TR-106
Data Model Template for TR-069-Enabled Devices

Issue: 1 Amendment 3
Issue Date: September 2009

© The Broadband Forum. All rights reserved.

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Notice

The Broadband Forum is a non-profit corporation organized to create guidelines for broadband network system
development and deployment. This Broadband Forum Technical Report has been approved by members of the
Forum. This Broadband Forum Technical Report is not binding on the Broadband Forum, any of its members, or
any developer or service provider. This Broadband Forum Technical Report is subject to change, but only with
approval of members of the Forum. This Technical Report is copyrighted by the Broadband Forum, and all rights
are reserved. Portions of this Technical Report may be copyrighted by Broadband Forum members.

This Broadband Forum Technical Report is provided AS IS, WITH ALL FAULTS. ANY PERSON HOLDING A
COPYRIGHT IN THIS BROADBAND FORUM TECHNICAL REPORT, OR ANY PORTION THEREOF,
DISCLAIMS TO THE FULLEST EXTENT PERMITTED BY LAW ANY REPRESENTATION OR
WARRANTY, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY:

(A) OF ACCURACY, COMPLETENESS, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE;

(B) THAT THE CONTENTS OF THIS BROADBAND FORUM TECHNICAL REPORT ARE SUITABLE
FOR ANY PURPOSE, EVEN IF THAT PURPOSE IS KNOWN TO THE COPYRIGHT HOLDER;

(C) THAT THE IMPLEMENTATION OF THE CONTENTS OF THE TECHNICAL REPORT WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

By using this Broadband Forum Technical Report, users acknowledge that implementation may require licenses to
patents. The Broadband Forum encourages but does not require its members to identify such patents. For a list of
declarations made by Broadband Forum member companies, please see http://www.broadband-forum.org. No
assurance is given that licenses to patents necessary to implement this Technical Report will be available for license
at all or on reasonable and non-discriminatory terms.

ANY PERSON HOLDING A COPYRIGHT IN THIS BROADBAND FORUM TECHNICAL REPORT, OR ANY
PORTION THEREOF, DISCLAIMS TO THE FULLEST EXTENT PERMITTED BY LAW (A) ANY LIABILITY
(INCLUDING DIRECT, INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES UNDER ANY LEGAL
THEORY) ARISING FROM OR RELATED TO THE USE OF OR RELIANCE UPON THIS TECHNICAL
REPORT; AND (B) ANY OBLIGATION TO UPDATE OR CORRECT THIS TECHNICAL REPORT.

Broadband Forum Technical Reports may be copied, downloaded, stored on a server or otherwise re-distributed in
their entirety only, and may not be modified without the advance written permission of the Broadband Forum.

The text of this notice must be included in all copies of this Broadband Forum Technical Report.

September 2009 © The Broadband Forum. All rights reserved. 2

http://www.broadband-forum.org/

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Issue History

Issue Number Issue Date Issue Editor Changes
Issue 1 September 2005 Jeff Bernstein, 2Wire Original
Christele Bouchat, Alcatel
Tim Spets, Westell
Issue 1 Amendment 1 November 2006 Jeff Bernstein, 2Wire Clarification of original document
John Blackford, 2Wire
Mike Digdon, SupportSoft
Heather Kirksey, Motive
William Lupton, 2Wire
Anton Okmianski, Cisco
Issue 1 Amendment 2 November 2008 William Lupton, 2Wire Addition of data model definition XML
Hakan Westin, Tilgin Schema and normative XML common
object and component definitions
Issue 1 Amendment 3 September 2009 William Lupton, 2Wire Addition of device type XML Schema

Hakan Westin, Tilgin

Comments or questions about this Technical Report should be directed to:

Editors

BroadbandHome™
Working Group
Chairs

September 2009

William Lupton 2Wire wlupton@?2wire.com
Hékan Westin Tilgin hakan.westin@tilgin.com
Greg Bathrick PMC-Sierra Greg_Bathrick@pmc-sierra.com
Heather Kirksey Alcatel-Lucent hkirksey@motive.com
© The Broadband Forum. All rights reserved. 3

mailto:wlupton@2wire.com
mailto:hakan.westin@tilgin.com
mailto:Greg_Bathrick@pmc-sierra.com
mailto:Greg_Bathrick@pmc-sierra.com
mailto:Greg_Bathrick@pmc-sierra.com
mailto:hkirksey@motive.com

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Table of Contents

1 [1o o [8 o3 1] o RSP STRP 8
1.1 L1 Te] o |2 PRSP PPRRN 9
1.2 DocumMENt CONVENTIONSooiiiiiee ettt e e e e e et eee e e e et e e e e e e e e annnneeeens 10
D N (ol 1 (= Tex (1] PR 10
2.1 (DL L= o 1= = o)PP S 10
211 Data Hierarchy ReqUIr€mMENtScooiiiiiiiiiiec e 11
21.2 Data Hierarchy EXamples. ... e 12
2.1.3 The Supported Data Model and the Instantiated Data Modelccccooiiiiiniiennns 14
2.2 (0] o] [=Toa QMY 4=T4< (o 1011 o ST PURPRRN 14
221 Requirements for Compatible Versions.............coooiiiiiiiiiiiiee e 15
222 Version NOTAtON..........eiiiiii ettt e e et et ee e 15
2.3 L 01 RSO S 16
2.3.1 SCOPE OFf PrOfilES ...veiieei et e e e e e e e 16
2.3.2 Multiple Profile SUPPOIcccoi i e e e 16
2.3.3 Profile VerSIONS ..ottt e e e e e e e e e eeeeens
234 Baseline Profiles
235 Types of Requirements in @ Profile ... 17
2.4 DEPRECATED and OBSOLETED HEMScoeiiiiieiiie e 17
241 Requirements for DEPRECATED HEMSoovviiiiiiiiie et 18
242 Requirements for OBSOLETED HEMScoiiiiiiiiiiiiieee e 18
B I @ o) (Yo BT i) o] =PTSRS 19
3.1 (7= =T = T o] = 1T] o IS PERRURNE 19
3.2 (DL | = T Y/ o 1= PRSP 19
3.3 Vendor-Specific Parameters.........ccocuuiiiiii et e e e e e e naaes 21
3.4 Common Object DefiNitioNS............uuiiiiiei e e e e e e 22
3.5 INFOrM REQUITEMENTS ...t e e e e e et e e e ee e e e et eaaeaaeeesasnraeeaeeenean 41
3.6 Notification REQUINEMENTScooiiiiiiie e et s 42
3.7 DeviceSummary Definitioncocuiiiiiii i 43
3.7.1 DeviceSummary EXamPIEScoooiiiiiiiiiiiiiiiee ettt 44
4 Profile DefiNItIONSt et e e e e e e e e e ee e e e e tae e e e e e e e e nnaneaaeeeeaannaes 45
4.1 [N\ (o] 2= o o PR 45
4.2 BaseliNg Profile ... e e e e e e e e s 45
4.3 GateWayINfo Profile ... e 46
4.4 THME PrOfile .ottt e e ettt e e e e e e e et eeaeaa e e e nnrnaneeaeeaan anees 46
4.5 LI VN o 1 TP 47
4.6 IPPING PrOfil@....c ettt et e e e e e e et e e e e e e e bae e e e e e e araaeaeaeeaan 47
4.7 TraceROULE Profil.........ooi ittt e 48
4.8 [0 g [ToT=To I o o) {11 TSP 48
4.9 1900 o (oT=To Il I @] o (o 1= PRSI 48
410 UPIOAA PrOfile ...t e e 49
411 UPIOAATCP Profil€......cooiiiiie et et et e e 50
N b U 1 | o o To N o o 1 USRS 50
413 UDPECHOPIUS Profil........uiiiiiiiie ettt ettt et e e e e e e enee 50
4,14 UDPCONNREQ PrOfil€....ciiiiiiiiiie ettt e e e e e et e e e e e s enbaaeaaeaeeaas 50
NOIMALIVE REFEIENCES ..ottt ettt e et e et e e ae e e e e b et e e anebb e e e aneeeeeeaneeeeansbeeeeanee 52
Annex A. CWMP Data Model Definition XML SChemaooiiiiiiiiii e 53
A1 [1o o [8 o311] o TSP 53
A.2 Normative INfOrmMation et e e e e e e 53
A21 IMPOrting DM INSTANCESccouviiiiiiiiie e s 55
A.2.2 DESCHPLONS ...eeieieeiiieite ettt ettt e e et n 56
R T I - 1 - R 1Y/ o - 63
N S = 11 o1 T o = o 0 Y/ 73
A.2.5 COMPONENES ...t e ettt e et e e e e et e e e e e e et e e e e e s ee s ssbaeeeaeaeeannssaeeseaeeeannnees 75
A.2.6 R0Ot and Service ODJECES.......ciiiii it 76
YN A e - 10 1 1= =Y £ TSP 77
F N S ©] o= o1 SRR 78
A2.9 PIOfilES .. e e e e e e e e e e e e e e nnees 78

September 2009 © The Broadband Forum. All rights reserved. 4

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

F N L I |V T Yo [{Te%= | (o] o F= O 79

A3 [V I o =T = TR 80
Annex B. CWMP Device Type XML SCREMA.......c.coiiiiiiiiiiiiie ettt 101
B.1 [a¥i oo VT3 1To] o TN RPN 101

B.2 Normative INfOrMALtioNoiieiiieee ettt e e e e e e e e e e e eeenes 101
B.2.1 IMpOorting DM INSTANCES ...t e 101

B.2.2 FRALUIES ..o 102

B.3 DT Features SCheM@cooovieieeeeeeeeeeeee e 103

B.4 DT Schema

September 2009 © The Broadband Forum. All rights reserved. 5

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

List of Figures

Figure 1 — Positioning in the End-to-End Archit@Ctureoccoiiuiiieiiiiiiieeee et e e 8
List of Tables

TADIE 1 — DIAtA TYPES .eeurieetieeieieeieeeitteste e ettt ettt estte s ebeeteeessteessbeeseeseseesssaaesse e ssseassesensaesssseansassrsaesssaenssesnssaenseesansennsses 19
Table 2 — Summary of Common Data ODJECLScccueeuiiriirie ittt ettt e sbeete e naeseeeeae 22
Table 3 — Common Object definitions fOr DEVICE: L........ccieieiiiirie et ae e ere e e 22
Table 4 — Forced INfOrm ParameEters.........covivieriereieieie et etete et ete s ste st e st esse st esae s e eseessaeseeseaensenseesseenseesesseesnns 41
Table 5 — Parameters for which Active Notification MAY be denied by the CPE............ccoovevieiieiieeeee 42
Table 6 — Baseline: 1 Profile definition for DEVICE: Lc.iecierieriieiieieeiieeeieeee ettt et et s se e sne e 45
Table 7 — GatewayInfo:1 Profile definition for DeVICE: 1ccviieiiiiieciieieeeeeee e e 46
Table 8 — Time:1 Profile definition fOr DEVICE: 1cccveoiiiiiieie it eeeeees 46
Table 9 — LAN:1 Profile definition for DeVICE:1.........ooiiiiiiiiiiiiieie ettt 47
Table 10 — IPPing:1 Profile definition fOr DEVICE: 1ccouiiiiiiiiie it 47
Table 11 — TraceRoute: 1 Profile definition for DeViICe: 1ccoeiiiiiiiiiiiiieeee e e 48
Table 12 — Download:1 profile definition for DEVICE: 1cceeiviiiiiiieie ittt s ae e 48
Table 13 — DownloadTCP:1 profile definition for DEVICE: 1ccceevuiiieiieiiieiie et e 48
Table 14 — Upload:1 profile definition for DEVICE: 1c.eeiiriieiiieiieieeiieeesie et et sbe e s 49
Table 15 — UploadTCP:1 profile definition for DEeVICE: 1cceiieiieiiieciiieieeeeeee e e 50
Table 16 — UDPEcho:1 profile definition for DeVICe: 1covieiiiiieiieieciit ettt s s 50
Table 17 — UDPEchoPlus:1 profile definition for DEVICE: Lccevuieiiriieiriiiieiere ettt 50
Table 18 — UDPConnReq:1 Profile definition for DEVICE: 1cccueriiiiiriieiiiiieiere et 50
Table 19 — XML DeSCIiption MATKUPeeiiiiiiiiieiieiieeieieseeetteie et eetestestee st eaessteeseensaeseenseensessesseenssessessnsensenss 57
Table 20 — XML DeSCription TEMPIAEScccueeruiiieieeiitierie et eiieesee s eteete e steessibeebaessteesssaesnseessseesssesesseensseesssessnses 59
Table 21 — XML NAMEA DAt TYPES...cccureeeriiriieeeieeiiieriee st esieeesteesiteeteesssresssseesseessssessesesseessssesssesssssessssesnseenssessnns 64
Table 22 — XML Data TYPE FACELSoccuuiiiiiieiiieiiieeieeiterte ettt stte s et eve e steeseeteesteeeteesssaeense e sseesssesessaensseesssessases 65
Table 23 — Path Name Scope DEfINTtionccceeviiiiiiieiiiieiie ettt ettt e et eteeesteesbaeebeesssaeesaesesseenssnesnsessnses 66
Table 24 — PathRef Facet DefINItIONco.eiiiiiiiiiiiieii ittt ettt et et st e e neee 68
Table 25 — InstanceRef FACet DEfINItIONc...eeiiriiiiiiiiiiiit ettt et eee 69
Table 26 — EnumerationRef Facet DefiNitionccveuieriiriieieiiesietieie sttt ettt eeae s aesne e e esessseens 69
Table 27 — XML Facet Inheritance RUIES.........cccooiiiiiiiiieie ettt et ae s e eeee 71
Table 28 — XML Bibliographic REfEIrENCES........uiiietiietieiieieeie ettt ettt sttt s e ssee s e ssesnneenne e 73
Table 29 — XML Component DEfINItIONccoruirieriieriieiieierieeeieeieeriesteesteste s steetessteeseessaeseessesssesssesseenseensesseesnes 75
Table 30 — XML ROOt and SerVICE ODJECES.....eiuuirietiiriieeieieeeeeieie et eteestesteeestestessteeseeaesseenseessenssesseenssessesnseensesses 76
Table 31 — XML Parameter DEfINItiOncccevvieiierieieiieie ettt ettt sttt ae st seess e teeneeensenseesseenseensesseesnnenses 77
Table 32 — XML Parameter SYNTAXccuveeeuieeiieiiieeiteeiitiesteeeteestteesteeseteesesesseesssseasesssseessssessseessssesssesesseessssesssessnses 77
Table 33 — XML ODbJECt DETINITIONoccuuiiiiieciiieiiieeieeeie et ettt esee s et e et e st e stebeebeeeteesssaeense e sseesssesesseensseesssessnses 78
Table 34 — XIML Table DEeTINItIONc..cciutiie ittt ettt ettt st e st nae e ebeeseeembe et setenae s sbeeseenaenees 78
Table 35 — XML Profile DefINitioncooiiuiiiiriiiiieiiee ettt et ettt ettt ea et e b e eaesbeeeeee 78
Table 36 — XML Parameter MOdIfICAtION ...c..eeeiiiiiiiiiiiiiiieiieet ettt ettt et et et ete st et e e saeesee e 79
Table 37 — XML Object MOGIfICATIONecuuieieiiiiiietieit et et ettete et etteeteste e st eae s ste et e saeseenseensas e sseensaessesnneensenss 80
Table 38 — XML Profile MOAIfICAtION.ceceriiiiietieie ettt ettete et eteetestee st esae s ste et e aeseenseenses e sseensaessesnneensenes 80

September 2009 © The Broadband Forum. All rights reserved. 6

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Executive Summary

This Technical Report specifies data model guidelines to be followed by all TR-069-capable devices. These
guidelines include structural requirements for the data hierarchy, requirements for versioning of data models,
requirements for defining profiles, a set of common data objects, and a baseline profile for any device supporting
these common data objects.

In addition, this Technical Report defines an XML Schema that as far as possible embodies these guidelines, and
which is used for defining all TR-069 data models. This makes data model definitions rigorous, and helps to reduce
the danger that different implementations will interpret data model definitions in different ways.

This Technical Report also defines an XML Schema that allows a device to describe its supported TR-069 data
models. This description is both specific and detailed, allowing an ACS to know exactly what is supported by the
device, including any vendor-specific objects and parameters. Use of this Schema enhances interoperability and
significantly eases the integration of new devices with an ACS.

September 2009 © The Broadband Forum. All rights reserved. 7

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Introduction

TR-106 specifies a baseline object structure and set of TR-069-accessible parameters to be available on any TR-069-
enabled device [2]. TR-069 defines the generic requirements of the CPE WAN Management Protocol (CWMP)
methods which can be applied to any TR-069 CPE. It is intended to support a variety of different functionalities to
manage a collection of CPE, including the following primary capabilities:

e Auto-configuration and dynamic service provisioning
e Software/firmware image management

e Status and performance monitoring

e Diagnostics

The ability to manage the home network remotely has a number of benefits including reducing the costs associated
with activation and support of broadband services, improving time-to-market for new products and services, and
improving the user experience.

If TR-069 defines the generic methods for any device, other documents (such as this one) specify the managed
objects, or data models, which are collections of objects and parameters on which the generic methods act to
configure, diagnose, and monitor the state of specific devices and services.

The following figure places TR-069 in the end-to-end management architecture:

0OSS/BSS

Managed LAN
Device

Scope of CPE WAN Management

Protocol (CWMP):
ACS Southbound Interface

!
K Managed LAN
E Device
Auto-Configuration M;;:sve: IS::;ic
Server (ACS) Y

ACS Northbound Interface

Figure 1 — Positioning in the End-to-End Architecture

The ACS is a server that resides in the network and manages devices in the subscriber premises. It uses the
methods, or RPCs, defined to TR-069 to get and set the state of the device, initiate diagnostic tests, download and
upload files, and manage events. Some portions of this state are common across managed devices and some are
relevant only to certain device types or services.

For a particular type of device, it is expected that the baseline defined in TR-106 would be augmented with
additional objects and parameters specific to the device type. The data model used in any TR-069-capable device
MUST follow the guidelines described in this document. These guidelines include the following aspects:

e Structural requirements for the data hierarchy
e Requirements for versioning of data models

e Requirements for defining profiles

e A set of common data objects

e A baseline profile for any device supporting these common data objects

September 2009 © The Broadband Forum. All rights reserved. 8

1.1

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

In addition, TR-106 defines an XML Schema that as far as possible embodies these guidelines, and which is used for
defining all TR-069 data models. This makes data model definitions rigorous, and helps to reduce the danger that
different implementations will interpret data model definitions in different ways.

TR-106 also defines an XML Schema that allows a device to describe its supported TR-069 data models. This
description is both specific and detailed, allowing an ACS to know exactly what is supported by the device,
including any vendor-specific objects and parameters. Use of this Schema enhances interoperability and
significantly eases the integration of new devices with an ACS.

Terminology

The following terminology is used throughout the series of documents defining the CPE WAN Management

Protocol.

ACS

BBF

Base Supported
Data Model
CPE

Current
Supported
Data Model

Common
Object

Component

CWMP

Data Model

Device

DM Instance

DM Schema

DT Instance

DT Schema

Event

September 2009

Auto-Configuration Server. This is a component in the broadband network responsible for auto-
configuration of the CPE for advanced services.

Broadband Forum.

The Data Model that is supported by all CPE of a given make, model and firmware version.
This refers to the Objects and/or Parameters that have code support in the current firmware.

Customer Premises Equipment; refers to any TR-069-enabled device and therefore covers
both Internet Gateway devices and LAN-side end devices.

The Data Model that is currently supported by an individual CPE, i.e. the Base Supported Data
Model plus any additional Objects and/or Parameters supported by extra modules that have been
installed on the CPE. This refers to the Objects and/or Parameters that have code support in the
CPE.

An object defined in this specification that may be contained either directly within the “Device”
Root Object or within a Service Object contained within the “Services” object.

A named collection of Objects and/or Parameters that can be included anywhere within a Data
Model.

CPE WAN Management Protocol. Defined in TR-069 Amendment 2 [2], CWMP is a
communication protocol between an ACS and CPE that defines a mechanism for secure auto-
configuration of a CPE and other CPE management functions in a common framework.

A hierarchical set of Objects and/or Parameters that define the managed objects accessible via
TR-069 for a particular CPE.

Used here as a synonym for CPE.

Data Model Schema instance document. This is an XML document that conforms to the DM
Schema and to any additional rules specified in or referenced by the DM Schema.

Data Model Schema. This is the XML Schema [16] that is used for defining data models for use
with CWMP.

Device Type Schema instance document. This is an XML document that conforms to the DT
Schema and to any additional rules specified in or referenced by the DT Schema.

Device Type Schema. This is the XML Schema [16] that is used for describing a Device’s
Supported Data Model.

An indication that something of interest has happened that requires the CPE to notify the ACS.

© The Broadband Forum. All rights reserved. 9

1.2

2.1

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Instantiated The Data Model that currently exists on an individual CPE. This refers to the Object instances

Data Model and/or Parameters that currently exist within the data model. It can be thought of as the Current
Supported Data Model with all the “{i}” placeholders expanded to be the actual instance
numbers.

For example, “Device.Services. ABCService.{i}” in the Current Supported Data Model might
correspond to “Device.Services. ABCService.1” and “Device.Services. ABCService.2” in the
Instantiated Data Model.

Internet A CPE device, typically a broadband router, that acts as a gateway between the WAN and the

Gateway LAN.

Device

MediaWiki A software application that is used by Wikipedia and other projects.
http://en.wikipedia.org/wiki/MediaWiki.

Object A named collection of Parameters and/or other Objects.

Parameter A name-value pair representing a manageable CPE parameter made accessible to an ACS for
reading and/or writing.

RPC Remote Procedure Call.

Profile A named collection of requirements relating to a given Root Object or Service Object.

Root Object The top-level object of a CPE’s Data Model that contains all of the manageable objects. The

name of the Root Object is either “Device” or “InternetGatewayDevice”—the former is used for
all types of devices except an Internet Gateway Device.

Service Object The top-most object associated with a specific service within which all Objects and Parameters
associated with the service are contained.

Supported Refers to either Base Supported Data Model or Current Supported Data Model, depending on
Data Model the context.

URI Uniform Resource Identifier [8].

URL Uniform Resource Locator [8].

Document Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [1].

Architecture

Data Hierarchy

The data model for a TR-069-capable device will follow a common set of structural requirements. The detailed
structure depends on the nature of the device.

A device will always have a single Root Object, which will be called either “Device” or “InternetGatewayDevice”.
The latter is exclusively to accommodate the existing TR-098 specification and is only to be used if the device is an
Internet Gateway Device.

In most cases, the Root Object contains three types of sub-elements: the Common Objects defined in this
specification (applicable only to the “Device” Root Object), Components defined in other specifications such as TR-
143 [15] and TR-157 [17] (applicable to both the “Device” and “InternetGatewayDevice” Root Objects), and a
single “Services” object that contains all Service Objects associated with specific services.

To accommodate the existing TR-098 specification, if the device is an Internet Gateway Device, the Root Object
will also contain the application-specific objects associated with an Internet Gateway Device.

September 2009 © The Broadband Forum. All rights reserved. 10

http://en.wikipedia.org/wiki/MediaWiki

211

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

A single device might include more than one Service Object. For example, a device that serves both as a VoIP
endpoint and a game device, might include both VoIP-specific and game-specific Service Objects.

A single device might also include more than one instance of the same type of Service Object. An example of when
this might be appropriate is a TR-069 capable device that proxies the management functions for one or more other
devices that are not TR-069 capable. In this case, the ACS would communicate directly only with the TR-069
capable device, which would incorporate the data models for all devices for which it is serving as a management
proxy. For example, a video device serving as a management proxy for three VoIP phones would contain in its data
model a video-specific Service Object plus three instances of a VoIP-specific Service Object. Note that whether a
device is serving as a management proxy for another device or whether it has that functionality embedded in it is
generally opaque to the ACS.

Data Hierarchy Requirements

The data model for a TR-069-capable device (other than an Internet Gateway Device) MUST adhere to the
following structural requirements:

1) The data model MUST contain exactly one Root Object, called “Device”.
2) The Root Object MUST contain a “DeviceSummary” parameter as specified in section 3.7.

3) The Root Object MAY contain any of the Common Objects defined in section 3.4, and Components defined in
other specifications, e.g. TR-143 [15] or TR-157 [17], with the proviso that a Component that is defined as a
child of a Common Object can only be included if the Common Object is also included.

4) The Root Object MUST contain exactly one “Services” object.

5) The “Services” object MUST contain all of the Service Objects supported by the device. Each Service Object
contains all of the objects and parameters for a particular service.

6) The “Services” object MAY contain more than one Service Object, each corresponding to a distinct service
type.

7) The “Services” object MAY contain more than one instance of a Service Object of the same type.

8) Each Service Object instance MUST be appended with an instance number (assigned by the CPE) to allow for
the possibility of multiple instances of each. For example, if the device supports the Service Object
ABCService, the first instance of this Service Object might be “ABCService.1”.

9) For each supported type of Service Object, a corresponding parameter in the “Services” object MUST indicate
the number of instances of that Service Object type. If a particular Service Object type is supported by the
device but there are currently no instances present, this parameter MUST still be present with a value of zero.
The name of this parameter MUST be the name of the Service Object concatenated with “NumberOfEntries”.
For example, for a device that contains instances of ABCService, there MUST be a corresponding parameter in
the “Services” object called “ABCServiceNumberOfEntries”.

10) Each Service Object MAY contain secondary copies of some of the Common Objects defined in this
specification. The specific set of Common Objects that might be contained within a Service Object is specified
in section 3.4.

An Internet Gateway Device MUST adhere to the above requirements with the following exceptions:
1) The data model MUST contain exactly one Root Object, called “InternetGatewayDevice”.

2) The Root Object MAY contain any of the objects specific to an Internet Gateway Device as defined in [3], and
any Components defined in other specifications, e.g. TR-143 [15] or TR-157 [17], with the proviso that a
Component that is defined as a child of a Common Object can only be included if an Internet Gateway Device
object with the same name as the Common Object is also included.

3) The “InternetGatewayDevice” Root Object MUST NOT directly contain any of the Common Objects defined in
this specification. While [3] defines objects very similar to some of the Common Objects defined here, they are
not identical and MUST NOT be considered the same as the Common Objects. (Service Objects within the
“Services” object MAY contain Common Objects with the limitations specified in section 3.4.)

September 2009 © The Broadband Forum. All rights reserved. 11

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

4) The “Services” object MAY be absent if the device supports no Service Objects.

5) The “DeviceSummary” parameter MAY be absent only in an Internet Gateway Device that supports the
InternetGatewayDevice version 1.0 data model, as defined in section 2.4.2 of [3], and no other Service Objects.'

Formally, the top level of the data hierarchy is defined as follows:

Element = Root
| Root ".DeviceSummary"
| Root ".Services." ServiceObject "." Instance
| Root ".Services." ServiceObject "NumberOfEntries"
| Root ".Services." ServiceObject "." Instance "." SecondaryCommonObject
| Root "." ComponentObject ; As defined in other specs, e.g. TR-143 [15] or TR-157 [17]
| DeviceRoot "." CommonObject
| DeviceRoot "." CommonObject "." ComponentObject
| GatewayRoot "." GatewaySpecificObject ; As defined in [3]
| GatewayRoot "." GatewaySpecificObject "." ComponentObject

Root = DeviceRoot
|

GatewayRoot
DeviceRoot = "Device"
GatewayRoot = "InternetGatewayDevice"
CommonObject = "DeviceInfo"
| "Config"
| "UserInterface"
| "ManagementServer"
| "GatewayInfo"
| "Time"
| "LAN"
SecondaryCommonObject = "DeviceInfo"
| "Config"
| "UserInterface"
| "Time"
| "LAN"

Instance = NONZERODIGIT [DIGIT]*

2.1.2 Data Hierarchy Examples

Below are some examples of data hierarchies for various types of devices. (Objects are shown in bold text,
parameters are shown in plain text.)

Simple device supporting the ABCService Service Object:

Device

DeviceSummary
Devicelnfo
ManagementServer

Services

ABCServiceNumberOfEntries = 1
ABCService.1
ABCServiceSpecificObjects

The implication of this requirement is that if an Internet Gateway Device supports one or more Service Objects
(for example, the VoiceService object defined in TR-104), the Internet Gateway Device is REQUIRED to support
version 1.1 or greater of the InternetGatewayDevice Root Object as defined in TR-098.

September 2009

© The Broadband Forum. All rights reserved. 12

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Device supporting both ABCService and XY ZService Service Objects:

Device
DeviceSummary
Devicelnfo
ManagementServer
Time
Userinterface
LAN
Services
ABCServiceNumberOfEntries = 1
ABCService.1
ABCServiceSpecificObjects
XYZServiceNumberOfEntries = 1
XYZService.1
XYZServiceSpecificObjects

Internet Gateway Device that also supports the ABCService and XYZService Service Objects:

InternetGatewayDevice
DeviceSummary
Devicelnfo
ManagementServer
Time
Userinterface
Layer3Forwarding
LANDeviceNumberOfEntries = 1
LANDevice.1
WANDeviceNumberOfEntries = 1
WANDevice.1
Services
ABCServiceNumberOfEntries = 1
ABCService.1
ABCServiceSpecificObjects
XYZServiceNumberOfEntries = 1
XYZService.1
XYZServiceSpecificObjects

Device supporting the ABCService Service Object and proxying for two devices supporting the functionality of the
XYZService Service Object:

Device
DeviceSummary
Devicelnfo
ManagementServer
Config
Gatewaylinfo
Time
Userinterface
LAN
Services
ABCServiceNumberOfEntries = 1
ABCService.1
ABCServiceSpecificObjects
XYZServiceNumberOfEntries = 2
XYZService.1
Devicelnfo
XYZServiceSpecificObjects
XYZService.2
Devicelnfo
XYZServiceSpecificObjects

September 2009 © The Broadband Forum. All rights reserved. 13

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Internet Gateway Device also serving as a management proxy for three devices supporting the functionality of the
ABCService Service Object:

InternetGatewayDevice
DeviceSummary
Devicelnfo
ManagementServer
Time
Userinterface
Layer3Forwarding
LANDeviceNumberOfEntries = 1
LANDevice.1
WANDeviceNumberOfEntries = 1
WANDevice.1
Services
ABCServiceNumberOfEntries = 3
ABCService.1
Devicelnfo
ABCServiceSpecificObjects
ABCService.2
Devicelnfo
ABCServiceSpecificObjects
ABCService.3
Devicelnfo
ABCServiceSpecificObjects

2.1.3 The Supported Data Model and the Instantiated Data Model

2.2

There is a distinction between a TR-069-capable device’s Supported Data Model and its Instantiated Data Model.
e The Supported Data Model is those Objects and/or Parameters that have code support in the CPE.
e The Instantiated Data Model is those Object instances and/or Parameters that currently exist.

TR-157 [17] defines a SupportedDataModel Object (a sub-object of the Devicelnfo Common Object) that allows a
TR-069-capable device to indicate its Supported Data Model to the ACS, which assists the ACS in managing that
device.

The SupportedDataModel object has the following properties:

1) It contains a list of URLSs, each of which allows the ACS to determine details of part of the Supported Data
Model.

2) When the Supported Data Model changes, e.g. because software is loaded or unloaded, entries are added to or
removed from this list of URLs.

3) Devicelnfo is a secondary Common Object (see section 3.4), and so can be contained within both Root Objects
and Service Objects. However, the SupportedDataModel object is permitted only with a Root Object’s
Devicelnfo and MUST NOT be contained within a Service Object’s Devicelnfo instance. It therefore describes
the Supported Data Model for both the TR-069-enabled device and for any devices for which it is acting as a
management proxy.

