="readOnly">

 <description>{{list}} ...</description>

 <syntax>

 <list/>

 <string>

 <enumeration value="None"/>

 <enumeration value="WEP-64"/>

 <enumeration value="WEP-128"/>

 ...

 </string>

 </syntax>

 </parameter>

 ...

 </object>

 <object name="Device.WiFi.EndPoint.{i}.Profile.{i}.Security." ...>

 ...

 <parameter name="ModeEnabled" access="readWrite">

 <description>{{reference}} ...</description>

 <syntax>

 <string>

 <enumerationRef targetParam="##.Security.ModesSupported"/>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 100 of 232

 </string>

 </syntax>

 </parameter>

 ...

 </object>

In the above example, the ModeEnabled parameter will always have a value that is one of the

items from the ModesSupported parameter list. In some cases it is desirable to allow the

referencing parameter to be set to some “null” value, indicating that none of the values of the

referenced parameter currently apply. This is achieved using the enumerationRef/-

@nullValue attribute.

6.6.7 Updating an Existing Parameter Definition

Sometimes an existing parameter needs to be updated. This is done using a parameter

element (I.10) within a new revision of the document that defined the parameter in question. This

implies that the parameter’s other parent elements (e.g. object, model or component) will

also be updated.

Note – The syntax for modifying a parameter is the same as for initially creating it, but there are rules.

See Section A.2.10.1/TR-106 [3] for details.

An update to a parameter is a parameter definition that is based on the existing parameter. This is

characterized by the use of the parameter/@base attribute, which indicates the name of the

existing parameter being updated. Note that the parameter/@name attribute, which is used in

the initial definition of a parameter, is not used when updating a parameter.

The updated definition will contain changes and additions to the existing parameter. It should not

re-define those portions of the existing parameter that have not changed. Generally, this means

that optional parameter attributes that are not changing are not re-specified (e.g. status,

activeNotify), and that elements within the parameter that are not changing are also not re-

specified (e.g. description, syntax). See Appendix I.10 for a full list of attributes and elements

and whether they are optional or required.

Note – Required parameter attributes are always specified regardless of whether or not they are being

changed, because if they were not then schema validation would fail. Optional parameter attributes, while
generally not specified unless they are changing, may be re-specified if the author deems it appropriate.

Common reasons to update a parameter include:

 Change an attribute value; e.g. set status to deprecated

 Update its description

 Change its syntax; e.g. specify a default value, or narrow its set (or range) of valid values

The following example illustrates updates to two parameters (the first listing is the initial

parameter definitions in tr-181-2-0-1 and the second listing is the updates in the much later tr-

181-2-2-0). The Protocol parameter has its data type updated to indicate a maximum value, and

the SourceUserClassID parameter just has its description updated. As expected, the updates are

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 101 of 232

within a new document revision and the parameters’ parent elements are also updated (in this

case, their object and model).

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-1">

 ...

 <model name="Device:2.0">

 ...

 <object name="Device.QoS.Classification.{i}." ...>

 ...

 <parameter name="Protocol" access="readWrite">

 <description>Classification criterion.

 Protocol number. A value of -1 indicates this criterion is not used for classification.

 </description>

 <syntax>

 <int>

 <range minInclusive="-1"/>

 </int>

 <default type="object" value="-1"/>

 </syntax>

 </parameter>

 <parameter name="SourceUserClassID" access="readWrite">

 <description>Classification criterion.

 A hexbinary string used to identify one or more LAN devices, value of the DHCP User

 Class Identifier (Option 77) as defined in...

 </description>

 <syntax>

 <hexBinary>

 <size maxLength="65535"/>

 </hexBinary>

 <default type="object" value=""/>

 </syntax>

 </parameter>

 ...

 </object>

 ...

 </model>

</dm:document>

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3" ...

 spec="urn:broadband-forum-org:tr-181-2-2-0">

 ...

 <model name="Device:2.2" base="Device:2.1">

 ...

 <object base="Device.QoS.Classification.{i}." ...>

 ...

 <parameter base="Protocol" access="readWrite">

 <syntax>

 <int>

 <range minInclusive="-1" maxInclusive="255"/>

 </int>

 <default type="object" value="-1"/>

 </syntax>

 </parameter>

 <parameter base="SourceUserClassID" access="readWrite">

 <description action="replace">Classification criterion.

 A hexbinary string used to identify one or more LAN devices, value of the DHCP User

 Class Identifier. The DHCP User Class Identifier is Option 77 (as defined in...

 </description>

 </parameter>

 ...

 </object>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 102 of 232

 ...

 </model>

</dm:document>

A few things should be observed within the updated document (in the second listing) that applies

whenever a parameter definition is updated:

 The parameter/@base attribute is used to reference the existing parameter definition.

 The parameters’ required attributes are present (even though none were changed).

 The parameters’ optional attributes are not present since none changed (though it is not

an error to re-specify them). When omitted, the presumption is that their previous settings

will carry forward unchanged.

 The Protocol parameter’s description is omitted since it was not updated. No need to re-

specify a description if it is not changing. When omitted, the presumption is that the

existing description is carried forward.

 The SourceUserClassID parameter’s syntax is omitted since it was not updated. No need

to re-specify the syntax if it is not changing. When omitted, the presumption is that the

existing syntax is carried forward.

 The Protocol parameter’s updated data type definition is a restriction (not an extension)

of its prior definition. Updates to a parameter’s data type must obey the base type

restriction rules of Section A.2.3.8/TR-106 [3] (i.e. a valid value of the updated data type

definition will also be a valid value of its original data type definition; if a facet present in

the base type is re-specified it must be fully specified; etc.).

 The Protocol parameter’s default value is re-specified even though it was not updated.

This is truly redundant (i.e. if omitted, the existing parameter default would be carried

forward). However, it is not an error to re-specify unnecessary portions of the syntax,

perhaps the author wished to provide some context for readability, but doing so could

introduce errata.

Note – In the above example, it is not shown in the second listing, but the previous Device:2.1 model

must be imported before it can be used to define the updated Device:2.2 model. See 6.4.2 for details on

updating an existing model.

When an existing parameter needs be deprecated, obsoleted, or deleted, this is done by updating

its parameter/@status attribute. The parameter’s description must also be updated to

include an explanation of why the status was changed. See Section 6.10 for details.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 103 of 232

6.7 Component

A component is a grouping of objects, parameters and/or profiles, which are defined within the

component rather than directly within a Data Model. This means that they are not tied to any

particular Root or Service model. They are defined at the top-level within a document, outside

the scope of any models, using a component element (I.6).

Each component is assigned a unique name, by which it can be referenced, in order to later

include its definition wherever it is needed. A component definition can be referenced (included)

from within another component, model or object using a component reference element (I.7).

Referencing (including) a component can be thought of as textual substitution (i.e. substituting

the component reference element with the items defined within the actual component definition

element).

In this way it is possible to define a set of objects, parameters and/or profiles that can be reused

at different points within multiple Data Models. For example, TR-157 defines the

DI_SupportedDataModel component which is included within all Root Data Models (i.e. within

Device:2, Device:1, and InternetGatewayDevice:1). However, components can also be defined

simply as a means to structure the definitions, even if reuse seems unnecessary.

Note that a component definition has no version number. Each time an existing component needs

to be updated, it is actually re-defined using the same name.

Note – Objects, parameters, and profiles are defined and updated within a component in the same fashion
that they are defined and updated within a model. For specific instruction on defining or updating these

elements, see: object (Section 6.5), parameter (Section 6.6), and profile (Section 6.8).

6.7.1 Defining and Using a Component

The top-level component element (I.6) is used to define a new component. The component is

assigned a name via its component/@name attribute. This name must be unique within the

document (including imported components; Section 6.3.3). The use of this element is also

discussed in Section A.2.5/TR-106 [3].

A component definition can contain objects, parameters, and/or profiles (i.e. in a similar fashion

to how models contain such sub-elements). If profile elements are present, then they must

appear at the end of the component after any object and parameter elements.

Each component definition should have a description. This is defined by the

component/description element. The description (if present) must be the first element

within the component.

The following example defines the component named UserInterface. It contains a description,

objects and their parameters. It is defined within the document, but outside of the document’s

Device:2.0 model.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 104 of 232

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-0">

 ...

 <import ...>

 ...

 </import>

 ...

 <component name="UserInterface">

 <description>Parameters related to the user interface of the CPE...</description>

 <object name="UserInterface." ...>

 ...

 <parameter name="PasswordReset" ...>

 <description>...</description>

 <syntax hidden="true">

 <boolean/>

 </syntax>

 </parameter>

 ...

 </object>

 ...

 </component>

 ...

 <model name="Device:2.0">

 ...

 </model>

</dm:document>

In the above example, note how the component definition element appears after any import

elements and before any model element.

This example illustrates how to define a component, but does not indicate how this definition can

be included within a Data Model (see below).

Referencing a component:

A component definition can be referenced (included) within another component, model, or object

definition using the component reference element (I.7). This is a different type of component

element, which uses its component/@ref attribute in order to reference a definition.

A component reference needs to specify the name of the component being included, and where

to insert this component’s items relative to the point of reference. The former is indicated by the

component/@ref attribute (i.e. which component definition is being referenced). The latter is

indicated by the component/@path attribute (i.e. the object path relative to the point of

reference where the component’s items will be inserted). The path attribute is optional; if

omitted, then the component’s items will be inserted exactly at the point of reference.

The following example builds on the preceding example. The UserInterface component is

defined before the model, and it is referenced (included) within the model via a

model/component reference element
22

. The model/component/@ref attribute specifies

22 Broadband Forum standard Data Models no longer define both components and models within the same DM

Instance. The information has been retained here in case vendors wish to do something similar in their vendor-

specific Data Models.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 105 of 232

the UserInterface component. The model/component/@path attribute specifies a path of

“Device.”. This means, for example, that the component’s items, when included, resolve to

Device.UserInterface (an included object) and Device.UserInterface.PasswordReset (an included

parameter).

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-0">

 ...

 <component name="UserInterface">

 ...

 </component>

 ...

 <model name="Device:2.0">

 ...

 <object name="Device." ...>

 ...

 </object>

 ...

 <component path="Device." ref="UserInterface"/>

 ...

 </model>

</dm:document>

In the above example, the component reference element was placed directly within the model

element (referenced from within the model definition), and a model/component/@path

attribute indicated that the relative path for the included items should actually be “Device.”. An

equivalent alternative could have just as easily been to place the component reference element

directly within the Device object and to then omit the path attribute (meaning that the relative

path of the included items is at the point of reference). For example:

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-0">

 ...

 <component name="UserInterface">

 ...

 </component>

 ...

 <model name="Device:2.0">

 ...

 <object name="Device." ...>

 ...

 <component ref="UserInterface"/>

 ...

 </object>

 ...

 </model>

</dm:document>

However, the preference is to place component reference elements directly within the model

element (not within an object element). This mirrors how objects are defined within a model (all

at the top-level). A notable exception might be when a component definition contains top-level

parameters and no objects.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 106 of 232

6.7.2 Importing and Using a Component

Note – This section builds on Section 6.7.1, especially its discussion on referencing a component.

Since a component is not tied to any particular Root or Service model, it can be defined in one

document, and then imported and included into a model (or component or object) defined in

another document. A component definition is imported using an import/component element

(see Sections 6.3 and 6.3.3), and is then included (referenced) via a component reference

element (I.7).

The following example imports the NSLookupDiag component definition from tr-157-1-2.xml,

using an import/component element. This makes the remote component definition visible (to be

referenced) within the local document. It is referenced (included) within the local document’s

model via a model/component reference element.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-0">

 ...

 <import file="tr-157-1-2.xml" spec="urn:broadband-forum-org:tr-157-1-2">

 ...

 <component name="NSLookupDiag"/>

 ...

 </import>

 ...

 <model name="Device:2.0">

 ...

 <object name="Device.DNS.Diagnostics." ...>

 ...

 </object>

 ...

 <component path="Device.DNS.Diagnostics." ref="NSLookupDiag"/>

 ...

 </model>

</dm:document>

In the above example, the model/component/@ref attribute specifies the NSLookupDiag

component that was imported. The model/component/@path attribute specifies a relative

path of “Device.DNS.Diagnostics.”. This means, for example, that the imported component’s

items (e.g. its NSLookupDiagnostics object and its NSLookupDiagnostics.Interface parameter),

when included, resolve to Device.DNS.Diagnostics.NSLookupDiagnostics (an included object)

and Device.DNS.Diagnostics.NSLookupDiagnostics.Interface (an included parameter).

6.7.3 Updating an Existing Component

Note – This section builds on concepts discussed in Section 6.7.1.

A component definition does not have a version number. Each time an existing component needs

to be updated, a new component with the same name (based on the previous component

definition) is defined in a new version of the document. Generally the new version of the

document is an amendment.

At a minimum, the amended document will need to:

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 107 of 232

 Import the previous version of the component. This is done using an import/-

component element (see Section 6.3.3). Note that the imported component is referred

to locally by a different name (usually the local name is the same as the remote name but

is prefixed with an underscore).

 If the amended document also needs to update a model, then import the previous version

of the model using an import/model element (see Section 6.3.2).
Note: Broadband Forum standard Data Models no longer define both components and models
within the same DM Instance.

 Define a new “diffs” component that will only contain the changes needed to extend the

imported component. This is done using a component definition element (I.6),

discussed in Section 6.7.1. The convention is to name this component as the

concatenation of the imported component name and the text “Diffs”. The name should

not be prefixed with an underscore. This is because names that begin with underscores

are local and cannot be imported by other files; but the Diffs component has to be

importable.

 Redefine the original component (using a component definition element; I.6) as a

union of the imported component and the “diffs” component (using component

reference elements; I.7). This is actually a new component defined within the local

document, which has the same name as the remotely defined component.

 If the amended document needs to update a model, then reference (include) the “diffs”

component from within the updated model using the model/component element (I.7).
Note: Broadband Forum standard Data Models no longer define both components and models

within the same DM Instance.

The following example demonstrates this process, where the imported component is defined in

the previous version of the same document. This example builds on the UserInterface example

from Section 6.7.1.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3" ...

 spec="urn:broadband-forum-org:tr-181-2-2-0">

 ...

 <import file="tr-181-2-1.xml" spec="urn:broadband-forum-org:tr-181-2-1">

 ...

 <component name="_UserInterface" ref="UserInterface"/>

 <model name="Device:2.1"/>

 </import>

 <component name="UserInterfaceDiffs">

 <object base="UserInterface." access="readOnly" minEntries="1" maxEntries="1">

 <parameter base="PasswordReset" access="readWrite">

 <syntax command="true">

 <boolean/>

 </syntax>

 </parameter>

 </object>

 </component>

 <component name="UserInterface">

 <component ref="_UserInterface"/>

 <component ref="UserInterfaceDiffs"/>

 </component>

 <model name="Device:2.2" base="Device:2.1">

 <component path="Device." ref="UserInterfaceDiffs"/>

 ...

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 108 of 232

 </model>

</dm:document>

In the above example, the imported component is defined remotely as UserInterface and is

referred to locally as _UserInterface. The updates needed to extend the imported component are

defined solely within the new UserInterfaceDiffs component. The UserInterface component is

then redefined within the local document as the union of the _UserInterface and

UserInterfaceDiffs components. This means that the new UserInterface component contains the

full definition (i.e. previous version plus changes).

Note that the above example also revises the associated model (defines Device:2.2 based on the

previous Device:2.1), in order to incorporate the component updates within the model. Since the

revised model only needs the changes, the model/component element simply references the

“diffs” component.

Separate documents:

It is also possible and recommended that the component to be updated, and the model in which it

is included, are defined in different documents. The basic process in updating and including the

component is the same as discussed above, but the work is split across both documents.

The following listings demonstrate this process; the updated component is defined in tr-157-1-3

and the updated model is defined in tr-181-2-1
23

. This example builds on the NSLookupDiag

example from Section 6.7.2.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3" ...

 spec="urn:broadband-forum-org:tr-157-1-3-0">

 ...

 <import file="tr-157-1-2.xml" spec="urn:broadband-forum-org:tr-157-1-2">

 ...

 <component name="_NSLookupDiag" ref="NSLookupDiag"/>

 ...

 </import>

 ...

 <component name="NSLookupDiagDiffs">

 <object base="NSLookupDiagnostics.Result.{i}." ...>

 <parameter base="Status" ...>

 <description action="replace">

 Result Parameter representing whether NS Lookup was successful...

 </description>

 </parameter>

 </object>

 </component>

 <component name="NSLookupDiag">

 <component ref="_NSLookupDiag"/>

 <component ref="NSLookupDiagDiffs"/>

 </component>

 ...

</dm:document>

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3" ...

 spec="urn:broadband-forum-org:tr-181-2-1-0">

 ...

23 Note that tr-157-1-3 defines its own models, which also reference NSLookupDiagDiffs, but these have been

omitted from this example since the concept is already covered in the previous example.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 109 of 232

 <import file="tr-157-1-3.xml" spec="urn:broadband-forum-org:tr-157-1-3">

 ...

 <component name="NSLookupDiagDiffs"/>

 ...

 </import>

 ...

 <model name="Device:2.1" base="Device:2.0">

 ...

 <component path="Device.DNS.Diagnostics." ref="NSLookupDiagDiffs"/>

 ...

 </model>

</dm:document>

In the above tr-157-1-3 document listing, the NSLookupDiag component import, the definition

of the “diffs” component, and the redefinition of the imported component are all specified in the

same fashion as described in the previous example. However, the tr-181-2-1 document updates

are specified somewhat differently.

The tr-181-2-1 document imports the NSLookupDiagDiffs component from the tr-157-1-3

document. Since this component is not updated within the tr-181-2-1 document (i.e. read-only),

it is imported using the import/component/@name attribute alone (i.e. omits the ref

attribute; this means that the NSLookupDiagDiffs component is referred to locally by the same

name that it is defined by in the remote document). Finally, the model/component element

references the NSLookupDiagDiffs component in order to include the component updates within

the revised model.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 110 of 232

6.8 Profile

A profile is a named group of requirements associated with a model or component. It is specified

using the profile element (I.11). Profile usage is also discussed in Section 2.3/TR-106 [3].

Each profile element has a name specified using the profile/@name attribute, the

profile/@base attribute, or both (depending on whether it is a new profile, it updates an

existing profile, or it extends an existing profile, respectively). A profile’s name is formatted as

follows: the name, a colon, and its version number (e.g. the initial version of a Baseline profile is

named Baseline:1). Profile versioning is discussed in Section 2.3.3/TR-106 [3].

Each profile name is unique within the major version of its associated model.

A profile contains references to this model’s objects and/or parameters. These references are

specified using the object (I.11.1) and parameter (I.11.2) reference elements. Their ref attribute

indicates the name of the object
24

 or parameter being referenced, and their requirement

attribute indicates the access requirement for that item.

A profile object requirement can be one of: notSpecified, present, create, delete, or createDelete.

This is set using a profile/object/@requirement attribute. The create, delete, and

createDelete settings only apply to multi-instance objects.

A profile parameter requirement can be one of: readOnly or readWrite. This is set using a

profile/parameter/@requirement attribute.

A profile can have a description. This is defined using the profile/description element. Similarly,

a profile’s objects and parameters can also have descriptions. However, most profiles (and their

objects and parameters) do not have a description unless there are additional normative

requirements that need to be specified.

Note – The examples throughout this section are of profiles defined within models. The mechanism is
almost identical in defining profiles within components. However, a component’s profile name must be

unique not only within the component itself, but also within (the major version of) any models from

which the component is referenced (included).

6.8.1 Defining a New Profile

The initial version of a new profile is defined using a profile/@name attribute alone (i.e.

omit the profile’s base and extends attributes). This attribute indicates the name and version of

the profile. The version of a new profile always starts at 1.

24 For model profiles, model/profile/object/@ref will be the full path name of the referenced object. For

component profiles, component/profile/object/@ref will be a path name that is relative to the

component’s top-level object.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 111 of 232

The profile will contain references to objects and/or parameters, where each item indicates its

access requirement. Objects are referenced using their path name.

The following example defines the Baseline:1 profile within the Device:2 model. Note that the

profile is defined at the bottom of the model, after any object definitions and component

references.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-0">

 ...

 <model name="Device:2.0">

 ...

 <object name="Device." ...>

 ...

 </object>

 ...

 <profile name="Baseline:1">

 <object ref="Device." requirement="present">

 <parameter ref="InterfaceStackNumberOfEntries" requirement="readOnly"/>

 </object>

 <object ref="Device.DeviceInfo." requirement="present">

 <parameter ref="Manufacturer" requirement="readOnly"/>

 <parameter ref="ProvisioningCode" requirement="readWrite"/>

 ...

 </object>

 ...

 </profile>

 ...

 </model>

</dm:document>

Note – A best practice is to define a Baseline profile for each Root and Service Data Model. The

Baseline profile should define a minimum set of object and parameter requirements for a CPE
implementing the associated model. See Section 2.3.4/TR-106 [3].

6.8.2 Updating an Existing Profile

An updated version of an existing profile is defined using both a profile/@name and a

profile/@base attribute.

Note – The syntax for modifying a profile is similar as for initially creating it, but there are rules. These

rules are not specified in the DM Schema. See Section A.2.10.3/TR-106 [3] for details.

The base attribute indicates the profile name (and version number) of the existing profile, and

the name attribute indicates this same name but with an incremented version number for the new

(updated) profile. The version of an updated profile is always incremented by 1.

The updated profile will only contain references to those objects and/or parameters whose

requirement is changing (i.e. adding or removing an item, or changing an existing item’s

requirement).

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 112 of 232

The following example defines the Baseline:2 profile based on the existing Baseline:1 profile.

The Baseline:1 profile is visible (can be referenced) within the local document because the

Device:2.1 model that defines it has been imported via the import/model element.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3" ...

 spec="urn:broadband-forum-org:tr-181-2-2-0">

 ...

 <import file="tr-181-2-1.xml" spec="urn:broadband-forum-org:tr-181-2-1">

 ...

 <model name="Device:2.1"/>

 </import>

 ...

 <model name="Device:2.2">

 ...

 <object ...>

 ...

 </object>

 ...

 <profile name="Baseline:2" base="Baseline:1">

 <object ref="Device.InterfaceStack.{i}." requirement="present">

 <parameter ref="HigherLayer" requirement="readOnly" />

 <parameter ref="LowerLayer" requirement="readOnly" />

 </object>

 <object ref="Device.DNS." requirement="present">

 <parameter ref="SupportedRecordTypes" requirement="readOnly"/>

 </object>

 </profile>

 ...

 </model>

</dm:document>

In the above example, the total object and parameter requirements for Baseline:2 are actually the

union of those from Baseline:1 plus the new (or updated) requirements specified in Baseline:2.

When an existing profile needs be deprecated, obsoleted, or deleted, this is done by updating its

profile/@status attribute. See Section 6.10 for details. Note that such a status update will

also apply to the profile’s contained items (e.g. object and parameter references), but only if this

will “promote” a given item’s status to a “higher” value.

6.8.3 Defining a New Profile by Extension

The initial version of a new profile, which is an extension of (inherits from) another profile, is

defined using both a profile/@name and a profile/@extends attribute.

The name attribute indicates the name and version of the new profile. The version of a new

profile always starts at 1.

The extends attribute indicates the name and version of the profile(s) being extended

(inherited from). This attribute can be a list, and so inheritance from multiple profiles is

supported.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 113 of 232

The following example defines the DHCPv6ServerAdv:1 profile, which specifies the

profile/@extends attribute, and so inherits requirements from the DHCPv6Server:1

profile.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3" ...

 spec="urn:broadband-forum-org:tr-181-2-2-0">

 ...

 <model name="Device:2.2">

 ...

 <object ...>

 ...

 </object>

 ...

 <profile name="DHCPv6Server:1">

 <object ref="Device.DHCPv6." requirement="present"/>

 <object ref="Device.DHCPv6.Server." requirement="present">

 <parameter ref="Enable" requirement="readWrite"/>

 <parameter ref="PoolNumberOfEntries" requirement="readOnly"/>

 </object>

 ...

 </profile>

 <profile name="DHCPv6ServerAdv:1" extends="DHCPv6Server:1">

 <object ref="Device.DHCPv6.Server.Pool.{i}." requirement="createDelete">

 <parameter ref="DUID" requirement="readWrite"/>

 <parameter ref="VendorClassID" requirement="readWrite"/>

 <parameter ref="UserClassID" requirement="readWrite"/>

 <parameter ref="SourceAddress" requirement="readWrite"/>

 <parameter ref="SourceAddressMask" requirement="readWrite"/>

 </object>

 </profile>

 ...

 </model>

</dm:document>

In the above example, the total object and parameter requirements for DHCPv6ServerAdv:1 are

actually the union of those from DHCPv6Server:1 (via inheritance) plus the requirements

specified in DHCPv6ServerAdv:1.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 114 of 232

6.9 Description

A description is free text which can contain a limited amount of MediaWiki-like markup (I.2.2)

that processing tools can interpret.

Many different types of elements (e.g. an object element) can contain a description. A

description is specified using a description element (I.2) within the element to be described

(e.g. an object/description element describes its object parent). The description must be

the first element to appear within the parent element.

Descriptions can be used to explain the purpose and intent of the parent element. For example,

how it works, what it is used for, how it relates to other elements within the Data Model,

additional normative requirements, citing bibliographic references, etc.

To determine whether a particular element can have a description, see its reference section in

Appendix I. In practice, the following elements most often contain a description:

 document (I.1)

 dataType definition (I.4)

 component definition (I.6)

 object definition (I.9)

 parameter definition (I.10)

 enumeration and pattern facets (I.13)

 profile (I.11) and its object and parameter references (I.11.1 and I.11.2

respectively)

Note – The preference is to limit profile descriptions (and profile/object and

profile/parameter descriptions) to any additional requirements that cannot be expressed via the

element attributes; i.e. not used for general descriptive purposes as can be the case with other parent

elements such as object and parameter.

Note – For Broadband Forum documents, the character set must be restricted to printable characters in

the Basic Latin Unicode block. Effectively, this means “printable ASCII”, including line feed.
Descriptions are also discussed in Section A.2.2/TR-106 [3].

6.9.1 Defining a Description

A description is defined using the description element (I.2). It can appear within many

different parent elements (e.g. object, parameter). Refer to Appendix I to determine

whether a particular element can have a description.

The description element has one attribute (description/@action) which indicates how the

description should be processed. For a new description definition, the action attribute can only

be set to “create” (the default). The preference is to always omit this attribute when defining a

description for the first time.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 115 of 232

The following example illustrates an object description. It is simply free text within a description

element. As required, the description is the first element within its parent element.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-0">

 ...

 <model name="Device:2.0">

 ...

 <object name="Device.IP.Interface.{i}." ...>

 <description>IP interface table (a stackable interface object as described in {{bibref|TR-

181i2|Section 4.2}}). This table models the layer 3 IP interface.</description>

 ...

 </object>

 ...

 </model>

</dm:document>

Note – The above description example includes a {{bibref}} Template (markup) used to reference a

document within the bibliography. See Section 6.1.3 for a discussion on citing bibliographic references.

The following example expands on the previous to illustrate the various elements that will most

often have a description. This includes (but is not limited to): the document, component

definitions and their objects and parameters, a model’s objects and parameters, occasionally

parameter enumerations, and (for the purpose of specifying additional requirements) profiles and

their object and parameter references.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-2" ...

 spec="urn:broadband-forum-org:tr-181-2-0-0">

 <description>Device:2 Data Model.</description>

 ...

 <component name="DeviceInfo">

 <description>General information about the device...</description>

 <object name="DeviceInfo." ...>

 <description>This object contains general device information.</description>

 <parameter name="Manufacturer" ...>

 <description>The manufacturer of the CPE (human readable string).</description>

 ...

 </parameter>

 ...

 </object>

 ...

 </component>

 <model name="Device:2.0">

 ...

