Aigasoone

TR-106
Data Model Template for TR-069-Enabled Devices

Issue: 1 Amendment 2
Issue Date: November 2008

© The Broadband Forum. All rights reserved.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Notice

The Broadband Forum is a non-profit corporation organized to create guidelines for broadband network
system development and deployment. This Broadband Forum Technical Report has been approved by
members of the Forum. This Broadband Forum Technical Report is not binding on the Broadband Forum,
any of its members, or any developer or service provider. This Broadband Forum Technical Report is
subject to change, but only with approval of members of the Forum. This Technical Report is copyrighted
by the Broadband Forum, and all rights are reserved. Portions of this Technical Report may be copyrighted
by Broadband Forum members.

This Broadband Forum Technical Report is provided AS IS, WITH ALL FAULTS. ANY PERSON
HOLDING A COPYRIGHT IN THIS BROADBAND FORUM TECHNICAL REPORT, OR ANY
PORTION THEREOF, DISCLAIMS TO THE FULLEST EXTENT PERMITTED BY LAW ANY
REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, ANY WARRANTY:

(A) OF ACCURACY, COMPLETENESS, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE;

(B) THAT THE CONTENTS OF THIS BROADBAND FORUM TECHNICAL REPORT ARE
SUITABLE FOR ANY PURPOSE, EVEN IF THAT PURPOSE IS KNOWN TO THE
COPYRIGHT HOLDER,;

(C) THAT THE IMPLEMENTATION OF THE CONTENTS OF THE DOCUMENTATION WILL
NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
RIGHTS.

By using this Broadband Forum Technical Report, users acknowledge that implementation may require
licenses to patents. The Broadband Forum encourages but does not require its members to identify such
patents. For a list of declarations made by Broadband Forum member companies, please see
http://www.broadband-forum.org. No assurance is given that licenses to patents necessary to implement
this Technical Report will be available for license at all or on reasonable and non-discriminatory terms.

ANY PERSON HOLDING A COPYRIGHT IN THIS BROADBAND FORUM TECHNICAL REPORT,
OR ANY PORTION THEREOF, DISCLAIMS TO THE FULLEST EXTENT PERMITTED BY LAW (A)
ANY LIABILITY (INCLUDING DIRECT, INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES
UNDER ANY LEGAL THEORY) ARISING FROM OR RELATED TO THE USE OF OR RELIANCE
UPON THIS TECHNICAL REPORT; AND (B) ANY OBLIGATION TO UPDATE OR CORRECT THIS
TECHNICAL REPORT.

Broadband Forum Technical Reports may be copied, downloaded, stored on a server or otherwise re-
distributed in their entirety only, and may not be modified without the advance written permission of the
Broadband Forum.

The text of this notice must be included in all copies.

November 2008 © The Broadband Forum. All rights reserved. 2

http://www.broadband-forum.org/

Data Model Template for TR-069-Enabled Devices

Issue History

TR-106 Amendment 2

Amendment 1

John Blackford, 2Wire
Mike Digdon, SupportSoft
Heather Kirksey, Motive
William Lupton, 2Wire
Anton Okmianski, Cisco

Issue Number Issue Date Issue Editor Changes
Issue 1 September 2005 Jeff Bernstein, 2Wire Original
Christele Bouchat, Alcatel
Tim Spets, Westell
Issue 1 November 2006 Jeff Bernstein, 2Wire Clarification of original document

Issue 1
Amendment 2

November 2008

William Lupton, 2Wire
Hakan Westin, Tilgin

Addition of data model definition XML
Schema and normative XML common
object and component definitions

Technical comments or questions about this Technical Report should be directed to:

Editors William Lupton
Hakan Westin
BroadbandHome™ Greg Bathrick

Working Group
Chairs

November 2008

Heather Kirksey

2Wire
Tilgin

PMC-Sierra
Motive

© The Broadband Forum. All rights reserved.

wlupton@?2wire.com
hakan.westin@tilgin.com

Greg_ Bathrick@pmc-sierra.com
hkirksey@motive.com

mailto:wlupton@2wire.com
mailto:hakan.westin@tilgin.com
mailto:Greg_Bathrick@pmc-sierra.com
mailto:hkirksey@motive.com

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Table of Contents
L INETOTUCTION L.ttt s 8
0 O 1= 10 Yo o T | 9
1.2 DOCUMENT CONVENTIONS ...ceeitiiiiee et e ettt e e e ettt e e e e e e e et e e e e e eeeatba e e eeeeeeesannaaaeaaaaes 10
A A (o] 11 (=X (1 [T 10
21 Data HIErarCRYueiiii ettt e e e e e e et e e e e e e eetn e e eaaaees 10
2.1.1 Data Hierarchy REQUIFTEMENESuu s 10
2.1.2 Data Hierarchy Examples
2.2 ODJECE VEISIONING ... s
2.21 Requirements for Compatible VErSiONS.ccooooioiiiiii s 14
222 AV /=1 ¢=1To] o I \[o] = Ui o] o 1SR 15
2.3 L (0 1 L= U 15
2.3.1 SCOPE OF PrOfIlES ... s 15
2.3.2 Multiple Profil@ SUPPOIT..........uueiiiiiii s 15
2.33 Profile VEISIONSeeiiiee e e et e e e e e e et e e aaaees 16
234 BaSEliNe Profil@S.o 16
2.3.5 Types of Requirements in a Profile..........cccooooiii 16
2.4 DEPRECATED and OBSOLETED EMIS......uuuuuutuuttriuetrtsessesesssssnssssssssesssssnsssssessssnssssnsennsnnnne 17
241 Requirements for DEPRECATED ITEMSuui s 17
242 Requirements for OBSOLETED @Muuuuiiiiiiiiii s 18
B T @ o) [=Tox 5= 11 o] 1 PP 18
3.1 (1= =T = U N o] 7= 11T] o USSP 18
3.2 (D L= R Y/ 01 TP 19
3.3 Vendor-Specific Parameters 21
3.4 CommOon ODBJECt DEFINITIONS ... s 21
3.5 INFOrM REQUIFEMIENTS ..ottt 42
3.6 [N o] a1 o= o T == To U=t =T o (U SPPN 42
3.7 DeviceSummary DefinitioN..........cooiiiiiiiiie e e 44
3.7.1 DeviceSummary EXamMPIESccooeuuiiiiiiiieiieeiee e e et a e 45
4 Profile DefiNItiONScoooiiiiiiii 46
4.1 N[0 2111] o F TP PP P PP P PP PP PPPPPPPPPPPPRt 46
4.2 BaSEIINE PrOfilE ... ittt ettt ittt et nnnnnnnnes 46
4.3 GatewayINfO Profileoouiii i e a e a7
A4 TIME PrOfil..cciiiiiiiiiiiiii ettt ettt ettt e ettt tenennennes 47
4.5 [N o 1 = PSP P PP PP PPPPPPPPPPPPRt 47
4.6 IPPING Profilecoooiiii 48
4.7 TraceRoUte Profile ... 48
4.8 (D011][T=To I = (o) {1 [PPSR PP PP PP PPPPPPPPPPPPRt 48
4.9 DOWNIOAATCP PrOfil@ ...ttt e s e e s eesseennnes 49
(O I U o] (o = Yo I = o) {1 [TP P PP PPPPPPPPPPPPPRE 49
411 UPIOAdTCP Profil€......cceiiiiiiiiiiiiiiiiiiiiiiieieeeee ettt eeaseeseeeeeneene 50
4,12 UDPECKNO PrOfil© c.cceiiiiiiiiiiiiiiiiiiiiiieeeeeeee ettt et et neneeeeene 50
4.13 UDPECNOPIUS Profil€.....ccciiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee ettt eseeseeeennenne 50
4.14 UDPCONNREQ PrOfil€.....ciiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeetee ettt s eeeteeeesseneenennes 50
NOIMALIVE REFEIENCES. ... ittt s 52
Annex A. CWMP Data Model Definition XML SChEM@...........uuuiiiiiiiiiiiiiiiiiiiiiiiieiieeieeneseeeeenreeeneeeeneeeeeeees 53
W0t R [11 7 To 11T 1o o PSPPSR PPPPPPPPPPPPPRE 53
A2 NOrMAtVE INFOMMALIONeeiiiiiiiiiiiiiiiiiii ittt eee ittt e et sasaeeesseessennnsennes 53
A2 1 URICONVENLONS ..., 55
A.2.2 DESCHPLONS ... 56
E NG B B - | - N Y/ o= S PP PUPPPPPPTTNS 61
A2.4 BIibliography ... 70
A2.5 COMPONEBNES. ...ttt e e ettt e e e e ettt ab s e e e e e e e atba e e e e eeeeeeaan 72
A.2.6 Rootand Service ODJECEScooiiiiiiiii 73
A2.7 PAIAMEBLEIS ...ttt e e e et ettt e e e e e e e e et b e e e e e eeeeeaan 74
A28 OB ECES. oo 75
A2.9 PrOfilES..cceeieeeeeeeeeeeeeeeeeee ettt ettt ttentnnennnnrnnnne 75
N2 O Y o To 13 o711 o LSRRt 76