Object Versioning

To allow the definition of a Service Object or Root Object to change over time, the definition of a Service Object or
Root Object MUST have an explicitly specified version.

Version numbering of Service Objects and Root Objects is defined to use a major/minor version numbering
convention. The object version is defined as a pair of integers, where one integer represents the major version, and
the second integer represents the minor version. The version MUST be written with the two integers separated by a
dot (Major.Minor).

September 2009 © The Broadband Forum. All rights reserved. 14

2.21

2.2.2

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

The first version of a given object SHOULD be defined as version “1.0”.

For each subsequent version of the object, if the later version is compatible with the previous version, then the major
version SHOULD remain unchanged, and the minor version SHOULD be incremented by one. For example, the
next compatible version after “2.17” would be “2.18”. The requirements for a version to be considered compatible
with an earlier version are described in section 2.2.1.

For each subsequent version of the object, if the later version is not compatible with the previous version, then the
major version MUST increment by one, and the minor version MAY reset back to zero. For example, the next
incompatible version after “2.17” might be “3.0”.

Requirements for Compatible Versions

For one version of an object to be considered compatible with another version, the later version MUST be a strict
superset of the earlier version. Using major/minor versioning, this requirement applies only between minor versions
that share the same major version.

More specifically, this requires the following of the later version with respect to all earlier versions to which it is to
be compatible:

e The later version MAY add objects and parameters not previously in any earlier version, but MUST NOT
remove objects or parameters already defined in earlier versions.

e The later version MUST NOT modify the definition of any parameter or object already defined in an earlier
version (unless the original definition was clearly in error and has to be modified as an erratum or clarified
through a corrigendum process).

e The later version MUST NOT require any of the objects or parameters that have been added since the earliest
compatible version to be explicitly operated upon by the ACS to ensure proper operation of the device (except
those functions specifically associated with functionality added in later versions). That is, the later version will
accommodate an ACS that knows nothing of elements added in later versions.

The goal of the above definition of compatibility is intended to ensure bi-directional compatibility between an ACS
and CPE. Specifically that:

e Ifan ACS supports only an earlier version of an object as compared to the version supported by the CPE, the
ACS can successfully manage that object in the CPE as if it were the earlier version.

e If a CPE supports only an earlier version of an object as compared to the version supported by an ACS, the ACS
can successfully manage that object in the CPE as if it were the later version (without support for new
components defined only in later versions).

Version Notation
For objects, the following notation is defined to identify specific versions:

Notation Description Example

ObjectName:Major.Minor Refers to a specific version of the object. Device:1.0

ObjectName:Major Refefs to any minor version of the object with the specified major Device:1
version.

ObjectName Refers to any version of the object. Device

Note that the version notation defined here is only to be used for purposes of documentation and in the content of the
DeviceSummary parameter defined in section 3.7. The actual names of objects and parameters in the data model
MUST NOT include version numbers.

September 2009 © The Broadband Forum. All rights reserved. 15

23

2.31

23.2

233

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Profiles

Note: Originally, profiles were seen as a means of limiting the variability that an ACS needs to accommodate among
various devices that it might manage. This feature is now provided by the TR-157 [17] SupportedDataModel object
(see section 2.1.3) and associated Device Type XML documents (DT Instances).

A profile is a named collection of requirements associated with a given object. A device can adhere to zero or more
profiles. Adherence to a profile means that the device supports all of the requirements defined by that profile. The
use of profiles gives Service Providers a shorthand means of specifying CPE data model support requirements .

The following sections define the conventions to be used when defining profiles associated with TR-069 data
models.

Scope of Profiles

A given profile is defined only in the context of a specific Service Object or Root Object with a specific major
version. For each profile definition, the specific object name and major version to which the profile is to apply
MUST be explicitly identified.

A profile’s name MUST be unique among profiles defined for the same object and major version, but a name MAY
be reused to define a different profile for a distinct combination of object name and major version. For example, if

we define profile “A” associated with object “X:2” (major version 2 of object X), the same name “A” might be used
to define a different profile for object “Y:1” or for object “X:3”.

A given profile is defined in association with a minimum minor version of a given object. The minimum
REQUIRED version of an object is the minimum version that includes all of the REQUIRED elements defined by
the profile. For each profile definition, the specific minimum version MUST be explicitly identified.

Multiple Profile Support

For a given type of Service Object or Root Object, multiple profiles MAY be defined. Profiles MAY be defined that
have either independent or overlapping requirements.

To maximize interoperability, a device that fully implements the (DEPRECATED) DeviceSummary parameter
(section 3.7) MUST indicate all profiles that it supports. That is, it has to indicate all profiles whose definition is a
subset of the support provided by that device. Doing so maximizes the likelihood that an ACS will be aware of the
definition of the indicated profiles. For example, if profile “A” is a subset of profile “B”, and a device supports
both, by indicating support for both “A” and “B” an ACS that is unaware of profile “B” will at least recognize the
device’s support for profile “A”.

Profile Versions

To allow the definition of a profile to change over time, the definition of every profile MUST have an associated
version number.

Version numbering of profiles is defined to use a minor-only version numbering convention. That is, for a given
profile name, each successive version MUST be compatible with all earlier versions. Any incompatible change to a
profile MUST use a different profile name.

For one version of a profile to be considered compatible with another version, the later version MUST be a strict
superset of the earlier version. This requires the following of the later version with respect to all earlier versions to
which it is to be compatible:

e The later version MAY add requirements that were not in earlier versions of the profile, but MUST NOT
remove requirements.

e The later version MAY remove one or more conditions that had previously been placed on a requirement. For
example, if a previous profile REQUIRED X only if condition A was True, then the later profile might require
X unconditionally.

For profiles, the following notation is defined to identify specific versions:

September 2009 © The Broadband Forum. All rights reserved. 16

234

235

24

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Notation Description Example
ProfileName:Version Refers to a specific version of the profile. Baseline:1
ProfileName Refers to any version of the profile. Baseline

ProfileName MUST start with a letter or underscore, and subsequent characters MUST be letters, digits, underscores
or hyphens. The terms “letter” and “digit” are as defined in Appendix B of [10].

Baseline Profiles

For every Service Object (and Root Object) there SHOULD be at least one profile defined. In many cases it is
desirable to define a Baseline profile that indicates the minimum requirements REQUIRED for any device that
supports that object. Where a Baseline profile is defined, and if the (DEPRECATED) DeviceSummary parameter
(section 3.7) is fully implemented, it would normally be expected that all implementations of the corresponding
object would indicate support for the Baseline profile in addition to any other profiles supported.

Types of Requirements in a Profile

Because a profile is defined within the context of a single object (and major version), all of the requirements
associated with the profile MUST be specific to the data model associated with that object.

Profile requirements can include any of the following types of requirements associated with an object’s data model:
e A requirement for read support of a Parameter.

e A requirement for write support of a Parameter.

e A requirement for support of a sub-object contained within the overall object.

e A requirement for the ability to add or remove instances of a sub-object.

e A requirement to support active notification for a Parameter.

e A requirement to support access control for a given Parameter.

For each of the requirement categories listed above, a profile can define the requirement unconditionally, or can
place one or more conditions on the requirement. For example, a profile might require that a Parameter be
supported for reading only if the device supports some other parameter or object (one that is not itself REQUIRED
by the profile). Such conditions will be directly related to the data model of the overall object associated with the
profile.

Because a device has to be able to support multiple profiles, all profiles MUST be defined such they are non-
contradictory. As a result, profiles MUST only define minimum requirements to be met, and MUST NOT specify
negative requirements. That is, profiles will not include requirements that specify something that is not to be
supported by the device, or requirements that exclude a range of values.

DEPRECATED and OBSOLETED Items

The key word “DEPRECATED” in the data model definition for any TR-069-capable device is to be interpreted as
follows: This term refers to an object, parameter or parameter value that is defined in the current version of the
standard but is meaningless, inappropriate, or otherwise unnecessary. It is intended that such objects, parameters or
parameter values will be removed from the next major version of the data model. Requirements on how to interpret
or implement deprecated objects, parameters or parameter values are given below. For more information on how to
interpret or implement specific deprecated objects, parameters or parameter values, refer to the definition of the
object or parameter.

The key word “OBSOLETED” in the data model definition for any TR-069-capable device is to be interpreted as
follows: This term refers to an object, parameter or parameter value that meets the requirements for being
deprecated, and in addition is obsolete. Such objects, parameters or parameter values can be removed from a later
minor version of a data model, or from a later version of a profile, without this being regarded as breaking
backwards compatibility rules. Requirements on how to interpret or implement obsoleted objects, parameters or

September 2009 © The Broadband Forum. All rights reserved. 17

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

parameter values are given below. For more information on how to interpret or implement specific obsoleted
objects, parameters or parameter values, refer to the definition of the object or parameter.

241 Requirements for DEPRECATED Items

This section defines requirements that apply to all DEPRECATED objects, parameters and parameter values unless
specifically overridden by the object or parameter definition.

Data model requirements:

1) The definition of a DEPRECATED parameter, object or parameter value MUST include an explanation of
why the item is deprecated.

2) The definition of a DEPRECATED parameter, object or parameter value MAY specify further
requirements relating to the item; such requirements MAY override CPE or ACS requirements specified in
this section.

CPE requirements:

1) A DEPRECATED parameter MUST have a value which is valid for its data type and fulfils any range (for
numeric parameters), length (for string, base64 or hexBinary parameters) and enumerated value (for string
parameters) requirements.

2) Detailed behavioral requirements for a DEPRECATED parameter, e.g. that its value is a unique key, MAY
be ignored by the CPE.

3) The CPE MUST, if such operations are permitted by the data model definition, permit creation of
DEPRECATED objects, modification of DEPRECATED parameters, and setting of DEPRECATED
parameter values. However, it MAY choose not to apply such changes to its operational state.

4) Regardless of whether DEPRECATED changes are applied to the CPE operational state, a read of a
DEPRECATED writable parameter SHOULD return the value that was last written, i.e. the CPE is
expected to store the value even if it chooses not to apply it to its operational state.

5) When the ACS modifies the value of a DEPRECATED parameter, the CPE MAY choose not to check
whether the new parameter value is valid for its data type and fulfils any range (for numeric parameters),
length (for string, base64 or hexBinary parameters) and enumerated value (for string parameters)
requirements.

6) The CPE MAY reject an attempt by the ACS to set any parameter to a DEPRECATED value.
ACS requirements:

1) The ACS SHOULD NOT create DEPRECATED objects, modify DEPRECATED parameters, or set
DEPRECATED parameter values.

2) The ACS SHOULD ignore DEPRECATED objects, parameters and parameter values.

3) The ACS MUST NOT set a DEPRECATED parameter to a value that is invalid for its data type or fails to
fulfil any range (for numeric parameters), length (for string, base64 or hexBinary parameters) or
enumerated value (for string parameters) requirements.

4) The ACS MUST NOT set any parameter to a DEPRECATED value.

2.4.2 Requirements for OBSOLETED Items

This section defines requirements that apply to all OBSOLETED objects, parameters or parameter values unless
specifically overridden by the object or parameter definition.

An OBSOLETED object, parameter or parameter value MUST meet all the requirements of the previous section. In
addition, the following data model requirements apply.

1) An OBSOLETED object, parameter or parameter value MAY be removed from a later minor version of a
data model without this being regarded as breaking backwards compatibility rules.

September 2009 © The Broadband Forum. All rights reserved. 18

3.1

3.2

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

2) An OBSOLETED object, parameter or parameter value MUST NOT be removed from the current version
of a profile, but MAY be removed from a later version of a profile without this being regarded as breaking
backwards compatibility rules.

3) A data model definition MUST include a list of those OBSOLETED objects, parameters or parameter
values that have been removed from the data model or from its profiles. This is to prevent future
namespace conflicts.

Object Definitions

General Notation

Parameter names use a hierarchical form similar to a directory tree. The name of a particular Parameter is
represented by the concatenation of each successive node in the hierarchy separated with a “.” (dot), starting at the
trunk of the hierarchy and leading to the leaves. When specifying a partial path, indicating an intermediate node in

[T

the hierarchy, the trailing “.”” (dot) is always used as the last character.

Parameter names MUST be treated as case sensitive. The name of each node in the hierarchy MUST start with a
letter or underscore, and subsequent characters MUST be letters, digits, underscores or hyphens. The terms “letter”
and “digit” are as defined in Appendix B of [10].

In some cases, where multiple instances of an object can occur, the placeholder node name “{i}” is shown. In actual
use, this placeholder is to be replaced by an instance number, which MUST be a positive integer (> 1). Because in
some cases object instances can be deleted, instance numbers will in general not be contiguous.

Data Types

The parameters defined in this specification make use of a limited subset of the default SOAP data types [5]. The
complete set of data types along with the notation used to represent these types is listed in Table 1.

Table 1 — Data Types

Type Description

object A container for parameters and/or other objects. The full path name of a parameter is given by the parameter
name appended to the full path name of the object it is contained within.

string For strings listed in this specification, a minimum and maximum allowed length can be listed using the form
string(Min:Max), where Min and Max are the minimum and maximum string length in characters. If either Min or
Max are missing, this indicates no limit, and if Min is missing the colon can also be omitted, as in string(Max).
Multiple comma-separated ranges can be specified, in which case the string length MUST be in one of the ranges.
A “k” or “K” suffix is interpreted as a 1024 (not 1000) multiplier, e.g. 32k means 32768.

For all strings a maximum length is either explicitly indicated or implied by the size of the elements composing the
string. For strings in which the content is an enumeration, the longest enumerated value determines the maximum
length. If a string does not have an explicitly indicated maximum length or is not an enumeration, the default
maximum is 16 characters.

When transporting a string value within an XML document, any characters which are special to XML MUST be
escaped as specified by the XML specification [10]. Additionally, any characters other than printable ASCII
characters, i.e. any characters whose decimal ASCII representations are outside the (inclusive) ranges 9-10 and
32-126, SHOULD be escaped as specified by the XML specification.

int Integer in the range —2147483648 to +2147483647, inclusive.

For some int types listed, a value range is given using the form int[Min:Max], where the Min and Max values are
inclusive. If either Min or Max are missing, this indicates no limit. Multiple comma-separated ranges can be
specified, in which case the value MUST be in one of the ranges. A “k” or “K” suffix is interpreted as a 1024 (not
1000) multiplier, e.g. 32k means 32768.

long Long integer in the range —9223372036854775808 to 9223372036854775807, inclusive.

For some long types listed, a value range is given using the form long[Min:Max], where the Min and Max values
are inclusive. If either Min or Max are missing, this indicates no limit. Multiple comma-separated ranges can be
specified, in which case the value MUST be in one of the ranges. A “k” or “K” suffix is interpreted as a 1024 (not
1000) multiplier, e.g. 32k means 32768.

September 2009 © The Broadband Forum. All rights reserved. 19

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Type Description

unsignedint Unsigned integer in the range 0 to 4294967295, inclusive.

For some unsignedint types listed, a value range is given using the form unsignedint{Min:Max], where the Min and
Max values are inclusive. If either Min or Max are missing, this indicates no limit. Multiple comma-separated
ranges can be specified, in which case the value MUST be in one of the ranges. A “k” or “K” suffix is interpreted
as a 1024 (not 1000) multiplier, e.g. 32k means 32768.

unsignedLong | Unsigned long integer in the range 0 to 18446744073709551615, inclusive.

For some unsignedLong types listed, a value range is given using the form unsignedLong[Min:Max], where the Min
and Max values are inclusive. If either Min or Max are missing, this indicates no limit. Multiple comma-separated
ranges can be specified, in which case the value MUST be in one of the ranges. A “k” or “K” suffix is interpreted
as a 1024 (not 1000) multiplier, e.g. 32k means 32768.

boolean Boolean, where the allowed values are “0”, “1”, “true”, and “false”. The values “1” and “true” are considered
interchangeable, where both equivalently represent the logical value true. Similarly, the values “0” and “false” are
considered interchangeable, where both equivalently represent the logical value false.

dateTime The subset of the ISO 8601 date-time format defined by the SOAP dateTime type.

All times MUST be expressed in UTC (Universal Coordinated Time) unless explicitly stated otherwise in the
definition of a parameter of this type.

If absolute time is not available to the CPE, it SHOULD instead indicate the relative time since boot, where the
boot time is assumed to be the beginning of the first day of January of year 1, or 0001-01-01T00:00:00. For
example, 2 days, 3 hours, 4 minutes and 5 seconds since boot would be expressed as 0001-01-03T03:04:05.
Relative time since boot MUST be expressed using an untimezoned representation. Any untimezoned value with
a year value less than 1000 MUST be interpreted as a relative time since boot.

If the time is unknown or not applicable, the following value representing “Unknown Time” MUST be used: 0001-
01-01T00:00:00Z.

Any dateTime value other than one expressing relative time since boot (as described above) MUST use timezoned
representation (that is, it MUST include a timezone suffix).

base64 Base64 encoded binary (no line-length limitation).

A minimum and maximum allowed length can be listed using the form base64(Min:Max), where Min and Max are
the minimum and maximum length in characters before Base64 encoding. If either Min or Max are missing, this
indicates no limit, and if Min is missing the colon can also be omitted, as in base64(Max). Multiple comma-
separated ranges can be specified, in which case the length MUST be in one of the ranges. A “k” or “K” suffix is
interpreted as a 1024 (not 1000) multiplier, e.g. 32k means 32768.

Note that data models defined prior to the introduction of the DM Schema specified the length after Base64
encoding. If the length after encoding is n (which is always a multiple of 4), the length before encoding is m =
(n/4)*3, m-1 or m-2.

hexBinary Hex encoded binary.

A minimum and maximum allowed length can be listed using the form hexBinary(Min:Max), where Min and Max
are the minimum and maximum length in characters before Hex Binary encoding. If either Min or Max are missing,
this indicates no limit, and if Min is missing the colon can also be omitted, as in hexBinary(Max). Multiple comma-
separated ranges can be specified, in which case the length MUST be in one of the ranges. A “k” or “K” suffix is
interpreted as a 1024 (not 1000) multiplier, e.g. 32k means 32768.

All IPv4 addresses and subnet masks are represented as strings in IPv4 dotted-decimal notation. All IPv6 addresses
and subnet masks MUST be represented using any of the 3 standard textual representations as defined in RFC 3513
[7], sections 2.2.1, 2.2.2 and 2.2.3. Both lower-case and upper-case letters can be used. Use of the lower-case
letters is RECOMMENDED. Examples of valid IPv6 address textual representations:

e 1080:0:0:800:ba98:3210:11aa:12dd
e 1080::800:ba98:3210:11aa:12dd
e (0:0:0:0:0:0:13.1.68.3

Unspecified or inapplicable IP addresses and subnet masks MUST be represented as empty strings unless otherwise
specified by the parameter definition.

All MAC addresses are represented as strings of 12 hexadecimal digits (digits 0-9, letters A-F or a-f) displayed as
six pairs of digits separated by colons. Unspecified or inapplicable MAC addresses MUST be represented as empty
strings unless otherwise specified by the parameter definition.

September 2009 © The Broadband Forum. All rights reserved. 20

3.3

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

For unsignedInt parameters that are used for statistics, e.g. for byte counters, the actual value of the statistic might be
greater than the maximum value that can be represented as an unsignedInt. Such values SHOULD wrap around
through zero. The term “packet” is to be interpreted as the transmission unit appropriate to the protocol layer in
question, e.g. an IP packet or an Ethernet frame.

For strings that are defined to contain comma-separated lists, the format is defined as follows. Between every pair
of successive items in a comma-separated list there MUST be a separator. The separator MUST include exactly one
comma character, and MAY also include one or more space characters before or after the comma. The entire
separator, including any space characters, MUST NOT be considered part of the list items it separates. The last item
in a comma-separated list MUST NOT be followed with a separator. Individual items in a comma-separated list
MUST NOT include a space or comma character within them. If an item definition requires the use of spaces or
commas, that definition MUST specify the use of an escape mechanism that prevents the use of these characters.

For string parameters whose value is defined to contain the full hierarchical name of an object, the representation of
the object name MUST NOT include a trailing “dot.” An example of a parameter of this kind in the
InternetGatewayDevice data model is InternetGatewayDevice.Layer3Forwarding.DefaultConnectionService. For
this parameter, the following is an example of a properly formed value:

InternetGatewayDevice.WANDevice.1.WANConnectionDevice.2. WANPPPConnection.1

Vendor-Specific Parameters

A vendor MAY extend the standardized parameter list with vendor-specific parameters and objects. Vendor-
specific parameters and objects MAY be defined either in a separate naming hierarchy or within the standardized
naming hierarchy.

The name of a vendor-specific parameter or object not contained within another vendor-specific object MUST have
the form:

X_<VENDOR>_VendorSpecificName

In this definition <VENDOR> is a unique vendor identifier, which MAY be either an OUI or a domain name. The
OUI or domain name used for a given vendor-specific parameter MUST be one that is assigned to the organization
that defined this parameter (which is not necessarily the same as the vendor of the CPE or ACS). An OUI is an
organizationally unique identifier as defined in [4], which MUST formatted as a six-hexadecimal-digit string using
all upper-case letters and including any leading zeros. A domain name MUST be upper case with each dot (*.”)
replaced with a hyphen or underscore.

The VendorSpecificName MUST be a valid string as defined in 3.2, and MUST NOT contain a “.” (period) or a
space character.

Note — the use of the string “X_ " to indicate a vendor-specific parameter implies that no standardized
parameter can begin with “X_”.

The name of a vendor-specific parameter or object that is contained within another vendor-specific object which
itself begins with the prefix described above need not itself include the prefix.

The full path name of a vendor-specific parameter or object MUST NOT exceed 256 characters in length.
Below are some example vendor-specific parameter and object names:

Device.Userlnterface.X_012345_AdBanner
Device.X_EXAMPLE-COM_MyConfig.Status

September 2009 © The Broadband Forum. All rights reserved. 21

3.4

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

When appropriate, a vendor MAY also extend the set of values of an enumeration. If this is done, the vendor-
specified values MUST be in the form “X <VENDOR> VendorSpecificValue”. The total length of such a string
MUST NOT exceed 31 characters.

Common Object Definitions
Table 2 provides a summary of the common data objects that are defined in this specification.

Table 2 — Summary of Common Data Objects

Object Name

Allowed Location in
Hierarchy

Description

Service Objects

Capabilities Root and Device capabilities.
Service Objects
Devicelnfo Root and General information about the device, including its identity and
Service Objects version information.
ManagementServer Root Parameters associated with the communication between the CPE
and an ACS.
Gatewaylnfo Root Information to identify an Internet Gateway Device through which
the CPE is connected.
Time Root and Parameters associated with an NTP or SNTP time client on the
Service Objects CPE.
Config Root and Contains general configuration state.

Userlnterface

Root and
Service Objects

Parameters related to the user interface of the CPE.

LAN

Root and
Service Objects

Parameters related to IP-based LAN connectivity of the CPE.

Table 3 lists the Common Objects and their associated parameters defined for “Device”, version 1.2. This definition

is a superset of previously defined versions, 1.0 and 1.1.

Note — this document defines only “Device” versions 1.0, 1.1 and 1.2. Later versions are created by defining,
in separate documents such as TR-157 [17], additional Components that can, unlike Common Objects, be
contained in both the “Device” and “InternetGatewayDevice” Root Objects.

For a given implementation of this data model, the CPE MUST indicate support for the highest version number of
any object or parameter that it supports. For example, even if the CPE supports only a single parameter that was
introduced in version 1.2, then it will indicate support for version 1.2. The version number associated with each
object and parameter is shown in the Version column of Table 3.

Table 3 — Common Object definitions for Device:1

Name?

Type Write® |Description

Object
Default*

The name of a Parameter is formed from the concatenation of the base path (see section 2.1), the object name

shown in the yellow header, and the individual Parameter name.

“W” indicates the parameter MAY be writable (if “W” is not present, the parameter is defined as read-only). For

an object, “W” indicates object instances can be Added or Deleted.

The default value of the parameter on creation of an object instance via TR-069. If the default value is an empty

string, this is represented by the symbol <Empty>. A hyphen indicates that no default value is specified. Fora
parameter in which no default value is specified, on creation of a parent object instance, the CPE MUST set the
parameter to a value that is valid according to the definition of that parameter.

or Object.

September 2009

The Version column indicates the minimum data model version REQUIRED to support the associated Parameter

© The Broadband Forum. All rights reserved. 22

Version®

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Name?

Type

Write®

Description

Object
Default*

Version®

Device.

object

The top-level object for a Device.

1.0

DeviceSummary

string(1024)

See section 3.7.

1.0

Device.Services.

object

This object contains general services information.

1.0

Device.Capabilities.

object

The capabilities of the device. This is a constant read-
only object, meaning that only a firmware upgrade will
cause these values to be altered.

1.2

Device.Capabilities.PerformanceDiagnostic.

object

The capabilities of the Performance Diagnostics
(DownloadDiagnostics and UploadDiagnostics) for the
device.

1.2

DownloadTransports

string

Comma-separated list of strings. Supported
DownloadDiagnostics transport protocols for a CPE
device. Each list item is an enumeration of:

e HTTP

e FTP(OPTIONAL)

1.2

UploadTransports

string

Comma-separated list of strings. Supported
UploadDiagnostics transport protocols for a CPE device.
Each list item is an enumeration of:

e HTTP

e FTP(OPTIONAL)

1.2

Device.Devicelnfo.

object

This object contains general device information.

1.0

Manufacturer

string(64)

The manufacturer of the CPE (human readable string).

1.0

ManufacturerOUI

string(6)

Organizationally unique identifier of the device
manufacturer. Represented as a six hexadecimal-digit
value using all upper-case letters and including any
leading zeros. The value MUST be a valid OUI as
defined in [4].

This value MUST remain fixed over the lifetime of the
device, including across firmware updates.

1.0

ModelName

string(64)

Model name of the CPE (human readable string).

1.0

Description

string(256)

A full description of the CPE device (human readable
string).

1.0

ProductClass

string(64)

Identifier of the class of product for which the serial
number applies. That is, for a given manufacturer, this
parameter is used to identify the product or class of
product over which the SerialNumber parameter is
unique.

This value MUST remain fixed over the lifetime of the
device, including across firmware updates.

1.0

SerialNumber

string(64)

Serial number of the CPE.

This value MUST remain fixed over the lifetime of the
device, including across firmware updates.

1.0

HardwareVersion

string(64)

A string identifying the particular CPE model and version.

1.0

SoftwareVersion

string(64)

A string identifying the software version currently
installed in the CPE.

To allow version comparisons, this element SHOULD be
in the form of dot-delimited integers, where each
successive integer represents a more minor category of
variation. For example, 3.0.21 where the components
mean: Major.Minor.Build.

1.0

EnabledOptions

string(1024)

Comma-separated list (maximum length 1024) of strings.
Comma-separated list of the OptionName of each Option

1.0

September 2009

© The Broadband Forum. All rights reserved.

23

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Name?

Type

Write®

Description

Object
Default*

Version®

that is currently enabled in the CPE. The OptionName of
each is identical to the OptionName element of the
OptionStruct described in [2]. Only those options are
listed whose State indicates the option is enabled.

AdditionalHardwareVersion

string(64)

Comma-separated list (maximum length 64) of strings. A
comma-separated list of any additional versions.
Represents any additional hardware version information
the vendor might wish to supply.

1.0

AdditionalSoftwareVersion

string(64)

Comma-separated list (maximum length 64) of strings. A
comma-separated list of any additional versions.
Represents any additional software version information
the vendor might wish to supply.

1.0

ProvisioningCode

string(64)

Identifier of the primary service provider and other
provisioning information, which MAY be used by the ACS
to determine service provider-specific customization and
provisioning parameters.

1.0

DeviceStatus

string

Current operational status of the device. Enumeration of:

° Up
® |nitializing
e FError

e Disabled

1.0

UpTime

unsignedint

Time in seconds since the CPE was last restarted.

1.0

FirstUseDate

dateTime

Date and time in UTC that the CPE first both successfully
established an IP-layer network connection and acquired
an absolute time reference using NTP or equivalent over
that network connection. The CPE MAY reset this date
after a factory reset.

If NTP or equivalent is not available, this parameter, if
present, SHOULD be set to the Unknown Time value.

1.0

Devicelog

string(32768)

Vendor-specific log(s).

1.0

Device.ManagementServer.

object

This object contains parameters relating to the CPE's
association with an ACS.

1.0

URL

string(256)

URL, as defined in [8], for the CPE to connect to the
ACS using the CPE WAN Management Protocol.

This parameter MUST be in the form of a valid HTTP or
HTTPS URL.

The host portion of this URL is used by the CPE for
validating the ACS certificate when using SSL or TLS.

Note that on a factory reset of the CPE, the value of this
parameter might be reset to its factory value. If an ACS
modifies the value of this parameter, it SHOULD be
prepared to accommodate the situation that the original
value is restored as the result of a factory reset.

1.0

Username

string(256)

Username used to authenticate the CPE when making a
connection to the ACS using the CPE WAN
Management Protocol.

This username is used only for HTTP-based
authentication of the CPE.

Note that on a factory reset of the CPE, the value of this
parameter might be reset to its factory value. If an ACS
modifies the value of this parameter, it SHOULD be
prepared to accommodate the situation that the original

1.0

September 2009

© The Broadband Forum. All rights reserved.

24

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Name?

Type

Write®

Description

Object
Default*

Version®

value is restored as the result of a factory reset.

Password

string(256)

Password used to authenticate the CPE when making a
connection to the ACS using the CPE WAN
Management Protocol.

This password is used only for HTTP-based
authentication of the CPE.

When read, this parameter returns an empty string,
regardless of the actual value.

Note that on a factory reset of the CPE, the value of this
parameter might be reset to its factory value. If an ACS
modifies the value of this parameter, it SHOULD be
prepared to accommodate the situation that the original
value is restored as the result of a factory reset.

When read, this parameter returns an empty string,
regardless of the actual value.

1.0

PeriodicinformEnable

boolean

Whether or not the CPE MUST periodically send CPE
information to the ACS using the Inform method call.

1.0

PeriodiclinformInterval

unsignedInt-

(1]

The duration in seconds of the interval for which the CPE
MUST attempt to connect with the ACS and call the
Inform method if PeriodicinformEnable is true.

1.0

PeriodicinformTime

dateTime

An absolute time reference in UTC to determine when
the CPE will initiate the periodic Inform method calls.
Each Inform call MUST occur at this reference time plus
or minus an integer multiple of the
PeriodicInforminterval.

PeriodicInformTime is used only to set the phase of the
periodic Informs. The actual value of PeriodicinformTime
can be arbitrarily far into the past or future.

For example, if Periodicinforminterval is 86400 (a day)
and if PeriodicinformTime is set to UTC midnight on
some day (in the past, present, or future) then periodic
Informs will occur every day at UTC midnight. These
MUST begin on the very next midnight, even if
PeriodicInformTime refers to a day in the future.

The Unknown Time value defined in section 3.2 indicates
that no particular time reference is specified. That is, the
CPE MAY locally choose the time reference, and needs
only to adhere to the specified Periodicinforminterval.

If absolute time is not available to the CPE, its periodic
Inform behavior MUST be the same as if the
PeriodicInformTime parameter was set to the Unknown
Time value.

1.0

ParameterKey

string(32)

ParameterKey provides the ACS a reliable and
extensible means to track changes made by the ACS.
The value of ParameterKey MUST be equal to the value
of the ParameterKey argument from the most recent
successful SetParameterValues, AddObject, or
DeleteObject method call from the ACS.