 <object name="Device.IP.Interface.{i}." ...>

 <description>IP interface table (a stackable interface object as described in {{bibref|TR-

181i2|Section 4.2}}). ...</description>

 ...

 <parameter name="Enable" ...>

 <description>Enables or disables the interface. ...</description>

 ...

 </parameter>

 ...

 </object>

 ...

 <object name="Device.ATM.Link.{i}." ...>

 <description>ATM link-layer table...</description>

 ...

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 116 of 232

 <parameter name="LinkType" ...>

 <description>Indicates the type of connection ...</description>

 <syntax>

 <string>

 <enumeration value="EoA">

 <description>{{bibref|RFC2684}} bridged Ethernet over ATM</description>

 </enumeration>

 <enumeration value="IPoA">

 <description>{{bibref|RFC2684}} routed IP over ATM</description>

 </enumeration>

 ...

 </string>

 </syntax>

 </parameter>

 ...

 </object>

 ...

 <profile name="DeviceAssociation:1">

 <description>This profile implies support for all of the Gateway requirements defined in

{{bibref|TR-069|Annex F}}.</description>

 ...

 </profile>

 ...

 <profile name="DHCPv4Client:1">

 ...

 <object ref="Device.DHCPv4.Client.{i}.SentOption.{i}." ...>

 <description>This table is REQUIRED to support sending of option 60 ...</description>

 ...

 </object>

 </profile>

 ...

 </model>

</dm:document>

6.9.2 Updating an Existing Description

Sometimes an existing description needs to be updated. This will be done using a

description element (I.2) within a new revision of the document that defined the description

in question. This implies that the description’s other parent elements (e.g. parameter,

object, model) will also be updated.

The text provided in the description element will be used to update the existing description.

The description/@action attribute indicates how the new text relates to the existing

description. This attribute can have one of the following values: prefix, append, replace.

If the action is “prefix” then the updated description will be the combination of the new text

followed by the existing description. If the action is “append” then the updated description will

be the combination of the existing description followed by the new text. If the action is “replace”

then the new text is an outright replacement of the original text.

Note that prefixed and appended text is always regarded as separate paragraphs from the

description text previously defined.

The following example illustrates a description update for the IP Interface object and its Enable

parameter from the previous example.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 117 of 232

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-3" ...

 spec="urn:broadband-forum-org:tr-181-2-2-0">

 ...

 <model name="Device:2.2" base="Device:2.1">

 ...

 <object base="Device.IP.Interface.{i}." ...>

 <description action="append">Each IP interface can be attached to the IPv4 and/or IPv6

stack. ...</description>

 <parameter base="Enable" ...>

 <description action="replace">Enables or disables the interface (regardless of

{{param|IPv4Enable}} and {{param|IPv6Enable}}). ...</description>

 </parameter>

 ...

 </object>

 ...

 </model>

</dm:document>

In the above example, the object description indicates an append action. This means that the new

text will be appended to the end of the existing description for the object, to give something like:

“IP interface table… Each IP interface can be attached to the IPv4 and/or IPv6 stack. …”. The

parameter description indicates a replace action. This means that the new text will completely

replace any previous description for the parameter.

6.9.3 Laying Out Descriptions

How a description layout is interpreted by processing tools (such as the Report Tool, e.g. when

generating an HTML report) is affected by whitespace pre-processing rules and by MediaWiki-

like markup present within the description element.

6.9.3.1 Whitespace Pre-processing

A description’s leading whitespace (up to and including the first line break) and trailing

whitespace (including line breaks) is not significant. Processing tools need to discard non-

significant whitespace. This will allow for a variety of layout styles while still retaining

predictable behavior. Pre-processing rules are detailed in Section I.2.1.

The following example illustrates several single-line description fragments that would be

rendered equivalent by the whitespace pre-processing rules. The first style shown is preferred

when writing XML.

 <description>The top-level object for a Device</description>

 <description> The top-level object for a Device </description>

 <description>The top-level object for a Device

</description>

 <description>The top-level object for a Device

 </description>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 118 of 232

Non-significant whitespace also includes the longest common whitespace prefix that occurs at

the start of every line. For example, if every line in a description is indented by three whitespace

characters then these characters are not part of the description layout. However, if one of these

lines had no whitespace indent, then the three whitespace characters at the beginning of each of

the other lines would be significant.

Note that this common-prefix calculation is based on the number of whitespace characters, not

the type of whitespace character (i.e. the space character and the tab character are not

differentiated). For this reason, a description should not contain tab characters; otherwise the

rendered layout will not be consistent.

The following example illustrates some additional single-line description fragments that would

be rendered equivalent by the whitespace pre-processing rules. Each of the styles shown is

reasonable, but the first one might be slightly preferred when writing XML (especially for short

descriptions).

 <description>The top-level object for a Device</description>

 <description>

 The top-level object for a Device

 </description>

 <description>

 The top-level object for a Device

 </description>

The following example illustrates some multi-line description fragments that would be rendered

equivalent by the whitespace pre-processing rules. The first or second style shown is preferred

when writing XML.

 <description>Numeric value indicating the supported revision for UPnP IGD.

A value of 0 indicates no support.</description>

 <description>

 Numeric value indicating the supported revision for UPnP IGD.

 A value of 0 indicates no support.

 </description>

 <description>

 Numeric value indicating the supported revision for UPnP IGD.

 A value of 0 indicates no support.

 </description>

 <description>

Numeric value indicating the supported revision for UPnP IGD.

A value of 0 indicates no support.

 </description>

 <description>Numeric value indicating the supported revision for UPnP IGD.

A value of 0 indicates no support.

 </description>

6.9.3.2 Markup

A description can contain a limited amount of markup that is similar in fashion to MediaWiki

markup. Processing tools are expected to interpret this markup when processing descriptions

(e.g. the Report Tool interprets the markup when generating its HTML Data Model reports).

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 119 of 232

There are two types of markup available: formatting markup (I.2.2) which indicates how the

marked text should be formatted, and Template references (I.2.3) which are meant to be replaced

with template-dependent text.

Formatting markup is indicated in a description using certain reserved character sequences. For

example, two apostrophes on each side of some text indicate that the contained text is to be

emphasized in italics (e.g. ''This is to be italicized''). Possible formatting includes: italics,

bold, bold italics, bulleted list, numbered list, indented list, verbatim. See Section I.2.2 for a full

list of the standard markup and how it is invoked.

A Template reference is indicated in a description as text enclosed in double curly braces ({}).

The template text consists of a template name that can be followed by arguments separated by

vertical pipe (|) characters. For example, {{bibref|TR-106a6|A.2.2.4}} is a bibref

Template, and would be replaced with something like [Section A.2.2.4/TR-106a6]. See Section

I.2.3 for a full list of the standard Templates and how they are invoked.

The following example illustrates a description with four lines containing various markup items.

A processing tool should interpret the markup as follows: {{bibref|RFC3986}} is a

Template reference to an item defined in the bibliography; the line starting with a colon indicates

an indented line; the ''host'' text is to be italicized; the URL literal is to be a hyperlink; and

each line is a separate paragraph. Also note that whitespace pre-processing is applied before any

markup is interpreted.

 <description>

 HTTP URL, as defined in {{bibref|RFC3986}}.

 In the form:

 : http://host:port/path

 The ''host'' portion of the URL MAY be the IP address for the management interface of

the CPE in lieu of a host name.

 </description>

The resulting layout will look something like the following:

HTTP URL, as defined in [RFC3986].

In the form:

 http://host:port/path

The host portion of the URL MAY be the IP address for the management interface of the CPE in lieu

of a host name.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 120 of 232

6.10 Status: Deprecate, Obsolete, Delete

Many different types of elements (e.g. parameter) can be deprecated, obsoleted, or deleted.

This is specified using an element’s status attribute (e.g. parameter/@status). See

Section 2.4/TR-106 [3] for requirements on deprecated and obsoleted items.

The default value when first defining a status attribute is “current”, meaning its element is

currently available in the document. The convention is to omit the status attribute when

initially defining an element (in favor of its default value). Therefore, the status attribute goes

unnoticed until the need arises to deprecate, obsolete, or delete an element.

When an element’s status is updated it must be a “promotion” to a “higher” value, where the

lowest to highest ordering is: current, deprecated, obsoleted, deleted. For example, current can

be changed to deprecated, and obsoleted can be changed to deleted, but deleted cannot be

changed back to obsoleted.

To determine whether a particular element supports a status attribute, see its reference section

in Appendix I. In practice, the following elements most often utilize status:

 object definition (I.9)

 parameter definition (I.10)

 enumeration and pattern facets (I.13)

 profile (I.11) and its object and parameter references (I.11.1 and I.11.2

respectively)

However, many elements support the status attribute in order to handle the need for error

correction. For example, if a parameter is defined with a default value or a size range

element that turns out to be unwarranted, it can be fixed by deleting the offending element (i.e.

set its status to deleted) while leaving the remainder of the parameter definition intact.

The following example uses the status attribute to obsolete the QueueKey parameter and to

delete the ShapingBurstSize parameter’s default element.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-0" ...

 spec="urn:broadband-forum-org:tr-098-1-1-0">

 ...

 <model name="InternetGatewayDevice:1.2" base="InternetGatewayDevice:1.1">

 ...

 <object base="InternetGatewayDevice.QueueManagement.Queue.{i}." ...>

 ...

 <parameter base="QueueKey" access="readOnly" status="obsoleted">

 <description action="append">

 This parameter is OBSOLETED because it serves no purpose (no parameter references it).

 </description>

 </parameter>

 <parameter base="ShapingBurstSize" access="readWrite">

 ...

 <syntax>

 <unsignedInt/>

 <default type="object" value="0" status="deleted"/>

 </syntax>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 121 of 232

 </parameter>

 ...

 </object>

 ...

 </model>

</dm:document>

Note that whenever an element is deprecated or obsoleted, it needs a description that explains

why the status change occurred. This is shown with the obsoleted QueueKey parameter above.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 122 of 232

7 DT XML Data Model Tutorials

This section provides guidance in defining DT Instance documents (called DT Instances for

short). These documents are XML files that comply with the DT Schema (Appendix II). They

are defined by CPE vendors in order to specify a supported Data Model for a given device type,

where a supported Data Model is defined in terms of one or more DM Data Models (i.e.

specifying the portions of standard, or vendor-extended, Root and/or Service Data Models that

are actually implemented by a particular device type).

Note that the Broadband Forum does not publish DT Instance documents. Rather, DT Instance

development is the realm of CPE hardware and software vendors.

A CPE vendor can specify a device type’s supported Data Model using one or more DT

Instances, that each reference an associated DM Data Model. This means that a device type can

support multiple DM Data Models (i.e. multiple DT Instances where some reference a different

DM Data Model). But it also means that there can be multiple DT Instances that reference the

same DM Data Model, e.g. there could be a DT Instance that just covers the DHCPv6 client Data

Model, or the UPnP Discovery Data Model. Often there will be a DT Instance for an

installable/uninstallable software module if it adds additional Data Model support (this keeps the

DT Instance specifications modular).

This modular approach allows a CPE vendor to represent a supported Data Model as a set of

documents where each document represents a portion of the entire Data Model.

If some DT definition (e.g. a supported parameter syntax) conflicts with its corresponding DM

definition, the DT definition is clipped to fall within what is allowed by the DM (i.e. if there is a

conflict then the DM definition wins).

Note – Each DT Instance is associated with a particular device type (and multiple DT Instances can be of

the same device type). This is indicated by the document element’s deviceType attribute (i.e.

document/@deviceType). The device type is represented as a globally unique URI. The owner of

this URI can either be the CPE hardware or software vendor.

Note – A CPE can publish its supported Data Model via its DeviceInfo.SupportedDataModel.{i} table.
Each table entry represents a different DT Instance, but taken together the table represents the CPE’s

entire supported Data Model. See TR-157 [5] for details.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 123 of 232

7.1 Bibliography

Note – Bibliographic references are defined in the DT Schema in the same way that they are defined in
the DM Schema (6.1). They are included in the DT Schema for completeness, but it is expected that they

will rarely be used. This is because bibliographic citations would likely be made from within a DM

Instance document rather than within a DT Instance document.

DT bibliography references are defined using the document/bibliography/reference

element (II.5.1), and can be cited from within an annotation element (II.2), e.g. from within

object and parameter annotations, using a {{bibref}} Template (I.2.3).

This is analogous to the DM bibliography; see Section 6.1 for further details in defining and

citing bibliographic references
25

.

In the following example, bibliography reference RFC2717 is defined within the DT

Instance. Then it is cited from the ContentReferenceId parameter’s annotation using the

Template notation {{bibref|RFC2717}}.

<dt:document xmlns:dt="urn:broadband-forum-org:cwmp:devicetype-1-1" ...

 deviceType="urn:your-company-com:some-device-type-id">

 ...

 <import file="tr-135-1-1.xml" spec="urn:broadband-forum-org:tr-135-1-1">

 <model name="STBService:1.1"/>

 </import>

 ...

 <bibliography>

 <reference id="RFC2717">

 <name>RFC 2717</name>

 <title>Registration Procedures for URL Scheme Names</title>

 <organization>IETF</organization>

 <category>RFC</category>

 <hyperlink>http://www.ietf.org/rfc/rfc2717.txt</hyperlink>

 </reference>

 ...

 <bibliography>

 ...

 <model...>

 <object ...>

 ...

 <parameter ref="ContentReferenceId" access="readOnly">

 <annotation>Some additional comment about {{bibref|RFC2717}}...</annotation>

 ...

 </parameter>

 </object>

 ...

 </model>

</dt:document>

The bibliography element (if present) comes after the annotation element and import

elements, and before other top-level elements such as feature and model.

25 In a DT Instance, bibliographic references are cited from within annotation elements. This differs from DM

Instances, which cite bibliographic references from within description elements.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 124 of 232

7.2 Import

A DT Instance can import items from a DM Instance via an import element (II.4). By doing

so, these imported items are made visible within the DT Instance.

This is analogous to the DM import (6.3), except that a DT Instance cannot import components
26

.

The following items can be imported from DM Instance documents:

 Bibliography (an entire bibliography; see Section 6.3 for details)

 Named data types

 Models

Each import element will specify the file and spec of the DM Instance from which items are

being imported. No more than one import element is specified for a particular DM Instance

document.

Import elements come after the annotation element (if present), and before other top-level

elements such as bibliography, feature, and model.

7.2.1 Import a Named Data Type

Note – The file tr-106-1-0-0-types.xml is the centralized document that contains named data type

definitions. Generally, named data types will be defined there and be imported into DT Instance

documents as needed. Named data types can also be defined in other DM Instance documents, but this is
not the norm.

A named data type is imported into a DT Instance using the import element (II.4), which

indicates the DM Instance file to import from, and the import/dataType element, which

indicates the specific data type definition to import. The dataType element is repeated for each

named data type to be imported.

Note that once a named data type has been imported into a DT Instance, it is visible within that

document, and can be used for example in specifying how the device type will support syntax for

model parameters.

The following example shows the IPAddress and MACAddress named data types being imported

(from tr-106-1-0-types.xml) into a DT Instance document.

<dt:document xmlns:dt="urn:broadband-forum-org:cwmp:devicetype-1-1" ...

 deviceType="urn:your-company-com:some-device-type-id">

 <annotation>...</annotation>

 <import file="tr-106-1-0-types.xml" spec="urn:broadband-forum-org:tr-106-1-0">

 <dataType name="IPAddress"/>

 <dataType name="MACAddress"/>

 </import>

 ...

</dt:document>

26 A DT Instance does not need to import components, because they will already be part of a DM model definition.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 125 of 232

The import/@file attribute indicates the name of the import file. The import/@spec

attribute (optional) indicates the spec value of the import file. The import/dataType/-

@name attribute indicates the name of the data type to be imported from the import file.

7.2.2 Import a Data Model

A DM Data Model is imported into a DT Instance using the import element (II.4), which

indicates the DM Instance file to import from, and the import/model element, which

indicates the specific model:version to import.

Note – A DT Instance must only relate to a single DM Data Model (a single Root object or Service

object). This means that only one DM model may be imported into a DT Instance document. This
requirement is specified by TR-157 [5], in the DeviceInfo.SupportedDataModel.{i} table description.

For a given DM Data Model, only the highest revision supported by the device type need be

imported. For example, if a device type supports Device:2.2 then only this revision of the

Device:2 Data Model is imported. Since the Device:2.2 Data Model is actually the aggregate of

all its previous revisions, the DT Instance document will have imported the entire Device:2

model definition up to and including the Device:2.2 revision.

Note – If a CPE implements a vendor-specific extension to a standard DM Data Model, then the
expectation is that there would be two DT Instances: one that covers the vendor-specific DM model and

another that covers the standard DM model. In other words, there are separate DT Instances for standard

and vendor-specific DM models
27

.

Once a DM Data Model has been imported into a local document, it is visible within that

document, and can be used for example in specifying how the device type will support this Data

Model.

In the following example the Device:2.2 Data Model is imported into the DT Instance, via the

import/model element. It imports Device:2.2 in order to then reference this Data Model via

the top-level model element. The implication is that later revisions of the Device:2 Data Model

(if any) are not supported by the device type.

<dt:document xmlns:dt="urn:broadband-forum-org:cwmp:devicetype-1-1" ...

 deviceType="urn:your-company-com:some-device-type-id">

 <annotation>...</annotation>

 <import file="tr-181-2-2.xml" spec="urn:broadband-forum-org:tr-181-2-2">

 <model name="Device:2.2"/>

 </import>

 ...

 <model ref="Device:2.2">

 ...

 </model>

27 This is necessary because the SupportedDataModel table (SDM) includes a parameter for the DT URL and a
parameter for the DM spec. If the CPE combined its vendor-specific and standard model into one DT instance (i.e.

only one entry in the SDM table), then there could only be one spec value specified in the SDM table (i.e. it would

not be able to indicate both specs). For example, if SDM.1.URN is the vendor-specific spec value then there is no

way to indicate what the standard model spec value is. The assumption is that a vendor-specific spec value would be

different from a standard model spec value.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 126 of 232

</dt:document>

The import/@file attribute indicates the name of the import file. The import/@spec

attribute (optional) indicates the spec value of the import file. The import/model/@name

attribute indicates the name and version of the model to be imported from the import file.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 127 of 232

7.3 Model

The top-level model element (II.6) is used to specify how the device type will support an

associated DM Data Model. It will contain the subset of items (e.g. objects and parameters) that

are supported, and details of how these items are supported differently (usually a “narrowing” in

scope) from their DM definitions. Only one such top-level model element is allowed per DT

Instance.

The model element will specify the name and version of its associated DM Data Model. This is

done using the model/@ref attribute, where the name and version are represented as a single

value in the form Name:Major.Minor (e.g. Device:2.2).

Note that a model element need not contain the entire supported Data Model for a given DM

Data Model. This is because multiple DT Instances can each specify a portion of a supported

Data Model that together combine to define the entire supported Data Model for a given DM

Data Model. However, if an object or parameter is absent from all DT Instance models then it is

not supported by the device type.

Note – The model element must reference the single DM model associated with the document; i.e. that

was imported via an import/model element (see Section 7.2.2).

7.3.1 Supporting One DM Model

A DT model is based on a specific version of an associated DM model (e.g. Device:2.2,

STBService:1.1, etc.). The DM model must first be imported into the DT Instance document, and

then it can be referenced by the DT model via its model/@ref attribute.

Note that the referenced DM model should be the highest revision supported by the device type

(i.e. earlier revisions of a DM model need not be referenced as they are automatically included as

part a DM model’s later revision).

Support for a given DM model can either be specified within one DT Instance document, or

across multiple DT Instance documents all referencing the same DM model. The second option

provides a modular approach in specifying support for a DM Data Model.

The following example illustrates support for the Device:2.2 Data Model (indicated by the

model/@ref attribute) within a single DT Instance. Note that only one DM model is imported.

<dt:document xmlns:dt="urn:broadband-forum-org:cwmp:devicetype-1-1" ...

 deviceType="urn:your-company-com:some-device-type-id">

 <annotation>Supported Data Model for Device:2.2</annotation>

 <import file="tr-181-2-2.xml" spec="urn:broadband-forum-org:tr-181-2-2">

 <model name="Device:2.2"/>

 </import>

 ...

 <model ref="Device:2.2">

 ...

 </model>

</dt:document>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 128 of 232

7.3.2 Supporting Multiple DM Models

A device type’s support for different DM models must be specified within different DT Instance

documents, following the same guidance outlined in Section 7.3.1 above. This requirement is

borne out by TR-157 [5], in the DeviceInfo.SupportedDataModel.{i} table description.

The following example illustrates support for the Device:2.2 and STBService:1.1 Data Models.

This requires at least two DT Instance documents since they can each only be associated with a

single DM model.

<dt:document xmlns:dt="urn:broadband-forum-org:cwmp:devicetype-1-1" ...

 deviceType="urn:your-company-com:some-device-type-id">

 <annotation>Supported Data Model for Device:2.2</annotation>

 <import file="tr-181-2-2.xml" spec="urn:broadband-forum-org:tr-181-2-2">

 <model name="Device:2.2"/>

 </import>

 ...

 <model ref="Device:2.2">

 ...

 </model>

</dt:document>

<dt:document xmlns:dt="urn:broadband-forum-org:cwmp:devicetype-1-1" ...

 deviceType="urn:your-company-com:some-device-type-id">

 <annotation>Supported Data Model for STBService:1.1</annotation>

 <import file="tr-135-1-1.xml" spec="urn:broadband-forum-org:tr-135-1-1">

 <model name="STBService:1.1"/>

 </import>

 ...

 <model ref="STBService:1.1">

 ...

 </model>

</dt:document>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 129 of 232

7.4 Object

The object element (II.7) is used to indicate support for an object that is defined in the

associated DM Data Model. In addition, it can indicate how this object is supported differently

(usually a “narrowing” in scope) from its DM definition.

All supported objects will be specified within some DT Instance. If an object defined in a DM

Data Model is omitted from the DT model(s), then this means that the device type does not

support this object.

As in the DM Data Model, objects are logically organized into an object hierarchy. The DT

object hierarchy will follow the same layout as its associated DM Data Model (minus the

unsupported objects).

7.4.1 Supporting Single-Instance Objects

Support for a single-instance object is specified within a model using the object element (II.7).

Its object/@ref attribute specifies the path name of the corresponding DM object to be

supported.

The object specification will include the following required attributes: ref, access,

minEntries, and maxEntries. For single-instance objects the access (from the ACS point

of view) will always be readOnly, minEntries can be 0 or 1, and maxEntries will always be 1.

Basically, these attributes will have the same value in the DT object as they do in the

corresponding DM object definition (i.e. none of these attributes can be supported differently).

The following example illustrates support for the Device object. Note that its path name

corresponds exactly to an existing object in the DM Data Model.

<dt:document xmlns:dt="urn:broadband-forum-org:cwmp:devicetype-1-1" ...

 deviceType="urn:your-company-com:some-device-type-id">

 ...

 <model ref="Device:2.2">

 ...

 <object ref="Device." access="readOnly" minEntries="1" maxEntries="1">

 ...

 </object>

 ...

 </model>

</dt:document>

Note – An object will also contain parameter elements; this is not shown in the above example. See

Section 7.5 for further details.

7.4.2 Supporting Multi-Instance Objects

Support for a multi-instance object (table) is specified within a model using the object element

(II.7). Its object/@ref attribute specifies the path name of the corresponding DM object to be

supported.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 130 of 232

The object specification will include the path name, plus an indication of whether the object is

read-only or read-write (from the ACS point of view), and the number of instances of that object

that can exist within the CPE. This corresponds to the following required attributes: ref,

access, minEntries, and maxEntries.

The object/@access attribute indicates whether the table will have read-only or read-write

access. Valid values include one of: readOnly, create, delete, createDelete. When

object/@access is “readOnly” the ACS can only retrieve object instances from the CPE.

When object/@access is “create” the ACS can retrieve and create, but not delete object

instances. When object/@access is “delete” the ACS can retrieve and delete, but not create

object instances. When object/@access is “createDelete” the ACS can retrieve, create, and

delete object instances.

For a multi-instance object, the following restrictions apply:

 If the associated DM object has readWrite access, then the DT object can have any of the

aforementioned access values. However, if the associated DM object is readOnly, then

the DT object must also be readOnly. This means that read-only DM objects must remain

read-only in the DT, but that writable DM objects can be restricted via the DT in how

they are accessed by the ACS.

 The object/@minEntries and object/@maxEntries attributes must be

specified such that their integer values fall within the min-maxEntries range specified by

the DM object (i.e. restricting the range of min-maxEntries in the DT object, not

expanding it). So the DT minEntries will be greater or equal to the DM minEntries, and

the DT maxEntries will be less or equal to the DM maxEntries (with the proviso that

minEntries must be less than maxEntries, and that all values are regarded as being less

than an “unbounded” maxEntries).

The following example illustrates support for various tables in the InternetGatewayDevice:1.2

Data Model. Each object references a path name that corresponds to an existing object in the DM

Data Model.

<dt:document xmlns:dt="urn:broadband-forum-org:cwmp:devicetype-1-1" ...

 deviceType="urn:your-company-com:some-device-type-id">

 ...

 <model ref="InternetGatewayDevice:1.2">

 ...

 <object ref="InternetGatewayDevice.DeviceInfo.VendorConfigFile.{i}."

 access="readOnly" minEntries="1" maxEntries="unbounded">

 ...

 </object>

 <object ref="InternetGatewayDevice.Layer3Forwarding.Forwarding.{i}."

 access="delete" minEntries="0" maxEntries="unbounded">

 ...

 </object>

 <object ref="InternetGatewayDevice.LANDevice.{i}.WLANConfiguration.{i}.WEPKey.{i}."

 access="readOnly" minEntries="4" maxEntries="4">

 ...

 </object

 ...

 </model>

</dt:document>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 131 of 232

In the above example, we see support specified for the following tables:

 VendorConfigFile.{i} – In the DM this is defined as a read-only, variable-sized table that

can have 0 or more entries (min entries is 0, max entries is unbounded). However, in the

DT this object is supported with min entries of 1; i.e. a CPE of this device type will

always have at least one vendor config file.

 Forwarding.{i} – In the DM this is defined as a writable (access is readWrite), variable-

sized table that can have 0 or more entries. However, in the DT this object’s access is

delete; i.e. a CPE of this device type allows the ACS to retrieve and delete, but not create

these object instances.

 WEPKey.{i} – In the DM this is a read-only, fixed-sized table (min entries equals max

entries, which is 4). In the DT this object is specified the same as its corresponding DM

object definition, meaning that it is supported as is without change.

Note – An object will also contain parameter elements; this is not shown in the above example. See

Section 7.5 for further details.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 132 of 232

7.5 Parameter

The parameter element (II.8) is used to indicate support for a parameter that is defined in the

associated DM Data Model. In addition, it can indicate how this parameter is supported

differently (usually a “narrowing” in scope) from its DM definition.

All supported parameters will be specified within some DT Instance. If a parameter defined in a

DM Data Model is omitted from the DT model(s), then this means that the device type does not

support this parameter.

7.5.1 Supporting Parameters (The Basics)

Support for a parameter is specified within a model or object using the parameter element

(II.8). Its parameter/@ref attribute specifies the name of the corresponding DM parameter

to be supported.

The parameter specification will include the name, plus an indication of whether the parameter is

read-only or read-write, its active notify setting (optional), and the syntax for valid parameter

values (optional). This corresponds to the following attributes and elements: ref, access,

activeNotify, syntax. Note that ref and access are required attributes, while the

others are optional.

Note – Omission of an optional element or optional attribute results in the DT parameter supporting the
maximum that the DM definition permits for that element or attribute. For example, if the DT parameter

does not specify a syntax element, then the full range of syntax permitted by the DM definition is

supported.

