

 TECHNICAL REPORT

© The Broadband Forum. All rights reserved.

TR-106
Data Model Template for TR-069-Enabled Devices

Issue: 1 Amendment 2

Issue Date: November 2008

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 2

Notice

The Broadband Forum is a non-profit corporation organized to create guidelines for broadband network

system development and deployment. This Broadband Forum Technical Report has been approved by

members of the Forum. This Broadband Forum Technical Report is not binding on the Broadband Forum,

any of its members, or any developer or service provider. This Broadband Forum Technical Report is

subject to change, but only with approval of members of the Forum. This Technical Report is copyrighted

by the Broadband Forum, and all rights are reserved. Portions of this Technical Report may be copyrighted
by Broadband Forum members.

This Broadband Forum Technical Report is provided AS IS, WITH ALL FAULTS. ANY PERSON

HOLDING A COPYRIGHT IN THIS BROADBAND FORUM TECHNICAL REPORT, OR ANY

PORTION THEREOF, DISCLAIMS TO THE FULLEST EXTENT PERMITTED BY LAW ANY

REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED

TO, ANY WARRANTY:

(A) OF ACCURACY, COMPLETENESS, MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, NON-INFRINGEMENT, OR TITLE;

(B) THAT THE CONTENTS OF THIS BROADBAND FORUM TECHNICAL REPORT ARE

SUITABLE FOR ANY PURPOSE, EVEN IF THAT PURPOSE IS KNOWN TO THE
COPYRIGHT HOLDER;

(C) THAT THE IMPLEMENTATION OF THE CONTENTS OF THE DOCUMENTATION WILL

NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER

RIGHTS.

By using this Broadband Forum Technical Report, users acknowledge that implementation may require

licenses to patents. The Broadband Forum encourages but does not require its members to identify such

patents. For a list of declarations made by Broadband Forum member companies, please see

http://www.broadband-forum.org. No assurance is given that licenses to patents necessary to implement

this Technical Report will be available for license at all or on reasonable and non-discriminatory terms.

ANY PERSON HOLDING A COPYRIGHT IN THIS BROADBAND FORUM TECHNICAL REPORT,

OR ANY PORTION THEREOF, DISCLAIMS TO THE FULLEST EXTENT PERMITTED BY LAW (A)

ANY LIABILITY (INCLUDING DIRECT, INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES

UNDER ANY LEGAL THEORY) ARISING FROM OR RELATED TO THE USE OF OR RELIANCE

UPON THIS TECHNICAL REPORT; AND (B) ANY OBLIGATION TO UPDATE OR CORRECT THIS

TECHNICAL REPORT.

Broadband Forum Technical Reports may be copied, downloaded, stored on a server or otherwise re-

distributed in their entirety only, and may not be modified without the advance written permission of the

Broadband Forum.

The text of this notice must be included in all copies.

http://www.broadband-forum.org/

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 3

Issue History

Issue Number Issue Date Issue Editor Changes

Issue 1 September 2005 Jeff Bernstein, 2Wire
Christele Bouchat, Alcatel

Tim Spets, Westell

Original

Issue 1
Amendment 1

November 2006 Jeff Bernstein, 2Wire
John Blackford, 2Wire

Mike Digdon, SupportSoft
Heather Kirksey, Motive
William Lupton, 2Wire

Anton Okmianski, Cisco

Clarification of original document

Issue 1

Amendment 2

November 2008 William Lupton, 2Wire

Håkan Westin, Tilgin

Addition of data model definition XML

Schema and normative XML common
object and component definitions

Technical comments or questions about this Technical Report should be directed to:

Editors William Lupton 2Wire wlupton@2wire.com

Håkan Westin Tilgin hakan.westin@tilgin.com

BroadbandHome™

Working Group

Chairs

Greg Bathrick PMC-Sierra Greg_Bathrick@pmc-sierra.com

Heather Kirksey Motive hkirksey@motive.com

mailto:wlupton@2wire.com
mailto:hakan.westin@tilgin.com
mailto:Greg_Bathrick@pmc-sierra.com
mailto:hkirksey@motive.com

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 4

Table of Contents

1 Introduction ... 8
1.1 Terminology ... 9
1.2 Document Conventions .. 10

2 Architecture ... 10
2.1 Data Hierarchy ... 10

2.1.1 Data Hierarchy Requirements ... 10
2.1.2 Data Hierarchy Examples ... 12

2.2 Object Versioning ... 14
2.2.1 Requirements for Compatible Versions.. 14
2.2.2 Version Notation ... 15

2.3 Profiles .. 15
2.3.1 Scope of Profiles .. 15
2.3.2 Multiple Profile Support ... 15
2.3.3 Profile Versions .. 16
2.3.4 Baseline Profiles ... 16
2.3.5 Types of Requirements in a Profile .. 16

2.4 DEPRECATED and OBSOLETED Items ... 17
2.4.1 Requirements for DEPRECATED Items .. 17
2.4.2 Requirements for OBSOLETED Items ... 18

3 Object Definitions .. 18
3.1 General Notation .. 18
3.2 Data Types .. 19
3.3 Vendor-Specific Parameters ... 21
3.4 Common Object Definitions .. 21
3.5 Inform Requirements .. 42
3.6 Notification Requirements ... 42
3.7 DeviceSummary Definition.. 44

3.7.1 DeviceSummary Examples ... 45

4 Profile Definitions .. 46
4.1 Notation ... 46
4.2 Baseline Profile .. 46
4.3 GatewayInfo Profile .. 47
4.4 Time Profile.. 47
4.5 LAN Profile .. 47
4.6 IPPing Profile ... 48
4.7 TraceRoute Profile ... 48
4.8 Download Profile .. 48
4.9 DownloadTCP Profile ... 49
4.10 Upload Profile .. 49
4.11 UploadTCP Profile.. 50
4.12 UDPEcho Profile .. 50
4.13 UDPEchoPlus Profile.. 50
4.14 UDPConnReq Profile.. 50

Normative References... 52

Annex A. CWMP Data Model Definition XML Schema .. 53
A.1 Introduction .. 53
A.2 Normative Information .. 53

A.2.1 URI Conventions .. 55
A.2.2 Descriptions ... 56
A.2.3 Data Types ... 61
A.2.4 Bibliography ... 70
A.2.5 Components ... 72
A.2.6 Root and Service Objects ... 73
A.2.7 Parameters .. 74
A.2.8 Objects... 75
A.2.9 Profiles ... 75
A.2.10 Modifications .. 76

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 5

A.3 DM Schema ... 77

Appendix I. “Device” Root Object, Common Objects and Components ... 99

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 6

List of Figures

Figure 1 – Positioning in the End-to-End Architecture ... 8

List of Tables

Table 1 – Data Types .. 19
Table 2 – Summary of Common Data Objects ... 21
Table 3 – Common Object definitions for Device:1 ... 22
Table 4 – Forced Inform parameters .. 42
Table 5 – Parameters for which Active Notification MAY be denied by the CPE 42
Table 6 – Baseline:1 Profile definition for Device:1 .. 46
Table 7 – GatewayInfo:1 Profile definition for Device:1.. 47
Table 8 – Time:1 Profile definition for Device:1 ... 47
Table 9 – LAN:1 Profile definition for Device:1.. 47
Table 10 – IPPing:1 Profile definition for Device:1 ... 48
Table 11 – TraceRoute:1 Profile definition for Device:1 .. 48
Table 12 – Download:1 profile definition for Device:1 .. 48
Table 13 – DownloadTCP:1 profile definition for Device:1 ... 49
Table 14 – Upload:1 profile definition for Device:1... 49
Table 15 – UploadTCP:1 profile definition for Device:1.. 50
Table 16 – UDPEcho:1 profile definition for Device:1 .. 50
Table 17 – UDPEchoPlus:1 profile definition for Device:1 .. 50
Table 18 – UDPConnReq:1 Profile definition for Device:1.. 50
Table 19 – XML Description Markup ... 57
Table 20 – XML Description Templates.. 58
Table 21 – XML Named Data Types ... 62
Table 22 – XML Data Type Facets ... 63
Table 23 – Path Name Scope Definition .. 64
Table 24 – PathRef Facet Definition ... 66
Table 25 – InstanceRef Facet Definition.. 67
Table 26 – EnumerationRef Facet Definition ... 67
Table 27 – XML Facet Inheritance Rules .. 69
Table 28 – XML Bibliographic References ... 71
Table 29 – XML Component Definition .. 72
Table 30 – XML Root and Service Objects ... 73
Table 31 – XML Parameter Definition .. 74
Table 32 – XML Parameter Syntax ... 74
Table 33 – XML Object Definition ... 75
Table 34 – XML Table Definition ... 75
Table 35 – XML Profile Definition ... 75
Table 36 – XML Parameter Modification .. 76
Table 37 – XML Object Modification ... 77
Table 38 - XML Profile Modification.. 77

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 7

Summary

This Technical Report specifies data model guidelines to be followed by all TR-069-capable devices.

These guidelines include structural requirements for the data hierarchy, requirements for versioning of data

models, requirements for defining profiles, a set of common data objects, and a baseline profile for any

device supporting these common data objects. In addition, this Technical Report defines an XML Schema

that as far as possible embodies these guidelines, and which is to be used for defining TR-069 data models.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 8

1 Introduction
This Technical Report specifies a baseline object structure and set of TR-069-accessible parameters to be
available on any TR-069-enabled device [2]. TR-069 defines the generic requirements of the CPE WAN

Management Protocol (CWMP) methods which can be applied to any TR-069 CPE. It is intended to

support a variety of different functionalities to manage a collection of CPE, including the following

primary capabilities:

 Auto-configuration and dynamic service provisioning

 Software/firmware image management

 Status and performance monitoring

 Diagnostics

The ability to manage the home network remotely has a number of benefits including reducing the costs

associated with activation and support of broadband services, improving time-to-market for new products

and services, and improving the user experience.

If TR-069 defines the generic methods for any device, other documents (such as this one) specify the

managed objects, or data models, which are collections of objects and parameters on which the generic

methods act to configure, diagnose, and monitor the state of specific devices and services.

The following figure places TR-069 in the end-to-end management architecture:

OSS/BSS

Call

Center

Policy

Auto-Configuration

Server (ACS)

Managed Internet

Gateway Device

Managed LAN

Device

Managed LAN

Device

Managed LAN

Device

Scope of CPE WAN Management

Protocol (CWMP):

ACS Southbound Interface

ACS Northbound Interface

OSS/BSS

Call

Center

Policy

Auto-Configuration

Server (ACS)

Managed Internet

Gateway Device

Managed LAN

Device

Managed LAN

Device

Managed LAN

Device

Scope of CPE WAN Management

Protocol (CWMP):

ACS Southbound Interface

ACS Northbound Interface

Figure 1 – Positioning in the End-to-End Architecture

The ACS is a server that resides in the network and manages devices in the subscriber premises. It uses the

methods, or RPCs, defined to TR-069 to get and set the state of the device, initiate diagnostic tests,

download and upload files, and manage events. Some portions of this state are common across managed

devices and some are relevant only to certain devices types or services.

For a particular type of device, it is expected that the baseline defined in this Technical Report would be

augmented with additional objects and parameters specific to the device type. The data model used in any

TR-069-capable device MUST follow the guidelines described in this document. These guidelines include

the following aspects:

 Structural requirements for the data hierarchy

 Requirements for versioning of data models

 Requirements for defining profiles

 A set of common data objects

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 9

 A baseline profile for any device supporting these common data objects

In addition, this document defines an XML Schema that as far as possible embodies these guidelines, and

which is to be used for defining TR-069 data models.

1.1 Terminology

The following terminology is used throughout the series of documents defining the CPE WAN

Management Protocol.

ACS Auto-Configuration Server. This is a component in the broadband network responsible
for auto-configuration of the CPE for advanced services.

BBF Broadband Forum.

CPE Customer Premises Equipment.

Common

Object

An object defined in this specification that may be contained either directly within the

―Device‖ Root Object or within a Service Object contained within the ―Services‖ object.

Component A named collection of Parameters and/or Objects that can be included anywhere within a

data model. A Common Object can be thought of as a Component.

CWMP CPE WAN Management Protocol. Defined in [2], CWMP is a communication protocol

between an ACS and CPE that defines a mechanism for secure auto-configuration of a

CPE and other CPE management functions in a common framework.

Data Model A hierarchical set of Parameters that define the managed objects accessible via TR-069

for a particular device or service.

Device Used here as a synonym for CPE.

DM Instance Data Model Schema instance document. This is an XML document that conforms to the

DM Schema and to any additional rules specified in or referenced by the DM Schema.

DM Schema Data Model Schema. This is the XML Schema [16] that is used for defining data models

for use with the CPE WAN Management Protocol.

Event An indication that something of interest has happened that requires the CPE to notify the

ACS.

Internet

Gateway

Device

A CPE device that is either a B-NT (broadband network termination) or a broadband

router.

MediaWiki A software application that is used by Wikipedia and other projects.
http://en.wikipedia.org/wiki/MediaWiki.

Object A named collection of Parameters and/or other Objects.

Parameter A name-value pair representing a manageable CPE parameter made accessible to an ACS

for reading and/or writing.

RPC Remote Procedure Call.

Profile A named collection of requirements relating to a given object.

Root Object The top-level object of a device’s data model that contains all of the manageable objects.

The name of the Root Object is either ―Device‖ or ―InternetGatewayDevice‖—the

former is used for all types of devices except an Internet Gateway Device.

Service

Object

The top-most object associated with a specific service or application within which all

objects and parameters associated with the service are contained.

URI Uniform Resource Identifier [8].

http://en.wikipedia.org/wiki/MediaWiki

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 10

1.2 Document Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",

"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted

as described in [1].

2 Architecture

2.1 Data Hierarchy

The data model for a TR-069-capable device will follow a common set of structural requirements. The

detailed structure depends on the nature of the device.

A device will always have a single Root Object, which will be called either ―Device‖ or ―InternetGateway-

Device‖. The latter is exclusively to accommodate the existing TR-098 specification and is only to be used

if the device is an Internet Gateway Device.

In most cases, the Root Object contains two types of sub-elements: the Common Objects defined in this

specification (applicable only to the ―Device‖ Root Object), and a single ―Services‖ object that contains all

Service Objects associated with specific services or applications.

To accommodate the existing TR-098 specification, if the device is an Internet Gateway Device, the Root

Object will also contain the application-specific objects associated with an Internet Gateway Device. In
this case, the InternetGatewayDevice object plays the role of both a Root Object and a Service Object.

A single device might include more than one Service Object. For example, a device that serves both as a

VoIP endpoint and a game device, might include both VoIP-specific and game-specific Service Objects.

A single device might also include more than one instance of the same type of Service Object. An example

of when this might be appropriate is a TR-069 capable device that proxies the management functions for

one or more other devices that are not TR-069 capable. In this case, the ACS would communicate directly

only with the TR-069 capable device, which would incorporate the data models for all devices for which it

is serving as a management proxy. For example, a video device serving as a management proxy for three

VoIP phones would contain in its data model a video-specific Service Object plus three instances of a

VoIP-specific Service Object. Note that whether a device is serving as a management proxy for another

device or whether it has that functionality embedded in it is generally opaque to the ACS.

2.1.1 Data Hierarchy Requirements

The data model for a TR-069-capable device (other than an Internet Gateway Device) MUST adhere to the

following structural requirements:

1) The data model MUST contain exactly one Root Object, called ―Device‖.

2) The Root Object MUST contain a ―DeviceSummary‖ parameter as specified in section 3.7.

3) The Root Object MAY contain any of the Common Objects defined in section 3.4.

4) The Root Object MUST contain exactly one ―Services‖ object.

5) The ―Services‖ object MUST contain all of the Service Objects supported by the device. Each Service

Object contains all of the objects and parameters for a particular service or application.

6) The ―Services‖ object MAY contain more than one Service Object, each corresponding to a distinct

service or application type.

7) The ―Services‖ object MAY contain more than one instance of a Service Object of the same type.

8) Each Service Object instance MUST be appended with an instance number (assigned by the CPE) to

allow for the possibility of multiple instances of each. For example, if the device supports the Service

Object ABCService, the first instance of this Service Object might be ―ABCService.1‖.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 11

9) For each supported type of Service Object, a corresponding parameter in the ―Services‖ object MUST

indicate the number of instances of that Service Object type. If a particular Service Object type is

supported by the device but there are currently no instances present, this parameter MUST still be

present with a value of zero. The name of this parameter MUST be the name of the Service Object

concatenated with ―NumberOfEntries‖. For example, for a device that contains instances of

ABCService, there MUST be a corresponding parameter in the ―Services‖ object called
―ABCServiceNumberOfEntries‖.

10) Each Service Object MAY contain secondary copies of some of the Common Objects defined in this

specification. The specific set of Common Objects that might be contained within a Service Object is

specified in section 3.4.

An Internet Gateway Device MUST adhere to the above requirements with the following exceptions:

1) The data model MUST contain exactly one Root Object, called ―InternetGatewayDevice‖.

2) The Root Object MAY contain any of the objects specific to an Internet Gateway Device as defined in

[3].

3) The ―InternetGatewayDevice‖ Root Object MUST NOT directly contain any of the Common Objects

defined in this specification. While [3] defines objects very similar to some of the Common Objects

defined here, they are not identical and MUST NOT be considered the same as the Common Objects.

(Service Objects within the ―Services‖ object MAY contain Common Objects with the limitations
specified in section 3.4.)

4) The ―Services‖ object MAY be absent if the device supports no Service Objects other than

InternetGatewayDevice.

5) The ―DeviceSummary‖ parameter MAY be absent only in an Internet Gateway Device that supports

the InternetGatewayDevice version 1.0 data model, as defined in section 2.4.2 of [3], and no other

Service Objects.1

1 The implication of this requirement is that if an Internet Gateway Device supports one or more Service

Objects (for example, the VoiceService object defined in TR-104), the Internet Gateway Device is

REQUIRED to support version 1.1 or greater of the InternetGatewayDevice Root Object as defined in

TR-098.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 12

Formally, the top level of the data hierarchy is defined as follows:

Element = Root

 | Root ".DeviceSummary"

 | Root ".Services." ServiceObject "." Instance

 | Root ".Services." ServiceObject "NumberOfEntries"

 | Root ".Services." ServiceObject "." Instance "." SecondaryCommonObject

 | DeviceRoot "." CommonObject

 | GatewayRoot "." GatewaySpecificObject ; As defined in [3]

Root = DeviceRoot

 | GatewayRoot

DeviceRoot = "Device"

GatewayRoot = "InternetGatewayDevice"

CommonObject = "DeviceInfo"

 | "Config"

 | "UserInterface"

 | "ManagementServer"

 | "GatewayInfo"

 | "Time"

 | "LAN"

SecondaryCommonObject = "DeviceInfo"

 | "Config"

 | "UserInterface"

 | "Time"

 | "LAN"

Instance = NONZERODIGIT [DIGIT]*

2.1.2 Data Hierarchy Examples

Below are some examples of data hierarchies for various types of devices. (Objects are shown in bold text,

parameters are shown in plain text.)

Simple device supporting the ABCService Service Object:

Device
DeviceSummary
DeviceInfo
ManagementServer
Services

ABCServiceNumberOfEntries = 1
ABCService.1

ABCServiceSpecificObjects

Device supporting both ABCService and XYZService Service Objects:

Device
DeviceSummary
DeviceInfo
ManagementServer
Time
UserInterface
LAN
Services

ABCServiceNumberOfEntries = 1
ABCService.1

ABCServiceSpecificObjects
XYZServiceNumberOfEntries = 1
XYZService.1

XYZServiceSpecificObjects

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 13

Internet Gateway Device that also supports the ABCService and XYZService Service Objects:

InternetGatewayDevice
DeviceSummary
DeviceInfo
ManagementServer
Time
UserInterface
Layer3Forwarding
LANDeviceNumberOfEntries = 1
LANDevice.1
WANDeviceNumberOfEntries = 1
WANDevice.1
Services

ABCServiceNumberOfEntries = 1
ABCService.1

ABCServiceSpecificObjects
XYZServiceNumberOfEntries = 1
XYZService.1

XYZServiceSpecificObjects

Device supporting the ABCService Service Object and proxying for two devices supporting the

functionality of the XYZService Service Object:

Device
DeviceSummary
DeviceInfo
ManagementServer
Config
GatewayInfo
Time
UserInterface
LAN
Services

ABCServiceNumberOfEntries = 1
ABCService.1

ABCServiceSpecificObjects
XYZServiceNumberOfEntries = 2
XYZService.1

DeviceInfo
XYZServiceSpecificObjects

XYZService.2
DeviceInfo
XYZServiceSpecificObjects

Internet Gateway Device also serving as a management proxy for three devices supporting the functionality

of the ABCService Service Object:

InternetGatewayDevice
DeviceSummary
DeviceInfo
ManagementServer
Time
UserInterface
Layer3Forwarding
LANDeviceNumberOfEntries = 1
LANDevice.1
WANDeviceNumberOfEntries = 1
WANDevice.1
Services

ABCServiceNumberOfEntries = 3

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 14

ABCService.1
DeviceInfo
ABCServiceSpecificObjects

ABCService.2
DeviceInfo
ABCServiceSpecificObjects

ABCService.3
DeviceInfo
ABCServiceSpecificObjects

2.2 Object Versioning

To allow the definition of a Service Object or Root Object to change over time, the definition of a Service

Object or Root Object MUST have an explicitly specified version.

Version numbering of Service Objects and Root Objects is defined to use a major/minor version numbering

convention. The object version is defined as a pair of integers, where one integer represents the major

version, and the second integer represents the minor version. The version MUST be written with the two

integers separated by a dot (Major.Minor).

The first version of a given object SHOULD be defined as version ―1.0‖.

For each subsequent version of the object, if the later version is compatible with the previous version, then

the major version SHOULD remain unchanged, and the minor version SHOULD be incremented by one.

For example, the next compatible version after ―2.17‖ would be ―2.18‖. The requirements for a version to

be considered compatible with an earlier version are described in section 2.2.1.

For each subsequent version of the object, if the later version is not compatible with the previous version,

then the major version MUST increment by one, and the minor version MAY reset back to zero. For

example, the next incompatible version after ―2.17‖ might be ―3.0‖.

2.2.1 Requirements for Compatible Versions

For one version of an object to be considered compatible with another version, the later version MUST be a

strict superset of the earlier version. Using major/minor versioning, this requirement applies only between

minor versions that share the same major version.

More specifically, this requires the following of the later version with respect to all earlier versions to

which it is to be compatible:

 The later version MAY add objects and parameters not previously in any earlier version, but MUST

NOT remove objects or parameters already defined in earlier versions.

 The later version MUST NOT modify the definition of any parameter or object already defined in an

earlier version (unless the original definition was clearly in error and has to be modified as an erratum
or clarified through a corrigendum process).

 The later version MUST NOT require any of the objects or parameters that have been added since the

earliest compatible version to be explicitly operated upon by the ACS to ensure proper operation of the

device (except those functions specifically associated with functionality added in later versions). That

is, the later version will accommodate an ACS that knows nothing of elements added in later versions.

The goal of the above definition of compatibility is intended to ensure bi-directional compatibility between

an ACS and CPE. Specifically that:

 If an ACS supports only an earlier version of an object as compared to the version supported by the

CPE, the ACS can successfully manage that object in the CPE as if it were the earlier version.

 If a CPE supports only an earlier version of an object as compared to the version supported by an ACS,

the ACS can successfully manage that object in the CPE as if it were the later version (without support
for new components defined only in later versions).

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 15

2.2.2 Version Notation

For objects, the following notation is defined to identify specific versions:

Notation Description Example

ObjectName:Major.Minor Refers to a specific version of the object. Device:1.0

ObjectName:Major Refers to any minor version of the object with the specified major

version.

Device:1

ObjectName Refers to any version of the object. Device

Note that the version notation defined here is only to be used for purposes of documentation and in the

content of the DeviceSummary parameter defined in section 3.7. The actual names of objects and

parameters in the data model MUST NOT include version numbers.

2.3 Profiles

To limit the variability that an ACS needs to accommodate among various devices that it might manage, it

is useful to define ―profiles‖ that express specific sets of requirements, support for which can be explicitly

indicated by a device.

A profile is a named collection of requirements associated with a given object. A device can indicate

support for one or more profiles. A device supporting a profile means that the device supports all of the

requirements defined by that profile. When a device supports all requirements defined by a profile, the

device MUST indicate support for that profile. The use of profiles allows the ACS a shorthand means of

discovering support for entire collections of capabilities in a device.

The following sections define the conventions to be used when defining profiles associated with TR-069

data models.

2.3.1 Scope of Profiles

A given profile is defined only in the context of a specific Service Object or Root Object with a specific

major version. For each profile definition, the specific object name and major version to which the profile

is to apply MUST be explicitly identified.

A profile’s name MUST be unique among profiles defined for the same object and major version, but a

name MAY be reused to define a different profile for a distinct combination of object name and major

version. For example, if we define profile ―A‖ associated with object ―X:2‖ (major version 2 of object X),

the same name ―A‖ might be used to define a different profile for object ―Y:1‖ or for object ―X:3‖.

A given profile is defined in association with a minimum minor version of a given object. The minimum

REQUIRED version of an object is the minimum version that includes all of the REQUIRED elements

defined by the profile. For each profile definition, the specific minimum version MUST be explicitly

identified.

2.3.2 Multiple Profile Support

For a given type of Service Object, multiple profiles MAY be defined. Profiles MAY be defined that have

either independent or overlapping requirements.

To maximize interoperability, a device MUST indicate all profiles that it supports. That is, it MUST

indicate all profiles whose definition is a subset of the support provided by that device. Doing so

maximizes the likelihood that an ACS will be aware of the definition of the indicated profiles. For

example, if profile ―A‖ is a subset of profile ―B‖, and a device supports both, by indicating support for both

―A‖ and ―B‖ an ACS that is unaware of profile ―B‖ will at least recognize the device’s support for profile

―A‖.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 16

2.3.3 Profile Versions

To allow the definition of a profile to change over time, the definition of every profile MUST have an

associated version number.

Version numbering of profiles is defined to use a minor-only version numbering convention. That is, for a

given profile name, each successive version MUST be compatible with all earlier versions. Any

incompatible change to a profile MUST use a different profile name.

For one version of a profile to be considered compatible with another version, the later version MUST be a

strict superset of the earlier version. This requires the following of the later version with respect to all

earlier versions to which it is to be compatible:

 The later version MAY add requirements that were not in earlier versions of the profile, but MUST

NOT remove requirements.

 The later version MAY remove one or more conditions that had previously been placed on a
requirement. For example, if a previous profile REQUIRED X only if condition A was True, then the

later profile might require X unconditionally.

For profiles, the following notation is defined to identify specific versions:

Notation Description Example

ProfileName:Version Refers to a specific version of the profile. Baseline:1

ProfileName Refers to any version of the profile. Baseline

ProfileName MUST start with a letter or underscore, and subsequent characters MUST be letters, digits,

underscores or hyphens. The terms ―letter‖ and ―digit‖ are as defined in Appendix B of [10].

2.3.4 Baseline Profiles

For every Service Object (and Root Object) there SHOULD be at least one profile defined. In many cases

it is desirable to define a Baseline profile that indicates the minimum requirements REQUIRED for any

device that supports that object. Where a Baseline profile is defined, it would normally be expected that all

implementations of the corresponding object would indicate support for the Baseline profile in addition to

any other profiles supported.

2.3.5 Types of Requirements in a Profile

Because a profile is defined within the context of a single object (and major version), all of the

requirements associated with the profile MUST be specific to the data model associated with that object.

Profile requirements can include any of the following types of requirements associated with an object’s

data model:

 A requirement for read support of a Parameter.

 A requirement for write support of a Parameter.

 A requirement for support of a sub-object contained within the overall object.

 A requirement for the ability to add or remove instances of a sub-object.

 A requirement to support active and/or passive notification for a Parameter.

 A requirement to support access control for a given Parameter.

For each of the requirement categories listed above, a profile can define the requirement unconditionally, or

can place one or more conditions on the requirement. For example, a profile might require that a Parameter

be supported for reading only if the device supports some other parameter or object (one that is not itself

REQUIRED by the profile). Such conditions will be directly related to the data model of the overall object

associated with the profile.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 17

Because a device has to be able to support multiple profiles, all profiles MUST be defined such they are

non-contradictory. As a result, profiles MUST only define minimum requirements to be met, and MUST

NOT specify negative requirements. That is, profiles will not include requirements that specify something

that is not to be supported by the device, or requirements that exclude a range of values.