November 2008 © The Broadband Forum. All rights reserved. 4

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

F N T B 1Y IS Tol o =T o - DT PP PP POPPPPPPPPN 77
Appendix l. “Device” Root Object, Common Objects and COmMpPoNeNnts............ccccovvviuiiiieieenniiiiiiieeeeeenn, 99

November 2008 © The Broadband Forum. All rights reserved. 5

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

List of Figures

Figure 1 — Positioning in the End-to-End ArchiteCtUIe...........cooiiiiiiiiiieie e 8

List of Tables

LI Lo A 7 v Y, o1 SRR 19
Table 2 — Summary of Common Data OBJECES.........ccoiiiiiiieiieiee e 21
Table 3 — Common Object definitions fOr DEVICEIL..........cocviiiiiiiiieiie e 22
Table 4 — Forced INTOrm ParamMELErS.........cc.veiiiiiiiiieiie ettt sb e sb e sbeeneee 42
Table 5 — Parameters for which Active Notification MAY be denied by the CPE............cccooeiiiiiiiinnnne 42
Table 6 — Baseline:1 Profile definition for DEVICE:Looviiiiiiiiiii e 46
Table 7 — GatewaylInfo:1 Profile definition for DeViCe:L..........ccooiiiiiiiiiniie e 47
Table 8 — Time:1 Profile definition for DEVICE:Looiiiiiiiiiie e 47
Table 9 — LAN:1 Profile definition fOr DEVICE:L........c.ooiiiiiiiiiii ettt 47
Table 10 — IPPing:1 Profile definition for DEVICEILcciiiiiiiiiiie e 48
Table 11 — TraceRoute:1 Profile definition for DeVICE:1........ccovviiiiiiiie i 48
Table 12 — Download:1 profile definition for DeVICE:L.........cccviiiiiiiieii e 48
Table 13 — Download TCP:1 profile definition for DeviCe:L........ccooiiiiiiiiiiiiiiie e 49
Table 14 — Upload:1 profile definition for DeVICE:L..........cccoiiiiiiiiiiie e 49
Table 15 — UploadTCP:1 profile definition for DeVICe:L..........ccooiiiiiiiiiieiie e 50
Table 16 — UDPEcho:1 profile definition for DEVICEILccoieiiiiiiiieii e 50
Table 17 — UDPEchoPlus:1 profile definition for DEVICE:L.......cccoiiiiiiiiiiieiie e 50
Table 18 — UDPConnReq:1 Profile definition for DeVICe:1.......ccccocvviiieeiiii e 50
Table 19 — XML DeSCription IMArKUDveiieeiieeeiiee e e sie s stee e ste e sre e se e et e snaeesnaeesnte e st e e nnaeenneees 57
Table 20 — XML DeSCription TEMPIALES.ccvviiieeiiiee e e st stee e se e se et e e sreeesnae e snte e nreeenraeesneees 58
Table 21 — XML NamMed Data TYPES......cciveeiieeiieeeitieestreesieese e e steeestveessb e e snte e e staeesseeesnaeesnteesnseeesseeesneees 62
Table 22 — XML Data TYPE FACELS ...ocvvieiiieiiie ettt se st ee et et e sna e e snte e snte e st e e nreeennee s 63
Table 23 — Path Name Scope Definitionceoiiiiiiiieie e 64
Table 24 — PathRef Facet DEfiNItiONcccooiiiiiiiii e 66
Table 25 — InstanceRef Facet DEfiNitioN...........cocoiiiiiiiiii e 67
Table 26 — EnumerationRef Facet Definition.............cccoiiiiiiiiiiiii e 67
Table 27 — XML Facet INNeritance RUIESooiiiiiiiieiicee ettt sttt 69
Table 28 — XML BibliographiC REFEIENCESccvviiiuiiiiii et 71
Table 29 — XML Component DefiNItioN.........c.cciiiiiiiic et 72
Table 30 — XML ROt and Service OBJECEScciivviiiiieiiee ettt ste et e e sre e snee s 73
Table 31 — XML Parameter Definitionccooiiiiiiiiiiicic ettt nree 74
Table 32 — XML Parameter SYNTAXcciveeiiieiiiieeeitieeitreesreesieeesteeestreestbesssteesstaeestaeessteesnbeesnteeessneesnees 74
Table 33 — XML ObjJect DEfiNItioNc..cciiiiiiiiiic ettt e e srae e snae s 75
Table 34 — XML Table DefiNItION.......ccoiiiiiiieiie ettt steesree s 75
Table 35 — XML Profile Definitioncocveiiiiiiieie ettt st seee s 75
Table 36 — XML Parameter MOIfICatioNcovviiiiiieiieiic ettt 76
Table 37 — XML Object MOdIifiCationccocueiiiiiiic ettt 77
Table 38 - XML Profile MOGIfICAtION.cciiiiiiiieiice ettt 77

November 2008 © The Broadband Forum. All rights reserved. 6

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Summary

This Technical Report specifies data model guidelines to be followed by all TR-069-capable devices.
These guidelines include structural requirements for the data hierarchy, requirements for versioning of data
models, requirements for defining profiles, a set of common data objects, and a baseline profile for any
device supporting these common data objects. In addition, this Technical Report defines an XML Schema
that as far as possible embodies these guidelines, and which is to be used for defining TR-069 data models.