The following restrictions also apply:

 The parameter/@access attribute indicates whether the parameter will have read-

only or read-write access (valid values are: readOnly, readWrite). If the associated DM

parameter has readWrite access, then the DT parameter can be either readOnly or

readWrite. However, if the associated DM parameter is readOnly, then the DT parameter

must also be readOnly. This means that a CPE can choose to offer read-only access to a

parameter for which the DM definition indicates write access makes sense.

 The parameter/@activeNotify attribute indicates the parameter’s notification

policy (this is an optional attribute; valid values are: normal, willDeny). Normal means

the DT parameter supports the value defined in the DM parameter. If the DM parameter

is set to canDeny then the DT parameter can be further restricted by setting its

activeNotify to willDeny.

 The supported syntax can be specified either using one of the built-in primitive data types

or using a named data type. This is discussed in Section 7.5.1.1 below. The syntax

element is optional since it is common for a CPE to omit it in order to support the

maximum syntax that the DM definition permits (i.e. the full range, maximum size, all

the enumeration values, etc.).

The following example illustrates support for the EnableCWMP parameter. In the DM this is

defined as a readWrite parameter. However, in the DT example this parameter is supported with

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 133 of 232

readOnly access; i.e. a CPE of this data type will not allow an ACS to change the parameter’s

value. Note that the parameter’s syntax element has been omitted.

<dt:document xmlns:dt="urn:broadband-forum-org:cwmp:devicetype-1-1" ...

 deviceType="urn:your-company-com:some-device-type-id">

 ...

 <model ref="Device:2.2">

 ...

 <object ref="Device.ManagementServer." ...>

 ...

 <parameter ref="EnableCWMP" access="readOnly"/>

 ...

 </object>

 ...

 </model>

</dt:document>

The following example illustrates support for the ParameterKey parameter. In the DM this is

defined as a readOnly parameter with activeNotify set to canDeny. However, in the DT example

this parameter is supported with an activeNotify of willDeny. Note that the DT cannot use a

different value for the access attribute since it is readOnly in the DM.

<dt:document xmlns:dt="urn:broadband-forum-org:cwmp:devicetype-1-1" ...

 deviceType="urn:your-company-com:some-device-type-id">

 ...

 <model ref="Device:2.2">

 ...

 <object ref="Device.ManagementServer." ...>

 ...

 <parameter ref="ParameterKey" access="readOnly" activeNotify="willDeny"/>

 ...

 </object>

 ...

 </model>

</dt:document>

7.5.1.1 Supported Syntax and its Data Type

A parameter value’s supported syntax is defined using the parameter syntax element (II.8.1).

This element can specify a parameter’s supported data type and range of permitted values.

Note – A DT parameter’s syntax element (and its contained data type) is optional. They can be omitted

as discussed in Section 7.5.1.

If a device type wishes to restrict or extend a DM parameter’s data type definition, then there are

two ways to specify the DT parameter’s supported data type: either via a built-in primitive data

type or via a reference to a named data type. They are mutually exclusive.

Using either a primitive data type or a named data type:

 Primitive data types – The DM Schema defines a set of built-in primitive data type

elements that can be used in specifying a DT parameter’s supported syntax; i.e. one of:

base64, boolean, dateTime, hexBinary, int, long, string, unsignedInt, unsignedLong (see

Section II.9 for details on each). One of these elements can appear within a DT

parameter’s syntax element (e.g. parameter/syntax/boolean); a parameter’s syntax

element can only contain one such primitive data type element.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 134 of 232

 Named data types – A DT parameter’s syntax can reference a named data type using the

dataType element (II.8.3). The reference is made via its ref28 or base attribute (e.g.

parameter/syntax/dataType/@base="IPAddress"). The referenced data

type must already be defined elsewhere in some DM Instance; see Section 6.2 for details

on defining named data types.

Note that the DT parameter’s base data type (e.g. boolean, IPAddress, etc.) must be the same as

defined in the corresponding DM parameter. The point is to alter the supported data type in some

basic way, not to redefine it entirely.

Therefore, specifying a data type within the DT parameter syntax is only the first step. Now we

need to specify how the data type will be supported differently (restricted or extended) from the

DM definition. This difference is specified using facets (see Section 7.5.1.2 below for further

details).

7.5.1.2 Supported Data Type Using Facets

Note – This section builds on the discussion in Section 7.5.1.1 above. An understanding of supported
syntax and data types are required in order to use facets.

A parameter’s supported data type can be refined using facets. Facet elements are used, within a

parameter’s primitive or named data type element, to specify support for a data type that is a

restriction or extension of its corresponding DM definition (e.g. a smaller string size or numeric

range). When specified within a parameter that references a named data type, the

dataType/@base attribute must be used.

DT facet use is analogous to facets used within a DM parameter’s data type definition (6.6.1.3).

However, the full set of DT facet elements is: size, range, pattern, enumeration,

pathRef. See Section II.10 for details on using each of these facets.

Note – If a facet is omitted from a DT parameter, but is present in the corresponding DM parameter
definition, the implication is that the DT parameter will support the maximum that the DM facet

definition permits. However, when such a facet is included, it must be fully specified in order to
completely define the facet within the DT parameter.

Note that not all facets can be used within all primitive data types. This is also the case within

named data types, since they are derived from primitive data types. Section II.9 Table 74 lists

which facets are valid with each primitive data type.

The following example illustrates support for a URL parameter and a CWMPRetryMinimum-

WaitInterval parameter (using facets within primitive data type elements). In the DM, the URL

parameter is defined as a string with maximum length 256 (using the size facet), and the other

parameter is defined as an unsigned integer with range 1 to 65535 (using the range facet).

28 The dataType/@ref attribute will be defined in DT Schema v1.2. This will permit a DT parameter’s data type

to be referenced while still allowing it to be supported as defined in the DM parameter definition.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 135 of 232

However, in this DT example the URL parameter’s max length is restricted to 128, and the other

parameter’s max range is restricted to 255.

<dt:document xmlns:dt="urn:broadband-forum-org:cwmp:devicetype-1-1" ...

 deviceType="urn:your-company-com:some-device-type-id">

 ...

 <model ref="Device:2.2">

 ...

 <object ref="Device.ManagementServer." ...>

 ...

 <parameter ref="URL" access="readWrite">

 <syntax>

 <string>

 <size maxLength="128"/>

 </string>

 </syntax>

 </parameter>

 <parameter ref="CWMPRetryMinimumWaitInterval" access="readWrite">

 <syntax>

 <unsignedInt>

 <range minInclusive="1" maxInclusive="255"/>

 </unsignedInt>

 </syntax>

 </parameter>

 ...

 </object>

 ...

 </model>

</dt:document>

The next example snippet demonstrates the use of a facet within a parameter that has a named

data type (i.e. within the parameter/syntax/dataType element). This example assumes

that String255 is a named data type that has been defined as a string with max length 255. Use of

the dataType/@base attribute is required to reference the named data type. The size facet

is then used to restrict the parameter’s max string length down to 127 characters.

 <parameter ref="Example" access="readOnly">

 <syntax>

 <dataType base="String255">

 <size maxLength="127"/>

 </dataType>

 </syntax>

 </parameter>

7.5.1.3 Default Value

A default parameter value is specified using the parameter syntax’s default element (II.8.4).

This element can indicate either a factory default or an object default (one or the other).

Note that a DT parameter’s default value can only be specified if one was not already defined by

the corresponding DM parameter. In other words, a supported default is specified in order to

define a missing default, not to change an existing default in the DM definition.

An object default should only be used with parameters that come about due to object creation. A

factory default can potentially be used with any parameter, but only applies when the

parameter’s default value is based on some standard, e.g. RFC.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 136 of 232

The type of default is indicated by the required attribute parameter/syntax/-

default/@type. Possible values for this attribute are: factory or object. The default value

itself is indicated by the required attribute parameter/syntax/default/@value. This

value must be valid for the parameter’s data type.

The following example illustrates the STUNEnable parameter with a factory default. Note that

this parameter has no default value in the DM object definition, and that the default value (true)

is valid for the parameter’s boolean data type.

<dt:document xmlns:dt="urn:broadband-forum-org:cwmp:devicetype-1-1" ...

 deviceType="urn:your-company-com:some-device-type-id">

 ...

 <model ref="Device:2.2">

 ...

 <object ref="Device.ManagementServer." ...>

 ...

 <parameter ref="STUNEnable" access="readWrite">

 <syntax>

 <boolean/>

 <default type="factory" value="true"/>

 </syntax>

 </parameter>

 ...

 </object>

 ...

 </model>

</dt:document>

Note that the default element if present must be the last element within the syntax.

7.5.2 List-Valued Parameter

Support for a list-valued parameter’s list is altered using the parameter syntax list element

(II.8.1/Table 67 and II.8.2). As discussed earlier, such a parameter is always a string, while its

data type specification (int, boolean, etc.) applies to individual list items rather than the

parameter value as a whole.

Note – It is not valid for a DT parameter to specify a list element unless its corresponding DM

parameter is itself list-valued. When present, the parameter/syntax/list element will be the first element

within the syntax.

The number of items supported in a parameter/syntax/list element is specified using its

minItems and maxItems attributes. Both are optional attributes; neither, either, or both can

be specified..

The parameter/syntax/list/size element can be used to explicitly specify the

minimum and maximum length of the parameter’s overall string value, via its minLength and

maxLength attributes (see II.10.1). Alternatively, the maximum length can instead be implied

by the maximum number of items and the individual item lengths (as discussed in Section

3.2.6/TR-106 [3]). The latter is preferred when the number and length of items is known.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 137 of 232

The following example illustrates support for a list-valued parameter whose overall value has a

restricted max length. In the DM the parameter is defined with max length 256. However, in the

DT the parameter’s max length has been restricted to 128. Note that the string element could

have been omitted since it is not restricting the DM definition via facets (it was just included for

readability).

 <parameter ref="AvailableLanguages" ...>

 <syntax>

 <list>

 <size maxLength="128"/>

 </list>

 <string/>

 </syntax>

 </parameter>

The following example illustrates support for a parameter whose value is a list of MAC

addresses. In the DM definition the list’s max number of items is 16. However, in the DT the

list’s max number of items is restricted to 8. Again, the dataType element could have been

omitted since it is not restricting the DM parameter definition via facets.

 <parameter ref="EndStationMACs" ...>

 <syntax>

 <list maxItems="8"/>

 <dataType ref="MACAddress">

 </syntax>

 </parameter>

In the above example the list’s max length is not specified, but it is implied given its max items

and the fact that a MACAddress has a max length.

7.5.3 Path-Reference Parameter

Support for a path-reference parameter’s reference is altered using the pathRef facet (II.10.2).

As discussed in the corresponding DM section (6.6.6.1), a path-reference parameter references

another parameter or object via its path name.

Note – It is not valid for a DT parameter to specify a pathRef facet unless its corresponding DM

parameter is itself defined as a path-reference.

The pathRef facet element has several attributes that aid in specifying which parameters and

objects will be targeted as candidates for the reference. These are: targetParent,

targetType, and targetDataType. Note that these attributes are used to narrow what is

already defined in the DM definition; it is not valid for a DT parameter specification to broaden

which parameters and objects can be targeted.

The set of parameters and objects that can be referenced is restricted using the optional

pathRef/@targetParent attribute. This attribute contains a list of object path names; only

the immediate children of one of these specified (parent) objects can be referenced. This will be

a subset of the items specified in the DM targetParent attribute.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 138 of 232

The type of item that can be referenced is restricted using the optional pathRef/-

@targetType attribute. This can be one of: any (i.e. parameter or object), parameter, object,

single (i.e. single-instance object), table (i.e. multi-instance object), row (i.e. of a table).

When the item to be referenced is a parameter, then the type of parameter referenced can be

restricted using the optional pathRef/@targetDataType attribute. This is relevant only

when targetType is configured for parameters (i.e. any or parameter). Possible values for

targetDataType are: any (any data type), base64, boolean, dateTime, hexBinary, integer

(any numeric data type), int, long, string, unsignedInt, unsignedLong, or the name of some

named data type.

The following example illustrates support for a pathRef parameter whose targetParent has

been restricted. In the DM the parameter is defined with a targetParent that includes both

the Bridge and VLAN tables. However, in the DT the parameter’s targetParent has been

restricted to just the Bridge table. The other pathRef attributes, targetType and

targetDataType, are specified just as they were specified in the DM (i.e. targetType is

row, and targetDataType is omitted); this is to ensure that the pathRef definition is fully

specified.

 <object ref="Device.Bridging.Filter.{i}." ...>

 ...

 <parameter ref="Bridge" ...>

 <syntax>

 <string>

 <pathRef targetParent="#.Bridge." targetType="row"/>

 </string>

 </syntax>

 </parameter>

 ...

 </object>

The following is another example that illustrates support for a pathRef parameter whose

targetParent has been restricted. In the DM the parameter is defined with no explicit targetParent

(i.e. defaults to an empty list indicating any target parent). However, in the DT the parameter’s

targetParent has been restricted to only those object references that the device type supports.

 <object ref="Device.InterfaceStack.{i}." ...>

 ...

 <parameter ref="HigherLayer" ...>

 <syntax>

 <string>

 <pathRef targetParent=".Bridging.Bridge.{i}.Port. .Ethernet.Link.

 .PPP.Interface. .IP.Interface."

 targetType="row"/>

 </string>

 </syntax>

 </parameter>

 ...

 </object>

In the above example, the use case illustrated is the DM says "it references something but it

cannot list all the possibilities, e.g. because it could be any interface object", whereas DT says "it

references something and these are the things that it can reference".

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 139 of 232

7.6 Annotation

An annotation is free text used to describe implementation specific details (similar to DM

descriptions). It can contain a limited amount of MediaWiki-like markup that processing tools

can interpret. Annotations will use the same markup as specified for DM descriptions (see

Appendix I.2.2 and I.2.3).

Many different types of DT elements (e.g. object, parameter) can contain an annotation. An

annotation is specified using an annotation element (II.2) within the element to be described

(e.g. an object/annotation element describes its object parent). If the parent element has

other sub-elements, the annotation must be the first element to appear within the parent element.

To determine whether a particular element can have an annotation, see its corresponding

reference section in Appendix II.

The following example illustrates a model annotation and an object annotation. The annotations

are simply free text within an annotation element. As required, each annotation is the first

element within its parent element.

<dt:document xmlns:dt="urn:broadband-forum-org:cwmp:devicetype-1-1" ...

 deviceType="urn:your-company-com:some-device-type-id">

 ...

 <model ref="Device:2.2">

 <annotation>Some implementation specific comment regarding the model<annotation/>

 ...

 <object ref="Device.IP.Interface.{i}." ...>

 <annotation>Some comment about the device type’s support of this object with markup and

 a bibref Template {{bibref|TR-181i2|Section 4.2}}).</annotation>

 ...

 </object>

 ...

 </model>

</dt:document>

Note – The above annotation example includes a {{bibref}} Template (markup) used to reference a

document from the imported bibliography. See Section 6.1.3 for a discussion on citing bibliographic

references.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 140 of 232

7.7 Feature

Support for a feature is specified using the top-level feature element (II.3). Its

feature/@name attribute specifies the name of a feature supported from the DM model. Use

of features is a shorthand way of broadly indicating what a DT model supports.

A CPE’s feature list is the union of all the features in all of its DT Instances.

The following well-known feature names are defined:

 DNSClient

 DNSServer

 Firewall

 IPv6

 NAT

 Router

These names are not defined in the DM; rather they are a static list of general features defined by

the separate DTF Schema (Appendix III). Vendor-specific feature names are also permitted

within the DT feature/@name attribute (i.e. names prefixed with X_<VENDOR>_, as

specified by Section 3.3/TR-106 [3]).

Note – Vendor-specific feature names are defined simply by using them in a feature element. Since

they are not a DM-level concept, they do not have to be defined in a vendor-specific DM Instance before

being referenced in a DT Instance.

The following example illustrates the use of features. As required, features appear immediately

before the model element. The vendor-specific feature name X_ACDC73_VPN is defined

simply by listing it.

<dt:document xmlns:dt="urn:broadband-forum-org:cwmp:devicetype-1-1" ...

 deviceType="urn:your-company-com:some-device-type-id">

 ...

 <feature name="IPv6"/>

 <feature name="Firewall"/>

 <feature name="X_ACDC73_VPN"/>

 <model ref="Device:2.2">

 ...

 </model>

</dt:document>

Note that specified features are not referenced throughout the document. They are just used as an

indicator at the top of the document only.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 141 of 232

Appendix I – Reference: Data Model XML Schema

This appendix provides a user reference for the TR-069 Data Model schema (DM Schema), v1.4.

The normative version can be found at http://www.broadband-forum.org/cwmp/cwmp-

datamodel-1-4.xsd.

I.1 document Element

The document element is the root element of any DM XML Data Model file. It is required.

Table 1 lists the attributes that are available within the document element.

Table 1 – DM document attributes

Attribute Type Use Description

spec xs:anyURI required URI of the associated specification document, e.g. the BBF

Technical Report. An empty string is not allowed.

This URI should uniquely identify the specification (the

document). More than one DM Schema instance document

may reference the same specification. Where the

specification is a BBF document, the URI naming rules

specified in Section A.2.1.1/TR-106 must be used. For

example, to reference TR-106 Issue 1 Amendment 2

Corrigendum 0, the value of this attribute would be

urn:broadband-forum-org:tr-106-1-2-0

Note – The spec value will always include the corrigendum

number. This is because it needs to uniquely identify a
specification, and so omitting the corrigendum (which assumes

the use of the latest corrigendum released) is not appropriate

here.

file xs:anyURI required File name (omitting directory name) of this document. An

empty string is not allowed.

Where the specification is a BBF document, the file

naming rules specified in A.2.1.1 must be used. For

example, for the Data Model defined in TR-106 Issue 1

Amendment 2 Corrigendum 0, the value of this attribute

would be tr-106-1-2-0.xml.

Note – The file value will always include the corrigendum
number. This is because it needs to uniquely identify a file, and

so omitting the corrigendum (which assumes the use of the latest
corrigendum released) is not appropriate here.

http://www.broadband-forum.org/cwmp/cwmp-datamodel-1-4.xsd
http://www.broadband-forum.org/cwmp/cwmp-datamodel-1-4.xsd

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 142 of 232

The following example illustrates the use of the document element. It indicates the file and

spec that the document purports to define and also specifies a dm namespace to be used

throughout the document.

<dm:document xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-1-4"

 spec="urn:broadband-forum-org:tr-181-2-3-0"

 file="tr-181-2-3-0.xml">

 …

</dm:document>

Note – In the above example, although outside the scope of this appendix, it is expected that the

document element will also include the xmlns:xsi and xsi:schemaLocation attributes

in order to specify the location of the XSD schema file to be associated with the dm namespace.

Table 2 lists the child elements allowed within a document. The order that these elements

appear in the table is the same order, if present, that they must appear within a document

definition (with the exception that component elements can appear before or after model

elements).

Table 2 – DM document sub-elements

Element Multiplicity Description

description 0 or 1 Top-level description (I.2).

import 0 or more Imported data types, components and model (Root and Service

Objects) definitions (I.3).

dataType 0 or more Top-level data type definitions (I.4).

bibliography 0 or 1 Bibliographic references (I.5).

component 0 or more Component definitions (I.6).

model 0 or more Model (Root and Service Object) definitions (I.8).

I.2 description Element

The description element holds free text (i.e. of type xs:string) which can contain a limited

amount of MediaWiki-like markup as specified in Sections I.2.2 and I.2.3. For example, use "*"

at the start of a line to indicate a bulleted list. For Broadband Forum standards, the character set

will be restricted to printable characters in the Basic Latin Unicode block, i.e. to characters

whose decimal ASCII representations are in the (inclusive) ranges 9-10 and 32-126.

The description element can be used within almost every other element (e.g. under

document, document/model, document/model/object, etc.). When used, it will

always be the first element to appear under its parent element. Refer to specific sections within

this appendix to determine whether or not the description element is permitted.

Table 3 lists the attributes that are available within the description element.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 143 of 232

Table 3 – DM description attributes

Attribute Type Use Description

action One of:

 create

 prefix

 append

 replace

optional The default is create if not specified.

This must be specified when the description modifies

that of a previously defined item. While create will

only ever be specified when the description is for an

initially defined item.

Specify “prefix” to prefix to the parent element’s

previous description, "append" to append to the

previous description, or "replace" to replace the

previous description.

The following example illustrates the syntax used to replace the description previously defined

for some parent element.

<description action="replace">

 This object defines the…

</description>

I.2.1 Whitespace Pre-processing

Note – These pre-processing rules are largely copied from Section A.2.2.2/TR-106 [3].

Processing tools, such as the Report Tool, will discard leading and trailing whitespace from

descriptions prior to interpreting any markup within said description. The following rules apply:

 Discard any leading whitespace up to and including the first line break.

 Discard the longest common whitespace prefix (i.e. that occurs at the start of every line)

from each line. In the example below, three lines start with four spaces and one line starts

with five spaces, so the longest prefix to be removed from the start of each line is four

spaces. In this calculation, a tab character counts as a single character, so to avoid

confusion, the description should not contain tab characters.

 Discard all trailing whitespace, including line breaks.

This pre-processing is designed to permit a reasonable variety of layout styles while still

retaining predictable behavior. For example, both the following:

<description>This is the first line.

This is the second line.

 This is the indented third line.

This is the fourth line.</description>

<description>

 This is the first line.

 This is the second line.

 This is the indented third line.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 144 of 232

 This is the fourth line.

</description>

… result in the following:

This is the first line.

This is the second line.

 This is the indented third line.

This is the fourth line.

I.2.2 Markup

Note – Table 4 is largely copied from Section A.2.2.3/TR-106 [3].

A description can contain the following markup, which is inspired by, but is not identical to,

MediaWiki markup. Processing tools are expected to interpret this markup as indicated below

(e.g. the Report Tool interprets the markup when generating its HTML reports).

Table 4 – Description Markup

Name Markup Example Description

Italics ''italic text'' Two apostrophes on each side of some text will result
in the contained text being emphasized in italics.

Bold '''bold text''' Three apostrophes on each side of some text will

result in the contained text being emphasized in bold.

Bold italics '''''b+i text''''' Five apostrophes on each side of some text will result
in the contained text being emphasized in bold italics.

Paragraph This paragraph just

ended.
A line break is interpreted as a paragraph break.

Bulleted lists * level one

** level two

* level one again

** level two again

*** level three

*: level one continued

outside of list

A line starting with one or more asterisks (*) denotes
a bulleted list entry, whose indent depth is

proportional to the number of asterisks specified.

If the asterisks are followed by a colon (:), the
previous item at that level is continued, as shown.

An empty line, or a line that starts with a character

other than an asterisk, indicates the end of the list.

Numbered lists # level one

level two

level one again

level two again

level three

#: level one continued

outside of list

A line starting with one or more number signs (#)
denotes a numbered list entry.

All other conventions defined for bulleted lists apply

here (using # rather than *), except that numbered list
entries are prefixed with an integer decoration rather

than a bullet.

Indented lists : level one

:: level two

: level one again

:: level two again

::: level three

outside of list

A line starting with one or more colons (:) denotes an

indented list entry.

All other conventions defined for bulleted lists apply
here (using : rather than *), except that indented list

entries have no prefix decoration, and item

continuation is not needed.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 145 of 232

Verbatim code example:

 if (something) {

 /* do something */

 } else {

 /* do other */

 }

A block of lines each of which starts with a space is

to be formatted exactly as typed, preferably in a fixed
width font.

This allows code fragments, simple tables etc. to be

included in descriptions.
Note that the pre-processing rules of Section

A.2.2.2/TR-106 [3] imply that it is not possible to

process an entire description as verbatim text
(because all the leading whitespace would be

removed). This is not expected to be a problem in

practice.

Hyperlinks http://www.broadband-

forum.org
URL links are specified as plain old text (no special
markup).

Templates {{bibref|1|section 2}}

{{section|table}}

{{param|Enable}}

{{enum|Error}}

Text enclosed in double curly braces ({}) is a

Template reference, which is replaced by template-
dependent text.

Section I.2.3 specifies the standard Templates.

The following example illustrates a description element that contains markup. It has a

{{bibref}} Template that references the bibliography element named ‘example’, the

word ‘one’ is italicized, and the items {red, green, blue} are in a bullet list.

<description>

 {{bibref|example}} requires the use of ''one'' of the following items:

 * red

 * green

 * blue

</description>

Note – See Section A.2.3.5/TR-106 [3] for a more complete example, which includes a

description element showing most markup as well as the resulting HTML that the Report Tool is

expected to generate.

I.2.3 Templates

Note – Table 5 is largely copied from Section A.2.2.4/TR-106 [3].

A Template is a kind of markup. It is encoded within a description as two curly braces on either

side of the template name and arguments. Arguments can follow the template name, separated by

vertical pipe (|) characters. All whitespace is significant.

For example: {{someTemplate|arg1|arg2|…|argN}}

Processing tools are expected to replace Template references with template-dependent text (e.g.

the Report Tool replaces each Template with appropriate text when generating its HTML

reports).

The following standard Templates are defined. Any vendor-specific template names must obey

the rules of Section 3.3/TR-106.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 146 of 232

Table 5 – Description Templates

Name Markup Definition Description

Bibliographic
reference

{{bibref|id}}

{{bibref|id|section}}
A bibliographic reference.
The id argument must match the id attribute of one of

the current file’s (or an imported file’s) top-level

bibliography element’s reference elements (see
Section A.2.4/TR-106 [3]).

The optional section argument specifies the section

number, including any leading “section”, “annex” or
“appendix” text.

Typically, processing tools will (a) validate the id, and

(b) replace the Template reference with something like
“[id] section”.

Markup examples:
{{bibref|1}}

{{bibref|1|section 3}}

Section
separator

{{section|category}}

{{section}}
The beginning or end of a section or category. This is
a way of splitting the description into sections.

If the category argument is present, this marks the end

of the previous section (if any), and the beginning of a
section of the specified category. The “table”, “row”

and “examples” categories are reserved for the

obvious purposes.
If the category argument is absent, this marks the end

of the previous section (if any).

Typically, processing tools will (a) validate the
category, and (b) replace the Template reference with

a section marker.

Markup examples:
{{section|table}}

{{section|row}}

{{section|examples}}

Number of

entries

parameter
description

{{numentries}} A description of a “NumberOfEntries” parameter.

This Template should be used for all such parameters.

It will be expanded to something like “The number of
entries in the <table> table.”.

In most cases, the description will consist only of

{{numentries}} but it may be followed by

additional text if desired.

Parameter
and object

reference

{{param|ref}}

{{param|ref|scope}}

{{param}}

{{object|ref}}

{{object|ref|scope}}

{{object}}

A reference to the specified parameter or object.
The optional ref and scope arguments reference a

parameter or object. Scope defaults to normal.

Parameter and object names should adhere to the rules
of Section A.2.3.4/TR-106 [3].

Typically, processing tools will (a) validate the

reference, and (b) replace the Template reference with
the ref argument or, if it is omitted, the current

parameter or object name, possibly rendered in a

distinctive font. Processing tools can use the scope to

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 147 of 232

convert a relative path into an absolute path in order,

for example, to generate a hyperlink.
Markup examples:
{{param|Enable}}

{{object|Stats.}}

Profile

reference

{{profile|ref}}

{{profile}}
A reference to the specified profile.

The optional ref argument references a profile.

Typically, processing tools will (a) validate the
reference, and (b) replace the Template reference with

the ref argument or, if it is omitted, the current profile
name, possibly rendered in a distinctive font.

Markup examples:
{{profile|Baseline:1}}

{{profile}}

List

description

{{list}}

{{list|arg}}

{{nolist}}

A description of the current parameter’s list attributes.

This Template should only be used within the
description of a list-valued parameter (see Section

A.2.7.1/TR-106 [3]).
This is a hint to processing tools to replace the

Template reference with a description of the

parameter’s list attributes. This overrides processing
tools’ expected default behavior (unless suppressed by

{{nolist}}) of describing the list attributes before

the rest of the description.
The optional argument specifies a fragment of text that

describes the list and should be incorporated into the

template expansion.
Typically processing tools will generate text of the

form “Comma-separated list of <dataType>.” Or

“Comma-separated list of <dataType>, <arg>.”.