The CPE MUST set ParameterKey to the value specified
in the corresponding method arguments if and only if the
method completes successfully and no fault response is
generated. If a method call does not complete
successfully (implying that the changes requested in the
method did not take effect), the value of ParameterKey
MUST NOT be modified.

1.0

September 2009

© The Broadband Forum. All rights reserved.

25

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Name?

Type

Write®

Description

Object
Default*

Version®

The CPE MUST only modify the value of ParameterKey
as a result of SetParameterValues, AddObject,
DeleteObject, or due to a factory reset. On factory reset,
the value of ParameterKey MUST be set to an empty
string.

ConnectionRequestURL

string(256)

HTTP URL, as defined in [8], for an ACS to make a
Connection Request notification to the CPE.

In the form:

http://host:port/path
The host portion of the URL MAY be the IP address for
the management interface of the CPE in lieu of a host
name.

1.0

ConnectionRequestUsername

string(256)

Username used to authenticate an ACS making a
Connection Request to the CPE.

1.0

ConnectionRequestPassword

string(256)

Password used to authenticate an ACS making a
Connection Request to the CPE.

When read, this parameter returns an empty string,
regardless of the actual value.

When read, this parameter returns an empty string,
regardless of the actual value.

1.0

UpgradesManaged

boolean

Indicates whether or not the ACS will manage upgrades
for the CPE. If true, the CPE SHOULD NOT use other
means other than the ACS to seek out available
upgrades. If false, the CPE MAY use other means for
this purpose.

Note that an autonomous upgrade (reported via an "10
AUTONOMOUS TRANSFER COMPLETE" Inform Event
code) SHOULD be regarded as a managed upgrade fif it
is performed according to ACS-specified policy.

1.0

KickURL

string(256)

Present only for a CPE that supports the Kicked RPC
method.

LAN-accessible URL, as defined in [8], from which the
CPE can be kicked to initiate the Kicked RPC method
call. MUST be an absolute URL including a host name or
IP address as would be used on the LAN side of the
CPE.

1.0

DownloadProgressURL

string(256)

Present only for a CPE that provides a LAN-side web
page to show progress during a file download.

LAN-accessible URL, as defined in [8], to which a web-
server associated with the ACS MAY redirect a user's
browser on initiation of a file download to observer the
status of the download.

1.0

UDPConnectionRequestAddress

string(256)

Address and port to which an ACS MAY send a UDP
Connection Request to the CPE (see [2] Annex G).

This parameter is represented in the form of an Authority
element as defined in [8]. The value MUST be in one of
the following two forms:

host:port
host

° When STUNEnable is true, the host and port
portions of this parameter MUST represent the
public address and port corresponding to the
NAT binding through which the ACS can send
UDP Connection Request messages (once
this information is learned by the CPE through

1.1

September 2009

© The Broadband Forum. All rights reserved.

26

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Name® Type Write® |Description Object | Version®
Default*

the use of STUN).

° When STUNEnable is false, the host and port
portions of the URL MUST represent the local
IP address and port on which the CPE is
listening for UDP Connection Request
messages.

The second form of this parameter MAY be used only if
the port value is equal to 80.

UDPConnectionRequestAddressNotificationLimit|unsignedint W The minimum time, in seconds, between Active - 1.1
Notifications resulting from changes to the
UDPConnectionRequestAddress (if Active Notification is
enabled).

STUNEnable boolean w Enables or disables the use of STUN by the CPE. This - 1.1
applies only to the use of STUN in association with the
ACS to allow UDP Connection Requests.

STUNServerAddress string(256) w Host name or IP address of the STUN server for the CPE - 1.1
to send Binding Requests if STUN is enabled via
STUNEnable.

If is an empty string and STUNEnable is true, the CPE
MUST use the address of the ACS extracted from the
host portion of the ACS URL.

STUNServerPort unsignedint- w Port number of the STUN server for the CPE to send - 1.1
[0:65535] Binding Requests if STUN is enabled via STUNEnable.

By default, this SHOULD be the equal to the default
STUN port, 3478.

STUNUsername string(256) w If is not an empty string, the value of the STUN - 1.1
USERNAME attribute to be used in Binding Requests
(only if message integrity has been requested by the
STUN server).

If is an empty string, the CPE MUST NOT send STUN
Binding Requests with message integrity.

STUNPassword string(256) w The value of the STUN Password to be used in - 1.1
computing the MESSAGE-INTEGRITY attribute to be
used in Binding Requests (only if message integrity has
been requested by the STUN server).

When read, this parameter returns an empty string,
regardless of the actual value.

When read, this parameter returns an empty string,
regardless of the actual value.

STUNMaximumKeepAlivePeriod int[-1:] w If STUN Is enabled, the maximum period, in seconds, - 1.1
that STUN Binding Requests MUST be sent by the CPE
for the purpose of maintaining the binding in the
Gateway. This applies specifically to Binding Requests
sent from the UDP Connection Request address and
port.

A value of -1 indicates that no maximum period is
specified.

STUNMinimumKeepAlivePeriod unsignedint w If STUN Is enabled, the minimum period, in seconds, - 1.1
that STUN Binding Requests can be sent by the CPE for
the purpose of maintaining the binding in the Gateway.
This limit applies only to Binding Requests sent from the
UDP Connection Request address and port, and only
those that do not contain the BINDING-CHANGE
attribute. This limit does not apply to retransmissions
following the procedures defined in [9].

September 2009 © The Broadband Forum. All rights reserved. 27

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Name?

Type

Write®

Description

Object
Default*

Version®

NATDetected

boolean

When STUN is enabled, this parameter indicates
whether or not the CPE has detected address and/or
port mapping in use.

A true value indicates that the received MAPPED-
ADDRESS in the most recent Binding Response differs
from the CPE's source address and port.

When STUNEnable is false, this value MUST be false.

1.1

Device.GatewayInfo.

object

This object contains information associated with a
connected Internet Gateway Device.

1.0

ManufacturerOUI

string(6)

Organizationally unique identifier of the associated
Internet Gateway Device. An empty string indicates that
there is no associated Internet Gateway Device that has
been detected.

1.0

ProductClass

string(64)

Identifier of the product class of the associated Internet
Gateway Device. An empty string indicates either that
there is no associated Internet Gateway Device that has
been detected, or the Internet Gateway Device does not
support the use of the product-class parameter.

1.0

SerialNumber

string(64)

Serial number of the associated Internet Gateway
Device. An empty string indicates that there is no
associated Internet Gateway Device that has been
detected.

1.0

Device.Config.

object

This object contains general configuration parameters.

1.0

PersistentData

string(256)

Arbitrary user data that MUST persist across CPE
reboots.

1.0

ConfigFile

string(32768)

A dump of the currently running configuration on the
CPE. This parameter enables the ability to backup and
restore the last known good state of the CPE. It returns a
vendor-specific document that defines the state of the
CPE. The document MUST be capable of restoring the
CPE's state when written back to the CPE using
SetParameterValues.

An alternative to this parameter, e.g. when the
configuration file is larger than the parameter size limit, is
to use the Upload and Download RPCs with a FileType
of 1 Vendor Configuration File.

1.0

Device.Time.

object

This object contains parameters relating an NTP or
SNTP time client in the CPE.

1.0

NTPServer1

string(64)

First NTP timeserver. Either a host name or IP address.

1.0

NTPServer2

string(64)

Second NTP timeserver. Either a host name or IP
address.

1.0

NTPServer3

string(64)

Third NTP timeserver. Either a host name or IP address.

1.0

NTPServer4

string(64)

Fourth NTP timeserver. Either a host name or IP
address.

1.0

NTPServer5

string(64)

2| == =g|=

Fifth NTP timeserver. Either a host name or IP address.

1.0

CurrentLocalTime

dateTime

The current date and time in the CPE's local time zone.

1.0

LocalTimeZone

string(256)

=

The local time zone definition, encoded according to
IEEE 1003.1 (POSIX). The following is an example
value:

EST+5 EDT,M4.1.0/2,M10.5.0/2

1.0

Device.UserlInterface.

object

This object contains parameters relating to the user
interface of the CPE.

1.0

PasswordRequired

boolean

Present only if the CPE provides a password-protected
LAN-side user interface.

Indicates whether or not the local user interface MUST
require a password to be chosen by the user. If false, the
choice of whether or not a password is used is left to the

1.0

September 2009

© The Broadband Forum. All rights reserved.

28

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Name® Type Write® |Description Object | Version®
Default®
user.
PasswordUserSelectable boolean w Present only if the CPE provides a password-protected - 1.0
LAN-side user interface and supports LAN-side Auto-
Configuration.
Indicates whether or not a password to protect the local
user interface of the CPE MAY be selected by the user
directly, or MUST be equal to the password used by the
LAN-side Auto-Configuration protocol.
UpgradeAvailable boolean w Indicates that a CPE upgrade is available, allowing the - 1.0
CPE to display this information to the user.
WarrantyDate dateTime w Indicates the date and time in UTC that the warranty - 1.0
associated with the CPE is to expire.
ISPName string(64) w The name of the customer's ISP. - 1.0
ISPHelpDesk string(32) W The help desk phone number of the ISP. - 1.0
ISPHomePage string(256) w The URL of the ISP's home page. - 1.0
ISPHelpPage string(256) w The URL of the ISP's on-line support page. - 1.0
ISPLogo base64(4095) w Base64 encoded GIF or JPEG image. The binary image - 1.0
is constrained to 4095 bytes or less.
ISPLogoSize unsignedIint- w Un-encoded binary image size in bytes. - 1.0
[0:4095] If ISPLogoSize input value is 0 then the ISPLogo is
cleared.
ISPLogoSize can also be used as a check to verify
correct transfer and conversion of Base64 string to
image size.
ISPMailServer string(256) w The URL of the ISP's mail server. - 1.0
ISPNewsServer string(256) w The URL of the ISP's news server. - 1.0
TextColor string(6) w The color of text on the GUI screens in RGB hexidecimal - 1.0
notation (e.g., FF0088).
BackgroundColor string(6) w The color of the GUI screen backgrounds in RGB - 1.0
hexidecimal notation (e.g., FF0088).
ButtonColor string(6) w The color of buttons on the GUI screens in RGB - 1.0
hexidecimal notation (e.g., FF0088).
ButtonTextColor string(6) w The color of text on buttons on the GUI screens in RGB - 1.0
hexidecimal notation (e.g., FF0088).
AutoUpdateServer string(256) w The server the CPE can check to see if an update is - 1.0
available for direct download to it. This MUST NOT be
used by the CPE if the
.ManagementServer.UpgradesManaged parameter is
true.
UserUpdateServer string(256) w The server where a user can check via a web browser if - 1.0
an update is available for download to a PC. This MUST
NOT be used by the CPE if the
.ManagementServer.UpgradesManaged parameter is
true.
AvailableLanguages string(256) - Comma-separated list (maximum length 256) of strings. - 1.0
Comma-separated list of user-interface languages that
are available, where each language is specified
according to RFC 3066 [6].
CurrentLanguage string(16) w Current user-interface language, specified according to - 1.0
RFC 3066 [6].
Device.LAN. object - This object contains parameters relating to IP-based - 1.0
LAN connectivity of a device.
This object relates only to IP-layer LAN capabilities.
Lower-layer aspects of LAN connectivity are not
considered part of the common data model defined in
September 2009 © The Broadband Forum. All rights reserved. 29

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Name?

Type

Write®

Description

Object
Default*

Version®

this specification.

For a device that contains multiple IP interfaces, the
scope of this object is limited to the default IP interface.
Data that might be associated with other interfaces is not
considered part of the common data model defined in
this specification.

AddressingType

string

The method used to assign an address to this interface.
Enumeration of:

e DHCP

e Static
The ability to modify this parameter is OPTIONAL.

1.0

IPAddress

string

The current IP address assigned to this interface.

The ability to modify this parameter is OPTIONAL, and
this parameter cannot be modified if the AddressingType
is DHCP.

1.0

SubnetMask

string

The current subnet mask.

The ability to modify this parameter is OPTIONAL, and
this parameter cannot be modified if the AddressingType
is DHCP.

1.0

DefaultGateway

string

The IP address of the current default gateway for this
interface.

The ability to modify this parameter is OPTIONAL, and
this parameter cannot be modified if the AddressingType
is DHCP.

1.0

DNSServers

string(256)

Comma-separated list (maximum length 256) of strings.
Comma-separated list of IP address of the DNS servers
for this interface.

The ability to modify this parameter is OPTIONAL, and
this parameter cannot be modified if the AddressingType
is DHCP.

If this parameter is modifiable, the device MAY ignore
any DNS servers beyond the first two in the list.

1.0

MACAddress

string

The physical address of this interface. Writable only if
MACAddressOverride is present and equal to true.

1.0

MACAddressOverride

boolean

Whether the value of MACAddress parameter can be
overridden.

° When true, MACAddress is writable.
e When false, MACAddress is not writable, and

the default MAC address assigned by the
device SHOULD be restored.

1.0

DHCPOptionNumberOfEntries

unsignedint

Number of entries in the DHCP option table.

1.0

Device.LAN.DHCPOption.{i}.

object

This object is for configuration of DHCP options. Each
instance of this object represents a DHCP option to be
included by the DHCP client in client requests. The
DHCP client MAY include any other options not specified
in this table.

1.0

Request

boolean

Whether this entry represents a request to the DHCP
server, or a value to be sent by the DHCP client.

e When true, this entry represents a request. In
this case, the DHCP client MUST include the

1.0

September 2009

© The Broadband Forum. All rights reserved.

30

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Name?

Type

Write®

Description

Object
Default*

Version®

specified Tag in the Parameter Request List,
as defined in RFC 2132. The Value parameter
is ignored in this case.

e When false, this entry represents a value to be
sent by the DHCP client. In this case, the
DHCP client MUST include a DHCP option
formed from the Tag and Value parameters
(with the Length derived from the length of the
Value parameter).

Tag

unsignedint-
[1:254]

Tag of the DHCP option as defined in RFC 2132.

1.0

Value

base64(255)

Base64 encoded octet string to be used as the Value of
the DHCP option if Request is false.

<Empty>

1.0

Device.LAN.Stats.

object

This object contains statistics for the default IP interface.

1.0

ConnectionUpTime

unsignedint

The time in seconds that this IP interface has been
connected.

e [fthe IP interface is using DHCP, this is the
time that the DHCP client has been only in the
Bound or Renewing states and the lower-layer
interface has continuously maintained a link.

e Ifthe IP interface is using static addressing,
this is the time that the lower-layer interface
has continuously maintained a link.

1.0

TotalBytesSent

unsignedint

Total number of IP payload bytes sent over this interface
since the device was last restarted as specified in
.Devicelnfo.UpTime.

1.0

TotalBytesReceived

unsignedint

Total number of IP payload bytes received over this
interface since the device was last restarted as specified
in .Devicelnfo.UpTime.

1.0

TotalPacketsSent

unsignedint

Total number of IP packets sent over this interface since
the device was last restarted as specified in
.Devicelnfo.UpTime.

1.0

TotalPacketsReceived

unsignedint

Total number of IP packets received over this interface
since the device was last restarted as specified in
.Devicelnfo.UpTime.

1.0

CurrentDaylnterval

unsignedint

Number of seconds since the beginning of the period
used for collection of CurrentDay statistics.

The device MAY align the beginning of each CurrentDay
interval with days in the UTC time zone, but does not
need to do so.

1.0

CurrentDayBytesSent

unsignedint

Total number of IP payload bytes sent over this interface
since the beginning of the current-day interval as
specified by CurrentDayinterval.

1.0

CurrentDayBytesReceived

unsignedint

Total number of IP payload bytes received over this
interface since the beginning of the current-day interval
as specified by CurrentDaylnterval.

1.0

CurrentDayPacketsSent

unsignedint

Total number of IP packets sent over this interface since
the beginning of the current-day interval as specified by
CurrentDaylnterval.

1.0

CurrentDayPacketsReceived

unsignedint

Total number of IP packets received over this interface
since the beginning of the current-day interval as
specified by CurrentDayinterval.

1.0

QuarterHourlnterval

unsignedint

Number of seconds since the beginning of the period
used for collection of QuarterHour statistics.

The device MAY align the beginning of each

1.0

September 2009

© The Broadband Forum. All rights reserved.

31

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Name?

Type

Write®

Description

Object
Default*

Version®

QuarterHour interval with real-time quarter-hour intervals,
but does not need to do so.

QuarterHourBytesSent

unsignedint

Total number of IP payload bytes sent over this interface
since the beginning of the quarter-hour interval as
specified by QuarterHourinterval.

1.0

QuarterHourBytesReceived

unsignedint

Total number of IP payload bytes received over this
interface since the beginning of the quarter-hour interval
as specified by QuarterHourlnterval.

1.0

QuarterHourPacketsSent

unsignedint

Total number of IP packets sent over this interface since
the beginning of the quarter-hour interval as specified by
QuarterHourlnterval.

1.0

QuarterHourPacketsReceived

unsignedint

Total number of IP packets received over this interface
since the beginning of the quarter-hour interval as
specified by QuarterHourlInterval.

1.0

Device.LAN.IPPingDiagnostics.

object

This object defines access to an IP-layer ping test for the
default IP interface.

1.0

DiagnosticsState

string

Indicates availability of diagnostic data. Enumeration of:

® None

® Requested

e Complete

® Error_CannotResolveHostName
e FError_Internal

e Error_Other

If the ACS sets the value of this parameter to Requested,
the CPE MUST initiate the corresponding diagnostic test.
When writing, the only allowed value is Requested. To
ensure the use of the proper test parameters (the
writable parameters in this object), the test parameters
MUST be set either prior to or at the same time as (in the
same SetParameterValues) setting the DiagnosticsState
to Requested.

When requested, the CPE SHOULD wait until after
completion of the communication session with the ACS
before starting the diagnostic.

When the test is completed, the value of this parameter
MUST be either Complete (if the test completed
successfully), or one of the Error values listed above.

If the value of this parameter is anything other than
Complete, the values of the results parameters for this
test are indeterminate.

When the diagnostic initiated by the ACS is completed
(successfully or not), the CPE MUST establish a new
connection to the ACS to allow the ACS to view the
results, indicating the Event code 8 DIAGNOSTICS
COMPLETE in the Inform message.

After the diagnostic is complete, the value of all result
parameters (all read-only parameters in this object)
MUST be retained by the CPE until either this diagnostic
is run again, or the CPE reboots. After a reboot, if the
CPE has not retained the result parameters from the

most recent test, it MUST set the value of this parameter

1.0

September 2009

© The Broadband Forum. All rights reserved.

32

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Name?

Type

Write®

Description

Object
Default*

Version®

to None.

Modifying any of the writable parameters in this object
except for this one MUST result in the value of this
parameter being set to None.

While the test is in progress, modifying any of the
writable parameters in this object except for this one
MUST result in the test being terminated and the value of
this parameter being set to None.

While the test is in progress, setting this parameter to
Requested (and possibly modifying other writable
parameters in this object) MUST result in the test being
terminated and then restarted using the current values of
the test parameters.

Host

string(256)

Host name or address of the host to ping.

1.0

NumberOfRepetitions

unsignedint-

(1]

Number of repetitions of the ping test to perform before
reporting the results.

1.0

Timeout

unsignedInt-

(1]

Timeout in milliseconds for the ping test.

1.0

DataBlockSize

unsignedint-
[1:65535]

Size of the data block in bytes to be sent for each ping.

1.0

DSCP

unsignedInt-
[0:63]

2| 2| 2| g|=

DiffServ codepoint to be used for the test packets. By
default the CPE SHOULD set this value to zero.

1.0

SuccessCount

unsignedint

Result parameter indicating the number of successful
pings (those in which a successful response was
received prior to the timeout) in the most recent ping test.

1.0

FailureCount

unsignedint

Result parameter indicating the number of failed pings in
the most recent ping test.

1.0

AverageResponseTime

unsignedint

Result parameter indicating the average response time
in milliseconds over all repetitions with successful
responses of the most recent ping test. If there were no
successful responses, this value MUST be zero.

1.0

MinimumResponseTime

unsignedint

Result parameter indicating the minimum response time
in milliseconds over all repetitions with successful
responses of the most recent ping test. If there were no
successful responses, this value MUST be zero.

1.0

MaximumResponseTime

unsignedint

Result parameter indicating the maximum response time
in milliseconds over all repetitions with successful
responses of the most recent ping test. If there were no
successful responses, this value MUST be zero.

1.0

Device.LAN.TraceRouteDiagnostics.

object

This object is defines access to an IP-layer trace-route
test for the default IP interface.

1.0

DiagnosticsState

string

Indicates availability of diagnostic data. Enumeration of:

® None

® Requested

e Complete

® Error_CannotResolveHostName
® Error_MaxHopCountExceeded
e FError_Internal

® Error_Other

1.0

September 2009

© The Broadband Forum. All rights reserved.

33

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Name?

Type

Write®

Description

Object
Default*

Version®

If the ACS sets the value of this parameter to Requested,
the CPE MUST initiate the corresponding diagnostic test.
When writing, the only allowed value is Requested. To
ensure the use of the proper test parameters (the
writable parameters in this object), the test parameters
MUST be set either prior to or at the same time as (in the
same SetParameterValues) setting the DiagnosticsState
to Requested.

When requested, the CPE SHOULD wait until after
completion of the communication session with the ACS
before starting the diagnostic.

When the test is completed, the value of this parameter
MUST be either Complete (if the test completed
successfully), or one of the Error values listed above.

If the value of this parameter is anything other than
Complete, the values of the results parameters for this
test are indeterminate.

When the diagnostic initiated by the ACS is completed
(successfully or not), the CPE MUST establish a new
connection to the ACS to allow the ACS to view the
results, indicating the Event code 8 DIAGNOSTICS
COMPLETE in the Inform message.

After the diagnostic is complete, the value of all result
parameters (all read-only parameters in this object)
MUST be retained by the CPE until either this diagnostic
is run again, or the CPE reboots. After a reboot, if the
CPE has not retained the result parameters from the
most recent test, it MUST set the value of this parameter
to None.

Modifying any of the writable parameters in this object
except for this one MUST result in the value of this
parameter being set to None.

While the test is in progress, modifying any of the
writable parameters in this object except for this one
MUST result in the test being terminated and the value of
this parameter being set to None.

While the test is in progress, setting this parameter to
Requested (and possibly modifying other writable
parameters in this object) MUST result in the test being
terminated and then restarted using the current values of
the test parameters.

Host

string(256)

Host name or address of the host to find a route to.

1.0

Timeout

unsignedint-

(1]

Timeout in milliseconds for the trace route test.

1.0

DataBlockSize

unsignedint-
[1:65535]

Size of the data block in bytes to be sent for each trace
route.

1.0

MaxHopCount

unsignedInt-
[1:64]

The maximum number of hop used in outgoing probe
packets (max TTL). The default is 30 hops.

1.0

DSCP

unsignedint-
[0:63]

2| =2l 2| 2=

DiffServ codepoint to be used for the test packets. By
default the CPE SHOULD set this value to zero.

1.0

ResponseTime

unsignedint

Result parameter indicating the response time in
milliseconds the most recent trace route test. If a route
could not be determined, this value MUST be zero.

1.0

NumberOfRouteHops

unsignedint

Result parameter indicating the number of hops within
the discovered route. If a route could not be determined,

1.0

September 2009

© The Broadband Forum. All rights reserved.

34

Data Model Template for TR-069-Enabled Devices

TR-106 Issue

1 Amendment 3

Name?

Type

Write®

Description

Object
Default*

Version®

this value MUST be zero.

Device.LAN.TraceRouteDiagnostics.-
RouteHops.{i}.

object

Result parameter indicating the components of the
discovered route. If a route could not be determined,
there will be no instances of this object.

1.0

HopHost

string(256)

Result parameter indicating the Host Name or IP
Address of a hop along the discovered route.

1.0

Device.DownloadDiagnostics.

object

This object defines the diagnostics configuration for a
HTTP and FTP DownloadDiagnostics Test.

Files received in the DownloadDiagnostics do not require
file storage on the CPE device.

1.2

DiagnosticsState

string

Indicate the availability of diagnostic data. Enumeration
of:

® None

® Requested

e Completed

® FError_InitConnectionFailed
® Error_NoResponse

® Error_TransferFailed

® Error_PasswordRequestFailed
® Error_LoginFailed

® Error_NoTransferMode

® Error NoPASV

® FError_IncorrectSize

e Error_Timeout

If the ACS sets the value of this parameter to Requested,
the CPE MUST initiate the corresponding diagnostic test.
When writing, the only allowed value is Requested. To
ensure the use of the proper test parameters (the
writable parameters in this object), the test parameters
MUST be set either prior to or at the same time as (in the
same SetParameterValues) setting the DiagnosticsState
to Requested.

When requested, the CPE SHOULD wait until after
completion of the communication session with the ACS
before starting the diagnostic.

When the test is completed, the value of this parameter
MUST be either Completed (if the test completed
successfully), or one of the Error values listed above.

If the value of this parameter is anything other than
Completed, the values of the results parameters for this
test are indeterminate.

When the diagnostic initiated by the ACS is completed
(successfully or not), the CPE MUST establish a new
connection to the ACS to allow the ACS to view the

1.2

September 2009

© The Broadband Forum. All rights reserved.

35

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Name?

Type

Write®

Description

Object
Default*

Version®

results, indicating the Event code 8 DIAGNOSTICS
COMPLETE in the Inform message.

After the diagnostic is complete, the value of all result
parameters (all read-only parameters in this object)
MUST be retained by the CPE until either this diagnostic
is run again, or the CPE reboots. After a reboot, if the
CPE has not retained the result parameters from the
most recent test, it MUST set the value of this parameter
to None.

Modifying any of the writable parameters in this object
except for this one MUST result in the value of this
parameter being set to None.

While the test is in progress, modifying any of the
writable parameters in this object except for this one
MUST result in the test being terminated and the value of
this parameter being set to None.

While the test is in progress, setting this parameter to
Requested (and possibly modifying other writable
parameters in this object) MUST result in the test being
terminated and then restarted using the current values of
the test parameters.

Interface

string(256)

The value MUST be the full path name of the IP-layer
interface over which the test is to be performed.

The value of this parameter MUST be either a valid
interface or an empty string. An attempt to set this
parameter to a different value MUST be rejected as an
invalid parameter value.

If an empty string is specified, the CPE MUST use the
default routing interface.

1.2

DownloadURL

string(256)

The URL, as defined in [8], for the CPE to perform the
download on. This parameter MUST be in the form of a
valid HTTP [13] or FTP [12] URL.

® When using FTP transport, FTP binary transfer
MUST be used.

e When using HTTP transport, persistent
connections MUST be used and pipelining
MUST NOT be used.

e When using HTTP transport the HTTP
Authentication MUST NOT be used.

1.2

DSCP

unsignedint-
[0:63]

The DiffServ code point for marking packets transmitted
in the test.

The default value SHOULD be zero.

1.2

EthernetPriority

unsignedInt-
[0:7]

Ethernet priority code for marking packets transmitted in
the test (if applicable).

The default value SHOULD be zero.

1.2

ROMTime

dateTime

Request time in UTC, which MUST be specified to
microsecond precision.

For example: 2008-04-09T15:01:05.123456

° For HTTP this is the time at which the client

1.2

September 2009

© The Broadband Forum. All rights reserved.

36

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Name?

Type

Write®

Description

Object
Default*

Version®

sends the GET command.

° For FTP this is the time at which the client
sends the RTRV command.

BOMTime

dateTime

Begin of transmission time in UTC, which MUST be
specified to microsecond precision

For example: 2008-04-09T15:01:05.123456

e For HTTP this is the time at which the first data
packet is received.

e For FTP this is the time at which the client
receives the first data packet on the data
connection.

1.2

EOMTime

dateTime

End of transmission in UTC, which MUST be specified to
microsecond precision.

For example: 2008-04-09T15:01:05.123456

° For HTTP this is the time at which the last data
packet is received.

° For FTP this is the time at which the client
receives the last packet on the data
connection.

1.2

TestBytesReceived

unsignedint

The test traffic received in bytes during the FTP/HTTP
transaction including FTP/HTTP headers, between
BOMTime and EOMTime,

1.2

TotalBytesReceived

unsignedint

The total number of bytes received on the Interface
between BOMTime and EOMTime.

1.2

TCPOpenRequestTime

dateTime

Request time in UTC, which MUST be specified to
microsecond precision.

For example: 2008-04-09T15:01:05.123456

° For HTTP this is the time at which the TCP
socket open (SYN) was sent for the HTTP
connection.

e For FTP this is the time at which the TCP
socket open (SYN) was sent for the data
connection.

Note: Interval of 1 microsecond SHOULD be supported.

1.2

TCPOpenResponseTime

dateTime

Response time in UTC, which MUST be specified to
microsecond precision.

For example: 2008-04-09T15:01:05.123456

e For HTTP this is the time at which the TCP
ACK to the socket opening the HTTP
connection was received.

® For FTP this is the time at which the TCP ACK
to the socket opening the data connection was
received.

Note: Interval of 1 microsecond SHOULD be supported.

1.2

Device.UploadDiagnostics.

object

This object defines the diagnostics configuration for a
HTTP or FTP UploadDiagnostics test.

1.2

September 2009

© The Broadband Forum. All rights reserved.

37

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Name?

Type

Write®

Description

Object
Default*

Version®

Files sent by the UploadDiagnostics do not require file
storage on the CPE device, and MAY be an arbitrary
stream of bytes.

DiagnosticsState

string

Indicate the availability of diagnostic data. Enumeration
of:

® None

® Requested

e Completed

® Error_InitConnectionFailed
® Error_NoResponse

® Error_PasswordRequestFailed
® Error_LoginFailed

® Error_NoTransferMode

® Error NoPASV

e Error NoCWD

® Error NoSTOR

® Error_NoTransferComplete

If the ACS sets the value of this parameter to Requested,
the CPE MUST initiate the corresponding diagnostic test.
When writing, the only allowed value is Requested. To
ensure the use of the proper test parameters (the
writable parameters in this object), the test parameters
MUST be set either prior to or at the same time as (in the
same SetParameterValues) setting the DiagnosticsState
to Requested.

When requested, the CPE SHOULD wait until after
completion of the communication session with the ACS
before starting the diagnostic.

When the test is completed, the value of this parameter
MUST be either Completed (if the test completed
successfully), or one of the Error values listed above.

If the value of this parameter is anything other than
Completed, the values of the results parameters for this
test are indeterminate.

When the diagnostic initiated by the ACS is completed
(successfully or not), the CPE MUST establish a new
connection to the ACS to allow the ACS to view the
results, indicating the Event code 8 DIAGNOSTICS
COMPLETE in the Inform message.

After the diagnostic is complete, the value of all result
parameters (all read-only parameters in this object)
MUST be retained by the CPE until either this diagnostic
is run again, or the CPE reboots. After a reboot, if the
CPE has not retained the result parameters from the

1.2

September 2009

© The Broadband Forum. All rights reserved.

38

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Name?

Type

Write®

Description

Object
Default*

Version®

most recent test, it MUST set the value of this parameter
to None.

Modifying any of the writable parameters in this object
except for this one MUST result in the value of this
parameter being set to None.

While the test is in progress, modifying any of the
writable parameters in this object except for this one
MUST result in the test being terminated and the value of
this parameter being set to None.

While the test is in progress, setting this parameter to
Requested (and possibly modifying other writable
parameters in this object) MUST result in the test being
terminated and then restarted using the current values of
the test parameters.

Interface

string(256)

The value MUST be the full path name of the IP-layer
interface over which the test is to be performed.

The value of this parameter MUST be either a valid
interface or an empty string. An attempt to set this
parameter to a different value MUST be rejected as an
invalid parameter value.

If an empty string is specified, the CPE MUST use the
default routing interface.