November 2008 © The Broadband Forum. All rights reserved. 7

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Introduction

This Technical Report specifies a baseline object structure and set of TR-069-accessible parameters to be
available on any TR-069-enabled device [2]. TR-069 defines the generic requirements of the CPE WAN
Management Protocol (CWMP) methods which can be applied to any TR-069 CPE. It is intended to
support a variety of different functionalities to manage a collection of CPE, including the following
primary capabilities:

e Auto-configuration and dynamic service provisioning
e Software/firmware image management

e Status and performance monitoring

e Diagnostics

The ability to manage the home network remotely has a number of benefits including reducing the costs
associated with activation and support of broadband services, improving time-to-market for new products
and services, and improving the user experience.

If TR-069 defines the generic methods for any device, other documents (such as this one) specify the
managed objects, or data models, which are collections of objects and parameters on which the generic
methods act to configure, diagnose, and monitor the state of specific devices and services.

The following figure places TR-069 in the end-to-end management architecture:

OSS/BSS

Managed LAN
Policy Device
Scope of CPE WAN Management
Protocol (CWMP):
Q ACS Southbound Interface
call E y Managed LAN
Center E Device

Managed Interne

Auto-Configuration Gateway Device

Server (ACS)

ACS Northbound Interface

Figure 1 — Positioning in the End-to-End Architecture

The ACS is a server that resides in the network and manages devices in the subscriber premises. It uses the
methods, or RPCs, defined to TR-069 to get and set the state of the device, initiate diagnostic tests,
download and upload files, and manage events. Some portions of this state are common across managed
devices and some are relevant only to certain devices types or services.

For a particular type of device, it is expected that the baseline defined in this Technical Report would be
augmented with additional objects and parameters specific to the device type. The data model used in any
TR-069-capable device MUST follow the guidelines described in this document. These guidelines include
the following aspects:

e Structural requirements for the data hierarchy
¢ Requirements for versioning of data models
o Requirements for defining profiles

¢ A set of common data objects

November 2008 © The Broadband Forum. All rights reserved.

11

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

e A baseline profile for any device supporting these common data objects

In addition, this document defines an XML Schema that as far as possible embodies these guidelines, and
which is to be used for defining TR-069 data models.

Terminology

The following terminology is used throughout the series of documents defining the CPE WAN
Management Protocol.

ACS

BBF
CPE

Common
Object

Component

CWMP

Data Model

Device

DM Instance

DM Schema

Event

Internet
Gateway
Device

MediaWiki

Object

Parameter

RPC
Profile
Root Object

Service
Object

URI

November 2008

Auto-Configuration Server. This is a component in the broadband network responsible
for auto-configuration of the CPE for advanced services.

Broadband Forum.
Customer Premises Equipment.

An object defined in this specification that may be contained either directly within the
“Device” Root Object or within a Service Object contained within the “Services” object.

A named collection of Parameters and/or Objects that can be included anywhere within a
data model. A Common Object can be thought of as a Component.

CPE WAN Management Protocol. Defined in [2], CWMP is a communication protocol
between an ACS and CPE that defines a mechanism for secure auto-configuration of a
CPE and other CPE management functions in a common framework.

A hierarchical set of Parameters that define the managed objects accessible via TR-069
for a particular device or service.

Used here as a synonym for CPE.

Data Model Schema instance document. This is an XML document that conforms to the
DM Schema and to any additional rules specified in or referenced by the DM Schema.

Data Model Schema. This is the XML Schema [16] that is used for defining data models
for use with the CPE WAN Management Protocol.

An indication that something of interest has happened that requires the CPE to notify the
ACS.

A CPE device that is either a B-NT (broadband network termination) or a broadband
router.

A software application that is used by Wikipedia and other projects.
http://en.wikipedia.org/wiki/MediaWiki.

A named collection of Parameters and/or other Objects.

A name-value pair representing a manageable CPE parameter made accessible to an ACS
for reading and/or writing.

Remote Procedure Call.
A named collection of requirements relating to a given object.

The top-level object of a device’s data model that contains all of the manageable objects.
The name of the Root Object is either “Device” or “InternetGatewayDevice”—the
former is used for all types of devices except an Internet Gateway Device.

The top-most object associated with a specific service or application within which all
objects and parameters associated with the service are contained.

Uniform Resource ldentifier [8].

© The Broadband Forum. All rights reserved. 9

http://en.wikipedia.org/wiki/MediaWiki

1.2

2.1

211

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Document Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted
as described in [1].

Architecture

Data Hierarchy

The data model for a TR-069-capable device will follow a common set of structural requirements. The
detailed structure depends on the nature of the device.

A device will always have a single Root Object, which will be called either “Device” or “InternetGateway-
Device”. The latter is exclusively to accommodate the existing TR-098 specification and is only to be used
if the device is an Internet Gateway Device.

In most cases, the Root Object contains two types of sub-elements: the Common Objects defined in this
specification (applicable only to the “Device” Root Object), and a single “Services” object that contains all
Service Objects associated with specific services or applications.

To accommaodate the existing TR-098 specification, if the device is an Internet Gateway Device, the Root
Object will also contain the application-specific objects associated with an Internet Gateway Device. In
this case, the InternetGatewayDevice object plays the role of both a Root Object and a Service Object.

A single device might include more than one Service Object. For example, a device that serves both as a
VolIP endpoint and a game device, might include both VolP-specific and game-specific Service Objects.

A single device might also include more than one instance of the same type of Service Object. An example
of when this might be appropriate is a TR-069 capable device that proxies the management functions for
one or more other devices that are not TR-069 capable. In this case, the ACS would communicate directly
only with the TR-069 capable device, which would incorporate the data models for all devices for which it
is serving as a management proxy. For example, a video device serving as a management proxy for three
VolIP phones would contain in its data model a video-specific Service Object plus three instances of a
VolP-specific Service Object. Note that whether a device is serving as a management proxy for another
device or whether it has that functionality embedded in it is generally opaque to the ACS.

Data Hierarchy Requirements

The data model for a TR-069-capable device (other than an Internet Gateway Device) MUST adhere to the
following structural requirements:

1) The data model MUST contain exactly one Root Object, called “Device”.

2) The Root Object MUST contain a “DeviceSummary” parameter as specified in section 3.7.
3) The Root Object MAY contain any of the Common Objects defined in section 3.4.

4) The Root Object MUST contain exactly one “Services” object.

5) The “Services” object MUST contain all of the Service Objects supported by the device. Each Service
Object contains all of the objects and parameters for a particular service or application.

6) The “Services” object MAY contain more than one Service Object, each corresponding to a distinct
service or application type.

7) The “Services” object MAY contain more than one instance of a Service Object of the same type.