2.4 DEPRECATED and OBSOLETED Items

The key word ―DEPRECATED‖ in the data model definition for any TR-069-capable device is to be

interpreted as follows: This term refers to an object, parameter or parameter value that is defined in the
current version of the standard but is meaningless, inappropriate, or otherwise unnecessary. It is intended

that such objects, parameters or parameter values will be removed from the next major version of the data

model. Requirements on how to interpret or implement deprecated objects, parameters or parameter values

are given below. For more information on how to interpret or implement specific deprecated objects,

parameters or parameter values, refer to the definition of the object or parameter.

The key word ―OBSOLETED‖ in the data model definition for any TR-069-capable device is to be

interpreted as follows: This term refers to an object, parameter or parameter value that meets the

requirements for being deprecated, and in addition is obsolete. Such objects, parameters or parameter

values can be removed from a later minor version of a data model, or from a later version of a profile,

without this being regarded as breaking backwards compatibility rules. Requirements on how to interpret

or implement obsoleted objects, parameters or parameter values are given below. For more information on

how to interpret or implement specific obsoleted objects, parameters or parameter values, refer to the
definition of the object or parameter.

2.4.1 Requirements for DEPRECATED Items

This section defines requirements that apply to all DEPRECATED objects, parameters and parameter

values unless specifically overridden by the object or parameter definition.

Data model requirements:

1) The definition of a DEPRECATED parameter, object or parameter value MUST include an

explanation of why the item is deprecated.

2) The definition of a DEPRECATED parameter, object or parameter value MAY specify further

requirements relating to the item; such requirements MAY override CPE or ACS requirements

specified in this section.

CPE requirements:

1) A DEPRECATED parameter MUST have a value which is valid for its data type and fulfils any

range (for numeric parameters), length (for string, base64 or hexBinary parameters) and

enumerated value (for string parameters) requirements.

2) Detailed behavioral requirements for a DEPRECATED parameter, e.g. that its value is a unique

key, MAY be ignored by the CPE.

3) The CPE MUST, if such operations are permitted by the data model definition, permit creation of
DEPRECATED objects, modification of DEPRECATED parameters, and setting of

DEPRECATED parameter values. However, it MAY choose not to apply such changes to its

operational state.

4) Regardless of whether DEPRECATED changes are applied to the CPE operational state, a read of

a DEPRECATED writable parameter SHOULD return the value that was last written, i.e. the CPE

is expected to store the value even if it chooses not to apply it to its operational state.

5) When the ACS modifies the value of a DEPRECATED parameter, the CPE MAY choose not to

check whether the new parameter value is valid for its data type and fulfils any range (for numeric

parameters), length (for string, base64 or hexBinary parameters) and enumerated value (for string

parameters) requirements.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 18

6) The CPE MAY reject an attempt by the ACS to set any parameter to a DEPRECATED value.

ACS requirements:

1) The ACS SHOULD NOT create DEPRECATED objects, modify DEPRECATED parameters, or

set DEPRECATED parameter values.

2) The ACS SHOULD ignore DEPRECATED objects, parameters and parameter values.

3) The ACS MUST NOT set a DEPRECATED parameter to a value that is invalid for its data type or
fails to fulfil any range (for numeric parameters), length (for string, base64 or hexBinary

parameters) or enumerated value (for string parameters) requirements.

4) The ACS MUST NOT set any parameter to a DEPRECATED value.

2.4.2 Requirements for OBSOLETED Items

This section defines requirements that apply to all OBSOLETED objects, parameters or parameter values

unless specifically overridden by the object or parameter definition.

An OBSOLETED object, parameter or parameter MUST meet all the requirements of the previous section.

In addition, the following data model requirements apply.

1) An OBSOLETED object, parameter or parameter value MAY be removed from a later minor

version of a data model without this being regarded as breaking backwards compatibility rules.

2) An OBSOLETED object, parameter or parameter value MUST NOT be removed from the current

version of a profile, but MAY be removed from a later version of a profile without this being

regarded as breaking backwards compatibility rules.

3) A data model definition MUST include a list of those OBSOLETED objects, parameters or

parameter values that have been removed from the data model or from its profiles. This is to

prevent future namespace conflicts.

3 Object Definitions

3.1 General Notation

Parameter names use a hierarchical form similar to a directory tree. The name of a particular Parameter is

represented by the concatenation of each successive node in the hierarchy separated with a ―.‖ (dot),

starting at the trunk of the hierarchy and leading to the leaves. When specifying a partial path, indicating

an intermediate node in the hierarchy, the trailing ―.‖ (dot) is always used as the last character.

Parameter names MUST be treated as case sensitive. The name of each node in the hierarchy MUST start

with a letter or underscore, and subsequent characters MUST be letters, digits, underscores or hyphens.

The terms ―letter‖ and ―digit‖ are as defined in Appendix B of [10].

In some cases, where multiple instances of an object can occur, the placeholder node name ―{i}‖ is shown.
In actual use, this placeholder is to be replaced by an instance number, which MUST be a positive integer

(1). Because in some cases object instances can be deleted, instance numbers will in general not be
contiguous.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 19

3.2 Data Types

The parameters defined in this specification make use of a limited subset of the default SOAP data types

[5]. The complete set of data types along with the notation used to represent these types is listed in Table 1.

Table 1 – Data Types

Type Description

object A container for parameters and/or other objects. The full path name of a parameter is given by the
parameter name appended to the full path name of the object it is contained within.

string For strings listed in this specification, a minimum and maximum allowed length can be listed using the

form string(Min:Max), where Min and Max are the minimum and maximum string length in characters. If
either Min or Max are missing, this indicates no limit, and if Min is missing the colon can also be omitted,
as in string(Max). Multiple comma-separated ranges can be specified, in which case the string length

MUST be in one of the ranges. A “k” or “K” suffix is interpreted as a 1024 (not 1000) multiplier, e.g. 32k
means 32768.

For all strings a maximum length is either explicitly indicated or implied by the size of the elements
composing the string. For strings in which the content is an enumeration, the longest enumerated value

determines the maximum length. If a string does not have an explicitly indicated maximum length or is
not an enumeration, the default maximum is 16 characters.

When transporting a string value within an XML document, any characters which are special to XML
MUST be escaped as specified by the XML specification [10]. Additionally, any characters other than

printable ASCII characters, i.e. any characters whose decimal ASCII representations are outside the
(inclusive) ranges 9-10 and 32-126, SHOULD be escaped as specified by the XML specification.

int Integer in the range –2147483648 to +2147483647, inclusive.

For some int types listed, a value range is given using the form int[Min:Max], where the Min and Max
values are inclusive. If either Min or Max are missing, this indicates no limit. Multiple comma-separated

ranges can be specified, in which case the value MUST be in one of the ranges. A “k” or “K” suffix is
interpreted as a 1024 (not 1000) multiplier, e.g. 32k means 32768.

long Long integer in the range –9223372036854775808 to 9223372036854775807, inclusive.

For some long types listed, a value range is given using the form long[Min:Max], where the Min and Max

values are inclusive. If either Min or Max are missing, this indicates no limit. Multiple comma-separated
ranges can be specified, in which case the value MUST be in one of the ranges. A “k” or “K” suffix is
interpreted as a 1024 (not 1000) multiplier, e.g. 32k means 32768.

unsignedInt Unsigned integer in the range 0 to 4294967295, inclusive.

For some unsignedInt types listed, a value range is given using the form unsignedInt[Min:Max], where

the Min and Max values are inclusive. If either Min or Max are missing, this indicates no limit. Multiple
comma-separated ranges can be specified, in which case the value MUST be in one of the ranges. A
“k” or “K” suffix is interpreted as a 1024 (not 1000) multiplier, e.g. 32k means 32768.

unsignedLong Unsigned long integer in the range 0 to 18446744073709551615, inclusive.

For some unsignedLong types listed, a value range is given using the form unsignedLong[Min:Max],

where the Min and Max values are inclusive. If either Min or Max are missing, this indicates no limit.
Multiple comma-separated ranges can be specified, in which case the value MUST be in one of the
ranges. A “k” or “K” suffix is interpreted as a 1024 (not 1000) multiplier, e.g. 32k means 32768.

boolean Boolean, where the allowed values are “0”, “1”, “true”, and “false”. The values “1” and “true” are
considered interchangeable, where both equivalently represent the logical value true. Similarly, the

values “0” and “false” are considered interchangeable, where both equivalently represent the logical
value false.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 20

Type Description

dateTime The subset of the ISO 8601 date-time format defined by the SOAP dateTime type.

All times MUST be expressed in UTC (Universal Coordinated Time) unless explicitly stated otherwise in

the definition of a parameter of this type.

If absolute time is not available to the CPE, it SHOULD instead indicate the relative time since boot,

where the boot time is assumed to be the beginning of the first day of January of year 1, or
0001-01-01T00:00:00. For example, 2 days, 3 hours, 4 minutes and 5 seconds since boot would be

expressed as 0001-01-03T03:04:05. Relative time since boot MUST be expressed using an
untimezoned representation. Any untimezoned value with a year value less than 1000 MUST be
interpreted as a relative time since boot.

If the time is unknown or not applicable, the following value representing “Unknown Time” MUST be

used: 0001-01-01T00:00:00Z.

Any dateTime value other than one expressing relative time since boot (as described above) MUST use

timezoned representation (that is, it MUST include a timezone suffix).

base64 Base64 encoded binary (no line-length limitation).

A minimum and maximum allowed length can be listed using the form base64(Min:Max), where Min and
Max are the minimum and maximum length in characters before Base64 encoding. If either Min or Max

are missing, this indicates no limit, and if Min is missing the colon can also be omitted, as in
base64(Max). Multiple comma-separated ranges can be specified, in which case the length MUST be in
one of the ranges. A “k” or “K” suffix is interpreted as a 1024 (not 1000) multiplier, e.g. 32k means

32768.

Note that data models defined prior to the introduction of the DM Schema specified the length after

Base64 encoding. If the length after encoding is n (which is always a multiple of 4), the length before
encoding is m = (n/4)*3, m-1 or m-2.

hexBinary Hex encoded binary.

A minimum and maximum allowed length can be listed using the form hexBinary(Min:Max), where Min

and Max are the minimum and maximum length in characters before Hex Binary encoding. If either Min
or Max are missing, this indicates no limit, and if Min is missing the colon can also be omitted, as in
hexBinary(Max). Multiple comma-separated ranges can be specified, in which case the length MUST be

in one of the ranges. A “k” or “K” suffix is interpreted as a 1024 (not 1000) multiplier, e.g. 32k means
32768.

All IPv4 addresses and subnet masks are represented as strings in IPv4 dotted-decimal notation. All IPv6

addresses and subnet masks MUST be represented using any of the 3 standard textual representations as

defined in RFC 3513 [7], sections 2.2.1, 2.2.2 and 2.2.3. Both lower-case and upper-case letters can be
used. Use of the lower-case letters is RECOMMENDED. Examples of valid IPv6 address textual

representations:

 1080:0:0:800:ba98:3210:11aa:12dd

 1080::800:ba98:3210:11aa:12dd

 0:0:0:0:0:0:13.1.68.3

Unspecified or inapplicable IP addresses and subnet masks MUST be represented as empty strings unless

otherwise specified by the parameter definition.

All MAC addresses are represented as strings of 12 hexadecimal digits (digits 0-9, letters A-F or a-f)

displayed as six pairs of digits separated by colons. Unspecified or inapplicable MAC addresses MUST be

represented as empty strings unless otherwise specified by the parameter definition.

For unsignedInt parameters that are used for statistics, e.g. for byte counters, the actual value of the statistic
might be greater than the maximum value that can be represented as an unsignedInt. Such values

SHOULD wrap around through zero. The term ―packet‖ is to be interpreted as the transmission unit

appropriate to the protocol layer in question, e.g. an IP packet or an Ethernet frame.

For strings that are defined to contain comma-separated lists, the format is defined as follows. Between

every pair of successive items in a comma-separated list there MUST be a separator. The separator MUST

include exactly one comma character, and MAY also include one or more space characters before or after

the comma. The entire separator, including any space characters, MUST NOT be considered part of the list

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 21

items it separates. The last item in a comma-separated list MUST NOT be followed with a separator.

Individual items in a comma-separated list MUST NOT include a space or comma character within them.

If an item definition requires the use of spaces or commas, that definition MUST specify the use of an

escape mechanism that prevents the use of these characters.

For string parameters whose value is defined to contain the full hierarchical name of an object, the

representation of the object name MUST NOT include a trailing ―dot.‖ An example of a parameter of this
kind in the InternetGatewayDevice data model is InternetGatewayDevice.Layer3Forwarding.Default-

ConnectionService. For this parameter, the following is an example of a properly formed value:

InternetGatewayDevice.WANDevice.1.WANConnectionDevice.2.WANPPPConnection.1

3.3 Vendor-Specific Parameters

A vendor MAY extend the standardized parameter list with vendor-specific parameters and objects.

Vendor-specific parameters and objects MAY be defined either in a separate naming hierarchy or within

the standardized naming hierarchy.

The name of a vendor-specific parameter or object not contained within another vendor-specific object

MUST have the form:

X_<VENDOR>_VendorSpecificName

In this definition <VENDOR> is a unique vendor identifier, which MAY be either an OUI or a domain

name. The OUI or domain name used for a given vendor-specific parameter MUST be one that is assigned

to the organization that defined this parameter (which is not necessarily the same as the vendor of the CPE

or ACS). An OUI is an organizationally unique identifier as defined in [4], which MUST formatted as a

six-hexadecimal-digit string using all upper-case letters and including any leading zeros. A domain name

MUST be upper case with each dot (―.‖) replaced with a hyphen or underscore.

The VendorSpecificName MUST be a valid string as defined in 3.2, and MUST NOT contain a ―.‖ (period)

or a space character.

Note – the use of the string “X_” to indicate a vendor-specific parameter implies that no standardized

parameter can begin with “X_”.

The name of a vendor-specific parameter or object that is contained within another vendor-specific object

which itself begins with the prefix described above need not itself include the prefix.

The full path name of a vendor-specific parameter or object MUST NOT exceed 256 characters in length.

Below are some example vendor-specific parameter and object names:

Device.UserInterface.X_012345_AdBanner

Device.X_EXAMPLE-COM_MyConfig.Status

When appropriate, a vendor MAY also extend the set of values of an enumeration. If this is done, the

vendor-specified values MUST be in the form ―X_<VENDOR>_VendorSpecificValue‖. The total length

of such a string MUST NOT exceed 31 characters.

3.4 Common Object Definitions

Table 2 provides a summary of the common data objects that are defined in this specification.

Table 2 – Summary of Common Data Objects

Object Name Allowed Location in
Hierarchy

Description

Capabilities Root and

Service Objects

Device capabilities.

DeviceInfo Root and
Service Objects

General information about the device, including its identity and
version information.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 22

Object Name Allowed Location in
Hierarchy

Description

ManagementServer Root Parameters associated with the communication between the

CPE and an ACS.

GatewayInfo Root Information to identify an Internet Gateway Device through

which the CPE is connected.

Time Root and

Service Objects

Parameters associated with an NTP or SNTP time client on the

CPE.

Config Root and

Service Objects

Contains general configuration state.

UserInterface Root and
Service Objects

Parameters related to the user interface of the CPE.

LAN Root and

Service Objects

Parameters related to IP-based LAN connectivity of the CPE.

DownloadDiagnostics Root and
Service Objects

HTTP / FTP download test.

UploadDiagnostics Root and

Service Objects

HTTP / FTP upload test.

UDPEchoConfig Root and

Service Objects

UDP echo test.

Table 3 lists the Common Objects and their associated parameters defined for ―Device‖, version 1.2. This

definition is a superset of previously defined versions, 1.0 and 1.1.

For a given implementation of this data model, the CPE MUST indicate support for the highest version
number of any object or parameter that it supports. For example, even if the CPE supports only a single

parameter that was introduced in version 1.2, then it will indicate support for version 1.2. The version

number associated with each object and parameter is shown in the Version column of Table 3.

Table 3 – Common Object definitions for Device:1

Name
2
 Type Write

3
 Description Default

4
 Version

5

DeviceSummary string(1024) - See section 3.7. - 1.0

.Capabilities. object - The capabilities of the device. This is a constant
read-only object, meaning that only a firmware
upgrade will cause these values to be altered.

- 1.2

.Capabilities.PerformanceDiagnostic. object - The capabilities of the Performance Diagnostics
(DownloadDiagnostics and UploadDiagnostics) for
the device.

- 1.2

DownloadTransports string - Comma-separated list of supported Download-
Diagnostics transport protocols for a CPE device.
Each item in the list is an enumeration of:

“HTTP”

“FTP” (OPTIONAL)

- 1.2

2 The name of a Parameter is formed from the concatenation of the base path (see section 2.1), the object

name shown in the yellow header, and the individual Parameter name.
3 ―W‖ indicates the parameter MAY be writable (if ―W‖ is not present, the parameter is defined as read-

only). For an object, ―W‖ indicates object instances can be Added or Deleted.
4 The default value of the parameter on creation of an object instance via TR-069. If the default value is an

empty string, this is represented by the symbol <Empty>. A hyphen indicates that no default value is

specified. For a parameter in which no default value is specified, on creation of a parent object instance,

the CPE MUST set the parameter to a value that is valid according to the definition of that parameter.
5 The Version column indicates the minimum data model version REQUIRED to support the associated

Parameter or Object.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 23

Name
2
 Type Write

3
 Description Default

4
 Version

5

UploadTransports string - Comma-separated list of supported Upload-
Diagnostics transport protocols for a CPE device.
Each item in the list is an enumeration of:

“HTTP”

“FTP” (OPTIONAL)

- 1.2

.DeviceInfo. object - This object contains general device information. - 1.0

Manufacturer string(64) - The manufacturer of the CPE (human readable
string).

- 1.0

ManufacturerOUI string(6) - Organizationally unique identifier of the device

manufacturer. Represented as a six hexadecimal-
digit value using all upper-case letters and
including any leading zeros. The value MUST be a

valid OUI as defined in [4].

This value MUST remain fixed over the lifetime of

the device, including across firmware updates.

- 1.0

ModelName string(64) - Model name of the CPE (human readable string). - 1.0

Description string(256) - A full description of the CPE device (human
readable string).

- 1.0

ProductClass string(64) - Identifier of the class of product for which the serial

number applies. That is, for a given manufacturer,
this parameter is used to identify the product or

class of product over which the SerialNumber
parameter is unique.

This value MUST remain fixed over the lifetime of
the device, including across firmware updates.

- 1.0

SerialNumber string(64) - Serial number of the CPE.

This value MUST remain fixed over the lifetime of

the device, including across firmware updates.

- 1.0

HardwareVersion string(64) - A string identifying the particular CPE model and

version.

- 1.0

SoftwareVersion string(64) - A string identifying the software version currently
installed in the CPE.

To allow version comparisons, this element

SHOULD be in the form of dot-delimited integers,
where each successive integer represents a more
minor category of variation. For example,

3.0.21where the components mean:
Major.Minor.Build.

- 1.0

EnabledOptions string(1024) - Comma-separated list of the OptionName of each

Option that is currently enabled in the CPE. The
OptionName of each is identical to the OptionName
element of the OptionStruct described in [2]. Only
those options are listed whose State indicates the

option is enabled.

- 1.0

AdditionalHardwareVersion string(64) - A comma-separated list of any additional versions.
Represents any additional hardware version

information the vendor might wish to supply.

- 1.0

AdditionalSoftwareVersion string(64) - A comma-separated list of any additional versions.

Represents any additional software version
information the vendor might wish to supply.

- 1.0

ProvisioningCode string(64) W Identifier of the primary service provider and other

provisioning information, which MAY be used by
the ACS to determine service provider-specific
customization and provisioning parameters.

- 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 24

Name
2
 Type Write

3
 Description Default

4
 Version

5

DeviceStatus string - Current operational status of the device.

Enumeration of:

“Up”

”Initializing”

“Error”

“Disabled”

- 1.0

UpTime unsignedInt - Time in seconds since the CPE was last restarted. - 1.0

FirstUseDate dateTime - Date and time in UTC that the CPE first both
successfully established an IP-layer network

connection and acquired an absolute time
reference using NTP or equivalent over that
network connection. The CPE MAY reset this date

after a factory reset.

If NTP or equivalent is not available, this

parameter, if present, SHOULD be set to the
Unknown Time value.

- 1.0

DeviceLog string(32K) - Vendor-specific log(s). - 1.0

.ManagementServer. object - This object contains parameters relating to the

CPE’s association with an ACS.

- 1.0

URL string(256) W URL, as defined in [8], for the CPE to connect to
the ACS using the CPE WAN Management

Protocol.

This parameter MUST be in the form of a valid

HTTP or HTTPS URL.

The “host” portion of this URL is used by the CPE
for validating the ACS certificate when using SSL

or TLS.

Note that on a factory reset of the CPE, the value

of this parameter might be reset to its factory value.
If an ACS modifies the value of this parameter, it

SHOULD be prepared to accommodate the
situation that the original value is restored as the
result of a factory reset.

- 1.0

Username string(256) W Username used to authenticate the CPE when

making a connection to the ACS using the CPE
WAN Management Protocol.

This username is used only for HTTP-based
authentication of the CPE.

Note that on a factory reset of the CPE, the value

of this parameter might be reset to its factory value.
If an ACS modifies the value of this parameter, it
SHOULD be prepared to accommodate the

situation that the original value is restored as the
result of a factory reset.

- 1.0

Password string(256) W Password used to authenticate the CPE when
making a connection to the ACS using the CPE

WAN Management Protocol.

This password is used only for HTTP-based

authentication of the CPE.

When read, this parameter returns an empty string,
regardless of the actual value.

Note that on a factory reset of the CPE, the value

of this parameter might be reset to its factory value.
If an ACS modifies the value of this parameter, it
SHOULD be prepared to accommodate the

situation that the original value is restored as the
result of a factory reset.

- 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 25

Name
2
 Type Write

3
 Description Default

4
 Version

5

PeriodicInformEnable boolean W Whether or not the CPE MUST periodically send

CPE information to the ACS using the Inform
method call.

- 1.0

PeriodicInformInterval unsignedInt

[1:]

W The duration in seconds of the interval for which

the CPE MUST attempt to connect with the ACS
and call the Inform method if PeriodicInformEnable
is True.

- 1.0

PeriodicInformTime dateTime W An absolute time reference in UTC to determine

when the CPE will initiate the periodic Inform
method calls. Each Inform call MUST occur at this
reference time plus or minus an integer multiple of

the PeriodicInformInterval.

PeriodicInformTime is used only to set the “phase”

of the periodic Informs. The actual value of
PeriodicInformTime can be arbitrarily far into the

past or future.

For example, if PeriodicInformInterval is 86400 (a

day) and if PeriodicInformTime is set to UTC
midnight on some day (in the past, present, or

future) then periodic Informs will occur every day at
UTC midnight. These MUST begin on the very
next midnight, even if PeriodicInformTime refers to

a day in the future.

The Unknown Time value defined in section 3.2

indicates that no particular time reference is
specified. That is, the CPE MAY locally choose the

time reference, and needs only to adhere to the
specified PeriodicInformInterval.

If absolute time is not available to the CPE, its
periodic Inform behavior MUST be the same as if

the PeriodicInformTime parameter was set to the
Unknown Time value.

- 1.0

ParameterKey string(32) - ParameterKey provides the ACS a reliable and
extensible means to track changes made by the

ACS. The value of ParameterKey MUST be equal
to the value of the ParameterKey argument from
the most recent successful SetParameterValues,

AddObject, or DeleteObject method call from the
ACS.

The CPE MUST set ParameterKey to the value
specified in the corresponding method arguments if

and only if the method completes successfully and
no fault response is generated. If a method call
does not complete successfully (implying that the

changes requested in the method did not take
effect), the value of ParameterKey MUST NOT be
modified.

The CPE MUST only modify the value of

ParameterKey as a result of SetParameterValues,
AddObject, DeleteObject, or due to a factory reset.
On factory reset, the value of ParameterKey MUST

be set to empty.

- 1.0

ConnectionRequestURL string(256) - HTTP URL, as defined in [8], for an ACS to make a

Connection Request notification to the CPE.

In the form:

http://host:port/path

The “host” portion of the URL MAY be the IP
address for the management interface of the CPE

in lieu of a host name.

- 1.0

ConnectionRequestUsername string(256) W Username used to authenticate an ACS making a
Connection Request to the CPE.

- 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 26

Name
2
 Type Write

3
 Description Default

4
 Version

5

ConnectionRequestPassword string(256) W Password used to authenticate an ACS making a

Connection Request to the CPE.

When read, this parameter returns an empty string,
regardless of the actual value.

- 1.0

UpgradesManaged boolean W Indicates whether or not the ACS will manage

upgrades for the CPE. If True, the CPE SHOULD
NOT use other means other than the ACS to seek
out available upgrades. If False, the CPE MAY use

other means for this purpose.

Note that an autonomous upgrade (reported via an

"10 AUTONOMOUS TRANSFER COMPLETE"
Inform Event code) SHOULD be regarded as a

managed upgrade if it is performed according to
ACS-specified policy.

- 1.0

KickURL string(256) - Present only for a CPE that supports the Kicked
RPC method.

LAN-accessible URL, as defined in [8], from which

the CPE can be “kicked” to initiate the Kicked RPC
method call. MUST be an absolute URL including
a host name or IP address as would be used on the

LAN side of the CPE.

- 1.0

DownloadProgressURL string(256) - Present only for a CPE that provides a LAN-side

web page to show progress during a file download.

LAN-accessible URL, as defined in [8], to which a
web-server associated with the ACS MAY redirect

a user’s browser on initiation of a file download to
observer the status of the download.

- 1.0

UDPConnectionRequestAddress string(256) - Address and port to which an ACS MAY send a

UDP Connection Request to the CPE (see Annex
G of [2]).

This parameter is represented in the form of an
Authority element as defined in [8]. The value

MUST be in one of the following two forms:

host:port

host

When STUNEnable is True, the “host” and “port”

portions of this parameter MUST represent the
public address and port corresponding to the NAT
binding through which the ACS can send UDP

Connection Request messages (once this
information is learned by the CPE through the use
of STUN).

When STUNEnable is False, the “host” and “port”

portions of the URL MUST represent the local IP
address and port on which the CPE is listening for
UDP Connection Request messages.

The second form of this parameter MAY be used

only if the port value is equal to “80”.

- 1.1

UDPConnectionRequestAddressNotification-
Limit

unsignedInt W The minimum time, in seconds, between Active
Notifications resulting from changes to the UDP-

ConnectionRequestAddress (if Active Notification is
enabled).

- 1.1

STUNEnable boolean W Enables or disables the use of STUN by the CPE.
This applies only to the use of STUN in association

with the ACS to allow UDP Connection Requests.

- 1.1

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 27

Name
2
 Type Write

3
 Description Default

4
 Version

5

STUNServerAddress string(256) W Host name or IP address of the STUN server for

the CPE to send Binding Requests if STUN is
enabled via STUNEnable.

If empty and STUNEnable is True, the CPE MUST

use the address of the ACS extracted from the host
portion of the ACS URL.

- 1.1

STUNServerPort unsignedInt
[0:65535]

W Port number of the STUN server for the CPE to
send Binding Requests if STUN is enabled via

STUNEnable.

By default, this SHOULD be the equal to the default

STUN port, 3478.

- 1.1

STUNUsername string(256) W If non-empty, the value of the STUN USERNAME
attribute to be used in Binding Requests (only if

message integrity has been requested by the
STUN server).

If empty, the CPE MUST NOT send STUN Binding
Requests with message integrity.

- 1.1

STUNPassword string(256) W The value of the STUN Password to be used in

computing the MESSAGE-INTEGRITY attribute to
be used in Binding Requests (only if message
integrity has been requested by the STUN server).

When read, this parameter returns an empty string,

regardless of the actual value.

- 1.1

STUNMaximumKeepAlivePeriod int[-1:] W If STUN Is enabled, the maximum period, in
seconds, that STUN Binding Requests MUST be

sent by the CPE for the purpose of maintaining the
binding in the Gateway. This applies specifically to
Binding Requests sent from the UDP Connection

Request address and port.

A value of -1 indicates that no maximum period is

specified.