1.2

UploadURL

string(256)

The URL, as defined in [8], for the CPE to Upload to.
This parameter MUST be in the form of a valid HTTP [13]
or FTP [12] URL.

® When using FTP transport, FTP binary transfer
MUST be used.

e When using HTTP transport, persistent
connections MUST be used and pipelining
MUST NOT be used.

e When using HTTP transport the HTTP
Authentication MUST NOT be used.

1.2

DSCP

unsignedint-
[0:63]

DiffServ code point for marking packets transmitted in
the test.

The default value SHOULD be zero.

1.2

EthernetPriority

unsignedInt-
[0:7]

Ethernet priority code for marking packets transmitted in
the test (if applicable).

The default value SHOULD be zero.

1.2

TestFileLength

unsignedint

The size of the file (in bytes) to be uploaded to the
server.

The CPE MUST insure the appropriate number of bytes
are sent.

1.2

ROMTime

dateTime

Request time in UTC, which MUST be specified to
microsecond precision.

For example: 2008-04-09T15:01:05.123456

° For HTTP this is the time at which the client
sends the PUT command

° For FTP this is the time at which the STOR

1.2

September 2009

© The Broadband Forum. All rights reserved.

39

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Name?

Type

Write®

Description

Object
Default*

Version®

command is sent.

BOMTime

dateTime

Begin of transmission time in UTC, which MUST be
specified to microsecond precision.

For example: 2008-04-09T15:01:05.123456

e For HTTP this is the time at which the first data
packet is sent.

e For FTP this is the time at which the client
receives the ready for transfer notification.

1.2

EOMTime

dateTime

End of transmission in UTC, which MUST be specified to
microsecond precision.

For example: 2008-04-09T15:01:05.123456

® For HTTP this is the time when the HTTP
successful response code is received.

e For FTP this is the time when the client
receives a transfer complete.

1.2

TotalBytesSent

unsignedint

The total number of bytes sent on the Interface between
BOMTime and EOMTime.

1.2

TCPOpenRequestTime

dateTime

Request time in UTC, which MUST be specified to
microsecond precision.

For example: 2008-04-09T15:01:05.123456

° For HTTP this is the time at which the TCP
socket open (SYN) was sent for the HTTP
connection.

e For FTP this is the time at which the TCP
socket open (SYN) was sent for the data
connection

Note: Interval of 1 microsecond SHOULD be supported.

1.2

TCPOpenResponseTime

dateTime

Response time in UTC, which MUST be specified to
microsecond precision.

For example: 2008-04-09T15:01:05.123456

° For HTTP this is the Time at which the TCP
ACK to the socket opening the HTTP
connection was received.

e For FTP this is the Time at which the TCP
ACK to the socket opening the Data
connection was received.

Note: Interval of 1 microsecond SHOULD be supported.

1.2

Device.UDPEchoConfig.

object

This object allows the CPE to be configured to perform
the UDP Echo Service defined in [11] and UDP Echo
Plus Service defined in [15] Appendix A.1.

1.2

Enable

boolean

MUST be enabled to receive UDP echo. When enabled
from a disabled state all related timestamps, statistics
and UDP Echo Plus counters are cleared.

1.2

Interface

string(256)

The value MUST be the full path name of IP-layer
interface over which the CPE MUST listen and receive
UDP echo requests on.

The value of this parameter MUST be either a valid

1.2

September 2009

© The Broadband Forum. All rights reserved.

40

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Name® Type Write® |Description Object | Version®
Default®
interface or an empty string. An attempt to set this
parameter to a different value MUST be rejected as an
invalid parameter value.
If an empty string is specified, the CPE MUST listen and
receive UDP echo requests on all interfaces.
Note: Interfaces behind a NAT MAY require port
forwarding rules configured in the Gateway to enable
receiving the UDP packets.
SourcelPAddress string w The Source IP address of the UDP echo packet. The - 1.2
CPE MUST only respond to a UDP echo from this source
IP address.
UDPPort unsignedint w The UDP port on which the UDP server MUST listen and - 1.2
respond to UDP echo requests.
EchoPlusEnabled boolean w If true the CPE will perform necessary packet processing - 1.2
for UDP Echo Plus packets.
EchoPlusSupported boolean - true if UDP Echo Plus is supported. - 1.2
PacketsReceived unsignedint - Incremented upon each valid UDP echo packet received. - 1.2
PacketsResponded unsignedint - Incremented for each UDP echo response sent. - 1.2
BytesReceived unsignedint - The number of UDP received bytes including payload - 1.2
and UDP header after the UDPEchoConfig is enabled.
BytesResponded unsignedint - The number of UDP responded bytes, including payload - 1.2
and UDP header sent after the UDPEchoConfig is
enabled.
TimeFirstPacketReceived dateTime - Time in UTC, which MUST be specified to microsecond - 1.2
precision.
For example: 2008-04-09T15:01:05.123456,
The time that the server receives the first UDP echo
packet after the UDPEchoConfig is enabled.
TimeLastPacketReceived dateTime - Time in UTC, which MUST be specified to microsecond - 1.2
precision.
For example: 2008-04-09T15:01:05.123456
The time that the server receives the most recent UDP
echo packet.

3.5 Inform Requirements

For CPE supporting the Device Root Object, the CPE MUST include in the ParameterList argument of the Inform
message all of the parameters listed in Table 4 that are present in the data model implementation (any that are not

present in the implementation need not be included in the Inform).

Table 4 — Forced Inform parameters

Parameter

Device.DeviceSummary

Device.Devicelnfo.HardwareVersion

Device.Devicelnfo.SoftwareVersion

Device.ManagementServer.ConnectionRequestURL

Device.ManagementServer.ParameterKey

Device.LAN.IPAddress

September 2009

© The Broadband Forum. All rights reserved.

41

3.6

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Note — the Forced Inform requirements do not apply to secondary instances of any of the above parameters
that might be contained within Service Objects.

Notification Requirements

CPE MUST support Active Notification (see [2]) for all parameters defined in the Common Object definitions for
the Device Root Object (section 3.4) with the exception of those parameters listed in Table 5. For only those
parameters listed Table 5, the CPE MAY reject a request by an ACS to enable Active Notification via the
SetParameterAttributes RPC by responding with fault code 9009 as defined in [2] (Notification request rejected).

CPE MUST support Passive Notification (see [2]) for all parameters defined in the Common Object definitions for
the Device Root Object, with no exceptions.

Table 5 — Parameters for which Active Notification MAY be denied by the CPE

Parameter®

.Devicelnfo.

ModelName

Description

UpTime

FirstUseDate

Devicelog

.ManagementServer.

ParameterKey

.Time.

CurrentLocalTime

.LAN.Stats.

ConnectionUpTime

TotalBytesSent

TotalBytesReceived

TotalPacketsSent

TotalPacketsReceived

CurrentDaylnterval

CurrentDayBytesSent

CurrentDayBytesReceived

CurrentDayPacketsSent

CurrentDayPacketsReceived

QuarterHourlnterval

QuarterHourBytesSent

QuarterHourBytesReceived

QuarterHourPacketsSent

QuarterHourPacketsReceived

.LAN.IPPingDiagnostics.

DiagnosticsState

SuccessCount

FailureCount

% The name of a Parameter referenced in this table is the concatenation of the base path (see section 2.1), the object
name shown in the yellow header, and the individual Parameter name.

September 2009 © The Broadband Forum. All rights reserved. 42

3.7

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Parameter®

AverageResponseTime

MinimumResponseTime

MaximumResponseTime

.LAN.TraceRouteDiagnostics.

DiagnosticsState

ResponseTime

NumberOfRouteHops

.LAN.TraceRouteDiagnostics.RouteHops.{i}.

HopHost

.DownloadDiagnostics.

DiagnosticsState

ROMTime

BOMTime

EOMTime

TestBytesReceived

TotalBytesReceived

TCPOpenRequestTime

TCPOpenResponseTime

.UploadDiagnostics.

DiagnosticsState

ROMTime

BOMTime

EOMTime

TotalBytesSent

TCPOpenRequestTime

TCPOpenResponseTime

.UDPEchoConfig.

PacketsReceived

PacketsResponded

BytesReceived

BytesResponded

TimeFirstPacketReceived

TimelLastPacketReceived

DeviceSummary Definition

Note — the DeviceSummary parameter is DEPRECATED. This is because the TR-157 [17]
SupportedDataModel object (see section 2.1.3) and associated Device Type XML documents (DT
Instances) provide a more granular and scalable way of describing the device’s data model than does
DeviceSummary. Therefore the value of DeviceSummary MAY be an empty string if (and only if) the

SupportedDataModel object is supported.

The DeviceSummary parameter is defined to provide an explicit summary of the top-level data model of the device,
including version and profile information. This parameter MAY be used by an ACS to discover the nature of the

device and the ACS’s compatibility with specific objects supported by the device.

The DeviceSummary is defined as a list that includes the Root Object followed by all Service Object instances (or
support for a Service Object type if no instances are currently present). For each of these objects, the
DeviceSummary specifies the version of the object, the associated instance number used to identify the specific

object instance, and a list of the supported profiles for that object.

September 2009 © The Broadband Forum. All rights reserved.

43

3.71

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

The syntax of the DeviceSummary parameter is defined formally as follows:

DeviceSummary = RootObject [", " ServiceObject]*

RootObject = ObjectName ":" ObjectVersion "[] (" ProfilelList ")"

ServiceObject = ObjectName ":" ObjectVersion "[" [Instance] "] (" ProfileList ")"
ObjectVersion = MajorVersion "." MinorVersion

ProfileList = [Profile [", " Profile]*]

Profile = ProfileName ":" ProfileVersion

MajorVersion = Integer
MinorVersion = Integer
ProfileVersion = Integer

Integer = DIGIT*

Instance = ["+"] NONZERODIGIT [DIGIT]*

For each object instance, the ObjectVersion element MUST indicate the major and minor versions of the object
supported by the device.

The ObjectVersion for all objects defined prior to this specification for which explicit major and minor version
numbers have not been defined is 1.0. Future updates to these objects will specify distinct version numbers.

Instance is the instance number of the particular object instance. If the device supports an object type, but no
instances are currently present, a single entry for this object MUST be listed in the DeviceSummary, and the
instance number MUST be empty (" [1"). In this case, the device need not list support for specific profiles since the
profile list might be dependent on the specific instance when it is instantiated.

If the instance number for an object might change (for example, if the instances represent physically separate
devices, being managed by proxy, that can be connected or disconnected), the instance number MUST be prefixed
with a “+” character. Lack of a “+” character indicates that the instance number is expected to remain unchanged.

For each object (Root Object and Service Objects), a device MUST list all profiles that it supports in the ProfileList
element. That is, it MUST list all profiles for which the device’s actual level of support is a superset. Each entry in
the ProfileList MUST include the ProfileName and the ProfileVersion. The ProfileVersion is a single integer
representing the minor version of the profile.

Vendor-specific objects and profiles MAY be included in this list, and if so MUST begin with X <VENDOR> ,
where <VENDOR> MUST be as defined in section 3.3.

DeviceSummary Examples

Below are some examples of the DeviceSummary parameter. (The first examples correspond directly to the
examples given in section 2.1.2.)

Simple device supporting the ABCService Service Object:
“Device:1.0[](Baseline:1), ABCService:1.0[1](Baseline:1)”

Device supporting both ABCService and XY ZService Service Objects:
“Device:1.0[](Baseline:1), ABCService:1.0[1](Baseline:1), XYZService:1.0[1](Baseline:1)”

Internet Gateway Device that also supports the ABCService and XYZService Service Objects:
“InternetGatewayDevice:1.0[](Baseline:1), ABCService:1.0[1](Baseline:1), XYZService:1.0[1](Baseline:1)”

September 2009 © The Broadband Forum. All rights reserved. 44

4.1

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Device supporting the ABCService Service Object and proxying for two devices supporting the functionality of the
XYZService Service Object:

“Device:1.0[](Baseline:1), ABCService:2.17[1](Baseline:1), XYZService:1.2[1](Baseline:2),
XYZService:1.2[2](Baseline:2, AnotherProfile:3)”
Internet Gateway Device also serving as a management proxy for three devices supporting the functionality of the
ABCService Service Object:
“InternetGatewayDevice:1.0[](Baseline:1), ABCService:1.0[1](Baseline:1), ABCService:1.0[2](Baseline:1),
ABCService:1.0[3](Baseline:1, AnotherProfile:1)”
Version 1.0 Internet Gateway Device with no additional service objects supported:
“InternetGatewayDevice:1.0[](Baseline:1)”
Device supporting the ability to proxy for devices supporting the functionality of the ABCService Service Object,
but with no current instances of that object:

“Device:1.0[](Baseline:1), ABCService:2.17[]()”

Device supporting the ABCService Service Object with the baseline and a vendor-specific profile:

“Device:1.0[](Baseline:1), ABCService:2.17[1](Baseline:1, X_EXAMPLE-COM_MyProfile:2)”

Device supporting the ABCService Service Object, but with no profiles:
“Device:1.0[](Baseline:1), ABCService:2.17[1]()”

Profile Definitions

Notation
The following abbreviations are used to specify profile requirements:

Abbreviation | Description
R Read support is REQUIRED.

w Both Read and Write support is REQUIRED. This MUST NOT be specified for a parameter that is
defined as read-only.

The object is REQUIRED to be present.

Creation and deletion of instances of the object via AddObject and DeleteObject is REQUIRED.
Creation of instances of the object via AddObject is REQUIRED, but deletion is not REQUIRED.
Deletion of instances of the object via DeleteObject is REQUIRED, but creation is not REQUIRED.

o> O|T

4.2 Baseline Profile

e Table 6 defines the Baseline:1 profile for the Device:1 object. The minimum REQUIRED version for this
profile is Device:1.0.

Table 6 — Baseline:1 Profile definition for Device:1

Name Requirement
Device. P

DeviceSummary

Device.Devicelnfo.

Manufacturer

ManufacturerOUI

|V XW|T|AO

ModelName

September 2009 © The Broadband Forum. All rights reserved. 45

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Name

Requirement

Description

R

SerialNumber

HardwareVersion

SoftwareVersion

DeviceStatus

UpTime

Device.ManagementServer.

URL

Username

Password

PeriodiclnformEnable

PeriodiclnformInterval

PeriodiclnformTime

ParameterKey

ConnectionRequestURL

ConnectionRequestUsername

ConnectionRequestPassword

UpgradesManaged

SN P P S R N S R I A el o e e

4.3 Gatewaylnfo Profile

Table 7 defines the Gatewaylnfo:1 profile for the Device:1 object. The minimum REQUIRED version for this

profile is Device:1.0.

Table 7 — Gatewayinfo:1 Profile definition for Device:1

Name Requirement
Device.GatewayInfo. P
ManufacturerOUI R
ProductClass R
SerialNumber R

4.4 Time Profile

Table 8 defines the Time:1 profile for the Device:1 object. The minimum REQUIRED version for this profile is

Device:1.0.

Table 8 — Time:1 Profile definition for Device:1

Name Requirement
Device.Time. P
NTPServer1 w
NTPServer2 w
CurrentLocalTime R
LocalTimeZone w

September 2009 © The Broadband Forum. All rights reserved.

46

4.5

4.6

Data Model Template for TR-069-Enabled Devices

LAN Profile

TR-106 Issue 1 Amendment 3

Table 9 defines the LAN:1 profile for the Device:1 object. The minimum REQUIRED version for this profile is

Device:1.0.

Table 9 — LAN:1 Profile definition for Device:1

Name

Requirement

Device.LAN.

P

AddressingType

IPAddress

SubnetMask

DefaultGateway

DNSServers

MACAddress

Device.LAN.Stats.

ConnectionUpTime

TotalBytesSent

TotalBytesReceived

TotalPacketsSent

TotalPacketsReceived

N V| DV|DV|DV|OV|D|D|D|O|O |

IPPing Profile

Table 10 defines the IPPing:1 profile for the Device:1 object. The minimum REQUIRED version for this profile is

Device:1.0.

Table 10 — IPPing:1 Profile definition for Device:1

Name

Requirement

Device.LAN.IPPingDiagnostics.

P

DiagnosticsState

Host

NumberOfRepetitions

Timeout

DataBlockSize

DSCP

SuccessCount

FailureCount

AverageResponseTime

MinimumResponseTime

MaximumResponseTime

T DI S| |s|s|=

September 2009 © The Broadband Forum. All rights reserved.

47

Data Model Template for TR-069-Enabled Devices

4.7 TraceRoute Profile

TR-106 Issue 1 Amendment 3

Table 11 defines the TraceRoute:1 profile for the Device:1 object. The minimum REQUIRED version for this

profile is Device:1.0.

Table 11 — TraceRoute:1 Profile definition for Device:1

Name

Requirement

Device.LAN.TraceRouteDiagnostics.

P

DiagnosticsState

Host

Timeout

DataBlockSize

MaxHopCount

DSCP

ResponseTime

NumberOfRouteHops

Device.LAN.TraceRouteDiagnostics.RouteHops.{i}.

HopHost

T|o|lmI| | |||

4.8 Download Profile

Table 12 defines the Download:1 profile for the Device:1 object. The minimum REQUIRED version for this profile

is Device:1.2.

Table 12 — Download:1 profile definition for Device:1

Name

Requirement

Device.Capabilities.PerformanceDiagnostic.

P

DownloadTransports

Device.DownloadDiagnostics.

DiagnosticsState

Interface

DownloadURL

DSCP

EthernetPriority

ROMTime

BOMTime

EOMTime

TestBytesReceived

TotalBytesReceived

DA H|S|S|S|s|s| O™

4.9 DownloadTCP Profile

Table 13 defines the DownloadTCP:1 profile for the Device:1 object. The minimum REQUIRED version for this

profile is Device:1.2.

Table 13 — DownloadTCP:1 profile definition for Device:1

Name Requirement
Device.DownloadDiagnostics. P
TCPOpenRequestTime R
TCPOpenResponseTime R
September 2009 © The Broadband Forum. All rights reserved. 48

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

4.10 Upload Profile

Table 14 defines the Upload:1 profile for the Device:1 object. The minimum REQUIRED version for this profile is
Device:1.2.

Table 14 — Upload:1 profile definition for Device:1

Name Requirement
Device.Capabilities.PerformanceDiagnostic. P

UploadTransports

Device.UploadDiagnostics.

DiagnosticsState

Interface
UploadURL
DSCP
EthernetPriority
ROMTime
BOMTime
EOMTime
TestFileLength
TotalBytesSent

D Ao H|S|S|S|S|s| O™

September 2009 © The Broadband Forum. All rights reserved. 49

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

4.11 UploadTCP Profile

Table 15 defines the UploadTCP:1 profile for the Device:1 object. The minimum REQUIRED version for this
profile is Device:1.2.

Table 15 — UploadTCP:1 profile definition for Device:1

412

Name Requirement
Device.UploadDiagnostics. P
TCPOpenRequestTime R
TCPOpenResponseTime R

UDPEcho Profile

Table 16 defines the UDPEcho:1 profile for the Device:1 object. The minimum REQUIRED version for this profile
is Device:1.2.

Table 16 — UDPEcho:1 profile definition for Device:1

Name Requirement
Device.UDPEchoConfig. P

Enable

Interface

SourcelPAddress
UDPPort

PacketsReceived

PacketsResponded

BytesReceived

BytesResponded

TimeFirstPacketReceived

TimelLastPacketReceived
EchoPlusSupported

D oo H|H|o|S|sS|s|s

4.13 UDPEchoPlus Profile

Table 17 defines the UDPEchoPlus:1 profile for the Device:1 object. The minimum REQUIRED version for this
profile is Device:1.2.

Table 17 — UDPEchoPlus:1 profile definition for Device:1

Name Requirement
Device.UDPEchoConfig. P
EchoPlusEnabled w

4.14 UDPConnReq Profile

The UDPConnReq:1 profile for a Device implies support for all of the CPE requirements defined in Annex G of [2],
including support for the data model parameters as shown in Table 18. The minimum REQUIRED version for this
profile is Device:1.1.

Table 18 — UDPConnReq:1 Profile definition for Device:1

Name Requirement
Device.ManagementServer. -
UDPConnectionRequestAddress R
UDPConnectionRequestAddressNotificationLimit W
September 2009 © The Broadband Forum. All rights reserved. 50

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Name Requirement
STUNEnable W
STUNServerAddress
STUNServerPort
STUNUsername
STUNPassword
STUNMaximumKeepAlivePeriod
STUNMinimumKeepAlivePeriod
NATDetected

PN N R R

September 2009 © The Broadband Forum. All rights reserved. 51

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Normative References

A list of the currently valid Broadband Forum Technical Reports is published at http://www.broadband-forum.org.
The following documents are referenced by this specification.

[1] RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf. org/rfc/rfc2119.txt
TR-069 Amendment 2, CPE WAN Management Protocol, Broadband Forum Technical Report
TR-098 Amendment 2, Internet Gateway Device Data Model for TR-069, Broadband Forum Technical Report

Organizationally Unique Identifiers (OUIs), http://standards.ieee.org/faqs/OULhtml

Simple Object Access Protocol (SOAP) 1.1, http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508

RFC 3066, Tags for the Identification of Languages, http://www.ietf.org/rfc/rfc3066.txt

RFC 3513, Internet Protocol Version 6 (IPv6) Addressing Architecture, http://www.ietf.org/rfc/rfc3513.txt
[8] RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, http://www.ietf.org/rfc/rfc3986.txt

[9] RFC 3489, STUN - Simple Traversal of User Datagram Protocol (UDP) Through Network Address Translators
(NATs), http://www.ietf.org/rfc/rfc3489.txt

[10] Extensible Markup Language (XML) 1.0 (Fourth Edition), http://www.w3.org/TR/REC-xml
[11]RFC 862, Echo Protocol, http://www.ietf.org/rfc/rfc862.txt

[12]1RFC 959, File Transfer Protocol, http://www.ietf.org/rfc/rfc959.txt

[13]1RFC 2616, Hypertext Transfer Protocol — HTTP/1.1, http://www.ietf.org/rfc/rfc2616.txt
[14]RFC 2648, A URN Namespace for IETF Documents, http://www.ietf.org/rfc/rfc2648.txt

[15]TR-143 Corrigendum 1, Enabling Network Throughput Performance Tests and Statistical Monitoring,
Broadband Forum Technical Report

[16] XML Schema Part 0: Primer Second Edition, http://www.w3.org/TR/xmlschema-0
[17]1TR-157 Amendment 1, Component Objects for CWMP, Broadband Forum Technical Report

September 2009 © The Broadband Forum. All rights reserved. 52

http://www.broadband-forum.org/
http://www.ietf.org/rfc/rfc2119.txt
http://standards.ieee.org/faqs/OUI.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.ietf.org/rfc/rfc3066.txt
http://www.ietf.org/rfc/rfc3513.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3489.txt
http://www.w3.org/TR/REC-xml
http://www.ietf.org/rfc/rfc862.txt
http://www.ietf.org/rfc/rfc959.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2648.txt
http://www.w3.org/TR/xmlschema-0

A1

A.2

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Annex A. CWMP Data Model
Definition XML Schema

Introduction

The CWMP Data Model Definition XML Schema [16], or DM Schema, is used for defining TR-069 data models,
and is specified in A.3.

DM Schema instance documents can contain any or all of the following:
e Data type definitions

e Root Object definitions (including profiles)

e Service Object definitions (including profiles)

e Component definitions

e Vendor extension definitions

Normative Information

It is possible to create instance documents that conform to the DM Schema but nevertheless are not valid data model
definitions. This is because it is not possible to specify all the normative data model definition requirements using
the XML Schema language. Therefore, the schema contains additional requirements written using the usual
normative language. Instance documents that conform to the DM Schema and meet these additional requirements
are referred to as DM Instances.

For example, the definition of the parameter element includes the following additional requirements on the name
and base attributes:

September 2009 © The Broadband Forum. All rights reserved. 53

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

<xs:complexType name="ModelParameter'">
<xs:annotation>
<xs:documentation>Parameter definition and reference.</xs:documentation>
</xs:annotation>

<xs:attribute name="name" type="tns:ParameterName'">
<xs:annotation>
<xs:documentation>MUST be unique within the parent object (this is checked by schema
validation) .
MUST be present if and only if defining a new parameter.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="base" type="tns:ParameterName">
<xs:annotation>
<xs:documentation>MUST be present if and only if modifying an existing
parameter.</xs:documentation>
</xs:annotation>
</xs:attribute>

</xs:complexType>

In some cases, a requirement that is in fact implied by the DM Schema is emphasized within the schema via the
xs:documentation element (the uniqueness requirement on the name is an example of this).

In other cases, a schema-implied requirement is not highlighted. For example, the name and base attributes are of
type tns:ParameterName:

<!DOCTYPE cwmp-datamodel [
QIENTITY name " ([\i-[:]1]1[\c-[:\.11*%)">
]>m

<xs:simpleType name="ParameterName">
<xs:annotation>
<xs:documentation>Parameter name (maximum length 256); the same as xs:NCName except that periods
are not permitted. This name MUST in addition follow the vendor-specific parameter name requirements of
section 3.3.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:maxLength value="256"/>
<xs:pattern value="&name;"/>
</xs:restriction>
</xs:simpleType>

This states that the parameter name is a string that follows the following rules:

It is derived from xs:token, which has a whitespace facet of “collapse”, meaning that any leading whitespace in
the name will be ignored.

It has a maximum length of 256 characters.

Its first character matches the pattern “[\i-[:]]”, which means “any character permitted as the first character of an
XML name, except for a colon”, and any subsequent characters match the pattern “[\c-[:\.]]”, which means “any
character permitted in an XML name, except for a colon and a dot”.

It follows the vendor-specific parameter name requirements of section 3.3.

The question of the location of the definitive normative information therefore arises. The answer is as follows:

September 2009 © The Broadband Forum. All rights reserved. 54

A21

A211

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

e All the normative information in the main part of the document remains normative.

e The DM Schema, and the additional requirements therein, are normative. Some of these additional
requirements are duplicated (for emphasis) in this Annex.

e The DM Schema references additional material in this Annex. Such material is normative.

e Ifthe DM Schema conflicts with a normative requirement in the main part of the document, this is an error in
the DM Schema, and the requirement in the main part of the document takes precedence.

Importing DM Instances

DM Instances are imported using the top-level import element. The DM Schema specifies that the DM Instance is
located via the file attribute if it is present, and otherwise via the spec attribute (although both attributes are optional,
they cannot both be omitted).

When the file attribute is present, the rules governing its value and its use for locating the DM Instance are as
follows:

e It MUST be a URL adhering to RFC 3986 [8].
e Ifthe URL includes a scheme, it MUST be http, https or ftp.
e Ifthe URL includes an authority, it MUST NOT include credentials.

e For standard BBF DM Instances, the rules that apply to the filename part (final path segment) of the A.2.1.1
BBFURL MUST be applied to the filename part of this URL. This means that the corrigendum number can be
omitted in order to refer to the latest corrigendum.

e Ifthe URL is a relative reference, processing tools MUST apply their own logic, e.g. apply a search path.

When the file attribute is absent, the rules governing the value and use of the spec attribute for locating the DM
Instance are as follows:

e If it begins with the string “urn:broadband-forum-org:”, it MUST be a BBFURI as defined in A.2.1.1, in which
case the DM Instance can be accessed at the BBFURL that is also defined in A.2.1.1.

e Otherwise, it can be used to locate the DM Instance only if processing tools understand the non-standard URI
format.

The above rules suggest the following recommendations:

e For accessing DM Instances that are BBF standards, the file attribute SHOULD NOT be specified, implying
that the spec attribute will be specified and will be used to locate the standard BBF DM Instance. For example:

<import spec="urn:broadband-forum-org:tr-157-1-0">
<model name="Device:1.3"/>
</import>

e For accessing DM Instances that are not BBF standards, the file attribute SHOULD be specified, implying that
it will be used to locate the non-standard DM Instance. For example:

<import file="http://example.com/device-1-0.xml">
<model name="X EXAMPLE Device:1.0"/>
</import>

URI Conventions

The top-level spec attribute contains the URI of the associated specification document, e.g. the BBF Technical
Report.

This URI SHOULD uniquely identify the specification. More than one DM Schema instance document MAY
reference the same specification.

The following rules apply to the value of the top-level spec attribute:

September 2009 © The Broadband Forum. All rights reserved. 55

A.2.2

A221

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

e For a BBF Technical Report, it MUST be of the form “urn:broadband-forum-org:tr-nnn-i-a-c”, where nnn is the
specification number (including leading zeros), i is the issue number, a is the amendment number, and c is the
corrigendum number. The issue, amendment and corrigendum numbers do not include leading zeros. For
example, “urn:broadband-forum-org:tr-106-1-0" refers to TR-106 (Issue I Amendment 0), and “urn:broadband-
forum-org:tr-106-1-2" refers to TR-106 (Issue 1) Amendment 2. If the corrigendum number (including the
preceding hyphen) is omitted, the most recent corrigendum is assumed.

e For specifications issued by other standards organizations, or by vendors, it SHOULD be of a standard form if
one is defined. For example, RFC 2648 [14] specifies a syntax for referencing RFCs.

e Note that processing tools are likely to assume that all files that share a spec value are related to each other.
Therefore, use of meaningful spec values is RECOMMENDED.

Formally, the value of the spec attribute is defined as follows:

SpecURI = BBFURI
| OtherURI

BBFURI = "urn:broadband-forum-org:" BBFDoc

BBFDoc = "tr-" BBFNumber BBFIssue BBFAmendment BBFCorrigendum
BBFNumber = [DIGIT]{3,} // including leading zeros, e.g. 069
BBFIssue = "-" NolLeadingZeroPositiveNumber

BBFAmendment = "-" NoLeadingZeroNumber

BBFCorrigendum = "-" NolLeadingZeroPositiveNumber
[// if omitted, most recent corrigendum is assumed

NoLeadingZeroNumber = [DIGIT]
| [NONZERODIGIT] [DIGIT]*

NoLeadingZeroPositiveNumber = [NONZERODIGIT] [DIGIT]*

OtherURI = <of a standard form if one is defined>

Standard BBF DM Instances can be accessed at the following URL:

BBFURL = "http://www.broadband-forum.org/cwmp/" BBFDoc BBFSubDoc ".xml"
BBFDoc = <as before>

BBFSubDoc = "-" LABEL // distinguishing label (not beginning with a digit)
| " // not needed if only one DM Instance is associated with spec

For example, the DM Instance associated with TR-106 Amendment 2 can be accessed at http://www.broadband-
forum.org/cwmp/tr-106-1-2.xml. If two DM Instances had been associated with TR-106 Amendment 2, they might
have been accessible at http://www.broadband-forum.org/cwmp/tr-106-1-2-types.xml and http://www.broadband-
forum.org/cwmp/tr-106-1-2-objects.xml.

Descriptions

Many elements have descriptions, and the same rules apply to all description elements in the DM Schema. A
description is free text which can contain a limited amount of MediaWiki-like markup as specified in A.2.2.3.

Character Set

For BBF standards, the character set MUST be restricted to printable characters in the Basic Latin Unicode block,
i.e. to characters whose decimal ASCII representations are in the (inclusive) ranges 9-10 and 32-126.

September 2009 © The Broadband Forum. All rights reserved. 56

http://www.broadband-forum.org/cwmp/tr-106-1-2.xml
http://www.broadband-forum.org/cwmp/tr-106-1-2.xml

A2.2.2

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Pre-processing
All DM Instance processing tools MUST conceptually perform the following pre-processing before interpreting the
markup:

1) Remove any leading whitespace up to and including the first line break’.

2) Remove the longest common whitespace prefix (i.e. that occurs at the start of every line) from each line. See the
example below, where three lines start with four spaces and one line starts with five spaces, so the longest
whitespace prefix that occurs at start of each line is four spaces. In this calculation, a tab character counts as a
single character. To avoid confusion, the description SHOULD NOT contain tab characters.

