

TR-114 VDSL2 Performance Test Plan

Issue: 3 Amendment 3
Issue Date: November 2019

Notice

The Broadband Forum is a non-profit corporation organized to create guidelines for broadband network system development and deployment. This Technical Report has been approved by members of the Forum. This Technical Report is subject to change. This Technical Report is copyrighted by the Broadband Forum, and all rights are reserved. Portions of this Technical Report may be copyrighted by Broadband Forum members.

Intellectual Property

Recipients of this Technical Report are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property rights of which they may be aware that might be infringed by any implementation of this Technical Report, or use of any software code normatively referenced in this Technical Report, and to provide supporting documentation.

Terms of Use

1. License

Broadband Forum hereby grants you the right, without charge, on a perpetual, non-exclusive and worldwide basis, to utilize the Technical Report for the purpose of developing, making, having made, using, marketing, importing, offering to sell or license, and selling or licensing, and to otherwise distribute, products complying with the Technical Report, in all cases subject to the conditions set forth in this notice and any relevant patent and other intellectual property rights of third parties (which may include members of Broadband Forum). This license grant does not include the right to sublicense, modify or create derivative works based upon the Technical Report except to the extent this Technical Report includes text implementable in computer code, in which case your right under this License to create and modify derivative works is limited to modifying and creating derivative works of such code. For the avoidance of doubt, except as qualified by the preceding sentence, products implementing this Technical Report are not deemed to be derivative works of the Technical Report.

2. NO WARRANTIES

THIS TECHNICAL REPORT IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NONINFRINGEMENT IS EXPRESSLY DISCLAIMED. ANY USE OF THIS TECHNICAL REPORT SHALL BE MADE ENTIRELY AT THE IMPLEMENTER'S OWN RISK, AND NEITHER THE BROADBAND FORUM, NOR ANY OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE USE OF THIS TECHNICAL REPORT.

3. THIRD PARTY RIGHTS

Without limiting the generality of Section 2 above, BROADBAND FORUM ASSUMES NO RESPONSIBILITY TO COMPILE, CONFIRM, UPDATE OR MAKE PUBLIC ANY THIRD PARTY ASSERTIONS OF PATENT OR OTHER INTELLECTUAL PROPERTY RIGHTS THAT MIGHT NOW OR IN THE FUTURE BE INFRINGED BY AN IMPLEMENTATION OF THE TECHNICAL REPORT IN ITS CURRENT, OR IN ANY FUTURE FORM. IF ANY SUCH RIGHTS ARE DESCRIBED ON THE TECHNICAL REPORT, BROADBAND FORUM TAKES NO POSITION AS TO THE VALIDITY OR

INVALIDITY OF SUCH ASSERTIONS, OR THAT ALL SUCH ASSERTIONS THAT HAVE OR MAY BE MADE ARE SO LISTED.

The text of this notice must be included in all copies of this Technical Report.

Issue History

Issue Number	Approval Date	Publication Date	Issue Editor	Changes
1	November	November 2009	Arlynn Wilson,	Original
	2009		ADTRAN	
2	26 November	17 December	Aleksandra Kozarev,	See
	2012	2012	Lantiq	Executive
				Summary
3	13 March 2017	1 May 2017	Aleksandra Kozarev,	See
			Intel	Executive
				Summary
3 Amendment 1	8 May 2017	9 June 2017	Aleksandra Kozarev,	See
			Intel	Executive
				Summary
3 Amendment 2	16 March 2018	10 May 2018	Aleksandra Kozarev,	See
			Intel	Executive
				Summary
3 Amendment 4	13 June 2018	8 August 2018	Aleksandra Kozarev,	See
			Intel	Executive
				Summary
3 Amendment 3	26 November	26 November	Aleksandra Kozarev,	See
	2019	2019	Intel	Executive
			Herman Verbueken,	Summary
			Nokia	

Comments or questions about this Broadband Forum Technical Report should be directed to info@broadband-forum.org.