- 1.1

STUNMinimumKeepAlivePeriod unsignedInt W If STUN Is enabled, the minimum period, in
seconds, that STUN Binding Requests can be sent

by the CPE for the purpose of maintaining the
binding in the Gateway. This limit applies only to
Binding Requests sent from the UDP Connection

Request address and port, and only those that do
not contain the BINDING-CHANGE attribute. This
limit does not apply to retransmissions following the

procedures defined in [9].

- 1.1

NATDetected boolean - When STUN is enabled, this parameter indicates

whether or not the CPE has detected address
and/or port mapping in use.

A True value indicates that the received MAPPED-

ADDRESS in the most recent Binding Response
differs from the CPE’s source address and port.

When STUNEnable is False, this value MUST be
False.

- 1.1

.GatewayInfo. object - This object contains information associated with a

connected Internet Gateway Device.

- 1.0

ManufacturerOUI string(6) - Organizationally unique identifier of the associated

Internet Gateway Device. An empty string
indicates that there is no associated Internet

Gateway Device that has been detected.

- 1.0

ProductClass string(64) - Identifier of the product class of the associated
Internet Gateway Device. An empty string

indicates either that there is no associated Internet
Gateway Device that has been detected, or the
Internet Gateway Device does not support the use

of the product-class parameter.

- 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 28

Name
2
 Type Write

3
 Description Default

4
 Version

5

SerialNumber string(64) - Serial number of the associated Internet Gateway

Device. An empty string indicates that there is no
associated Internet Gateway Device that has been

detected.

- 1.0

.Config. object - This object contains general configuration

parameters.

- 1.0

PersistentData string(256) W Arbitrary user data that MUST persist across CPE
reboots.

- 1.0

ConfigFile string(32K) W A dump of the currently running configuration on

the CPE. This parameter enables the ability to
backup and restore the last known good state of

the CPE. It returns a vendor-specific document
that defines the state of the CPE. The document
MUST be capable of restoring the CPE’s state
when written back to the CPE using

SetParameterValues.

An alternative to this parameter, e.g. when the

configuration file is larger than the parameter size
limit, is to use the Upload and Download RPCs with

a FileType of “1 Vendor Configuration File”.

- 1.0

.Time. object - This object contains parameters relating an NTP or
SNTP time client in the CPE.

- 1.0

NTPServer1 string(64) W First NTP timeserver. Either a host name or IP

address.

- 1.0

NTPServer2 string(64) W Second NTP timeserver. Either a host name or IP

address.

- 1.0

NTPServer3 string(64) W Third NTP timeserver. Either a host name or IP
address.

- 1.0

NTPServer4 string(64) W Fourth NTP timeserver. Either a host name or IP

address.

- 1.0

NTPServer5 string(64) W Fifth NTP timeserver. Either a host name or IP
address.

- 1.0

CurrentLocalTime dateTime - The current date and time in the CPE’s local time

zone.

- 1.0

LocalTimeZone string(256) W The local time zone definition, encoded according

to IEEE 1003.1 (POSIX). The following is an
example value:

“EST+5 EDT,M4.1.0/2,M10.5.0/2”

- 1.0

.UserInterface. object - This object contains parameters relating to the user

interface of the CPE.

- 1.0

PasswordRequired boolean W Present only if the CPE provides a password-
protected LAN-side user interface.

Indicates whether or not the local user interface

MUST require a password to be chosen by the
user. If False, the choice of whether or not a
password is used is left to the user.

- 1.0

PasswordUserSelectable boolean W Present only if the CPE provides a password-

protected LAN-side user interface and supports
LAN-side Auto-Configuration.

Indicates whether or not a password to protect the
local user interface of the CPE MAY be selected by

the user directly, or MUST be equal to the
password used by the LAN-side Auto-Configuration
protocol.

- 1.0

UpgradeAvailable boolean W Indicates that a CPE upgrade is available, allowing

the CPE to display this information to the user.

- 1.0

WarrantyDate dateTime W Indicates the date and time in UTC that the

warranty associated with the CPE is to expire.

- 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 29

Name
2
 Type Write

3
 Description Default

4
 Version

5

ISPName string(64) W The name of the customer’s ISP. - 1.0

ISPHelpDesk string(32) W The help desk phone number of the ISP. - 1.0

ISPHomePage string(256) W The URL of the ISP’s home page. - 1.0

ISPHelpPage string(256) W The URL of the ISP’s on-line support page. - 1.0

ISPLogo base64
(5460)

W Base64 encoded GIF or JPEG image. The binary
image is constrained to 4095 bytes or less.

- 1.0

ISPLogoSize unsignedInt

[0:4095]

W Un-encoded binary image size in bytes.

If ISPLogoSize input value is 0 then the ISPLogo is

cleared.

ISPLogoSize can also be used as a check to verify

correct transfer and conversion of Base64 string to
image size.

- 1.0

ISPMailServer string(256) W The URL of the ISP’s mail server. - 1.0

ISPNewsServer string(256) W The URL of the ISP’s news server. - 1.0

TextColor string(6) W The color of text on the GUI screens in RGB

hexidecimal notation (e.g., FF0088).

- 1.0

BackgroundColor string(6) W The color of the GUI screen backgrounds in RGB
hexidecimal notation (e.g., FF0088).

- 1.0

ButtonColor string(6) W The color of buttons on the GUI screens in RGB

hexidecimal notation (e.g., FF0088).

- 1.0

ButtonTextColor string(6) W The color of text on buttons on the GUI screens in

RGB hexidecimal notation (e.g., FF0088).

- 1.0

AutoUpdateServer string(256) W The server the CPE can check to see if an update

is available for direct download to it. This MUST
NOT be used by the CPE if the Device.-
ManagementServer.UpgradesManaged parameter

is True.

- 1.0

UserUpdateServer string(256) W The server where a user can check via a web

browser if an update is available for download to a
PC. This MUST NOT be used by the CPE if the

Device.ManagementServer.UpgradesManaged
parameter is True.

- 1.0

AvailableLanguages string(256) - Comma-separated list of user-interface languages
that are available, where each language is

specified according to RFC 3066 [6].

- 1.0

CurrentLanguage string(16) W Current user-interface language, specified

according to RFC 3066 [6].

- 1.0

.LAN. object - This object contains parameters relating to IP-
based LAN connectivity of a device.

This object relates only to IP-layer LAN capabilities.

Lower-layer aspects of LAN connectivity are not
considered part of the common data model defined
in this specification.

For a device that contains multiple IP interfaces,

the scope of this object is limited to the default IP
interface. Data that might be associated with other
interfaces is not considered part of the common

data model defined in this specification.

- 1.0

AddressingType string W The method used to assign an address to this
interface. Enumeration of:

“DHCP”

“Static”

The ability to modify this parameter is OPTIONAL.

- 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 30

Name
2
 Type Write

3
 Description Default

4
 Version

5

IPAddress string W The current IP address assigned to this interface.

The ability to modify this parameter is OPTIONAL,

and this parameter cannot be modified if the
AddressingType is “DHCP”.

- 1.0

SubnetMask string W The current subnet mask.

The ability to modify this parameter is OPTIONAL,

and this parameter cannot be modified if the
AddressingType is “DHCP”.

- 1.0

DefaultGateway string W The IP address of the current default gateway for
this interface.

The ability to modify this parameter is OPTIONAL,

and this parameter cannot be modified if the
AddressingType is “DHCP”.

- 1.0

DNSServers string(256) W Comma-separated list of IP address of the DNS
servers for this interface.

The ability to modify this parameter is OPTIONAL,

and this parameter cannot be modified if the
AddressingType is “DHCP”.

If this parameter is modifiable, the device MAY
ignore any DNS servers beyond the first two in the

list.

- 1.0

MACAddress string W The physical address of this interface. Writable
only if MACAddressOverride is present and equal

to True.

- 1.0

MACAddressOverride boolean W Whether the value of MACAddress parameter can

be overridden.

When True, MACAddress is writable.

When False, MACAddress is not writable, and the
default MAC address assigned by the device

SHOULD be restored.

- 1.0

DHCPOptionNumberOfEntries unsignedInt - Number of entries in the DHCP option table. - 1.0

.LAN.DHCPOption.{i}. object W This object is for configuration of DHCP options.

Each instance of this object represents a DHCP
option to be included by the DHCP client in client

requests. The DHCP client MAY include any other
options not specified in this table.

- 1.0

Request boolean W Whether this entry represents a request to the

DHCP server, or a value to be sent by the DHCP
client.

When True, this entry represents a request. In this

case, the DHCP client MUST include the specified
Tag in the Parameter Request List, as defined in

RFC 2132. The Value parameter is ignored in this
case.

When False, this entry represents a value to be
sent by the DHCP client. In this case, the DHCP

client MUST include a DHCP option formed from
the Tag and Value parameters (with the Length
derived from the length of the Value parameter).

- 1.0

Tag unsignedInt

[1:254]

W Tag of the DHCP option as defined in RFC 2132. - 1.0

Value base64(340) W Base64 encoded octet string to be used as the
Value of the DHCP option if Request is False.

<Empty> 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 31

Name
2
 Type Write

3
 Description Default

4
 Version

5

.LAN.Stats. object - This object contains statistics for the default IP

interface.

- 1.0

ConnectionUpTime unsignedInt - The time in seconds that this IP interface has been
connected.

If the IP interface is using DHCP, this is the time

that the DHCP client has been only in the Bound or
Renewing states and the lower-layer interface has
continuously maintained a link.

If the IP interface is using static addressing, this is

the time that the lower-layer interface has
continuously maintained a link.

- 1.0

TotalBytesSent unsignedInt - Total number of IP payload bytes sent over this
interface since the device was last restarted as

specified in DeviceInfo.UpTime.

- 1.0

TotalBytesReceived unsignedInt - Total number of IP payload bytes received over this

interface since the device was last restarted as
specified in DeviceInfo.UpTime.

- 1.0

TotalPacketsSent unsignedInt - Total number of IP packets sent over this interface

since the device was last restarted as specified in
DeviceInfo.UpTime.

- 1.0

TotalPacketsReceived unsignedInt - Total number of IP packets received over this

interface since the device was last restarted as
specified in DeviceInfo.UpTime.

- 1.0

CurrentDayInterval unsignedInt - Number of seconds since the beginning of the
period used for collection of CurrentDay statistics.

The device MAY align the beginning of each

CurrentDay interval with days in the UTC time
zone, but does not need to do so.

- 1.0

CurrentDayBytesSent unsignedInt - Total number of IP payload bytes sent over this
interface since the beginning of the current-day

interval as specified by CurrentDayInterval.

- 1.0

CurrentDayBytesReceived unsignedInt - Total number of IP payload bytes received over this
interface since the beginning of the current-day

interval as specified by CurrentDayInterval.

- 1.0

CurrentDayPacketsSent unsignedInt - Total number of IP packets sent over this interface

since the beginning of the current-day interval as
specified by CurrentDayInterval.

- 1.0

CurrentDayPacketsReceived unsignedInt - Total number of IP packets received over this

interface since the beginning of the current-day
interval as specified by CurrentDayInterval.

- 1.0

QuarterHourInterval unsignedInt - Number of seconds since the beginning of the
period used for collection of QuarterHour statistics.

The device MAY align the beginning of each

QuarterHour interval with real-time quarter-hour
intervals, but does not need to do so.

- 1.0

QuarterHourBytesSent unsignedInt - Total number of IP payload bytes sent over this
interface since the beginning of the quarter-hour

interval as specified by QuarterHourInterval.

- 1.0

QuarterHourBytesReceived unsignedInt - Total number of IP payload bytes received over this
interface since the beginning of the quarter-hour

interval as specified by QuarterHourInterval.

- 1.0

QuarterHourPacketsSent unsignedInt - Total number of IP packets sent over this interface

since the beginning of the quarter-hour interval as
specified by QuarterHourInterval.

- 1.0

QuarterHourPacketsReceived unsignedInt - Total number of IP packets received over this

interface since the beginning of the quarter-hour
interval as specified by QuarterHourInterval.

- 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 32

Name
2
 Type Write

3
 Description Default

4
 Version

5

.LAN.IPPingDiagnostics. object - This object defines access to an IP-layer ping test

for the default IP interface.

- 1.0

DiagnosticsState string W Indicates availability of diagnostic data. One of:

“None”

“Requested”

“Complete”

“Error_CannotResolveHostName”

“Error_Internal”

“Error_Other”

If the ACS sets the value of this parameter to
Requested, the CPE MUST initiate the

corresponding diagnostic test. When writing, the
only allowed value is Requested. To ensure the
use of the proper test parameters (the writable

parameters in this object), the test parameters
MUST be set either prior to or at the same time as
(in the same SetParameterValues) setting the

DiagnosticsState to Requested.

When requested, the CPE SHOULD wait until after

completion of the communication session with the
ACS before starting the diagnostic.

When the test is completed, the value of this

parameter MUST be either Complete (if the test
completed successfully), or one of the Error values
listed above.

If the value of this parameter is anything other than

Complete, the values of the results parameters for
this test are indeterminate.

When the diagnostic initiated by the ACS is
completed (successfully or not), the CPE MUST

establish a new connection to the ACS to allow the
ACS to view the results, indicating the Event code
"8 DIAGNOSTICS COMPLETE" in the Inform

message.

After the diagnostic is complete, the value of all

result parameters (all read-only parameters in this
object) MUST be retained by the CPE until either

this diagnostic is run again, or the CPE reboots.
After a reboot, if the CPE has not retained the
result parameters from the most recent test, it

MUST set the value of this parameter to “None”.

Modifying any of the writable parameters in this

object except for this one MUST result in the value
of this parameter being set to “None”.

While the test is in progress, modifying any of the

writable parameters in this object except for this
one MUST result in the test being terminated and
the value of this parameter being set to “None”.

While the test is in progress, setting this parameter

to Requested (and possibly modifying other
writable parameters in this object) MUST result in
the test being terminated and then restarted using

the current values of the test parameters.

- 1.0

Host string(256) W Host name or address of the host to ping. - 1.0

NumberOfRepetitions unsignedInt

[1:]

W Number of repetitions of the ping test to perform

before reporting the results.

- 1.0

Timeout unsignedInt
[1:]

W Timeout in milliseconds for the ping test. - 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 33

Name
2
 Type Write

3
 Description Default

4
 Version

5

DataBlockSize unsignedInt

[1:65535]

W Size of the data block in bytes to be sent for each

ping.

- 1.0

DSCP unsignedInt
[0:63]

W DiffServ codepoint to be used for the test packets.
By default the CPE SHOULD set this value to zero.

- 1.0

SuccessCount unsignedInt - Result parameter indicating the number of

successful pings (those in which a successful
response was received prior to the timeout) in the
most recent ping test.

- 1.0

FailureCount unsignedInt - Result parameter indicating the number of failed

pings in the most recent ping test.

- 1.0

AverageResponseTime unsignedInt - Result parameter indicating the average response
time in milliseconds over all repetitions with

successful responses of the most recent ping test.
If there were no successful responses, this value
MUST be zero.

- 1.0

MinimumResponseTime unsignedInt - Result parameter indicating the minimum response

time in milliseconds over all repetitions with
successful responses of the most recent ping test.
If there were no successful responses, this value

MUST be zero.

- 1.0

MaximumResponseTime unsignedInt - Result parameter indicating the maximum response

time in milliseconds over all repetitions with
successful responses of the most recent ping test.

If there were no successful responses, this value
MUST be zero.

- 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 34

Name
2
 Type Write

3
 Description Default

4
 Version

5

.LAN.TraceRouteDiagnostics. object - This object is defines access to an IP-layer trace-

route test for the default IP interface.

- 1.0

DiagnosticsState string W Indicates availability of diagnostic data. One of:

“None”

“Requested”

“Complete”

“Error_CannotResolveHostName”

“Error_MaxHopCountExceeded”

“Error_Internal”

“Error_Other”

If the ACS sets the value of this parameter to
Requested, the CPE MUST initiate the

corresponding diagnostic test. When writing, the
only allowed value is Requested. To ensure the
use of the proper test parameters (the writable

parameters in this object), the test parameters
MUST be set either prior to or at the same time as
(in the same SetParameterValues) setting the

DiagnosticsState to Requested.

When requested, the CPE SHOULD wait until after

completion of the communication session with the
ACS before starting the diagnostic.

When the test is completed, the value of this

parameter MUST be either Complete (if the test
completed successfully), or one of the Error values
listed above.

If the value of this parameter is anything other than

Complete, the values of the results parameters for
this test are indeterminate.

When the diagnostic initiated by the ACS is
completed (successfully or not), the CPE MUST

establish a new connection to the ACS to allow the
ACS to view the results, indicating the Event code
"8 DIAGNOSTICS COMPLETE" in the Inform

message.

After the diagnostic is complete, the value of all

result parameters (all read-only parameters in this
object) MUST be retained by the CPE until either

this diagnostic is run again, or the CPE reboots.
After a reboot, if the CPE has not retained the
result parameters from the most recent test, it

MUST set the value of this parameter to “None”.

Modifying any of the writable parameters in this

object except for this one MUST result in the value
of this parameter being set to “None”.

While the test is in progress, modifying any of the

writable parameters in this object except for this
one MUST result in the test being terminated and
the value of this parameter being set to “None”.

While the test is in progress, setting this parameter

to Requested (and possibly modifying other
writable parameters in this object) MUST result in
the test being terminated and then restarted using

the current values of the test parameters.

- 1.0

Host string(256) W Host name or address of the host to find a route to. - 1.0

Timeout unsignedInt

[1:]

W Timeout in milliseconds for the trace route test. - 1.0

DataBlockSize unsignedInt
[1:65535]

W Size of the data block in bytes to be sent for each
trace route.

- 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 35

Name
2
 Type Write

3
 Description Default

4
 Version

5

MaxHopCount unsignedInt

[1:64]

W The maximum number of hop used in outgoing

probe packets (max TTL). The default is 30 hops.

- 1.0

DSCP unsignedInt
[0:63]

W DiffServ codepoint to be used for the test packets.
By default the CPE SHOULD set this value to zero.

- 1.0

ResponseTime unsignedInt - Result parameter indicating the response time in

milliseconds the most recent trace route test. If a
route could not be determined, this value MUST be
zero.

- 1.0

NumberOfRouteHops unsignedInt - Result parameter indicating the number of hops

within the discovered route. If a route could not be
determined, this value MUST be zero.

- 1.0

.LAN.TraceRouteDiagnostics.RouteHops.{i}. object - Result parameter indicating the components of the

discovered route. If a route could not be
determined, there will be no instances of this
object.

- 1.0

HopHost string(256) - Result parameter indicating the Host Name or IP

Address of a hop along the discovered route.

- 1.0

.DownloadDiagnostics. object - This object defines the diagnostics configuration for
a HTTP and FTP DownloadDiagnostics Test.

Files received in the DownloadDiagnostics do not
require file storage on the CPE device.

- 1.2

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 36

Name
2
 Type Write

3
 Description Default

4
 Version

5

DiagnosticsState string W Indicate the availability of diagnostic data. One of:

“None”

“Requested”

“Completed”

“Error_InitConnectionFailed”

“Error_NoResponse ”

“Error_TransferFailed”

“Error_PasswordRequestFailed”

“Error_LoginFailed”

“Error_NoTransferMode”

“Error_NoPASV”

“Error_IncorrectSize”

“Error_Timeout”

If the ACS sets the value of this parameter to
Requested, the CPE MUST initiate the
corresponding diagnostic test. When writing, the
only allowed value is Requested. To ensure the
use of the proper test parameters (the writable
parameters in this object), the test parameters
MUST be set either prior to or at the same time as
(in the same SetParameterValues) setting the
DiagnosticsState to Requested.

When requested, the CPE SHOULD wait until after
completion of the communication session with the
ACS before starting the diagnostic.

When the test is completed, the value of this
parameter MUST be either Completed (if the test
completed successfully), or one of the Error values
listed above.

If the value of this parameter is anything other than
Completed, the values of the results parameters for
this test are indeterminate.

When the diagnostic initiated by the ACS is
completed (successfully or not), the CPE MUST
establish a new connection to the ACS to allow the
ACS to view the results, indicating the Event code
"8 DIAGNOSTICS COMPLETE" in the Inform
message.

After the diagnostic is complete, the value of all
result parameters (all read-only parameters in this
object) MUST be retained by the CPE until either
this diagnostic is run again, or the CPE reboots.
After a reboot, if the CPE has not retained the
result parameters from the most recent test, it
MUST set the value of this parameter to “None”.

Modifying any of the writable parameters in this
object except for this one MUST result in the value
of this parameter being set to “None”.

While the test is in progress, modifying any of the
writable parameters in this object except for this
one MUST result in the test being terminated and
the value of this parameter being set to “None”.

While the test is in progress, setting this parameter
to Requested (and possibly modifying other
writable parameters in this object) MUST result in
the test being terminated and then restarted using
the current values of the test parameters.

- 1.2

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 37

Name
2
 Type Write

3
 Description Default

4
 Version

5

Interface string(256) W Specifies the IP-layer interface over which the test
is to be performed. The content is the full
hierarchical parameter name of the interface.

The value of this parameter MUST be either a valid
interface or an empty string. An attempt to set this
parameter to a different value MUST be rejected as
an invalid parameter value.

If an empty string is specified, the CPE MUST use
the default routing interface.

- 1.2

DownloadURL string(256) W The URL, as defined in [8], for the CPE to perform
the download on. This parameter MUST be in the
form of a valid HTTP [13] or FTP [12] URL.

When using FTP transport, FTP binary transfer
MUST be used.

When using HTTP transport, persistent
connections MUST be used and pipelining MUST
NOT be used.

When using HTTP transport the HTTP
Authentication MUST NOT be used.

- 1.2

DSCP unsignedInt[
0:63]

W The DiffServ code point for marking packets
transmitted in the test.

The default value SHOULD be zero.

- 1.2

EthernetPriority unsignedInt[
0:7]

W Ethernet priority code for marking packets
transmitted in the test (if applicable).

The default value SHOULD be zero.

- 1.2

ROMTime dateTime - Request time in UTC, which MUST be specified to
microsecond precision.

For example: 2008-04-09T15:01:05.123456

For HTTP this is the time at which the client sends
the GET command.

For FTP this is the time at which the client sends
the RTRV command.

- 1.2

BOMTime dateTime - Begin of transmission time in UTC, which MUST be
specified to microsecond precision

For example: 2008-04-09T15:01:05.123456

For HTTP this is the time at which the first data
packet is received.

For FTP this is the time at which the client receives
the first data packet on the data connection.

- 1.2

EOMTime dateTime - End of transmission in UTC, which MUST be
specified to microsecond precision.

For example: 2008-04-09T15:01:05.123456

For HTTP this is the time at which the last data
packet is received.

For FTP this is the time at which the client receives
the last packet on the data connection.

- 1.2

TestBytesReceived unsignedInt - The test traffic received in bytes during the
FTP/HTTP transaction including FTP/HTTP
headers, between BOMTime and EOMTime,

- 1.2

TotalBytesReceived unsignedInt - The total number of bytes received on the Interface
between BOMTime and EOMTime.

- 1.2

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 38

Name
2
 Type Write

3
 Description Default

4
 Version

5

TCPOpenRequestTime dateTime - Request time in UTC, which MUST be specified to
microsecond precision.

For example: 2008-04-09T15:01:05.123456

For HTTP this is the time at which the TCP socket
open (SYN) was sent for the HTTP connection.

For FTP this is the time at which the TCP socket
open (SYN) was sent for the data connection.

Note: Interval of 1 microsecond SHOULD be
supported.

- 1.2

TCPOpenResponseTime dateTime - Response time in UTC, which MUST be specified
to microsecond precision.

For example: 2008-04-09T15:01:05.123456

For HTTP this is the time at which the TCP ACK to
the socket opening the HTTP connection was
received.

For FTP this is the time at which the TCP ACK to
the socket opening the data connection was
received.

Note: Interval of 1 microsecond SHOULD be
supported.

- 1.2

.UploadDiagnostics. object - This object defines the diagnostics configuration for
a HTTP or FTP UploadDiagnostics test.

Files sent by the UploadDiagnostics do not require
file storage on the CPE device, and MAY be an
arbitrary stream of bytes.

- 1.2

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 39

Name
2
 Type Write

3
 Description Default

4
 Version

5

DiagnosticsState string W Indicate the availability of diagnostic data. One of:

“None”

“Requested”

“Completed”

“Error_InitConnectionFailed”

“Error_NoResponse”

“Error_PasswordRequestFailed”

“Error_LoginFailed”

“Error_NoTransferMode”

“Error_NoPASV”

“Error_NoCWD”

“Error_NoSTOR”

“Error_NoTransferComplete”

If the ACS sets the value of this parameter to
Requested, the CPE MUST initiate the
corresponding diagnostic test. When writing, the
only allowed value is Requested. To ensure the
use of the proper test parameters (the writable
parameters in this object), the test parameters
MUST be set either prior to or at the same time as
(in the same SetParameterValues) setting the
DiagnosticsState to Requested.

When requested, the CPE SHOULD wait until after
completion of the communication session with the
ACS before starting the diagnostic.

When the test is completed, the value of this
parameter MUST be either Completed (if the test
completed successfully), or one of the Error values
listed above.

If the value of this parameter is anything other than
Completed, the values of the results parameters for
this test are indeterminate.

When the diagnostic initiated by the ACS is
completed (successfully or not), the CPE MUST
establish a new connection to the ACS to allow the
ACS to view the results, indicating the Event code
"8 DIAGNOSTICS COMPLETE" in the Inform
message.

After the diagnostic is complete, the value of all
result parameters (all read-only parameters in this
object) MUST be retained by the CPE until either
this diagnostic is run again, or the CPE reboots.
After a reboot, if the CPE has not retained the
result parameters from the most recent test, it
MUST set the value of this parameter to “None”.

Modifying any of the writable parameters in this
object except for this one MUST result in the value
of this parameter being set to “None”.

While the test is in progress, modifying any of the
writable parameters in this object except for this
one MUST result in the test being terminated and
the value of this parameter being set to “None”.

While the test is in progress, setting this parameter
to Requested (and possibly modifying other
writable parameters in this object) MUST result in
the test being terminated and then restarted using
the current values of the test parameters.

- 1.2

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 40

Name
2
 Type Write

3
 Description Default

4
 Version

5

Interface string(256) W IP-layer interface over which the test is to be
performed. The content is the full hierarchical
parameter name of the interface.

The value of this parameter MUST be either a valid
interface or an empty string. An attempt to set this
parameter to a different value MUST be rejected as
an invalid parameter value.

If an empty string is specified, the CPE MUST use
the default routing interface.

- 1.2

UploadURL string(256) W The URL, as defined in [8], for the CPE to Upload
to. This parameter MUST be in the form of a valid
HTTP [13] or FTP [12] URL.

When using FTP transport, FTP binary transfer
MUST be used.

When using HTTP transport, persistent
connections MUST be used and pipelining MUST
NOT be used.

When using HTTP transport the HTTP
Authentication MUST NOT be used.

- 1.2

DSCP unsignedInt[
0:63]

W DiffServ code point for marking packets transmitted
in the test.

The default value SHOULD be zero.

- 1.2

EthernetPriority unsignedInt[
0:7]

W Ethernet priority code for marking packets
transmitted in the test (if applicable).

The default value SHOULD be zero.

- 1.2

TestFileLength unsignedInt W The size of the file (in bytes) to be uploaded to the
server.

The CPE MUST insure the appropriate number of
bytes are sent.

- 1.2

ROMTime dateTime - Request time in UTC, which MUST be specified to
microsecond precision.

For example: 2008-04-09T15:01:05.123456

For HTTP this is the time at which the client sends
the PUT command

For FTP this is the time at which the STOR
command is sent.

- 1.2

BOMTime dateTime - Begin of transmission time in UTC, which MUST be
specified to microsecond precision.

For example: 2008-04-09T15:01:05.123456

For HTTP this is the time at which the first data
packet is sent.

For FTP this is the time at which the client receives
the ready for transfer notification.

- 1.2

EOMTime dateTime - End of transmission in UTC, which MUST be
specified to microsecond precision.

For example: 2008-04-09T15:01:05.123456

For HTTP this is the time when the HTTP
successful response code is received.

For FTP this is the time when the client receives a
transfer complete.

- 1.2

TotalBytesSent unsignedInt - The total number of bytes sent on the Interface
between BOMTime and EOMTime.