Reference

description

{{reference}}

{{reference|arg}}

{{noreference}}

A description of the object or parameter that is

referenced by the current parameter.

This Template should only be used within the
description of a reference parameter (see Section

A.2.3.7/TR-106 [3]).

This is a hint to processing tools to replace the
Template reference with a description of the

parameter’s reference attributes. This overrides

processing tools’ expected default behavior (unless

suppressed by {{noreference}}) of describing

the reference attributes after the list attributes (for a

list-valued parameter) or before the rest of the
description (otherwise).

The optional argument is relevant only for a pathRef;

it specifies a fragment of text that describes the
referenced item and should be incorporated into the

template expansion.

Typically processing tools will generate text of the
form “The value must be the full path name of

<arg>…”, in which the generated text can be expected

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 148 of 232

to be sensitive to whether or not the parameter is list-

valued.

Named data
type

{{datatype}}

{{datatype|arg}}

{{nodatatype}}

A description of the current parameter’s named data
type.

This Template should only be used within the

description of a parameter of a named data type (see
Section A.2.3.1/TR-106 [3]).

This is a hint to processing tools to replace the

Template reference with an indication of the
parameter’s named data type, possibly including

additional details or a hyperlink to such details. This

overrides processing tools’ expected default behavior

(unless suppressed by {{nodatatype}}) of

describing the named data type before the rest of the
description.

The optional argument affects how the data type is

described. If it has the literal value “expand”,
processing tools should replace the Template reference

with the actual description of the named data type (as

opposed to referencing the description of the named
data type).

Profile

description

{{profdesc}}

{{noprofdesc}}

An auto-generated description of a profile.

This Template should only be used within the

description of a profile (see Section A.2.9/TR-106
[3]).

This is a hint to processing tools to replace the

Template reference with a description of the profile.
This overrides processing tools’ expected default

behavior (unless suppressed by {{noprofdesc}})

of describing the profile before the rest of the

description.

Typically processing tools will generate text of the
form “This table defines the <profile:v> profile for the

<object:m> object. The minimum required version for

this profile is <object:m.n>.” (or more complex text if
the profile is based on or extends other profiles).

Enumeration

reference

{{enum|value}}

{{enum|value|param}}

{{enum|value|param|

 scope}}

{{enum}}

{{noenum}}

A reference to the specified enumeration value.

The optional value argument specifies one of the

enumeration values for the referenced parameter. If
present, it must be a valid enumeration value for that

parameter.

The optional param and scope arguments identify the
referenced parameter. Scope defaults to normal. If

present, param should adhere to the rules of Section

A.2.3.4/TR-106 [3]. If omitted, the current parameter
is assumed.

If the arguments are omitted, this is a hint to
processing tools to replace the Template reference

with a list of the parameter’s enumerations, possibly

preceded by text such as “Enumeration of:”. This

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 149 of 232

overrides processing tools’ expected default behavior

(unless suppressed by {{noenum}}) of listing the

parameter’s enumerations after the rest of the

description.

Otherwise, typically processing tools will (a) validate
that the enumeration value is valid, and (b) replace the

Template reference with the value and/or param

arguments, appropriately formatted and with the value
possibly rendered in a distinctive font. Processing

tools can use the scope to convert a relative path into

an absolute path in order, for example, to generate a
hyperlink.

Markup examples:
{{enum|None}}

{{enum|None|OtherParam}}

Pattern
reference

{{pattern|value}}

{{pattern|value|param}}

{{pattern|value|param|

 scope}}

{{pattern}}

{{nopattern}}

A reference to the specified pattern value.
The optional value argument specifies one of the

pattern values for the referenced parameter. If present,

it must be a valid pattern value for that parameter.
The optional param and scope arguments identify the

referenced parameter. Scope defaults to normal. If

present, param should adhere to the rules of Section
A.2.3.4/TR-106 [3]. If omitted, the current parameter

is assumed.

If the arguments are omitted, this is a hint to
processing tools to replace the Template reference

with a list of the parameter’s patterns, possibly

preceded by text such as “Possible patterns:”. This
overrides processing tools’ expected default behavior

(unless suppressed by {{nopattern}}) of listing

the parameter’s patterns after the rest of the

description.

Otherwise, typically processing tools will (a) validate
that the pattern value is valid, and (b) replace the

Template reference with the value and/or param

arguments, appropriately formatted and with the value
possibly rendered in a distinctive font. Processing

tools can use the scope to convert a relative path into

an absolute path in order, for example, to generate a
hyperlink.

Markup examples:
{{pattern|None}}

{{pattern|None|OtherParam}}

Hidden value {{hidden}}

{{hidden|value}}

{{nohidden}}

Text explaining that the value of the current parameter
is hidden and cannot be read.

This Template should only be used within the

description of a hidden parameter (see Section
A.2.7.1/TR-106 [3]).

This is a hint to processing tools to replace the

Template reference with text explaining that the value

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 150 of 232

of the current parameter is hidden and cannot be read.

This overrides processing tools’ expected default

behavior (unless suppressed by {{nohidden}}) of

placing this text after the rest of the description.

The optional argument indicates the value that is
returned when the current parameter is read. If

omitted this defaults to the expansion of the

{{null}} Template.

Typically, processing tools will generate text of the

form “When read, this parameter returns <arg>,
regardless of the actual value.”.

Command

parameter

{{command}}

{{nocommand}}

Text explaining that the current parameter is a

command parameter that triggers a CPE action.

This Template should only be used within the
description of such a command parameter (see Section

A.2.7.1/TR-106 [3]).

This is a hint to processing tools to replace the
Template reference with text explaining that the

current parameter is a command parameter that always

reads back as {{null}}. This overrides processing

tools’ expected default behavior (unless suppressed by

{{nocommand}}) of placing this text after the rest

of the description.

Typically, processing tools will generate text of the

form “The value is not part of the device configuration

and is always {{null}} when read.”.

Factory

default value

{{factory}}

{{nofactory}}

Text listing the factory default for the current

parameter.
This Template should only be used within the

description of a parameter that has a factory default

value.
This is a hint to processing tools to replace the

Template reference with text listing the factory default

value. This overrides processing tools’ expected
default behavior (unless suppressed by

{{nofactory}}) of placing this text after the rest

of the description.

Typically, processing tools will generate text of the

form “The factory default value MUST be <value>.”.

Unique keys
description

{{keys}}

{{nokeys}}

A description of the current object’s unique keys.
This Template should only be used within the

description of a multi-instance (table) object that

defines one or more unique keys (see Section
A.2.8.1/TR-106 [3]).

This is a hint to processing tools to replace the

Template reference with a description of the object’s
unique keys. This overrides processing tools’

expected default behavior (unless suppressed by

{{nokeys}}) of describing the unique keys after the

description.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 151 of 232

Units

reference

{{units}} The parameter’s units string.

Typically, processing tools will (a) check that the
parameter has a units string, and (b) substitute the

value of its units string.

Boolean

values

{{false}}

{{true}}
Boolean values.

Typically, processing tools will substitute the value
False or True, possibly rendered in a distinctive font.

Misc. {{empty}} Represents an empty string. Typically, processing

tools will render such values in a distinctive font,
possibly using standard wording, such as <Empty> or

“an empty string”.
{{null}} Expands to the appropriate null value for the current

parameter’s data type (see Section A.2.3.5/TR-106

[3]), e.g. {{empty}}, {{false}} or 0.

{{issue|descr}}

{{issue|label|descr}}

{{issue|label|RESOLVED|

 descr}}

Signifies an open issue. This is a hint to processing

tools to replace the Template reference with a clearly
visible rendition of the open issue.

The descr argument describes the issue.

The optional label can be used to label the issue (e.g.
different labels could be used for different categories

of issue) and the optional status can be set to

RESOLVED to indicate that the issue has been
resolved.

This Template can be used within any description.

Note – The {{issue}} Template is not mentioned in Section A.2.2.4/TR-106 [3]. This is because

it is only intended to be utilized while a document is a draft. All {{issue}} Templates need to be

removed from a document prior to its publication.

I.3 import Element

The import element is used to import data types, components and models (Root and Service

Objects) from external documents.

By importing such item definitions, they are then available to be referenced throughout the local

document rather than having to redefine them. However, if these imported items are not

subsequently referenced, then they do not actually contribute to the local document’s Data Model

(i.e. importing items from an external file does not automatically make them part of the model

defined within the local document).

The import mechanism is recursive; i.e. if an imported file itself includes imports, then these

imports are also available in the local document (as is the case with the imported file’s imported

files, and so on).

Possible parent elements include:

 document (I.1)

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 152 of 232

Table 6 lists the attributes that are available within the import element.

Table 6 – DM import attributes

Attribute Type Use Description

file xs:anyURI required URI of the file. It must be used to locate the DM Instance

(see Section A.2.1/TR-106).

Note – The file value will omit the corrigendum.

spec xs:anyURI optional URI of the spec. If specified, processing tools must

regard a mismatch between this and the external

document's spec attribute as an error.

Note – The spec value will omit the corrigendum.

The following example illustrates how to reference an external document. Specific items to be

imported from this file are specified using import sub-elements.

<import file="tr-143-1-0.xml" spec="urn:broadband-forum-org:tr-143-1-0">

 …

</import>

Table 7 lists the child elements allowed within an import. These are explained in greater detail

in the next section.

Table 7 – DM import sub-elements

Element Multiplicity Description

dataType 0 or more Reference to a dataType in the external document (I.3.1).

component 0 or more Reference to a component in the external document (I.3.1).

model 0 or more Reference to a model in the external document (I.3.1).

I.3.1 import Sub-elements

The import element has three possible child elements: dataType, component, and model.

Each of these is used to indicate specific items to be imported from the external document that is

specified within the parent import element.

Possible parent elements include:

 document/import (I.3)

Table 8 lists the attributes that are available within the dataType, component, and model

sub-elements.

Table 8 – DM import’s sub-element attributes

Attribute Type Use Description

name restricted

xs:NCName

required Name of the imported item as it is known within the

local document.

ref restricted optional Name of the item within the external document. This

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 153 of 232

xs:NCName attribute is used when the imported item is known by

different names within the local and external documents.

If the ref attribute is omitted, then the item being

imported is also known by this name within the external

document.

The following example imports the IPAddress data type from an external document. Since the

dataType/@ref attribute is omitted, this data type is expected to be known by IPAddress

within the local and external documents.

<import file="tr-106-1-0-types.xml" spec="urn:broadband-forum-org:tr-106-1-0">

 <dataType name="IPAddress"/>

 …

</import>

Note – The format of the dataType/@name and dataType/@ref attributes is the same as

xs:NCName, except that it cannot start with a lower-case letter (to avoid conflict with built-in

data type names) and dots are not permitted.

The following example imports the DownloadDiagnostics component from an external

document. However, within the local document the component will be known as

_DownloadDiagnostics. Renaming an imported component in this way is necessary when the

referenced name is already present within the local document (i.e. to avoid a name conflict).

<import file="tr-143-1-0.xml" spec="urn:broadband-forum-org:tr-143-1-0">

 <component name="_DownloadDiagnostics" ref="DownloadDiagnostics"/>

 …

</import>

Note – The format of the component/@name and component/@ref attributes is the same

as xs:NCName, except that dots are not permitted.

The following example imports the Device:1.3 model from an external document. Since the

model/@ref attribute is omitted, this model is expected to be known by Device:1.3 within the

local and external documents.

<import file="tr-157-1-0.xml" spec="urn:broadband-forum-org:tr-157-1-0">

 <model name="Device:1.3"/>

 …

</import>

Note – The model/@name and model/@ref attributes include a name part, a colon, major

version digits, a dot, and minor version digits. The format of the name part is the same as

xs:NCName, except that dots are not permitted.

Of course, although not shown here, an import example could be crafted that imports data

types, components, and models all from the same external document.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 154 of 232

I.4 dataType Element (definition)

The top-level dataType element is used to define named data types that can be referenced

from parameter definitions or from other data type definitions. These named data types are

defined using built-in primitive data types, other named data types, and data type facets,

providing a means to define custom types beyond just the built-in primitive types.

Possible parent elements include:

 document (I.1)

Zero or more dataType elements are permitted within a document.

Table 9 lists the attributes that are available within the dataType element.

Table 9 – DM dataType attributes

Attribute Type Use Description

name restricted

xs:NCName

required The data type name. It must be unique within the

document, including imported data types.

base restricted

xs:NCName

optional The base type name; i.e. the name of an existing top-

level data type definition from which this data type is

derived. The base type name cannot be one of the

built-in primitive types, but rather, must be the name

of a dataType definition.

status One of:

 current

 deprecated

 obsoleted

 deleted

optional The status of the data type.

The values deprecated and obsoleted are as described

in Section 2.2/TR-106 [3]; deleted indicates the

element is no longer present in the current Data

Model; current indicates the element is present in the

current Data Model.

The default is current if not specified.

id xs:token (256) optional Corresponds with the identifier from SMNP MIBs,

included to allow easier import of these MIBs. Rarely

used.

Note – The name and base attributes have the same format as xs:NCName except that they

cannot begin with a lower-case letter (to avoid confusion with built-in primitive data type names)

and dots are not permitted; i.e. must start with an upper-case letter or “_”, and subsequent

characters can also include digits and connector characters such as underscore and dash.

Table 10 lists the elements allowed within a dataType. The description element if present

must appear first.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 155 of 232

Table 10 – DM dataType sub-elements

Element Multiplicity Description

description 0 or 1 The data type’s description (I.2).

size

instanceRef

pathRef

range

enumeration

enumerationRef

pattern

units

0 or more Data type facets (I.13). These elements specify some aspect

of a data type, e.g. its size, range, units, etc.

Use of these elements is only permitted when the base type

is a named data type (i.e. when the base attribute is

specified). In this case, the primitive elements below are not

used.

base64

boolean

dateTime

hexBinary

int

long

string

unsignedInt

unsignedLong

0 or 1 Built-in primitive data types (I.12).

One of these elements must be used when the base type is

primitive (i.e. when the base attribute is omitted). When

the base type is not primitive, then these elements are not

permitted.

The facet elements listed above are not used with a

primitive type; instead, each primitive type has its own set

of supported sub-element facets.

The following example defines the data type named String255. Since the base attribute is

omitted, this definition needs to be based on a primitive type and therefore includes a primitive

type element, in this case the string sub-element. Each primitive element supports its own set

of child facets; here, the string maxLength is set to 255.

<dataType name="String255">

 <string>

 <size maxLength="255"/>

 </string>

</dataType>

The following example defines the data type named String127. Its base attribute indicates that

the base type is String255 (i.e. String127 is derived from String255). The size facet restricts

the maximum length to 127, where it had been 255 in the base type. Since this is not a primitive

type, the primitive child elements are not permitted.

<dataType name="String127" base="String255">

 <size maxLength="127"/>

</dataType>

I.5 bibliography Element

The bibliography element is used to define bibliographic references for various publications

that might be cited throughout the document. This is also discussed in Section A.2.4/TR-106 [3].

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 156 of 232

Possible parent elements include:

 document (I.1)

Table 11 lists the elements allowed within a bibliography. The order that these elements

appear in the table is the same order, if present, that they must appear within a bibliography

definition.

Table 11 – DM bibliography sub-elements

Element Multiplicity Description

description 0 or 1 The bibliography’s description (I.2).

reference 0 or more Information about the referenced publication; i.e. name, title,

date, hyperlink, etc. (I.5.1).

I.5.1 Bibliography reference Element

The bibliography element’s reference sub-element is used to specify the details

regarding a particular publication. A publication can be referenced from descriptions throughout

the document using the {{bibref}} Template (see I.2.3).

Possible parent elements include:

 document/bibliography (I.5)

Table 12 lists the attributes that are available within the reference element.

Table 12 – DM bibliography reference attributes

Attribute Type Use Description

id xs:token required Uniquely identifies the bibliographic reference within the

document (and should uniquely identify this reference

across all instance documents).

For BBF DM Instances, the bibliographic reference ID rules

specified in Section A.2.4/TR-106 must be used. For

example, to reference TR-106 Issue 1 Amendment 2, the

value of this attribute would be TR-106a2.

Table 13 lists the elements allowed within a reference. The order that these elements appear

in the table is the same order, if present, that they must appear within a reference definition.

Table 13 – DM bibliography reference sub-elements

Element Multiplicity Type Description

name 1 xs:token Name by which the referenced document is

usually known, e.g. TR-069, RFC 2863. This is a

required element.

title 0 or 1 xs:token Title of the referenced document.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 157 of 232

organization 0 or 1 xs:token Organization that published the referenced

document, e.g. BBF, IEEE, IETF.

category 0 or 1 xs:token Document category, e.g. TR (BBF), RFC (IETF).

date 0 or 1 xs:token Publication date.

hyperlink 0 or more xs:anyURI URI where the referenced document can be found.

The following example illustrates a bibliographic reference for RFC 2863.

<bibliography>

 <reference id="RFC2863">

 <name>RFC 2863</name>

 <title>The Interfaces Group MIB</title>

 <organization>IETF</organization>

 <category>RFC</category>

 <date>June 2000</date>

 <hyperlink>http://tools.ietf.org/html/rfc2863</hyperlink>

 </reference>

 …

</bibliography>

I.6 component Element (definition)

The top-level component element is used to define a group of objects, parameters and/or

profiles that can later be included within some other definition. This should not be confused with

a component element that appears inside components and models, which is instead a

component reference used to include a component definition at that point within the document.

Possible parent elements include:

 document (I.1)

Table 14 lists the attributes that are available within this component element.

Table 14 – DM definition-based component attributes

Attribute Type Use Description

name restricted

xs:NCName

required Component name is unique within the document,

including imported components

Note – A name has the same format as xs:NCName

except that dots are not permitted; i.e. must start with

a letter or “_” and subsequent characters can also

include digits and separator characters such as

underscore or dash.

status One of:

 current

 deprecated

 obsoleted

 deleted

optional The status of the component.

The values deprecated and obsoleted are as described

in Section 2.2/TR-106 [3]; deleted indicates the

element is no longer present in the current Data

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 158 of 232

Model; current indicates the element is present in the

current Data Model.

The default is current if not specified.

id xs:token(256) optional Corresponds with the identifier from SMNP MIBs,

included to allow easier import of these MIBs. Rarely

used.

Table 15 lists the child elements allowed within this component element. The description

element if present must appear first, while the profile elements if present must appear last.

The component, parameter, and object elements can appear in any order just so long as

they come after any description and before any profile elements.

Table 15 – DM definition-based component sub-elements

Element Multiplicity Description

description 0 or 1 The component’s description (I.2).

component 0 or more A component reference (I.7).

parameter 0 or more A top-level parameter definition (I.10).

object 0 or more An object definition (I.9).

profile 0 or more A profile definition (I.11).

The following example defines a component named DeviceInfo. It illustrates some of the sub-

elements that can be defined within a top-level component, such as object and parameter

definitions.

<component name="DeviceInfo">

 <object name="DeviceInfo." access="readOnly" minEntries="1" maxEntries="1">

 <parameter name="Manufacturer" access="readOnly">

 …

 </parameter>

 …

 </object>

 …

</component>

I.7 component Element (reference)

This component element is used to reference an existing top-level component definition, and

indicates that the content of the referenced component is to be included at the point of reference.

Possible parent elements include:

 document/component (I.6)

 document/model (I.8)

 document/model/object (I.9)

Table 16 lists the attributes that are available within this component element.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 159 of 232

Table 16 – DM reference-based component attributes

Attribute Type Use Description

ref restricted

xs:NCName

required Name of an existing component definition to be

referenced (included).

Note – A ref has the same format as xs:NCName

except that dots are not permitted; i.e. must start with

a letter or “_” and subsequent characters can also

include digits and separator characters such as

underscore or dash.

path restricted

xs:NCName

(256)

optional If specified, it is the relative object path between

point of reference (inclusion) and the component's

items. If not specified, behavior is as if an empty

relative object path was specified.

Object path is represented by the concatenation of

each successive object name separated by a dot (See

Section 3.1/TR-106 [3]).

Note – Each dot-separated portion of the path has

the same format as xs:NCName except that dots are

not permitted; i.e. must start with a letter or “_” and

subsequent characters can also include digits and

connector characters such as underscore and dash.

The following example uses a component reference in order to include the content of the

existing DeviceInfo component (see example in previous section), which will be included at the

specified path within the model. Since the referenced component defines object DeviceInfo.,

based on the path attribute the fully qualified name for this object becomes Device.DeviceInfo.;

while the fully qualified name of the included DevieInfo.Manufacturer parameter becomes

Device.DeviceInfo.Manufacturer.

<model name="Device:1.0">

 <component path="Device." ref="DeviceInfo"/>

 …

</model>

I.8 model Element

The top-level model element is used to define a new Root or Service model, either as an

independent definition or as an extension to an existing model.

Possible parent elements include:

 document (I.1)

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 160 of 232

Table 17 lists the attributes that are available within the model element.

Table 17 – DM model attributes

Attribute Type Use Description

name string(256) required The name of the model being defined, formatted as

“<name>:<major-version>.<minor-version>”. This

value is unique within the document, including

imported models.

Note – The <name> part has the same format as

xs:NCName except that dots are not permitted; i.e.

must start with a letter or “_” and subsequent

characters can also include digits and separator

characters such as underscore or dash.

The <major-version> and <minor-version> parts are

digits.

base string(256) optional The name of the model being extended, formatted as

“<name>:<major-version>.<minor-version>”

This attribute value must be present if and only if

extending an existing model. See Section A.2.10/TR-

106 [3].

isService xs:boolean optional Indicates whether the model is a Service or Root

model. The default is false if not specified (i.e. a Root

model).

Note – The top-level objects and parameters defined

within a Service model are relative to (will appear

under) a Root model’s Services object.

status One of:

 current

 deprecated

 obsoleted

 deleted

optional The status of the model.

The values deprecated and obsoleted are as described

in Section 2.2/TR-106 [3]; deleted indicates the

element is no longer present in the current Data

Model; current indicates the element is present in the

current Data Model.

The default is current if not specified.

id xs:token(256) optional Corresponds with the identifier from SMNP MIBs,

included to allow easier import of these MIBs. Rarely

used.

The following example defines a new Root model.
<model name="Device:2.0">

 …

</model>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 161 of 232

The following example defines a Root model that extends an existing model.
<model name="Device:1.1" base="Device:1.0">

 …

</model>

The following example defines a new Service model.

<model name="FAPService:1.0" isService="true">

 …

</model>

Table 18 lists the child elements allowed within a model. The description element if

present must appear first, while the profile elements if present must appear last. The

component, parameter, and object elements can appear in any order just so long as they

come after any description and before any profile elements.

Table 18 – DM model sub-elements

Element Multiplicity Description

description 0 or 1 The model’s description (I.2).

component 0 or more A component reference (I.7).

parameter 0 or more A top-level parameter definition (I.10).

object 0 or more An object definition (I.9).

profile 0 or more A profile definition (I.11).

I.9 object Element (definition)

This object element is used to define a new object, or to modify the definition of an existing

object. Objects can be single-instance or multi-instance; the latter is often referred to as a table. It

should not be confused with the object element that appears within profiles, which is an object

reference rather than an object definition.

See Section A.2.8.1/TR-106 for details of how tables are represented.

Possible parent elements include:

 document/model (I.8)

 document/component (I.6)

Table 19 lists the attributes that are available within the object element.

Table 19 – DM definition-based object attributes

Attribute Type Use Description

name restricted

xs:NCName

optional
29

The name of a new object being defined,

which includes its parent object path as

29 An object element will contain a name attribute or a base attribute (one or the other). It is invalid for an

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 162 of 232

(256) prefix (maximum length 256). This is

represented by the concatenation of each

successive parent object name separated

by a dot (See Section 3.1/TR-106 [3]).

Note – Each dot-separated portion of the

overall name has the same format as

xs:NCName except that dots are not

permitted; i.e. must start with a letter or

“_” and subsequent characters can also

include digits and connector characters

such as underscore and dash.

Each object name is unique within its

parent model or parent component.

If the object is a table (see maxEntries),

the final part of the name will be "{i}."

The name must in addition follow the

vendor-specific object name requirements

of Section 3.3/TR-106 [3].

This attribute is only used when defining a

new object. When modifying an existing

object, the base attribute is used instead.

base restricted

xs:NCName

(256)

optional The name of an existing object to be

modified, which includes its parent object

path.

This attribute is only used when modifying

an existing object. When defining a new

object, the name attribute is used instead.

access One of:

 readOnly

 readWrite

required Whether object instances can be added or

deleted by the ACS. Adding or deleting

instances is meaningful only for a multi-

instance (table) object.

minEntries xs:nonNegativ

eInteger

required The minimum number of instances of this

object.

minEntries must be less than or equal to

maxEntries (all values are regarded as

being less than "unbounded").

maxEntries xs:positiveInte required The maximum number of instances of this

object element to omit both the name attribute and the base attribute.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 163 of 232

ger or

“unbounded”

object.

minEntries and maxEntries allow the

object to be placed into one of three

categories:

 minEntries=0, maxEntries=1 :
single-instance object which might not

be allowed to exist, e.g. because only

one of it and another object can exist at

the same time

 minEntries=1, maxEntries=1 :
single-instance object that is always

allowed to exist

 all other cases : object is a table

numEntriesParameter string(256) optional The name of the parameter (in the parent

object) that contains the number of entries

in the table.

This attribute must be specified for a table

with a variable number of entries, i.e. for

which maxEntries is greater than

minEntries ("unbounded" is regarded as

being greater than all values)

enableParameter string(256) optional The name of the parameter (in each table

entry) that enables/disables that table

entry.

This attribute must be specified for a table

in which the ACS can create entries (i.e.

access is readWrite) and which has one or

more uniqueKey elements that define

functional keys.

status One of:

 current

 deprecated

 obsoleted

 deleted

optional The status of the object.

The values deprecated and obsoleted are

as described in Section 2.2/TR-106 [3];

deleted indicates the element is no longer

present in the current Data Model; current

indicates the element is present in the

current Data Model.

The default is current if not specified.

New object definitions are usually current,

in which case this attribute can be omitted.

id xs:token(256) optional Corresponds with the identifier from

SMNP MIBs, included to allow easier

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 164 of 232

import of these MIBs. Rarely used.

The following example defines a single-instance object; maxEntries is one.

<object name="Device.DeviceInfo." access="readOnly"

 minEntries="1" maxEntries="1">

 …

</object>

The following example defines a multi-instance object (i.e. a table); the object name ends in

“{i}.” and maxEntries is greater than one.

<object name="Device.Ethernet.Link.{i}." access="readWrite"

 numEntriesParameter="LinkNumberOfEntries" enableParameter="Enable"

 minEntries="0" maxEntries="unbounded">

 …

</object>

Table 20 lists the child elements allowed within an object. The order that these elements

appear in the table is the same order, if present, that they must appear within an object

definition (with the exception that parameter elements can appear before or after

component elements).

Table 20 – DM definition-based object sub-elements

Element Multiplicity Description

description 0 or 1 The object’s description (I.2).

uniqueKey 0 or more Specifies the unique key for a table (I.9.1).

This element is only permitted within table objects (see

maxEntries in Table 19); i.e. not permitted within

single-instance objects.

The parameters referenced within each uniqueKey element
together constitute a unique key.

Keys can be functional or non-functional (I.9.1). For a non-
functional key, or if the table has no enableParameter, the

uniqueness requirement always applies. For a functional

key, and if the table has an enableParameter, the uniqueness
requirement applies only to enabled table entries.

component 0 or more The components that are referenced (included) by the

object (I.7).

parameter 0 or more The object’s parameter definitions (I.10).