Editor	Aleksandra Kozarev	Intel
	Herman Verbueken	Nokia
Physical Layer	Herman Verbueken	Nokia
Transmission Work Area Directors	Dong Wei	

Table of Contents

E	xecu	tive Summary	6
1	P	Purpose and Scope	7
	1.1 1.2	PURPOSESCOPE	7
2	R	References and Terminology	8
	2.1 2.2 2.3 2.4	Conventions	8 9
3	T	echnical Report Impact	.10
	3.1 3.2 3.3	ENERGY EFFICIENCY	10
4	N	Noise Models for Annex L testing	.11
5	A	Annex L VDSL2 Long Reach Test Cases	.12
6	S	summary of Profile and Line Combinations for Annex L	.20
7	C	Crosstalk impairment for Annex L tests	.21

List of Tables

Table 19.1:	: Noise model for Annex L testing	12
Table L.1	- Annex L test configurations	12
Table L.2	– Noise margin pass/fail requirements	
Table L.3	– Data rate pass/fail requirements for rate adaptive testing	
Table L.4	- Long term stability test procedure	
Table L.5	- Profile-line combination for BA17ade LR	14
Table L.6	- Performance tests with BA17ade LR	15
Table L.7	- Common Line Settings for BA17ade LR36 D&UPBO Band Profile	15
Table L.8	- Common Line Settings for BA17ade LR72 D&UPBO Band Profile	16
Table L.9	- Profile-line combinations for BA17ade LRx D&UPBO	17
Table L.10	- Noise model n BA17ade LRx D&UPBO	17
Table L.11	- kl ₀ for calculation of the single self-disturber PSD for BA17ade LRx D&UPBO	18
Table L.12	- Performance tests with BA17ade LR36 D&UPBO	19
Table L.13	- Performance tests with BA17ade LR72 D&UPBO	
Table 185:	Noise model for Annex L testing	20
	\boldsymbol{c}	- 70

Executive Summary

See Executive Summary/TR-114 Issue 3.

This amendment to TR-114 Issue 3 defines in Annex L performance requirements for systems operating as VDSL2 Long Reach (VDSL2-LR) with vectored operation disabled, according to Annex D of ITU-T G.993.2 (2019) [2].

1 Purpose and Scope

1.1 Purpose

See Purpose/TR-114 Issue 3.

1.2 Scope

See Scope/TR-114 Issue 3.

This amendment to TR-114 Issue 3 defines in Annex L performance requirements for systems operating as Long Reach VDSL2 (VDSL2-LR) with vectored operation disabled, according to Annex D of ITU-T G.993.2 (2019)[2].

2 References and Terminology

2.1 Conventions

In this Technical Report, several words are used to signify the requirements of the specification. These words are always capitalized. More information can be found be in RFC 2119 [3].

SHALL	This word, or the term "REQUIRED", means that the definition is an absolute requirement of the specification.
SHALL NOT	This phrase means that the definition is an absolute prohibition of the specification.
SHOULD	This word, or the adjective "RECOMMENDED", means that there could exist valid reasons in particular circumstances to ignore this item, but the full implications need to be understood and carefully weighed before choosing a different course.
SHOULD NOT	This phrase, or the phrase "NOT RECOMMENDED" means that there could exist valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full implications need to be understood and the case carefully weighed before implementing any behavior described with this label.
MAY	This word, or the adjective "OPTIONAL", means that this item is one of an allowed set of alternatives. An implementation that does not include this option SHALL be prepared to inter-operate with another implementation that does include the option.

2.2 References

The following references are of relevance to this Technical Report. At the time of publication, the editions indicated were valid. All references are subject to revision; users of this Technical Report are therefore encouraged to investigate the possibility of applying the most recent edition of the references listed below.

A list of currently valid Broadband Forum Technical Reports is published at www.broadband-forum.org.

See References/TR-114 Issue3[1].

Doc	cument	Title	Source	Year
[1]	TR-114 Issue 3	VDSL2 Performance Test Plan	BBF	2017
[2]	<u>G.993.2</u>	Very high speed subscriber line transceivers 2 (VDSL2)	ITU-T	2019
[3]	RFC 2119	Key words for use in RFCs to Indicate Requirement	IETF	1997
Nov	ember 2019	© Broadband Forum. All rights reserved.		8 of 21

Levels

2.3 Definitions

See Definitions/TR-114 Issue 3[1].

2.4 Abbreviations

See Abbreviations/TR-114 Issue 3[1].

3 Technical Report Impact

3.1 Energy Efficiency

TR-114 has no impact on Energy Efficiency.

3.2 Security

TR-114 has no impact on Security.

3.3 Privacy

Any issues regarding privacy are not affected by TR-114.

4 Noise Models for Annex L testing

Add new section 6.3.3.4 on Noise Models for Annex L testing.