8) Each Service Object instance MUST be appended with an instance number (assigned by the CPE) to
allow for the possibility of multiple instances of each. For example, if the device supports the Service
Object ABCService, the first instance of this Service Object might be “ABCService.1”.

November 2008 © The Broadband Forum. All rights reserved. 10

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

9) For each supported type of Service Object, a corresponding parameter in the “Services” object MUST
indicate the number of instances of that Service Object type. If a particular Service Object type is
supported by the device but there are currently no instances present, this parameter MUST still be
present with a value of zero. The name of this parameter MUST be the name of the Service Object
concatenated with “NumberOfEntries”. For example, for a device that contains instances of
ABCService, there MUST be a corresponding parameter in the “Services” object called
“ABCServiceNumberOfEntries”.

10) Each Service Object MAY contain secondary copies of some of the Common Objects defined in this
specification. The specific set of Common Objects that might be contained within a Service Object is
specified in section 3.4.

An Internet Gateway Device MUST adhere to the above requirements with the following exceptions:
1) The data model MUST contain exactly one Root Object, called “InternetGatewayDevice”.

2) The Root Object MAY contain any of the objects specific to an Internet Gateway Device as defined in
[3].

3) The “InternetGatewayDevice” Root Object MUST NOT directly contain any of the Common Objects
defined in this specification. While [3] defines objects very similar to some of the Common Objects
defined here, they are not identical and MUST NOT be considered the same as the Common Objects.
(Service Objects within the “Services” object MAY contain Common Objects with the limitations
specified in section 3.4.)

4) The “Services” object MAY be absent if the device supports no Service Objects other than
InternetGatewayDevice.

5) The “DeviceSummary” parameter MAY be absent only in an Internet Gateway Device that supports
the InternetGatewayDevice version 1.0 data model, as defined in section 2.4.2 of [3], and no other
Service Objects."

! The implication of this requirement is that if an Internet Gateway Device supports one or more Service
Objects (for example, the VoiceService object defined in TR-104), the Internet Gateway Device is
REQUIRED to support version 1.1 or greater of the InternetGatewayDevice Root Object as defined in
TR-098.

November 2008 © The Broadband Forum. All rights reserved. 11

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Formally, the top level of the data hierarchy is defined as follows:

Element = Root
| Root ".DeviceSummary"
| Root ".Services." ServiceObject "." Instance
| Root ".Services." ServiceObject "NumberOfEntries"
| Root ".Services." ServiceObject "." Instance "." SecondaryCommonObject
| DeviceRoot "." CommonObject
| GatewayRoot "." GatewaySpecificObject ; As defined in [3]

Root = DeviceRoot

| GatewayRoot
DeviceRoot = "Device"
GatewayRoot = "InternetGatewayDevice"
CommonObject = "DeviceInfo"
| "Config"
| "UserInterface"
| "ManagementServer"
| "GatewayInfo"
| "Time"
| "LAN"
SecondaryCommonObject = "DeviceInfo"
| "Config"
| "UserInterface"
| "Time"
| "LAN"

Instance = NONZERODIGIT [DIGIT]*

2.1.2 Data Hierarchy Examples

Below are some examples of data hierarchies for various types of devices. (Objects are shown in bold text,

parameters are shown in plain text.)
Simple device supporting the ABCService Service Object:

Device

DeviceSummary

Devicelnfo

ManagementServer

Services
ABCServiceNumberOfEntries = 1
ABCService.l1

ABCServiceSpecificObjects

Device supporting both ABCService and XYZService Service Objects:

Device
DeviceSummary
Devicelnfo
ManagementServer
Time
Userlinterface
LAN
Services
ABCServiceNumberOfEntries = 1
ABCService.1
ABCServiceSpecificObjects
XYZServiceNumberOfEntries = 1
XYZService.l
XYZServiceSpecificObjects

November 2008 © The Broadband Forum. All rights reserved.

12

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Internet Gateway Device that also supports the ABCService and XY ZService Service Objects:

InternetGatewayDevice
DeviceSummary
Devicelnfo
ManagementServer
Time
Userinterface
Layer3Forwarding
LANDeviceNumberOfEntries = 1
LANDevice.1
WANDeviceNumberOfEntries = 1
WANDevice.1
Services
ABCServiceNumberOfEntries = 1
ABCService.1l
ABCServiceSpecificObjects
XYZServiceNumberOfEntries = 1
XYZService.1l
XYZServiceSpecificObjects

Device supporting the ABCService Service Object and proxying for two devices supporting the

functionality of the XYZService Service Object:

Device
DeviceSummary
Devicelnfo
ManagementServer
Config
Gatewaylnfo
Time
Userinterface
LAN
Services
ABCServiceNumberOfEntries = 1
ABCService.1l
ABCServiceSpecificObjects
XYZServiceNumberOfEntries = 2
XYZService.l
Devicelnfo
XYZServiceSpecificObjects
XYZService.2
Devicelnfo
XYZServiceSpecificObjects

Internet Gateway Device also serving as a management proxy for three devices supporting the functionality

of the ABCService Service Object:

InternetGatewayDevice
DeviceSummary
Devicelnfo
ManagementServer
Time
Userlinterface
Layer3Forwarding
LANDeviceNumberOfEntries = 1
LANDevice.1
WANDeviceNumberOfEntries = 1
WANDevice.1l
Services

ABCServiceNumberOfEntries = 3

November 2008 © The Broadband Forum. All rights reserved.

13

2.2

2.2.1

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

ABCService.1
Devicelnfo
ABCServiceSpecificObjects
ABCService.2
Devicelnfo
ABCServiceSpecificObjects
ABCService.3
Devicelnfo
ABCServiceSpecificObjects

Object Versioning

To allow the definition of a Service Object or Root Object to change over time, the definition of a Service
Object or Root Object MUST have an explicitly specified version.

Version numbering of Service Objects and Root Objects is defined to use a major/minor version numbering
convention. The object version is defined as a pair of integers, where one integer represents the major
version, and the second integer represents the minor version. The version MUST be written with the two
integers separated by a dot (Major.Minor).

The first version of a given object SHOULD be defined as version “1.0”.

For each subsequent version of the object, if the later version is compatible with the previous version, then
the major version SHOULD remain unchanged, and the minor version SHOULD be incremented by one.
For example, the next compatible version after “2.17”” would be “2.18”. The requirements for a version to
be considered compatible with an earlier version are described in section 2.2.1.

For each subsequent version of the object, if the later version is not compatible with the previous version,
then the major version MUST increment by one, and the minor version MAY reset back to zero. For
example, the next incompatible version after “2.17” might be “3.0”.

Requirements for Compatible Versions

For one version of an object to be considered compatible with another version, the later version MUST be a
strict superset of the earlier version. Using major/minor versioning, this requirement applies only between
minor versions that share the same major version.