- 1.2

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 41

Name
2
 Type Write

3
 Description Default

4
 Version

5

TCPOpenRequestTime dateTime - Request time in UTC, which MUST be specified to
microsecond precision.

For example: 2008-04-09T15:01:05.123456

For HTTP this is the time at which the TCP socket
open (SYN) was sent for the HTTP connection.

For FTP this is the time at which the TCP socket
open (SYN) was sent for the data connection

Note: Interval of 1 microsecond SHOULD be
supported.

- 1.2

TCPOpenResponseTime dateTime - Response time in UTC, which MUST be specified
to microsecond precision.

For example: 2008-04-09T15:01:05.123456

For HTTP this is the Time at which the TCP ACK to
the socket opening the HTTP connection was
received.

For FTP this is the Time at which the TCP ACK to
the socket opening the Data connection was
received.

Note: Interval of 1 microsecond SHOULD be
supported.

- 1.2

.UDPEchoConfig.

object - This object allows the CPE to be configured to
perform the UDP Echo Service defined in [11] and
UDP Echo Plus Service defined in Appendix A.1 of
[15].

- 1.2

Enable boolean W MUST be enabled to receive UDP echo. When
enabled from a disabled state all related
timestamps, statistics and UDP Echo Plus counters
are cleared.

- 1.2

Interface string(256) W IP-layer interface over which the CPE MUST listen
and receive UDP echo requests on. The content is
the full hierarchical parameter name of the
interface.

The value of this parameter MUST be either a valid
interface or an empty string. An attempt to set this
parameter to a different value MUST be rejected as
an invalid parameter value.

If an empty string is specified, the CPE MUST
listen and receive UDP echo requests on all
interfaces.

Note: Interfaces behind a NAT MAY require port
forwarding rules configured in the Gateway to
enable receiving the UDP packets.

- 1.2

SourceIPAddress string

W The Source IP address of the UDP echo packet.
The CPE MUST only respond to a UDP echo from
this source IP address.

- 1.2

UDPPort unsignedInt W The UDP port on which the UDP server MUST
listen and respond to UDP echo requests.

- 1.2

EchoPlusEnabled boolean W If True the CPE will perform necessary packet
processing for UDP Echo Plus packets.

- 1.2

EchoPlusSupported boolean - True if UDP Echo Plus is supported. - 1.2

PacketsReceived unsignedInt - Incremented upon each valid UDP echo packet
received.

- 1.2

PacketsResponded unsignedInt - Incremented for each UDP echo response sent. - 1.2

BytesReceived unsignedInt - The number of UDP received bytes including
payload and UDP header after the UDPEchoConfig
is enabled.

- 1.2

BytesResponded unsignedInt - The number of UDP responded bytes, including
payload and UDP header sent after the
UDPEchoConfig is enabled.

- 1.2

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 42

Name
2
 Type Write

3
 Description Default

4
 Version

5

TimeFirstPacketReceived dateTime - Time in UTC, which MUST be specified to
microsecond precision.

For example: 2008-04-09T15:01:05.123456,

The time that the server receives the first UDP
echo packet after the UDPEchoConfig is enabled.

- 1.2

TimeLastPacketReceived dateTime - Time in UTC, which MUST be specified to
microsecond precision.

For example: 2008-04-09T15:01:05.123456

The time that the server receives the most recent
UDP echo packet.

- 1.2

3.5 Inform Requirements

For CPE supporting the Device Root Object, the CPE MUST include in the ParameterList argument of the

Inform message all of the parameters listed in Table 4 that are present in the data model implementation

(any that are not present in the implementation need not be included in the Inform).

Table 4 – Forced Inform parameters

Parameter

Device.DeviceSummary

Device.DeviceInfo.HardwareVersion

Device.DeviceInfo.SoftwareVersion

Device.ManagementServer.ConnectionRequestURL

Device.ManagementServer.ParameterKey

Device.LAN.IPAddress

Note – the Forced Inform requirements do not apply to secondary instances of any of the above

parameters that might be contained within Service Objects.

3.6 Notification Requirements

CPE MUST support Active Notification (see [2]) for all parameters defined in the Common Object

definitions for the Device Root Object (section 3.4) with the exception of those parameters listed in Table

5. For only those parameters listed Table 5, the CPE MAY reject a request by an ACS to enable Active

Notification via the SetParameterAttributes RPC by responding with fault code 9009 as defined in [2]

(Notification request rejected).

CPE MUST support Passive Notification (see [2]) for all parameters defined in the Common Object

definitions for the Device Root Object, with no exceptions.

Table 5 – Parameters for which Active Notification MAY be denied by the CPE

Parameter
6

.DeviceInfo.

ModelName

Description

UpTime

6 The name of a Parameter referenced in this table is the concatenation of the base path (see section 2.1),

the object name shown in the yellow header, and the individual Parameter name.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 43

Parameter
6

FirstUseDate

DeviceLog

.ManagementServer.

ParameterKey

.Time.

CurrentLocalTime

.LAN.Stats.

ConnectionUpTime

TotalBytesSent

TotalBytesReceived

TotalPacketsSent

TotalPacketsReceived

CurrentDayInterval

CurrentDayBytesSent

CurrentDayBytesReceived

CurrentDayPacketsSent

CurrentDayPacketsReceived

QuarterHourInterval

QuarterHourBytesSent

QuarterHourBytesReceived

QuarterHourPacketsSent

QuarterHourPacketsReceived

.LAN.IPPingDiagnostics.

DiagnosticsState

SuccessCount

FailureCount

AverageResponseTime

MinimumResponseTime

MaximumResponseTime

.LAN.TraceRouteDiagnostics.

DiagnosticsState

ResponseTime

NumberOfRouteHops

.LAN.TraceRouteDiagnostics.RouteHops.{i}.

HopHost

.DownloadDiagnostics.

DiagnosticsState

ROMTime

BOMTime

EOMTime

TestBytesReceived

TotalBytesReceived

TCPOpenRequestTime

TCPOpenResponseTime

.UploadDiagnostics.

DiagnosticsState

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 44

Parameter
6

ROMTime

BOMTime

EOMTime

TotalBytesSent

TCPOpenRequestTime

TCPOpenResponseTime

.UDPEchoConfig.

PacketsReceived

PacketsResponded

BytesReceived

BytesResponded

TimeFirstPacketReceived

TimeLastPacketReceived

3.7 DeviceSummary Definition

The DeviceSummary parameter is defined to provide an explicit summary of the top-level data model of

the device, including version and profile information. This parameter MAY be used by an ACS to discover

the nature of the device and the ACS’s compatibility with specific objects supported by the device.

The DeviceSummary is defined as a list that includes the Root Object followed by all Service Object

instances (or support for a Service Object type if no instances are currently present). For each of these

objects, the DeviceSummary specifies the version of the object, the associated instance number used to
identify the specific object instance, and a list of the supported profiles for that object.

The syntax of the DeviceSummary parameter is defined formally as follows:

DeviceSummary = RootObject [", " ServiceObject]*

RootObject = ObjectName ":" ObjectVersion "[](" ProfileList ")"

ServiceObject = ObjectName ":" ObjectVersion "[" [Instance] "](" ProfileList ")"

ObjectVersion = MajorVersion "." MinorVersion

ProfileList = [Profile [", " Profile]*]

Profile = ProfileName ":" ProfileVersion

MajorVersion = Integer

MinorVersion = Integer

ProfileVersion = Integer

Integer = DIGIT*

Instance = ["+"] NONZERODIGIT [DIGIT]*

For each object instance, the ObjectVersion element MUST indicate the major and minor versions of the

object supported by the device.

The ObjectVersion for all objects defined prior to this specification for which explicit major and minor
version numbers have not been defined is 1.0. Future updates to these objects will specify distinct version

numbers.

The version for the ―Device‖ object as defined in this specification is ―1.0‖.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 45

Instance is the instance number of the particular object instance. If the device supports an object type, but

no instances are currently present, a single entry for this object MUST be listed in the DeviceSummary, and

the instance number MUST be empty ("[]"). In this case, the device need not list support for specific
profiles since the profile list might be dependent on the specific instance when it is instantiated.

If the instance number for an object might change (for example, if the instances represent physically

separate devices, being managed by proxy, that can be connected or disconnected), the instance number

MUST be prefixed with a ―+‖ character. Lack of a ―+‖ character indicates that the instance number is

expected to remain unchanged.

For each object (Root Object and Service Objects), a device MUST list all profiles that it supports in the
ProfileList element. That is, it MUST list all profiles for which the device’s actual level of support is a

superset. Each entry in the ProfileList MUST include the ProfileName and the ProfileVersion. The

ProfileVersion is a single integer representing the minor version of the profile.

Vendor-specific objects and profiles MAY be included in this list, and if so MUST begin with

X_<VENDOR>_, where <VENDOR> MUST be as defined in section 3.3.

3.7.1 DeviceSummary Examples

Below are some examples of the DeviceSummary parameter. (The first examples correspond directly to

the examples given in section 2.1.2.)

Simple device supporting the ABCService Service Object:

“Device:1.0[](Baseline:1), ABCService:1.0[1](Baseline:1)”

Device supporting both ABCService and XYZService Service Objects:

“Device:1.0[](Baseline:1), ABCService:1.0[1](Baseline:1), XYZService:1.0[1](Baseline:1)”

Internet Gateway Device that also supports the ABCService and XYZService Service Objects:

“InternetGatewayDevice:1.0[](Baseline:1), ABCService:1.0[1](Baseline:1),
XYZService:1.0[1](Baseline:1)”

Device supporting the ABCService Service Object and proxying for two devices supporting the

functionality of the XYZService Service Object:

“Device:1.0[](Baseline:1), ABCService:2.17[1](Baseline:1), XYZService:1.2[1](Baseline:2),
XYZService:1.2[2](Baseline:2, AnotherProfile:3)”

Internet Gateway Device also serving as a management proxy for three devices supporting the functionality

of the ABCService Service Object:

“InternetGatewayDevice:1.0[](Baseline:1), ABCService:1.0[1](Baseline:1),
ABCService:1.0[2](Baseline:1), ABCService:1.0[3](Baseline:1, AnotherProfile:1)”

Version 1.0 Internet Gateway Device with no additional service objects supported:

“InternetGatewayDevice:1.0[](Baseline:1)”

Device supporting the ability to proxy for devices supporting the functionality of the ABCService Service

Object, but with no current instances of that object:

“Device:1.0[](Baseline:1), ABCService:2.17[]()”

Device supporting the ABCService Service Object with the baseline and a vendor-specific profile:

“Device:1.0[](Baseline:1), ABCService:2.17[1](Baseline:1, X_EXAMPLE-COM_MyProfile:2)”

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 46

Device supporting the ABCService Service Object, but with no profiles:

“Device:1.0[](Baseline:1), ABCService:2.17[1]()”

4 Profile Definitions

4.1 Notation

The following abbreviations are used to specify profile requirements:

Abbreviation Description

R Read support is REQUIRED.

W Both Read and Write support is REQUIRED. This MUST NOT be specified for a parameter that is
defined as read-only.

P The object is REQUIRED to be present.

C Creation and deletion of instances of the object via AddObject and DeleteObject is REQUIRED.

A Creation of instances of the object via AddObject is REQUIRED, but deletion is not REQUIRED.

D Deletion of instances of the object via DeleteObject is REQUIRED, but creation is not REQUIRED.

4.2 Baseline Profile

Table 6 defines the Baseline:1 profile for the Device:1 object. The minimum REQUIRED version for this

profile is Device:1.0.

Table 6 – Baseline:1 Profile definition for Device:1

Name Requirement

Device. P

DeviceSummary R

Device.DeviceInfo. P

Manufacturer R

ManufacturerOUI R

ModelName R

Description R

SerialNumber R

HardwareVersion R

SoftwareVersion R

DeviceStatus R

UpTime R

Device.ManagementServer. P

URL W

Username W

Password W

PeriodicInformEnable W

PeriodicInformInterval W

PeriodicInformTime W

ParameterKey R

ConnectionRequestURL R

ConnectionRequestUsername W

ConnectionRequestPassword W

UpgradesManaged W

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 47

4.3 GatewayInfo Profile

Table 7 defines the GatewayInfo:1 profile for the Device:1 object. The minimum REQUIRED version for

this profile is Device:1.0.

Table 7 – GatewayInfo:1 Profile definition for Device:1

Name Requirement

Device.GatewayInfo. P

ManufacturerOUI R

ProductClass R

SerialNumber R

4.4 Time Profile

Table 8 defines the Time:1 profile for the Device:1 object. The minimum REQUIRED version for this

profile is Device:1.0.

Table 8 – Time:1 Profile definition for Device:1

Name Requirement

Device.Time. P

NTPServer1 W

NTPServer2 W

CurrentLocalTime R

LocalTimeZone W

4.5 LAN Profile

Table 9 defines the LAN:1 profile for the Device:1 object. The minimum REQUIRED version for this
profile is Device:1.0.

Table 9 – LAN:1 Profile definition for Device:1

Name Requirement

Device.LAN. P

AddressingType R

IPAddress R

SubnetMask R

DefaultGateway R

DNSServers R

MACAddress R

Device.LAN.Stats. P

ConnectionUpTime R

TotalBytesSent R

TotalBytesReceived R

TotalPacketsSent R

TotalPacketsReceived R

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 48

4.6 IPPing Profile

Table 10 defines the IPPing:1 profile for the Device:1 object. The minimum REQUIRED version for this

profile is Device:1.0.

Table 10 – IPPing:1 Profile definition for Device:1

Name Requirement

Device.LAN.IPPingDiagnostics. P

DiagnosticsState W

Host W

NumberOfRepetitions W

Timeout W

DataBlockSize W

DSCP W

SuccessCount R

FailureCount R

AverageResponseTime R

MinimumResponseTime R

MaximumResponseTime R

4.7 TraceRoute Profile

Table 11 defines the TraceRoute:1 profile for the Device:1 object. The minimum REQUIRED version for

this profile is Device:1.0.

Table 11 – TraceRoute:1 Profile definition for Device:1

Name Requirement

Device.LAN.TraceRouteDiagnostics. P

DiagnosticsState W

Host W

Timeout W

DataBlockSize W

MaxHopCount W

DSCP W

ResponseTime R

NumberOfRouteHops R

Device.LAN.TraceRouteDiagnostics.RouteHops.{i}. P

HopHost R

4.8 Download Profile

Table 12 defines the Download:1 profile for the Device:1 object. The minimum REQUIRED version for

this profile is Device:1.2.

Table 12 – Download:1 profile definition for Device:1

Name Requirement

Device.Capabilities.PerformanceDiagnostic. P

DownloadTransports R

Device.DownloadDiagnostics. P

DiagnosticsState W

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 49

Name Requirement

Interface W

DownloadURL W

DSCP W

EthernetPriority W

ROMTime R

BOMTime R

EOMTime R

TestBytesReceived R

TotalBytesReceived R

4.9 DownloadTCP Profile

Table 13 defines the DownloadTCP:1 profile for the Device:1 object. The minimum REQUIRED version

for this profile is Device:1.2.

Table 13 – DownloadTCP:1 profile definition for Device:1

Name Requirement

Device.DownloadDiagnostics. P

TCPOpenRequestTime R

TCPOpenResponseTime R

4.10 Upload Profile

Table 14 defines the Upload:1 profile for the Device:1 object. The minimum REQUIRED version for this

profile is Device:1.2.

Table 14 – Upload:1 profile definition for Device:1

Name Requirement

Device.Capabilities.PerformanceDiagnostic. P

UploadTransports R

Device.UploadDiagnostics. P

DiagnosticsState W

Interface W

UploadURL W

DSCP W

EthernetPriority W

ROMTime R

BOMTime R

EOMTime R

TestFileLength R

TotalBytesSent R

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 50

4.11 UploadTCP Profile

Table 15 defines the UploadTCP:1 profile for the Device:1 object. The minimum REQUIRED version for

this profile is Device:1.2.

Table 15 – UploadTCP:1 profile definition for Device:1

Name Requirement

Device.UploadDiagnostics. P

TCPOpenRequestTime R

TCPOpenResponseTime R

4.12 UDPEcho Profile

Table 16 defines the UDPEcho:1 profile for the Device:1 object. The minimum REQUIRED version for

this profile is Device:1.2.

Table 16 – UDPEcho:1 profile definition for Device:1

Name Requirement

Device.UDPEchoConfig. P

Enable W

Interface W

SourceIPAddress W

UDPPort W

PacketsReceived R

PacketsResponded R

BytesReceived R

BytesResponded R

TimeFirstPacketReceived R

TimeLastPacketReceived R

EchoPlusSupported R

4.13 UDPEchoPlus Profile

Table 17 defines the UDPEchoPlus:1 profile for the Device:1 object. The minimum REQUIRED version

for this profile is Device:1.2.

Table 17 – UDPEchoPlus:1 profile definition for Device:1

Name Requirement

Device.UDPEchoConfig. P

EchoPlusEnabled W

4.14 UDPConnReq Profile

The UDPConnReq:1 profile for a Device implies support for all of the CPE requirements defined in Annex

G of [2], including support for the data model parameters as shown in Table 18. The minimum

REQUIRED version for this profile is Device:1.1.

Table 18 – UDPConnReq:1 Profile definition for Device:1

Name Requirement

Device.ManagementServer. -

UDPConnectionRequestAddress R

UDPConnectionRequestAddressNotificationLimit W

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 51

Name Requirement

STUNEnable W

STUNServerAddress W

STUNServerPort W

STUNUsername W

STUNPassword W

STUNMaximumKeepAlivePeriod W

STUNMinimumKeepAlivePeriod W

NATDetected R

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 52

Normative References
A list of the currently valid Broadband Forum Technical Reports is published at http://www.broadband-
forum.org. The following documents are referenced by this specification.

[1] RFC 2119, Key words for use in RFCs to Indicate Requirement Levels,

http://www.ietf.org/rfc/rfc2119.txt

[2] TR-069 Amendment 2, CPE WAN Management Protocol, Broadband Forum Technical Report

[3] TR-098 Amendment 2, Internet Gateway Device Data Model for TR-069, Broadband Forum Technical

Report

[4] Organizationally Unique Identifiers (OUIs), http://standards.ieee.org/faqs/OUI.html

[5] Simple Object Access Protocol (SOAP) 1.1, http://www.w3.org/TR/2000/NOTE-SOAP-20000508

[6] RFC 3066, Tags for the Identification of Languages, http://www.ietf.org/rfc/rfc3066.txt

[7] RFC 3513, Internet Protocol Version 6 (IPv6) Addressing Architecture,

http://www.ietf.org/rfc/rfc3513.txt

[8] RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, http://www.ietf.org/rfc/rfc3986.txt

[9] RFC 3489, STUN - Simple Traversal of User Datagram Protocol (UDP) Through Network Address

Translators (NATs), http://www.ietf.org/rfc/rfc3489.txt

[10] Extensible Markup Language (XML) 1.0 (Fourth Edition), http://www.w3.org/TR/REC-xml

[11] RFC 862, Echo Protocol, http://www.ietf.org/rfc/rfc862.txt

[12] RFC 959, File Transfer Protocol, http://www.ietf.org/rfc/rfc959.txt

[13] RFC 2616, Hypertext Transfer Protocol – HTTP/1.1, http://www.ietf.org/rfc/rfc2616.txt

[14] RFC 2648, A URN Namespace for IETF Documents, http://www.ietf.org/rfc/rfc2648.txt

[15] TR-143. Enabling Network Throughput Performance Tests and Statistical Monitoring, Broadband

Forum Technical Report,

[16] XML Schema Part 0: Primer Second Edition, http://www.w3.org/TR/xmlschema-0

http://www.broadband-forum.org/
http://www.broadband-forum.org/
http://www.ietf.org/rfc/rfc2119.txt
http://standards.ieee.org/faqs/OUI.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.ietf.org/rfc/rfc3066.txt
http://www.ietf.org/rfc/rfc3513.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3489.txt
http://www.w3.org/TR/REC-xml
http://www.ietf.org/rfc/rfc862.txt
http://www.ietf.org/rfc/rfc959.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2648.txt
http://www.w3.org/TR/xmlschema-0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 53

Annex A. CWMP Data Model
Definition XML Schema

A.1 Introduction
The CWMP Data Model Definition XML Schema [16], or DM Schema, is used for defining TR-069 data

models, and is specified in A.3.

DM Schema instance documents can contain any or all of the following:

 Data type definitions

 Root Object definitions (including profiles)

 Service Object definitions (including profiles)

 Component definitions

 Vendor extension definitions

A.2 Normative Information
It is possible to create instance documents that conform to the DM Schema but nevertheless are not valid

data model definitions. This is because it is not possible to specify all the normative data model definition

requirements using the XML Schema language. Therefore, the schema contains additional requirements

written using the usual normative language. Instance documents that conform to the DM Schema and meet

these additional requirements are referred to as DM Instances.

For example, the definition of the parameter element includes the following additional requirements on the

name and base attributes:

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 54

 <xs:complexType name="ModelParameter">

 <xs:annotation>

 <xs:documentation>Parameter definition and reference.</xs:documentation>

 </xs:annotation>

 …

 <xs:attribute name="name" type="tns:ParameterName">

 <xs:annotation>

 <xs:documentation>MUST be unique within the parent object (this is checked by schema

validation).

MUST be present if and only if defining a new parameter.</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="base" type="tns:ParameterName">

 <xs:annotation>

 <xs:documentation>MUST be present if and only if modifying an existing

parameter.</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 …

 </xs:complexType>

In some cases, a requirement that is in fact implied by the DM Schema is emphasized within the schema

via the xs:documentation element (the uniqueness requirement on the name is an example of this).

In other cases, a schema-implied requirement is not highlighted. For example, the name and base attributes

are of type tns:ParameterName:

<!DOCTYPE cwmp-datamodel [

 …

 <!ENTITY name "([\i-[:]][\c-[:\.]]*)">

 …

]>

 …

 <xs:simpleType name="ParameterName">

 <xs:annotation>

 <xs:documentation>Parameter name (maximum length 256); the same as xs:NCName except that

periods are not permitted. This name MUST in addition follow the vendor-specific parameter name

requirements of section 3.3.</xs:documentation>

 </xs:annotation>

 <xs:restriction base="xs:token">

 <xs:maxLength value="256"/>

 <xs:pattern value="&name;"/>

 </xs:restriction>

 </xs:simpleType>

This states that the parameter name is a string that follows the following rules:

 It is derived from xs:token, which has a whitespace facet of ―collapse‖, meaning that any leading
whitespace in the name will be ignored.

 It has a maximum length of 256 characters.

 Its first character matches the pattern ―[\i-[:]]‖, which means ―any character permitted as the first

character of an XML name, except for a colon‖, and any subsequent characters match the pattern ―[\c-

[:\.]]‖, which means ―any character permitted in an XML name, except for a colon and a dot‖.

 It follows the vendor-specific parameter name requirements of section 3.3.

The question of the location of the definitive normative information therefore arises. The answer is as

follows:

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 55

 All the normative information in the main part of the document remains normative.

 The DM Schema, and the additional requirements therein, are normative. Some of these additional

requirements are duplicated (for emphasis) in this Annex.

 The DM Schema references additional material in this Annex. Such material is normative.

 If the DM Schema conflicts with a normative requirement in the main part of the document, this is an

error in the DM Schema, and the requirement in the main part of the document takes precedence.

A.2.1 URI Conventions

The top-level spec attribute contains the URI of the associated specification document, e.g. the BBF

Technical Report.

This URI SHOULD uniquely identify the specification. More than one DM Schema instance document

MAY reference the same specification.

The following rules apply to the value of the top-level spec attribute:

 For a BBF Technical Report, it MUST be of the form ―urn:broadband-forum-org:tr-nnn-i-a-c‖, where

nnn is the specification number (including leading zeros), i is the issue number, a is the amendment

number, and c is the corrigendum number. The issue, amendment and corrigendum numbers do not

include leading zeros. For example, ―urn:broadband-forum-org:tr-106-1-0‖ refers to TR-106 (Issue 1

Amendment 0), and ―urn:broadband-forum-org:tr-106-1-2‖ refers to TR-106 (Issue 1) Amendment 2.

If the corrigendum number (including the preceding hyphen) is omitted, the most recent corrigendum
is assumed.

 For specifications issued by other standards organizations, or by vendors, it SHOULD be of a standard

form if one is defined. For example, RFC 2648 [14] specifies a syntax for referencing RFCs.

 Note that processing tools are likely to assume that all files that share a spec value are related to each

other. Therefore, use of meaningful spec values is RECOMMENDED.

Formally, the value of the spec attribute is defined as follows:

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 56

SpecURI = BBFURI

 | OtherURI

BBFURI = "urn:broadband-forum-org:" BBFDoc

BBFDoc = "tr-" BBFNumber BBFIssue BBFAmendment BBFCorrigendum

BBFNumber = [DIGIT]{3,} // including leading zeros, e.g. 069

BBFIssue = "-" NoLeadingZeroPositiveNumber

BBFAmendment = "-" NoLeadingZeroNumber

BBFCorrigendum = "-" NoLeadingZeroPositiveNumber

 | "" // if omitted, most recent corrigendum is assumed

NoLeadingZeroNumber = [DIGIT]

 | [NONZERODIGIT] [DIGIT]*

NoLeadingZeroPositiveNumber = [NONZERODIGIT] [DIGIT]*

OtherURI = <of a standard form if one is defined>

Standard BBF DM Instances can be accessed at the following URL:

BBFURL = "http://www.broadband-forum.org/cwmp/" BBFDoc BBFSubDoc ".xml"

BBFDoc = <as before>

BBFSubDoc = "-" LABEL // distinguishing label (not beginning with a digit)

 | "" // not needed if only one DM Instance is associated with spec

For example, the DM Instance associated with TR-106 Amendment 2 can be accessed at

http://www.broadband-forum.org/cwmp/tr-106-1-2.xml. If two DM Instances had been associated with TR-

106 Amendment 2, they might perhaps have been accessible at http://www.broadband-forum.org/cwmp/tr-

106-1-2-types.xml and http://www.broadband-forum.org/cwmp/tr-106-1-2-objects.xml.

A.2.2 Descriptions

Many elements have descriptions, and the same rules apply to all description elements in the DM Schema.

A description is free text which can contain a limited amount of MediaWiki-like markup as specified in

A.2.2.3.

A.2.2.1 Character Set

For BBF standards, the character set MUST be restricted to printable characters in the Basic Latin Unicode

block, i.e. to characters whose decimal ASCII representations are in the (inclusive) ranges 9-10 and 32-126.

A.2.2.2 Pre-processing

All DM Instance processing tools MUST conceptually perform the following pre-processing before

interpreting the markup:

1) Remove any leading whitespace up to and including the first line break7.

2) Remove the longest common whitespace prefix (i.e. that occurs at the start of every line) from each

line. See the example below, where three lines start with four spaces and one line starts with five

spaces, so the longest whitespace prefix that occurs at start of each line is four spaces. In this

7 It can be assumed that all line breaks are represented by a single line feed, i.e. ASCII 10. See [10] section

2.11.

http://www.broadband-forum.org/cwmp/tr-106-1-2.xml
http://www.broadband-forum.org/cwmp/tr-106-1-2-types.xml
http://www.broadband-forum.org/cwmp/tr-106-1-2-types.xml
http://www.broadband-forum.org/cwmp/tr-106-1-2-objects.xml

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 57

calculation, a tab character counts as a single character. To avoid confusion, the description SHOULD

NOT contain tab characters.

3) Remove all trailing whitespace, including line breaks.

This pre-processing is designed to permit a reasonable variety of layout styles while still retaining

predictable behavior. For example, both the following:

<description>This is the first line.

This is the second line.

 This is the indented third line.

This is the fourth line.</description>

<description>

 This is the first line.

 This is the second line.

 This is the indented third line.

 This is the fourth line.

</description>

…result in the following:

This is the first line.

This is the second line.

 This is the indented third line.

This is the fourth line.

A.2.2.3 Markup

The pre-processed description can contain the following markup, which is inspired by, but is not identical

to, MediaWiki markup. All DM Instance processing tools SHOULD support this markup to the best of

their ability.

Table 19 – XML Description Markup

Name Markup Example Description

Italics ’’italic text’’ Two apostrophes on each side of some text will result in the

contained text being emphasized in italics.

Bold ’’’bold text’’’ Three apostrophes on each side of some text will result in the

contained text being emphasized in bold.