6.3.3.4 Noise Models for Annex L testing

Noise models for Annex L testing of Long Reach VDSL2 over POTS consist of purely self crosstalk. The noise model defined in Table 19.1 represents three scenarios where the SUT is deployed:

- from the local exchange
- from a cabinet located at 36dB attenutation (at 1MHz) from the local exchange
- from a cabinet located at 72dB attenutation (at 1MHz) from the local exchange;

Noise models for the band-profiles with the activated DPBO and UPBO are defined in appropriate performance sections.

Table 19.1: Noise model for Annex L testing

Noise model	Band-profile	ETSI noise scenario	Number of self disturbers	Alien noise disturber frequency profiles
n_BA17ade_LR	BA17ade	N/A	19	N/A

5 Annex L VDSL2 Long Reach Test Cases

Add new Annex on Physical Layer Test Cases for long reach VDSL2 (VDSL2-LR).

L Annex L Physical Layer Test Cases for VDSL2 Long Reach (VDSL2-LR)

L.1 Annex L-specific Test Setup Information

Test configurations associated with the VDSL2 Long Reach over POTS (VDSL2-LRoPOTS) deployments are defined in Table L.1.

Table L.1 – Annex L test configurations

Type of VDSL2 deployment	Band-profile	Test configuration
VDSL2-LR	BA17ade_LR	Figure 1
	BA17ade_LR36 _D&UPBO	
	BA17ade_LR72 _D&UPBO	

The specific SUT's settings as defined in in section 6.2 SHALL be used.

L.1.1 Pass/fail criteria for Annex L testing

Tests SHALL be performed according to the general procedure described in section 8. Testing is defaulted to no PBO unless specified in specific test procedure.

- For sections with more than 3 test loops, if more than 10% of the data rates are less than the data rate requirements in a section, then the DSLAM/CPE pair fails the data rate requirements of that section.
- For sections with less than 4 test loops, the data rate requirement is indicated per table.

In addition to achieving the required rate, both downstream and upstream noise margin values are to be considered in determining the result of an individual section. It is acknowledged that achieving a desired noise margin is primarily the responsibility of the receiver. That is, the DSLAM is primarily responsible for achieving desired upstream noise margins, while the CPE is primarily responsible for achieving desired downstream noise margins. Table L.2 outlines the pass/fail criteria on the reported noise margin.

Table L.2 – Noise margin pass/fail requirements

Reported Noise Margin (dB)	Requirement	
< 5	On no test point	
\geq 5 and $<$ 5.8	On at most 10% of the test points	
≥ 5.8	On at least 90% of the test points	

All values SHALL be collected at the DSLAM.

Overall pass/fail criteria for each rate adaptive test are as follows:

- If any reported noise margin is less than 5 dB, then the DSLAM/CPE pair fails the noise margin requirements of that section.
- If more than 10% of the reported noise margins are less than 5.8 dB in a section, then the DSLAM/CPE pair fails the noise margin requirements of that section.
- If more than 10% of the data rates are less than the data rate requirements in a section, then the DSLAM/CPE pair fails the data rate requirements of that section.
- If the DSLAM/CPE pair passes both the data rate and noise margin requirements, it passes the section; otherwise, it fails the section.

Table L.3 lists the number of test points per section or table corresponding to the 10% limit mentioned above.

Table L.3 – Data rate pass/fail requirements for rate adaptive testing

Section number	Number of test cases	10% limit
L.3	18	2
L.4	36	4

L.1.2 Noise impairments

The noise is specified in TS 101 271 [7] and includes the crosstalk noise and the white noise (NEXT noise generator G1, FEXT noise generator G2 and the white noise generator G4).

Noise generators G1 and G2 are injected on loop lengths shorter than 2400m and one side at a time. On all loop lengths, noise generator G2 SHALL be reduced by 25dB.

The white noise generator G4 SHALL be set to -140dBm/Hz at both ends of the loop.

L.1.2.1 Crosstalk Impairment G1 and G2

See section B.1.2.1.

L.2 Long Term Stability Testing for Annex L

This test applies only to VDSL2 modems that support the PTM-TC functionality.