More specifically, this requires the following of the later version with respect to all earlier versions to
which it is to be compatible:

e The later version MAY add objects and parameters not previously in any earlier version, but MUST
NOT remove objects or parameters already defined in earlier versions.

e The later version MUST NOT modify the definition of any parameter or object already defined in an
earlier version (unless the original definition was clearly in error and has to be modified as an erratum
or clarified through a corrigendum process).

e The later version MUST NOT require any of the objects or parameters that have been added since the
earliest compatible version to be explicitly operated upon by the ACS to ensure proper operation of the
device (except those functions specifically associated with functionality added in later versions). That
is, the later version will accommodate an ACS that knows nothing of elements added in later versions.

The goal of the above definition of compatibility is intended to ensure bi-directional compatibility between
an ACS and CPE. Specifically that:

e If an ACS supports only an earlier version of an object as compared to the version supported by the
CPE, the ACS can successfully manage that object in the CPE as if it were the earlier version.

o If a CPE supports only an earlier version of an object as compared to the version supported by an ACS,
the ACS can successfully manage that object in the CPE as if it were the later version (without support
for new components defined only in later versions).

November 2008 © The Broadband Forum. All rights reserved. 14

222

2.3

2.3.1

2.3.2

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Version Notation
For objects, the following notation is defined to identify specific versions:

Notation Description Example

ObjectName:Major.Minor Refers to a specific version of the object. Device:1.0

ObjectName:Major Refgrs to any minor version of the object with the specified major Device:1
version.

ObjectName Refers to any version of the object. Device

Note that the version notation defined here is only to be used for purposes of documentation and in the
content of the DeviceSummary parameter defined in section 3.7. The actual names of objects and
parameters in the data model MUST NOT include version numbers.

Profiles

To limit the variability that an ACS needs to accommodate among various devices that it might manage, it
is useful to define “profiles” that express specific sets of requirements, support for which can be explicitly
indicated by a device.

A profile is a named collection of requirements associated with a given object. A device can indicate
support for one or more profiles. A device supporting a profile means that the device supports all of the
requirements defined by that profile. When a device supports all requirements defined by a profile, the
device MUST indicate support for that profile. The use of profiles allows the ACS a shorthand means of
discovering support for entire collections of capabilities in a device.

The following sections define the conventions to be used when defining profiles associated with TR-069
data models.

Scope of Profiles

A given profile is defined only in the context of a specific Service Object or Root Object with a specific
major version. For each profile definition, the specific object name and major version to which the profile
is to apply MUST be explicitly identified.

A profile’s name MUST be unique among profiles defined for the same object and major version, but a
name MAY be reused to define a different profile for a distinct combination of object name and major
version. For example, if we define profile “A” associated with object “X:2” (major version 2 of object X),
the same name “A” might be used to define a different profile for object “Y:1” or for object “X:3”.

A given profile is defined in association with a minimum minor version of a given object. The minimum
REQUIRED version of an object is the minimum version that includes all of the REQUIRED elements
defined by the profile. For each profile definition, the specific minimum version MUST be explicitly
identified.

Multiple Profile Support

For a given type of Service Object, multiple profiles MAY be defined. Profiles MAY be defined that have
either independent or overlapping requirements.

To maximize interoperability, a device MUST indicate all profiles that it supports. That is, it MUST
indicate all profiles whose definition is a subset of the support provided by that device. Doing so
maximizes the likelihood that an ACS will be aware of the definition of the indicated profiles. For
example, if profile “A” is a subset of profile “B”, and a device supports both, by indicating support for both
“A” and “B” an ACS that is unaware of profile “B” will at least recognize the device’s support for profile
“A”.

November 2008 © The Broadband Forum. All rights reserved. 15

2.3.3

2.3.4

2.35

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Profile Versions

To allow the definition of a profile to change over time, the definition of every profile MUST have an
associated version number.

Version numbering of profiles is defined to use a minor-only version numbering convention. That is, for a
given profile name, each successive version MUST be compatible with all earlier versions. Any
incompatible change to a profile MUST use a different profile name.

For one version of a profile to be considered compatible with another version, the later version MUST be a
strict superset of the earlier version. This requires the following of the later version with respect to all
earlier versions to which it is to be compatible:

e The later version MAY add requirements that were not in earlier versions of the profile, but MUST
NOT remove requirements.

e The later version MAY remove one or more conditions that had previously been placed on a
requirement. For example, if a previous profile REQUIRED X only if condition A was True, then the
later profile might require X unconditionally.

For profiles, the following notation is defined to identify specific versions:

Notation Description Example
ProfileName:Version Refers to a specific version of the profile. Baseline:1
ProfileName Refers to any version of the profile. Baseline

ProfileName MUST start with a letter or underscore, and subsequent characters MUST be letters, digits,
underscores or hyphens. The terms “letter” and “digit” are as defined in Appendix B of [10].

Baseline Profiles

For every Service Object (and Root Object) there SHOULD be at least one profile defined. In many cases
it is desirable to define a Baseline profile that indicates the minimum requirements REQUIRED for any
device that supports that object. Where a Baseline profile is defined, it would normally be expected that all
implementations of the corresponding object would indicate support for the Baseline profile in addition to
any other profiles supported.

Types of Requirements in a Profile

Because a profile is defined within the context of a single object (and major version), all of the
requirements associated with the profile MUST be specific to the data model associated with that object.

Profile requirements can include any of the following types of requirements associated with an object’s
data model:

e Arequirement for read support of a Parameter.

e Arequirement for write support of a Parameter.

e Arequirement for support of a sub-object contained within the overall object.
e Arequirement for the ability to add or remove instances of a sub-object.

e Avrequirement to support active and/or passive notification for a Parameter.

e Avrequirement to support access control for a given Parameter.

For each of the requirement categories listed above, a profile can define the requirement unconditionally, or
can place one or more conditions on the requirement. For example, a profile might require that a Parameter
be supported for reading only if the device supports some other parameter or object (one that is not itself
REQUIRED by the profile). Such conditions will be directly related to the data model of the overall object
associated with the profile.

November 2008 © The Broadband Forum. All rights reserved. 16

2.4

241

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Because a device has to be able to support multiple profiles, all profiles MUST be defined such they are
non-contradictory. As aresult, profiles MUST only define minimum requirements to be met, and MUST
NOT specify negative requirements. That is, profiles will not include requirements that specify something
that is not to be supported by the device, or requirements that exclude a range of values.

DEPRECATED and OBSOLETED Items

The key word “DEPRECATED” in the data model definition for any TR-069-capable device is to be
interpreted as follows: This term refers to an object, parameter or parameter value that is defined in the
current version of the standard but is meaningless, inappropriate, or otherwise unnecessary. It is intended
that such objects, parameters or parameter values will be removed from the next major version of the data
model. Requirements on how to interpret or implement deprecated objects, parameters or parameter values
are given below. For more information on how to interpret or implement specific deprecated objects,
parameters or parameter values, refer to the definition of the object or parameter.

The key word “OBSOLETED” in the data model definition for any TR-069-capable device is to be
interpreted as follows: This term refers to an object, parameter or parameter value that meets the
requirements for being deprecated, and in addition is obsolete. Such objects, parameters or parameter
values can be removed from a later minor version of a data model, or from a later version of a profile,
without this being regarded as breaking backwards compatibility rules. Requirements on how to interpret
or implement obsoleted objects, parameters or parameter values are given below. For more information on
how to interpret or implement specific obsoleted objects, parameters or parameter values, refer to the
definition of the object or parameter.