Bold italics ’’’’’b+i text’’’’’ Five apostrophes on each side of some text will result in the

contained text being emphasized in bold italics.

Paragraph This paragraph just

ended.

A line break is interpreted as a paragraph break.

Bulleted lists * level one

** level two

* level one again

** level two again

*** level three

*: level one continued

outside of list

A line starting with one or more asterisks (*) denotes a bulleted list

entry, whose indent depth is proportional to the number of asterisks
specified.

If the asterisks are followed by a colon (:), the previous item at that
level is continued, as shown.

An empty line, or a line that starts with a character other than an

asterisk, indicates the end of the list.

Numbered

lists

level one

level two

level one again

level two again

level three

#: level one continued

outside of list

A line starting with one or more number signs (#) denotes a

numbered list entry.

All other conventions defined for bulleted lists apply here (using #
rather than *), except that numbered list entries are prefixed with an

integer decoration rather than a bullet.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 58

Name Markup Example Description

Indented lists : level one

:: level two

: level one again

:: level two again

::: level three

outside of list

A line starting with one or more colons (:) denotes an indented list

entry.

All other conventions defined for bulleted lists apply here (using :

rather than *), except that indented list entries have no prefix
decoration, and item continuation is not needed.

Verbatim code example:

 if (something) {

 /* do something */

 } else {

 /* do other */

 }

A block of lines each of which starts with a space is to be formatted

exactly as typed, preferably in a fixed width font.

This allows code fragments, simple tables etc. to be included in
descriptions.

Note that the pre-processing rules of A.2.2.2 imply that it is not

possible to process an entire description as verbatim text (because
all the leading whitespace would be removed). This is not expected
to be a problem in practice.

Hyperlinks http://www.broadband-

forum.org

URL links are specified as plain old text (no special markup).

Templates {{bibref|1|section 2}}

{{section|table}}

{{param|Enable}}

{{enum|Error}}

Text enclosed in double curly braces ({}) is a template reference,

which is replaced by template-dependent text.

 A.2.2.4 specifies the standard templates.

A.2.2.4 Templates

A template invocation is encoded as two curly braces on either side of the template name and arguments.

Arguments can follow the template name, separated by vertical pipe (|) characters. All whitespace is

significant. For example:

{{someTemplate|arg1|arg2|…|argN}}

The following standard templates are defined. Any vendor-specific template names MUST obey the rules

of section 3.3.

Table 20 – XML Description Templates

Name Markup Definition Description

Bibliographic

reference

{{bibref|id}}

{{bibref|id|section}}

A bibliographic reference.

The id argument MUST match the id attribute of one of the

current file’s (or an imported file’s) top-level bibliography
element’s reference elements (A.2.4).

The OPTIONAL section argument specifies the section number,
including any leading “section”, “annex” or “appendix” text.

Typically, the processing tool will (a) validate the id, and (b)

replace the template reference with something like “[id] section”.

Markup examples:

{{bibref|1}}

{{bibref|1|section 3}}

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 59

Name Markup Definition Description

Section separator {{section|category}}

{{section}}

The beginning or end of a section or category. This is a way of

splitting the description into sections.

If the category argument is present, this marks the end of the

previous section (if any), and the beginning of a section of the
specified category. The “table”, “row” and “examples” categories

are reserved for the obvious purposes.

If the category argument is absent, this marks the end of the

previous section (if any).

Typically, the processing tool will (a) validate the category, and
(b) replace the template reference with a section marker.

Markup examples:

{{section|table}}

{{section|row}}

{{section|examples}}

Parameter and

object reference

{{param|ref}}

{{param}}

{{object|ref}}

{{object}}

A reference to the specified parameter or object.

The OPTIONAL ref argument references a parameter or object.

Parameter and object names SHOULD adhere to the rules of
A.2.3.4 with object scope.

Typically, the processing tool will (a) validate the reference, and
(b) replace the template reference with the ref argument or, if it

is omitted, the current parameter or object name, possibly
rendered in a distinctive font.

Markup examples:

{{param|Enable}}

{{object|Stats.}}

Enumeration

reference

{{enum|value}}

{{enum|value|param}}

{{enum}}

A reference to the specified enumeration value.

The OPTIONAL value argument specifies one of the

enumeration values for the referenced parameter. If present, it
MUST be a valid enumeration value for that parameter.

The OPTIONAL param argument identifies the referenced
parameter. If present, it SHOULD adhere to the rules of A.2.3.4

with object scope. If omitted, the current parameter is assumed.

If the arguments are omitted, this is a hint to the processing tool

to replace the template reference with a list of the parameter’s
enumerations, possibly preceded by text such as “Enumeration

of:”. This overrides the processing tool’s expected default
behavior of listing the parameter’s enumerations after the
description.

Otherwise, typically the processing tool will (a) validate that the

enumeration value is valid, and (b) replace the template
reference with the value and/or param arguments, appropriately
formatted and with the value possibly rendered in a distinctive

font.

Markup examples:

{{enum|None}}

{{enum|None|OtherParam}}

Pattern reference {{pattern}} This is a hint to the processing tool to replace the template

reference with a list of the parameter’s patterns, possibly
preceded by text such as “Possible patterns:”. This overrides

the processing tool’s expected default behavior of listing the
parameter’s patterns after the description.

Units reference {{units}} The parameter’s units string.

Typically, the processing tool will (a) check that the parameter

has a units string, and (b) substitute the value of its units string.

Boolean values {{false}}

{{true}}

Boolean values.

Typically, the processing tool will substitute the value False or

True, possibly rendered in a distinctive font.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 60

Name Markup Definition Description

Miscellaneous {{empty}} Typically, the processing tool will render such values in a

distinctive font, possibly using standard wording, such as
<Empty> or “an empty string”.

A.2.2.5 HTML Example

This includes examples of most of the markup and templates.

 <model name="Goo:1.1" base="Goo:1.0">

 <object name="GooTop." access="readOnly" minEntries="1" maxEntries="1">

 <parameter name="ExampleParam" access="readOnly">

 <description>

 {{section|Introduction}}This is an ''example'' parameter that illustrates many of the

'''formatting''' templates. For '''''example''''', this references {{bibref|TR-106a1|section

3.2}}.

 {{section|Usage}}This parameter is called {{object}}{{param}}. One can also reference

other parameters in the same object, such as {{param|OtherParameter}}, and indicate that the

parameter value is measured in {{units}}.

 One can also include bulleted lists:

 * level one

 ** level two

 * level one again

 ** level two again

 *** level three

 *: level one continued

 and numbered lists:

 # level one

 ## level two

 # level one again

 ## level two again

 ### level three

 #: level one continued

 and indented lists

 : level one

 :: level two

 : level one again

 :: level two again

 ::: level three

 and hyperlinks such as http://www.google.com

 and code examples:

 if (something) {

 /* do something */

 } else {

 /* do other */

 }

 If the parameter was Boolean, one could refer to its values {{false}} and {{true}}.

 One can refer to its enumerations individually, e.g. {{enum|Disabled}}, or to other

parameters' enumerations, such as {{enum|Value|OtherParam}}, or can list them all. {{enum}}

 Finally, if there were any patterns they could be listed too. {{pattern}}

 </description>

 <syntax>

 <string>

 <enumeration value="A"/>

 <enumeration value="B"/>

 <units value="packets"/>

 </string>

 </syntax>

 </parameter>

The resulting HTML would look something like this:

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 61

A.2.3 Data Types

TR-069 data models support only the Table 1 primitive data types ―on the wire‖. However, the DM

Schema allows data types to be derived from the primitive types or from other named data types. Such

derived types can be named or anonymous.

A.2.3.1 Named Data Types

Named data types are defined using the top-level dataType element. A DM Instance can contain zero or

more top-level dataType elements.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 62

When defining a new named data type, the following attributes and elements are relevant (normative

requirements are specified in the schema).

Table 21 – XML Named Data Types

Name Description

name The data type name.

base The base type name, i.e. name of the data type from which this data type is derived. This is used
only where the base type is itself a named data type, not a primitive type.

status The data type’s {current, deprecated, obsoleted, deleted} status. This defaults to current, and so is

not likely to be specified for a new data type.

description The data type’s description (A.2.2).

size
pathRef

instanceRef
range
enumeration

enumerationRef
pattern
units

Data type facets (A.2.3.3). These are permitted only when the base type is a named data type, i.e.
when the base attribute is specified.

base64

boolean
dateTime
hexBinary

int
long
string

unsignedInt
unsignedLong

Primitive data type definition. These are permitted only when the base type is primitive. There is an

element for each primitive data type, and each element supports only the facets (A.2.3.3) that are
appropriate to that data type.

For example:

 <dataType name="String255">

 <string>

 <size maxLength="255"/>

 </string>

 </dataType>

 <dataType name="String127" base="String255">

 <size maxLength="127"/>

 </dataType>

A.2.3.2 Anonymous Data Types

Anonymous data types are defined within parameter syntax elements (A.2.7.1), and can apply only to the

parameters within which they are defined. For example:

 <parameter name="Example1" access="readOnly">

 <syntax>

 <string>

 <size maxLength="127"/>

 </string>

 </syntax>

 </parameter>

 <parameter name="Example2" access="readOnly">

 <syntax>

 <dataType base="String255">

 <size maxLength="127"/>

 </dataType>

 </syntax>

 </parameter>

If an anonymous data type is modified in a later version of a data model, the modified anonymous data type

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 63

is regarded as being derived from the original anonymous data type. Therefore the base type restriction

rules of A.2.3.8 MUST be obeyed.

A.2.3.3 Data Type Facets

A facet specifies some aspect of a data type, e.g. its size, range or units.

Note that XML Schema [16] also associates facets with data types. The XML Schema and DM Schema

concepts are the same, but the set of facets is not identical.

The DM Schema defines the following facets (normative requirements are specified in the schema):

Table 22 – XML Data Type Facets

Name Description

size Size ranges for the data type (applies to string, base64, hexBinary and their derived types).

Note that the size facet always refers to the actual value, not to the base64- or hexBinary-encoded
value. Prior to the definition of the DM Schema, the maximum sizes of base64 parameters referred

to the base64-encoded values. Processing tools that generate reports from DM Instances SHOULD
include explicit clarification of whether the size ranges refer to the actual or encoded values.

pathRef Details of how to reference parameters and objects via their path names (applies to string and its
derived types: A.2.3.7).

instanceRef Details of how to reference object instances (table rows) via their instance numbers (applies to int,

unsignedInt and their derived types; A.2.3.7).

range Value ranges for the data type (applies to numeric data types and their derived types).

enumeration Enumerations for the data type (applies to string and its derived types).

enumerationRef Enumerations for the data type, obtained at run-time from the value of a specified parameter (applies
to string and its derived types; A.2.3.7).

pattern Patterns for the data type (applies to string and its derived types).

units Units for the data type (applies to numeric data types and their derived types).

It is important to note that the enumeration facet does not necessarily define all the valid values for a data

type. This is for the following reasons:

 As specified in section 3.3, vendors are allowed to add additional enumeration values.

 A future version of a data model may need to add additional enumerations values.

A.2.3.4 Reference Path Names

Some description templates (A.2.2.4), and all reference facets (A.2.3.7), need to specify parameter or object

names. It is always possible to specify a full path name, but it is frequently necessary or convenient to

specify a relative path name. For example, it might be necessary to reference another parameter in the

current object. Any instance numbers in the parameter’s full path name cannot be known at data model

definition time, so this can only be done using a relative path name.

The following rules apply to all path names that are used in data model definitions for referencing

parameters or objects:

 Path names MAY contain ―{i}‖ placeholders, which MUST be interpreted as wild cards matching all

instance numbers, e.g. ―InternetGatewayDevice.WANDevice.{i}.‖ references all WANDevice

instances.

 Path names MUST NOT contain instance numbers.

A path name is always associated with a path name scope, which defines the point in the naming hierarchy

relative to which the path name applies.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 64

Table 23 – Path Name Scope Definition

Name Description

normal This is a hybrid scope which usually gives the desired behavior:

 If the path begins with a “Device” or “InternetGatewayDevice” component, it is relative to the top

of the naming hierarchy.

 If the path begins with a dot, it is relative to the Root or Service Object (c.f. scope=model).

 Otherwise, the path is relative to the current object (c.f. scope=object).

model The path is relative to the Root or Service Object.

object The path is relative to the current object.

Formally, if the path name scope is normal:

 If the path is empty, it MUST be regarded as referring to the top of the naming hierarchy.

 Otherwise, if the path begins with a ―Device‖ or ―InternetGatewayDevice‖ component, it MUST be

regarded as a full path name (these are the only two possible Root Device names).

 Otherwise, if the path begins with a dot, it MUST be regarded as a path relative to the Root or Service

Object. For example, in the Device Root Object ―.DeviceInfo.‖ means ―Device.DeviceInfo.‖, and in

the Device.Services.ABCService.1 Service Object it means ―Device.Services.ABCService.1.-
DeviceInfo.‖.

 Otherwise, it MUST be regarded as a path relative to the current object. For example, if the current

object is ―Device.LAN.‖, ―IPAddress‖ means ―Device.LAN.IPAddress‖ and ―Stats.‖ means

―Device.LAN.Stats.‖. Within a parameter definition, the current object is the parameter’s parent

object, so within the ―Device.LAN.IPAddress‖ definition, ―SubnetMask‖ means ―Device.LAN.Subnet-

Mask‖.

If the path name scope is model:

 If the path is empty, it MUST be regarded as referring to the Root or Service Object.

 Otherwise, it MUST be regarded as a path relative to the Root or Service Object. Any leading dot

MUST be ignored.

If the path name scope is object:

 If the path is empty, it MUST be regarded as referring to the current object.

 Otherwise, it MUST be regarded as a path relative to the current object. Any leading dot MUST be

ignored.

Note that the term ―Root or Service Object‖, which is used several times above, means ―if within a Service

Object instance, the Service Object instance; otherwise, the Root Object‖.

For example, the pathRef and instanceRef facets (A.2.3.7) have a targetParent attribute which specifies the

possible parent(s) of the referenced parameter or object, and a targetParentScope attribute (defaulted to

normal) which specifies targetParent’s scope. If the current object is within a Service Object instance,

setting targetParentScope to model forces the referenced parameter or object to be in the same Service

Object instance. Similarly, setting targetParentScope to object forces the referenced parameter or object to

be in the same object or in a sub-object.

String parameters whose values are path names are subject to the rules of section 3.2, so object names do

not include a trailing dot. The parameter value (or each list item if the parameter is list-valued) always

behaves as described above for normal path name scope, regardless of the path name scope in the data

model definition. For example, in the Device Root Object, a parameter value of ―.DeviceInfo‖always

means ―Device.DeviceInfo‖.

In order to be able to use reference parameters as unique keys (A.2.8.1), path names in parameter values

MUST conceptually be converted to full path names before being compared. For example, in the Device

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 65

Root Object, ―.DeviceInfo.‖ and ―Device.DeviceInfo.‖ would compare as equal. If a reference parameter is

list-valued, i.e. it is a list of path names or instance numbers, the parameter value MUST conceptually be

regarded as a set when being compared, i.e. the comparison has to ignore the item order and any repeated

items. For example, ―1,2,1‖ and ―2,1‖ would compare as equal because both reference instances 1 and 2.

A.2.3.5 Null References

A null reference indicates that a reference parameter is not currently referencing anything. The value that

indicates a null reference depends on the reference parameter’s base data type:

 string: a null reference MUST be indicated by an empty string.

 unsignedInt: a null reference MUST be indicated by the value 0.

 int: a null reference MUST be indicated by the value -1.

A.2.3.6 Reference Types

A reference to another parameter or object can be weak or strong:

 weak: it doesn’t necessarily reference an existing parameter or object. For example, if the referenced

parameter or object is deleted, the value of the reference parameter might not get updated.

 strong: it always either references a valid parameter or object, or else is a null reference (A.2.3.5). If

the referenced parameter or object is deleted, the value of the reference parameter is always set to a

null reference.

The following requirements relate to reference types and the associated CPE behavior.

 All read-only reference parameters MUST be declared as strong references.

 A CPE MUST reject an attempt to set a strong reference parameter if the new value does not reference

an existing parameter or object.

 A CPE MUST NOT reject an attempt to set a weak reference parameter because the new value does

not reference an existing parameter or object.

 A CPE MUST change the value of a non-list-valued strong reference parameter to a null reference

when a referenced parameter or object is deleted.

 A CPE MUST remove the corresponding list item from a list-valued strong reference parameter when

a referenced parameter or object is deleted.

 A CPE MUST NOT change the value of a weak reference parameter when a referenced parameter or
object is deleted.

A.2.3.7 Reference Facets

A reference facet specifies how a parameter can reference another parameter or object. There are three

sorts of reference:

 Path reference: references another parameter or object via its path name. Details are specified via the

pathRef facet, which applies to string and its derived types.

 Instance reference: references an object instance (table row) via its instance number. Details are

specified via the instanceRef facet, which applies to int, unsignedInt and their derived types.

 Enumeration reference: references a list-valued parameter via its path name. The current value of the

referenced parameter indicates the valid enumerations for this parameter. Details are specified via the

enumerationRef facet, which applies to string and its derived types.

When defining a path reference, the following attributes and elements are relevant (normative requirements

are specified in the schema).

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 66

Table 24 – PathRef Facet Definition

Name Description

targetParent An XML list of path names that can restrict the set of parameters and objects that can be

referenced. If the list is empty (the default), then anything can be referenced. Otherwise, only the
immediate children of one of the specified objects can be referenced,

A “{i}” placeholder in a path name acts as a wild card, e.g. “InternetGatewayDevice.-
WANDevice.{i}.WANConnectionDevice.{i}.WANPPPConnection.”. Path names cannot contain

explicit instance numbers.

targetParentScope Specifies the point in the naming hierarchy relative to which targetParent applies (A.2.3.4): normal

(default), model or object.

targetType Specifies what types of item can be referenced:

 any: any parameter or object can be referenced (default)

 parameter: any parameter can be referenced

 object: any object can be referenced

 single: any single-instance object can be referenced

 table: any multi-instance object (table) can be referenced

 row: any multi-instance object (table) instance (row) can be referenced

targetDataType Specifies the valid data types for the referenced parameter. Is relevant only when targetType is

any or parameter.

Possible values are as follows:

 any: a parameter of any data type can be referenced (default)

 base64: only a base64 parameter can be referenced

 boolean: only a boolean parameter can be referenced

 dateTime: only a dateTime parameter can be referenced

 hexBinary: only a hexBinary parameter can be referenced

 integer: only an integer (int, long, unsignedInt or unsignedLong) parameter can be referenced

 int: only an int parameter can be referenced

 long: only a long (or int) parameter can be referenced

 string: only a string parameter can be referenced

 unsignedInt: only an unsignedInt parameter can be referenced

 unsignedLong: only an unsignedLong (or unsignedInt) parameter can be referenced

 <named data type>: only a parameter of the named data type can be referenced

In addition, a parameter whose data type is derived from the specified data type can be

referenced. The built-in type hierarchy (a simplified version of the XML Schema type hierarchy) is
as follows:

any

 base64

 boolean

 dateTime

 hexBinary

 integer

 long

 int

 unsignedLong

 unsignedInt

 string

Note that any and integer are not valid parameter data types. They are included in order to

support “can reference any data type” and “can reference any numeric data type”.

refType Specifies the reference type (A.2.3.6): weak or strong.

When defining an instance reference, the following attributes and elements are relevant (normative

requirements are specified in the schema).

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 67

Table 25 – InstanceRef Facet Definition

Name Description

targetParent Specifies the path name of the multi-instance object (table) of which an instance (row) is being

referenced.

“{i}” placeholders and explicit instance numbers are not permitted in the path name.

targetParentScope can be used to specify path names relative to the Root or Service Object or the
current object.

targetParentScope Specifies the point in the naming hierarchy relative to which targetParent applies (A.2.3.4): normal

(default), model or object.

refType Specifies the reference type (A.2.3.6): weak or strong.

When defining an enumeration reference, the following attributes and elements are relevant (normative

requirements are specified in the schema).

Table 26 – EnumerationRef Facet Definition

Name Description

targetParam Specifies the path name of the list-valued parameter whose current value indicates the valid

enumerations for this parameter.

targetParamScope Specifies the point in the naming hierarchy relative to which targetParam applies (A.2.3.4): normal

(default), model or object.

nullValue Specifies the parameter value that indicates that none of the values of the referenced parameter

currently apply (if not specified, no such value is designated).

Note that if this parameter is list-valued then nullValue is not relevant, because this condition will

be indicated by an empty list.

The following examples illustrate the various possible types of reference.

 <object name="PeriodicStatistics.SampleSet.{i}.Parameter.{i}." …>

 …

 <parameter name="Reference" access="readWrite">

 <description>Reference to the parameter that is associated with this object instance.

This MUST be the parameter's full path name.</description>

 <syntax>

 <string>

 <size maxLength="256"/>

 <pathRef targetType="parameter" refType="weak"/>

 </string>

 <default type="object" value=""/>

 </syntax>

 </parameter>

 <object name="StorageService.{i}.StorageArray.{i}." …>

 …

 <parameter name="PhysicalMediumReference" access="readWrite">

 <description>A comma-separated list of Physical Medium references. Each Physical Medium

referenced by this parameter MUST exist within the same StorageService instance. A Physical

Medium MUST only be referenced by one Storage Array instance. Each reference can be either in

the form of ".PhysicalMedium.{i}" or a fully qualified object name…</description>

 <syntax>

 <list>

 <size maxLength="1024"/>

 </list>

 <string>

 <pathRef targetParent=".PhysicalMedium." targetParentScope="model" targetType="row"

refType="strong"/>

 </string>

 </syntax>

 </parameter>

 <object name="InternetGatewayDevice.QueueManagement.Classification.{i}." access="readWrite"

minEntries="0" maxEntries="unbounded" entriesParameter="ClassificationNumberOfEntries">

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 68

 <description>Classification table.</description>

 <parameter name="ClassQueue" access="readWrite">

 <description>Classification result. Instance number…</description>

 <syntax>

 <int>

 <instanceRef targetParent=".QueueManagement.Queue." refType="strong"/>

 </int>

 </syntax>

 </parameter>

 <object name="STBService.{i}.Components.FrontEnd.{i}.IP.Inbound.{i}." …>

 …

 <parameter name="StreamingControlProtocol" access="readOnly">

 <description>Network protocol currently used for controlling streaming of the source

content, or an empty string if the content is not being streamed or is being streamed but is not

being controlled.

If non-empty, the string MUST be one of the .Capabilities.FrontEnd.IP.StreamingControlProtocols

values.</description>

 <syntax>

 <string>

 <enumerationRef targetParam=".Capabilities.FrontEnd.IP.StreamingControlProtocols"

nullValue=""/>

 </string>

 </syntax>

 </parameter>

 <parameter name="StreamingTransportProtocol" access="readOnly">

 <description>Network protocol currently used for streaming the source content, or an

empty string if the content is not being streamed.

If non-empty, the string MUST be one of the

.Capabilities.FrontEnd.IP.StreamingTransportProtocols values.</description>

 <syntax>

 <string>

 <enumerationRef targetParam=".Capabilities.FrontEnd.IP.StreamingTransportProtocols"

nullValue=""/>

 <string/>

 </syntax>

 </parameter>

 <object name="InternetGatewayDevice.LANDevice.{i}.WLANConfiguration.{i}.WPS." …>

 …

 <parameter name="ConfigMethodsEnabled" access="readWrite">

 <description>Comma-separated list of the WPS configuration methods enabled on the

device. Each entry in the list MUST be a member of the list reported by the

ConfigMethodsSupported parameter…</description>

 <syntax>

 <list/>

 <string>

 <enumerationRef targetParam="ConfigMethodsSupported"/>

 </string>

 </syntax>

 </parameter>

A.2.3.8 Base Type Restriction

A new data type MUST always be a restriction of its base type, meaning that a valid value of the new data

type will always be a valid value for its base type. This is the case for the examples of A.2.3.1, which

involve three different data types:

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 69

 string of unlimited length

 string of maximum length 255

 string of maximum length 127

Clearly a string of length 100 is valid for all three data types, but a string of length 200 is only valid for the

first two data types.

The examples of A.2.3.1 considered only the size facet, but in general all facets that are applicable to the
data type have to be considered. The base type restriction requirements for each facet are as follows:

Table 27 – XML Facet Inheritance Rules

Facet Requirements

size The derived data type can define sizes in any way, provided that the new sizes do not permit any

values that are not valid for the base type.

pathRef The derived data type can modify the data type in the following ways:

 By “promoting” status to a “higher” value, where the lowest to highest ordering is: current,

deprecated, obsoleted, deleted. For example, current can be changed to deprecated, and
obsoleted can be changed to deleted, but deleted can’t be changed back to obsoleted. When
promoting status, the deprecation, obsoletion and deletion rules of section 2.4 MUST be obeyed.

 By changing targetParent to narrow the set of possible parent objects.

 By changing targetType to narrow the set of possible target types.

 By changing targetDataType to narrow the set of possible target data types.

instanceRef The derived data type can modify the data type in the following ways:

 By “promoting” status to a “higher” value, as described for pathRef.

 By changing targetParent to narrow the set of possible parent objects.

range The derived data type can define ranges in any way, provided that the new ranges do not permit any

values that are not valid for the base type.

enumeration The derived data type can modify existing enumeration values in the following ways:

 By “promoting” access from readOnly to readWrite.

 By “promoting” status to a “higher” value, as described for pathRef.

 By “promoting” optional from False to True.

 By adding a code, if none was previously specified.

 By using the action attribute to extend or replace the description (see below).

The derived data type can add new enumeration values.

enumerationRef The derived data type can modify the data type in the following ways:

 By “promoting” status to a “higher” value, as described for pathRef.

pattern The derived data type can modify existing pattern values by changing access, status, optional and

description exactly as for enumerations.

The derived data type can add new patterns and/or replace existing patterns with new patterns,
provided that the new patterns do not permit any values that are not valid for the base type.

For example a single pattern “[AB]” could be replaced with “A” and “B”, but “C” could not be added.

units The derived data type can add units if the base type didn’t specify any.

Most of the above requirements are non-normative, because it has to be possible to correct errors. For

example, if the base type supports a range of [-1:4095] but the values 0 and 4095 were included in error, it

would be permissible for a derived type to support ranges of [-1:-1] and [1:4094]. Processing tools

SHOULD be able to detect and warn about such cases.

When defining a new data type, if a facet is omitted, the new data type will inherit that facet from its base

type. If a facet is present, it MUST be fully specified (except that special rules apply to descriptions; see
below). For example, this means that a derived type that adds additional enumeration values has also to re-

declare the enumeration values of the base type.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 70

For example, in the following, the derived type inherits the units facet from its parent but it does not inherit

the range facet, so the PacketCounter range is [10:] and the PacketCounter2 range is [15:20].

 <dataType name="PacketCounter">

 <unsignedLong>

 <range minInclusive="10"/>

 <units value="packets"/>

 </unsignedLong>

 </dataType>

 <dataType name="PacketCounter2" base="PacketCounter">

 <range minInclusive="15" maxInclusive="20"/>

 </dataType>

Similarly, in the following, the enumeration values for ABCD are not A, B, C and D, but are just C and D.

This is an error (because the derived type cannot remove enumeration values), and processing tools

SHOULD detect and warn about such cases.

 <dataType name="AB">

 <string>

 <enumeration value="A"/>

 <enumeration value="B"/>

 </string>

 </dataType>

 <dataType name="ABCD" base="AB">

 <string>

 <enumeration value="C"/>

 <enumeration value="D"/>

 </string>

 </dataType>

A derived data type and any of its facets that support descriptions will inherit those descriptions from the

base type. Facet descriptions are inherited regardless of whether the facet is present in the derived type.

For any descriptions that are explicitly specified in the derived type, the action attribute controls whether

they will be extended or replaced.

For example, in the following, the description of Y (which is not changed) does not have to be repeated.

 <dataType name="XY">

 <description>This is XY.</description>

 <string>

 <enumeration value="X">

 <description>This is X.</description>

 </enumeration>

 <enumeration value="Y">

 <description>This is Y.</description>

 </enumeration>

 </string>

 </dataType>

 <dataType name="XY2" base="XY">

 <description action="replace">This is all about XY.</description>

 <enumeration value="X">

 <description action="append">This is more about X.</description>

 </enumeration>

 <enumeration value="Y"/>

 </dataType>

A.2.4 Bibliography

The bibliography is defined using the top-level bibliography element, which can contain zero or more

(bibliographic) reference elements.