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 165 of 232

I.9.1 Object uniqueKey Element

The uniqueKey element is used to specify the unique key for a multi-instance object (table). A

table can have zero or more uniqueKeys, where each unique key consists of references to one or

more of the table’s child parameters.

Possible parent elements include:

 document/[component|model]/object (I.9)

Table 21 lists the attributes that are available within the object’s uniqueKey element.

Table 21 – DM uniqueKey attributes

Attribute Type Use Description

functional xs:boolean optional The default is true if not specified.

Indicates whether the key is a functional (true) or non-

functional (false) key (see Section A.2.8.1/TR-106 [3]).

Table 22 lists the child elements allowed within an object’s uniqueKey.

Table 22 – DM uniqueKey sub-elements

Element Multiplicity Description

parameter 1 or more Reference to a parameter definition within the object (Table 23).

Table 23 lists the attributes that are available within the unique key’s parameter element (i.e.

attributes for element uniqueKey/parameter).

Table 23 – DM uniqueKey parameter attributes

Attribute Type Use Description

ref restricted xs:NCName

(256)

required The name of a parameter within the

table to be included in the table’s unique

key. Note that the parameter’s object

path is not specified here.

Note – A ref has the same format as

xs:NCName except that dots are not

permitted; i.e. must start with a letter or

“_” and subsequent characters can also

include digits and connector characters

such as underscore and dash.

The following example shows a table with one unique key. This unique key consists of three of

the table’s parameters (i.e. a multi-parameter key). Also note that this is a functional key (by

default, since the key’s functional attribute is omitted), meaning it references at least one

parameter that relates to the purpose (or function) of the table.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 166 of 232

<object name="Device.ManagementServer.ManageableDevice.{i}."

 minEntries="0" maxEntries="unbounded" … >

 <uniqueKey>

 <parameter ref="ManufacturerOUI"/>

 <parameter ref="SerialNumber"/>

 <parameter ref="ProductClass"/>

 </uniqueKey>

 …

</object>

The following example shows a table with two separate unique keys. In this case, each unique

key consists of one of the table’s parameters. Also, these are both defined as non-functional keys,

meaning they reference parameters that do not relate to the purpose (or function) of the table.

<object name="Device.DSL.Channel.{i}."

 minEntries="0" maxEntries="unbounded" … >

 <uniqueKey functional="false">

 <parameter ref="Alias"/>

 </uniqueKey>

 <uniqueKey functional="false">

 <parameter ref="Name"/>

 </uniqueKey>

 …

</object>

I.10 parameter Element (definition)

This parameter element is used to define a new parameter, or to modify the definition of an

existing parameter. It should not be confused with the parameter element that appears within

profiles (I.11.2), which is a parameter reference rather than a parameter definition.

Possible parent elements include:

 document/component (I.6)

 document/model (I.8)

 document/[component|model]/object (I.9)

Table 24 lists the attributes that are available within the parameter element.

Table 24 – DM definition-based parameter attributes

Attribute Type Use Description

name restricted xs:NCName

(256)

optional
30

The name of the new parameter being

defined (maximum length 256). Each

parameter name is unique within its

parent model, component, or

object. Note that the parameter’s

30 A parameter element will contain a name attribute or a base attribute (one or the other). It is invalid for a

parameter element to omit both the name attribute and the base attribute.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 167 of 232

object path is not specified here.

Note – A name has the same format as

xs:NCName except that dots are not

permitted; i.e. must start with a letter or

“_” and subsequent characters can also

include digits and connector characters

such as underscore and dash.

This attribute is only used when

defining a new parameter. When

modifying an existing parameter, the

base attribute is used instead.

The name must in addition follow the

vendor-specific object name

requirements of Section 3.3/TR-106 [3].

base restricted xs:NCName

(256)

optional The name of an existing parameter to be

modified. Note that the parameter’s

object path is not specified here.

This attribute is only used when

modifying an existing parameter. When

defining a new parameter, the name

attribute is used instead.

access One of:

 readOnly

 readWrite

required Whether a parameter can be updated by

the ACS.

status One of:

 current

 deprecated

 obsoleted

 deleted

optional The status of the parameter.

The values deprecated and obsoleted are

as described in Section 2.2/TR-106 [3];

deleted indicates the element is no

longer present in the current Data

Model; current indicates the element is

present in the current Data Model.

The default is current if not specified.

New parameter definitions are usually

current, in which case this attribute can

be omitted.

activeNotify One of:

 normal

 forceEnabled

 forceDefaultEnabled

 canDeny

optional The default is normal if not specified.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 168 of 232

forcedInform xs:boolean optional The default is false if not specified.

id xs:token(256) optional Corresponds with the identifier from

SMNP MIBs, included to allow easier

import of these MIBs. Rarely used.

The following example defines a writable parameter. The default values apply for omitted

attributes (i.e. status=current, activeNotify=normal, forcedInform=false). Sub-

elements not shown here would specify description and syntax.

<parameter name="PeriodicInformEnable" access="readWrite">

 …

</parameter>

The following example defines a read-only parameter. Optional attributes activeNotify and

forcedInform are included since non-default values are desired.

<parameter name="ParameterKey" access="readOnly"

 activeNotify="canDeny" forcedInform="true">

 …

</parameter>

The following example illustrates the use of the base attribute. The existing parameter

definition DeviceSummary is referenced in order to modify its status to deprecated.

<parameter base="DeviceSummary" access="readOnly" forcedInform="true"

 status="deprecated">

 …

</parameter>

Table 25 lists the child elements allowed within the parameter. The order that these elements

appear in the table is the same order, if present, that they must appear within a parameter

definition.

Table 25 – DM definition-based parameter sub-elements

Element Multiplicity Description

description 0 or 1 The parameter’s description (I.2).

syntax 0 or 1 Contains the parameter’s syntax definition (I.10.1).

Note – For a new parameter (i.e. one defined using the

name attribute rather than base attribute), the syntax

element is required.

I.10.1 Parameter syntax Element

The syntax element is used to specify the parameter definition’s data type details, where the

data type is either one of the built-in types or is derived from a custom type defined elsewhere

within the document.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 169 of 232

Possible parent elements include:

 document/[component|model]/parameter (I.10)

 document/[component|model]/object/parameter (I.10)

Table 26 lists the attributes that are available within the parameter’s syntax element.

Table 26 – DM parameter syntax attributes

Attribute Type Use Description

hidden xs:boolean optional The default is false if not specified.

If true, will always read back as the null value for the

parameter’s base data type (see Section A.2.3.5/TR-106

[3]).

command xs:boolean optional The default is false if not specified.

If true, setting this parameter triggers a CPE action.

Such a parameter is not part of the device configuration

and will always read back as the null value for the

parameter’s base data type (see Section A.2.3.5/TR-106

[3]).

Table 27 lists the child elements allowed within a parameter’s syntax. The list element if

present must appear first, while the default element if present must appear last. One and only

one of the built-in type elements, or the dataType element, can ever be present.

Table 27 – DM parameter syntax sub-elements

Element Multiplicity Description

list 0 or 1 Whether the parameter value is a list of items (I.10.2).

For lists, the TR-069 parameter is always a string and the data

type specification applies to individual list items, not to the

parameter value.

base64

boolean

dateTime

hexBinary

int

long

string

unsignedInt

unsignedLong

0 or 1
31

 Built-in primitive data type (I.12). Only one of these elements

can be included within the syntax. If a built-in type is used,

then the dataType element cannot be used.

31 A syntax element can contain either one of the built-in type elements (i.e. boolean, string, int, etc) or a

dataType element, or neither. For new parameter definitions, it is invalid for a syntax element not to include

one such element.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 170 of 232

dataType 0 or 1 Reference to a named data type definition (I.10.3). If this

element is used, then none of the built-in elements can be

included within the syntax element.

default 0 or 1 The default value of the parameter (I.10.4).

The following example defines a parameter syntax that has a string type, using the string

built-in data type element. Also, since hidden is true, read-back on such a parameter will

always return an empty value. Syntax similar to this is often used with password parameters.

<syntax hidden="true">

 <string/>

</syntax>

The following example defines a parameter syntax that has a boolean type, using the boolean

built-in data type element. Also, since command is true, setting such a parameter to true will

trigger a CPE action.

<syntax command="true">

 <boolean/>

</syntax>

The following example defines a parameter syntax that has a MACAddress type, using the

dataType element to reference the existing data type definition named MACAddress. Since

the hidden attribute is omitted, hidden is false, and read back will return the actual value of the

parameter.

<syntax>

 <dataType ref="MACAddress"/>

</syntax>

I.10.2 Syntax list Element

The list element indicates that the parameter’s value will be a list of items. In this case the

parameter is always a string type, and the data type specification instead applies to individual list

items not to the parameter value.

Possible parent elements include:

 document/[component|model]/parameter/syntax (I.10.1)

 document/[component|model]/object/parameter/syntax (I.10.1)

Table 28 lists the attributes that are available within the syntax’s list element.

Table 28 – DM syntax list attributes

Attribute Type Use Description

minItems xs:nonNegativeInteger optional The default is 0 if not specified.

maxItems xs:positiveInteger or optional The default is unbounded if not specified.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 171 of 232

“unbounded”

status One of:

 current

 deprecated

 obsoleted

 deleted

optional The status of the list.

The values deprecated and obsoleted are as

described in Section 2.2/TR-106 [3];

deleted indicates the element is no longer

present in the current Data Model; current

indicates the element is present in the

current Data Model.

The default is current if not specified. New

list definitions are usually current, in

which case this attribute can be omitted.

Table 29 lists the child elements allowed within a syntax’s list. The description element

if present must appear first.

Table 29 – DM syntax list sub-elements

Element Multiplicity Description

description 0 or 1 The list description (I.2).

size 0 or more The size of the list-valued parameter, not of the individual items

(I.13.1).

The following example defines a parameter syntax having a list whose items are of type

unsignedInt. This list can hold between 1 and 10 items.

<syntax>

 <list minItems=”1” maxItems=”10”/>

 <unsignedInt/>

</syntax>

The following example defines a parameter syntax that is a list of MACAddress type items. This

list can hold between 0 and 16 items.

<syntax>

 <list maxItems="16"/>

 <dataType ref="MACAddress"/>

</syntax>

I.10.3 Syntax dataType Element (reference)

The syntax’s dataType element allows a parameter to be defined using a named data type (i.e.

a custom type rather than one of the built-in types such as boolean, int, etc.). This is done by

referencing a named data type definition which is specified elsewhere within the document. The

referenced data type can be associated with a parameter definition as is, or it can be extended or

restricted in order to provide the parameter with a modified variant of the referenced data type.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 172 of 232

Possible parent elements include:

 document/[component|model]/parameter/syntax (I.10.1)

 document/[component|model]/object/parameter/syntax (I.10.1)

Table 30 lists the attributes that are available within the syntax’s dataType element.

Table 30 – DM syntax dataType attributes

Attribute Type Use Description

ref restricted

xs:NCName

optional
32

Reference to (the name of) an existing data type

definition (I.4).

When this attribute is specified, further content is not

permitted within this dataType element (i.e. none

of the facet sub-elements are permitted).

base restricted

xs:NCName

optional Reference to (the name of) an existing data type

definition (I.4) in order to define a new anonymous

data type used by the parameter. The new data type

can either be a restriction or extension of the named

data type being referenced.

When this attribute is specified, further content is

required within this dataType element (i.e. one or

more of the facet sub-elements will be used in order

to alter the referenced definition).

Note – The data type name referenced in the ref and base attributes has the same format as

xs:NCName except that it cannot start with a lower-case letter (to avoid conflict with built-in

data type names) and dots are not permitted; i.e. must start with an upper-case letter or “_”, and

subsequent characters can also include digits and connector characters such as underscore and

dash

Table 31 lists the child elements allowed within a syntax’s dataType element.

Table 31 – DM syntax dataType sub-elements

Element Multiplicity Description

size

instanceRef

pathRef

range

enumeration

enumerationRef

pattern

0 or more Data type facets (I.13). These are only permitted when the

base attribute is used (i.e. when defining a new anonymous

data type definition locally, based on an existing named data

type definition that is being referenced).

32 A syntax dataType element will contain a ref attribute or a base attribute (one or the other). It is invalid for

this dataType element to omit both the ref attribute and the base attribute.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 173 of 232

units

The following example defines a parameter syntax that has an IPAddress data type, as indicated

by the ref attribute reference. The referenced data type is defined elsewhere within the

document.

<syntax>

 <dataType ref=”IPAddress”/>

</syntax>

The following example specifies a parameter syntax that defines an anonymous data type based

on the referenced IPAddress type (as indicated by the base attribute). This new data type differs

from the referenced type by using the size facet to restrict parameter values to a maximum

length of 15.

<syntax>

 <dataType base=”IPAddress”>

 <size maxLength="15"/>

 </dataType>

</syntax>

I.10.4 Syntax default Element

The default element indicates the default value for a parameter. There are two types of

defaults: factory default and object default.

Possible parent elements include:

 document/[component|model]/parameter/syntax (I.10.1)

 document/[component|model]/object/parameter/syntax (I.10.1)

Table 32 lists the attributes that are available within the syntax’s default element.

Table 32 – DM syntax default attributes

Attribute Type Use Description

type One of:

 factory

 object

required If factory, the value attribute specifies the

parameter’s default value based on some

standard, e.g. RFC. This applies both to

static parameters as well as parameters that

come about due to object creation.

If object, the value attribute specifies the

parameter’s default value. This only applies

to parameters that come about due to object

creation.

value xs:string required The value must be valid for the data type.

status One of: optional The status of the parameter’s default

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 174 of 232

 current

 deprecated

 obsoleted

 deleted

element.

The values deprecated and obsoleted are as

described in Section 2.2/TR-106 [3];

deleted indicates the element is no longer

present in the current Data Model; current

indicates the element is present in the

current Data Model.

The default value is current if not specified.

New default element definitions are

usually current, in which case this attribute

can be omitted.

Table 33 lists the child elements allowed within the syntax’s default element.

Table 33 – DM syntax default sub-elements

Element Multiplicity Description

description 0 or 1 The default element’s description (I.2).

The following example defines the syntax for a boolean-valued parameter whose factory default

value is true.

<syntax>

 <boolean/>

 <default type="factory" value="true"/>

</syntax>

The following example defines the syntax for an unsignedInt-valued parameter whose object

default value is 0. The optional description element provides further explanation about the

default value.

<syntax>

 <unsignedInt/>

 <default type="object" value="0">

 <description>all bits clear</description>

 </default>

</syntax>

I.11 profile Element

The profile element is used to group together and specify access requirements for a subset of

existing objects and parameters that are defined elsewhere within the Data Model. If a CPE

supports a profile, it is expected that it will implement all of the object and parameter

requirements defined within that profile. See Section A.2.9/TR-106 [3].

Possible parent elements include:

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 175 of 232

 document/component (I.6)

 document/model (I.8)

Table 34 lists the attributes that are available within the profile element.

Table 34 – DM profile attributes

Attribute Type Use Description

name restricted

xs:NCName

optional
33

 The name of the profile being defined, formatted as

“<name>:<version>”. Each profile name is unique

within its associated model.

This attribute is only used when defining a new

profile (or a new version of an existing profile).

Note – The <name> part is the same as

xs:NCName except that dots are not permitted; i.e.

must start with a letter or “_” and subsequent

characters can also include digits and connector

characters such as underscore and dash. The

<version> part contains digits only.

For vendor-specific profiles, the naming convention

discussed in Section 3.3/TR-106 [3] applies (i.e. in

the form X_<VENDOR>_VendorSpecificName).

base restricted

xs:NCName

optional The name of an existing profile to be modified.

This attribute is only used when modifying an

existing profile or the profile version is greater than

1. When defining a new profile that is not based on

an existing profile, the name attribute is used and

the base attribute is omitted.

extends xs:list of profile

names

optional List of profile names. This is used when the profile

extends other profile(s), and so is inheriting the

other profiles’ object and parameter requirements.

status One of:

 current

 deprecated

 obsoleted

 deleted

optional The status of the profile.

The values deprecated and obsoleted are as

described in Section 2.2/TR-106 [3]; deleted

indicates the element is no longer present in the

current Data Model; current indicates the element

is present in the current Data Model.

The default is current if not specified. New profile

33 A profile element will contain a name attribute and/or a base attribute. It is invalid for a profile element

to omit both the name attribute and the base attribute.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 176 of 232

definitions are usually current, in which case this

attribute can be omitted.

id xs:token(256) optional Corresponds with the identifier from SMNP MIBs,

included to allow easier import of these MIBs.

Rarely used.

The following example defines version 1 of the TempStatus profile. This is a new profile.

<profile name="TempStatus:1">

 …

</profile>

The following example defines version 1 of the TempStatusAdv profile. It is a new profile that

extends the existing TempStatus:1 profile. It inherits requirements defined by TempStatus:1

without needing to specify them within TempStatusAdv:1. It is expected that TempStatusAdv:1

will define additional requirements not present within TempStatus:1.

<profile name="TempStatusAdv:1" extends="TempStatus:1">

 …

</profile>

The following example defines version 2 of the Baseline profile. Baseline:2 is an update to the

previous Baseline:1 version. It is expected that Baseline:2 will only contain requirement changes,

and that unchanged requirements will simply be inherited from Baseline:1.

<profile name="Baseline:2" base="Baseline:1">

 …

</profile>

The following example means to update the existing Baseline:1 profile directly, without defining

a new profile or version. In effect, name is also Baseline:1. It is expected that only requirement

changes appear within this profile definition update, and that unchanged requirements will

simply be inherited from the existing Baseline:1 profile.

<profile base="Baseline:1">

 …

</profile>

Table 35 lists the child elements allowed within a profile. The description element if

present must appear first. The parameter and object elements can appear in any order just

so long as they do not come before a description element.

Table 35 – DM profile sub-elements

Element Multiplicity Description

description 0 or 1 The profile’s description (I.2). If the extends

attribute is insufficient to express general profile

requirements, then any additional requirements will be

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 177 of 232

specified here.

parameter 0 or more A reference to an existing parameter definition

(I.11.2). It includes requirements about this parameter.

object 0 or more A reference to an existing object definition (I.11.1). It

includes requirements about this object.

I.11.1 Profile object Element (reference)

The profile element can include zero or more object sub-elements. These are used to

reference existing object definitions within the Data Model in order to specify their access

requirements.

Possible parent elements include:

 document/[component|model]/profile (I.11)

Table 36 lists the attributes that are available within a profile’s object element.

Table 36 – DM profile object attributes

Attribute Type Use Description

ref xs:NCName

(256)

required The name of an existing object, which includes its

parent object path as prefix (maximum length

256). This is represented by the concatenation of

each successive parent object name separated by a

dot (See Section 3.1/TR-106 [3]).

Note – Each dot-separated portion of the overall

name has the same format as xs:NCName except

that dots are not permitted; i.e. must start with a

letter or “_” and subsequent characters can also

include digits and connector characters such as

underscore and dash.

requirement One of:

 notSpecified

 present

 create

 delete

 createDelete

required Specifies the access requirement for the

referenced object. Types of requirements are also

discussed in Section 2.3.5/TR-106 [3].

notSpecified: No requirement specified for the

object. The object is included within the profile

simply to contain parameters.

present: Indicates that the object must be present.

For a multi-instance object, it cannot be created or

deleted by the ACS.

create, delete, createDelete: Used with a multi-

instance object. Indicates whether the object can

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 178 of 232

have instances created and/or deleted.

status One of:

 current

 deprecated

 obsoleted

 deleted

optional The status of the object requirement.

The values deprecated and obsoleted are as

described in Section 2.2/TR-106 [3]; deleted

indicates the element is no longer present in the

current Data Model; current indicates the element

is present in the current Data Model.

The default is current if not specified. New object

requirements are usually current, in which case

this attribute can be omitted.

The following example defines the TempStatus:1 profile. It references the existing

Device.TemperatureStatus object and indicates that this object must be present if a CPE supports

this profile.

<profile name="TempStatus:1">

 <object ref="DeviceInfo.TemperatureStatus." requirement="present">

 …

 </object>

 …

</profile>

Table 37 lists the child elements allowed within a profile’s object element. The

description element if present must appear first.

Table 37 – DM profile object sub-elements

Element Multiplicity Description

description 0 or 1 The profile object’s description (I.2). If the

requirement attribute is insufficient to express the

requirement, any additional requirements will be

specified here and can override the attribute

parameter 0 or more A reference to an existing parameter definition

(I.11.2). It includes requirements about this parameter.

I.11.2 Profile parameter Element (reference)

The profile element can include zero or more parameter sub-elements, either directly

under the profile element itself or within one of the profile’s object elements. These are

used to reference existing parameter definitions within the Data Model in order to specify their

access requirements.

Possible parent elements include:

 document/[component|model]/profile (I.11)

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 179 of 232

 document/[component|model]/profile/object (I.11.1)

Table 38 lists the attributes that are available within a profile’s parameter element.

Table 38 – DM profile parameter attributes

Attribute Type Use Description

ref restricted

xs:NCName

(256)

required The name of an existing parameter (maximum

length 256). Note that the parameter’s object path

is not specified here.

Note – A name has the same format as

xs:NCName except that dots are not permitted;

i.e. must start with a letter or “_” and subsequent

characters can also include digits and connector

characters such as underscore and dash.

requirement One of:

 readOnly

 readWrite

required Specifies the access requirement for the

referenced parameter.

status One of:

 current

 deprecated

 obsoleted

 deleted

optional The status of the parameter requirement.

The values deprecated and obsoleted are as

described in Section 2.2/TR-106 [3]; deleted

indicates the element is no longer present in the

current Data Model; current indicates the element

is present in the current Data Model.

The default is current if not specified. New

parameter requirements are usually current, in

which case this attribute can be omitted.

The following example defines the User:1 profile. It illustrates how a parameter can be

referenced (and requirements specified) both at the top-level of the profile, as well as from

within object sub-elements.

<profile name="User:1">

 <parameter ref="UserNumberOfEntries" requirement="readOnly"/>

 <object ref="User.{i}." requirement="createDelete">

 <parameter ref="Enable" requirement="readWrite"/>

 …

 </object>

 …

</profile>

Table 39 lists the child elements allowed within a profile’s parameter element. This applies

whether the parameter appears directly under a profile element or under a profile’s

object element.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 180 of 232

Table 39 – DM profile parameter sub-elements

Element Multiplicity Description

description 0 or 1 The profile parameter’s description (I.2). If the requirement

attribute is insufficient to express the requirement, any additional

requirements will be specified here and can override the attribute.

I.12 Built-in Primitive Data Type Elements

The DM Schema comes equipped with a set of built-in primitive data types that can be used to

define either top-level named data types or anonymous data types within parameters.

Possible parent elements include:

 document/dataType (I.4)

 document/[component|model]/parameter/syntax (I.10.1)

 document/[component|model]/object/parameter/syntax (I.10.1)

For any given parent element, no more than one primitive data type sub-element is allowed (e.g.

a dataType element can include a boolean sub-element or a string sub-element, but not

both).

Note that some primitive types can be specialized using certain data type facets, as indicated in

the table below.

Table 40 lists the available primitive data type elements and their permitted facets.

Table 40 – DM primitive data type elements

Element Description

base64 Base64 encoded binary (no line-length limitation).

base64 permits zero or more of the following sub-element facets:

 size (Length is that of the actual string, not the base64-encoded string.

See Section A.2.3.3/TR-106); see I.13.1

boolean Boolean, where the allowed values are “true” (or “1”), and “false” (or “0”).

dateTime The subset of the ISO 8601 date-time format defined by the SOAP dateTime

type.

hexBinary Hex encoded binary.

hexBinary permits zero or more of the following sub-element facets:

 size (Length is that of the actual string, not the hexBinary-encoded

string
34

. See Section A.2.3.3/TR-106); see I.13.1

int Integer in the range -2147483648 to +2147483647, inclusive.

34 In other words, it is the length of the actual string in bytes. Since a byte represents 2 hex digits, the length of the

hexBinary-encoded value will be twice as many digits as the specified length.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 181 of 232

int permits zero or more of the following sub-element facets:

 instanceRef (I.13.2)

 range (I.13.4)

 units (I.13.8)

long Long integer in the range –9223372036854775808 to 9223372036854775807,

inclusive.

long permits zero or more of the following sub-element facets:

 range (I.13.4)

 units (I.13.8)

string Series of characters.

string permits zero or more of the following sub-element facets:

 size (I.13.1)

 pathRef (I.13.3)

 enumeration (Each enumeration value will be unique within the

string element); see I.13.5

 enumerationRef (I.13.6)

 pattern (Each pattern value will be unique within the string

element); see I.13.7

unsignedInt Unsigned integer in the range 0 to 4294967295, inclusive.

unsignedInt permits zero or more of the following sub-element facets:

 instanceRef (I.13.2)

 range (I.13.4)

 units (I.13.8)

unsignedLong Unsigned long integer in the range 0 to 18446744073709551615, inclusive.

unsignedLong permits zero or more of the following sub-element facets:

 range (I.13.4)

 units (I.13.8)

The following example lists all primitive types and their sub-element facets. Note that this is not

a practical example, since these elements would actually appear independently within top-level

dataType definitions or within parameter syntax.

<base64>

 <size …/>

</base64>

<boolean/>

<dateTime/>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 182 of 232

<hexBinary>

 <size …/>

</hexBinary>

<int>

 <instanceRef …/>

 <range …/>

 <units …/>

</int>

<long>

 <range …/>

 <units …/>

</long>

<string>

 <size …/>

 <pathRef …/>

 <enumeration …/>

 <enumerationRef …/>

 <pattern …/>

</string>

<unsignedInt>

 <instanceRef …/>

 <range …/>

 <units …/>

</unsignedInt>

<unsignedLong>

 <range …/>

 <units …/>

</unsignedLong>

I.13 Data Type Facets

Facet elements can be used within data type and parameter definitions to specify different

aspects of a data type being defined, such as size, units, etc.

Possible parent elements include:

 document/dataType (I.4)

 document/[component|model]/parameter/syntax/dataType (I.10.3)

 document/[component|model]/object/parameter/syntax/dataType (I.10.3)

 built-in primitive data types (I.12)

Note that some of the built-in primitive data types support a limited use of facets. This is

discussed in Section I.12.

Table 41 lists the available facet elements. See Section A.2.3.3/TR-106 [3] for more details

concerning these facet types.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 183 of 232

Note – For any given parent element, zero or more of each facet sub-element is permitted unless

otherwise indicated.

Table 41 – DM data type facet elements

Element Description

size The minimum and maximum length for a string-related type (I.13.1).

Multiple such elements can be used to indicate length ranges.

instanceRef Reference to an object instance number; i.e. a row in a table (I.13.2).

pathRef Reference to an object or parameter via its path name string (I.13.3).

range The minimum and maximum value for an integer-related type (I.13.4).

Multiple such elements can be used to define disjoint integer ranges.

enumeration Specific value that is valid within a string-related type (I.13.5). Multiple such

elements can be used to define a set of valid values.

enumerationRef Reference to the enumeration values of another parameter via a path name

string (I.13.6).

pattern Pattern of valid values for a string-related type (I.13.7). Multiple such

elements can be used to specify different patterns within a type definition.

units Name of the units used for an integer-related type (I.13.8). Only one such

element is permitted within a type definition.

Table 42 lists the child elements allowed within all of the facet elements.

Table 42 – DM facet sub-elements

Element Multiplicity Description

description 0 or 1 The facet’s description (I.2).

I.13.1 size Element

Size facets, taken together, define the valid size ranges (i.e. string lengths), e.g. (0:0) and (6:6)

mean that the size has to be 0 or 6. The size facet can only be specified for string data types,

i.e. data types that are derived from base64, hexBinary or string.

Table 43 lists the attributes that are available within a size element.