3) Remove all trailing whitespace, including line breaks.

This pre-processing is designed to permit a reasonable variety of layout styles while still retaining predictable
behavior. For example, both the following:

<description>This is the first line.
This is the second line.

This is the indented third line.

This is the fourth line.</description>

<description>
This is the first line.
This is the second line.
This is the indented third line.
This is the fourth line.
</description>

..result in the following:

This is the first line.
This is the second line.
This is the indented third line.
This is the fourth line.

A.2.2.3 Markup

The pre-processed description can contain the following markup, which is inspired by, but is not identical to,
MediaWiki markup. All DM Instance processing tools SHOULD support this markup to the best of their ability.

Table 19 — XML Description Markup

Name Markup Example Description
Italics "’italic text’’ Two apostrophes on each side of some text will result in the contained
text being emphasized in italics.
Bold "7’bold text’’’ Three apostrophes on each side of some text will result in the contained
text being emphasized in bold.
Bold italics T byl text! Five apostrophes on each side of some text will result in the contained
text being emphasized in bold italics.
Paragraph This paragraph just A line break is interpreted as a paragraph break.
ended.
Bulleted lists * level one A line starting with one or more asterisks (*) denotes a bulleted list entry,
** level two whose indent depth is proportional to the number of asterisks specified.
. .
level one again If the asterisks are followed by a colon (:), the previous item at that level is
©v level two again continued, as shown
*** level three ’
*: level one continued An empty line, or a line that starts with a character other than an asterisk,
outside of list indicates the end of the list.

"It can be assumed that all line breaks are represented by a single line feed, i.e. ASCII 10. See [10] section 2.11.

September 2009

© The Broadband Forum. All rights reserved. 57

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Name Markup Example Description
Numbered lists | # level one A line starting with one or more number signs (#) denotes a numbered list
level two entry.

level one again

level two again

level three

#: level one continued
outside of list

All other conventions defined for bulleted lists apply here (using # rather
than *), except that numbered list entries are prefixed with an integer
decoration rather than a bullet.

Indented lists : level one A line starting with one or more colons (:) denotes an indented list entry.
level two
level one again
level two again
:: level three
outside of list

All other conventions defined for bulleted lists apply here (using : rather
than *), except that indented list entries have no prefix decoration, and
item continuation is not needed.

Verbatim code example: A block of lines each of which starts with a space is to be formatted
if (something) { exactly as typed, preferably in a fixed width font.

} e:/L;ed({j something */ This allows code fragments, simple tables etc. to be included in

/% do other */ descriptions.

} Note that the pre-processing rules of A.2.2.2 imply that it is not possible to
process an entire description as verbatim text (because all the leading
whitespace would be removed). This is not expected to be a problem in
practice.

Hyperlinks http://www.broadband- URL links are specified as plain old text (no special markup).
forum.org

Templates {{bibref|l|section 2}} Text enclosed in double curly braces ({}) is a template reference, which is
{{section|table}} replaced by template-dependent text.

{{param|Enable}}

{ {enum|Error}) A.2.2.4 specifies the standard templates.

A.2.2.4 Templates

A template invocation is encoded as two curly braces on either side of the template name and arguments.
Arguments can follow the template name, separated by vertical pipe (]) characters. All whitespace is significant.
For example:

| {{someTemplate|argl|arg2]..|argN}}

In some cases, one template can impact the behavior of another template, e.g. the definitions of both the { {enum} }
and the { {hidden}} templates state that the template expansion can be automatically placed after the rest of the

description, which raises the question of which template expansion would come first. This ambiguity is resolved by
stating that processing tools SHOULD generate such automatic text in the same order that the templates are defined
below. In the above example, { {enum}} is defined before { {hidden} }, so an automatically-generated list of

enumeration values would be placed before an automatically-generated explanation that the parameter value is
hidden.

The following standard templates are defined. Any vendor-specific template names MUST obey the rules of section
3.3.

September 2009 © The Broadband Forum. All rights reserved. 58

Data Model Template for TR-069-Enabled Devices

Table 20 — XML Description Templates

TR-106 Issue 1 Amendment 3

Name Markup Definition Description
Bibliographic {{bibref|id}} A bibliographic reference.
reference {{bibref|id|section}}

The id argument MUST match the id attribute of one of the
current file’s (or an imported file's) top-level bibliography
element’s reference elements (A.2.4).

The OPTIONAL section argument specifies the section number,

including any leading “section”, “annex” or “appendix” text.

Typically, processing tools will (a) validate the id, and (b)
replace the template reference with something like “[id]
section”.

Markup examples:

{{bibref|1}}
{{bibref|l|section 3}}

Section separator

{{section|category}}
{{section}}

The beginning or end of a section or category. This is a way of
splitting the description into sections.

If the category argument is present, this marks the end of the
previous section (if any), and the beginning of a section of the

specified category. The “table”, “row” and “examples”
categories are reserved for the obvious purposes.

If the category argument is absent, this marks the end of the
previous section (if any).

Typically, processing tools will (a) validate the category, and (b)
replace the template reference with a section marker.

Markup examples:

{{section|table}}
{{section|row}}
{{section|examples}}

Parameter and
object reference

{{param|ref}}
{{param|ref|scope}}
{{param}}

{{object]|ref}}
{{object|ref|scope}}
{{object}}

A reference to the specified parameter or object.

The OPTIONAL ref and scope arguments reference a
parameter or object. Scope defaults to normal. Parameter and
object names SHOULD adhere to the rules of A.2.3.4.

Typically, processing tools will (a) validate the reference, and
(b) replace the template reference with the ref argument or, if it
is omitted, the current parameter or object name, possibly
rendered in a distinctive font. Processing tools can use the
scope to convert a relative path into an absolute path in order,
for example, to generate a hyperlink.

Markup examples:

{{param|Enable}}
{{object|Stats.}}

List description

{{list}}
{{list|arg}}

{{nolist}}

A description of the current parameter’s list attributes.

This template SHOULD only be used within the description of a
list-valued parameter (A.2.7.1).

This is a hint to processing tools to replace the template
reference with a description of the parameter’s list attributes.
This overrides processing tools’ expected default behavior
(unless suppressed by { {nolist}}) of describing the list
attributes before the rest of the description.

The OPTIONAL argument specifies a fragment of text that
describes the list and SHOULD be incorporated into the
template expansion.

Typically processing tools will generate text of the form
“Comma-separated list of <dataType>." Or “Comma-separated
list of <dataType>, <arg>.”.

September 2009

© The Broadband Forum. All rights reserved. 59

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Name

Markup Definition

Description

Reference
description

{{reference}}
{{referencelarg}}

{{noreference}}

A description of the object or parameter that is referenced by
the current parameter.

This template SHOULD only be used within the description of a
reference parameter (A.2.3.7).

This is a hint to processing tools to replace the template
reference with a description of the parameter’s reference
attributes. This overrides processing tools’ expected default
behavior (unless suppressed by { {noreference}}) of
describing the reference attributes after the list attributes (for a
list-valued parameter) or before the rest of the description
(otherwise).

The OPTIONAL argument is relevant only for a pathRef; it
specifies a fragment of text that describes the referenced item
and SHOULD be incorporated into the template expansion.

Typically processing tools will generate text of the form “The
value MUST be the full path name of <arg>...”, in which the
generated text can be expected to be sensitive to whether or
not the parameter is list-valued.

Enumeration
reference

{{enum|value}}
{{enum|value|param}}
{{enum|value|param|scope}}
{{enum}}

{{noenum} }

A reference to the specified enumeration value.

The OPTIONAL value argument specifies one of the
enumeration values for the referenced parameter. If present, it
MUST be a valid enumeration value for that parameter.

The OPTIONAL param and scope arguments identify the
referenced parameter. Scope defaults to normal. If present,
param SHOULD adhere to the rules of A.2.3.4. If omitted, the
current parameter is assumed.

If the arguments are omitted, this is a hint to processing tools to
replace the template reference with a list of the parameter’'s
enumerations, possibly preceded by text such as “Enumeration
of:”. This overrides processing tools’ expected default behavior
(unless suppressed by { {noenum} }) of listing the parameter’s
enumerations after the rest of the description.

Otherwise, typically processing tools will (a) validate that the
enumeration value is valid, and (b) replace the template
reference with the value and/or param arguments, appropriately
formatted and with the value possibly rendered in a distinctive
font. Processing tools can use the scope to convert a relative
path into an absolute path in order, for example, to generate a
hyperlink.

Markup examples:

{{enum|None}}
{{enum|None|OtherParam}}

September 2009

© The Broadband Forum. All rights reserved. 60

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Name Markup Definition

Description

Pattern reference {{pattern|value}}
{{pattern|value|param}}
{{pattern|value|param|scope}}

{{pattern}}

{{nopattern}}

A reference to the specified pattern value.

The OPTIONAL value argument specifies one of the pattern
values for the referenced parameter. If present, it MUST be a
valid pattern value for that parameter.

The OPTIONAL param and scope arguments identify the
referenced parameter. Scope defaults to normal. If present,
param SHOULD adhere to the rules of A.2.3.4. If omitted, the
current parameter is assumed.

If the arguments are omitted, this is a hint to processing tools to
replace the template reference with a list of the parameter’s
patterns, possibly preceded by text such as “Possible
patterns:”. This overrides processing tools’ expected default
behavior (unless suppressed by { {nopattern}}) of listing the
parameter’s patterns after the rest of the description.

Otherwise, typically processing tools will (a) validate that the
pattern value is valid, and (b) replace the template reference
with the value and/or param arguments, appropriately formatted
and with the value possibly rendered in a distinctive font.
Processing tools can use the scope to convert a relative path
into an absolute path in order, for example, to generate a
hyperlink.

Markup examples:

{{pattern|None}}
{{pattern|None|OtherParam}}

{{hidden}}
{{hidden|value}}

Hidden value

{{nohidden}}

Text explaining that the value of the current parameter is
hidden and cannot be read.

This template SHOULD only be used within the description of a
hidden parameter (A.2.7.1).

This is a hint to processing tools to replace the template
reference with text explaining that the value of the current
parameter is hidden and cannot be read. This overrides
processing tools’ expected default behavior (unless suppressed
by { {nohidden}}) of placing this text after the rest of the
description.

The OPTIONAL argument indicates the value that is returned
when the current parameter is read. If omitted this defaults to
the expansion of the { {null}} template.

Typically, processing tools will generate text of the form “When
read, this parameter returns <arg>, regardless of the actual
value.”.

Unique keys {{keys}}
description

{ {nokeys}}

A description of the current object’s unique keys.

This template SHOULD only be used within the description of a
multi-instance (table) object that defines one or more unique
keys (A.2.8.1).

This is a hint to processing tools to replace the template
reference with a description of the object’s unique keys. This
overrides processing tools’ expected default behavior (unless
suppressed by { {nokeys}}) of describing the unique keys
after the description.

Units reference {{units}} The parameter’s units string.
Typically, processing tools will (a) check that the parameter has
a units string, and (b) substitute the value of its units string.
Boolean values {{false}} Boolean values.
t{true}) Typically, processing tools will substitute the value False or
True, possibly rendered in a distinctive font.
Miscellaneous {{empty}} Typically, processing tools will render such values in a

distinctive font, possibly using standard wording, such as
<Empty> or “an empty string”.

September 2009

© The Broadband Forum. All rights reserved. 61

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Name Markup Definition Description

{{null}} Expands to the appropriate null value for the current
parameter’s data type, e.g. { {empty}}, {{false}} or 0.

A.2.2.5 HTML Example

This includes examples of most of the markup and templates.

<model name="Goo:1.1" base="Goo:1.0">
<object name="GooTop." access="readOnly" minEntries="1" maxEntries="1">
<parameter name="ExampleParam" access="readOnly">

<description>
{{section|Introduction}}This is an ''example'' parameter that illustrates many of the
''"'"formatting''' templates. For '''''example''''', this references {{bibref|TR-106al|section 3.2}}.
{{section|Usage}}This parameter is called {{object}}{{param}}. One can also reference other

parameters in the same object, such as {{param|OtherParameter}}, and indicate that the parameter value
is measured in {{units}}.
One can also include bulleted lists:
* level one
** level two
* level one again
** level two again
*** level three
*: level one continued
and numbered lists:
level one
level two
level one again
level two again
level three
#: level one continued
and indented lists
: level one
level two
: level one again
level two again
level three
and hyperlinks such as http://www.google.com
and code examples:
if (something) {
/* do something */
} else {
/* do other */
}
If the parameter was Boolean, one could refer to its values {{false}} and {{true}}.
One can refer to its enumerations individually, e.g. {{enum|Disabled}}, or to other parameters'

enumerations, such as {{enum|Value|OtherParam}}, or can list them all. {{enum}}
Finally, if there were any patterns they could be listed too. {{pattern}}
</description>
<syntax>
<string>

<enumeration value="A"/>
<enumeration value="B"/>
<units value="packets"/>
</string>
</syntax>
</parameter>

The resulting HTML would look something like this:

September 2009 © The Broadband Forum. All rights reserved. 62

A.2.3

A231

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

This is an example parameter that illustrates many of the formatting templates. For example, this references [TR-106a1]
section 3.2.

This parameter is called ParentObject. ExampleFaram. One can also reference other parameters in the same object, such
as OtherParametfer, and indicate that the parameter value is measured in packets.

(One can also include bulleted lists:

* |evel one
2 level two
* |evel one again
< level two again
B |evel three

level one continued
and numbered lists:

1. level one
1. level two
2. level one again
1. level two again
1. level three

level one continued
and indented lists

level one
level two
level one again
level two again
level three

and hyperlinks such as hitp://www.google.com

and code examples:

if (=omething)

/* do =something */
} else {

/% do other #®/

¥
If the parameter was Boolean, one could refer to its values false and frue.

Cne can refer to its enumerations individually, e.g. A, or to other parameters’ enumerations. such as Value, or can list
them all. Possible values:

* Disabled
® Fnabled
* Fror (OPTIONAL)

Finally, if there were any patterns they could be listed too.

Data Types

TR-069 data models support only the Table 1 primitive data types “on the wire”. However, the DM Schema allows
data types to be derived from the primitive types or from other named data types. Such derived types can be named
or anonymous.

Named Data Types

Named data types are defined using the top-level dataType element. A DM Instance can contain zero or more top-
level dataType elements.

September 2009 © The Broadband Forum. All rights reserved. 63

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

When defining a new named data type, the following attributes and elements are relevant (normative requirements

are specified in the schema).

Table 21 — XML Named Data Types

Name Description

name The data type name.

base The base type name, i.e. name of the data type from which this data type is derived. This is used only where
the base type is itself a named data type, not a primitive type.

status The data type’s {current, deprecated, obsoleted, deleted} status. This defaults to current, and so is not likely
to be specified for a new data type.

description The data type’s description (A.2.2).

size Data type facets (A.2.3.3). These are permitted only when the base type is a named data type, i.e. when the

pathRef base attribute is specified.

instanceRef

range

enumeration

enumerationRef

pattern

units

base64 Primitive data type definition. These are permitted only when the base type is primitive. There is an element

boolean for each primitive data type, and each element supports only the facets (A.2.3.3) that are appropriate to that

dateTime data type.

hexBinary

int

long

string

unsignedint

unsignedLong

For example:

<dataType name="String255">
<string>

<size maxLength="255"/>
</string>
</dataType>

<dataType name="Stringl27" base="String255">
<size maxLength="127"/>
</dataType>

A.2.3.2 Anonymous Data Types

Anonymous data types are defined within parameter syntax elements (A.2.7.1), and can apply only to the parameters

within which they are defined. For example:

<parameter name="Examplel" access="readOnly">
<syntax>
<string>
<size maxLength="127"/>
</string>
</syntax>
</parameter>

<parameter name="Example2" access="readOnly">
<syntax>
<dataType base="String255">
<size maxLength="127"/>
</dataType>
</syntax>
</parameter>

If an anonymous data type is modified in a later version of a data model, the modified anonymous data type is

September 2009 © The Broadband Forum. All rights reserved.

64

A.2.3.3

A23.4

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

regarded as being derived from the original anonymous data type. Therefore the base type restriction rules of
A.2.3.8 MUST be obeyed.

Data Type Facets
A facet specifies some aspect of a data type, e.g. its size, range or units.

Note that XML Schema [16] also associates facets with data types. The XML Schema and DM Schema concepts
are the same, but the set of facets is not identical.

The DM Schema defines the following facets (normative requirements are specified in the schema):

Table 22 — XML Data Type Facets

Name Description

size Size ranges for the data type (applies to string, base64, hexBinary and their derived types).

Note that the size facet always refers to the actual value, not to the base64- or hexBinary-encoded value.
Prior to the definition of the DM Schema, the maximum sizes of base64 parameters referred to the base64-
encoded values. Processing tools that generate reports from DM Instances SHOULD include explicit
clarification of whether the size ranges refer to the actual or encoded values.

pathRef Details of how to reference parameters and objects via their path names (applies to string and its derived
types: A.2.3.7).

instanceRef Details of how to reference object instances (table rows) via their instance numbers (applies to int, unsignedint
and their derived types; A.2.3.7).

range Value ranges for the data type (applies to numeric data types and their derived types).

enumeration Enumerations for the data type (applies to string and its derived types).

enumerationRef Enumerations for the data type, obtained at run-time from the value of a specified parameter (applies to string
and its derived types; A.2.3.7).

pattern Patterns for the data type (applies to string and its derived types).

units Units for the data type (applies to numeric data types and their derived types).

It is important to note that the enumeration facet does not necessarily define all the valid values for a data type. This
is for the following reasons:

e As specified in section 3.3, vendors are allowed to add additional enumeration values.

e A future version of a data model may need to add additional enumerations values.

Reference Path Names

Some description templates (A.2.2.4), and all reference facets (A.2.3.7), need to specify parameter or object names.
It is always possible to specify a full path name, but it is frequently necessary or convenient to specify a relative path
name. For example, it might be necessary to reference another parameter in the current object. Any instance
numbers in the parameter’s full path name cannot be known at data model definition time, so this can only be done
using a relative path name.

The following rules apply to all path names that are used in data model definitions for referencing parameters or
objects:

e Path names MAY contain “{i}” placeholders, which MUST be interpreted as wild cards matching all instance
numbers, e.g. “InternetGatewayDevice. WANDevice. {i}.” references all WANDevice instances.

e Path names MUST NOT contain instance numbers.

A path name is always associated with a path name scope, which defines the point in the naming hierarchy relative
to which the path name applies.

September 2009 © The Broadband Forum. All rights reserved. 65

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Table 23 — Path Name Scope Definition

Name Description

normal This is a hybrid scope which usually gives the desired behavior:

« If the path begins with a “Device” or “InternetGatewayDevice” component, it is relative to the top of the
naming hierarchy.

e If the path begins with a dot, it is relative to the Root or Service Object (c.f. scope=model).

e Otherwise, the path is relative to the current object (c.f. scope=object).

model The path is relative to the Root or Service Object.

object The path is relative to the current object.

Formally, if the path name scope is normal:
e If the path is empty, it MUST be regarded as referring to the top of the naming hierarchy.

e Otherwise, if the path begins with a “Device” or “InternetGatewayDevice” component, it MUST be regarded as
a full path name (these are the only two possible Root Device names).

e Otherwise, if the path begins with a dot, it MUST be regarded as a path relative to the Root or Service Object.
For example, in the Device Root Object “.Devicelnfo.” means “Device.Devicelnfo.”, and in the Device.-
Services.ABCService.1 Service Object it means “Device.Services. ABCService. 1.Devicelnfo.”.

e Otherwise, it MUST be regarded as a path relative to the current object. For example, if the current object is
“Device.LAN.”, “IPAddress” means “Device. LAN.IPAddress” and “Stats.” means “Device. LAN.Stats.”.
Within a parameter definition, the current object is the parameter’s parent object, so within the
“Device. LAN.IPAddress” definition, “SubnetMask” means “Device. LAN.SubnetMask”.

If the path name scope is model:
e If the path is empty, it MUST be regarded as referring to the Root or Service Object.

e Otherwise, it MUST be regarded as a path relative to the Root or Service Object. Any leading dot MUST be
ignored.

If the path name scope is object:
e Ifthe path is empty, it MUST be regarded as referring to the current object.
e Otherwise, it MUST be regarded as a path relative to the current object. Any leading dot MUST be ignored.

Note that the term “Root or Service Object”, which is used several times above, means “if within a Service Object
instance, the Service Object instance; otherwise, the Root Object”.

September 2009 © The Broadband Forum. All rights reserved. 66

A.2.3.5

A.2.3.6

A.2.3.7

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

For example, the pathRef and instanceRef facets (A.2.3.7) have a targetParent attribute which specifies the possible
parent(s) of the referenced parameter or object, and a targetParentScope attribute (defaulted to normal) which
specifies targetParent’s scope. If the current object is within a Service Object instance, setting targetParentScope to
model forces the referenced parameter or object to be in the same Service Object instance. Similarly, setting
targetParentScope to object forces the referenced parameter or object to be in the same object or in a sub-object.

String parameters whose values are path names are subject to the rules of section 3.2, so object names do not include
a trailing dot. The parameter value (or each list item if the parameter is list-valued) always behaves as described
above for normal path name scope, regardless of the path name scope in the data model definition. For example, in
the Device Root Object, a parameter value of “.Devicelnfo”’always means “Device.Devicelnfo”.

In order to be able to use reference parameters as unique keys (A.2.8.1), path names in parameter values MUST
conceptually be converted to full path names before being compared. For example, in the Device Root Object,
“Devicelnfo.” and “Device.Devicelnfo.” would compare as equal. If a reference parameter is list-valued, i.e. itis a
list of path names or instance numbers, the parameter value MUST conceptually be regarded as a set when being
compared, i.e. the comparison has to ignore the item order and any repeated items. For example, “1,2,1” and “2,1”
would compare as equal because both reference instances 1 and 2.

Null References

A null reference indicates that a reference parameter is not currently referencing anything. The value that indicates a
null reference depends on the reference parameter’s base data type:

e string: a null reference MUST be indicated by an empty string.
e unsignedInt: a null reference MUST be indicated by the value 0.

e int: a null reference MUST be indicated by the value -1.

Reference Types
A reference to another parameter or object can be weak or strong:

e weak: it doesn’t necessarily reference an existing parameter or object. For example, if the referenced parameter
or object is deleted, the value of the reference parameter might not get updated.

e strong: it always either references a valid parameter or object, or else is a null reference (A.2.3.5). If the
referenced parameter or object is deleted, the value of the reference parameter is always set to a null reference.

The following requirements relate to reference types and the associated CPE behavior.
e All read-only reference parameters MUST be declared as strong references.

e A CPE MUST reject an attempt to set a strong reference parameter if the new value does not reference an
existing parameter or object.

e A CPE MUST NOT reject an attempt to set a weak reference parameter because the new value does not
reference an existing parameter or object.

e A CPE MUST change the value of a non-list-valued strong reference parameter to a null reference when a
referenced parameter or object is deleted.

e A CPE MUST remove the corresponding list item from a list-valued strong reference parameter when a
referenced parameter or object is deleted.

e A CPE MUST NOT change the value of a weak reference parameter when a referenced parameter or object is
deleted.

Reference Facets

A reference facet specifies how a parameter can reference another parameter or object. There are three sorts of
reference:

September 2009 © The Broadband Forum. All rights reserved. 67

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

o Path reference: references another parameter or object via its path name. Details are specified via the pathRef
facet, which applies to string and its derived types.

o Instance reference: references an object instance (table row) via its instance number. Details are specified via
the instanceRef facet, which applies to int, unsignedInt and their derived types.

e Enumeration reference: references a list-valued parameter via its path name. The current value of the
referenced parameter indicates the valid enumerations for this parameter. Details are specified via the
enumerationRef facet, which applies to string and its derived types.

When defining a path reference, the following attributes and elements are relevant (normative requirements are
specified in the schema).

Table 24 — PathRef Facet Definition

Name

Description

targetParent

An XML list of path names that can restrict the set of parameters and objects that can be referenced. If the
list is empty (the default), then anything can be referenced. Otherwise, only the immediate children of one
of the specified objects can be referenced,

A “{i}” placeholder in a path name acts as a wild card, e.g. “InternetGatewayDevice. WANDevice.{i}.\WWAN-
ConnectionDevice.{i}.WWANPPPConnection.”. Path names cannot contain explicit instance numbers.

targetParentScope

Specifies the point in the naming hierarchy relative to which targetParent applies (A.2.3.4): normal
(default), model or object.

targetType

Specifies what types of item can be referenced:

e any: any parameter or object can be referenced (default)
e parameter: any parameter can be referenced

e object: any object can be referenced

* single: any single-instance object can be referenced

e table: any multi-instance object (table) can be referenced

e row: any multi-instance object (table) instance (row) can be referenced

September 2009

© The Broadband Forum. All rights reserved. 68

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Name Description
targetDataType Specifies the valid data types for the referenced parameter. |s relevant only when targetType is any or
parameter.
Possible values are as follows:
e any: a parameter of any data type can be referenced (default)
e base64: only a base64 parameter can be referenced
e boolean: only a boolean parameter can be referenced
e dateTime: only a dateTime parameter can be referenced
e hexBinary: only a hexBinary parameter can be referenced
* integer: only an integer (int, long, unsignedint or unsignedLong) parameter can be referenced
e int: only an int parameter can be referenced
e long: only a long (or int) parameter can be referenced
e string: only a string parameter can be referenced
e unsignedInt: only an unsignedint parameter can be referenced
e unsignedLong: only an unsignedLong (or unsignedint) parameter can be referenced
e <named data type>: only a parameter of the named data type can be referenced
In addition, a parameter whose data type is derived from the specified data type can be referenced. The
built-in type hierarchy (a simplified version of the XML Schema type hierarchy) is as follows:
any
base64d
boolean
dateTime
hexBinary
integer
long
int
unsignedlLong
unsignedInt
string
Note that any and integer are not valid parameter data types. They are included in order to support “can
reference any data type” and “can reference any numeric data type”.
refType Specifies the reference type (A.2.3.6): weak or strong.

When defining an instance reference, the following attributes and elements are relevant (normative requirements are
specified in the schema).

Table 25 — InstanceRef Facet Definition

Name Description

targetParent Specifies the path name of the multi-instance object (table) of which an instance (row) is being referenced.
“{i}” placeholders and explicit instance numbers are not permitted in the path name. targetParentScope
can be used to specify path names relative to the Root or Service Object or the current object.

targetParentScope Specifies the point in the naming hierarchy relative to which targetParent applies (A.2.3.4): normal
(default), model or object.

refType Specifies the reference type (A.2.3.6): weak or strong.

When defining an enumeration reference, the following attributes and elements are relevant (normative requirements
are specified in the schema).

Table 26 — EnumerationRef Facet Definition

Name Description
targetParam Specifies the path name of the list-valued parameter whose current value indicates the valid enumerations
for this parameter.
September 2009 © The Broadband Forum. All rights reserved. 69

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Name Description

targetParamScope Specifies the point in the naming hierarchy relative to which targetParam applies (A.2.3.4): normal
(default), model or object.

nullValue Specifies the parameter value that indicates that none of the values of the referenced parameter currently
apply (if not specified, no such value is designated).

Note that if this parameter is list-valued then nullValue is not relevant, because this condition will be
indicated by an empty list.

The following examples illustrate the various possible types of reference.

<object name="PeriodicStatistics.SampleSet.{i}.Parameter.{i}." .>

<parameter name="Reference" access="readWrite'">
<description>Reference to the parameter that is associated with this object instance.
This MUST be the parameter's full path name.</description>
<syntax>
<string>
<size maxLength="256"/>
<pathRef targetType="parameter" refType="weak"/>

</string>
<default type="object" value=""/>
</syntax>
</parameter>
<object name="StorageService.{i}.StorageArray.{i}." .>

<parameter name="PhysicalMediumReference" access="readWrite'">
<description>A comma-separated list of Physical Medium references. Each Physical Medium
referenced by this parameter MUST exist within the same StorageService instance. A Physical Medium MUST
only be referenced by one Storage Array instance. Each reference can be either in the form of
".PhysicalMedium. {i}" or a fully qualified object name..</description>
<syntax>
<list>
<size maxLength="1024"/>
</list>
<string>
<pathRef targetParent=".PhysicalMedium." targetParentScope="model" targetType="row"
refType="strong"/>
</string>
</syntax>
</parameter>

<object name="InternetGatewayDevice.QueueManagement.Classification.{i}." access="readWrite"
minEntries="0" maxEntries="unbounded" entriesParameter="ClassificationNumberOfEntries">
<description>Classification table.</description>
<parameter name="ClassQueue" access="readWrite">
<description>Classification result. Instance number..</description>
<syntax>
<int>
<instanceRef targetParent=".QueueManagement.Queue.
</int>
</syntax>
</parameter>

refType="strong" />

<object name="STBService.{i}.Components.FrontEnd.{i}.IP.Inbound.{i}." ..>

<parameter name="StreamingControlProtocol" access="readOnly">
<description>Network protocol currently used for controlling streaming of the source content, or
an empty string if the content is not being streamed or is being streamed but is not being controlled.
If non-empty, the string MUST be one of the .Capabilities.FrontEnd.IP.StreamingControlProtocols
values.</description>
<syntax>
<string>
<enumerationRef targetParam=".Capabilities.FrontEnd.IP.StreamingControlProtocols"
nullvValue=""/>
</string>
</syntax>

September 2009 © The Broadband Forum. All rights reserved. 70

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

</parameter>

<parameter name="StreamingTransportProtocol" access="readOnly">
<description>Network protocol currently used for streaming the source content, or an empty
string if the content is not being streamed.
If non-empty, the string MUST be one of the .Capabilities.FrontEnd.IP.StreamingTransportProtocols
values.</description>
<syntax>
<string>
<enumerationRef targetParam=".Capabilities.FrontEnd.IP.StreamingTransportProtocols"
nullvValue=""/>
<string/>
</syntax>
</parameter>

<object name="InternetGatewayDevice.LANDevice.{i}.WLANConfiguration.{i}.WPS." .>

<parameter name="ConfigMethodsEnabled" access="readWrite'">
<description>Comma-separated list of the WPS configuration methods enabled on the device. Each
entry in the list MUST be a member of the list reported by the ConfigMethodsSupported
parameter..</description>
<syntax>
<list/>
<string>
<enumerationRef targetParam="ConfigMethodsSupported"/>
</string>
</syntax>
</parameter>

A.2.3.8 Base Type Restriction

A new data type MUST always be a restriction of its base type, meaning that a valid value of the new data type will
always be a valid value for its base type. This is the case for the examples of A.2.3.1, which involve three different
data types:

e string of unlimited length
e string of maximum length 255
e string of maximum length 127

Clearly a string of length 100 is valid for all three data types, but a string of length 200 is only valid for the first two
data types.

The examples of A.2.3.1 considered only the size facet, but in general all facets that are applicable to the data type
have to be considered. The base type restriction requirements for each facet are as follows:

Table 27 — XML Facet Inheritance Rules

Facet Requirements

size The derived data type can define sizes in any way, provided that the new sizes do not permit any values that
are not valid for the base type.

pathRef The derived data type can modify the data type in the following ways:

e By “promoting” status to a “higher” value, where the lowest to highest ordering is: current, deprecated,
obsoleted, deleted. For example, current can be changed to deprecated, and obsoleted can be changed
to deleted, but deleted can’t be changed back to obsoleted. When promoting status, the deprecation,
obsoletion and deletion rules of section 2.4 MUST be obeyed.

e By changing targetParent to narrow the set of possible parent objects.
e By changing targetType to narrow the set of possible target types.

e By changing targetDataType to narrow the set of possible target data types.

instanceRef The derived data type can modify the data type in the following ways:
e By “promoting” status to a “higher” value, as described for pathRef.

e By changing targetParent to narrow the set of possible parent objects.