Requirements for DEPRECATED Items

This section defines requirements that apply to all DEPRECATED objects, parameters and parameter
values unless specifically overridden by the object or parameter definition.

Data model requirements:

1) The definition of a DEPRECATED parameter, object or parameter value MUST include an
explanation of why the item is deprecated.

2) The definition of a DEPRECATED parameter, object or parameter value MAY specify further
requirements relating to the item; such requirements MAY override CPE or ACS requirements
specified in this section.

CPE requirements:

1) A DEPRECATED parameter MUST have a value which is valid for its data type and fulfils any
range (for numeric parameters), length (for string, base64 or hexBinary parameters) and
enumerated value (for string parameters) requirements.

2) Detailed behavioral requirements for a DEPRECATED parameter, e.g. that its value is a unique
key, MAY be ignored by the CPE.

3) The CPE MUST, if such operations are permitted by the data model definition, permit creation of
DEPRECATED objects, modification of DEPRECATED parameters, and setting of
DEPRECATED parameter values. However, it MAY choose not to apply such changes to its
operational state.

4) Regardless of whether DEPRECATED changes are applied to the CPE operational state, a read of
a DEPRECATED writable parameter SHOULD return the value that was last written, i.e. the CPE
is expected to store the value even if it chooses not to apply it to its operational state.

5) When the ACS modifies the value of a DEPRECATED parameter, the CPE MAY choose not to
check whether the new parameter value is valid for its data type and fulfils any range (for numeric
parameters), length (for string, base64 or hexBinary parameters) and enumerated value (for string
parameters) requirements.

November 2008 © The Broadband Forum. All rights reserved. 17

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

6) The CPE MAY reject an attempt by the ACS to set any parameter to a DEPRECATED value.
ACS requirements:

1) The ACS SHOULD NOT create DEPRECATED objects, modify DEPRECATED parameters, or
set DEPRECATED parameter values.

2) The ACS SHOULD ignore DEPRECATED objects, parameters and parameter values.

3) The ACS MUST NOT set a DEPRECATED parameter to a value that is invalid for its data type or
fails to fulfil any range (for numeric parameters), length (for string, base64 or hexBinary
parameters) or enumerated value (for string parameters) requirements.

4) The ACS MUST NOT set any parameter to a DEPRECATED value.

2.4.2 Requirements for OBSOLETED Items

3.1

This section defines requirements that apply to all OBSOLETED objects, parameters or parameter values
unless specifically overridden by the object or parameter definition.

An OBSOLETED object, parameter or parameter MUST meet all the requirements of the previous section.
In addition, the following data model requirements apply.

1) An OBSOLETED object, parameter or parameter value MAY be removed from a later minor
version of a data model without this being regarded as breaking backwards compatibility rules.

2) An OBSOLETED object, parameter or parameter value MUST NOT be removed from the current
version of a profile, but MAY be removed from a later version of a profile without this being
regarded as breaking backwards compatibility rules.

3) A data model definition MUST include a list of those OBSOLETED objects, parameters or
parameter values that have been removed from the data model or from its profiles. This is to
prevent future namespace conflicts.

Object Definitions

General Notation

Parameter names use a hierarchical form similar to a directory tree. The name of a particular Parameter is
represented by the concatenation of each successive node in the hierarchy separated with a “.” (dot),
starting at the trunk of the hierarchy and leading to the leaves. When specifying a partial path, indicating
an intermediate node in the hierarchy, the trailing “.”” (dot) is always used as the last character.

Parameter names MUST be treated as case sensitive. The name of each node in the hierarchy MUST start
with a letter or underscore, and subsequent characters MUST be letters, digits, underscores or hyphens.
The terms “letter” and “digit” are as defined in Appendix B of [10].

In some cases, where multiple instances of an object can occur, the placeholder node name “{i}” is shown.
In actual use, this placeholder is to be replaced by an instance number, which MUST be a positive integer
(= 1). Because in some cases object instances can be deleted, instance numbers will in general not be
contiguous.

November 2008 © The Broadband Forum. All rights reserved. 18

3.2

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Data Types

The parameters defined in this specification make use of a limited subset of the default SOAP data types
[5]. The complete set of data types along with the notation used to represent these types is listed in Table 1.

Table 1 — Data Types

Type

Description

object

A container for parameters and/or other objects. The full path name of a parameter is given by the
parameter name appended to the full path name of the object it is contained within.

string

For strings listed in this specification, a minimum and maximum allowed length can be listed using the
form string(Min:Max), where Min and Max are the minimum and maximum string length in characters. If
either Min or Max are missing, this indicates no limit, and if Min is missing the colon can also be omitted,
as in string(Max). Multiple comma-separated ranges can be specified, in which case the string length
MUST be in one of the ranges. A “k” or “K” suffix is interpreted as a 1024 (not 1000) multiplier, e.g. 32k
means 32768.

For all strings a maximum length is either explicitly indicated or implied by the size of the elements
composing the string. For strings in which the content is an enumeration, the longest enumerated value
determines the maximum length. If a string does not have an explicitly indicated maximum length or is
not an enumeration, the default maximum is 16 characters.

When transporting a string value within an XML document, any characters which are special to XML
MUST be escaped as specified by the XML specification [10]. Additionally, any characters other than
printable ASCII characters, i.e. any characters whose decimal ASCII representations are outside the
(inclusive) ranges 9-10 and 32-126, SHOULD be escaped as specified by the XML specification.

int

Integer in the range —2147483648 to +2147483647, inclusive.

For some int types listed, a value range is given using the form int{Min:Max], where the Min and Max
values are inclusive. If either Min or Max are missing, this indicates no limit. Multiple comma-separated
ranges can be specified, in which case the value MUST be in one of the ranges. A “k” or “K” suffix is
interpreted as a 1024 (not 1000) multiplier, e.g. 32k means 32768.

long

Long integer in the range —9223372036854775808 to 9223372036854775807, inclusive.

For some long types listed, a value range is given using the form long[Min:Max], where the Min and Max
values are inclusive. If either Min or Max are missing, this indicates no limit. Multiple comma-separated
ranges can be specified, in which case the value MUST be in one of the ranges. A “k” or “K” suffix is
interpreted as a 1024 (not 1000) multiplier, e.g. 32k means 32768.

unsignedint

Unsigned integer in the range 0 to 4294967295, inclusive.

For some unsignedInt types listed, a value range is given using the form unsignedint[Min:Max], where
the Min and Max values are inclusive. If either Min or Max are missing, this indicates no limit. Multiple
comma-separated ranges can be specified, in which case the value MUST be in one of the ranges. A
“k” or “K” suffix is interpreted as a 1024 (not 1000) multiplier, e.g. 32k means 32768.

unsignedLong

Unsigned long integer in the range 0 to 18446744073709551615, inclusive.