L.2.1 Long Term Stability Test

Table L.4 – Long term stability test procedure

Test Configuration	(1)Depending on the band-profile under test, select the appropriate profile-line combination and either the PE04 or TP100 loop length from the below table:					
	Band-profile Loop Length (m, PE04) (m, TP100)					
	BA17ade LR RA R-17/2/41 150 150	3000	4200			
	BA17ade_LR36_D&UPBO_RA_R- 17/2/41_150_150	3000	4200			
	BA17ade_LR72_D&UPBO_RA_R- 17/2/41_150_150	3000	4200			
	 (2) Configure the SUT for PTM transport. (3) The following parameters SHALL be indicated as follows: TARSNMRds = 3 dB MAXSNRMds = 18 dB 					
	• packet size: 1500 bytes (4) The loop simulator SHALL be configured to the value chosen above.					
Method of	(5) Inject -140 dBm/Hz white noise at both ends of the loop.(1) Train the CPE with the DSLAM.					
Procedure	(2) Wait for 1 minute after initialization.					
110000	(3) Check the reported margin and document as the initial reported margin.					
	(4) Adjust the noise level at the CPE side until the reported CPE-side margin is approximately 9 dB.					
	(5) Configure the traffic generator/analyzer to provide MAC frames, both upstream and downstream, at 85% of the net data rate.					
	(6) Run for four hours with constant		+ CHAII ba			
	(7) If there are more than 2 ES, then the measurement SHALL be extended for up to an additional four-hour period (for a maximum of 8 hours).					
Expected	(1) The customer end modem SHAI	LL NOT lose syn	chronization at any			
Result	time during the test.	,	J			
	(2) If during any 4 hour sliding wind SES then the CPE passes the test		ver than 3 ES and no			

L.3 Rate adaptive performance tests for Long Reach VDSL2 without DPBO and UPBO

The tests with retransmission-enabled profiles are designed to be passed by implementations with a MAXDELAYOCTET-split parameter (MDOSPLIT) set to 80%.

Table L.5 provides the profile-line combination that SHALL be configured on the equipment under test:

Table L.5 – Profile-line combination for BA17ade LR

Tuble Ele Trome ime combination for Billyauc_Ele			
Profile number	Profile-line combination	Band-profile	Specific line-setting
1	BA17ade_LR_RA_R-17/2/41_150_150	BA17ade_LR	RA_R- 17/2/41_150_150
2	BA17ade_LR_RA_I-8/2_150_150	BA17ade_LR	RA_I-8/2_150_150

For the loops 150m upto 4050m in Table L.6 the profile number 1 from Table L.5 SHALL be used. For the loop 5100m in Table L.6 the profile number 2 from Table L.5 SHALL be used.

18 individual tests – 16 tests SHALL be passed

Table L.6 – Performance tests with BA17ade LR

	BA17ade_LR							
	I	Downst	ream	Upstream				
ngth loop)		Actual net data rate (kbps)		in, IB)	Actual net data rate (kbps)			in, IB)
Loop Length (m, PE04 loop)	Expected	Measured	Pass/Fail	Noise Margin, Reported (dB)	Expected	Measured	Pass/Fail	Noise Margin, Reported (dB)
150	109200				41400			
600	54200				18800			
1200	22600				1000			
1800	13300				700			
2400	9900				800			
3000	6400				800			
3600	3900				600			
4050	2700				500			
5100	900				400			

L.4 Rate adaptive performance tests for Long reach VDSL2 with DPBO and UPBO

The tests with retransmission-enabled profiles are designed to be passed by implementations with a MAXDELAYOCTET-split parameter (MDOSPLIT) set to 80%.

The basic BA17ade Band Profile SHALL be applied with the following modifications to the "Common Line Settings" specified in Table L.7 and Table L.8 to define the two shaped-PSD Band Profiles BA17ade_LRx_D&UPBO.

Table L.7 – Common Line Settings for BA17ade LR36 D&UPBO Band Profile

Parameter	Setting	Description
All parameters but	Value as specified in	
those specified below	Table 7 [1]	
DPBOEPSD	ADSL2plus Annex A	PSD mask that is assumed to be
DEBOEFSD	ADSL2plus Allilex A	permitted at the exchange
DPBOESEL	36 dB	E-side electrical length
		Model of the frequency dependent loss
DPBOESCMA	0.1719	of E-side cable: scalars DPBOESCMA
		(NOTE)