September 2009 © The Broadband Forum. All rights reserved. 71

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Facet Requirements

range The derived data type can define ranges in any way, provided that the new ranges do not permit any values
that are not valid for the base type.

enumeration The derived data type can modify existing enumeration values in the following ways:
e By “promoting” access from readOnly to readWrite.

e By “promoting” status to a “higher” value, as described for pathRef.

e By “promoting” optional from False to True.

e By adding a code, if none was previously specified.

e By using the action attribute to extend or replace the description (see below).
The derived data type can add new enumeration values.

enumerationRef The derived data type can modify the data type in the following ways:

e By “promoting” status to a “higher” value, as described for pathRef.

pattern The derived data type can modify existing pattern values by changing access, status, optional and description
exactly as for enumerations.

The derived data type can add new patterns and/or replace existing patterns with new patterns, provided that
the new patterns do not permit any values that are not valid for the base type.

For example a single pattern “[AB]” could be replaced with “A” and “B”, but “C” could not be added.

units The derived data type can add units if the base type didn’t specify any.

Most of the above requirements are non-normative, because it has to be possible to correct errors. For example, if
the base type supports a range of [-1:4095] but the values 0 and 4095 were included in error, it would be permissible
for a derived type to support ranges of [-1:-1] and [1:4094]. Processing tools SHOULD be able to detect and warn
about such cases.

When defining a new data type, if a facet is omitted, the new data type will inherit that facet from its base type. Ifa
facet is present, it MUST be fully specified (except that special rules apply to descriptions; see below). For
example, this means that a derived type that adds additional enumeration values has also to re-declare the
enumeration values of the base type.

For example, in the following, the derived type inherits the units facet from its parent but it does not inherit the
range facet, so the PacketCounter range is [10:] and the PacketCounter2 range is [15:20].

<dataType name="PacketCounter">
<unsignedLong>
<range minInclusive="10"/>
<units value="packets"/>
</unsignedLong>
</dataType>

<dataType name="PacketCounter2" base="PacketCounter">
<range minInclusive="15" maxInclusive="20"/>
</dataType>

Similarly, in the following, the enumeration values for ABCD are not A, B, C and D, but are just C and D. This is
an error (because the derived type cannot remove enumeration values), and processing tools SHOULD detect and
warn about such cases.

September 2009 © The Broadband Forum. All rights reserved. 72

Data Model Template for TR-069-Enabled Devices

<dataType name="AB">
<string>
<enumeration value="A"/>
<enumeration value="B"/>
</string>
</dataType>

<dataType name="ABCD" base="AB">
<string>
<enumeration value="C"/>
<enumeration value="D"/>
</string>
</dataType>

TR-106 Issue 1 Amendment 3

A derived data type and any of its facets that support descriptions will inherit those descriptions from the base type.
Facet descriptions are inherited regardless of whether the facet is present in the derived type. For any descriptions
that are explicitly specified in the derived type, the action attribute controls whether they will be extended or

replaced.

For example, in the following, the description of Y (which is not changed) does not have to be repeated.

<dataType name="XY'">
<description>This is XY.</description>
<string>
<enumeration value="X">
<description>This is X.</description>
</enumeration>
<enumeration value="Y">
<description>This is Y.</description>
</enumeration>
</string>
</dataType>

<dataType name="XY2" base="XY">
<description action="replace">This is all about XY.</description>
<enumeration value="X">
<description action="append">This is more about X.</description>
</enumeration>
<enumeration value="Y"/>
</dataType>

A.2.4 Bibliography
The bibliography is defined using the top-level bibliography element, which can contain zero or more
(bibliographic) reference elements.

When defining a new bibliographic reference, the following attributes and elements are relevant (normative
requirements are specified in the schema).

Table 28 — XML Bibliographic References

Name Description

id The bibliographic reference ID.

name The name by which the referenced document is usually known.
title The document title.

organization

The organization that published the referenced document, e.g. BBF, IEEE, IETF.

category The document category, e.g. TR (BBF), RFC (IETF).
date The publication date.
hyperlink Hyperlink(s) to the document.

The bibliographic reference ID is intended to uniquely identify this reference across all instance documents.
Therefore, for instance documents that are published by the BBF, IDs MUST obey the following rules:

September 2009

© The Broadband Forum. All rights reserved. 73

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

e For a BBF Technical Report, it MUST be of the form “TR-nnnixaycz”, where TR is the literal “TR”, nnn is the
Technical Report number (including leading zeros), i, a and c are literal letters, and x, y, and z are the issue,
amendment and corrigendum numbers respectively. The issue number (ix) is omitted if it is issue 1 and the
amendment number (ay) is omitted if it is amendment 0. For example, “TR-106a2” refers to TR-106 (Issue 1)
Amendment 2. If the corrigendum number (cz) is omitted, the most recent corrigendum is assumed.

e For an IETF RFC, it MUST be of the form “RFCnnn”, where RFC is the literal “RFC” and nnn is the RFC
number (no leading zeros).

e For an IEEE specification, it SHOULD be of the form “nnn.ml-dddd”, where nnn.m is the IEEE group, 1 is the
spec letter(s), and dddd is the publication year. For example, “802.1D-2004".

e For an ETSI specification (which includes DVB specifications), it SHOULD be of the form “TTnnnnnnva.b.c”
where TT is the specification type, usually “TS” (Technical Specification), nnnnnn is the specification number,
and a.b.c is the version number.

e For specifications issued by other standards organizations, or by vendors, it SHOULD be of a standard form if
one is defined.

Processing tools SHOULD be lenient when comparing bibliographic reference IDs. Specifically, they SHOULD
ignore all whitespace, punctuation, leading zeros in numbers, and upper / lower case. So, for example, “rfc 1234”
and “RFC1234” would be regarded as the same ID, as would “TR-069 and “TR69”.

Processing tools SHOULD detect and report inconsistent bibliographic references, e.g. a reference with the same 1D
(i.e. an ID that compares as equal) as one that was encountered in a different file, but with a different name or

hyperlink.

Formally, bibliographic reference IDs in instance documents that are published by the BBF and the other
organizations mentioned above are defined as follows:

September 2009 © The Broadband Forum. All rights reserved. 74

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

IEEESpec

IEEEDate

ETSIID =

ReferencelD

BBEFNumber

RFCNumber

= BBFID

| RFCID

| IEEEID
| ETSIID
| OtherID

BBFID = "TR-" BBFNumber BBFIssue BBFAmendment BBFCorrigendum

[DIGIT]{3,} // including leading zeros, e.g. 069

BBFIssue = "i" <number greater than one>

// empty means Issue 1

BBFAmendment = "a" <number greater than zero>

// empty means Amendment 0

BBFCorrigendum = "c" <number greater than zero>

// empty means the most recent Corrigendum

RFCID = "RFC" RECNumber

NONZERODIGIT [DIGIT]*
// no leading zeros, e.g. 123

IEEEID = IEEEGroup IEEESpec IEEEDate
| <for other IEEE specifications, of a standard form if one is defined>

IEEEGroup = <group number> "." <group sub-number>

// e.g. 802.1
<spec letter(s)> // e.g. D

"-" <publication year>
// e.g. —2004
// can be empty

ETSISpecType ETSINumber ETSIVersion
<for other ETSI specifications, of a standard form if one is defined>

ETSISpecType = "TR" // Technical Report
| "TS" // Technical Specification
| "ES" // ETSI Specification
| "EN" // European Standard
ETSINumber = [DIGIT] {6} // e.g. 102034
ETSIVersion = "v" <version number as specified by ETSI>
[// can be empty
OtherURI = <of a standard form if one is defined>

A.2.5 Components

A component is a way of defining a named set of parameters, objects and/or profiles to be used wherever such a
group is needed in more than one place (or just to structure the definitions). A DM Instance can contain zero or
more top-level component elements.

When defining a new component, the following attributes and elements are relevant (normative requirements are
specified in the schema).

Table 29 — XML Component Definition

Name Description

name The component name.

description The component’s description (A.2.2).

component The other components that are referenced (included) by this component.

September 2009

© The Broadband Forum. All rights reserved. 75

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Name Description

parameter The component’s top-level parameter definitions (A.2.7).
object The component’s object definitions (A.2.8).

profile The component’s profile definitions (A.2.9).

Referencing (including) a component can be thought of as textual substitution. A component has no version number
and isn’t tied to a particular Root or Service Object.

The following is a simple example of component definition and reference.

<component name="ByteStats'">
<parameter name="BytesSent" access="readOnly">
<description>Number of bytes sent.</description>
<syntax><unsignedInt/></syntax>
</parameter>
<parameter name="BytesReceived" access="readOnly">
<description>Number of bytes received.</description>
<syntax><unsignedInt/></syntax>
</parameter>
</component>

<model name="InternetGatewayDevice:1.4">
<object name="InternetGatewayDevice." access="readOnly" minEntries="1" maxEntries="1">

<component ref="ByteStats"/>
</object>

</model>

Here the component is referenced from within an object definition. Components can be referenced from within
component, model and object definitions. Parameter, object and profile definitions within components are relative
to the point of inclusion unless overridden using the path attribute.

A.2.6 Root and Service Objects

Root and Service Objects are defined using the model element and an associated top-level object element. A DM
Instance can contain zero or more top-level model elements.

When defining a new model, the following attributes and elements are relevant (normative requirements are
specified in the schema).

Table 30 — XML Root and Service Objects

Name Description

name The model name, including its major and minor version numbers (3.7).

base The name of the previous version of the model (for use when the model version is greater than 1.0).
isService Whether it's a Service Object. This defaults to False and so can be omitted for Root Objects.
description The model’s description (A.2.2).

component The components that are referenced (included) by the model.

parameter The model’s top-level parameter definitions (A.2.7).

object The model’s top-level and other object definitions (A.2.8).

profile The model’s profile definitions (A.2.9).

Once a given version has been defined, it cannot be modified; instead, a new version of the object has to be defined.
For example, the following example defines v1.0 and v1.1 of a notional Service Object.

September 2009

© The Broadband Forum. All rights reserved. 76

A.2.7

A271

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

</model>

</model>

<model name="DemoService:1.0"
<parameter name="DemoServiceNumberOfEntries"
<object name="DemoService.{i}." access="readOnly" minEntries="0" maxEntries="unbounded"

<model name="DemoService:1.1" base="DemoService:1.0"
<object base="DemoService.{i}." access="readOnly" minEntries="0" maxEntries="unbounded"/>

isService="true">
access="readOnly" />

entriesParameter="DemoServiceNumberOfEntries"/>

isService="true">

Parameters

Parameters are defined using the parameter element, which can occur within component, model and object elements.
When defining a new parameter, the following attributes and elements are relevant (normative requirements are
specified in the schema).

Table 31 — XML Parameter Definition

Name Description

name The parameter name (3.1).

access Whether the parameter can be writable (readWrite) or not (readOnly).

status The parameter’s {current, deprecated, obsoleted, deleted} status. This defaults to current, and so is not likely to
be specified for a new parameter.

activeNotify The parameter’s {normal, forceEnabled, ForceDefault, canDeny} Active Notification status. This defaults to

normal, and so is not often specified for a new parameter.

forcedInform

The parameter’s Forced Inform status. This defaults to False, and so is not often specified for a new
parameter.

description

The parameter’s description (A.2.2).

syntax

The parameter’s syntax (A.2.7.1).

Parameter Syntax

Parameter syntax is defined using the syntax element, which can occur only within parameter elements. When
defining a new parameter, the following attributes and elements are relevant (normative requirements are specified

in the schema).

Table 32 — XML Parameter Syntax

Name Description

hidden Whether the value is hidden on readback. This defaults to False, and so is not often specified for a new
parameter.

list If the parameter is list-valued, details of the list value (3.2). This allows specification of the maximum and
minimum number of items in the list, and also supports a size facet for the list (A.2.3.3).
Note that a list-valued parameter is always a string as far as TR-069 is concerned. For a list, the rest of the
syntax specification refers to the individual list items, not to the parameter value.

base64 If the parameter is of a primitive data type, specifies a primitive data type reference, e.g. <int/>.

go;)k_ergn If the parameter data type is derived from a primitive data type, specifies an anonymous primitive data type

ate!ime definition (A.2.3.2), e.g. <int><range maxInclusive="255"/></int>.

hexBinary

int

long

string

unsignedint

unsignedLong

dataType If the parameter is of a named data type, specifies a named data type (A.2.3.1) reference, e.g. <dataType
ref="IPAddress”/>.
If the parameter data type is derived from a named data type, specifies an anonymous named data type
(A.2.3.2) definition, e.g. <dataType base="IPAddress”><size maxLength="15"/></dataType>.

September 2009

© The Broadband Forum. All rights reserved. 77

A.2.8

A.2.8.1

A.2.9

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Objects

Objects are defined using the object element, which can occur within component and model elements. When
defining a new object, the following attributes and elements are relevant (normative requirements are specified in
the schema).

Table 33 — XML Object Definition

Name Description

name The object name, specified as a partial path (3.1).

access Whether object instances can be Added or Deleted (readWrite) or not (readOnly). Adding or deleting instances
is meaningful only for a multi-instance (table) object.

minEntries The minimum number of instances of this object (always less than or equal to maxEntries).

maxEntries The maximum number of instances of this object (can be “unbounded”). minEntries and maxEntries allow the
object to be placed into one of three categories:
o minEntries=0, maxEntries=1: single-instance object which might not be allowed to exist, e.g. because

only one of it and another object can exist at the same time.

o minEntries=1, maxEntries=1: single-instance object that is always allowed to exist.
e All other cases: multi-instance (table) object (A.2.8.1).

status The object’s {current, deprecated, obsoleted, deleted} status. This defaults to current, and so is not likely to be
specified for a new object.

description The object’s description (A.2.2).

component The components that are referenced (included) by the object.

parameter The object’s parameter definitions (A.2.7).

Tables

If an object is a table, several other attributes and elements are relevant (normative requirements are specified in the
schema).

Table 34 — XML Table Definition

Name Description
name For a table, the last part of the name has to be “{i}” (3.1).
entriesParameter The name of the parameter (in the parent object) that contains the number of entries in the table. Such a

parameter is needed whenever there is a variable number of entries, i.e. whenever maxEntries is
unbounded or is greater than minEntries.

enableParameter The name of the parameter (in each table entry) that enables and disables that table entry. Such a
parameter is needed whenever access is readWrite (so the ACS might be able to create entries) and the

uniqueKey element is present.

uniqueKey An element that specifies a unique key by referencing those parameters that constitute the unique key. For
a table in which there is an enableParameter, the uniqueness requirement applies only to enabled table
entries.
Profiles

Profiles are defined using the profile element, which can occur within component and model elements. When
defining a new profile, the following attributes and elements are always relevant (normative requirements are
specified in the schema).

Table 35 — XML Profile Definition

Name Description

name The profile name, including its version number (2.3.3).

base The name of the previous version of the profile (for use when the profile version is greater than 1).
extends A list of the names of the profiles that this profile extends.

78

September 2009 © The Broadband Forum. All rights reserved.

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Name Description

description The profile’s description (A.2.2).

parameter The profile’s parameter requirements, which can include descriptions, references to the parameters in question,
and the parameter access requirement.

object The profile’s object requirements, which can include descriptions, references to the objects in question, the
object access requirements, and requirements for the object’s parameters.

A.2.10 Modifications

New data types, components, models and profiles can be created based on existing items. This doesn’t modify the

A.2.101

existing item.

Parameters, objects and profiles can be modified “in place”, i.e. without creating a new item. This still uses the
parameter, object and profile elements, and is indicated by using the base, rather than the name, attribute. The base
attribute specifies the name of the existing item that is to be modified.

The syntax for modifying an item is the same as for creating an item, but there are rules. These rules are not
specified in the DM Schema.

Parameter Modifications
The following rules govern parameter modifications.

Table 36 — XML Parameter Modification

Name Description

access Can be “promoted” from readOnly to readWrite.

status Can be “promoted” to a “higher” value, where the lowest to highest ordering is: current, deprecated,
obsoleted, deleted. For example, current can be changed to deprecated, and obsoleted can be changed to
deleted, but deleted can’t be changed back to obsoleted. When promoting status, the deprecation,
obsoletion and deletion rules of section 2.4 MUST be obeyed.

activeNotify Can be changed from forceEnabled to forceDefaultEnabled. No other changes are permitted.

forcedinform

Cannot be changed.

description Can be extended or replaced via use of the action attribute. When changing the description, behavioral
backwards compatibility MUST be preserved.
syntax/hidden Cannot be changed.
syntax/list Can add or modify the list element in the following ways:
e Can convert a non-list string parameter to a list provided that an empty string was already a valid value
with the appropriate meaning.
e Can adjust limits on numbers of items, and on the list size, provided that the new rules do not permit any
values that were not valid for the previous version of the parameter.
syntax/int etc Can make any change that follows the base type restriction rules of A.2.3.8, e.g. can add enumerations.
syntax/dataType
syntax/default A default can be added if the parameter didn't already have one.

Most of the above requirements are non-normative, because it has to be possible to correct errors in a previous
version of a parameter. Processing tools SHOULD be able to detect and warn when a parameter is modified in a
way that contravenes the above rules.

A.2.10.2 Object Modifications
The following rules govern object modifications.

September 2009

© The Broadband Forum. All rights reserved. 79

A.2.10.3

A3

Data Model Template for TR-069-Enabled Devices

TR-106 Issue 1 Amendment 3

Table 37 — XML Object Modification

Name Description

access Can be “promoted” from readOnly to readWrite.

minEntries Cannot be changed.

maxEntries Cannot be changed.

entriesParameter Cannot be changed, unless was previously missing, in which case can be added.

enableParameter

Cannot be changed, unless was previously missing, in which case can be added.

status Can be “promoted” to a “higher” value, where the lowest to highest ordering is: current, deprecated,
obsoleted, deleted. For example, current can be changed to deprecated, and obsoleted can be changed to
deleted, but deleted can’t be changed back to obsoleted. When promoting status, the deprecation,
obsoletion and deletion rules of section 2.4 MUST be obeyed.

description Can be extended or replaced via use of the action attribute. When changing the description, behavioral
backwards compatibility MUST be preserved.

uniqueKey Cannot be changed.

component Can reference (include) new components.

parameter Can add new parameters.

Most of the above requirements are non-normative, because it has to be possible to correct errors in a previous
version of an object. Processing tools SHOULD be able to detect and warn when an object is modified in a way that
contravenes the above rules.

Profile Modifications

The following rules govern profile modifications. They apply to the profile element, and to its nested parameter and
object elements.

Table 38 — XML Profile Modification

Name Description

status Can be “promoted” to a “higher” value, where the lowest to highest ordering is: current, deprecated,
obsoleted, deleted. For example, current can be changed to deprecated, and obsoleted can be changed to
deleted, but deleted can’t be changed back to obsoleted. When promoting status, the deprecation,

obsoletion and deletion rules of section 2.4 MUST be obeyed.

description Can be extended or replaced via use of the action attribute. When changing the description, behavioral

backwards compatibility MUST be preserved.

Most of the above requirements are non-normative, because it has to be possible to correct errors in a profile.
Indeed, since profiles are immutable, the only valid reason for changing a profile is to correct errors. Processing
tools SHOULD be able to detect and warn when a profile is modified in a way that contravenes the above rules.

DM Schema

The DM Schema is specified below. The normative version can be found at http://www.broadband-
forum.org/cwmp/cwmp-datamodel-1-1.xsd. Please be aware that a new version of the DM Schema might be
published at any time, in which case the version in this document would become out of date. Any conflict MUST be
resolved in favor of the normative version on the web site.

September 2009 © The Broadband Forum. All rights reserved. 80

http://www.broadband-forum.org/cwmp/cwmp-datamodel-1-1.xsd
http://www.broadband-forum.org/cwmp/cwmp-datamodel-1-1.xsd

OOIN N W —

Data Model Template for TR-069-Enabled Devices

<?xml version="1.0" encoding="UTF-8"?>
<l--
TR-069 Data Model Definition Schema (DM Schema) vl.1l

Notice:

TR-106 Issue 1 Amendment 3

The Broadband Forum is a non-profit corporation organized to create
guidelines for broadband network system development and deployment. This
XML Schema has been approved by members of the Forum. This document is

not binding on the Broadband Forum, any of its members,

or any developer

or service provider. This document is subject to change, but only with

approval of members of the Forum.

This document is provided "as is," with all faults. Any person holding a
copyright in this document, or any portion thereof, disclaims to the fullest

extent permitted by law any representation or warranty,
including, but not limited to,

express or implied,

(a) any warranty of merchantability, fitness for a particular purpose,

non-infringement, or title;
(b) any warranty that the contents of the document are

suitable for any

purpose, even if that purpose is known to the copyright holder;
(c) any warranty that the implementation of the contents of the documentation
will not infringe any third party patents, copyrights, trademarks or

other rights.

This publication may incorporate intellectual property.

The Broadband Forum

encourages but does not require declaration of such intellectual property.
For a list of declarations made by Broadband Forum member companies,

please see http://www.broadband-forum.org.
Copyright The Broadband Forum. All Rights Reserved.

Broadband Forum XML Schemas may be copied, downloaded,

stored on a server or

otherwise re-distributed in their entirety only. The text of this

notice must be included in all copies.

Summary:

TR-069 Data Model Definition Schema (DM Schema). DM Instances define TR-069
data models. Within the schema, elements are grouped by category (simple
types, complex types etc), and are in alphabetical order within each

category.

Version History:
November 2008: cwmp-datamodel-1-0.xsd, corresponds to
September 2009: cwmp-datamodel-1-1.xsd, corresponds to
- made import/@file a URI and optional
DT Schema)
- added RangeFacet step attribute
-—>
<!DOCTYPE cwmp-datamodel [
<!ENTITY colon ":">
<!ENTITY dot "\.">
<!ENTITY inst " (\{i\})">
<!ENTITY name " ([\i-[:]]1[\c—-[:\.]1]1*)">
<!ENTITY Name " ([\i-[a-z:]][\c-[:\.]]*)">
<!ENTITY num " (\d+)">
1>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:tns="urn:broadband-forum-
org:cwmp:datamodel-1-1" targetNamespace="urn:broadband-forum-

TR-106 Amendment 2
TR-106 Amendment 3
(in line with

org:cwmp:datamodel-1-1" elementFormDefault="unqualified"

attributeFormDefault="unqualified">
<!-- Simple types -->
<xs:simpleType name="ActiveNotify">
<xs:annotation>

<xs:documentation>Parameter active notify support.</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:token">
<xs:enumeration value="normal"/>
<xs:enumeration value="forceEnabled"/>
<xs:enumeration value="forceDefaultEnabled"/>
<xs:enumeration value="canDeny"/>

</xs:restriction>

September 2009 © The Broadband Forum. All rights reserved.

81

142

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

</xs:simpleType>
<xs:simpleType name="AnyTypeName">
<xs:annotation>
<xs:documentation>Built-in or derived type name.</xs:documentation>
</xs:annotation>
<xs:union memberTypes="tns:BuiltinTypeName tns:DataTypeName"/>
</xs:simpleType>
<xs:simpleType name="BibrefId">
<xs:annotation>
<xs:documentation>Bibliographic reference ID; SHOULD uniquely identify this reference
across all instance documents.

For BBF DM Instances, the bibliographic reference ID rules specified in A.2.4 MUST be used. For
example, to reference TR-106 Issue 1 Amendment 2, the value of this
attribute would be TR-106a2.</xs:documentation>

</xs:annotation>
<xs:restriction base="xs:token"/>
</xs:simpleType>
<xs:simpleType name="BuiltinTypeName">
<xs:annotation>
<xs:documentation>Built-in type name.

The type hierarchy is as for XML Schema, with "any" and "base64" mapping to the "anySimpleType"

and "base64Binary" XML Schema types respectively.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="any"/>
<xs:enumeration value="base64"/>
<xs:enumeration value="boolean"/>
<xs:enumeration value="dateTime" />
<xs:enumeration value="hexBinary"/>
<xs:enumeration value="integer"/>
<xs:enumeration value="int"/>
<xs:enumeration value="long"/>
<xs:enumeration value="string"/>
<xs:enumeration value="unsignedInt"/>
<xs:enumeration value="unsignedLong"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ComponentName">
<xs:annotation>
<xs:documentation>Component name; the same as xs:NCName except that dots are not
permitted.</xs:documentation>

</xs:annotation>
<xs:restriction base="xs:token">
<xs:pattern value="&name;"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="DataTypeName">
<xs:annotation>
<xs:documentation>Data type name; the same as xs:NCName except that cannot start with
lower-case letter (to avoid conflict with built-in data type names) and
dots are not permitted.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:pattern value="g&Name;"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="DefaultType">
<xs:annotation>
<xs:documentation>Type of default.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="factory">
<xs:annotation>
<xs:documentation>Default from standard, e.g. RFC. Also applies on object
creation.</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="object">
<xs:annotation>
<xs:documentation>Default on object creation.</xs:documentation>
</xs:annotation>

September 2009 © The Broadband Forum. All rights reserved. 82

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

</xs:enumeration>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="DescriptionAction">
<xs:annotation>
<xs:documentation>Description action.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="create"/>
<xs:enumeration value="append"/>
<xs:enumeration value="replace"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="MaxEntries">
<xs:annotation>
<xs:documentation>Positive integer or "unbounded".</xs:documentation>
</xs:annotation>
<xs:union memberTypes="xs:positiveInteger">
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="unbounded"/>
</xs:restriction>
</xs:simpleType>
</xs:union>
</xs:simpleType>
<xs:simpleType name="ModelName">
<xs:annotation>
<xs:documentation>Model name, including major and minor versions. The name part is the
same as xs:NCName except that dots are not permitted.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:pattern value="&name; : # ˙ # " />
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ObjectName">
<xs:annotation>
<xs:documentation>0Object name (maximum length 256). Each component is the same as
xs:NCName except that dots are not permitted. This name MUST in addition
follow the vendor-specific object name requirements of section
3.3.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:maxLength value="256"/>
<xs:pattern value=" (&name; ˙ (&inst;˙)?)+"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ObjectReference">
<xs:annotation>
<xs:documentation>Object path that cannot contain "{i}" placeholders and that therefore
references a single object. The path MUST follow the requirements of
A.2.3.4 (its scope will typically be specified via an attribute of type
PathScope) .</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:pattern value="˙? (&name; ˙)*"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ObjectReferencePattern">
<xs:annotation>
<xs:documentation>Object path that can contain "{i}" placeholders and that can therefore
references multiple objects. The path MUST follow the requirements of
A.2.3.4 (its scope will typically be specified via an attribute of type
PathScope) .</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:pattern value="˙? (&name; ˙ (&inst;˙)?)*"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ObjectReferencePatterns">
<xs:annotation>

September 2009 © The Broadband Forum. All rights reserved. 83

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

<xs:documentation>List of object paths, each of which can contain "{i}"
placeholders.</xs:documentation>
</xs:annotation>
<xs:list itemType="tns:0bjectReferencePattern"/>
</xs:simpleType>
<xs:simpleType name="OpaqueID">
<xs:annotation>
<xs:documentation>Opaque ID.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:maxLength value="256"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ParameterName">
<xs:annotation>
<xs:documentation>Parameter name (maximum length 256); the same as xs:NCName except that
dots are not permitted. This name MUST in addition follow the vendor-
specific parameter name requirements of section 3.3.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:maxLength value="256"/>
<xs:pattern value="&name;"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ParameterReference">
<xs:annotation>
<xs:documentation>Parameter path that cannot contain "{i}" placeholders and that therefore
references a single parameter. The path MUST follow the requirements of
A.2.3.4 (its scope will typically be specified via an attribute of type
PathScope) .</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:pattern value="˙? (&name; ˙) *&name; 2" />
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="PathScope">
<xs:annotation>
<xs:documentation>Object / parameter path name scope (A.2.3.4).</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="normal"/>
<xs:enumeration value="model"/>
<xs:enumeration value="object"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ProfileName">
<xs:annotation>
<xs:documentation>Profile name, including version. The name part is the same as xs:NCName
except that dots are not permitted.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:pattern value="g&name; : #"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ProfileNames">
<xs:annotation>
<xs:documentation>List of profile names.</xs:documentation>
</xs:annotation>
<xs:list itemType="tns:ProfileName"/>
</xs:simpleType>
<xs:simpleType name="ProfileObjectAccess">
<xs:annotation>
<xs:documentation>Object access (within profile) .</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="notSpecified"/>
<xs:enumeration value="present"/>
<xs:enumeration value="create"/>
<xs:enumeration value="delete"/>
<xs:enumeration value="createDelete"/>
</xs:restriction>

September 2009 © The Broadband Forum. All rights reserved. 84

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

</xs:simpleType>
<xs:simpleType name="ReadWriteAccess">
<xs:annotation>
<xs:documentation>Read-write access.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="readOnly"/>
<xs:enumeration value="readWrite"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ReferenceType">
<xs:annotation>
<xs:documentation>Reference type (A.2.3.6).</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="weak"/>
<xs:enumeration value="strong"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="Status">
<xs:annotation>
<xs:documentation>Item status (applies to most types of item).</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="current"/>
<xs:enumeration value="deprecated"/>
<xs:enumeration value="obsoleted"/>
<xs:enumeration value="deleted"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="TargetType">
<xs:annotation>
<xs:documentation>(Reference) target type (used in path references) .</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="any"/>
<xs:enumeration value="parameter"/>
<xs:enumeration value="object"/>
<xs:enumeration value="single"/>
<xs:enumeration value="table"/>
<xs:enumeration value="row"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="UnitsString">
<xs:annotation>
<xs:documentation>Units string.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:maxLength value="32"/>
</xs:restriction>
</xs:simpleType>
<!-- Model groups -->
<xs:group name="AllBuiltinDataTypes">
<xs:annotation>
<xs:documentation>All built-in data types.</xs:documentation>
</xs:annotation>
<xs:choice>
<xs:element name="base64">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="size" type="tns:SizeFacet">
<xs:annotation>
<xs:documentation>Length is that of the actual string, not the base64-encoded
string. See A.2.3.3.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"/>

September 2009 © The Broadband Forum. All rights reserved. 85

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

</xs:complexType>
</xs:element>
<xs:element name="boolean">
<xs:complexType>
<xs:sequence>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
<xs:element name="dateTime">
<xs:complexType>
<xs:sequence>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
<xs:element name="hexBinary">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="size" type="tns:SizeFacet">
<xs:annotation>
<xs:documentation>Length is that of the actual string, not the hexBinary-
encoded string. See A.2.3.3.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
<xs:element name="int">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="instanceRef" type="tns:InstanceRefFacet"/>
<xs:element name="range" type="tns:RangeFacet"/>
<xs:element name="units" type="tns:UnitsFacet"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
<xs:element name="long">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="range" type="tns:RangeFacet"/>
<xs:element name="units" type="tns:UnitsFacet"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
<xs:element name="string">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="size" type="tns:SizeFacet"/>
<xs:element name="pathRef" type="tns:PathRefFacet"/>
<xs:element name="enumeration" type="tns:EnumerationFacet"/>
<xs:element name="enumerationRef" type="tns:EnumerationRefFacet"/>
<xs:element name="pattern" type="tns:PatternFacet"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

September 2009 © The Broadband Forum. All rights reserved. 86

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

426 <xs:anyAttribute namespace="##other"/>

427 </xs:complexType>

428 <xs:unique name="stringEnumerationvValue">

429 <xs:selector xpath="enumeration"/>

430 <xs:field xpath="@value"/>

431 </xs:unique>

432 <xs:unique name="stringPatternvValue">

433 <xs:selector xpath="pattern"/>

434 <xs:field xpath="@value"/>

435 </xs:unique>

436 </xs:element>

437 <xs:element name="unsignedInt">

438 <xs:complexType>

439 <xs:sequence>

440 <xs:choice minOccurs="0" maxOccurs="unbounded">

441 <xs:element name="instanceRef" type="tns:InstanceRefFacet"/>

442 <xs:element name="range" type="tns:RangeFacet"/>

443 <xs:element name="units" type="tns:UnitsFacet"/>

444 </xs:choice>

445 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
446 </xs:sequence>

447 <xs:anyAttribute namespace="##other"/>

448 </xs:complexType>

449 </xs:element>

450 <xs:element name="unsignedLong">

451 <xs:complexType>

452 <xs:sequence>

453 <xs:choice minOccurs="0" maxOccurs="unbounded">

454 <xs:element name="range" type="tns:RangeFacet"/>

455 <xs:element name="units" type="tns:UnitsFacet"/>

456 </xs:choice>

457 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
458 </xs:sequence>

459 <xs:anyAttribute namespace="##other"/>

460 </xs:complexType>

461 </xs:element>

462 </xs:choice>

463 </xs:group>

464 <xs:group name="AllFacets">

465 <xs:annotation>

466 <xs:documentation>All facets.</xs:documentation>

467 </xs:annotation>

468 <xs:choice>

469 <xs:element name="size" type="tns:SizeFacet">

470 <xs:annotation>

471 <xs:documentation>Size facets, taken together, define the valid size ranges, e.g. (0:0)
472 and (6:6) mean that the size has to be 0 or 6.