When defining a new bibliographic reference, the following attributes and elements are relevant (normative

requirements are specified in the schema).

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 71

Table 28 – XML Bibliographic References

Name Description

id The bibliographic reference ID.

name The name by which the referenced document is usually known.

title The document title.

organization The organization that published the referenced document, e.g. BBF, IEEE, IETF.

category The document category, e.g. TR (BBF), RFC (IETF).

date The publication date.

hyperlink Hyperlink(s) to the document.

The bibliographic reference ID is intended to uniquely identify this reference across all instance documents.

Therefore, for instance documents that are published by the BBF, IDs MUST obey the following rules:

 For a BBF Technical Report, it MUST be of the form ―TR-nnnixaycz‖, where TR is the literal ―TR‖,

nnn is the Technical Report number (including leading zeros), i, a and c are literal letters, and x, y, and

z are the issue, amendment and corrigendum numbers respectively. The issue number (ix) is omitted if

it is issue 1 and the amendment number (ay) is omitted if it is amendment 0. For example, ―TR-

106a2‖ refers to TR-106 (Issue 1) Amendment 2. If the corrigendum number (cz) is omitted, the most

recent corrigendum is assumed.

 For an IETF RFC, it MUST be of the form ―RFCnnn‖, where RFC is the literal ―RFC‖ and nnn is the

RFC number (no leading zeros).

 For an IEEE specification, it SHOULD be of the form ―nnn.ml-dddd‖, where nnn.m is the IEEE group,

l is the spec letter(s), and dddd is the publication year. For example, ―802.1D-2004‖.

 For an ETSI specification (which includes DVB specifications), it SHOULD be of the form

―TTnnnnnnva.b.c‖ where TT is the specification type, usually ―TS‖ (Technical Specification), nnnnnn

is the specification number, and a.b.c is the version number.

 For specifications issued by other standards organizations, or by vendors, it SHOULD be of a standard

form if one is defined.

Processing tools SHOULD be lenient when comparing bibliographic reference IDs. Specifically, they

SHOULD ignore all whitespace, punctuation, leading zeros in numbers, and upper / lower case. So, for

example, ―rfc 1234‖ and ―RFC1234‖ would be regarded as the same ID, as would ―TR-069‖ and ―TR69‖.

Processing tools SHOULD detect and report inconsistent bibliographic references, e.g. a reference with the

same ID (i.e. an ID that compares as equal) as one that was encountered in a different file, but with a

different name or hyperlink.

Formally, bibliographic reference IDs in instance documents that are published by the BBF and the other

organizations mentioned above are defined as follows:

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 72

ReferenceID = BBFID

 | RFCID

 | IEEEID

 | ETSIID

 | OtherID

BBFID = "TR-" BBFNumber BBFIssue BBFAmendment BBFCorrigendum

BBFNumber = [DIGIT]{3,} // including leading zeros, e.g. 069

BBFIssue = "i" <number greater than one>

 | "" // empty means Issue 1

BBFAmendment = "a" <number greater than zero>

 | "" // empty means Amendment 0

BBFCorrigendum = "c" <number greater than zero>

 | "" // empty means the most recent Corrigendum

RFCID = "RFC" RFCNumber

RFCNumber = NONZERODIGIT [DIGIT]*

 // no leading zeros, e.g. 123

IEEEID = IEEEGroup IEEESpec IEEEDate

 | <for other IEEE specifications, of a standard form if one is defined>

IEEEGroup = <group number> "." <group sub-number>

 // e.g. 802.1

IEEESpec = <spec letter(s)> // e.g. D

IEEEDate = "-" <publication year>

 // e.g. -2004

 | "" // can be empty

ETSIID = ETSISpecType ETSINumber ETSIVersion

 | <for other ETSI specifications, of a standard form if one is defined>

ETSISpecType = "TR" // Technical Report

 | "TS" // Technical Specification

 | "ES" // ETSI Specification

 | "EN" // European Standard

ETSINumber = [DIGIT]{6} // e.g. 102034

ETSIVersion = "v" <version number as specified by ETSI>

 | "" // can be empty

OtherURI = <of a standard form if one is defined>

A.2.5 Components

A component is a way of defining a named set of parameters, objects and/or profiles to be used wherever
such a group is needed in more than one place (or just to structure the definitions). A DM Instance can

contain zero or more top-level component elements.

When defining a new component, the following attributes and elements are relevant (normative

requirements are specified in the schema).

Table 29 – XML Component Definition

Name Description

name The component name.

description The component’s description (A.2.2).

component The other components that are referenced (included) by this component.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 73

Name Description

parameter The component’s top-level parameter definitions (A.2.7).

object The component’s object definitions (A.2.8).

profile The component’s profile definitions (A.2.9).

Referencing (including) a component can be thought of as textual substitution. A component has no

version number and isn’t tied to a particular Root or Service Object.

The following is a simple example of component definition and reference.

 <component name="ByteStats">

 <parameter name="BytesSent" access="readOnly">

 <description>Number of bytes sent.</description>

 <syntax><unsignedInt/></syntax>

 </parameter>

 <parameter name="BytesReceived" access="readOnly">

 <description>Number of bytes received.</description>

 <syntax><unsignedInt/></syntax>

 </parameter>

 </component>

 <model name="InternetGatewayDevice:1.4">

 <object name="InternetGatewayDevice." access="readOnly" minEntries="1" maxEntries="1">

 …

 <component ref="ByteStats"/>

 …

 </object>

 …

 </model>

Here the component is referenced from within an object definition. Components can be referenced from

within component, model and object definitions. Parameter, object and profile definitions within

components are relative to the point of inclusion unless overridden using the path attribute.

A.2.6 Root and Service Objects

Root and Service Objects are defined using the model element and an associated top-level object element.

A DM Instance can contain zero or more top-level model elements.

When defining a new model, the following attributes and elements are relevant (normative requirements are

specified in the schema).

Table 30 – XML Root and Service Objects

Name Description

name The model name, including its major and minor version numbers (3.7).

base The name of the previous version of the model (for use when the model version is greater than 1.0).

isService Whether it’s a Service Object. This defaults to False and so can be omitted for Root Objects.

description The model’s description (A.2.2).

component The components that are referenced (included) by the model.

parameter The model’s top-level parameter definitions (A.2.7).

object The model’s top-level and other object definitions (A.2.8).

profile The model’s profile definitions (A.2.9).

Once a given version has been defined, it cannot be modified; instead, a new version of the object has to be
defined. For example, the following example defines v1.0 and v1.1 of a notional Service Object.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 74

 <model name="DemoService:1.0" isService="true">

 <parameter name="DemoServiceNumberOfEntries" access="readOnly"/>

 <object name="DemoService.{i}." access="readOnly" minEntries="0" maxEntries="unbounded"

 entriesParameter="DemoServiceNumberOfEntries"/>

 </model>

 <model name="DemoService:1.1" base="DemoService:1.0" isService="true">

 <object base="DemoService.{i}." access="readOnly" minEntries="0" maxEntries="unbounded"/>

 </model>

A.2.7 Parameters

Parameters are defined using the parameter element, which can occur within component, model and object

elements. When defining a new parameter, the following attributes and elements are relevant (normative

requirements are specified in the schema).

Table 31 – XML Parameter Definition

Name Description

name The parameter name (3.1).

access Whether the parameter can be writable (readWrite) or not (readOnly).

status The parameter’s {current, deprecated, obsoleted, deleted} status. This defaults to current, and so is

not likely to be specified for a new parameter.

activeNotify The parameter’s {normal, forceEnabled, ForceDefault, canDeny} Active Notification status. This
defaults to normal, and so is not often specified for a new parameter.

forcedInform The parameter’s Forced Inform status. This defaults to False, and so is not often specified for a new

parameter.

description The parameter’s description (A.2.2).

syntax The parameter’s syntax (A.2.7.1).

A.2.7.1 Parameter Syntax

Parameter syntax is defined using the syntax element, which can occur only within parameter elements.

When defining a new parameter, the following attributes and elements are relevant (normative

requirements are specified in the schema).

Table 32 – XML Parameter Syntax

Name Description

hidden Whether the value is hidden on readback. This defaults to False, and so is not often specified for a
new parameter.

list If the parameter is list-valued, details of the list value (3.2). This allows specification of the maximum

and minimum number of items in the list, and also supports a size facet for the list (A.2.3.3).

Note that a list-valued parameter is always a string as far as TR-069 is concerned. For a list, the rest

of the syntax specification refers to the individual list items, not to the parameter value.

base64
boolean

dateTime
hexBinary
int

long
string
unsignedInt

unsignedLong

If the parameter is of a primitive data type, specifies a primitive data type reference, e.g. <int/>.

If the parameter data type is derived from a primitive data type, specifies an anonymous primitive data
type definition (A.2.3.2), e.g. <int><range maxInclusive=“255”/></int>.

dataType If the parameter is of a named data type, specifies a named data type (A.2.3.1) reference, e.g.

<dataType ref=“IPAddress”/>.

If the parameter data type is derived from a named data type, specifies an anonymous named data
type (A.2.3.2) definition, e.g. <dataType base=“IPAddress”><size maxLength=“15”/></dataType>.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 75

A.2.8 Objects

Objects are defined using the object element, which can occur within component and model elements.

When defining a new object, the following attributes and elements are relevant (normative requirements are

specified in the schema).

Table 33 – XML Object Definition

Name Description

name The object name, specified as a partial path (3.1).

access Whether object instances can be Added or Deleted (readWrite) or not (readOnly). Adding or deleting
instances is meaningful only for a multi-instance (table) object.

minEntries The minimum number of instances of this object (always less than or equal to maxEntries).

maxEntries The maximum number of instances of this object (can be “unbounded”). minEntries and maxEntries

allow the object to be placed into one of three categories:

 minEntries=0, maxEntries=1: single-instance object which might not be allowed to exist, e.g.

because only one of it and another object can exist at the same time.

 minEntries=1, maxEntries=1: single-instance object that is always allowed to exist.

 All other cases: multi-instance (table) object (A.2.8.1).

status The object’s {current, deprecated, obsoleted, deleted} status. This defaults to current, and so is not
likely to be specified for a new object.

description The object’s description (A.2.2).

component The components that are referenced (included) by the object.

parameter The object’s parameter definitions (A.2.7).

A.2.8.1 Tables

If an object is a table, several other attributes and elements are relevant (normative requirements are

specified in the schema).

Table 34 – XML Table Definition

Name Description

name For a table, the last part of the name has to be “{i}” (3.1).

entriesParameter The name of the parameter (in the parent object) that contains the number of entries in the table.

Such a parameter is needed whenever there is a variable number of entries, i.e. whenever
maxEntries is unbounded or is greater than minEntries.

enableParameter The name of the parameter (in each table entry) that enables and disables that table entry. Such a

parameter is needed whenever access is readWrite (so the ACS might be able to create entries)
and the uniqueKey element is present.

uniqueKey An element that specifies a unique key by referencing those parameters that constitute the unique

key. For a table in which there is an enableParameter, the uniqueness requirement applies only to
enabled table entries.

A.2.9 Profiles

Profiles are defined using the profile element, which can occur within component and model elements.

When defining a new profile, the following attributes and elements are always relevant (normative

requirements are specified in the schema).

Table 35 – XML Profile Definition

Name Description

name The profile name, including its version number (2.3.3).

base The name of the previous version of the profile (for use when the profile version is greater than 1).

extends A list of the names of the profiles that this profile extends.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 76

Name Description

description The profile’s description (A.2.2).

parameter The profile’s parameter requirements, which can include descriptions, references to the parameters in

question, and the parameter access requirement.

object The profile’s object requirements, which can include descriptions, references to the objects in question,

the object access requirements, and requirements for the object’s parameters.

A.2.10 Modifications

New data types, components, models and profiles can be created based on existing items. This doesn’t

modify the existing item.

Parameters, objects and profiles can be modified ―in place‖, i.e. without creating a new item. This still uses

the parameter, object and profile elements, and is indicated by using the base, rather than the name,

attribute. The base attribute specifies the name of the existing item that is to be modified.

The syntax for modifying an item is the same as for creating an item, but there are rules. These rules are

not specified in the DM Schema.

A.2.10.1 Parameter Modifications

The following rules govern parameter modifications.

Table 36 – XML Parameter Modification

Name Description

access Can be “promoted” from readOnly to readWrite.

status Can be “promoted” to a “higher” value, where the lowest to highest ordering is: current, deprecated,
obsoleted, deleted. For example, current can be changed to deprecated, and obsoleted can be

changed to deleted, but deleted can’t be changed back to obsoleted. When promoting status, the
deprecation, obsoletion and deletion rules of section 2.4 MUST be obeyed.

activeNotify Can be changed from forceEnabled to forceDefaultEnabled. No other changes are permitted.

forcedInform Cannot be changed.

description Can be extended or replaced via use of the action attribute. When changing the description,
behavioral backwards compatibility MUST be preserved.

syntax/hidden Cannot be changed.

syntax/list Can add or modify the list element in the following ways:

 Can convert a non-list string parameter to a list provided that an empty string was already a valid

value with the appropriate meaning.

 Can adjust limits on numbers of items, and on the list size, provided that the new rules do not

permit any values that were not valid for the previous version of the parameter.

syntax/int etc

syntax/dataType

Can make any change that follows the base type restriction rules of A.2.3.8, e.g. can add

enumerations.

syntax/default A default can be added if the parameter didn’t already have one.

Most of the above requirements are non-normative, because it has to be possible to correct errors in a

previous version of a parameter. Processing tools SHOULD be able to detect and warn when a parameter

is modified in a way that contravenes the above rules.

A.2.10.2 Object Modifications

The following rules govern object modifications.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 77

Table 37 – XML Object Modification

Name Description

access Can be “promoted” from readOnly to readWrite.

minEntries Cannot be changed.

maxEntries Cannot be changed.

entriesParameter Cannot be changed, unless was previously missing, in which case can be added.

enableParameter Cannot be changed, unless was previously missing, in which case can be added.

status Can be “promoted” to a “higher” value, where the lowest to highest ordering is: current, deprecated,

obsoleted, deleted. For example, current can be changed to deprecated, and obsoleted can be
changed to deleted, but deleted can’t be changed back to obsoleted. When promoting status, the

deprecation, obsoletion and deletion rules of section 2.4 MUST be obeyed.

description Can be extended or replaced via use of the action attribute. When changing the description,

behavioral backwards compatibility MUST be preserved.

uniqueKey Cannot be changed.

component Can reference (include) new components.

parameter Can add new parameters.

Most of the above requirements are non-normative, because it has to be possible to correct errors in a

previous version of an object. Processing tools SHOULD be able to detect and warn when an object is

modified in a way that contravenes the above rules.

A.2.10.3 Profile Modifications

The following rules govern profile modifications. They apply to the profile element, and to its nested

parameter and object elements.

Table 38 - XML Profile Modification

Name Description

status Can be “promoted” to a “higher” value, where the lowest to highest ordering is: current,
deprecated, obsoleted, deleted. For example, current can be changed to deprecated, and

obsoleted can be changed to deleted, but deleted can’t be changed back to obsoleted. When
promoting status, the deprecation, obsoletion and deletion rules of section 2.4 MUST be obeyed.

description Can be extended or replaced via use of the action attribute. When changing the description,
behavioral backwards compatibility MUST be preserved.

Most of the above requirements are non-normative, because it has to be possible to correct errors in a

profile. Indeed, since profiles are immutable, the only valid reason for changing a profile is to correct

errors. Processing tools SHOULD be able to detect and warn when a profile is modified in a way that

contravenes the above rules.

A.3 DM Schema
The DM Schema is specified below. The normative version can be found at http://www.broadband-

forum.org/cwmp/cwmp-datamodel-1-0.xsd. Any conflict MUST be resolved in favor of the normative

version.

http://www.broadband-forum.org/cwmp/cwmp-datamodel-1-0.xsd
http://www.broadband-forum.org/cwmp/cwmp-datamodel-1-0.xsd

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 78

<?xml version="1.0" encoding="UTF-8"?> 1
<!-- 2
 TR-069 Data Model Definition Schema (DM Schema) v1.0 3
 4
 Notice: 5
 The Broadband Forum is a non-profit corporation organized to create 6
 guidelines for broadband network system development and deployment. This 7
 XML Schema has been approved by members of the Forum. This document is 8
 not binding on the Broadband Forum, any of its members, or any developer 9
 or service provider. This document is subject to change, but only with 10
 approval of members of the Forum. 11
 12
 This document is provided "as is," with all faults. Any person holding a 13
 copyright in this document, or any portion thereof, disclaims to the fullest 14
 extent permitted by law any representation or warranty, express or implied, 15
 including, but not limited to, 16
 (a) any warranty of merchantability, fitness for a particular purpose, 17
 non-infringement, or title; 18
 (b) any warranty that the contents of the document are suitable for any 19
 purpose, even if that purpose is known to the copyright holder; 20
 (c) any warranty that the implementation of the contents of the documentation 21
 will not infringe any third party patents, copyrights, trademarks or other 22
 rights. 23
 24
 This publication may incorporate intellectual property. The Broadband Forum 25
 encourages but does not require declaration of such intellectual property. 26
 For a list of declarations made by Broadband Forum member companies, please see 27
 http://www.broadband-forum.org. 28
 29
 Copyright The Broadband Forum. All Rights Reserved. 30
 31
 Broadband Forum XML Schemas may be copied, downloaded, stored on a server or 32
 otherwise re-distributed in their entirety only. The text of this 33
 notice must be included in all copies. 34
 35
 Summary: 36
 TR-069 Data Model Definition Schema (DM Schema). DM Instances define TR-069 37
 data models. Within the schema, elements are grouped by category (simple 38
 types, complex types etc), and are in alphabetical order within each category. 39
 40
 Version History: 41
 November 2008: cwmp-datamodel-1-0.xsd, corresponds to TR-106 Amendment 2 42
--> 43
<!DOCTYPE cwmp-datamodel [44
 <!ENTITY colon ":"> 45
 <!ENTITY dot "\."> 46
 <!ENTITY inst "(\{i\})"> 47
 <!ENTITY name "([\i-[:]][\c-[:\.]]*)"> 48
 <!ENTITY Name "([\i-[a-z:]][\c-[:\.]]*)"> 49
 <!ENTITY num "(\d+)"> 50
]> 51
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:tns="urn:broadband-forum-52

org:cwmp:datamodel-1-0" targetNamespace="urn:broadband-forum-53
org:cwmp:datamodel-1-0" elementFormDefault="unqualified" 54
attributeFormDefault="unqualified"> 55

 <!-- Simple types --> 56
 <xs:simpleType name="ActiveNotify"> 57
 <xs:annotation> 58
 <xs:documentation>Parameter active notify support.</xs:documentation> 59
 </xs:annotation> 60
 <xs:restriction base="xs:token"> 61
 <xs:enumeration value="normal"/> 62
 <xs:enumeration value="forceEnabled"/> 63
 <xs:enumeration value="forceDefaultEnabled"/> 64
 <xs:enumeration value="canDeny"/> 65
 </xs:restriction> 66
 </xs:simpleType> 67
 <xs:simpleType name="AnyTypeName"> 68
 <xs:annotation> 69
 <xs:documentation>Built-in or derived type name.</xs:documentation> 70
 </xs:annotation> 71

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 79

 <xs:union memberTypes="tns:BuiltinTypeName tns:DataTypeName"/> 72
 </xs:simpleType> 73
 <xs:simpleType name="BibrefId"> 74
 <xs:annotation> 75
 <xs:documentation>Bibliographic reference ID; SHOULD uniquely identify this 76

reference across all instance documents. 77
For BBF DM Instances, the bibliographic reference ID rules specified in A.2.4 MUST be 78

used. For example, to reference TR-106 Issue 1 Amendment 2, the 79
value of this attribute would be TR-106a2.</xs:documentation> 80

 </xs:annotation> 81
 <xs:restriction base="xs:token"/> 82
 </xs:simpleType> 83
 <xs:simpleType name="BuiltinTypeName"> 84
 <xs:annotation> 85
 <xs:documentation>Built-in type name. 86
The type hierarchy is as for XML Schema, with "any" and "base64" mapping to the 87

"anySimpleType" and "base64Binary" XML Schema types 88
respectively.</xs:documentation> 89

 </xs:annotation> 90
 <xs:restriction base="xs:token"> 91
 <xs:enumeration value="any"/> 92
 <xs:enumeration value="base64"/> 93
 <xs:enumeration value="boolean"/> 94
 <xs:enumeration value="dateTime"/> 95
 <xs:enumeration value="hexBinary"/> 96
 <xs:enumeration value="integer"/> 97
 <xs:enumeration value="int"/> 98
 <xs:enumeration value="long"/> 99
 <xs:enumeration value="string"/> 100
 <xs:enumeration value="unsignedInt"/> 101
 <xs:enumeration value="unsignedLong"/> 102
 </xs:restriction> 103
 </xs:simpleType> 104
 <xs:simpleType name="ComponentName"> 105
 <xs:annotation> 106
 <xs:documentation>Component name; the same as xs:NCName except that dots are not 107

permitted.</xs:documentation> 108
 </xs:annotation> 109
 <xs:restriction base="xs:token"> 110
 <xs:pattern value="&name;"/> 111
 </xs:restriction> 112
 </xs:simpleType> 113
 <xs:simpleType name="DataTypeName"> 114
 <xs:annotation> 115
 <xs:documentation>Data type name; the same as xs:NCName except that cannot start 116

with lower-case letter (to avoid conflict with built-in data type 117
names) and dots are not permitted.</xs:documentation> 118

 </xs:annotation> 119
 <xs:restriction base="xs:token"> 120
 <xs:pattern value="&Name;"/> 121
 </xs:restriction> 122
 </xs:simpleType> 123
 <xs:simpleType name="DefaultType"> 124
 <xs:annotation> 125
 <xs:documentation>Type of default.</xs:documentation> 126
 </xs:annotation> 127
 <xs:restriction base="xs:token"> 128
 <xs:enumeration value="factory"> 129
 <xs:annotation> 130
 <xs:documentation>Default from standard, e.g. RFC. Also applies on object 131

creation.</xs:documentation> 132
 </xs:annotation> 133
 </xs:enumeration> 134
 <xs:enumeration value="object"> 135
 <xs:annotation> 136
 <xs:documentation>Default on object creation.</xs:documentation> 137
 </xs:annotation> 138
 </xs:enumeration> 139
 </xs:restriction> 140
 </xs:simpleType> 141
 <xs:simpleType name="DescriptionAction"> 142

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 80

 <xs:annotation> 143
 <xs:documentation>Description action.</xs:documentation> 144
 </xs:annotation> 145
 <xs:restriction base="xs:token"> 146
 <xs:enumeration value="create"/> 147
 <xs:enumeration value="append"/> 148
 <xs:enumeration value="replace"/> 149
 </xs:restriction> 150
 </xs:simpleType> 151
 <xs:simpleType name="MaxEntries"> 152
 <xs:annotation> 153
 <xs:documentation>Positive integer or "unbounded".</xs:documentation> 154
 </xs:annotation> 155
 <xs:union memberTypes="xs:positiveInteger"> 156
 <xs:simpleType> 157
 <xs:restriction base="xs:token"> 158
 <xs:enumeration value="unbounded"/> 159
 </xs:restriction> 160
 </xs:simpleType> 161
 </xs:union> 162
 </xs:simpleType> 163
 <xs:simpleType name="ModelName"> 164
 <xs:annotation> 165
 <xs:documentation>Model name, including major and minor versions. The name part is 166

the same as xs:NCName except that dots are not 167
permitted.</xs:documentation> 168

 </xs:annotation> 169
 <xs:restriction base="xs:token"> 170
 <xs:pattern value="&name;:#˙#"/> 171
 </xs:restriction> 172
 </xs:simpleType> 173
 <xs:simpleType name="ObjectName"> 174
 <xs:annotation> 175
 <xs:documentation>Object name (maximum length 256). Each component is the same as 176

xs:NCName except that dots are not permitted. This name MUST in 177
addition follow the vendor-specific object name requirements of 178
section 3.3.</xs:documentation> 179

 </xs:annotation> 180
 <xs:restriction base="xs:token"> 181
 <xs:maxLength value="256"/> 182
 <xs:pattern value="(&name;˙(&inst;˙)?)+"/> 183
 </xs:restriction> 184
 </xs:simpleType> 185
 <xs:simpleType name="ObjectReference"> 186
 <xs:annotation> 187
 <xs:documentation>Object path that cannot contain "{i}" placeholders and that 188

therefore references a single object. The path MUST follow the 189
requirements of A.2.3.4 (its scope will typically be specified via 190
an attribute of type PathScope).</xs:documentation> 191

 </xs:annotation> 192
 <xs:restriction base="xs:token"> 193
 <xs:pattern value="˙?(&name;˙)*"/> 194
 </xs:restriction> 195
 </xs:simpleType> 196
 <xs:simpleType name="ObjectReferencePattern"> 197
 <xs:annotation> 198
 <xs:documentation>Object path that can contain "{i}" placeholders and that can 199

therefore references multiple objects. The path MUST follow the 200
requirements of A.2.3.4 (its scope will typically be specified via 201
an attribute of type PathScope).</xs:documentation> 202

 </xs:annotation> 203
 <xs:restriction base="xs:token"> 204
 <xs:pattern value="˙?(&name;˙(&inst;˙)?)*"/> 205
 </xs:restriction> 206
 </xs:simpleType> 207
 <xs:simpleType name="ObjectReferencePatterns"> 208
 <xs:annotation> 209
 <xs:documentation>List of object paths, each of which can contain "{i}" 210

placeholders.</xs:documentation> 211
 </xs:annotation> 212
 <xs:list itemType="tns:ObjectReferencePattern"/> 213

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 81

 </xs:simpleType> 214
 <xs:simpleType name="OpaqueID"> 215
 <xs:annotation> 216
 <xs:documentation>Opaque ID.</xs:documentation> 217
 </xs:annotation> 218
 <xs:restriction base="xs:token"> 219
 <xs:maxLength value="256"/> 220
 </xs:restriction> 221
 </xs:simpleType> 222
 <xs:simpleType name="ParameterName"> 223
 <xs:annotation> 224
 <xs:documentation>Parameter name (maximum length 256); the same as xs:NCName except 225

that dots are not permitted. This name MUST in addition follow the 226
vendor-specific parameter name requirements of section 227
3.3.</xs:documentation> 228

 </xs:annotation> 229
 <xs:restriction base="xs:token"> 230
 <xs:maxLength value="256"/> 231
 <xs:pattern value="&name;"/> 232
 </xs:restriction> 233
 </xs:simpleType> 234
 <xs:simpleType name="ParameterReference"> 235
 <xs:annotation> 236
 <xs:documentation>Parameter path that cannot contain "{i}" placeholders and that 237

therefore references a single parameter. The path MUST follow the 238
requirements of A.2.3.4 (its scope will typically be specified via 239
an attribute of type PathScope).</xs:documentation> 240

 </xs:annotation> 241
 <xs:restriction base="xs:token"> 242
 <xs:pattern value="˙?(&name;˙)*&name;?"/> 243
 </xs:restriction> 244
 </xs:simpleType> 245
 <xs:simpleType name="PathScope"> 246
 <xs:annotation> 247
 <xs:documentation>Object / parameter path name scope (A.2.3.4).</xs:documentation> 248
 </xs:annotation> 249
 <xs:restriction base="xs:token"> 250
 <xs:enumeration value="normal"/> 251
 <xs:enumeration value="model"/> 252
 <xs:enumeration value="object"/> 253
 </xs:restriction> 254
 </xs:simpleType> 255
 <xs:simpleType name="ProfileName"> 256
 <xs:annotation> 257
 <xs:documentation>Profile name, including version. The name part is the same as 258

xs:NCName except that dots are not permitted.</xs:documentation> 259
 </xs:annotation> 260
 <xs:restriction base="xs:token"> 261
 <xs:pattern value="&name;:#"/> 262
 </xs:restriction> 263
 </xs:simpleType> 264
 <xs:simpleType name="ProfileNames"> 265
 <xs:annotation> 266
 <xs:documentation>List of profile names.</xs:documentation> 267
 </xs:annotation> 268
 <xs:list itemType="tns:ProfileName"/> 269
 </xs:simpleType> 270
 <xs:simpleType name="ProfileObjectAccess"> 271
 <xs:annotation> 272
 <xs:documentation>Object access (within profile).</xs:documentation> 273
 </xs:annotation> 274
 <xs:restriction base="xs:token"> 275
 <xs:enumeration value="notSpecified"/> 276
 <xs:enumeration value="present"/> 277
 <xs:enumeration value="create"/> 278
 <xs:enumeration value="delete"/> 279
 <xs:enumeration value="createDelete"/> 280
 </xs:restriction> 281
 </xs:simpleType> 282
 <xs:simpleType name="ReadWriteAccess"> 283
 <xs:annotation> 284