DPBOESCMB	0.644453	Model of the frequency dependent loss of E-side cable: scalars DPBOESCMB (NOTE)				
DPBOESCMC	0.18359	Model of the frequency dependent loss of E-side cable: scalars DPBOESCMC (NOTE)				
DPBOMUS	- 101.5 dBm/Hz	Minimum usable receive signal PSD mask				
DPBOFMIN	138 kHz	Minimum frequency from which on the DPBO SHALL be applied				
DPBOFMAX	2208 kHz	Maximum frequency up to which the DPBO SHALL be applied				
UPBOKLF	0	Force CO-MIB electrical loop length (means that kl ₀ is estimated during training)				
UPBOKL	estimated during training	Upstream electrical loop length (kl ₀)				
UPBOA US0	40	A and B values US band 0 (these				
UPBOB US0	0	values imply no UPBO)				
UPBOA US1	60	A value US band 1				
UPBOB US1	21	B value US band 1				
UPBOA US2	60	A value US band 2				
UPBOB US2	8	B value US band 2				
NOTE: the values of DPBOESCMA, B and C are referred to a PE04 loop. Values that are						

NOTE: the values of DPBOESCMA, B and C are referred to a PE04 loop. Values that are configured according to G.997.1 SHALL be rounded to the nearest scalar value.

Table L.8 – Common Line Settings for BA17ade_LR72_D&UPBO Band Profile

Parameter	Setting	Description
All parameters but	Value as specified in	
those specified below	Table 7 [1]	
DPBOEPSD	ADSL2plus Annex A	PSD mask that is assumed to be permitted at the exchange
DPBOESEL	72 dB	E-side electrical length
DPBOESCMA	0.1719	Model of the frequency dependent loss of E-side cable: scalars DPBOESCMA (NOTE)
DPBOESCMB	0.644453	Model of the frequency dependent loss of E-side cable: scalars DPBOESCMB (NOTE)
DPBOESCMC	0.18359	Model of the frequency dependent loss of E-side cable: scalars DPBOESCMC (NOTE)
DPBOMUS	- 101.5 dBm/Hz	Minimum usable receive signal PSD mask
DPBOFMIN	138 kHz	Minimum frequency from which on the DPBO SHALL be applied
DPBOFMAX	2208 kHz	Maximum frequency up to which the DPBO SHALL be applied

UPBOKLF	0	Force CO-MIB electrical loop length (means that kl ₀ is estimated during training)
UPBOKL	estimated during training	Upstream electrical loop length (kl ₀)
UPBOA US0	40	A and B values US band 0 (these
UPBOB US0	0	values imply no UPBO)
UPBOA US1	60	A value US band 1
UPBOB US1	21	B value US band 1
UPBOA US2	60	A value US band 2
UPBOB US2	8	B value US band 2

NOTE: the values of DPBOESCMA, B and C are referred to a PE04 loop. Values that are configured according to G.997.1 SHALL be rounded to the nearest scalar value.

Table L.9 provides the profile-line combinations that SHALL be configured on the equipment under test:

Table L.9 – Profile-line combinations for BA17ade LRx D&UPBO

Profile	Profile-line combination	Band-profile	Specific line-
number			setting
1	BA17ade_LR36_D&UPBO_RA_R- 17/2/41_150_150	BA17ade_LR36_D&UPBO	RA_R- 17/2/41_150_150
2	BA17ade_LR36_D&UPBO_RA_ I- 8/2_150_150	BA17ade_LR36_D&UPBO	RA_I- 8/2_150_150
3	BA17ade_LR72_D&UPBO_RA_R- 17/2/41_150_150	BA17ade_LR72_D&UPBO	RA_R- 17/2/41_150_150
4	BA17ade_LR72_D&UPBO_RA_I- 8/2_150_150	BA17ade_LR72_D&UPBO	RA_I- 8/2_150_150

For the loops 150m upto 4050m in Table L.12 the profile number 1 from Table L.9 SHALL be used. For the loop 5100m in Table L.12 the profile number 2 from Table L.9 SHALL be used.

For the loops 150m upto 4050m in Table L.13 the profile number 3 from Table L.9 SHALL be used. For the loop 5100m in Table L.13 the profile number 4 from Table L.9 SHALL be used.

The noise model n_BA17ade_LRx_D&UPBO defined in Table L.10 SHALL be used, which is coherent with the noise models framework specified in section 6.3.3.4.