Table 43 – DM size attributes

Attribute Type Use Description

access One of:

 readOnly

 readWrite

optional The default is readWrite if not specified.

minLength xs:nonNegativeInteger optional The default is 0 if not specified.

maxLength xs:nonNegativeInteger optional The default is 16 if not specified and no

implied maximum exists (see Section

3.2.6/TR-106 [3] for further details).

optional xs:boolean optional The default is false if not specified.

status One of: optional The status of the size element.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 184 of 232

 current

 deprecated

 obsoleted

 deleted

The values deprecated and obsoleted are as

described in Section 2.2/TR-106 [3]; deleted

indicates the element is no longer present in

the current Data Model; current indicates the

element is present in the current Data Model.

The default is current if not specified. New

elements are usually current, in which case

this attribute can be omitted.

Note – The access and optional attributes serve no purpose. They should not be used and may be

removed in a future version of the DM Schema.

The following example defines a string length size between 1 and 255 characters.

<size minLength="1" maxLength="255"/>

I.13.2 instanceRef Element

InstanceRef facets specify how a parameter can reference an object instance (table row) via its

instance number. The instanceRef facet can only be specified for data types that are derived

from int or unsignedInt.

Table 44 lists the attributes that are available within an instanceRef element.

Table 44 – DM instanceRef attributes

Attribute Type Use Description

targetParent Path Name required Specifies the path name of the multi-

instance object (table) of which an

instance (row) is to be referenced.

Specified path must reference a specific

multi-instance object (table) (Section

A.2.3.4/TR-106).

Object path name cannot contain "{i}"

placeholders and therefore will reference

a single object. Path name cannot contain

explicit instance numbers.

The path name will follow the

requirements of Section A.2.3.4/TR-106

(and with scope specified via the

targetParentScope attribute).

targetParentScope One of: optional Object path name scope. Specifies the

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 185 of 232

 normal

 model

 object

point in the naming hierarchy relative to

which targetParent applies (Section

A.2.3.4/TR-106).

normal: This is a hybrid scope which

usually gives the desired behavior. If the

targetParent path begins with

"Device" or "InternetGatewayDevice"

then it is relative to the top of the naming

hierarchy. If the targetParent path

begins with a dot then it is relative to the

Root or Service Object. Otherwise, the

targetParent path is relative to the

current object.

model: The targetParent path is

relative to the Root or Service Object.

object: The targetParent path is

relative to the current object.

The default is normal if not specified.

Note – The preference is to omit this

attribute and to set targetParent

with a value that is formatted to imply a

path scope.

refType One of:

 weak

 strong

required Specifies the type of reference (Section

A.2.3.6/TR-106).

If weak, the referenced object instance

might not exist (e.g. referenced object

was deleted by ACS). If strong, the

referenced object instance will exist,

otherwise the CPE will set the parameter

to a null reference (see Section

A.2.3.5/TR-106).

status One of:

 current

 deprecated

 obsoleted

 deleted

optional The status of the instanceRef

element.

The values deprecated and obsoleted are

as described in Section 2.2/TR-106;

deleted indicates the element is no longer

present in the current Data Model;

current indicates the element is present in

the current Data Model.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 186 of 232

The default is current if not specified.

New elements are usually current, in

which case this attribute can be omitted.

The following example defines an instanceRef which will strongly reference a row in the

Queue table.

<instanceRef refType="strong" targetParent="Device.QueueManagement.Queue."/>

The following example defines an instanceRef which will weakly reference a row in the

Diagnostics table. The targetParentScope attribute indicates that the path scope is the

current object (e.g. if the current parameter were Device.SomeObject.SomeParameter, then it is

expected that the target parent is Device.SomeObject.Diagnostics).

<instanceRef refType="weak" targetParent="Diagnostics."

 targetParentScope="object"/>

I.13.3 pathRef Element

PathRef facets specify how a parameter can reference another parameter or object via a path

name. The pathRef facet can only be specified for data types that are derived from string (i.e.

string and its derived types).

Table 45 lists the attributes that are available within a pathRef element.

Table 45 – DM pathRef attributes

Attribute Type Use Description

targetParent list of Path Names optional An XML list of path names that can

restrict the set of parameters and objects

that can be referenced. If the list is empty

(the default), then anything can be

referenced. Otherwise, only the

immediate children of one of the

specified objects can be referenced,

A “{i}” placeholder in a path name acts

as a wild card, and can therefore

reference multiple objects. Path names

cannot contain explicit instance numbers.

Each path name will follow the

requirements of Section A.2.3.4/TR-106

(with path name scope specified by the

targetParentScope attribute).

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 187 of 232

targetParentScope One of:

 normal

 model

 object

optional Object/parameter path name scope.

Specifies the point in the naming

hierarchy relative to which

targetParent applies (see Section

A.2.3.4/TR-106).

normal: This is a hybrid scope which

usually gives the desired behavior. If the

targetParent path(s) begins with

"Device" or "InternetGatewayDevice"

then it is relative to the top of the naming

hierarchy. If the targetParent

path(s) begins with a dot then it is relative

to the Root or Service Object. Otherwise,

the targetParent path(s) is relative

to the current object.

model: The targetParent path(s) is

relative to the Root or Service Object.

object: The targetParent path(s) is

relative to the current object.

The default is normal if not specified.

Note – The preference is to omit this

attribute and to set targetParent

with a value that is formatted to imply a

path scope.

targetType One of:

 any

 parameter

 object

 single

 table

 row

optional Specifies the type of item that can be

referenced by targetParent (see

Section A.2.3.7/TR-106).

any: Either a parameter or an object can

be referenced.

parameter: Only a parameter can be

referenced.

object: Any type of object can be

referenced.

single: Only a single-instance object can

be referenced.

table: Only a multi-instance object

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 188 of 232

(table) can be referenced.

row: Only a multi-instance object

instance (table row) can be referenced.

The default is any if not specified.

targetDataType One of:

 any

 base64

 boolean

 dateTime

 hexBinary

 integer

 int

 long

 string

 unsignedInt

 unsignedLong

 <named data

type>

optional Specifies the valid data types for a

referenced parameter (see Section

A.2.3.7/TR-106). Is relevant only when

targetType is any or parameter.

The default is any if not specified.

For named data types, see Section I.4. For

primitive data types, see Section I.12.

Note that any and integer are not valid

parameter data types. They are included

in order to support “can reference any

data type” and “can reference any

numeric data type”.

refType One of:

 weak

 strong

required Specifies the type of reference (Section

A.2.3.6/TR-106).

If weak, the referenced parameter or

object might not exist (e.g. referenced

object was deleted by ACS). If strong,

the referenced parameter or object will

exist, otherwise the CPE will set the

parameter to a null reference (see Section

A.2.3.5/TR-106).

status One of:

 current

 deprecated

 obsoleted

 deleted

optional The status of the pathRef element.

The values deprecated and obsoleted are

as described in Section 2.2/TR-106;

deleted indicates the element is no longer

present in the current Data Model;

current indicates the element is present in

the current Data Model.

The default is current if not specified.

New elements are usually current, in

which case this attribute can be omitted.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 189 of 232

The following example defines a pathRef which can reference any parameter. This is a weak

reference.

<pathRef refType="weak" targetType="parameter"/>

The following example defines a pathRef which can only reference a boolean-typed

parameter. This example is similar to the previous except for the addition of the

targetDataType attribute.

<pathRef refType="weak" targetType="parameter"

 targetDataType="boolean"/>

The following example defines a pathRef which can only reference an object instance (row)

within the Bridge or VLAN tables. This is a strong reference. Note that the

targetParentScope attribute could have been omitted, since the targetParent’s path names

start with a dot and therefore already imply that they are relative to the Root (or Service) Object.

<pathRef refType="strong"

 targetParent=".Bridging.Bridge. .Bridging.Bridge.{i}.VLAN."

 targetParentScope="model"

 targetType="row"/>

The following example defines a pathRef which can only reference a row in the Router table.

This example differs from the previous in that the targetParentScope attribute has been

omitted; however, since the targetParent attribute value starts with a dot, the target path

name is relative to the Root Object by default.

<pathRef refType="strong"

 targetParent=".Routing.Router."

 targetType="row"/>

The following example defines a pathRef which can only reference a row within the Profile

table. Since the targetParentScope attribute is omitted, and the targetParent attribute

value does not start with “Device” or “InternetGatewayDevice” or a dot, the target path name is

relative to the current object by default.

<pathRef refType="strong"

 targetParent="Profile."

 targetType="row"/>

I.13.4 range Element

Range facets, taken together, define the valid value ranges, e.g. [-1:-1] and [1:4094] mean that

the value has to be -1 or 1:4094 (it cannot be 0). The range facet can only be specified for

numeric data types, i.e. data types that are derived from one of the integer types.

Table 46 lists the attributes that are available within a range element.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 190 of 232

Table 46 – DM range attributes

Attribute Type Use Description

access One of:

 readOnly

 readWrite

optional Whether values within the specified range can

be can be written by the ACS.

The default is readWrite if not specified.

minInclusive xs:integer optional Minimum value in the range. If omitted, the

default minimum is the minimum allowed by

the base type.

maxInclusive xs:integer optional Maximum value in the range. If omitted, the

default maximum is the maximum allowed by

the base type.

step xs:positiveInteger optional The default is 1 if not specified.

optional xs:boolean optional Whether values within the specified range are

optionally supported by the CPE.

The default is false if not specified.

status One of:

 current

 deprecated

 obsoleted

 deleted

optional The status of the range element.

The values deprecated and obsoleted are as

described in Section 2.2/TR-106; deleted

indicates the element is no longer present in the

current Data Model; current indicates the

element is present in the current Data Model.

The default is current if not specified. New

elements are usually current, in which case this

attribute can be omitted.

The following example defines a range where the parameter value can be -1 or between 1 and 10.

Zero is not a valid value. Also, the ACS can only write values between 1 and 10.

<range access="readOnly" minInclusive="-1" maxInclusive="-1">

<range minInclusive="1" maxInclusive="10">

The following example defines a range where the parameter value can be 3, 6, 9, or 12; i.e. valid

values step by 3 starting from the minInclusive value.

<range minInclusive="3" maxInclusive="12" step="3">

I.13.5 enumeration Element

Enumeration facets, taken together, define the valid values, e.g. "a" and "b" mean that the value

has to be a or b. The enumeration facet can only be specified for data types that are derived

from string. Derived types may add additional enumeration values. See Section A.2.5/TR-106.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 191 of 232

Table 47 lists the attributes that are available within an enumeration element.

Table 47 – DM enumeration attributes

Attribute Type Use Description

access One of:

 readOnly

 readWrite

optional Whether an enumeration value can be written by

the ACS.

The default is readWrite if not specified.

value xs:string required An enumeration value. Duplicate values are not

allowed within the associated parameter.

code xs:integer optional An enumeration numeric code.

optional xs:boolean optional Whether an enumeration value is optionally

supported by the CPE.

The default is false if not specified.

status One of:

 current

 deprecated

 obsoleted

 deleted

optional The status of the enumeration element.

The values deprecated and obsoleted are as

described in Section 2.2/TR-106; deleted

indicates the element is no longer present in the

current Data Model; current indicates the element

is present in the current Data Model.

The default is current if not specified. New

elements are usually current, in which case this

attribute can be omitted.

Note that the maximum string length of a data type defined with enumeration facets is implied by

the length of its longest enumeration value.

The following example defines the set of enumeration values: None, Requested, Complete, and

Error. Each enumeration value is unique to the set. Only the Requested value can be written by

the ACS to the associated parameter. The Error value is optionally supported by the CPE.

<enumeration value="None" access="readOnly"/>

<enumeration value="Requested"/>

<enumeration value="Complete" access="readOnly"/>

<enumeration value="Error" access="readOnly" optional="true"/>

The following example builds on the previous example. Here numeric codes are indicated for

each enumeration.

<enumeration value="None" code="0" access="readOnly"/>

<enumeration value="Requested" code="1"/>

<enumeration value="Complete" code="2" access="readOnly"/>

<enumeration value="Error" code="3" access="readOnly"/>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 192 of 232

I.13.6 enumerationRef Element

EnumerationRef facets allow a parameter's valid enumeration values to be obtained from the

current value of another parameter (by referencing a list-valued parameter via a path name). The

enumerationRef facet can only be specified for string types and those types derived from

string.

Table 48 lists the attributes that are available within an enumerationRef element.

Table 48 – DM enumerationRef attributes

Attribute Type Use Description

targetParam Path Name required Specifies the path name of the list-valued

parameter whose current value indicates

the valid enumerations for this parameter.

Parameter path cannot contain "{i}"

placeholders and therefore will reference

a single parameter. The path must follow

the requirements of Section A.2.3.4/TR-

106 (its path scope is specified by the

targetParamScope attribute).

targetParamScope One of:

 normal

 model

 object

optional Parameter path name scope. Specifies the

point in the naming hierarchy relative to

which targetParam applies (see

Section A.2.3.4/TR-106).

normal: This is a hybrid scope which

usually gives the desired behavior. If the

targetParam path begins with

"Device" or "InternetGatewayDevice"

then it is relative to the top of the naming

hierarchy. If the targetParam path

begins with a dot then it is relative to the

Root or Service Object. Otherwise, the

targetParam path is relative to the

current object.

model: The targetParam path is

relative to the Root or Service Object.

object: The targetParam path is

relative to the current object.

The default is normal if not specified.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 193 of 232

Note – The preference is to omit this

attribute and to set targetParam with

a value that is formatted to imply a path

scope.

nullValue xs:token optional Specifies the parameter value that

indicates that none of the values of the

referenced parameter currently apply (if

not specified, no such value is

designated).

Note – This attribute is not relevant when

the data type is list-valued, because the

null value will be indicated by an empty

list.

status One of:

 current

 deprecated

 obsoleted

 deleted

optional The status of the enumerationRef

element.

The values deprecated and obsoleted are

as described in Section 2.2/TR-106;

deleted indicates the element is no longer

present in the current Data Model;

current indicates the element is present in

the current Data Model.

The default is current if not specified.

New elements are usually current, in

which case this attribute can be omitted.

The following example defines an enumerationRef which references the AllowedProfiles

list-valued parameter. The null value is empty string. Note that the targetParamScope

attribute could have been omitted, since the targetParam value starts with a dot and therefore

already implies that it is relative to the Root (or Service) Object.

<enumerationRef targetParam=".SomeObject.AllowedProfiles"

 targetParamScope="model"

 nullValue=""/>

The following example defines an enumerationRef which references the

StandardsSupported list-valued parameter. This example differs from the previous in that the

targetParamScope attribute has been omitted; however, since the targetParam attribute

value does not start with “Device” or “InternetGatewayDevice” or a dot, the target path name is

relative to the current object by default.

<enumerationRef targetParam="StandardsSupported" nullValue=""/>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 194 of 232

I.13.7 pattern Element

Pattern attributes, taken together, define valid patterns, e.g. "" and "[0-9A-Fa-f]{6}" means that

the value has to be empty or a 6 digit hex string. The pattern facet can only be specified for

data types that are derived from string.

Note – The pattern syntax is the same as for XML Schema regular expressions. See XML Schema Part 2

[12] Appendix F.

Table 49 lists the attributes that are available within a pattern element.

Table 49 – DM pattern attributes

Attribute Type Use Description

access One of:

 readOnly

 readWrite

optional Whether a parameter value that matches the pattern

value can be written by the ACS.

The default is readWrite if not specified.

value xs:string required Pattern for the data type (a regular expression).

optional xs:boolean optional Whether a pattern value is optionally supported by

the CPE.

The default is false if not specified.

status One of:

 current

 deprecated

 obsoleted

 deleted

optional The status of the pattern element.

The values deprecated and obsoleted are as described

in Section 2.2/TR-106; deleted indicates the element

is no longer present in the current Data Model;

current indicates the element is present in the current

Data Model.

The default is current if not specified. New elements

are usually current, in which case this attribute can be

omitted.

The following example defines a set of five patterns for some data type or parameter. The first

four patterns are constant values. The last pattern defines a value which includes an “X”, a space,

any six digit hex number, a space, followed by any sequence of characters.

<pattern value="1 Firmware Upgrade Image"/>

<pattern value="2 Web Content"/>

<pattern value="3 Vendor Configuration File"/>

<pattern value="4 Vendor Log File"/>

<pattern value="X [0-9A-F]{6} .*"/>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 195 of 232

I.13.8 units Element

Multiple units facets must not be specified. The units facet can only be specified for data types

that are numeric, i.e. data types that are derived from one of the integer types.

Table 50 lists the attributes that are available within a units element.

Table 50 – DM units attributes

Attribute Type Use Description

value xs:token (32) required The name of the units (maximum length

of 32).

status One of:

 current

 deprecated

 obsoleted

 deleted

optional The status of the units element.

The values deprecated and obsoleted are

as described in Section 2.2/TR-106;

deleted indicates the element is no longer

present in the current Data Model;

current indicates the element is present in

the current Data Model.

The default is current if not specified.

New elements are usually current, in

which case this attribute can be omitted.

The following example defines the units for some data type or parameter to be percent.

<units value="percent"/>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 196 of 232

Appendix II – Reference: Device Type XML Schema

This appendix provides a user reference for the TR-069 device type schema (DT Schema), v1.1.

The normative version can be found at http://www.broadband-forum.org/cwmp/cwmp-

devicetype-1-1.xsd.

The DT Schema is used to define DT Instance documents. For a given device type, a DT

Instance document specifies which Data Model items (e.g. objects, parameters, parameter

values) from an associated DM Instance document will be supported by devices of that type.

II.1 document Element

The document element is the root element of any DT XML Data Model file. It is required.

Table 51 lists the attributes that are available within the document element.

Table 51 – DT document attributes

Attribute Type Use Description

deviceType xs:anyURI required URI indicating the device type associated with this DT

Instance. An empty string is not allowed.

This URI is a globally uniquely identifier; it identifies the

device type not the document.

The following example illustrates the use of the document element. It indicates the

deviceType that the document is associated with and also specifies a dt namespace to be

used throughout the document.

<dt:document xmlns:dt="urn:broadband-forum-org:cwmp:devicetype-1-1"

 deviceType="urn:your-company-com:example">

 …

</dt:document>

Note – In the above example, although outside the scope of this appendix, it is expected that the

document element will also include the xmlns:xsi and xsi:schemaLocation attributes

in order to specify the location of the XSD schema file to be associated with the dt namespace.

Table 52 lists the child elements allowed within a document. The order that these elements

appear in the table is the same order, if present, that they must appear within a document

definition.

Table 52 – DT document sub-elements

Element Multiplicity Description

annotation 0 or 1 Top-level annotation (II.2).

http://www.broadband-forum.org/cwmp/cwmp-devicetype-1-1.xsd
http://www.broadband-forum.org/cwmp/cwmp-devicetype-1-1.xsd

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 197 of 232

import 0 or more Imported model (Root and Service Objects) and data type

definitions (II.4). The imported items are defined in DM

Instance documents.

bibliography 0 or 1 Bibliographic references (II.5).

feature 0 or more Top-level features (II.3). Declares which features of imported

Root and Service Objects are supported.

model 0 or more Shows support for a model (Root and Service Object) (II.6).

II.2 annotation Element

The annotation element holds free text (i.e. of type xs:string) used to describe further details

regarding how the parent element is supported by the device type. This text can contain a limited

amount of Media Wiki-like markup as specified in Sections I.2.2 and I.2.3. For example, use "*"

at the start of a line to indicate a bulleted list. To avoid confusion, the annotation should not

contain tab characters.

For Broadband Forum standards, the character set will be restricted to printable characters in the

Basic Latin Unicode block, i.e. to characters whose decimal ASCII representations are in the

(inclusive) ranges 9-10 and 32-126.

The annotation element can be used within almost every other element (e.g. under document,

document/model, document/model/object, etc.). When used, it will always be the

first element to appear under its parent element. Refer to specific sections within this appendix to

determine whether or not the annotation element is permitted.

The following example illustrates the structure of an annotation.

<annotation>

 This text describes the parent element…

</annotation>

II.3 feature Element

The feature element is used to declare which features of imported models (Root and Service

Objects) are supported. These are local declarations of purported named features and are not

validated against actual definitions from imported DM Instance models.

The specific list of feature names that can be referenced is specified by the separate Device Type

Features (DTF) XML Schema. However, this is transparent to users of the DT Schema. See

Appendix III for DTF Schema details, and Section B.2.2/TR-106 [3] which also discusses

features.

Possible parent elements include:

 document (II.1)

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 198 of 232

Table 53 lists the attributes that are available within the feature element.

Table 53 – DT feature attributes

Attribute Type Use Description

name One of:

 DNSClient

 DNSServer

 Firewall

 IPv6

 NAT

 Router

required Feature name. The schema also allows vendors to use

their own feature names.

Vendor-specific feature names will begin with

X_<VENDOR>_, where <VENDOR> must be as

defined in Section 3.3/TR-106 [3] (e.g.

X_ACDC73_NetworkStorage).

The following example illustrates the use of a feature element.

<feature name="Firewall"/>

Table 54 lists the child elements allowed within an import. These are explained in greater

detail in the next section.

Table 54 – DT feature sub-elements

Element Multiplicity Description

annotation 0 or 1 The feature’s annotation (II.2).

II.4 import Element

The import element is used to import data types and models (Root and Service Objects) from

external DM Instance documents.

By importing such item definitions, they are then available to be referenced throughout the local

document. However, if these imported items are not subsequently referenced, then they do not

actually contribute to the local document’s Data Model (i.e. importing items from an external file

does not automatically make them part of the model defined within the local document).

The import mechanism is recursive; i.e. if an imported file itself includes imports, then these

imports are also available in the local document (as is the case with the imported file’s imported

file’s, and so on).

Possible parent elements include:

 document (II.1)

Table 55 lists the attributes that are available within the import element.

Table 55 – DT import attributes

Attribute Type Use Description

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 199 of 232

file xs:anyURI required URI of the file. It must be used to locate the DM Instance

(see Section B.2.1/TR-106).

spec xs:anyURI optional URI of the spec. If specified, processing tools must

regard a mismatch between this and the external

document's spec attribute as an error.

The following example illustrates how to reference an external DM Instance document. Specific

items to be imported from this file are specified using import sub-elements.

<import file="tr-143-1-0.xml" spec="urn:broadband-forum-org:tr-143-1-0">

 …

</import>

Table 56 lists the child elements allowed within an import. These are explained in greater

detail in the next section. Note that dataType and model elements can appear in any order,

but the convention is to list dataType elements first.

Table 56 – DT import sub-elements

Element Multiplicity Description

dataType 0 or more Reference to a dataType in the external document (II.4.1).

model 0 or more Reference to a model in the external document (II.4.1).

II.4.1 import Sub-elements

The import element has two possible child elements: dataType and model. Each is used to

indicate specific items to be imported from the external document specified by the parent

element.

Possible parent elements include:

 document/import (II.4)

Table 57 lists the attributes that are available within the dataType and model sub-elements.

Table 57 – DT import sub-element attributes

Attribute Type Use Description

name restricted

xs:NCName

required Name of the item being imported from the external

document. Note that the item will also be referenced by

this same name within the local document.

The following example imports the IPAddress data type from tr-106-1-0-types.xml.

<import file="tr-106-1-0-types.xml" spec="urn:broadband-forum-org:tr-106-1-0">

 <dataType name="IPAddress"/>

 …

</import>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 200 of 232

Note – The format of the dataType/@name attribute is the same as xs:NCName, except that it

cannot start with a lower-case letter (to avoid conflict with built-in data type names) and dots are

not permitted. However, this is academic really, since the name must match a corresponding data

type already defined in the associated DM Instance document.

The following example imports the Device:1.3 model from tr-157-1-0.xml.

<import file="tr-157-1-0.xml" spec="urn:broadband-forum-org:tr-157-1-0">

 <model name="Device:1.3"/>

 …

</import>

Note – The model/@name attribute value includes a name part, a colon, major version digits, a

dot, and minor version digits. The format of the name part is the same as xs:NCName, except

that dots are not permitted. However, this is academic really, since the name and version must

match a corresponding model already defined in the associated DM Instance document.

Even though it is not shown here, an import example could be crafted that imports data types

and models from the same external document.

II.5 bibliography Element

The bibliography element is used to define bibliographic references for various publications

that might be cited throughout the document. This is the very same as the DM Schema’s

bibliography element (I.5).

Possible parent elements include:

 document (II.1)

Table 58 lists the elements allowed within a bibliography. The order that these elements

appear in the table is the same order, if present, that they must appear within a bibliography

definition.

Table 58 – DT bibliography sub-elements

Element Multiplicity Description

description 0 or 1 The bibliography’s description (I.2).

Note – This element will be deprecated in DT Schema v1.2.

annotation 0 or 1 The bibliography’s annotation (II.2).

Note – This element will be defined in DT Schema v1.2, as a

replacement for the description element.

reference 0 or more Information about the referenced publication; i.e. name, title,

date, hyperlink, etc. (II.5.1).

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 201 of 232

II.5.1 Bibliography reference Element

The bibliography element’s reference sub-element is used to specify the details

regarding a particular publication. A publication can be referenced from annotations throughout

the document using the {{bibref}} Template (see I.2.3).

Possible parent elements include:

 document/bibliography (II.5)

Table 59 lists the attributes that are available within the reference element.

Table 59 – DT bibliography reference attributes

Attribute Type Use Description

id xs:token required Uniquely identifies the bibliographic reference within the

document (and should uniquely identify this reference

across all instance documents).

For BBF DM Instances, the bibliographic reference ID rules

specified in Section A.2.4/TR-106 must be used. For

example, to reference TR-106 Issue 1 Amendment 2, the

value of this attribute would be TR-106a2.

Table 60 lists the elements allowed within a reference. The order that these elements appear

in the table is the same order, if present, that they must appear within a reference definition.

Table 60 – DT bibliography reference sub-elements

Element Multiplicity Type Description

name 1 xs:token Name by which the referenced document is

usually known, e.g. TR-069, RFC 2863. This is a

required element.

title 0 or 1 xs:token Title of the referenced document.

organization 0 or 1 xs:token Organization that published the referenced

document, e.g. BBF, IEEE, IETF.

category 0 or 1 xs:token Document category, e.g. TR (BBF), RFC (IETF).

date 0 or 1 xs:token Publication date.

hyperlink 0 or more xs:anyURI URI where the referenced document can be found.

The following example illustrates a bibliographic reference for RFC 2863.

<bibliography>

 <reference id="RFC2863">

 <name>RFC 2863</name>

 <title>The Interfaces Group MIB</title>

 <organization>IETF</organization>

 <category>RFC</category>

 <date>June 2000</date>

 <hyperlink>http://tools.ietf.org/html/rfc2863</hyperlink>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 202 of 232

 </reference>

 …

</bibliography>

II.6 model Element

The top-level model element is used to specify support for a Root or Service model defined in a

DM Instance.

Possible parent elements include:

 document (II.1)

Table 61 lists the attributes that are available within the model element.

Table 61 – DT model attributes

Attribute Type Use Description

ref string(256) required The name of the model being referenced, formatted as

“<name>:<major-version>.<minor-version>”.

Note – The <name> part has the same format as

xs:NCName except that dots are not permitted; i.e.

must start with a letter or “_” and subsequent

characters can also include digits and separator

characters such as underscore or dash.

The <major-version> and <minor-version> parts are

digits.

The following example illustrates support for the Device:2.0 Data Model.
<model ref="Device:2.0">

 …

</model>

Table 62 lists the child elements allowed within a model. The annotation element if present

must appear first. The parameter and object elements can appear in any order just so long

as they come after any annotation (but the convention is to list top-level parameter elements

before object elements).

Table 62 – DT model sub-elements

Element Multiplicity Description

annotation 0 or 1 The model’s annotation (II.2).

parameter 0 or more Shows support for a top-level parameter (II.8).

object 0 or more Shows support for an object (II.7).

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 203 of 232

II.7 object Element

The object element is used to specify support for an object defined in a DM Instance.

Possible parent elements include:

 document/model (II.6)

Table 63 lists the attributes that are available within the object element.