473 The size facet MUST NOT be specified for non-string data types, i.e. data types that are not
474 derived from base64, hexBinary or string.</xs:documentation>
475 </xs:annotation>

476 </xs:element>

477 <xs:element name="instanceRef" type="tns:InstanceRefFacet">

478 <xs:annotation>

479 <xs:documentation>InstanceRef facets specify how a parameter can reference an object
480 instance (table row) via its instance number.

481 The instanceRef facet MUST NOT be specified for data types that are not derived from int or
482 unsignedInt.</xs:documentation>

483 </xs:annotation>

484 </xs:element>

485 <xs:element name="pathRef" type="tns:PathRefFacet">

486 <xs:annotation>

487 <xs:documentation>PathRef facets specify how a parameter can reference a parameter or
488 object via its path name.

489 The pathRef facet MUST NOT be specified for data types that are not derived from
490 string.</xs:documentation>

491 </xs:annotation>

492 </xs:element>

493 <xs:element name="range" type="tns:RangeFacet">

494 <xs:annotation>

September 2009 © The Broadband Forum. All rights reserved. 87

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

495 <xs:documentation>Range facets, taken together, define the valid value ranges, e.g. [-
496 1:-1] and [1:4094] mean that the value has to be -1 or 1:4094 (it cannot be
497 0) .

498 The range facet MUST NOT be specified for non-numeric data types, i.e. data types that are not
499 derived from one of the integer types.</xs:documentation>

500 </xs:annotation>

501 </xs:element>

502 <xs:element name="enumeration" type="tns:EnumerationFacet">

503 <xs:annotation>

504 <xs:documentation>Enumeration facets, taken together, define the valid values, e.g. "a"
505 and "b" mean that the value has to be a or b.

506 The enumeration facet MUST NOT be specified for data types that are not derived from string.
507 Derived types MAY add additional enumeration values. See A.2.5.</xs:documentation>

508 </xs:annotation>

509 </xs:element>

510 <xs:element name="enumerationRef" type="tns:EnumerationRefFacet">

511 <xs:annotation>

512 <xs:documentation>EnumerationRef facets allow a parameter's valid values to be obtained
513 from another parameter.

514 The enumerationRef facet MUST NOT be specified for data types that are not derived from

515 string.</xs:documentation>

516 </xs:annotation>

517 </xs:element>

518 <xs:element name="pattern" type="tns:PatternFacet">

519 <xs:annotation>

520 <xs:documentation>Pattern attributes, taken together, define valid patterns, e.g. ""
521 and "[0-9A-Fa-f]{6}" means that the value has to be empty or a 6 digit hex
522 string.

523 The pattern facet MUST NOT be specified for data types that are not derived from string.

524 Pattern syntax is the same as for XML Schema regular expressions. See

525 http://www.w3.0org/TR/xmlschema-2/#regexs.</xs:documentation>

526 </xs:annotation>

527 </xs:element>

528 <xs:element name="units" type="tns:UnitsFacet">

529 <xs:annotation>

530 <xs:documentation>Multiple units facets MUST NOT be specified.

531 The units facet MUST NOT be specified for data types that are not numeric, i.e. data types that
532 are not derived from one of the integer types.</xs:documentation>

533 </xs:annotation>

534 </xs:element>

535 </xs:choice>

536 </xs:group>

537 <!-- Complex types -->

538 <xs:complexType name="BaseStatusFacet" abstract="true">

539 <xs:annotation>

540 <xs:documentation>Base facet (status attribute).</xs:documentation>

541 </xs:annotation>

542 <xs:sequence>

543 <xs:element name="description" type="tns:Description" minOccurs="0"/>

544 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

545 </xs:sequence>

546 <xs:attribute name="status" type="tns:Status" default="current"/>

547 <xs:anyAttribute namespace="##other"/>

548 </xs:complexType>

549 <xs:complexType name="BaseAccessFacet" abstract="true">

550 <xs:annotation>

551 <xs:documentation>Base facet (access, status and optional attributes) .</xs:documentation>
552 </xs:annotation>

553 <xs:complexContent>

554 <xs:extension base="tns:BaseStatusFacet">

555 <xs:attribute name="access" type="tns:ReadWriteAccess" default="readWrite"/>

556 <xs:attribute name="optional" type="xs:boolean" default="false"/>

557 </xs:extension>

558 </xs:complexContent>

559 </xs:complexType>

560 <xs:complexType name="Bibliography">

561 <xs:annotation>

562 <xs:documentation>Bibliography definition.</xs:documentation>

563 </xs:annotation>

564 <xs:sequence>

565 <xs:element name="description" type="tns:Description" minOccurs="0"/>

September 2009 © The Broadband Forum. All rights reserved. 88

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

<xs:element name="reference" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="name" type="xs:token">
<xs:annotation>
<xs:documentation>Name by which the referenced document is usually known, e.g.
TR-069, RFC 2863.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="title" type="xs:token" minOccurs="0"/>
<xs:element name="organization" type="xs:token" minOccurs="0">
<xs:annotation>
<xs:documentation>Organization that published the referenced document, e.g. BBF,
IEEE, IETF.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="category" type="xs:token" minOccurs="0">
<xs:annotation>
<xs:documentation>Document category, e.g. TR (BBF), RFC
(IETF) .</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="date" type="xs:token" minOccurs="0">
<xs:annotation>
<xs:documentation>Publication date.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="hyperlink" type="xs:anyURI"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="tns:BibrefId" use="required">
<xs:annotation>
<xs:documentation>Uniquely identifies the reference (this is checked by schema
validation). Can be referenced from descriptions by using the {{bibref}}
template. See A.2.2.4.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="ComponentDefinition">
<xs:annotation>
<xs:documentation>Component definition.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="description" type="tns:Description" minOccurs="0"/>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="component" type="tns:ComponentReference"/>
<xs:element name="parameter" type="tns:ModelParameter"/>
<xs:element name="object" type="tns:ModelObject">
<xs:unique name="componentObjectParameterName">
<xs:selector xpath="parameter"/>
<xs:field xpath="@name"/>
</xs:unique>
<xs:keyref name="componentEnableParameterRef" refer="tns:componentObjectParameterName">
<xs:selector xpath="."/>
<xs:field xpath="@enableParameter"/>
</xs:keyref>
<xs:keyref name="componentUniqueKeyRef" refer="tns:componentObjectParameterName">
<xs:selector xpath="uniqueKey/parameter"/>
<xs:field xpath="@ref"/>
</xs:keyref>
</xs:element>
</xs:choice>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="profile" type="tns:Profile"/>
</xs:choice>

September 2009 © The Broadband Forum. All rights reserved. 89

637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="name" type="tns:ComponentName" use="required">
<xs:annotation>
<xs:documentation>MUST be unique within the document, including imported components (this
is checked by schema validation) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:attribute name="id" type="tns:OpaquelD"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="ComponentReference">
<xs:annotation>
<xs:documentation>Component reference.</xs:documentation>
</xs:annotation>
<xs:attribute name="ref" type="tns:ComponentName" use="required">
<xs:annotation>
<xs:documentation>Name of component to be referenced (included) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="path" type="tns:0bjectName">
<xs:annotation>
<xs:documentation>If specified, is relative path between point of reference (inclusion)
and the component's items. If not specified, behavior is as if an empty
relative path was specified.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="DataTypeDefinition">
<xs:annotation>
<xs:documentation>Parameter data type definition.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="description" type="tns:Description" minOccurs="0"/>
<xs:choice>
<xs:group ref="tns:AllFacets" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Facets MUST NOT be specified if the base attribute is
omitted.</xs:documentation>
</xs:annotation>
</xs:group>
<xs:group ref="tns:AllBuiltinDataTypes" minOccurs="0">
<xs:annotation>
<xs:documentation>A built-in data type element MUST NOT be specified if the base
attribute is present.
See tns:AllFacets for notes and requirements on individual facets.</xs:documentation>
</xs:annotation>
</x%s:group>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="name" type="tns:DataTypeName" use="required">
<xs:annotation>
<xs:documentation>MUST be unique within the document, including imported data types (this
is checked by schema validation).
Cannot begin with a lower-case letter, in order to avoid confusion with built-in data
types.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="base" type="tns:DataTypeName">
<xs:annotation>
<xs:documentation>MUST be present if and only if deriving from a non-built-in data type.
See A.2.3.1.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:attribute name="id" type="tns:OpaquelD"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>

September 2009 © The Broadband Forum. All rights reserved. 90

708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

<xs:complexType name="DataTypeReference">
<xs:annotation>
<xs:documentation>Parameter data type reference or anonymous restriction /
extension.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:group ref="tns:AllFacets" minOccurs="0" maxOccurs="unbounded"/>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="ref" type="tns:DataTypeName">
<xs:annotation>
<xs:documentation>If specified, content MUST be empty.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="base" type="tns:DataTypeName">
<xs:annotation>
<xs:documentation>If specified, content MUST NOT be empty.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="DefaultFacet">
<xs:annotation>
<xs:documentation>Default facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="type" type="tns:DefaultType" use="required"/>
<xs:attribute name="value" type="xs:string" use="required">
<xs:annotation>
<xs:documentation>Value MUST be valid for the data type.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="Description">
<xs:annotation>
<xs:documentation>Description: free text which MAY contain a limited amount of mediawiki-
like markup as specified in A.2.2. For example, use "*" at the start of a
line to indicate a bulleted list.

To avoid confusion, the description SHOULD NOT contain tab characters.

For BBF standards, the character set MUST be restricted to printable characters in the Basic
Latin Unicode block, i.e. to characters whose decimal ASCII representations
are in the (inclusive) ranges 9-10 and 32-126.</xs:documentation>

</xs:annotation>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="action" type="tns:DescriptionAction" default="create">
<xs:annotation>
<xs:documentation>This MUST be specified when the description modifies that of a
previously defined item.

Specify "append" to append to the previous description, or "replace" to replace the previous

description.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:anyAttribute namespace="##other"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="EnumerationFacet">
<xs:annotation>
<xs:documentation>Enumeration facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseAccessFacet">
<xs:attribute name="value" type="xs:string" use="required"/>
<xs:attribute name="code" type="xs:integer"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

September 2009 © The Broadband Forum. All rights reserved. 91

779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

<xs:complexType name="EnumerationRefFacet">
<xs:annotation>
<xs:documentation>Enumeration reference facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="targetParam" type="tns:ParameterReference" use="required">
<xs:annotation>
<xs:documentation>MUST reference a list-valued parameter.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="targetParamScope" type="tns:PathScope" default="normal">
<xs:annotation>
<xs:documentation>Specifies the point in the naming hierarchy relative to which
targetParam applies (A.2.3.4) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="nullValue" type="xs:token">
<xs:annotation>
<xs:documentation>Specifies the value that indicates that none of the values of the
referenced parameter currently apply.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="Import">
<xs:annotation>
<xs:documentation>Import data types, components and models (Root and Service Objects) from
external documents. All such items MUST be imported (this is checked by
schema validation) .
The optional ref attribute MAY be used in order to avoid name conflicts between imported and
locally-defined items.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="dataType">
<xs:complexType>
<xs:attribute name="name" type="tns:DataTypeName" use="required"/>
<xs:attribute name="ref" type="tns:DataTypeName">
<xs:annotation>
<xs:documentation>If omitted, data type is known by the same name in both this
and the referenced document.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element name="component">
<xs:complexType>
<xs:attribute name="name" type="tns:ComponentName" use="required"/>
<xs:attribute name="ref" type="tns:ComponentName">
<xs:annotation>
<xs:documentation>If omitted, component is known by the same name in both this
and the referenced document.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element name="model">
<xs:complexType>
<xs:attribute name="name" type="tns:ModelName" use="required"/>
<xs:attribute name="ref" type="tns:ModelName">
<xs:annotation>
<xs:documentation>If omitted, model is known by the same name in both this and
the referenced document.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
</xs:element>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

September 2009 © The Broadband Forum. All rights reserved. 92

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

850 </xs:sequence>

851 <xs:attribute name="file" type="xs:anyURI">

852 <xs:annotation>

853 <xs:documentation>If specified, MUST be used to locate the DM Instance

854 (A.2.1) .</xs:documentation>

855 </xs:annotation>

856 </xs:attribute>

857 <xs:attribute name="spec" type="xs:anyURI">

858 <xs:annotation>

859 <xs:documentation>If file is specified, this MAY be specified, in which case processing
860 tools MUST regard a mismatch between this and the external document's spec
861 attribute as an error.

862 If file is not specified, this MUST be specified and be used to locate the DM Instance
863 (A.2.1) .</xs:documentation>

864 </xs:annotation>

865 </xs:attribute>

866 <xs:anyAttribute namespace="##other"/>

867 </xs:complexType>

868 <xs:complexType name="InstanceRefFacet">

869 <xs:annotation>

870 <xs:documentation>Instance number reference facet.</xs:documentation>

871 </xs:annotation>

872 <xs:complexContent>

873 <xs:extension base="tns:BaseStatusFacet">

874 <xs:attribute name="refType" type="tns:ReferenceType" use="required">

875 <xs:annotation>

876 <xs:documentation>Specifies the type of reference (A.2.3.6).</xs:documentation>
877 </xs:annotation>

878 </xs:attribute>

879 <xs:attribute name="targetParent" type="tns:0ObjectReference" use="required">
880 <xs:annotation>

881 <xs:documentation>MUST reference a multi-instance object (table)

882 (A.2.3.4) .</xs:documentation>

883 </xs:annotation>

884 </xs:attribute>

885 <xs:attribute name="targetParentScope" type="tns:PathScope" default="normal">
886 <xs:annotation>

887 <xs:documentation>Specifies the point in the naming hierarchy relative to which
888 targetParent applies (A.2.3.4).</xs:documentation>

889 </xs:annotation>

890 </xs:attribute>

891 </xs:extension>

892 </xs:complexContent>

893 </xs:complexType>

894 <xs:complexType name="ListFacet">

895 <xs:annotation>

896 <xs:documentation>List facet.</xs:documentation>

897 </xs:annotation>

898 <xs:complexContent>

899 <xs:extension base="tns:BaseStatusFacet">

900 <xs:sequence>

901 <xs:choice minOccurs="0" maxOccurs="unbounded">

902 <xs:element name="size" type="tns:SizeFacet">

903 <xs:annotation>

904 <xs:documentation>This specifies the size of the TR-069 list-valued parameter,
905 not of the individual list items.</xs:documentation>

906 </xs:annotation>

907 </xs:element>

908 </xs:choice>

909 </xs:sequence>

910 <xs:attribute name="minItems" type="xs:nonNegativelInteger" default="0"/>

911 <xs:attribute name="maxItems" type="tns:MaxEntries" default="unbounded"/>
912 </xs:extension>

913 </xs:complexContent>

914 </xs:complexType>

915 <xs:complexType name="Model">

916 <xs:annotation>

917 <xs:documentation>Model (Root or Service Object) definition and

918 reference.</xs:documentation>

919 </xs:annotation>

920 <xs:sequence>

September 2009 © The Broadband Forum. All rights reserved. 93

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

<xs:element name="description" type="tns:Description" minOccurs="0"/>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="component" type="tns:ComponentReference"/>
<xs:element name="parameter" type="tns:ModelParameter"/>
<xs:element name="object" type="tns:ModelObject">
<xs:unique name="objectParameterName">
<xs:selector xpath="parameter"/>
<xs:field xpath="@name"/>
</xs:unique>
<xs:keyref name="objectEnableParameterRef" refer="tns:objectParameterName">
<xs:selector xpath="."/>
<xs:field xpath="@enableParameter"/>
</xs:keyref>
<xs:keyref name="objectUniqueKeyRef" refer="tns:objectParameterName">
<xs:selector xpath="uniqueKey/parameter"/>
<xs:field xpath="@Qref"/>
</xs:keyref>
</xs:element>
</xs:choice>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="profile" type="tns:Profile"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="name" type="tns:ModelName" use="required">
<xs:annotation>
<xs:documentation>MUST be unique within the document, including imported models (this is
checked by schema validation) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="base" type="tns:ModelName">
<xs:annotation>
<xs:documentation>MUST be present if and only if extending an existing model. See
A.2.10.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="isService" type="xs:boolean" default="false"/>
<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:attribute name="id" type="tns:OpaquelD"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="ModelObject">
<xs:annotation>
<xs:documentation>Object definition and reference. See A.2.8.1 for details of how tables
are represented.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="description" type="tns:Description" minOccurs="0"/>
<xs:element name="uniqueKey" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>MUST NOT be present if the object is not a table (see maxEntries).
The parameters referenced by each unique key element MUST constitute a unique key.
For a table in which there is an enableParameter, the uniqueness requirement applies only to
enabled table entries.</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="parameter" maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="ref" type="tns:ParameterName" use="required"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:unique name="uniqueKeyParameterRef">
<xs:selector xpath="parameter"/>
<xs:field xpath="@ref"/>
</xs:unique>
</xs:element>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="component" type="tns:ComponentReference"/>

September 2009 © The Broadband Forum. All rights reserved. 94

992

993

994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

<xs:element name="parameter" type="tns:ModelParameter"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="name" type="tns:0bjectName">
<xs:annotation>
<xs:documentation>MUST be unique within the component or model (this is checked by schema
validation) .
MUST be present if and only if defining a new object.
If the object is a table (see maxEntries), the final part of the name MUST be
"{i}.".</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="base" type="tns:0bjectName">
<xs:annotation>
<xs:documentation>MUST be present if and only if modifying an existing
object.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="access" type="tns:ReadWriteAccess" use="required"/>
<xs:attribute name="minEntries" type="xs:nonNegativeInteger" use="required">
<xs:annotation>
<xs:documentation>minEntries MUST be less than or equal to maxEntries (all values are
regarded as being less than "unbounded") .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="maxEntries" type="tns:MaxEntries" use="required">
<xs:annotation>
<xs:documentation>minEntries and maxEntries indicate whether the object is a table:

* minEntries=0, maxEntries=1 : single-instance object which might not be allowed to exist, e.g.
because only one of it and another object can exist at the same time
* minEntries=1, maxEntries=1 : single-instance object that is always allowed to exist

* all other cases : object is a table</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="numEntriesParameter" type="tns:ParameterName">
<xs:annotation>
<xs:documentation>MUST be specified for a table with a variable number of entries, i.e.
for which maxEntries is greater than minEntries ("unbounded" is regarded as
being greater than all values) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="enableParameter" type="tns:ParameterName">
<xs:annotation>
<xs:documentation>MUST be specified for a table in which the ACS can create entries and
which has one or more uniqueKey elements.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:attribute name="id" type="tns:0OpaqueID"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="ModelParameter">
<xs:annotation>
<xs:documentation>Parameter definition and reference.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="description" type="tns:Description" minOccurs="0"/>
<xs:element name="syntax" type="tns:Syntax" minOccurs="0"/>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="name" type="tns:ParameterName">
<xs:annotation>
<xs:documentation>MUST be unique within the parent object (this is checked by schema
validation) .
MUST be present if and only if defining a new parameter.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="base" type="tns:ParameterName">
<xs:annotation>

September 2009 © The Broadband Forum. All rights reserved. 95

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

<xs:documentation>MUST be present if and only if modifying an existing
parameter.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="access" type="tns:ReadWriteAccess" use="required"/>
<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:attribute name="activeNotify" type="tns:ActiveNotify" default="normal"/>
<xs:attribute name="forcedInform" type="xs:boolean" default="false"/>
<xs:attribute name="id" type="tns:OpaquelD"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="PathRefFacet">
<xs:annotation>
<xs:documentation>Path name reference facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="refType" type="tns:ReferenceType" use="required">
<xs:annotation>
<xs:documentation>Specifies the type of reference (A.2.3.6).</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="targetParent" type="tns:0ObjectReferencePatterns" default="">
<xs:annotation>
<xs:documentation>If the list is non-empty, this parameter MUST only reference
immediate children of matching objects (A.2.3.4).</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="targetParentScope" type="tns:PathScope" default="normal">
<xs:annotation>
<xs:documentation>Specifies the point in the naming hierarchy relative to which
targetParent applies (A.2.3.4).</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="targetType" type="tns:TargetType" default="any">
<xs:annotation>
<xs:documentation>Specifies the type of item that can be
referenced.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="targetDataType" type="tns:AnyTypeName" default="any">
<xs:annotation>
<xs:documentation>Specifies the valid data types for a referenced
parameter.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="PatternFacet">
<xs:annotation>
<xs:documentation>Pattern facet (pattern syntax is as in XML Schema) .</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseAccessFacet">
<xs:attribute name="value" type="xs:string" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="Profile">
<xs:annotation>
<xs:documentation>Profile definition and reference.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="description" type="tns:Description" minOccurs="0">
<xs:annotation>
<xs:documentation>If the extends attribute is insufficient to express general profile
requirements, any additional requirements MUST be specified
here.</xs:documentation>
</xs:annotation>
</xs:element>

September 2009 © The Broadband Forum. All rights reserved. 96

1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="parameter" type="tns:ProfileParameter"/>
<xs:element name="object" type="tns:ProfileObject"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="name" type="tns:ProfileName">
<xs:annotation>
<xs:documentation>MUST be unique within the model (this is checked by schema validation).
MUST be present if and only if defining a new profile.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="base" type="tns:ProfileName">
<xs:annotation>
<xs:documentation>MUST specify base if modifying an existing profile or if the profile
version is greater than 1.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="extends" type="tns:ProfileNames">
<xs:annotation>
<xs:documentation>MUST specify extends if the profile extends other
profile(s) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:attribute name="id" type="tns:OpaquelD"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="ProfileObject">
<xs:annotation>
<xs:documentation>Profile object definition.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="description" type="tns:Description" minOccurs="0">
<xs:annotation>
<xs:documentation>If the requirement attribute is insufficient to express the
requirement, any additional requirements MUST be specified here and MAY
override the attribute.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="parameter" type="tns:ProfileParameter" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="ref" type="tns:ObjectName" use="required"/>
<xs:attribute name="requirement" type="tns:ProfileObjectAccess" use="required"/>
<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="ProfileParameter">
<xs:annotation>
<xs:documentation>Profile parameter definition.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="description" type="tns:Description" minOccurs="0">
<xs:annotation>
<xs:documentation>If the requirement attribute is insufficient to express the
requirement, any additional requirements MUST be specified here and MAY
override the attribute.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
<xs:attribute name="ref" type="tns:ParameterName" use="required"/>
<xs:attribute name="requirement" type="tns:ReadWriteAccess" use="required"/>
<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="RangeFacet">
<xs:annotation>
<xs:documentation>Range facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>

September 2009 © The Broadband Forum. All rights reserved. 97

1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

<xs:extension base="tns:BaseAccessFacet">
<xs:attribute name="minInclusive" type="xs:integer"/>
<xs:attribute name="maxInclusive" type="xs:integer"/>
<xs:attribute name="step" type="xs:positivelInteger" default="1"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="SizeFacet">
<xs:annotation>
<xs:documentation>Size facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseAccessFacet">
<xs:attribute name="minLength" type="xs:nonNegativeInteger" default="0"/>
<xs:attribute name="maxLength" type="xs:nonNegativeInteger" default="16"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="UnitsFacet">
<xs:annotation>
<xs:documentation>Units facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="value" type="tns:UnitsString" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="Syntax">
<xs:annotation>
<xs:documentation>Parameter syntax specification.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="1list" type="tns:ListFacet" minOccurs="0">
<xs:annotation>
<xs:documentation>For lists, the TR-069 parameter is always a string and the data type
specification applies to individual list items, not to the parameter value.
See section 3.2 for comma-separated list formatting rules.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:choice>
<xs:group ref="tns:AllBuiltinDataTypes">
<xs:annotation>
<xs:documentation>Direct use of built-in data type, possibly modified via use of
facets.</xs:documentation>
</xs:annotation>
</x%s:group>
<xs:element name="dataType" type="tns:DataTypeReference">
<xs:annotation>
<xs:documentation>Use of named data type, possibly modified via use of
facets.</xs:documentation>
</xs:annotation>
<xs:unique name="dtRefEnumerationValue">
<xs:selector xpath="enumeration"/>
<xs:field xpath="@value"/>
</xs:unique>
<xs:unique name="dtRefPatternvalue">
<xs:selector xpath="pattern"/>
<xs:field xpath="@value"/>
</xs:unique>
</xs:element>
</xs:choice>
<xs:element name="default" type="tns:DefaultFacet" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="hidden" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>If true, readback is always false, 0 or empty
string.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:anyAttribute namespace="##other"/>

September 2009 © The Broadband Forum. All rights reserved. 98

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

1275 </xs:complexType>

1276 <!-- Elements -->

1277 <xs:element name="document">

1278 <xs:annotation>

1279 <xs:documentation>CWMP Data Model Definition XML Schema (DM Schema) instance documents can
1280 contain any or all of the following:

1281 * Data type definitions

1282 * Root Object definitions (including profiles)

1283 * Service Object definitions (including profiles)

1284 * Component definitions

1285 * Vendor extension definitions</xs:documentation>

1286 </xs:annotation>

1287 <xs:complexType>

1288 <xs:sequence>

1289 <xs:element name="description" type="tns:Description" minOccurs="0">
1290 <xs:annotation>

1291 <xs:documentation>Top-level description.</xs:documentation>

1292 </xs:annotation>

1293 </xs:element>

1294 <xs:element name="import" type="tns:Import" minOccurs="0" maxOccurs="unbounded">
1295 <xs:annotation>

1296 <xs:documentation>Imported data types, components and models (Root and Service
1297 Objects) .</xs:documentation>

1298 </xs:annotation>

1299 </xs:element>

1300 <xs:element name="dataType" type="tns:DataTypeDefinition" minOccurs="0"
1301 maxOccurs="unbounded">

1302 <xs:annotation>

1303 <xs:documentation>Top-level data type definitions.</xs:documentation>
1304 </xs:annotation>

1305 <xs:unique name="dtDefEnumerationvValue">

1306 <xs:selector xpath="enumeration"/>

1307 <xs:field xpath="@value"/>

1308 </xs:unique>

1309 <xs:unique name="dtDefPatternvValue">

1310 <xs:selector xpath="pattern"/>

1311 <xs:field xpath="@value"/>

1312 </xs:unique>

1313 </xs:element>

1314 <xs:element name="bibliography" type="tns:Bibliography" minOccurs="0">
1315 <xs:annotation>

1316 <xs:documentation>Bibliographic references.</xs:documentation>
1317 </xs:annotation>

1318 </xs:element>

1319 <xs:choice minOccurs="0" maxOccurs="unbounded">

1320 <xs:element name="component" type="tns:ComponentDefinition">

1321 <xs:annotation>

1322 <xs:documentation>Component definitions.</xs:documentation>
1323 </xs:annotation>

1324 <xs:unique name="componentParameterName">

1325 <xs:selector xpath="parameter"/>

1326 <xs:field xpath="@name"/>

1327 </xs:unique>

1328 <xs:unique name="componentObjectName">

1329 <xs:selector xpath="object"/>

1330 <xs:field xpath="@name"/>

1331 </xs:unique>

1332 <xs:unique name="componentProfileName">

1333 <xs:selector xpath="profile"/>

1334 <xs:field xpath="@name"/>

1335 </xs:unique>

1336 </xs:element>

1337 <xs:element name="model" type="tns:Model">

1338 <xs:annotation>

1339 <xs:documentation>Model (Root and Service Object) definitions.</xs:documentation>
1340 </xs:annotation>

1341 <xs:unique name="modelParameterName">

1342 <xs:selector xpath="parameter"/>

1343 <xs:field xpath="@name"/>

1344 </xs:unique>

1345 <xs:unique name="modelObjectName">

September 2009 © The Broadband Forum. All rights reserved. 99

1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

<xs:selector xpath="object"/>
<xs:field xpath="@name"/>
</xs:unique>
<xs:unique name="modelProfileName">
<xs:selector xpath="profile"/>
<xs:field xpath="@name"/>
</xs:unique>
</xs:element>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="spec" use="required">
<xs:annotation>
<xs:documentation>URI of the associated specification document, e.g. the BBF Technical
Report. This URI SHOULD uniquely identify the specification. More than
one DM Schema instance document MAY reference the same specification.
Where the specification is a BBF document, the URI naming rules specified in A.2.1.1 MUST be
used. For example, to reference TR-106 Issue 1 Amendment 2, the value of
this attribute would be urn:broadband-forum-org:tr-106-1-
2.</xs:documentation>
</xs:annotation>
<xs:simpleType>
<xs:restriction base="xs:anyURI">
<xs:pattern value=".+"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:unique name="dataTypeName">
<xs:selector xpath="dataType|import/dataType"/>
<xs:field xpath="@name"/>
</xs:unique>
<xs:unique name="componentName">
<xs:selector xpath="component|import/component"/>
<xs:field xpath="@name"/>
</xs:unique>
<xs:unique name="modelName">
<xs:selector xpath="model|import/model"/>
<xs:field xpath="@name"/>
</xs:unique>
<xs:unique name="bibId">
<xs:selector xpath="bibliography/reference"/>
<xs:field xpath="@id"/>
</xs:unique>
<xs:keyref name="dataTypeBase" refer="tns:dataTypeName">
<xs:selector xpath="dataType|.//parameter/syntax/dataType"/>
<xs:field xpath="@base"/>
</xs:keyref>
<xs:keyref name="dataTypeRef" refer="tns:dataTypeName">
<xs:selector xpath=".//parameter/syntax/dataType"/>
<xs:field xpath="@ref"/>
</xs:keyref>
<xs:keyref name="componentRef" refer="tns:componentName">
<xs:selector xpath=".//component"/>
<xs:field xpath="@ref"/>
</xs:keyref>
<xs:keyref name="modelBase" refer="tns:modelName">
<xs:selector xpath="model"/>
<xs:field xpath="@base"/>
</xs:keyref>
</xs:element>
</xs:schema>

September 2009 © The Broadband Forum. All rights reserved. 100

B.1

B.2

B.2.1

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

Annex B. CWMP Device Type XML
Schema

Introduction

The CWMP Device Type XML Schema [16], or DT Schema, is used for describing a device’s supported data
model. It is specified in B.4.