Table L.10 - Noise model n BA17ade LRx D&UPBO

Noise model	Associated band-profile	Self noise disturbers	Alien noise disturbers
n_BA17ade_LR36_D&UPB O	BA17ade_LR36_D&UPB O	19	None
n_BA17ade_LR72_D&UPB O	BA17ade_LR72_D&UPB O	19	None

For this Band Profile the value of kl₀ (UPBOKL) is estimated by the SUTs during training. The PSD of a single self-disturber SHALL be deterministically defined by the settings of Table L.7 and Table L.8 above using kl₀ values for calculation of the single self-disturber PSD listed in Table L.11.

Table L.11 – kl₀ for calculation of the single self-disturber PSD for BA17ade LRx D&UPBO

Loop Length (m, PE04 loop)	kl ₀ (UPBOKL) (dB @ 1MHz)
150	3.7
600	14.8
1200	29.7
1800	44.5

NOTE: Section 7.2.1.3.2.2/G993.2 states: "If the estimated value of kl0 is smaller than 1.8, the modem shall be allowed to perform power back-off as if kl0 were equal to 1.8. The estimate of the electrical length should be sufficiently accurate to avoid spectrum management problems and additional performance loss." Therefore noise calculations SHALL assume kl0 value of 1.8dB which will simulate UPBO shaped disturbers at 50m line length in a more realistic way.

36 individual tests – 32 tests SHALL be passed

Table L.12 - Performance tests with BA17ade LR36 D&UPBO

	BA17ade_LR36_D&UPBO								
]	Downst	ream	Upstream					
ngth loop)		Actual net data rate (kbps)		rgin, (dB)	Actual net data rate (kbps)		in, B)		
Loop Length (m, PE04 loop)	Expected	Measured	Pass/Fail	Noise Margin, Reported (dB)	Expected	Measured	Pass/Fail	Noise Margin, Reported (dB)	
150	100900				31100				
600	54100				15900				
1200	12100				2100				
1800	3900				800				
2400	8200				800				
3000	6100				700				
3600	3900				600				
4050	2700				400				
5100	900				400				

Table L.13 - Performance tests with BA17ade LR72 D&UPBO

		BA17ade_LR72_D&UPBO							
_	I	Oownst	ream	Upstream					
ngth loop)		Actual net data rate (kbps)		in, IB)	Actual net data rate (kbps)		(kbps)	in, B)	
Loop Length (m, PE04 loop)	Expected	Measured	Pass/Fail	Noise Margin, Reported (dB)	Expected	Measured	Pass/Fail	Noise Margin, Reported (dB)	
150	102700				32300				
600	51200				15100				
1200	17800				1600				
1800	7300				800				
2400	9800				800				
3000	6400				700				
3600	4000				600				
4050	2700				500				
5100	900				400				

6 Summary of Profile and Line Combinations for Annex L

Amend the text of Appendix III Summary of Profile and Line Combinations to reflect Annex L (revision marks relative to the TR-114 Issue 3 text).

Table 185: Summary of profile-line combinations used in TR-114

VDSL2 Band-profile	Specific line-setting	Profile-line combination							
Annex L									
BA17ade_LR	RA_R- 17/2/41_150_150	BA17ade_LRRA_R-17/2/41_150_150							
BA17ade_LR	RA_I-8/2_150_150	BA17ade_LR_RA_I-8/2_150_150							
BA17ade LR36 D&	RA_R-	BA17ade LR36 D&UPBO RA R-							
UPBO	17/2/41_150_150	17/2/41_150_150							
BA17ade LR36 D&	DA 19/2 150 150	BA17ade LR36 D&UPBO RA I-							
UPBO	RA_I-8/2_150_150	8/2_150_150							
BA17ade LR72 D&	RA R-	BA17ade LR72 D&UPBO RA R-							
UPBO	17/2/41_150_150								
BA17ade_LR72_D&	RA I-8/2 150 150	BA17ade_LR72_D&UPBO_RA_I-							
UPBO	KA_1-0/2_130_130	8/2_150_150							

7 Crosstalk impairment for Annex L tests

Add new Appendix on Crosstalk impairment for Annex L performance tests.

Appendix IX Crosstalk impairment for Annex L performance tests (informative)

BA17ade_LR36_PE04_1200_DUPBO.xlsx file contains the crosstalk impairment for BA17ade_LR36_D&UPBO performance tests, defined in Section L.4, on 1200m PE04 loop.

End of Broadband Forum Technical Report TR-114