Table 63 – DT object attributes

Attribute Type Use Description

ref restricted xs:NCName

(256)

required The name of the object being referenced,

which includes its parent object path as prefix

(maximum length 256). This is represented by

the concatenation of each successive parent

object name separated by a dot (See Section

3.1/TR-106 [3]).

Note – Each dot-separated portion of the

overall name has the same format as

xs:NCName except that dots are not

permitted; i.e. must start with a letter or “_”

and subsequent characters can also include

digits and connector characters such as

underscore and dash.

Each object name is unique within its parent

model.

If the object is a table (see maxEntries), the

final part of the name will be "{i}."

The name must in addition follow the vendor-

specific object name requirements of Section

3.3/TR-106 [3].

access One of:

 readOnly

 create

 delete

 createDelete

required Whether object instances can be added or

deleted by the ACS. Adding or deleting

instances is meaningful only for a multi-

instance (table) object.

minEntries xs:nonNegativeInteger required The minimum number of instances supported

of this object.

minEntries must be less than or equal to

maxEntries (all values are regarded as being

less than "unbounded").

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 204 of 232

Note that this minEntries must be greater than

or equal to the minEntries defined in the Data

Model (DM) for the object.

maxEntries xs:positiveInteger or

“unbounded”

required The maximum number of instances supported

of this object. All numeric values are regarded

as being less than “unbounded”.

Note that this maxEntries must be less than or

equal to the maxEntries defined in the Data

Model (DM) for the object.

minEntries and maxEntries indicate the

category of object being referenced:

 minEntries=0, maxEntries=1 : single-

instance object which might not be

allowed to exist, e.g. because only one of

it and another object can exist at the same

time

 minEntries=1, maxEntries=1 : single-

instance object that is always allowed to

exist

 all other cases : object is a table

The following example illustrates support for the DeviceInfo object (a single-instance object).

The specified attribute values are the same as in the DM definition but are re-specified here since

they are required attributes.

<object ref="Device.DeviceInfo." access="readOnly"

 minEntries="1" maxEntries="1">

 …

</object>

The following example illustrates support for the Ethernet Link object (a multi-instance object;

i.e. a table). Note that this object is defined in the Data Model with minEntries=0 and

maxEntries=unbounded. However, here the device type instead indicates support for 1 to 10

table entries for this object.

<object name="Device.Ethernet.Link.{i}." access="readWrite"

 minEntries="1" maxEntries="10">

 …

</object>

Table 64 lists the child elements allowed within an object. The order that these elements

appear in the table is the same order, if present, that they must appear within an object

definition.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 205 of 232

Table 64 – DT object sub-elements

Element Multiplicity Description

annotation 0 or 1 The object’s annotation (II.2).

parameter 0 or more Shows support for a parameter within the object (II.8).

II.8 parameter Element

The parameter element is used to specify support for a parameter defined in a DM Instance.

Possible parent elements include:

 document/model (II.6)

 document/model/object (II.7)

Table 65 lists the attributes that are available within the parameter element.

Table 65 – DT parameter attributes

Attribute Type Use Description

ref restricted xs:NCName

(256)

required The name of the parameter being

referenced (maximum length 256). Each

parameter name is unique within its

parent model or object. Note that

the parameter’s object path is not

specified here.

Note – The name will have the same

format as xs:NCName except that dots

are not permitted; i.e. must start with a

letter or “_” and subsequent characters

can also include digits and connector

characters such as underscore and dash.

The name must in addition follow the

vendor-specific object name

requirements of Section 3.3/TR-106 [3].

access One of:

 readOnly

 readWrite

required Whether a parameter can be updated by

the ACS.

activeNotify One of:

 normal

 willDeny

optional The parameter’s active notify support.

The default is normal if not specified.

The following example illustrates support for the PeriodicInformEnable parameter. Its access

attribute value is the same as in the DM definition but is re-specified here since it is a required

attribute. Its activeNotify attribute (optional) is omitted since it is unchanged from the DM

definition. Sub-elements not shown here could specify annotation and syntax.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 206 of 232

<parameter ref="PeriodicInformEnable" access="readWrite">

 …

</parameter>

The following example illustrates support for the ParameterKey parameter. Again, its access

attribute value is the same as in the DM definition but is re-specified here since it is a required

attribute. Its activeNotify attribute indicates that active notification requests will be denied

(while in the DM definition it is simply can deny).

<parameter ref="ParameterKey" access="readOnly" activeNotify="willDeny">

 …

</parameter>

Table 66 lists the child elements allowed within the parameter. The order that these elements

appear in the table is the same order, if present, that they must appear within a parameter

definition.

Table 66 – DT parameter sub-elements

Element Multiplicity Description

annotation 0 or 1 The parameter’s annotation (II.2).

syntax 0 or 1 Contains the parameter’s syntax supported (II.8.1).

Only necessary if the supported syntax differs from

what is defined in the DM definition.

II.8.1 Parameter syntax Element

The syntax element is used to specify support details for a parameter’s data type. Omitting this

element implies that the parameter’s data type is supported exactly as it is defined in the DM

Instance. The base data type is either one of the built-in data types or is derived from a named

data type.

Possible parent elements include:

 document/model/parameter (II.8)

 document/model/object/parameter (II.8)

Table 67 lists the child elements allowed within a parameter’s syntax. The list element if

present must appear first, while the default element if present must appear last. One and only

one of the built-in type elements, or the dataType element, can ever be present.

Table 67 – DT parameter syntax sub-elements

Element Multiplicity Description

list 0 or 1 Contains the parameter’s list support (II.8.2). Only applies when

the defined parameter in the DM definition is a list-valued

parameter.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 207 of 232

For lists, the TR-069 parameter is always a string and the data

type specification applies to individual list items, not to the

parameter value.

base64

boolean

dateTime

hexBinary

int

long

string

unsignedInt

unsignedLong

0 or 1
35

 Built-in primitive data type (II.9). Only one of these elements

can be included within the syntax. If a built-in type is used,

then the dataType element cannot be used.

The specified type if present must be the same as in the

parameter’s DM definition. It is repeated here in order to

indicate (using facets) how the supported data type differs from

what was originally defined.

dataType 0 or 1 Reference to a named data type definition (II.8.3). If this element

is used, then none of the built-in type elements can be included

within the syntax element.

The specified type if present must be the same as in the

parameter’s DM definition. It is repeated here in order to

indicate (using facets) how the supported data type differs from

what was originally defined.

default 0 or 1 Contains the parameter’s default value supported (II.8.4).

Parameter syntax does not need to be specified unless there is something within syntax that is

supported differently than is defined in the DM definition (i.e. list, data type facet, and/or default

settings). See the following sections for examples on using the various syntax sub-elements.

II.8.2 Syntax list Element

The list element is used to specify support details for a parameter’s list defined in a DM

Instance. This element only applies when the defined parameter is list-valued.

Note that a list-valued parameter is always a string type, and the data type specification instead

applies to individual list items not to the parameter value.

Possible parent elements include:

 document/model/parameter/syntax (II.8.1)

 document/model/object/parameter/syntax (II.8.1)

Table 68 lists the attributes that are available within the syntax’s list element.

35 A syntax element can contain either one of the built-in type elements (i.e. boolean, string, int, etc) or a

dataType element, or neither.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 208 of 232

Table 68 – DT syntax list attributes

Attribute Type Use Description

minItems xs:nonNegativeInteger optional The supported minimum number of items

in the list. The default is 0 if not specified.

maxItems xs:positiveInteger or

“unbounded”

optional The supported maximum number of items

in the list. The default is unbounded if not

specified.

Table 69 lists the child elements allowed within a syntax list. The annotation element if

present must appear first.

Table 69 – DT syntax list sub-elements

Element Multiplicity Description

annotation 0 or 1 The list annotation (II.2).

size 0 or more The supported size of the list-valued parameter, not of the

individual items (II.10.1).

The following example illustrates support for a parameter syntax having a list whose items are of

type unsignedInt. This list can hold between 1 and 5 items. The assumption is that the associated

DM parameter will also be an unsignedInt (their base data types must match), and the list

element is specified in order to restrict the number of list items supported by the device type (i.e.

the DT parameter’s min-max list range must fall within the range defined by the associated DM

parameter’s list element).

<syntax>

 <list minItems="1" maxItems="5"/>

 <unsignedInt/>

</syntax>

The following example illustrates support for a parameter syntax that is a list of MACAddress

type items. This list can hold between 0 and 8 items (minItems defaults to 0 since it was

omitted).

<syntax>

 <list maxItems="8"/>

 <dataType ref="MACAddress"/>

</syntax>

Note 36
 – Strictly speaking, the data type elements in the above examples are not necessary since they do

not alter what is already defined for the parameter in the DM definition. However, they may be included

in order to provide a clearer picture of what is supported when combined with list and default

elements.

36 The dataType/@ref attribute will be defined in DT Schema v1.2. This will permit a parameter’s data type to

be referenced while still allowing it to be supported as defined in the DM parameter definition.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 209 of 232

II.8.3 Syntax dataType Element

The syntax’s dataType element is used to specify support details for a parameter’s data type

defined in a DM Instance. This element only applies when the defined parameter has a named

data type (i.e. not a built-in primitive data type).

The referenced named data type must be the same as in the parameter’s DM definition. It is

repeated here in order to indicate (using facets) how the supported data type differs from what

was originally defined.

Possible parent elements include:

 document/model/parameter/syntax (II.8.1)

 document/model/object/parameter/syntax (II.8.1)

Table 70 lists the attributes that are available within the syntax’s dataType element.

Table 70 – DT syntax dataType attributes
37

38

Attribute Type Use Description

base restricted

xs:NCName

optional Reference to (the name of) an existing data type

definition that was imported (II.4.1) into the DT

Instance.

This reference is made in order to define a new

anonymous data type used by the parameter. The

new data type can either be a restriction or extension

of the named data type being referenced.

Note that further content is required within this

dataType element (i.e. one or more of the facet

sub-elements will be used in order to alter the

referenced definition).

ref restricted

xs:NCName

optional Reference to (the name of) an existing data type

definition that was imported (II.4.1) into the DT

Instance.

This will permit a parameter’s data type to be

referenced while still allowing it to be supported as

defined in the DM parameter definition.

When this attribute is specified, further content is not

permitted within this dataType element (i.e. none

of the facet sub-elements are permitted).

37 The dataType/@ref attribute will be defined in DT Schema v1.2. This is analogous with the DM

syntax/dataType element (I.10.3).
38 A syntax dataType element will contain a ref attribute or a base attribute (one or the other). It is invalid for

this dataType element to omit both the ref attribute and the base attribute.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 210 of 232

Note – The data type name referenced in the base and ref attributes has the same format as

xs:NCName except that it cannot start with a lower-case letter (to avoid conflict with built-in

data type names) and dots are not permitted; i.e. must start with an upper-case letter or “_”, and

subsequent characters can also include digits and connector characters such as underscore and

dash.

Table 71 lists the child elements allowed within a syntax dataType element.

Table 71 – DT syntax dataType sub-elements

Element Multiplicity Description

size

pathRef

range

enumeration

pattern

0 or more Data type facets (II.10).

The following example illustrates support for a parameter syntax that defines an anonymous data

type based on the referenced IPAddress type (as indicated by the base attribute). This new data

type differs from the referenced type by using the size facet to restrict parameter values to a

maximum length of 15.

<syntax>

 <dataType base="IPAddress">

 <size maxLength="15"/>

 </dataType>

</syntax>

II.8.4 Syntax default Element

The default element indicates the default value supported for a parameter. There are two

types of defaults: factory default and object default.

Possible parent elements include:

 document/model/parameter/syntax (II.8.1)

 document/model/object/parameter/syntax (II.8.1)

Table 72 lists the attributes that are available within the syntax’s default element.

Table 72 – DT syntax default attributes

Attribute Type Use Description

type One of:

 factory

 object

required If factory, the value attribute specifies the

parameter’s default value based on some

standard, e.g. RFC. This applies both to

static parameters as well as parameters that

come about due to object creation.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 211 of 232

If object, the value attribute specifies the

parameter’s default value. This only applies

to parameters that come about due to object

creation.

value xs:string required The value must be valid for the data type.

Table 73 lists the child elements allowed within the syntax’s default element.

Table 73 – DT syntax default sub-elements

Element Multiplicity Description

annotation 0 or 1 The default element’s annotation (II.2).

The following example illustrates support for the syntax of a boolean-valued parameter whose

factory default value is true.

<syntax>

 <boolean/>

 <default type="factory" value="true"/>

</syntax>

The following example illustrates support for the syntax of an unsignedInt-valued parameter

whose object default value is 0. The optional annotation element provides further

explanation about the default value.

<syntax>

 <unsignedInt/>

 <default type="object" value="0">

 <annotation>all bits clear</annotation>

 </default>

</syntax>

Note – Strictly speaking, the data type elements in the above examples are not necessary since they do
not alter what is already defined for the parameter in the DM definition. However, they may be included

in order to provide a clearer picture of what is supported when combined with list and default

elements.

II.9 Built-in Primitive Data Type Elements

The DT Schema comes equipped with a set of built-in primitive data types. These are used

within the syntax element to specify support details for a parameter’s data type defined in a

DM Instance. Use of a primitive type only applies when the defined parameter itself has a

primitive type (i.e. not a named data type).

The specified primitive type must be the same as in the parameter’s DM definition. It is repeated

here in order to indicate (using facets) how the supported data type differs from what was

originally defined for the parameter.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 212 of 232

Possible parent elements include:

 document/model/parameter/syntax (II.8.1)

 document/model/object/parameter/syntax (II.8.1)

For any given parent element, no more than one primitive data type sub-element is allowed (e.g.

a parameter/syntax element can include a boolean sub-element or a string sub-

element, but not both).

Note that some primitive types can be specialized using certain data type facets, as indicated in

the table below.

Table 74 lists the available primitive data type elements and their permitted facets.

Table 74 – DT primitive data type elements

Element Description

base64 Base64 encoded binary (no line-length limitation).

base64 permits zero or more of the following sub-element facets:

 size (Length is that of the actual string, not the base64-encoded string.

See Section A.2.3.3/TR-106); see II.10.1

boolean Boolean, where the allowed values are “true” (or “1”), and “false” (or “0”).

dateTime The subset of the ISO 8601 date-time format defined by the SOAP dateTime

type.

hexBinary Hex encoded binary.

hexBinary permits zero or more of the following sub-element facets:

 size (Length is that of the actual string, not the hexBinary-encoded

string
39

. See Section A.2.3.3/TR-106); see II.10.1

int Integer in the range -2147483648 to +2147483647, inclusive.

int permits zero or more of the following sub-element facets:

 range (II.10.3)

long Long integer in the range –9223372036854775808 to 9223372036854775807,

inclusive.

long permits zero or more of the following sub-element facets:

 range (II.10.3)

string Series of characters.

string permits zero or more of the following sub-element facets:

 size (II.10.1)

39 In other words, it is the length of the actual string in bytes. Since a byte represents 2 hex digits, the length of the

hexBinary-encoded value will be twice as many digits as the specified length.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 213 of 232

 pathRef (II.10.2)

 enumeration (Each enumeration value will be unique within the

string element); see II.10.4

 pattern (Each pattern value will be unique within the string

element); see II.10.5

unsignedInt Unsigned integer in the range 0 to 4294967295, inclusive.

unsignedInt permits zero or more of the following sub-element facets:

 range (II.10.3)

unsignedLong Unsigned long integer in the range 0 to 18446744073709551615, inclusive.

unsignedLong permits zero or more of the following sub-element facets:

 range (II.10.3)

The following example lists all primitive types and their sub-element facets. Note that this is not

a practical example, since these elements would actually appear independently within parameter

syntax.
<base64>

 <size …/>

</base64>

<boolean/>

<dateTime/>

<hexBinary>

 <size …/>

</hexBinary>

<int>

 <range …/>

</int>

<long>

 <range …/>

</long>

<string>

 <size …/>

 <pathRef …/>

 <enumeration …/>

 <pattern …/>

</string>

<unsignedInt>

 <range …/>

</unsignedInt>

<unsignedLong>

 <range …/>

</unsignedLong>

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 214 of 232

II.10 Data Type Facets

Facet elements can be used within a parameter’s data type syntax to specify different aspects of

how the data type is to be supported, such as size, range, etc.

Possible parent elements include:

 document/model/parameter/syntax/dataType (II.8.3)

 document/model/object/parameter/syntax/dataType (II.8.3)

 built-in primitive data types (II.9)

Note that some of the built-in primitive data types support a limited use of facets. This is

discussed in Section II.9.

Table 75 lists the available facet elements. See Section A.2.3.3/TR-106 [3] for details concerning

the definition of DM-based facet types (which may be informative, but note that they do differ

slightly for DT facets as is shown in the sections below).

Note – For any given parent element, zero or more of each facet sub-element is permitted unless

otherwise indicated. The convention is to include only those facet elements that indicate a

change in support as compared to the parameter definition in the DM Instance.

Table 75 – DT data type facet elements

Element Description

size The minimum and maximum length for a string-related type (II.10.1).

Multiple such elements can be used to indicate length ranges.

pathRef Reference to an object or parameter via its path name string (II.10.2).

range The minimum and maximum value for an integer-related type (II.10.3).

Multiple such elements can be used to define disjoint integer ranges.

enumeration Specific value that is valid within a string-related type (II.10.4). Multiple

such elements can be used to define a set of valid values.

pattern Pattern of valid values for a string-related type (II.10.5). Multiple such

elements can be used to specify different patterns within a type definition.

Table 76 lists the child elements allowed within all of the facet elements.

Table 76 – DT facet sub-elements

Element Multiplicity Description

annotation 0 or 1 The facet’s annotation (II.2).

II.10.1 size Element

Size facets, taken together, define the valid size ranges (i.e. string lengths), e.g. (0:0) and (6:6)

mean that the size has to be 0 or 6. The size facet can only be specified for string data types,

i.e. data types that are derived from base64, hexBinary or string.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 215 of 232

Table 77 lists the attributes that are available within a size element. Note that this is a subset of

the attributes defined by a DM size facet (I.13.1).

Table 77 – DT size attributes

Attribute Type Use Description

access One of:

 readOnly

 readWrite

optional The default is readWrite if not specified.

minLength xs:nonNegativeInteger optional The default is 0 if not specified.

maxLength xs:nonNegativeInteger optional The default is 16 when not specified and no

implied maximum exists (see Section

3.2.6/TR-106 [3] for further details).

Note – The access attribute serves no purpose. It should not be used and may be removed in a future

version of the DT Schema.

The following example illustrates support for a string length size between 1 and 255 characters.

<size minLength="1" maxLength="255"/>

II.10.2 pathRef Element

PathRef facets specify how a parameter can reference another parameter or object via a path

name. The pathRef facet can only be specified for data types that are derived from string (i.e.

string and its derived types).

Table 78 lists the attributes that are available within a pathRef element. Note that this is a

subset of the attributes defined by a DM pathRef facet (I.13.3).

Table 78 – DT pathRef attributes

Attribute Type Use Description

targetParent list of Path Names optional An XML list of path names that can

restrict the set of parameters and objects

that can be referenced. The list cannot be

empty. Only the immediate children of

one of the specified objects can be

referenced.

A “{i}” placeholder in a path name acts

as a wild card, and can therefore

reference multiple objects. Path names

cannot contain explicit instance numbers.

Each path name will follow the

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 216 of 232

requirements of Section A.2.3.4/TR-106

(with path name scope specified by the

targetParentScope attribute in the

associated DM Instance facet

definition
40

).

targetType One of:

 any

 parameter

 object

 single

 table

 row

optional Specifies the type of item that can be

referenced by targetParent (see

Section A.2.3.7/TR-106).

any: Either a parameter or an object can

be referenced.

parameter: Only a parameter can be

referenced.

object: Any type of object can be

referenced.

single: Only a single-instance object can

be referenced.

table: Only a multi-instance object

(table) can be referenced.

row: Only a multi-instance object

instance (table row) can be referenced.

The default is any if not specified.

targetDataType One of:

 any

 base64

 boolean

 dateTime

 hexBinary

 integer

 int

 long

 string

 unsignedInt

 unsignedLong

 <named data

type>

optional Specifies the valid data types for a

referenced parameter (see Section

A.2.3.7/TR-106). Is relevant only when

targetType is any or parameter; if the

DT targetType is omitted, then the DM

targetType is considered.

The default is any if not specified.

For named data types, see Section II.4.1.

For primitive data types, see Section II.9.

Note that any and integer are not valid

parameter data types. They are included

in order to support “can reference any

data type” and “can reference any

40 In the absence of a DM targetParentScope, the targetParent path name itself can imply scope (see I.13.3 Table 45).

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 217 of 232

numeric data type”.

The following example illustrates support for a pathRef which can only reference a boolean-

typed parameter.

<pathRef targetType="parameter" targetDataType="boolean"/>

The following example illustrates support for a pathRef which can only reference an object

instance (row) within the Bridge or VLAN tables. Note that the targetParent’s path names

start with a dot and therefore imply that they are relative to the Root (or Service) Object.

<pathRef targetParent=".Bridging.Bridge. .Bridging.Bridge.{i}.VLAN."

 targetType="row"/>

The following example illustrates support for a pathRef which can only reference a row within

the Profile table. Since the targetParent attribute value does not start with “Device” or

“InternetGatewayDevice” or a dot, the target path name is relative to the current object by

default.

<pathRef targetParent="Profile." targetType="row"/>

II.10.3 range Element

Range facets, taken together, define the valid value ranges, e.g. [-1:-1] and [1:4094] mean that

the value has to be -1 or 1:4094 (it cannot be 0). The range facet can only be specified for

numeric data types, i.e. data types that are derived from one of the integer types.

Table 79 lists the attributes that are available within a range element. Note that this is a subset

of the attributes defined by a DM range facet (I.13.4).

Table 79 – DT range attributes

Attribute Type Use Description

access One of:

 readOnly

 readWrite

optional Whether values within the specified range can

be can be written by the ACS.

The default is readWrite if not specified.

minInclusive xs:integer optional Minimum value in the range. If omitted, the

default minimum is the minimum allowed by

the base type.

maxInclusive xs:integer optional Maximum value in the range. If omitted, the

default maximum is the maximum allowed by

the base type.

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 218 of 232

The following example illustrates support for a range where the parameter value can be -1 or

between 1 and 10. Zero is not a valid value. Also, the ACS can only write values between 1 and

10.

<range access="readOnly" minInclusive="-1" maxInclusive="-1">

<range minInclusive="1" maxInclusive="10">

II.10.4 enumeration Element

Enumeration facets, taken together, define the valid values, e.g. "a" and "b" mean that the value

has to be a or b. The enumeration facet can only be specified for data types that are derived

from string. Derived types may add additional enumeration values. As a reference point, see

Section A.2.5/TR-106 for how this is done in DM Instances.

Table 80 lists the attributes that are available within an enumeration element. Note that this is

a subset of the attributes defined by a DM enumeration facet (I.13.5).

Table 80 – DT enumeration attributes

Attribute Type Use Description

access One of:

 readOnly

 readWrite

optional Whether an enumeration value can be written by

the ACS.

The default is readWrite if not specified.

value xs:string required An enumeration value. Duplicate values are not

allowed within the associated parameter.

The following example illustrates support for the set of enumeration values: None, Requested,

Complete, and Error. Each enumeration value is unique to the set. Only the Requested value can

be written by the ACS to the associated parameter.

<enumeration value="None" access="readOnly"/>

<enumeration value="Requested"/>

<enumeration value="Complete" access="readOnly"/>

<enumeration value="Error" access="readOnly"/>

II.10.5 pattern Element

Pattern attributes, taken together, define valid patterns, e.g. "" and "[0-9A-Fa-f]{6}" means that

the value has to be empty or a 6 digit hex string. The pattern facet can only be specified for

data types that are derived from string.

Note – The pattern syntax is the same as for XML Schema regular expressions. See XML Schema Part 2
[12] Appendix F.

Table 81 lists the attributes that are available within a pattern element. Note that this is a

subset of the attributes defined by a DM pattern facet (I.13.7).

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 219 of 232

Table 81 – DT pattern attributes

Attribute Type Use Description

access One of:

 readOnly

 readWrite

optional Whether a parameter value that matches the pattern

value can be written by the ACS.

The default is readWrite if not specified.

value xs:string required Pattern for the data type (a regular expression).

The following example illustrates support for a set of five patterns for some data type or

parameter. The first four patterns are constant values. The last pattern defines a value which

includes an “X”, a space, any six digit hex number, a space, followed by any sequence of

characters.

<pattern value="1 Firmware Upgrade Image">

<pattern value="2 Web Content">

<pattern value="3 Vendor Configuration File">

<pattern value="4 Vendor Log File">

<pattern value="X [0-9A-F]{6} .*">

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 220 of 232

Appendix III – Reference: Device Type Features XML Schema

This appendix provides a user reference for the TR-069 device type features schema (DTF

Schema). The normative version can be found at http://www.broadband-forum.org/cwmp/cwmp-

devicetype-features.xsd.

The DTF Schema consists of a list of feature names that can be used within DT Instance

documents, specifically, within their feature elements (II.3). Each feature specified by a DT

Instance document indicates support for that feature.

Note that DT Instance documents do not need to declare their intent to use DTF feature names.

This is because the DT Schema itself references the DTF Schema in order to incorporate these

feature names directly (i.e. to a DT Instance document, the feature names appear to be part of the

DT Schema).

III.1 Feature Names

The DTF Schema simply defines a list of feature names, which are referenced from the DT

Schema’s feature element (II.3). In this way, the list of possible feature names can be updated

(within the DTF Schema) independent of the DT Schema.

The list of feature names is:

 DNSClient

 DNSServer

 Firewall

 IPv6

 NAT

 Router

 X_<VENDOR>_VenderSpecificName

The last item in the above list indicates that the DTF Schema allows vendors to define their own

feature names. Vendor-specific feature names will begin with X_<VENDOR>_, where

<VENDOR> must be as defined in Section 3.3/TR-106 [3].

The following example snippet illustrates the use of feature names that might appear within a DT

Instance document. Each feature element indicates support for a different named feature.

<feature name="Router"/>

<feature name="IPv6"/>

<feature name="X_ACDC73_VPN"/>

http://www.broadband-forum.org/cwmp/cwmp-devicetype-features.xsd
http://www.broadband-forum.org/cwmp/cwmp-devicetype-features.xsd

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 221 of 232

Appendix IV – Reference: Data Model Report XML Schema

This appendix provides a user reference for the TR-069 Data Model report schema (DMR

Schema). The official version (non-normative) can be found at http://www.broadband-

forum.org/cwmp/cwmp-datamodel-report.xsd.

The DMR Schema consists of a set of attributes that can be used within DM or DT Instance

documents to provide additional information to reporting tools. However, there is no direct

dependency between the DMR Schema and the DM or DT Schemas. Rather, it is up to DM and

DT Instances to declare their intent to use DMR attributes.

Note that the DMR namespace is urn:broadband-forum-org:cwmp:datamodel-report-0-1. The

fact that its namespace includes the version number “0-1” is an unfortunate artifact; updates to

the DMR Schema will not carry a revision number (i.e. the “0-1” is included in the namespace

for backward compatibility only and will not be incremented when the schema is revised).

IV.1 DMR Attributes

The following attributes can be used within DM and DT Instances to provide additional

information to reporting tools. The DMR Schema does not formally stipulate which elements

these attributes can be used with (reporting tools have some latitude), though, some guidance can

be inferred from the attribute descriptions and how these attributes are being used today within

the published CWMP XML Data Models.

Note that these are all optional attributes.

Table 82 – DMR attributes

Attribute Type Description

fixedObject xs:boolean This attribute is meant to be used with an object

element.

It indicates that the object is fixed, and so a report tool

should not (for example) warn about any writable

parameters that the object might contain.

hideDeleted xs:boolean This attribute is meant to be used with elements that

support the status attribute (e.g. object,

parameter, enumeration) and have their status set to

“deleted”.