For some unsignedLong types listed, a value range is given using the form unsignedLong[Min:Max],
where the Min and Max values are inclusive. If either Min or Max are missing, this indicates no limit.
Multiple comma-separated ranges can be specified, in which case the value MUST be in one of the
ranges. A “k” or “K” suffix is interpreted as a 1024 (not 1000) multiplier, e.g. 32k means 32768.

boolean

Boolean, where the allowed values are “0”, “1”, “true”, and “false”. The values “1” and “true” are
considered interchangeable, where both equivalently represent the logical value true. Similarly, the
values “0” and “false” are considered interchangeable, where both equivalently represent the logical
value false.

November 2008

© The Broadband Forum. All rights reserved. 19

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Type Description

dateTime The subset of the ISO 8601 date-time format defined by the SOAP dateTime type.

All times MUST be expressed in UTC (Universal Coordinated Time) unless explicitly stated otherwise in
the definition of a parameter of this type.

If absolute time is not available to the CPE, it SHOULD instead indicate the relative time since boot,
where the boot time is assumed to be the beginning of the first day of January of year 1, or
0001-01-01T00:00:00. For example, 2 days, 3 hours, 4 minutes and 5 seconds since boot would be
expressed as 0001-01-03T03:04:05. Relative time since boot MUST be expressed using an
untimezoned representation. Any untimezoned value with a year value less than 1000 MUST be
interpreted as a relative time since boot.

If the time is unknown or not applicable, the following value representing “Unknown Time” MUST be
used: 0001-01-01T00:00:00Z.

Any dateTime value other than one expressing relative time since boot (as described above) MUST use
timezoned representation (that is, it MUST include a timezone suffix).

base64 Base64 encoded binary (no line-length limitation).

A minimum and maximum allowed length can be listed using the form base64(Min:Max), where Min and
Max are the minimum and maximum length in characters before Base64 encoding. If either Min or Max
are missing, this indicates no limit, and if Min is missing the colon can also be omitted, as in
base64(Max). Multiple comma-separated ranges can be specified, in which case the length MUST be in
one of the ranges. A “k” or “K” suffix is interpreted as a 1024 (not 1000) multiplier, e.g. 32k means
32768.

Note that data models defined prior to the introduction of the DM Schema specified the length after
Base64 encoding. If the length after encoding is n (which is always a multiple of 4), the length before
encoding is m = (n/4)*3, m-1 or m-2.

hexBinary Hex encoded binary.

A minimum and maximum allowed length can be listed using the form hexBinary(Min:Max), where Min
and Max are the minimum and maximum length in characters before Hex Binary encoding. If either Min
or Max are missing, this indicates no limit, and if Min is missing the colon can also be omitted, as in
hexBinary(Max). Multiple comma-separated ranges can be specified, in which case the length MUST be
in one of the ranges. A “k” or “K” suffix is interpreted as a 1024 (not 1000) multiplier, e.g. 32k means
32768.

All IPv4 addresses and subnet masks are represented as strings in 1Pv4 dotted-decimal notation. All IPv6
addresses and subnet masks MUST be represented using any of the 3 standard textual representations as
defined in RFC 3513 [7], sections 2.2.1, 2.2.2 and 2.2.3. Both lower-case and upper-case letters can be
used. Use of the lower-case letters is RECOMMENDED. Examples of valid IPv6 address textual
representations:

e 1080:0:0:800:ba98:3210:11aa:12dd
e 1080::800:ba98:3210:11aa:12dd
e 0:0:0:0:0:0:13.1.68.3

Unspecified or inapplicable IP addresses and subnet masks MUST be represented as empty strings unless
otherwise specified by the parameter definition.

All MAC addresses are represented as strings of 12 hexadecimal digits (digits 0-9, letters A-F or a-f)
displayed as six pairs of digits separated by colons. Unspecified or inapplicable MAC addresses MUST be
represented as empty strings unless otherwise specified by the parameter definition.

For unsignedInt parameters that are used for statistics, e.g. for byte counters, the actual value of the statistic
might be greater than the maximum value that can be represented as an unsignedint. Such values
SHOULD wrap around through zero. The term “packet” is to be interpreted as the transmission unit
appropriate to the protocol layer in question, e.g. an IP packet or an Ethernet frame.

For strings that are defined to contain comma-separated lists, the format is defined as follows. Between
every pair of successive items in a comma-separated list there MUST be a separator. The separator MUST
include exactly one comma character, and MAY also include one or more space characters before or after
the comma. The entire separator, including any space characters, MUST NOT be considered part of the list

November 2008 © The Broadband Forum. All rights reserved. 20

3.3

3.4

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

items it separates. The last item in a comma-separated list MUST NOT be followed with a separator.
Individual items in a comma-separated list MUST NOT include a space or comma character within them.
If an item definition requires the use of spaces or commas, that definition MUST specify the use of an
escape mechanism that prevents the use of these characters.

For string parameters whose value is defined to contain the full hierarchical name of an object, the
representation of the object name MUST NOT include a trailing “dot.” An example of a parameter of this
kind in the InternetGatewayDevice data model is InternetGatewayDevice.Layer3Forwarding.Default-
ConnectionService. For this parameter, the following is an example of a properly formed value:

InternetGatewayDevice.WANDevice.1.WANConnectionDevice.2.WANPPPConnection.1

Vendor-Specific Parameters
A vendor MAY extend the standardized parameter list with vendor-specific parameters and objects.

Vendor-specific parameters and objects MAY be defined either in a separate naming hierarchy or within
the standardized naming hierarchy.

The name of a vendor-specific parameter or object not contained within another vendor-specific object
MUST have the form:

X_<VENDOR>_VendorSpecificName
In this definition <VENDOR> is a unique vendor identifier, which MAY be either an OUI or a domain
name. The OUI or domain name used for a given vendor-specific parameter MUST be one that is assigned
to the organization that defined this parameter (which is not necessarily the same as the vendor of the CPE
or ACS). An OUI is an organizationally unique identifier as defined in [4], which MUST formatted as a
six-hexadecimal-digit string using all upper-case letters and including any leading zeros. A domain name
MUST be upper case with each dot (“.””) replaced with a hyphen or underscore.

The VendorSpecificName MUST be a valid string as defined in 3.2, and MUST NOT contain a ““.”” (period)
or a space character.

Note — the use of the string “X " to indicate a vendor-specific parameter implies that no standardized
parameter can begin with “X .

The name of a vendor-specific parameter or object that is contained within another vendor-specific object
which itself begins with the prefix described above need not itself include the prefix.

The full path name of a vendor-specific parameter or object MUST NOT exceed 256 characters in length.
Below are some example vendor-specific parameter and object names:

Device.UserInterface.X_012345_AdBanner

Device.X_EXAMPLE-COM_MyConfig.Status
When appropriate, a vendor MAY also extend the set of values of an enumeration. If this is done, the
vendor-specified values MUST be in the form “X _<VENDOR> VendorSpecificValue”. The total length
of such a string MUST NOT exceed 31 characters.

Common Object Definitions
Table 2 provides a summary of the common data objects that are defined in this specification.