DT Schema instance documents can contain the following:
e Imports (from DM Schema instance documents) of Root or Service Object definitions
e Declarations of which features of imported Root or Service Objects are supported

DT Schema instance documents cannot contain definitions of Root or Service Objects. All such definitions have to
reside in DM Schema instance documents.

Normative Information

It is possible to create instance documents that conform to the DT Schema but nevertheless are not valid device type
specifications. This is because it is not possible to specify all the normative device type specification requirements
using the XML Schema language. Therefore, the schema contains additional requirements written using the usual
normative language. Instance documents that conform to the DT Schema and meet these additional requirements
are referred to as DT Instances.

The question of the location of the definitive normative information therefore arises. The answer is as follows:
e All the normative information in the main part of the document remains normative.

e The DT Schema, and the additional requirements therein, are normative. Some of these additional requirements
are duplicated (for emphasis) in this Annex.

e The DT Schema references additional material in this Annex. Such material is normative.

e Ifthe DT Schema conflicts with a normative requirement in the main part of the document, this is an error in the
DT Schema, and the requirement in the main part of the document takes precedence.

Importing DM Instances

DM Instances are imported using the top-level import element, which differs from the DM Schema import element
in that only data types and models can be imported (components cannot be imported because they are not used in
DT Instances).

Note — the rules for importing DM Instances into DT Instances are consistent with those given in A.2.1 for
importing DM Instances into other DM Instances. The only difference is an additional rule governing the
use, when available, of the DT Instance URL.

The DT Schema specifies that the DM Instance is located via the file attribute if it is present, and otherwise via the
spec attribute (although both attributes are optional, they cannot both be omitted).

September 2009 © The Broadband Forum. All rights reserved. 101

B.2.2

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

When the file attribute is present, the rules governing its value and its use for locating the DM Instance are as
follows:

e [t MUST be a URL adhering to RFC 3986 [8].
e Ifthe URL includes a scheme, it MUST be http, https or fip.
e Ifthe URL includes an authority, it MUST NOT include credentials.

e For standard BBF DM Instances, the rules that apply to the filename part (final path segment) of the A.2.1.1
BBFURL MUST be applied to the filename part of this URL. This means that the corrigendum number can be
omitted in order to refer to the latest corrigendum.

e Ifthe URL is a relative reference, processing tools MUST apply their own logic, e.g. apply a search path. Ifa
DT Instance URL is available, the relative reference MUST be interpreted relative to the DT Instance URL.

When the file attribute is absent, the rules governing the value and use of the spec attribute for locating the DM
Instance are as follows:

e If it begins with the string “urn:broadband-forum-org:”, it MUST be a BBFURI as defined in A.2.1.1, in which
case the DM Instance can be accessed at the BBFURL that is also defined in A.2.1.1.

e Otherwise, it can be used to locate the DM Instance only if processing tools understand the non-standard URI
format.

The above rules suggest the following recommendations:

e For accessing DM Instances that are BBF standards, the file attribute SHOULD NOT be specified, implying
that the spec attribute will be specified and will be used to locate the standard BBF DM Instance. For example:

<import spec="urn:broadband-forum-org:tr-157-1-0">
<model name="Device:1.3"/>
</import>

e For accessing DM Instances that are not BBF standards, the file attribute SHOULD be specified, implying that
it will be used to locate the non-standard DM Instance. For example:

<import file="http://example.com/device-1-0.xml">
<model name="X EXAMPLE Device:1.0"/>
</import>

Features

The feature element provides a simple way for a DT Instance to indicate whether a given feature is supported. The
current set of standard features is as follows:

Feature Description

DNSClient Device contains a DNS client.
DNSServer Device contains a DNS server.
Firewall Device contains a firewall.
IPV6 Device supports IPv6.

NAT Device supports NAT.
Router Device is a router.

Vendor-specific features MAY be supported, and if so the feature name MUST begin with X <VENDOR> , where
<VENDOR> MUST be as defined in section 3.3.

This example feature declaration illustrates the use of annotation:

<feature name="DNSServer">
<annotation>Supports a DNS Server and XYZ.</annotation>
</feature>

September 2009 © The Broadband Forum. All rights reserved. 102

B.3

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

In order to make it easy to add new features, standard feature names are defined in a separate DT Features Schema
that is imported by the DT Schema. The DT Features Schema is unversioned, so the DT Schema need not be
changed when new standard feature names are added. In order to preserve backwards compatibility, standard
feature names, once added, MUST NOT ever be deleted.

DT Features Schema

The DT Features Schema is specified below. The normative version can be found at http://www.broadband-
forum.org/cwmp/cwmp-devicetype-features.xsd. Please be aware that a new version of the DT Features Schema
might be published at any time, in which case the version in this document would become out of date. Any conflict
MUST be resolved in favor of the normative version on the web site.

September 2009 © The Broadband Forum. All rights reserved. 103

http://www.broadband-forum.org/cwmp/cwmp-devicetype-features.xsd
http://www.broadband-forum.org/cwmp/cwmp-devicetype-features.xsd

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

<?xml version="1.0" encoding="UTF-8"?>
<l--

OOIN N W —

TR-069 DT (Device Type) Features Schema

Notice:

The Broadband Forum is a non-profit corporation organized to create
guidelines for broadband network system development and deployment. This
XML Schema has been approved by members of the Forum. This document is
not binding on the Broadband Forum, any of its members, or any developer
or service provider. This document is subject to change, but only with
approval of members of the Forum.

This document is provided "as is," with all faults. Any person holding a

copyright in this document, or any portion thereof, disclaims to the fullest

extent permitted by law any representation or warranty, express or implied,

including, but not limited to,

(a) any warranty of merchantability, fitness for a particular purpose,
non-infringement, or title;

(b) any warranty that the contents of the document are suitable for any
purpose, even if that purpose is known to the copyright holder;

(c) any warranty that the implementation of the contents of the documentation
will not infringe any third party patents, copyrights, trademarks or
other rights.

This publication may incorporate intellectual property. The Broadband Forum
encourages but does not require declaration of such intellectual property.
For a list of declarations made by Broadband Forum member companies,

please see http://www.broadband-forum.org.

Copyright The Broadband Forum. All Rights Reserved.

Broadband Forum XML Schemas may be copied, downloaded, stored on a server or
otherwise re-distributed in their entirety only. The text of this
notice must be included in all copies.

Summary:
TR-069 DT (Device Type) Features Schema. Defines device features that
can be described in DT Instances.

Version History:
September 2009: cwmp-devicetype-features.xsd, corresponds to TR-106
Amendment 3

-——>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:tns="urn:broadband-forum-

org:cwmp:devicetype-features" targetNamespace="urn:broadband-forum-

org:cwmp:devicetype-features" elementFormDefault="unqualified"

attributeFormDefault="unqualified">
<xs:simpleType name="FeatureName">
<xs:restriction base="xs:NCName">
<xs:pattern value="DNSClient"/>
<xs:pattern value="DNSServer"/>
<xs:pattern value="Firewall"/>
<xs:pattern value="IPv6"/>
<xs:pattern value="NAT"/>
<xs:pattern value="Router"/>
<xs:pattern value="X_.+"/>
</xs:restriction>
</xs:simpleType>

</xs:schema>

September 2009 © The Broadband Forum. All rights reserved.

104

B.4

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

DT Schema

The DT Schema is specified below. The normative version can be found at http://www.broadband-
forum.org/cwmp/cwmp-devicetype-1-0.xsd. Please be aware that a new version of the DT Schema might be
published at any time, in which case the version in this document would become out of date. Any conflict MUST be
resolved in favor of the normative version on the web site.

September 2009 © The Broadband Forum. All rights reserved. 105

http://www.broadband-forum.org/cwmp/cwmp-devicetype-1-0.xsd
http://www.broadband-forum.org/cwmp/cwmp-devicetype-1-0.xsd

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

<?xml version="1.0" encoding="UTF-8"?>
<l--

OOIN N W —

TR-069 Device Type Schema (DT Schema) v1.0

Notice:

The Broadband Forum is a non-profit corporation organized to create
guidelines for broadband network system development and deployment. This
XML Schema has been approved by members of the Forum. This document is
not binding on the Broadband Forum, any of its members, or any developer
or service provider. This document is subject to change, but only with
approval of members of the Forum.

This document is provided "as is," with all faults. Any person holding a

copyright in this document, or any portion thereof, disclaims to the fullest

extent permitted by law any representation or warranty, express or implied,

including, but not limited to,

(a) any warranty of merchantability, fitness for a particular purpose,
non-infringement, or title;

(b) any warranty that the contents of the document are suitable for any
purpose, even if that purpose is known to the copyright holder;

(c) any warranty that the implementation of the contents of the documentation
will not infringe any third party patents, copyrights, trademarks or
other rights.

This publication may incorporate intellectual property. The Broadband Forum
encourages but does not require declaration of such intellectual property.
For a list of declarations made by Broadband Forum member companies,

please see http://www.broadband-forum.org.

Copyright The Broadband Forum. All Rights Reserved.

Broadband Forum XML Schemas may be copied, downloaded, stored on a server or
otherwise re-distributed in their entirety only. The text of this
notice must be included in all copies.

Summary:
TR-069 Device Type Schema (DT Schema). DT Instances describe individual
devices' support for TR-069 data models.

Version History:
September 2009: cwmp-devicetype-1-0.xsd, corresponds to TR-106 Amendment 3

-—>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:tns="urn:broadband-forum-

org:cwmp:devicetype-1-0" xmlns:dm="urn:broadband-forum-org:cwmp:datamodel-
1-1" xmlns:dtf="urn:broadband-forum-org:cwmp:devicetype-features"
targetNamespace="urn:broadband-forum-org:cwmp:devicetype-1-0"
elementFormDefault="unqualified" attributeFormDefault="unqualified">
<xs:import namespace="urn:broadband-forum-org:cwmp:datamodel-1-1" schemalocation="cwmp-
datamodel-1-1.xsd"/>
<xs:import namespace="urn:broadband-forum-org:cwmp:devicetype-features" schemalocation="cwmp-
devicetype-features.xsd"/>
<!-- Simple types -->
<xs:simpleType name="ActiveNotify">
<xs:annotation>
<xs:documentation>Parameter active notify support (based on
dm:activeNotify) .</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="normal"/>
<xs:enumeration value="willDeny"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ObjectAccess">
<xs:annotation>
<xs:documentation>Object access (based on dm:ProfileObjectAccess) .</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="readOnly"/>
<xs:enumeration value="create"/>
<xs:enumeration value="delete"/>
<xs:enumeration value="createDelete"/>

September 2009 © The Broadband Forum. All rights reserved. 106

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

72 </xs:restriction>

73 </xs:simpleType>

74 <!-- Model groups -->

75 <xs:group name="AllBuiltinDataTypes">

76 <xs:annotation>

77 <xs:documentation>All built-in data types.</xs:documentation>
78 </xs:annotation>

79 <xs:choice>

80 <xs:element name="base64">

81 <xs:complexType>

82 <xs:sequence>

83 <xs:choice minOccurs="0" maxOccurs="unbounded">

84 <xs:element name="size" type="tns:SizeFacet"/>

85 </xs:choice>

86 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />
87 </xs:sequence>

88 <xs:anyAttribute namespace="##other"/>

89 </xs:complexType>

90 </xs:element>

91 <xs:element name="boolean">

92 <xs:complexType>

93 <xs:sequence>

94 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
95 </xs:sequence>

96 <xs:anyAttribute namespace="##other"/>

97 </xs:complexType>

98 </xs:element>

99 <xs:element name="dateTime">

100 <xs:complexType>

101 <xs:sequence>

102 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
103 </xs:sequence>

104 <xs:anyAttribute namespace="##other"/>

105 </xs:complexType>

106 </xs:element>

107 <xs:element name="hexBinary">

108 <xs:complexType>

109 <xs:sequence>

110 <xs:choice minOccurs="0" maxOccurs="unbounded">

111 <xs:element name="size" type="tns:SizeFacet"/>

112 </xs:choice>

113 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
114 </xs:sequence>

115 <xs:anyAttribute namespace="##other"/>

116 </xs:complexType>

117 </xs:element>

118 <xs:element name="int">

119 <xs:complexType>

120 <xs:sequence>

121 <xs:choice minOccurs="0" maxOccurs="unbounded">

122 <xs:element name="instanceRef" type="tns:InstanceRefFacet"/>
123 <xs:element name="range" type="tns:RangeFacet"/>

124 <xs:element name="units" type="tns:UnitsFacet"/>

125 </xs:choice>

126 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
127 </xs:sequence>

128 <xs:anyAttribute namespace="##other"/>

129 </xs:complexType>

130 </xs:element>

131 <xs:element name="long">

132 <xs:complexType>

133 <xs:sequence>

134 <xs:choice minOccurs="0" maxOccurs="unbounded">

135 <xs:element name="range" type="tns:RangeFacet"/>

136 <xs:element name="units" type="tns:UnitsFacet"/>

137 </xs:choice>

138 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />
139 </xs:sequence>

140 <xs:anyAttribute namespace="##other"/>

141 </xs:complexType>

142 </xs:element>

September 2009 © The Broadband Forum. All rights reserved. 107

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

143 <xs:element name="string">

144 <xs:complexType>

145 <xs:sequence>

146 <xs:choice minOccurs="0" maxOccurs="unbounded">

147 <xs:element name="size" type="tns:SizeFacet"/>

148 <xs:element name="pathRef" type="tns:PathRefFacet"/>
149 <xs:element name="enumeration" type="tns:EnumerationFacet"/>
150 <xs:element name="enumerationRef" type="tns:EnumerationRefFacet"/>
151 <xs:element name="pattern" type="tns:PatternFacet"/>
152 </xs:choice>

153 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />
154 </xs:sequence>

155 <xs:anyAttribute namespace="##other"/>

156 </xs:complexType>

157 <xs:unique name="stringEnumerationValue">

158 <xs:selector xpath="enumeration"/>

159 <xs:field xpath="@value"/>

160 </xs:unique>

161 <xs:unique name="stringPatternvValue">

162 <xs:selector xpath="pattern"/>

163 <xs:field xpath="@value"/>

164 </xs:unique>

165 </xs:element>

166 <xs:element name="unsignedInt">

167 <xs:complexType>

168 <xs:sequence>

169 <xs:choice minOccurs="0" maxOccurs="unbounded">

170 <xs:element name="instanceRef" type="tns:InstanceRefFacet"/>
171 <xs:element name="range" type="tns:RangeFacet"/>

172 <xs:element name="units" type="tns:UnitsFacet"/>

173 </xs:choice>

174 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
175 </xs:sequence>

176 <xs:anyAttribute namespace="##other"/>

177 </xs:complexType>

178 </xs:element>

179 <xs:element name="unsignedLong">

180 <xs:complexType>

181 <xs:sequence>

182 <xs:choice minOccurs="0" maxOccurs="unbounded">

183 <xs:element name="range" type="tns:RangeFacet"/>

184 <xs:element name="units" type="tns:UnitsFacet"/>

185 </xs:choice>

186 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
187 </xs:sequence>

188 <xs:anyAttribute namespace="##other"/>

189 </xs:complexType>

190 </xs:element>

191 </xs:choice>

192 </xs:group>

193 <xs:group name="AllFacets">

194 <xs:annotation>

195 <xs:documentation>All facets.</xs:documentation>

196 </xs:annotation>

197 <xs:choice>

198 <xs:element name="size" type="tns:SizeFacet"/>

199 <xs:element name="instanceRef" type="tns:InstanceRefFacet"/>
200 <xs:element name="pathRef" type="tns:PathRefFacet"/>

201 <xs:element name="range" type="tns:RangeFacet"/>

202 <xs:element name="enumeration" type="tns:EnumerationFacet"/>
203 <xs:element name="enumerationRef" type="tns:EnumerationRefFacet"/>
204 <xs:element name="pattern" type="tns:PatternFacet"/>

205 <xs:element name="units" type="tns:UnitsFacet"/>

206 </xs:choice>

207 </xs:group>

208 <!-- Complex types -->

209 <xs:complexType name="Annotation">

210 <xs:annotation>

211 <xs:documentation>Annotation.</xs:documentation>

212 </xs:annotation>

213 <xs:simpleContent>

September 2009 © The Broadband Forum. All rights reserved. 108

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

214 <xs:extension base="xs:string">

215 <xs:anyAttribute namespace="##other"/>

216 </xs:extension>

217 </xs:simpleContent>

218 </xs:complexType>

219 <xs:complexType name="BaseAccessFacet" abstract="true">

220 <xs:annotation>

221 <xs:documentation>Base facet (access attribute).</xs:documentation>
222 </xs:annotation>

223 <xs:complexContent>

224 <xs:extension base="tns:BaseStatusFacet">

225 <xs:attribute name="access" type="dm:ReadWriteAccess" default="readWrite"/>
226 </xs:extension>

227 </xs:complexContent>

228 </xs:complexType>

229 <xs:complexType name="BaseStatusFacet" abstract="true">

230 <xs:annotation>

231 <xs:documentation>Base facet (no attributes) .</xs:documentation>
232 </xs:annotation>

233 <xs:sequence>

234 <xs:element name="annotation" type="tns:Annotation" minOccurs="0"/>
235 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
236 </xs:sequence>

237 <xs:anyAttribute namespace="##other"/>

238 </xs:complexType>

239 <xs:complexType name="DefaultFacet">

240 <xs:annotation>

241 <xs:documentation>Default facet.</xs:documentation>

242 </xs:annotation>

243 <xs:complexContent>

244 <xs:extension base="tns:BaseStatusFacet">

245 <xs:attribute name="type" type="dm:DefaultType" use="required"/>
246 <xs:attribute name="value" type="xs:string" use="required">

247 <xs:annotation>

248 <xs:documentation>Value MUST be valid for the data type.</xs:documentation>
249 </xs:annotation>

250 </xs:attribute>

251 </xs:extension>

252 </xs:complexContent>

253 </xs:complexType>

254 <xs:complexType name="EnumerationFacet">

255 <xs:annotation>

256 <xs:documentation>Enumeration facet.</xs:documentation>

257 </xs:annotation>

258 <xs:complexContent>

259 <xs:extension base="tns:BaseAccessFacet">

260 <xs:attribute name="value" type="xs:string" use="required"/>

261 <xs:attribute name="code" type="xs:integer"/>

262 </xs:extension>

263 </xs:complexContent>

264 </xs:complexType>

265 <xs:complexType name="EnumerationRefFacet">

266 <xs:annotation>

267 <xs:documentation>Enumeration reference facet.</xs:documentation>
268 </xs:annotation>

269 <xs:complexContent>

270 <xs:extension base="tns:BaseStatusFacet"/>

271 </xs:complexContent>

272 </xs:complexType>

273 <xs:complexType name="Import">

274 <xs:annotation>

275 <xs:documentation>Import data types and models (Root and Service Objects) from DM
276 Instances. All such items MUST be imported (this is checked by schema
277 validation) .</xs:documentation>

278 </xs:annotation>

279 <xs:sequence>

280 <xs:choice minOccurs="0" maxOccurs="unbounded">

281 <xs:element name="dataType">

282 <xs:complexType>

283 <xs:attribute name="name" type="dm:DataTypeName" use="required"/>
284 </xs:complexType>

September 2009 © The Broadband Forum. All rights reserved. 109

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

</xs:element>
<xs:element name="model">
<xs:complexType>
<xs:attribute name="name" type="dm:ModelName" use="required"/>
</xs:complexType>
</xs:element>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="file" type="xs:anyURI">
<xs:annotation>
<xs:documentation>If specified, MUST be used to locate the DM Instance
(B.2.1) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="spec" type="xs:anyURI">
<xs:annotation>
<xs:documentation>If file is specified, this MAY be specified, in which case processing
tools MUST regard a mismatch between this and the external document's spec
attribute as an error.
If file is not specified, this MUST be specified and be used to locate the DM Instance
(B.2.1) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="InstanceRefFacet">
<xs:annotation>
<xs:documentation>Instance number reference facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="targetParent" type="dm:0bjectReference" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="ListFacet">
<xs:annotation>
<xs:documentation>List facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="size" type="tns:SizeFacet">
<xs:annotation>
<xs:documentation>This specifies the size of the TR-069 list-valued parameter,
not of the individual list items.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:choice>
</xs:sequence>
<xs:attribute name="minItems" type="xs:nonNegativeInteger" default="0"/>
<xs:attribute name="maxItems" type="dm:MaxEntries" default="unbounded"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="Model">
<xs:annotation>
<xs:documentation>Model (Root and Service Object) support details.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="annotation" type="tns:Annotation" minOccurs="0"/>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="parameter" type="tns:ModelParameter"/>
<xs:element name="object" type="tns:ModelObject">
<xs:unique name="objectParameterName">
<xs:selector xpath="parameter"/>
<xs:field xpath="@ref"/>
</xs:unique>
</xs:element>

September 2009 © The Broadband Forum. All rights reserved. 110

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="ref" type="dm:ModelName" use="required"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="ModelObject">
<xs:annotation>
<xs:documentation>Object support details</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="annotation" type="tns:Annotation" minOccurs="0"/>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="parameter" type="tns:ModelParameter"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="ref" type="dm:ObjectName" use="required"/>
<xs:attribute name="access" type="tns:0bjectAccess" use="required"/>
<xs:attribute name="minEntries" type="xs:nonNegativeInteger" use="required">
<xs:annotation>
<xs:documentation>minEntries MUST be greater than or equal to minEntries(DM), and less
than or equal to maxEntries (all values are regarded as being less than
"unbounded") .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="maxEntries" type="dm:MaxEntries" use="required">
<xs:annotation>
<xs:documentation>maxEntries MUST be less than or equal to maxEntries(DM) (all values are
regarded as being less than "unbounded").</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="ModelParameter">
<xs:annotation>
<xs:documentation>Parameter support details.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="annotation" type="tns:Annotation" minOccurs="0"/>
<xs:element name="syntax" type="tns:Syntax" minOccurs="0"/>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="ref" type="dm:ParameterName" use="required"/>
<xs:attribute name="access" type="dm:ReadWriteAccess" use="required"/>
<xs:attribute name="activeNotify" type="tns:ActiveNotify" default="normal"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="PathRefFacet">
<xs:annotation>
<xs:documentation>Path name reference facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="targetParent" type="dm:ObjectReferencePatterns" default=""/>
<xs:attribute name="targetType" type="dm:TargetType" default="any"/>
<xs:attribute name="targetDataType" type="dm:AnyTypeName" default="any"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="PatternFacet">
<xs:annotation>
<xs:documentation>Pattern facet (pattern syntax is as in XML Schema) .</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseAccessFacet">
<xs:attribute name="value" type="xs:string" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="RangeFacet">

September 2009 © The Broadband Forum. All rights reserved. 111

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

427 <xs:annotation>

428 <xs:documentation>Range facet.</xs:documentation>

429 </xs:annotation>

430 <xs:complexContent>

431 <xs:extension base="tns:BaseAccessFacet">

432 <xs:attribute name="minInclusive" type="xs:integer"/>

433 <xs:attribute name="maxInclusive" type="xs:integer"/>

434 </xs:extension>

435 </xs:complexContent>

436 </xs:complexType>

437 <xs:complexType name="SizeFacet">

438 <xs:annotation>

439 <xs:documentation>Size facet.</xs:documentation>

440 </xs:annotation>

441 <xs:complexContent>

442 <xs:extension base="tns:BaseAccessFacet">

443 <xs:attribute name="minLength" type="xs:nonNegativeInteger" default="0"/>
444 <xs:attribute name="maxLength" type="xs:nonNegativeInteger" default="16"/>
445 </xs:extension>

446 </xs:complexContent>

447 </xs:complexType>

448 <xs:complexType name="DataTypeReference">

449 <xs:annotation>

450 <xs:documentation>Parameter data type anonymous restriction / extension.</xs:documentation>
451 </xs:annotation>

452 <xs:sequence>

453 <xs:group ref="tns:AllFacets" minOccurs="0" maxOccurs="unbounded"/>
454 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
455 </xs:sequence>

456 <xs:attribute name="base" type="dm:DataTypeName">

457 <xs:annotation>

458 <xs:documentation>If specified, content MUST NOT be empty.</xs:documentation>
459 </xs:annotation>

460 </xs:attribute>

461 <xs:anyAttribute namespace="##other"/>

462 </xs:complexType>

463 <xs:complexType name="Syntax">

464 <xs:annotation>

465 <xs:documentation>Parameter syntax support details.</xs:documentation>
466 </xs:annotation>

467 <xs:sequence>

468 <xs:element name="1list" type="tns:ListFacet" minOccurs="0"/>

469 <xs:choice>

470 <xs:group ref="tns:AllBuiltinDataTypes">

471 <xs:annotation>

472 <xs:documentation>Direct use of built-in data type, possibly modified via use of
473 facets.</xs:documentation>

474 </xs:annotation>

475 </xs:group>

476 <xs:element name="dataType" type="tns:DataTypeReference">

477 <xs:annotation>

478 <xs:documentation>Use of named data type, possibly modified via use of
479 facets.</xs:documentation>

480 </xs:annotation>

481 <xs:unique name="dtRefEnumerationValue">

482 <xs:selector xpath="enumeration"/>

483 <xs:field xpath="@value"/>

484 </xs:unique>

485 <xs:unique name="dtRefPatternvValue">

486 <xs:selector xpath="pattern"/>

487 <xs:field xpath="@value"/>

488 </xs:unique>

489 </xs:element>

490 </xs:choice>

491 <xs:element name="default" type="tns:DefaultFacet" minOccurs="0"/>
492 </xs:sequence>

493 <xs:anyAttribute namespace="##other"/>

494 </xs:complexType>

495 <xs:complexType name="ToplevelFeature">

496 <xs:annotation>

497 <xs:documentation>Top-level feature.</xs:documentation>

September 2009 © The Broadband Forum. All rights reserved. 112

Data Model Template for TR-069-Enabled Devices TR-106 Issue 1 Amendment 3

498 </xs:annotation>

499 <xs:sequence>

500 <xs:element name="annotation" type="tns:Annotation" minOccurs="0"/>
501 </xs:sequence>

502 <xs:attribute name="name" type="dtf:FeatureName" use="required"/>

503 </xs:complexType>

504 <xs:complexType name="UnitsFacet">

505 <xs:annotation>

506 <xs:documentation>Units facet.</xs:documentation>

507 </xs:annotation>

508 <xs:complexContent>

509 <xs:extension base="tns:BaseStatusFacet">

510 <xs:attribute name="value" type="dm:UnitsString" use="required"/>
511 </xs:extension>

512 </xs:complexContent>

513 </xs:complexType>

514 <!-- Elements -->

515 <xs:element name="document">

516 <xs:annotation>

517 <xs:documentation>CWMP Device Type XML Schema (DT Schema) instance documents can contain
518 the following:

519 * Imports (from DM Schema instance documents) of Root or Service Object definitions
520 * Declarations of which features of imported Root or Service Objects are

521 supported</xs:documentation>

522 </xs:annotation>

523 <xs:complexType>

524 <xs:sequence>

525 <xs:element name="annotation" type="tns:Annotation" minOccurs="0">
526 <xs:annotation>

527 <xs:documentation>Top-level annotation.</xs:documentation>

528 </xs:annotation>

529 </xs:element>

530 <xs:element name="import" type="tns:Import" minOccurs="0" maxOccurs="unbounded">
531 <xs:annotation>

532 <xs:documentation>Imported models (Root and Service Objects) .</xs:documentation>
533 </xs:annotation>

534 </xs:element>

535 <xs:element name="bibliography" type="dm:Bibliography" minOccurs="0">
536 <xs:annotation>

537 <xs:documentation>Bibliographic references.</xs:documentation>
538 </xs:annotation>

539 </xs:element>

540 <xs:element name="feature" type="tns:ToplevelFeature" minOccurs="0"
541 maxOccurs="unbounded">

542 <xs:annotation>

543 <xs:documentation>Top-level features.</xs:documentation>

544 </xs:annotation>

545 </xs:element>

546 <xs:element name="model" type="tns:Model" minOccurs="0" maxOccurs="unbounded">
547 <xs:annotation>

548 <xs:documentation>Details of support for model (Root and Service
549 Object) .</xs:documentation>

550 </xs:annotation>

551 <xs:unique name="modelParameterName">

552 <xs:selector xpath="parameter"/>

553 <xs:field xpath="@ref"/>

554 </xs:unique>

555 <xs:unique name="modelObjectName">

556 <xs:selector xpath="object"/>

557 <xs:field xpath="@ref"/>

558 </xs:unique>

559 </xs:element>

560 </xs:sequence>

561 <xs:attribute name="deviceType" use="required">

562 <xs:annotation>

563 <xs:documentation>URI indicating the device type associated with this DT
564 Instance.</xs:documentation>

565 </xs:annotation>

566 <xs:simpleType>

567 <xs:restriction base="xs:anyURI">

568 <xs:pattern value=".+"/>

September 2009 © The Broadband Forum. All rights reserved. 113

569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

595

Data Model Template for TR-069-Enabled Devices

</xs:restriction>
</xs:simpleType>

</xs:attribute>

</xs:complexType>

<xs:unique name="dataTypeName">
<xs:selector xpath="import/dataType"/>
<xs:field xpath="@name"/>

</xs:unique>

<xs:keyref name="dataTypeBase" refer="tns:dataTypeName">
<xs:selector xpath=".//parameter/syntax/dataType"/>
<xs:field xpath="Q@base"/>

</xs:keyref>

<xs:unique name="modelName">
<xs:selector xpath="import/model"/>
<xs:field xpath="@name"/>

</xs:unique>

<xs:unique name="modelRef">
<xs:selector xpath="model"/>
<xs:field xpath="@ref"/>

</xs:unique>

<xs:keyref name="modelDef" refer="tns:modelName">
<xs:selector xpath="model"/>
<xs:field xpath="@ref"/>

</xs:keyref>

</xs:element>
</xs:schema>

September 2009 © The Broadband Forum. All rights reserved.

TR-106 Issue 1 Amendment 3

114

	1 Introduction
	1.1 Terminology
	1.2 Document Conventions

	2 Architecture
	2.1 Data Hierarchy
	2.1.1 Data Hierarchy Requirements
	2.1.2 Data Hierarchy Examples
	2.1.3 The Supported Data Model and the Instantiated Data Model

	2.2 Object Versioning
	2.2.1 Requirements for Compatible Versions
	2.2.2 Version Notation

	2.3 Profiles
	2.3.1 Scope of Profiles
	2.3.2 Multiple Profile Support
	2.3.3 Profile Versions
	2.3.4 Baseline Profiles
	2.3.5 Types of Requirements in a Profile

	2.4 DEPRECATED and OBSOLETED Items
	2.4.1 Requirements for DEPRECATED Items
	2.4.2 Requirements for OBSOLETED Items

	3 Object Definitions
	3.1 General Notation
	3.2 Data Types
	3.3 Vendor-Specific Parameters
	3.4 Common Object Definitions
	3.5 Inform Requirements
	3.6 Notification Requirements
	3.7 DeviceSummary Definition
	3.7.1 DeviceSummary Examples

	4 Profile Definitions
	4.1 Notation
	4.2 Baseline Profile
	4.3 GatewayInfo Profile
	4.4 Time Profile
	4.5 LAN Profile
	4.6 IPPing Profile
	4.7 TraceRoute Profile
	4.8 Download Profile
	4.9 DownloadTCP Profile
	4.10 Upload Profile
	4.11 UploadTCP Profile
	4.12 UDPEcho Profile
	4.13 UDPEchoPlus Profile
	4.14 UDPConnReq Profile

	Normative References