It indicates that a deleted item should always be hidden in

the report, e.g. not even shown in strikeout.

noUniqueKeys xs:boolean This attribute is meant to be used with an object element

whose maxEntries attribute is greater than 1 (i.e. a

table).

http://www.broadband-forum.org/cwmp/cwmp-datamodel-report.xsd
http://www.broadband-forum.org/cwmp/cwmp-datamodel-report.xsd

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 222 of 232

It indicates that the object has no unique keys (and is not

meant to have unique keys), so a report tool should not (for

example) warn about the lack of unique keys.

previousParameter restricted

xs:NCName

(256)

This attribute is meant to be used with a parameter

element.

Previous parameter hint. It indicates the name of the

existing parameter that should come immediately before

the parameter adorned by this attribute. This is useful when

the desired previous parameter is defined in a different file

from the parameter in question.

Note – The attribute value has the same format as

xs:NCName except that dots are not permitted; i.e. must

start with a letter or “_” and subsequent characters can also

include digits and connector characters such as underscore

and dash.

previousObject restricted

xs:NCName

(256)

This attribute is meant to be used with an object

element. It also makes sense to use it with a referencing

component element (i.e. model/component) if the

component contains an object.

Previous object hint. It indicates the name of the existing

object that should come immediately before the object

adorned by this attribute. This is useful when the desired

previous object is defined in a different file from the object

in question.

Note – Each dot-separated portion of the (overall object

name specified in the) attribute value has the same format

as xs:NCName except that dots are not permitted; i.e. must

start with a letter or “_” and subsequent characters can also

include digits and connector characters such as underscore

and dash.

previousProfile restricted

xs:NCName
This attribute is meant to be used with a profile

element. It also makes sense to use it with a referencing

component element (i.e. model/component) if the

component contains a profile.

Previous profile hint. It indicates the name of the existing

profile that should come immediately before the profile

adorned by this attribute. This is useful when the desired

previous profile is defined in a different file from the

profile in question.

Note – The attribute value is formatted as

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 223 of 232

“<name>:<version>”. The <name> part is the same as

xs:NCName except that dots are not permitted; i.e. must

start with a letter or “_” and subsequent characters can also

include digits and connector characters such as underscore

and dash. The <version> part contains digits only.

version restricted

xs:token

It indicates the desired version number of the item in

question, consisting of a major and minor version.

This attribute can be used with any element for which

versioning makes sense to reporting tools. However, many

elements already have an intrinsic concept of version, so

care should be taken. For example, model and profile

elements specify a version as part of their name; while

object and profile elements already inherit a version

from their parent model element.

Note – The attribute value is formatted as “<major-

version>.<minor-version>”, where the <major-version>

and <minor-version> parts are digits.

Note – The only known use for the version attribute is

in the “flattened” XML, where the original version info is

no longer available.

The following example illustrates the use of the previousParameter attribute within a DM

Instance document. Its value provides a hint to the Report Tool that the IPv4Enable parameter

should follow the (previously defined) Enable parameter within the IP.Interface object.

<object base="Device.IP.Interface.{i}." ...>

 <parameter name="IPv4Enable" access="readWrite"

 dmr:previousParameter="Enable">

 ...

</object>

In this example, previousParameter has an empty value which hints to the Report Tool

that the EnableCWMP parameter should appear in the report as the first parameter under the

ManagementServer object.

<component ...>

 <object base="ManagementServer." ...>

 <parameter name="EnableCWMP" access="readWrite" dmr:previousParameter="">

 ...

 </object>

</component>

In this example, previousProfile hints that the IPInterface:2 profile should follow the

existing IPInterface:1 profile in the report. And under the IPInterface:2 profile,

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 224 of 232

previousParameter hints that the IPv4Enable parameter should follow the existing

IPv4Capable parameter within the IP object.

<profile name="IPInterface:2" base="IPInterface:1"

 dmr:previousProfile="IPInterface:1">

 <object ref="Device.IP." ...>

 <parameter ref="IPv4Enable" requirement="readWrite"

 dmr:previousParameter="IPv4Capable"/>

 ...

 </object>

</profile>

In this example, previousObject hints that the DHCPv6 object should follow the existing

DHCPv4 object in the report.

<object name="Device.DHCPv6." access="readOnly" minEntries="1" maxEntries="1"

 dmr:previousObject="Device.DHCPv4.">

 ...

</object>

In this example, previousObject hints that the objects defined within the referenced

UDPEchoConfig component should follow the existing UploadDiagnostics object in the report.

Similarly, previousProfile hints that the profiles defined within the referenced

UDPEchoConfig component should follow the existing UploadTCP:1 profile.

<component path="Device.IP.Diagnostics." ref="UDPEchoConfig"

 dmr:previousObject="UploadDiagnostics."

 dmr:previousProfile="UploadTCP:1"/>

In this example, noUniqueKeys hints that the Report Tool should not warn that there are no

unique keys defined for DeviceInfo.Processor object table. This is simply a matter of suppressing

the warnings when the report is being generated.

<component ...>

 <object name="DeviceInfo.Processor.{i}." access="readOnly"

 minEntries="0" maxEntries="unbounded"

 numEntriesParameter="ProcessorNumberOfEntries"

 dmr:noUniqueKeys="true">

 ...

 </object>

</component>

In this example, fixedObject hints that the DSL.Line table is fixed. This is useful here

because a DSL line models a physical interface whose instances should always be present in the

associated CPE.

<object name="Device.DSL.Line.{i}." access="readOnly"

 numEntriesParameter="LineNumberOfEntries"

 minEntries="0" maxEntries="unbounded"

 dmr:fixedObject="true">

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 225 of 232

 ...

</object

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 226 of 232

Appendix V – Processing Data Models, Validating and Reporting

This appendix briefly discusses XML tools, validating Data Models, and generating the HTML

reports that are published alongside an XML Data Model.

V.1 XML Schemas and Data Model Definitions

All of the published Broadband Forum Data Models and schema files can be downloaded from

http://www.broadband-forum.org/cwmp.zip.

V.2 XML Editor

Using an XML editor is optional but can be helpful. While any text editor can be used for editing

XML, it is worth obtaining an editor that understands XML syntax and XML Schema. Such an

editor can support context-sensitive editing and will probably have a built-in XML Schema

verifier.

The following are some notable XML editors. These are commercial editors; their inclusion here

should not be taken as an endorsement:

 Altova XMLSpy

 http://www.altova.com/products/xmlspy/xml_editor.html (Windows)

 Oxygen XML Editor

 http://www.oxygenxml.com (Windows, Mac OS X, Linux)

See http://en.wikipedia.org/wiki/Category:XML_editors for further suggestions.

V.3 XML Schema Verifier

Both XMLSpy and Oxygen include XML Schema verifiers. However, it can be useful to have

access to standalone verifiers, e.g. for automated verification in makefiles. Note that the Report

Tool, discussed in Section V.4, can also be run with schema validation enabled.

The following are some standalone XML Schema verifiers. These are free but licensed tools,

available on a variety of operating systems:

 xmllint (part of libxml2)

 http://xmlsoft.org

 xsv (W3C Validator) -

 http://www.w3.org/2001/03/webdata/xsv (online)

 http://www.ltg.ed.ac.uk/~ht/xsv-status.html (tool)

For example, this is how xmllint can be run from the command-line to verify tr-106-1-0-0.xml:

% xmllint --noout --schema cwmp-datamodel-1-0.xsd tr-106-1-0-0.xml

tr-106-1-0-0.xml validates

http://www.broadband-forum.org/cwmp.zip
http://www.altova.com/products/xmlspy/xml_editor.html
http://www.oxygenxml.com/
http://en.wikipedia.org/wiki/Category:XML_editors
http://xmlsoft.org/
http://www.w3.org/2001/03/webdata/xsv
http://www.ltg.ed.ac.uk/~ht/xsv-status.html

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 227 of 232

However, this will not work with some of the newer XML Data Models because they are

associated with more than one schema (e.g. tr-181-1-0-0.xml is associated with a DM Schema

and a DMR Schema). This can be overcome by defining a schema file that combines DM and

DMR Schemas into one XSD file. The following listing illustrates such a cwmp-all-schemas.xsd

file.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:tns="urn:broadband-forum-org:cwmp:all"

 targetNamespace="urn:broadband-forum-org:cwmp:all"

 elementFormDefault="unqualified"

 attributeFormDefault="unqualified">

 <xs:import namespace="urn:broadband-forum-org:cwmp:datamodel-1-0"

 schemaLocation="cwmp-datamodel-1-0.xsd"/>

 <xs:import namespace="urn:broadband-forum-org:cwmp:datamodel-1-1"

 schemaLocation="cwmp-datamodel-1-1.xsd"/>

 <xs:import namespace="urn:broadband-forum-org:cwmp:datamodel-1-2"

 schemaLocation="cwmp-datamodel-1-2.xsd"/>

 <xs:import namespace="urn:broadband-forum-org:cwmp:datamodel-1-3"

 schemaLocation="cwmp-datamodel-1-3.xsd"/>

 <xs:import namespace="urn:broadband-forum-org:cwmp:datamodel-1-4"

 schemaLocation="cwmp-datamodel-1-4.xsd"/>

 <xs:import namespace="urn:broadband-forum-org:cwmp:datamodel-report-0-1"

 schemaLocation="cwmp-datamodel-report.xsd"/>

</xs:schema>

Now xmllint can verify tr-181-1-0-0.xml using cwmp-all-schemas.xsd:

% xmllint --noout --schema cwmp-all-schemas.xsd tr-181-1-0-0.xml

tr-181-1-0-0.xml validates

V.4 BBF Report Tool

The BBF Report Tool is a Perl script that can be used to scan a TR-069 XML Data Model for

errors and generate its reports. Various formats can be generated, but it is most common to

generate HTML Data Model reports.

HTML reports are non-normative, but are published on the Broadband Forum website alongside

their normative XML in order to provide a human readable view. Note that the Report Tool can

also perform schema validation (writing errors to standard error and to the HTML output).

The Report Tool can be downloaded from the UNH XML tools repository, which lives at

https://tr69xmltool.iol.unh.edu/repos/cwmp-xml-tools/Report_Tool/.

V.4.1 Command Line Version

The easiest way to run the Report Tool from the command line is to use its standalone binary

(i.e. report.exe for Windows, or report.darwin for Mac). No need to have Perl installed.

https://tr69xmltool.iol.unh.edu/repos/cwmp-xml-tools/Report_Tool/

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 228 of 232

Alternatively, the Report Tool script (report.pl) can be run with Perl directly, which requires

some additional modules to be installed. In a Unix-like environment you can use the standard

cpan command to do this as follows:

% cpan Algorithm::Diff Clone Config::IniFiles File::Compare URI::Escape XML::LibXML

If you want to use cpan under Windows to retrieve the additional modules, Strawberry Perl

(http://strawberryperl.com) is the recommended free Perl engine. After installing Strawberry Perl

on Windows, simply perform the cpan command listed above.

The Report Tool supports many options, e.g. to control the report format, to highlight the

differences between two files, or to request more pedantic warnings. The list of options is

described at https://tr69xmltool.iol.unh.edu/repos/cwmp-xml-tools/Report_Tool/README.txt.

Alternatively, you can run the Report Tool with the --help option to output an explanation of all

of the options:

% report.pl --help

Only a few of these options are needed to generate the HTML reports that are published. The

most common options are --include, --pedantic, and --report=html. For example, the following

commands could be used to generate the HTML reports for TR-181 Issue 2 Amendment 1 (i.e.

tr-181-2-1-0.html and tr-181-2-1-0-last.html).

% report.exe --report=html --include=cwmp --showreadonly --warnbibref

--pedantic tr-181-2-1-0.xml > tr-181-2-1-0.html

% report.exe --report=html --include=cwmp --showreadonly --warnbibref

--pedantic –-lastonly tr-181-2-1-0.xml > tr-181-2-1-0-last.html

The options that are used above are as follows:

 --report=html : generates an HTML report (to standard output) that is intended to be as

similar as possible to the old Word tables, but with the added benefits of a table of

contents and hyperlinks. By default, i.e. if the --report option is omitted, no report is

generated, and the Report Tool just reads the XML files and checks for errors. Other

report types include tab, text, xls, xml, and xsd.

 --include=d… : can be specified multiple times; specifies directories to search for files

specified on the command line or included from other files; the current directory is

always searched first. No search is performed for files that already include directory

names.

Note: in the example above, the published Broadband Forum XML/XSD files (see V.1)

have been placed in the “cwmp” directory. If all required files were placed together in the

current directory, this option would not be necessary.

 --showreadonly : shows read-only enumeration and pattern values as READONLY.

 --warnbibref : enables bibliographic reference warnings. Can give the option a value to

indicate the level of warnings; the higher the level the more warnings (--warnbibref is the

same as --warnbibref=1).

http://strawberryperl.com/
https://tr69xmltool.iol.unh.edu/repos/cwmp-xml-tools/Report_Tool/README.txt

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 229 of 232

 --pedantic : outputs warnings (to standard error) when logical inconsistencies in the XML

are detected. This option also enables XML Schema validation of DM Instances. Can

give the option a value to indicate the level of pedantic; the higher the level the more

pedantic (--pedantic is the same as --pedantic=1).

 --lastonly : reports only on items that were defined or modified in the last (in this case

only) XML file on the command line. This is useful when you want only to see the

changes that the last file made.

During the development of a draft Data Model, it can be helpful to create a report that indicates

what changed since the previous version of the Data Model. The following example generates an

HTML report that includes change marks, highlighting changes between draft tr-181-2-4-0.xml

and tr-181-2-3-0.xml (the previous version of the Data Model).

% report.exe --report=html --include=cwmp --showreadonly --warnbibref

--pedantic --lastonly --showdiffs tr-181-2-4-0.xml > tr-181-2-3-0-last.html

The additional options that are used above are as follows:

 --showdiffs : affects only the text and html reports; visually indicates the differences

resulting from the last XML file on the command line. For the html report, insertions are

shown in blue and deletions are shown in red strikeout.

Note that when the Report Tool runs, it will output messages indicating its progress. These

include errors, warnings, and general information. Error lines are prefixed with an (E), warning

lines are prefixed with a (W), and informational lines are prefixed with an (I).

% report.pl --report=xml --include=cwmp tr-181-2-2-0.xml > tr-181-2-2-0-full.xml

(I) urn:broadband-forum-org:tr-143-1-0-2: 41

(I) urn:broadband-forum-org:tr-157-1-0-0: 230

(I) urn:broadband-forum-org:tr-157-1-1-0: 5

(I) urn:broadband-forum-org:tr-157-1-2-0: 9

(I) urn:broadband-forum-org:tr-157-1-3-0: 76

(I) urn:broadband-forum-org:tr-181-2-0-1: 1718

(I) urn:broadband-forum-org:tr-181-2-1-0: 1

In the above example, the URNs and numbers (in the information output lines) indicate where

the various objects and parameters were originally defined. Also note that this example is using

the report=xml report type; this will produce a consolidated XML report (i.e. generate a

single XML file that combines tr-181-2-2-0.xml, with all of its supporting XML files, into one

document).

V.4.2 GUI Version

A graphical frontend to the Report Tool is also available for Windows
41

. An executable installer

(ReportGuiSetup.exe) can be downloaded from https://tr69xmltool.iol.unh.edu/repos/cwmp-xml-

tools/ReportGui/. The installer includes the report.exe and a client GUI.

41 XP, Vista, and Windows 7

https://tr69xmltool.iol.unh.edu/repos/cwmp-xml-tools/ReportGui/
https://tr69xmltool.iol.unh.edu/repos/cwmp-xml-tools/ReportGui/

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 230 of 232

The GUI has a “standard report function” tab (where you simply select the type of report you

want without the confusion of selecting specific report options) and an “expert report functions”

tab (where you can select from a canned set of report options, or even manually type in any

report option).

Creating a report is as simple as selecting which XML Data Model file to use, selecting the

desired options (either in the standard or expert tab), and then selecting the generate button.

Additional information about the report GUI and its options can be found online at

https://tr69xmltool.iol.unh.edu/wiki/ReportGUI.

V.5 Published BBF Data Model Reports

Each DM Data Model will have the following reports published on the Broadband Forum

website alongside their normative XML:

 HTML Full – Represents an entire Data Model (e.g. if reporting on the Device:2.3 XML,

the HTML report file will include this and all previous revisions of the Device:2 Data

Model).

To generate this report, the Report Tool must be run with the following options:
--report=html

 HTML Diff – Represents the latest revision of a Data Model (e.g. if reporting on the

Device:2.3 XML, the HTML report file will only include the changes defined in that

revision and will exclude unrelated definitions from all previous revisions of the Device:2

Data Model).

To generate this report, the Report Tool must be run with the following options:
--report=html --lastonly

 XML Full – Aggregates the group of XML files that together define a given Data Model,

and flattens them into one XML file. This XML format is easier for vendors to work

with.

To generate this report, the Report Tool must be run with the following options:
--report=xml

See Section V.4 for additional information on generating reports with the Report Tool.

https://tr69xmltool.iol.unh.edu/wiki/ReportGUI

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 231 of 232

Index

A

annotation, DT, 139, 197
Anonymous Data Type, 83, 85, 172, 173, 180, 209, 210

B

Base Type Restriction, 60, 85, 102
Baseline Profiles, 33, 110, 111
bibliography, 54, 155

Citing, 56
reference, 55, 56, 156

bibliography, DT, 123, 200
reference, 201

C

Central Bibliography File, 21, 54, 56
Central Data Types File, 21, 58, 62, 124
Comma-Separated List. See parameter / list
component, 103, 157

Importing, 106
Referencing (including), 104, 106, 107, 158
Updating, 106, 108

D

Data Model, 16, 19, 21, 54, 122, 226
Updates, 36, 47, 67, 78, 80, 100, 102, 111
Versioning, 20

Data Type Facets, 84, 134, 182, 214
dataType, 58, 59, 154
description, 114, 142

Character Set, 114
Updating, 116
Whitespace, 117, 143

DM Schema, 16, 24, 141
document, 24, 141

file, 25, 141
spec, 24, 67, 68, 141

document, DT, 196
DT Schema, 16, 196

E

Enable Parameter, 30, 75

F

feature, DT, 140, 197, 220

I

import, 61, 151
bibliography, 32, 61, 62
component, 63, 152

underscore prefix, 65, 107
dataType, 62, 152
model, 62, 152

import, DT, 124, 198
bibliography, 124
dataType, 124, 199
model, 125, 199

M

Markup, 118, 139, 144
model, 66, 159

component, 105
Errata, 68
Updating, 67
Versioning, 66, 68

model, DT, 127, 202

N

Named Data Types, 83, 171, See dataType
Normal Path Name Scope, 94, 95, 97, 99
NumberOfEntries Parameter, 29, 30, 73, 76, 89

O

object, 70, 161
enableParameter, 30, 74, 75, 76, 78, 163
Hierarchy, 70
Multi Instance, 72

Fixed Sized, 76
Variable Sized, 73, 74, 89

numEntriesParameter, 29, 30, 73, 76, 89, 163
Single Instance, 70

1 of n, 71
uniqueKey, 76, 165
Updating, 78

object, DT, 129, 203
Multi Instance, 129
Single Instance, 129

P

parameter, 81, 166
activeNotify, 88
command, 90
dataType, 83, 171
default, 87, 173

TR-069 Data Model XML User Guide TR-154 Issue 1

March 2012 © The Broadband Forum. All rights reserved 232 of 232

forcedInform, 88
hidden, 89
list, 91, 170

enumeration, 92
Fixed Size, 93
Variable Size, 91, 92

syntax, 168
Updating, 100

parameter, DT, 132, 205
dataType, 209
default, 135, 210
list, 136, 207
pathRef, 137
syntax, 133, 206

Path Name, 16, 70, 71, 72, 94
Primitive Data Types, 82, 180, 211
profile, 110, 174

Extending, 112
object, 177
parameter, 178
Updating, 111

R

Reference Parameter, 93
enumerationRef, 93, 98, 192
instanceRef, 93, 97, 184
pathRef, 93, 94, 97, 186
pathRef list, 96

Relative Path Name, 94, 95, 96, 98, 99
Report Tool, 16, 55, 56, 69, 117, 118, 143, 144, 145, 221,

227
GUI, 229
Reports, 228, 230

Root Data Model. See model
Defining, 27
Updating, 35

S

Service Data Model. See model
Defining, 41
Updating, 46

status (deprecate, obsolete, delete), 80, 102, 112, 120
Supported Data Model, 122, 127, 128

T

Templates, 17, 28, 118, 139, 145

U

User Guide Conventions, 13

V

Vendor-Specific Data Model, 52, 53, 54, 125

X

XML
Attribute, 13
Catalog, 24, 25
Element, 13
File Names, 19, 25, 141
Published Files, 21
Root Element, 24, 141, 196

End of Broadband Forum Technical Report TR-154

	Executive Summary
	1 Purpose and Scope
	1.1 Purpose
	1.2 Scope

	2 References and Terminology
	2.1 Conventions
	2.2 References
	2.3 Definitions
	2.4 Abbreviations

	3 Technical Report Impact
	3.1 Energy Efficiency
	3.2 IPv6
	3.3 Security
	3.4 Privacy

	4 Introduction to Defining CWMP Data Models Using XML
	4.1 Naming Convention for DM XML Data Model Files
	4.2 Natural Progression of DM Data Models
	4.3 Survey of Existing XML/XSD Files

	5 DM XML Data Model Basics
	5.1 Root Element
	5.2 XML Catalog
	5.3 Defining Root Data Models
	5.3.1 Key Points – New Root Data Model
	5.3.2 Basic Walkthrough – Defining a New Root Data Model
	5.3.3 Key Points – Amended Root Data Model
	5.3.4 Basic Walkthrough – Defining an Amendment to a Root Data Model

	5.4 Defining Service Data Models
	5.4.1 Key Points – New Service Data Model
	5.4.2 Basic Walkthrough – Defining a New Service Data Model
	5.4.3 Key Points – Amended Service Data Model
	5.4.4 Basic Walkthrough – Defining an Amendment to a Service Data Model

	5.5 Defining Vendor-Specific Data Models
	5.5.1 Defining a Vendor-Specific Extension to a Standard Data Model
	5.5.2 Defining a Vendor-Specific Service Data Model

	6 DM XML Data Model Tutorials
	6.1 Bibliography
	6.1.1 Adding Reusable Bibliography Reference Elements
	6.1.2 Adding Data-Model Specific Bibliography Reference Elements
	6.1.3 Citing a Bibliographic Reference

	6.2 Named Data Types
	6.2.1 Define a Basic Named Data Type
	6.2.2 Define a Derived Named Data Type

	6.3 Import
	6.3.1 Import a Named Data Type
	6.3.2 Import a Data Model
	6.3.3 Import a Component

	6.4 Model
	6.4.1 Define a New Data Model
	6.4.2 Extend an Existing Data Model
	6.4.3 Fixing Errata in an Existing Data Model

	6.5 Object (definition)
	6.5.1 Defining a Single-Instance Object
	6.5.2 Defining a Multi-Instance Object (table)
	6.5.2.1 Variable-Sized Read-Only Table
	6.5.2.2 Variable-Sized Writable Table (ACS Managed)
	6.5.2.3 Fixed-Sized Table
	6.5.2.4 Unique Key for a Table

	6.5.3 Updating an Existing Object Definition

	6.6 Parameter (definition)
	6.6.1 Defining a Parameter (The Basics)
	6.6.1.1 Syntax Using a Built-In Primitive Data Type
	6.6.1.2 Syntax Using a Named Data Type
	6.6.1.3 Refining a Data Type Using Facets
	6.6.1.4 Default Value
	6.6.1.5 Active Notify and Forced Inform

	6.6.2 Number-of-Entries Parameter
	6.6.3 Hidden-Valued Parameter
	6.6.4 Command Parameter
	6.6.5 List-Valued Parameter
	6.6.6 Reference Parameter
	6.6.6.1 Path-Reference Parameter
	6.6.6.2 Instance-Reference Parameter
	6.6.6.3 Enumeration-Reference Parameter

	6.6.7 Updating an Existing Parameter Definition

	6.7 Component
	6.7.1 Defining and Using a Component
	6.7.2 Importing and Using a Component
	6.7.3 Updating an Existing Component

	6.8 Profile
	6.8.1 Defining a New Profile
	6.8.2 Updating an Existing Profile
	6.8.3 Defining a New Profile by Extension

	6.9 Description
	6.9.1 Defining a Description
	6.9.2 Updating an Existing Description
	6.9.3 Laying Out Descriptions
	6.9.3.1 Whitespace Pre-processing
	6.9.3.2 Markup

	6.10 Status: Deprecate, Obsolete, Delete

	7 DT XML Data Model Tutorials
	7.1 Bibliography
	7.2 Import
	7.2.1 Import a Named Data Type
	7.2.2 Import a Data Model

	7.3 Model
	7.3.1 Supporting One DM Model
	7.3.2 Supporting Multiple DM Models

	7.4 Object
	7.4.1 Supporting Single-Instance Objects
	7.4.2 Supporting Multi-Instance Objects

	7.5 Parameter
	7.5.1 Supporting Parameters (The Basics)
	7.5.1.1 Supported Syntax and its Data Type
	7.5.1.2 Supported Data Type Using Facets
	7.5.1.3 Default Value

	7.5.2 List-Valued Parameter
	7.5.3 Path-Reference Parameter

	7.6 Annotation
	7.7 Feature

	Appendix I – Reference: Data Model XML Schema
	I.1 document Element
	I.2 description Element
	I.2.1 Whitespace Pre-processing
	I.2.2 Markup
	I.2.3 Templates
	I.3 import Element
	I.3.1 import Sub-elements
	I.4 dataType Element (definition)
	I.5 bibliography Element
	I.5.1 Bibliography reference Element
	I.6 component Element (definition)
	I.7 component Element (reference)
	I.8 model Element
	I.9 object Element (definition)
	I.9.1 Object uniqueKey Element
	I.10 parameter Element (definition)
	I.10.1 Parameter syntax Element
	I.10.2 Syntax list Element
	I.10.3 Syntax dataType Element (reference)
	I.10.4 Syntax default Element
	I.11 profile Element
	I.11.1 Profile object Element (reference)
	I.11.2 Profile parameter Element (reference)
	I.12 Built-in Primitive Data Type Elements
	I.13 Data Type Facets
	I.13.1 size Element
	I.13.2 instanceRef Element
	I.13.3 pathRef Element
	I.13.4 range Element
	I.13.5 enumeration Element
	I.13.6 enumerationRef Element
	I.13.7 pattern Element
	I.13.8 units Element

	Appendix II – Reference: Device Type XML Schema
	II.1 document Element
	II.2 annotation Element
	II.3 feature Element
	II.4 import Element
	II.4.1 import Sub-elements
	II.5 bibliography Element
	II.5.1 Bibliography reference Element
	II.6 model Element
	II.7 object Element
	II.8 parameter Element
	II.8.1 Parameter syntax Element
	II.8.2 Syntax list Element
	II.8.3 Syntax dataType Element
	II.8.4 Syntax default Element
	II.9 Built-in Primitive Data Type Elements
	II.10 Data Type Facets
	II.10.1 size Element
	II.10.2 pathRef Element
	II.10.3 range Element
	II.10.4 enumeration Element
	II.10.5 pattern Element

	Appendix III – Reference: Device Type Features XML Schema
	III.1 Feature Names

	Appendix IV – Reference: Data Model Report XML Schema
	IV.1 DMR Attributes

	Appendix V – Processing Data Models, Validating and Reporting
	Appendix V
	V.1 XML Schemas and Data Model Definitions
	V.2 XML Editor
	V.3 XML Schema Verifier
	V.4 BBF Report Tool
	V.4.1 Command Line Version
	V.4.2 GUI Version
	V.5 Published BBF Data Model Reports

	Index