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 82

 <xs:documentation>Read-write access.</xs:documentation> 285
 </xs:annotation> 286
 <xs:restriction base="xs:token"> 287
 <xs:enumeration value="readOnly"/> 288
 <xs:enumeration value="readWrite"/> 289
 </xs:restriction> 290
 </xs:simpleType> 291
 <xs:simpleType name="ReferenceType"> 292
 <xs:annotation> 293
 <xs:documentation>Reference type (A.2.3.6).</xs:documentation> 294
 </xs:annotation> 295
 <xs:restriction base="xs:token"> 296
 <xs:enumeration value="weak"/> 297
 <xs:enumeration value="strong"/> 298
 </xs:restriction> 299
 </xs:simpleType> 300
 <xs:simpleType name="Status"> 301
 <xs:annotation> 302
 <xs:documentation>Item status (applies to most types of item).</xs:documentation> 303
 </xs:annotation> 304
 <xs:restriction base="xs:token"> 305
 <xs:enumeration value="current"/> 306
 <xs:enumeration value="deprecated"/> 307
 <xs:enumeration value="obsoleted"/> 308
 <xs:enumeration value="deleted"/> 309
 </xs:restriction> 310
 </xs:simpleType> 311
 <xs:simpleType name="TargetType"> 312
 <xs:annotation> 313
 <xs:documentation>(Reference) target type (used in path 314

references).</xs:documentation> 315
 </xs:annotation> 316
 <xs:restriction base="xs:token"> 317
 <xs:enumeration value="any"/> 318
 <xs:enumeration value="parameter"/> 319
 <xs:enumeration value="object"/> 320
 <xs:enumeration value="single"/> 321
 <xs:enumeration value="table"/> 322
 <xs:enumeration value="row"/> 323
 </xs:restriction> 324
 </xs:simpleType> 325
 <xs:simpleType name="UnitsString"> 326
 <xs:annotation> 327
 <xs:documentation>Units string.</xs:documentation> 328
 </xs:annotation> 329
 <xs:restriction base="xs:token"> 330
 <xs:maxLength value="32"/> 331
 </xs:restriction> 332
 </xs:simpleType> 333
 <!-- Model groups --> 334
 <xs:group name="AllBuiltinDataTypes"> 335
 <xs:annotation> 336
 <xs:documentation>All built-in data types.</xs:documentation> 337
 </xs:annotation> 338
 <xs:choice> 339
 <xs:element name="base64"> 340
 <xs:complexType> 341
 <xs:sequence> 342
 <xs:choice minOccurs="0" maxOccurs="unbounded"> 343
 <xs:element name="size" type="tns:SizeFacet"> 344
 <xs:annotation> 345
 <xs:documentation>Length is that of the actual string, not the base64-346

encoded string. See A.2.3.3.</xs:documentation> 347
 </xs:annotation> 348
 </xs:element> 349
 </xs:choice> 350
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 351
 </xs:sequence> 352
 <xs:anyAttribute namespace="##other"/> 353
 </xs:complexType> 354
 </xs:element> 355

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 83

 <xs:element name="boolean"> 356
 <xs:complexType> 357
 <xs:sequence> 358
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 359
 </xs:sequence> 360
 <xs:anyAttribute namespace="##other"/> 361
 </xs:complexType> 362
 </xs:element> 363
 <xs:element name="dateTime"> 364
 <xs:complexType> 365
 <xs:sequence> 366
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 367
 </xs:sequence> 368
 <xs:anyAttribute namespace="##other"/> 369
 </xs:complexType> 370
 </xs:element> 371
 <xs:element name="hexBinary"> 372
 <xs:complexType> 373
 <xs:sequence> 374
 <xs:choice minOccurs="0" maxOccurs="unbounded"> 375
 <xs:element name="size" type="tns:SizeFacet"> 376
 <xs:annotation> 377
 <xs:documentation>Length is that of the actual string, not the 378

hexBinary-encoded string. See A.2.3.3.</xs:documentation> 379
 </xs:annotation> 380
 </xs:element> 381
 </xs:choice> 382
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 383
 </xs:sequence> 384
 <xs:anyAttribute namespace="##other"/> 385
 </xs:complexType> 386
 </xs:element> 387
 <xs:element name="int"> 388
 <xs:complexType> 389
 <xs:sequence> 390
 <xs:choice minOccurs="0" maxOccurs="unbounded"> 391
 <xs:element name="instanceRef" type="tns:InstanceRefFacet"/> 392
 <xs:element name="range" type="tns:RangeFacet"/> 393
 <xs:element name="units" type="tns:UnitsFacet"/> 394
 </xs:choice> 395
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 396
 </xs:sequence> 397
 <xs:anyAttribute namespace="##other"/> 398
 </xs:complexType> 399
 </xs:element> 400
 <xs:element name="long"> 401
 <xs:complexType> 402
 <xs:sequence> 403
 <xs:choice minOccurs="0" maxOccurs="unbounded"> 404
 <xs:element name="range" type="tns:RangeFacet"/> 405
 <xs:element name="units" type="tns:UnitsFacet"/> 406
 </xs:choice> 407
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 408
 </xs:sequence> 409
 <xs:anyAttribute namespace="##other"/> 410
 </xs:complexType> 411
 </xs:element> 412
 <xs:element name="string"> 413
 <xs:complexType> 414
 <xs:sequence> 415
 <xs:choice minOccurs="0" maxOccurs="unbounded"> 416
 <xs:element name="size" type="tns:SizeFacet"/> 417
 <xs:element name="pathRef" type="tns:PathRefFacet"/> 418
 <xs:element name="enumeration" type="tns:EnumerationFacet"/> 419
 <xs:element name="enumerationRef" type="tns:EnumerationRefFacet"/> 420
 <xs:element name="pattern" type="tns:PatternFacet"/> 421
 </xs:choice> 422
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 423
 </xs:sequence> 424
 <xs:anyAttribute namespace="##other"/> 425
 </xs:complexType> 426

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 84

 <xs:unique name="stringEnumerationValue"> 427
 <xs:selector xpath="enumeration"/> 428
 <xs:field xpath="@value"/> 429
 </xs:unique> 430
 <xs:unique name="stringPatternValue"> 431
 <xs:selector xpath="pattern"/> 432
 <xs:field xpath="@value"/> 433
 </xs:unique> 434
 </xs:element> 435
 <xs:element name="unsignedInt"> 436
 <xs:complexType> 437
 <xs:sequence> 438
 <xs:choice minOccurs="0" maxOccurs="unbounded"> 439
 <xs:element name="instanceRef" type="tns:InstanceRefFacet"/> 440
 <xs:element name="range" type="tns:RangeFacet"/> 441
 <xs:element name="units" type="tns:UnitsFacet"/> 442
 </xs:choice> 443
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 444
 </xs:sequence> 445
 <xs:anyAttribute namespace="##other"/> 446
 </xs:complexType> 447
 </xs:element> 448
 <xs:element name="unsignedLong"> 449
 <xs:complexType> 450
 <xs:sequence> 451
 <xs:choice minOccurs="0" maxOccurs="unbounded"> 452
 <xs:element name="range" type="tns:RangeFacet"/> 453
 <xs:element name="units" type="tns:UnitsFacet"/> 454
 </xs:choice> 455
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 456
 </xs:sequence> 457
 <xs:anyAttribute namespace="##other"/> 458
 </xs:complexType> 459
 </xs:element> 460
 </xs:choice> 461
 </xs:group> 462
 <xs:group name="AllFacets"> 463
 <xs:annotation> 464
 <xs:documentation>All facets.</xs:documentation> 465
 </xs:annotation> 466
 <xs:choice> 467
 <xs:element name="size" type="tns:SizeFacet"> 468
 <xs:annotation> 469
 <xs:documentation>Size facets, taken together, define the valid size ranges, 470

e.g. (0:0) and (6:6) mean that the size has to be 0 or 6. 471
The size facet MUST NOT be specified for non-string data types, i.e. data types that are 472

not derived from base64, hexBinary or string.</xs:documentation> 473
 </xs:annotation> 474
 </xs:element> 475
 <xs:element name="instanceRef" type="tns:InstanceRefFacet"> 476
 <xs:annotation> 477
 <xs:documentation>InstanceRef facets specify how a parameter can reference an 478

object instance (table row) via its instance number. 479
The instanceRef facet MUST NOT be specified for data types that are not derived from int 480

or unsignedInt.</xs:documentation> 481
 </xs:annotation> 482
 </xs:element> 483
 <xs:element name="pathRef" type="tns:PathRefFacet"> 484
 <xs:annotation> 485
 <xs:documentation>PathRef facets specify how a parameter can reference a 486

parameter or object via its path name. 487
The pathRef facet MUST NOT be specified for data types that are not derived from 488

string.</xs:documentation> 489
 </xs:annotation> 490
 </xs:element> 491
 <xs:element name="range" type="tns:RangeFacet"> 492
 <xs:annotation> 493
 <xs:documentation>Range facets, taken together, define the valid value ranges, 494

e.g. [-1:-1] and [1:4094] mean that the value has to be -1 or 1:4094 495
(it cannot be 0). 496

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 85

The range facet MUST NOT be specified for non-numeric data types, i.e. data types that are 497
not derived from one of the integer types.</xs:documentation> 498

 </xs:annotation> 499
 </xs:element> 500
 <xs:element name="enumeration" type="tns:EnumerationFacet"> 501
 <xs:annotation> 502
 <xs:documentation>Enumeration facets, taken together, define the valid values, 503

e.g. "a" and "b" mean that the value has to be a or b. 504
The enumeration facet MUST NOT be specified for data types that are not derived from 505

string. 506
Derived types MAY add additional enumeration values. See A.2.5.</xs:documentation> 507
 </xs:annotation> 508
 </xs:element> 509
 <xs:element name="enumerationRef" type="tns:EnumerationRefFacet"> 510
 <xs:annotation> 511
 <xs:documentation>EnumerationRef facets allow a parameter's valid values to be 512

obtained from another parameter. 513
The enumerationRef facet MUST NOT be specified for data types that are not derived from 514

string.</xs:documentation> 515
 </xs:annotation> 516
 </xs:element> 517
 <xs:element name="pattern" type="tns:PatternFacet"> 518
 <xs:annotation> 519
 <xs:documentation>Pattern attributes, taken together, define valid patterns, 520

e.g. "" and "[0-9A-Fa-f]{6}" means that the value has to be empty or 521
a 6 digit hex string. 522

The pattern facet MUST NOT be specified for data types that are not derived from string. 523
Pattern syntax is the same as for XML Schema regular expressions. See 524

http://www.w3.org/TR/xmlschema-2/#regexs.</xs:documentation> 525
 </xs:annotation> 526
 </xs:element> 527
 <xs:element name="units" type="tns:UnitsFacet"> 528
 <xs:annotation> 529
 <xs:documentation>Multiple units facets MUST NOT be specified. 530
The units facet MUST NOT be specified for data types that are not numeric, i.e. data types 531

that are not derived from one of the integer 532
types.</xs:documentation> 533

 </xs:annotation> 534
 </xs:element> 535
 </xs:choice> 536
 </xs:group> 537
 <!-- Complex types --> 538
 <xs:complexType name="BaseStatusFacet" abstract="true"> 539
 <xs:annotation> 540
 <xs:documentation>Base facet (status attribute).</xs:documentation> 541
 </xs:annotation> 542
 <xs:sequence> 543
 <xs:element name="description" type="tns:Description" minOccurs="0"/> 544
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 545
 </xs:sequence> 546
 <xs:attribute name="status" type="tns:Status" default="current"/> 547
 <xs:anyAttribute namespace="##other"/> 548
 </xs:complexType> 549
 <xs:complexType name="BaseAccessFacet" abstract="true"> 550
 <xs:annotation> 551
 <xs:documentation>Base facet (access, status and optional 552

attributes).</xs:documentation> 553
 </xs:annotation> 554
 <xs:complexContent> 555
 <xs:extension base="tns:BaseStatusFacet"> 556
 <xs:attribute name="access" type="tns:ReadWriteAccess" default="readWrite"/> 557
 <xs:attribute name="optional" type="xs:boolean" default="false"/> 558
 </xs:extension> 559
 </xs:complexContent> 560
 </xs:complexType> 561
 <xs:complexType name="Bibliography"> 562
 <xs:annotation> 563
 <xs:documentation>Bibliography definition.</xs:documentation> 564
 </xs:annotation> 565
 <xs:sequence> 566
 <xs:element name="description" type="tns:Description" minOccurs="0"/> 567

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 86

 <xs:element name="reference" minOccurs="0" maxOccurs="unbounded"> 568
 <xs:complexType> 569
 <xs:sequence> 570
 <xs:element name="name" type="xs:token"> 571
 <xs:annotation> 572
 <xs:documentation>Name by which the referenced document is usually known, 573

e.g. TR-069, RFC 2863.</xs:documentation> 574
 </xs:annotation> 575
 </xs:element> 576
 <xs:element name="title" type="xs:token" minOccurs="0"/> 577
 <xs:element name="organization" type="xs:token" minOccurs="0"> 578
 <xs:annotation> 579
 <xs:documentation>Organization that published the referenced document, 580

e.g. BBF, IEEE, IETF.</xs:documentation> 581
 </xs:annotation> 582
 </xs:element> 583
 <xs:element name="category" type="xs:token" minOccurs="0"> 584
 <xs:annotation> 585
 <xs:documentation>Document category, e.g. TR (BBF), RFC 586

(IETF).</xs:documentation> 587
 </xs:annotation> 588
 </xs:element> 589
 <xs:element name="date" type="xs:token" minOccurs="0"> 590
 <xs:annotation> 591
 <xs:documentation>Publication date.</xs:documentation> 592
 </xs:annotation> 593
 </xs:element> 594
 <xs:choice minOccurs="0" maxOccurs="unbounded"> 595
 <xs:element name="hyperlink" type="xs:anyURI"/> 596
 </xs:choice> 597
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 598
 </xs:sequence> 599
 <xs:attribute name="id" type="tns:BibrefId" use="required"> 600
 <xs:annotation> 601
 <xs:documentation>Uniquely identifies the reference (this is checked by 602

schema validation). Can be referenced from descriptions by using 603
the {{bibref}} template. See A.2.2.4.</xs:documentation> 604

 </xs:annotation> 605
 </xs:attribute> 606
 <xs:anyAttribute namespace="##other"/> 607
 </xs:complexType> 608
 </xs:element> 609
 </xs:sequence> 610
 </xs:complexType> 611
 <xs:complexType name="ComponentDefinition"> 612
 <xs:annotation> 613
 <xs:documentation>Component definition.</xs:documentation> 614
 </xs:annotation> 615
 <xs:sequence> 616
 <xs:element name="description" type="tns:Description" minOccurs="0"/> 617
 <xs:choice minOccurs="0" maxOccurs="unbounded"> 618
 <xs:element name="component" type="tns:ComponentReference"/> 619
 <xs:element name="parameter" type="tns:ModelParameter"/> 620
 <xs:element name="object" type="tns:ModelObject"> 621
 <xs:unique name="componentObjectParameterName"> 622
 <xs:selector xpath="parameter"/> 623
 <xs:field xpath="@name"/> 624
 </xs:unique> 625
 <xs:keyref name="componentEnableParameterRef" 626

refer="tns:componentObjectParameterName"> 627
 <xs:selector xpath="."/> 628
 <xs:field xpath="@enableParameter"/> 629
 </xs:keyref> 630
 <xs:keyref name="componentUniqueKeyRef" 631

refer="tns:componentObjectParameterName"> 632
 <xs:selector xpath="uniqueKey/parameter"/> 633
 <xs:field xpath="@ref"/> 634
 </xs:keyref> 635
 </xs:element> 636
 </xs:choice> 637
 <xs:choice minOccurs="0" maxOccurs="unbounded"> 638

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 87

 <xs:element name="profile" type="tns:Profile"/> 639
 </xs:choice> 640
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 641
 </xs:sequence> 642
 <xs:attribute name="name" type="tns:ComponentName" use="required"> 643
 <xs:annotation> 644
 <xs:documentation>MUST be unique within the document, including imported 645

components (this is checked by schema 646
validation).</xs:documentation> 647

 </xs:annotation> 648
 </xs:attribute> 649
 <xs:attribute name="status" type="tns:Status" default="current"/> 650
 <xs:attribute name="id" type="tns:OpaqueID"/> 651
 <xs:anyAttribute namespace="##other"/> 652
 </xs:complexType> 653
 <xs:complexType name="ComponentReference"> 654
 <xs:annotation> 655
 <xs:documentation>Component reference.</xs:documentation> 656
 </xs:annotation> 657
 <xs:attribute name="ref" type="tns:ComponentName" use="required"> 658
 <xs:annotation> 659
 <xs:documentation>Name of component to be referenced 660

(included).</xs:documentation> 661
 </xs:annotation> 662
 </xs:attribute> 663
 <xs:attribute name="path" type="tns:ObjectName"> 664
 <xs:annotation> 665
 <xs:documentation>If specified, is relative path between point of reference 666

(inclusion) and the component's items. If not specified, behavior 667
is as if an empty relative path was specified.</xs:documentation> 668

 </xs:annotation> 669
 </xs:attribute> 670
 <xs:anyAttribute namespace="##other"/> 671
 </xs:complexType> 672
 <xs:complexType name="DataTypeDefinition"> 673
 <xs:annotation> 674
 <xs:documentation>Parameter data type definition.</xs:documentation> 675
 </xs:annotation> 676
 <xs:sequence> 677
 <xs:element name="description" type="tns:Description" minOccurs="0"/> 678
 <xs:choice> 679
 <xs:group ref="tns:AllFacets" minOccurs="0" maxOccurs="unbounded"> 680
 <xs:annotation> 681
 <xs:documentation>Facets MUST NOT be specified if the base attribute is 682

omitted.</xs:documentation> 683
 </xs:annotation> 684
 </xs:group> 685
 <xs:group ref="tns:AllBuiltinDataTypes" minOccurs="0"> 686
 <xs:annotation> 687
 <xs:documentation>A built-in data type element MUST NOT be specified if the 688

base attribute is present. 689
See tns:AllFacets for notes and requirements on individual facets.</xs:documentation> 690
 </xs:annotation> 691
 </xs:group> 692
 </xs:choice> 693
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 694
 </xs:sequence> 695
 <xs:attribute name="name" type="tns:DataTypeName" use="required"> 696
 <xs:annotation> 697
 <xs:documentation>MUST be unique within the document, including imported data 698

types (this is checked by schema validation). 699
Cannot begin with a lower-case letter, in order to avoid confusion with built-in data 700

types.</xs:documentation> 701
 </xs:annotation> 702
 </xs:attribute> 703
 <xs:attribute name="base" type="tns:DataTypeName"> 704
 <xs:annotation> 705
 <xs:documentation>MUST be present if and only if deriving from a non-built-in data 706

type. See A.2.3.1.</xs:documentation> 707
 </xs:annotation> 708
 </xs:attribute> 709

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 88

 <xs:attribute name="status" type="tns:Status" default="current"/> 710
 <xs:attribute name="id" type="tns:OpaqueID"/> 711
 <xs:anyAttribute namespace="##other"/> 712
 </xs:complexType> 713
 <xs:complexType name="DataTypeReference"> 714
 <xs:annotation> 715
 <xs:documentation>Parameter data type reference or anonymous restriction / 716

extension.</xs:documentation> 717
 </xs:annotation> 718
 <xs:sequence> 719
 <xs:group ref="tns:AllFacets" minOccurs="0" maxOccurs="unbounded"/> 720
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 721
 </xs:sequence> 722
 <xs:attribute name="ref" type="tns:DataTypeName"> 723
 <xs:annotation> 724
 <xs:documentation>If specified, content MUST be empty.</xs:documentation> 725
 </xs:annotation> 726
 </xs:attribute> 727
 <xs:attribute name="base" type="tns:DataTypeName"> 728
 <xs:annotation> 729
 <xs:documentation>If specified, content MUST NOT be empty.</xs:documentation> 730
 </xs:annotation> 731
 </xs:attribute> 732
 <xs:anyAttribute namespace="##other"/> 733
 </xs:complexType> 734
 <xs:complexType name="DefaultFacet"> 735
 <xs:annotation> 736
 <xs:documentation>Default facet.</xs:documentation> 737
 </xs:annotation> 738
 <xs:complexContent> 739
 <xs:extension base="tns:BaseStatusFacet"> 740
 <xs:attribute name="type" type="tns:DefaultType" use="required"/> 741
 <xs:attribute name="value" type="xs:string" use="required"> 742
 <xs:annotation> 743
 <xs:documentation>Value MUST be valid for the data type.</xs:documentation> 744
 </xs:annotation> 745
 </xs:attribute> 746
 </xs:extension> 747
 </xs:complexContent> 748
 </xs:complexType> 749
 <xs:complexType name="Description"> 750
 <xs:annotation> 751
 <xs:documentation>Description: free text which MAY contain a limited amount of 752

mediawiki-like markup as specified in A.2.2. For example, use "*" 753
at the start of a line to indicate a bulleted list. 754

To avoid confusion, the description SHOULD NOT contain tab characters. 755
For BBF standards, the character set MUST be restricted to printable characters in the 756

Basic Latin Unicode block, i.e. to characters whose decimal ASCII 757
representations are in the (inclusive) ranges 9-10 and 32-758
126.</xs:documentation> 759

 </xs:annotation> 760
 <xs:simpleContent> 761
 <xs:extension base="xs:string"> 762
 <xs:attribute name="action" type="tns:DescriptionAction" default="create"> 763
 <xs:annotation> 764
 <xs:documentation>This MUST be specified when the description modifies that of 765

a previously defined item. 766
Specify "append" to append to the previous description, or "replace" to replace the 767

previous description.</xs:documentation> 768
 </xs:annotation> 769
 </xs:attribute> 770
 <xs:anyAttribute namespace="##other"/> 771
 </xs:extension> 772
 </xs:simpleContent> 773
 </xs:complexType> 774
 <xs:complexType name="EnumerationFacet"> 775
 <xs:annotation> 776
 <xs:documentation>Enumeration facet.</xs:documentation> 777
 </xs:annotation> 778
 <xs:complexContent> 779
 <xs:extension base="tns:BaseAccessFacet"> 780

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 89

 <xs:attribute name="value" type="xs:string" use="required"/> 781
 <xs:attribute name="code" type="xs:integer"/> 782
 </xs:extension> 783
 </xs:complexContent> 784
 </xs:complexType> 785
 <xs:complexType name="EnumerationRefFacet"> 786
 <xs:annotation> 787
 <xs:documentation>Enumeration reference facet.</xs:documentation> 788
 </xs:annotation> 789
 <xs:complexContent> 790
 <xs:extension base="tns:BaseStatusFacet"> 791
 <xs:attribute name="targetParam" type="tns:ParameterReference" use="required"> 792
 <xs:annotation> 793
 <xs:documentation>MUST reference a list-valued parameter.</xs:documentation> 794
 </xs:annotation> 795
 </xs:attribute> 796
 <xs:attribute name="targetParamScope" type="tns:PathScope" default="normal"> 797
 <xs:annotation> 798
 <xs:documentation>Specifies the point in the naming hierarchy relative to 799

which targetParam applies (A.2.3.4).</xs:documentation> 800
 </xs:annotation> 801
 </xs:attribute> 802
 <xs:attribute name="nullValue" type="xs:token"> 803
 <xs:annotation> 804
 <xs:documentation>Specifies the value that indicates that none of the values 805

of the referenced parameter currently apply.</xs:documentation> 806
 </xs:annotation> 807
 </xs:attribute> 808
 </xs:extension> 809
 </xs:complexContent> 810
 </xs:complexType> 811
 <xs:complexType name="Import"> 812
 <xs:annotation> 813
 <xs:documentation>Import data types, components and models (Root and Service 814

Objects) from external documents. All such items MUST be imported 815
(this is checked by schema validation). 816

The optional ref attribute MAY be used in order to avoid name conflicts between imported 817
and locally-defined items.</xs:documentation> 818

 </xs:annotation> 819
 <xs:sequence> 820
 <xs:choice minOccurs="0" maxOccurs="unbounded"> 821
 <xs:element name="dataType"> 822
 <xs:complexType> 823
 <xs:attribute name="name" type="tns:DataTypeName" use="required"/> 824
 <xs:attribute name="ref" type="tns:DataTypeName"> 825
 <xs:annotation> 826
 <xs:documentation>If omitted, data type is known by the same name in both 827

this and the referenced document.</xs:documentation> 828
 </xs:annotation> 829
 </xs:attribute> 830
 </xs:complexType> 831
 </xs:element> 832
 <xs:element name="component"> 833
 <xs:complexType> 834
 <xs:attribute name="name" type="tns:ComponentName" use="required"/> 835
 <xs:attribute name="ref" type="tns:ComponentName"> 836
 <xs:annotation> 837
 <xs:documentation>If omitted, component is known by the same name in both 838

this and the referenced document.</xs:documentation> 839
 </xs:annotation> 840
 </xs:attribute> 841
 </xs:complexType> 842
 </xs:element> 843
 <xs:element name="model"> 844
 <xs:complexType> 845
 <xs:attribute name="name" type="tns:ModelName" use="required"/> 846
 <xs:attribute name="ref" type="tns:ModelName"> 847
 <xs:annotation> 848
 <xs:documentation>If omitted, model is known by the same name in both this 849

and the referenced document.</xs:documentation> 850
 </xs:annotation> 851

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 90

 </xs:attribute> 852
 </xs:complexType> 853
 </xs:element> 854
 </xs:choice> 855
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 856
 </xs:sequence> 857
 <xs:attribute name="file" type="xs:string" use="required"> 858
 <xs:annotation> 859
 <xs:documentation>Only the file name part SHOULD be specified (the processing tool 860

is assumed to support a search path).</xs:documentation> 861
 </xs:annotation> 862
 </xs:attribute> 863
 <xs:attribute name="spec" type="xs:anyURI"> 864
 <xs:annotation> 865
 <xs:documentation>If specified, the processing tool MUST regard a mismatch between 866

this and the external document's spec attribute as an 867
error.</xs:documentation> 868

 </xs:annotation> 869
 </xs:attribute> 870
 <xs:anyAttribute namespace="##other"/> 871
 </xs:complexType> 872
 <xs:complexType name="InstanceRefFacet"> 873
 <xs:annotation> 874
 <xs:documentation>Instance number reference facet.</xs:documentation> 875
 </xs:annotation> 876
 <xs:complexContent> 877
 <xs:extension base="tns:BaseStatusFacet"> 878
 <xs:attribute name="refType" type="tns:ReferenceType" use="required"> 879
 <xs:annotation> 880
 <xs:documentation>Specifies the type of reference 881

(A.2.3.6).</xs:documentation> 882
 </xs:annotation> 883
 </xs:attribute> 884
 <xs:attribute name="targetParent" type="tns:ObjectReference" use="required"> 885
 <xs:annotation> 886
 <xs:documentation>MUST reference a multi-instance object (table) 887

(A.2.3.4).</xs:documentation> 888
 </xs:annotation> 889
 </xs:attribute> 890
 <xs:attribute name="targetParentScope" type="tns:PathScope" default="normal"> 891
 <xs:annotation> 892
 <xs:documentation>Specifies the point in the naming hierarchy relative to 893

which targetParent applies (A.2.3.4).</xs:documentation> 894
 </xs:annotation> 895
 </xs:attribute> 896
 </xs:extension> 897
 </xs:complexContent> 898
 </xs:complexType> 899
 <xs:complexType name="ListFacet"> 900
 <xs:annotation> 901
 <xs:documentation>List facet.</xs:documentation> 902
 </xs:annotation> 903
 <xs:complexContent> 904
 <xs:extension base="tns:BaseStatusFacet"> 905
 <xs:sequence> 906
 <xs:choice minOccurs="0" maxOccurs="unbounded"> 907
 <xs:element name="size" type="tns:SizeFacet"> 908
 <xs:annotation> 909
 <xs:documentation>This specifies the size of the TR-069 list-valued 910

parameter, not of the individual list items.</xs:documentation> 911
 </xs:annotation> 912
 </xs:element> 913
 </xs:choice> 914
 </xs:sequence> 915
 <xs:attribute name="minItems" type="xs:nonNegativeInteger" default="0"/> 916
 <xs:attribute name="maxItems" type="tns:MaxEntries" default="unbounded"/> 917
 </xs:extension> 918
 </xs:complexContent> 919
 </xs:complexType> 920
 <xs:complexType name="Model"> 921
 <xs:annotation> 922

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 91

 <xs:documentation>Model (Root or Service Object) definition and 923
reference.</xs:documentation> 924

 </xs:annotation> 925
 <xs:sequence> 926
 <xs:element name="description" type="tns:Description" minOccurs="0"/> 927
 <xs:choice minOccurs="0" maxOccurs="unbounded"> 928
 <xs:element name="component" type="tns:ComponentReference"/> 929
 <xs:element name="parameter" type="tns:ModelParameter"/> 930
 <xs:element name="object" type="tns:ModelObject"> 931
 <xs:unique name="objectParameterName"> 932
 <xs:selector xpath="parameter"/> 933
 <xs:field xpath="@name"/> 934
 </xs:unique> 935
 <xs:keyref name="objectEnableParameterRef" refer="tns:objectParameterName"> 936
 <xs:selector xpath="."/> 937
 <xs:field xpath="@enableParameter"/> 938
 </xs:keyref> 939
 <xs:keyref name="objectUniqueKeyRef" refer="tns:objectParameterName"> 940
 <xs:selector xpath="uniqueKey/parameter"/> 941
 <xs:field xpath="@ref"/> 942
 </xs:keyref> 943
 </xs:element> 944
 </xs:choice> 945
 <xs:choice minOccurs="0" maxOccurs="unbounded"> 946
 <xs:element name="profile" type="tns:Profile"/> 947
 </xs:choice> 948
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 949
 </xs:sequence> 950
 <xs:attribute name="name" type="tns:ModelName" use="required"> 951
 <xs:annotation> 952
 <xs:documentation>MUST be unique within the document, including imported models 953

(this is checked by schema validation).</xs:documentation> 954
 </xs:annotation> 955
 </xs:attribute> 956
 <xs:attribute name="base" type="tns:ModelName"> 957
 <xs:annotation> 958
 <xs:documentation>MUST be present if and only if extending an existing model. See 959

A.2.10.</xs:documentation> 960
 </xs:annotation> 961
 </xs:attribute> 962
 <xs:attribute name="isService" type="xs:boolean" default="false"/> 963
 <xs:attribute name="status" type="tns:Status" default="current"/> 964
 <xs:attribute name="id" type="tns:OpaqueID"/> 965
 <xs:anyAttribute namespace="##other"/> 966
 </xs:complexType> 967
 <xs:complexType name="ModelObject"> 968
 <xs:annotation> 969
 <xs:documentation>Object definition and reference. See A.2.8.1 for details of how 970

tables are represented.</xs:documentation> 971
 </xs:annotation> 972
 <xs:sequence> 973
 <xs:element name="description" type="tns:Description" minOccurs="0"/> 974
 <xs:element name="uniqueKey" minOccurs="0" maxOccurs="unbounded"> 975
 <xs:annotation> 976
 <xs:documentation>MUST NOT be present if the object is not a table (see 977

maxEntries). 978
The parameters referenced by each unique key element MUST constitute a unique key. 979
For a table in which there is an enableParameter, the uniqueness requirement applies only 980

to enabled table entries.</xs:documentation> 981
 </xs:annotation> 982
 <xs:complexType> 983
 <xs:sequence> 984
 <xs:element name="parameter" maxOccurs="unbounded"> 985
 <xs:complexType> 986
 <xs:attribute name="ref" type="tns:ParameterName" use="required"/> 987
 </xs:complexType> 988
 </xs:element> 989
 </xs:sequence> 990
 </xs:complexType> 991
 <xs:unique name="uniqueKeyParameterRef"> 992
 <xs:selector xpath="parameter"/> 993

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 92

 <xs:field xpath="@ref"/> 994
 </xs:unique> 995
 </xs:element> 996
 <xs:choice minOccurs="0" maxOccurs="unbounded"> 997
 <xs:element name="component" type="tns:ComponentReference"/> 998
 <xs:element name="parameter" type="tns:ModelParameter"/> 999
 </xs:choice> 1000
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 1001
 </xs:sequence> 1002
 <xs:attribute name="name" type="tns:ObjectName"> 1003
 <xs:annotation> 1004
 <xs:documentation>MUST be unique within the component or model (this is checked by 1005

schema validation). 1006
MUST be present if and only if defining a new object. 1007
If the object is a table (see maxEntries), the final part of the name MUST be 1008

"{i}.".</xs:documentation> 1009
 </xs:annotation> 1010
 </xs:attribute> 1011
 <xs:attribute name="base" type="tns:ObjectName"> 1012
 <xs:annotation> 1013
 <xs:documentation>MUST be present if and only if modifying an existing 1014

object.</xs:documentation> 1015
 </xs:annotation> 1016
 </xs:attribute> 1017
 <xs:attribute name="access" type="tns:ReadWriteAccess" use="required"/> 1018
 <xs:attribute name="minEntries" type="xs:nonNegativeInteger" use="required"> 1019
 <xs:annotation> 1020
 <xs:documentation>minEntries MUST be less than or equal to maxEntries (all values 1021

are regarded as being less than "unbounded").</xs:documentation> 1022
 </xs:annotation> 1023
 </xs:attribute> 1024
 <xs:attribute name="maxEntries" type="tns:MaxEntries" use="required"> 1025
 <xs:annotation> 1026
 <xs:documentation>minEntries and maxEntries indicate whether the object is a 1027

table: 1028
* minEntries=0, maxEntries=1 : single-instance object which might not be allowed to exist, 1029

e.g. because only one of it and another object can exist at the same 1030
time 1031

* minEntries=1, maxEntries=1 : single-instance object that is always allowed to exist 1032
* all other cases : object is a table</xs:documentation> 1033
 </xs:annotation> 1034
 </xs:attribute> 1035
 <xs:attribute name="numEntriesParameter" type="tns:ParameterName"> 1036
 <xs:annotation> 1037
 <xs:documentation>MUST be specified for a table with a variable number of entries, 1038

i.e. for which maxEntries is greater than minEntries ("unbounded" is 1039
regarded as being greater than all values).</xs:documentation> 1040

 </xs:annotation> 1041
 </xs:attribute> 1042
 <xs:attribute name="enableParameter" type="tns:ParameterName"> 1043
 <xs:annotation> 1044
 <xs:documentation>MUST be specified for a table in which the ACS can create 1045

entries and which has one or more uniqueKey 1046
elements.</xs:documentation> 1047

 </xs:annotation> 1048
 </xs:attribute> 1049
 <xs:attribute name="status" type="tns:Status" default="current"/> 1050
 <xs:attribute name="id" type="tns:OpaqueID"/> 1051
 <xs:anyAttribute namespace="##other"/> 1052
 </xs:complexType> 1053
 <xs:complexType name="ModelParameter"> 1054
 <xs:annotation> 1055
 <xs:documentation>Parameter definition and reference.</xs:documentation> 1056
 </xs:annotation> 1057
 <xs:sequence> 1058
 <xs:element name="description" type="tns:Description" minOccurs="0"/> 1059
 <xs:element name="syntax" type="tns:Syntax" minOccurs="0"/> 1060
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 1061
 </xs:sequence> 1062
 <xs:attribute name="name" type="tns:ParameterName"> 1063
 <xs:annotation> 1064

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 93

 <xs:documentation>MUST be unique within the parent object (this is checked by 1065
schema validation). 1066

MUST be present if and only if defining a new parameter.</xs:documentation> 1067
 </xs:annotation> 1068
 </xs:attribute> 1069
 <xs:attribute name="base" type="tns:ParameterName"> 1070
 <xs:annotation> 1071
 <xs:documentation>MUST be present if and only if modifying an existing 1072

parameter.</xs:documentation> 1073
 </xs:annotation> 1074
 </xs:attribute> 1075
 <xs:attribute name="access" type="tns:ReadWriteAccess" use="required"/> 1076
 <xs:attribute name="status" type="tns:Status" default="current"/> 1077
 <xs:attribute name="activeNotify" type="tns:ActiveNotify" default="normal"/> 1078
 <xs:attribute name="forcedInform" type="xs:boolean" default="false"/> 1079
 <xs:attribute name="id" type="tns:OpaqueID"/> 1080
 <xs:anyAttribute namespace="##other"/> 1081
 </xs:complexType> 1082
 <xs:complexType name="PathRefFacet"> 1083
 <xs:annotation> 1084
 <xs:documentation>Path name reference facet.</xs:documentation> 1085
 </xs:annotation> 1086
 <xs:complexContent> 1087
 <xs:extension base="tns:BaseStatusFacet"> 1088
 <xs:attribute name="refType" type="tns:ReferenceType" use="required"> 1089
 <xs:annotation> 1090
 <xs:documentation>Specifies the type of reference 1091

(A.2.3.6).</xs:documentation> 1092
 </xs:annotation> 1093
 </xs:attribute> 1094
 <xs:attribute name="targetParent" type="tns:ObjectReferencePatterns" default=""> 1095
 <xs:annotation> 1096
 <xs:documentation>If the list is non-empty, this parameter MUST only reference 1097

immediate children of matching objects (A.2.3.4).</xs:documentation> 1098
 </xs:annotation> 1099
 </xs:attribute> 1100
 <xs:attribute name="targetParentScope" type="tns:PathScope" default="normal"> 1101
 <xs:annotation> 1102
 <xs:documentation>Specifies the point in the naming hierarchy relative to 1103

which targetParent applies (A.2.3.4).</xs:documentation> 1104
 </xs:annotation> 1105
 </xs:attribute> 1106
 <xs:attribute name="targetType" type="tns:TargetType" default="any"> 1107
 <xs:annotation> 1108
 <xs:documentation>Specifies the type of item that can be 1109

referenced.</xs:documentation> 1110
 </xs:annotation> 1111
 </xs:attribute> 1112
 <xs:attribute name="targetDataType" type="tns:AnyTypeName" default="any"> 1113
 <xs:annotation> 1114
 <xs:documentation>Specifies the valid data types for a referenced 1115

parameter.</xs:documentation> 1116
 </xs:annotation> 1117
 </xs:attribute> 1118
 </xs:extension> 1119
 </xs:complexContent> 1120
 </xs:complexType> 1121
 <xs:complexType name="PatternFacet"> 1122
 <xs:annotation> 1123
 <xs:documentation>Pattern facet (pattern syntax is as in XML 1124

Schema).</xs:documentation> 1125
 </xs:annotation> 1126
 <xs:complexContent> 1127
 <xs:extension base="tns:BaseAccessFacet"> 1128
 <xs:attribute name="value" type="xs:string" use="required"/> 1129
 </xs:extension> 1130
 </xs:complexContent> 1131
 </xs:complexType> 1132
 <xs:complexType name="Profile"> 1133
 <xs:annotation> 1134
 <xs:documentation>Profile definition and reference.</xs:documentation> 1135

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 94

 </xs:annotation> 1136
 <xs:sequence> 1137
 <xs:element name="description" type="tns:Description" minOccurs="0"> 1138
 <xs:annotation> 1139
 <xs:documentation>If the extends attribute is insufficient to express general 1140

profile requirements, any additional requirements MUST be specified 1141
here.</xs:documentation> 1142

 </xs:annotation> 1143
 </xs:element> 1144
 <xs:choice minOccurs="0" maxOccurs="unbounded"> 1145
 <xs:element name="parameter" type="tns:ProfileParameter"/> 1146
 <xs:element name="object" type="tns:ProfileObject"/> 1147
 </xs:choice> 1148
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 1149
 </xs:sequence> 1150
 <xs:attribute name="name" type="tns:ProfileName"> 1151
 <xs:annotation> 1152
 <xs:documentation>MUST be unique within the model (this is checked by schema 1153

validation). 1154
MUST be present if and only if defining a new profile.</xs:documentation> 1155
 </xs:annotation> 1156
 </xs:attribute> 1157
 <xs:attribute name="base" type="tns:ProfileName"> 1158
 <xs:annotation> 1159
 <xs:documentation>MUST specify base if modifying an existing profile or if the 1160

profile version is greater than 1.</xs:documentation> 1161
 </xs:annotation> 1162
 </xs:attribute> 1163
 <xs:attribute name="extends" type="tns:ProfileNames"> 1164
 <xs:annotation> 1165
 <xs:documentation>MUST specify extends if the profile extends other 1166

profile(s).</xs:documentation> 1167
 </xs:annotation> 1168
 </xs:attribute> 1169
 <xs:attribute name="status" type="tns:Status" default="current"/> 1170
 <xs:attribute name="id" type="tns:OpaqueID"/> 1171
 <xs:anyAttribute namespace="##other"/> 1172
 </xs:complexType> 1173
 <xs:complexType name="ProfileObject"> 1174
 <xs:annotation> 1175
 <xs:documentation>Profile object definition.</xs:documentation> 1176
 </xs:annotation> 1177
 <xs:sequence> 1178
 <xs:element name="description" type="tns:Description" minOccurs="0"> 1179
 <xs:annotation> 1180
 <xs:documentation>If the requirement attribute is insufficient to express the 1181

requirement, any additional requirements MUST be specified here and 1182
MAY override the attribute.</xs:documentation> 1183

 </xs:annotation> 1184
 </xs:element> 1185
 <xs:element name="parameter" type="tns:ProfileParameter" minOccurs="0" 1186

maxOccurs="unbounded"/> 1187
 </xs:sequence> 1188
 <xs:attribute name="ref" type="tns:ObjectName" use="required"/> 1189
 <xs:attribute name="requirement" type="tns:ProfileObjectAccess" use="required"/> 1190
 <xs:attribute name="status" type="tns:Status" default="current"/> 1191
 <xs:anyAttribute namespace="##other"/> 1192
 </xs:complexType> 1193
 <xs:complexType name="ProfileParameter"> 1194
 <xs:annotation> 1195
 <xs:documentation>Profile parameter definition.</xs:documentation> 1196
 </xs:annotation> 1197
 <xs:sequence> 1198
 <xs:element name="description" type="tns:Description" minOccurs="0"> 1199
 <xs:annotation> 1200
 <xs:documentation>If the requirement attribute is insufficient to express the 1201

requirement, any additional requirements MUST be specified here and 1202
MAY override the attribute.</xs:documentation> 1203

 </xs:annotation> 1204
 </xs:element> 1205
 </xs:sequence> 1206

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 95

 <xs:attribute name="ref" type="tns:ParameterName" use="required"/> 1207
 <xs:attribute name="requirement" type="tns:ReadWriteAccess" use="required"/> 1208
 <xs:attribute name="status" type="tns:Status" default="current"/> 1209
 <xs:anyAttribute namespace="##other"/> 1210
 </xs:complexType> 1211
 <xs:complexType name="RangeFacet"> 1212
 <xs:annotation> 1213
 <xs:documentation>Range facet.</xs:documentation> 1214
 </xs:annotation> 1215
 <xs:complexContent> 1216
 <xs:extension base="tns:BaseAccessFacet"> 1217
 <xs:attribute name="minInclusive" type="xs:integer"/> 1218
 <xs:attribute name="maxInclusive" type="xs:integer"/> 1219
 </xs:extension> 1220
 </xs:complexContent> 1221
 </xs:complexType> 1222
 <xs:complexType name="SizeFacet"> 1223
 <xs:annotation> 1224
 <xs:documentation>Size facet.</xs:documentation> 1225
 </xs:annotation> 1226
 <xs:complexContent> 1227
 <xs:extension base="tns:BaseAccessFacet"> 1228
 <xs:attribute name="minLength" type="xs:nonNegativeInteger" default="0"/> 1229
 <xs:attribute name="maxLength" type="xs:nonNegativeInteger" default="16"/> 1230
 </xs:extension> 1231
 </xs:complexContent> 1232
 </xs:complexType> 1233
 <xs:complexType name="UnitsFacet"> 1234
 <xs:annotation> 1235
 <xs:documentation>Units facet.</xs:documentation> 1236
 </xs:annotation> 1237
 <xs:complexContent> 1238
 <xs:extension base="tns:BaseStatusFacet"> 1239
 <xs:attribute name="value" type="tns:UnitsString" use="required"/> 1240
 </xs:extension> 1241
 </xs:complexContent> 1242
 </xs:complexType> 1243
 <xs:complexType name="Syntax"> 1244
 <xs:annotation> 1245
 <xs:documentation>Parameter syntax specification.</xs:documentation> 1246
 </xs:annotation> 1247
 <xs:sequence> 1248
 <xs:element name="list" type="tns:ListFacet" minOccurs="0"> 1249
 <xs:annotation> 1250
 <xs:documentation>For lists, the TR-069 parameter is always a string and the 1251

data type specification applies to individual list items, not to the 1252
parameter value. 1253

See section 3.2 for comma-separated list formatting rules.</xs:documentation> 1254
 </xs:annotation> 1255
 </xs:element> 1256
 <xs:choice> 1257
 <xs:group ref="tns:AllBuiltinDataTypes"> 1258
 <xs:annotation> 1259
 <xs:documentation>Direct use of built-in data type, possibly modified via use 1260

of facets.</xs:documentation> 1261
 </xs:annotation> 1262
 </xs:group> 1263
 <xs:element name="dataType" type="tns:DataTypeReference"> 1264
 <xs:annotation> 1265
 <xs:documentation>Use of named data type, possibly modified via use of 1266

facets.</xs:documentation> 1267
 </xs:annotation> 1268
 <xs:unique name="dtRefEnumerationValue"> 1269
 <xs:selector xpath="enumeration"/> 1270
 <xs:field xpath="@value"/> 1271
 </xs:unique> 1272
 <xs:unique name="dtRefPatternValue"> 1273
 <xs:selector xpath="pattern"/> 1274
 <xs:field xpath="@value"/> 1275
 </xs:unique> 1276
 </xs:element> 1277

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 96

 </xs:choice> 1278
 <xs:element name="default" type="tns:DefaultFacet" minOccurs="0"/> 1279
 </xs:sequence> 1280
 <xs:attribute name="hidden" type="xs:boolean" default="false"> 1281
 <xs:annotation> 1282
 <xs:documentation>If true, readback is always false, 0 or empty 1283

string.</xs:documentation> 1284
 </xs:annotation> 1285
 </xs:attribute> 1286
 <xs:anyAttribute namespace="##other"/> 1287
 </xs:complexType> 1288
 <!-- Elements --> 1289
 <xs:element name="document"> 1290
 <xs:annotation> 1291
 <xs:documentation>CWMP Data Model Definition XML Schema (DM Schema) instance 1292

documents can contain any or all of the following: 1293
* Data type definitions 1294
* Root Object definitions (including profiles) 1295
* Service Object definitions (including profiles) 1296
* Component definitions 1297
* Vendor extension definitions</xs:documentation> 1298
 </xs:annotation> 1299
 <xs:complexType> 1300
 <xs:sequence> 1301
 <xs:element name="description" type="tns:Description" minOccurs="0"> 1302
 <xs:annotation> 1303
 <xs:documentation>Top-level description.</xs:documentation> 1304
 </xs:annotation> 1305
 </xs:element> 1306
 <xs:element name="import" type="tns:Import" minOccurs="0" maxOccurs="unbounded"> 1307
 <xs:annotation> 1308
 <xs:documentation>Imported data types, components and models (Root and Service 1309

Objects).</xs:documentation> 1310
 </xs:annotation> 1311
 </xs:element> 1312
 <xs:element name="dataType" type="tns:DataTypeDefinition" minOccurs="0" 1313

maxOccurs="unbounded"> 1314
 <xs:annotation> 1315
 <xs:documentation>Top-level data type definitions.</xs:documentation> 1316
 </xs:annotation> 1317
 <xs:unique name="dtDefEnumerationValue"> 1318
 <xs:selector xpath="enumeration"/> 1319
 <xs:field xpath="@value"/> 1320
 </xs:unique> 1321
 <xs:unique name="dtDefPatternValue"> 1322
 <xs:selector xpath="pattern"/> 1323
 <xs:field xpath="@value"/> 1324
 </xs:unique> 1325
 </xs:element> 1326
 <xs:element name="bibliography" type="tns:Bibliography" minOccurs="0"> 1327
 <xs:annotation> 1328
 <xs:documentation>Bibliographic references.</xs:documentation> 1329
 </xs:annotation> 1330
 </xs:element> 1331
 <xs:choice minOccurs="0" maxOccurs="unbounded"> 1332
 <xs:element name="component" type="tns:ComponentDefinition"> 1333
 <xs:annotation> 1334
 <xs:documentation>Component definitions.</xs:documentation> 1335
 </xs:annotation> 1336
 <xs:unique name="componentParameterName"> 1337
 <xs:selector xpath="parameter"/> 1338
 <xs:field xpath="@name"/> 1339
 </xs:unique> 1340
 <xs:unique name="componentObjectName"> 1341
 <xs:selector xpath="object"/> 1342
 <xs:field xpath="@name"/> 1343
 </xs:unique> 1344
 <xs:unique name="componentProfileName"> 1345
 <xs:selector xpath="profile"/> 1346
 <xs:field xpath="@name"/> 1347
 </xs:unique> 1348

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 97

 </xs:element> 1349
 <xs:element name="model" type="tns:Model"> 1350
 <xs:annotation> 1351
 <xs:documentation>Model (Root and Service Object) 1352

definitions.</xs:documentation> 1353
 </xs:annotation> 1354
 <xs:unique name="modelParameterName"> 1355
 <xs:selector xpath="parameter"/> 1356
 <xs:field xpath="@name"/> 1357
 </xs:unique> 1358
 <xs:unique name="modelObjectName"> 1359
 <xs:selector xpath="object"/> 1360
 <xs:field xpath="@name"/> 1361
 </xs:unique> 1362
 <xs:unique name="modelProfileName"> 1363
 <xs:selector xpath="profile"/> 1364
 <xs:field xpath="@name"/> 1365
 </xs:unique> 1366
 </xs:element> 1367
 </xs:choice> 1368
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/> 1369
 </xs:sequence> 1370
 <xs:attribute name="spec" use="required"> 1371
 <xs:annotation> 1372
 <xs:documentation>URI of the associated specification document, e.g. the BBF 1373

Technical Report. This URI SHOULD uniquely identify the 1374
specification. More than one DM Schema instance document MAY 1375
reference the same specification. 1376

Where the specification is a BBF document, the URI naming rules specified in A.2.1 MUST be 1377
used. For example, to reference TR-106 Issue 1 Amendment 2, the 1378
value of this attribute would be urn:broadband-forum-org:tr-106-1-1379
2.</xs:documentation> 1380

 </xs:annotation> 1381
 <xs:simpleType> 1382
 <xs:restriction base="xs:anyURI"> 1383
 <xs:pattern value=".+"/> 1384
 </xs:restriction> 1385
 </xs:simpleType> 1386
 </xs:attribute> 1387
 <xs:anyAttribute namespace="##other"/> 1388
 </xs:complexType> 1389
 <xs:unique name="dataTypeName"> 1390
 <xs:selector xpath="dataType|import/dataType"/> 1391
 <xs:field xpath="@name"/> 1392
 </xs:unique> 1393
 <xs:unique name="componentName"> 1394
 <xs:selector xpath="component|import/component"/> 1395
 <xs:field xpath="@name"/> 1396
 </xs:unique> 1397
 <xs:unique name="modelName"> 1398
 <xs:selector xpath="model|import/model"/> 1399
 <xs:field xpath="@name"/> 1400
 </xs:unique> 1401
 <xs:unique name="bibId"> 1402
 <xs:selector xpath="bibliography/reference"/> 1403
 <xs:field xpath="@id"/> 1404
 </xs:unique> 1405
 <xs:keyref name="dataTypeBase" refer="tns:dataTypeName"> 1406
 <xs:selector xpath="dataType|.//parameter/syntax/dataType"/> 1407
 <xs:field xpath="@base"/> 1408
 </xs:keyref> 1409
 <xs:keyref name="dataTypeRef" refer="tns:dataTypeName"> 1410
 <xs:selector xpath=".//parameter/syntax/dataType"/> 1411
 <xs:field xpath="@ref"/> 1412
 </xs:keyref> 1413
 <xs:keyref name="componentRef" refer="tns:componentName"> 1414
 <xs:selector xpath=".//component"/> 1415
 <xs:field xpath="@ref"/> 1416
 </xs:keyref> 1417
 <xs:keyref name="modelBase" refer="tns:modelName"> 1418
 <xs:selector xpath="model"/> 1419

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 98

 <xs:field xpath="@base"/> 1420
 </xs:keyref> 1421
 </xs:element> 1422
</xs:schema> 1423

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

November 2008 © The Broadband Forum. All rights reserved. 99

Appendix I. “Device” Root Object,
Common Objects and
Components

The ―Device‖ Root Object, Common Objects and Components are defined in several DM Instance

documents, which include the following information:

 Data type definitions, the IP address and MAC address conventions of section 3.2.

 Bibliography, containing those items from the Normative References section that are referenced by

data model definitions.

 ―Device‖ Root Object definition, including the Common Objects and Components of Table 3 through

Table 5 and the profiles of Table 6 through Table 18. The Root Object definition has a model element

for each version of the Root Object; each such model element consists of the changes relative to the

previous version, if any.

The DM Instance documents are as follows, and can be found at http://www.broadband-

forum.org/cwmp/<File>.

Date Document File Description

September 2005 TR-106
tr-106-1-0-types.xml TR-069 Data Model Data Types.

tr-106-1-0.xml TR-069 Device:1.0 Root Object definition.

December 2006 TR-106 Amendment 1 tr-106-1-1.xml TR-069 Device:1.1 Root Object definition.

May 2008 TR-143 tr-143-1-0.xml
TR-069 Device:1.2 (and InternetGatewayDev-
ice:1.3) Root Object definition.

November 2008 TR-106 Amendment 2 tr-106-1-2.xml
TR-069 Device:1.2 Root Object errata and
clarifications; only minor changes, hence not a

new version of the Root Object.

http://www.broadband-forum.org/cwmp/tr-106-1-0-types.xml
http://www.broadband-forum.org/cwmp/tr-106-1-0.xml
http://www.broadband-forum.org/cwmp/tr-106-1-1.xml
http://www.broadband-forum.org/cwmp/tr-143-1-0.xml
http://www.broadband-forum.org/cwmp/tr-106-1-2.xml

	Introduction
	Terminology
	Document Conventions

	Architecture
	Data Hierarchy
	Data Hierarchy Requirements
	Data Hierarchy Examples

	Object Versioning
	Requirements for Compatible Versions
	Version Notation

	Profiles
	Scope of Profiles
	Multiple Profile Support
	Profile Versions
	Baseline Profiles
	Types of Requirements in a Profile

	DEPRECATED and OBSOLETED Items
	Requirements for DEPRECATED Items
	Requirements for OBSOLETED Items

	Object Definitions
	General Notation
	Data Types
	Vendor-Specific Parameters
	Common Object Definitions
	Inform Requirements
	Notification Requirements
	DeviceSummary Definition
	DeviceSummary Examples

	Profile Definitions
	Notation
	Baseline Profile
	GatewayInfo Profile
	Time Profile
	LAN Profile
	IPPing Profile
	TraceRoute Profile
	Download Profile
	DownloadTCP Profile
	Upload Profile
	UploadTCP Profile
	UDPEcho Profile
	UDPEchoPlus Profile
	UDPConnReq Profile

	Normative References
	CWMP Data Model Definition XML Schema
	Introduction
	Normative Information
	URI Conventions
	Descriptions
	Character Set
	Pre-processing
	Markup
	Templates
	HTML Example
	Data Types
	Named Data Types
	Anonymous Data Types
	Data Type Facets
	Reference Path Names
	Null References
	Reference Types
	Reference Facets
	Base Type Restriction
	Bibliography
	Components
	Root and Service Objects
	Parameters
	Parameter Syntax
	Objects
	Tables
	Profiles
	Modifications
	Parameter Modifications
	Object Modifications
	Profile Modifications

	DM Schema
	“Device” Root Object, Common Objects and Components