Table 2 — Summary of Common Data Objects

Object Name Allowed Location in Description
Hierarchy

Capabilities Root and Device capabilities.
Service Objects

Devicelnfo Root and General information about the device, including its identity and
Service Objects version information.

November 2008 © The Broadband Forum. All rights reserved. 21

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Object Name Allowed Location in Description
Hierarchy
ManagementServer Root Parameters associated with the communication between the
CPE and an ACS.
Gatewaylnfo Root Information to identify an Internet Gateway Device through
which the CPE is connected.
Time Root and Parameters associated with an NTP or SNTP time client on the
Service Objects CPE.
Config Root and Contains general configuration state.

Service Objects

Userlinterface

Root and
Service Objects

Parameters related to the user interface of the CPE.

LAN

Root and
Service Objects

Parameters related to IP-based LAN connectivity of the CPE.

DownloadDiagnostics

Root and
Service Objects

HTTP / FTP download test.

UploadDiagnostics

Root and
Service Objects

HTTP / FTP upload test.

UDPEchoConfig

Root and
Service Objects

UDP echo test.

Table 3 lists the Common Objects and their associated parameters defined for “Device”, version 1.2. This
definition is a superset of previously defined versions, 1.0 and 1.1.

For a given implementation of this data model, the CPE MUST indicate support for the highest version
number of any object or parameter that it supports. For example, even if the CPE supports only a single
parameter that was introduced in version 1.2, then it will indicate support for version 1.2. The version
number associated with each object and parameter is shown in the Version column of Table 3.

Table 3 - Common Object definitions for Device:1

Name®

Type Write®

Description Default®

Version®

DeviceSummary

string(1024) -

See section 3.7. -

1.0

.Capabilities.

object -

The capabilities of the device. This is a constant -
read-only object, meaning that only a firmware
upgrade will cause these values to be altered.

1.2

.Capabilities.PerformanceDiagnostic.

object -

The capabilities of the Performance Diagnostics -
(DownloadDiagnostics and UploadDiagnostics) for
the device.

1.2

DownloadTransports

string -

Comma-separated list of supported Download- -
Diagnostics transport protocols for a CPE device.
Each item in the list is an enumeration of:

‘HTTP”
“FTP” (OPTIONAL)

1.2

The name of a Parameter is formed from the concatenation of the base path (see section 2.1), the object

name shown in the yellow header, and the individual Parameter name.

“W” indicates the parameter MAY be writable (if “W” is not present, the parameter is defined as read-

only). For an object, “W” indicates object instances can be Added or Deleted.

The default value of the parameter on creation of an object instance via TR-069. If the default value is an

empty string, this is represented by the symbol <Empty>. A hyphen indicates that no default value is
specified. For a parameter in which no default value is specified, on creation of a parent object instance,
the CPE MUST set the parameter to a value that is valid according to the definition of that parameter.

November 2008

The Version column indicates the minimum data model version REQUIRED to support the associated
Parameter or Object.

© The Broadband Forum. All rights reserved. 22

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name®

Type

Write®

Description

Default”

Version®

UploadTransports

string

Comma-separated list of supported Upload-
Diagnostics transport protocols for a CPE device.
Each item in the list is an enumeration of:

“HTTP”
“FTP” (OPTIONAL)

1.2

.Devicelnfo.

object

This object contains general device information.

1.0

Manufacturer

string(64)

The manufacturer of the CPE (human readable
string).

1.0

ManufacturerOUI

string(6)

Organizationally unique identifier of the device
manufacturer. Represented as a six hexadecimal-
digit value using all upper-case letters and
including any leading zeros. The value MUST be a
valid OUI as defined in [4].

This value MUST remain fixed over the lifetime of
the device, including across firmware updates.

1.0

ModelName

string(64)

Model name of the CPE (human readable string).

1.0

Description

string(256)

A full description of the CPE device (human
readable string).

1.0

ProductClass

string(64)

Identifier of the class of product for which the serial
number applies. That is, for a given manufacturer,
this parameter is used to identify the product or
class of product over which the SerialNumber
parameter is unique.

This value MUST remain fixed over the lifetime of
the device, including across firmware updates.

1.0

SerialNumber

string(64)

Serial number of the CPE.

This value MUST remain fixed over the lifetime of
the device, including across firmware updates.

1.0

HardwareVersion

string(64)

A string identifying the particular CPE model and
version.

1.0

SoftwareVersion

string(64)

A string identifying the software version currently
installed in the CPE.

To allow version comparisons, this element
SHOULD be in the form of dot-delimited integers,
where each successive integer represents a more
minor category of variation. For example,
3.0.21where the components mean:
Major.Minor.Build.

1.0

EnabledOptions

string(1024)

Comma-separated list of the OptionName of each
Option that is currently enabled in the CPE. The
OptionName of each is identical to the OptionName
element of the OptionStruct described in [2]. Only
those options are listed whose State indicates the
option is enabled.

1.0

AdditionalHardwareVersion

string(64)

A comma-separated list of any additional versions.
Represents any additional hardware version
information the vendor might wish to supply.

1.0

AdditionalSoftwareVersion

string(64)

A comma-separated list of any additional versions.
Represents any additional software version
information the vendor might wish to supply.

1.0

ProvisioningCode

string(64)

Identifier of the primary service provider and other
provisioning information, which MAY be used by
the ACS to determine service provider-specific
customization and provisioning parameters.

1.0

November 2008

© The Broadband Forum. All rights reserved.

23

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name®

Type

Write®

Description

Default”

Version®

DeviceStatus

string

Current operational status of the device.
Enumeration of:

“Up”
"Initializing”
“Error”
“Disabled”

1.0

UpTime

unsignedint

Time in seconds since the CPE was last restarted.

1.0

FirstUseDate

dateTime

Date and time in UTC that the CPE first both
successfully established an IP-layer network
connection and acquired an absolute time
reference using NTP or equivalent over that
network connection. The CPE MAY reset this date
after a factory reset.

If NTP or equivalent is not available, this
parameter, if present, SHOULD be set to the
Unknown Time value.

1.0

DevicelLog

string(32K)

Vendor-specific log(s).

1.0

.ManagementServer.

object

This object contains parameters relating to the
CPE’s association with an ACS.

1.0

URL

string(256)

URL, as defined in [8], for the CPE to connect to
the ACS using the CPE WAN Management
Protocol.

This parameter MUST be in the form of a valid
HTTP or HTTPS URL.

The “host” portion of this URL is used by the CPE
for validating the ACS certificate when using SSL
or TLS.

Note that on a factory reset of the CPE, the value

of this parameter might be reset to its factory value.

If an ACS modifies the value of this parameter, it
SHOULD be prepared to accommodate the
situation that the original value is restored as the
result of a factory reset.

1.0

Username

string(256)

Username used to authenticate the CPE when
making a connection to the ACS using the CPE
WAN Management Protocol.

This username is used only for HTTP-based
authentication of the CPE.

Note that on a factory reset of the CPE, the value

of this parameter might be reset to its factory value.

If an ACS modifies the value of this parameter, it
SHOULD be prepared to accommodate the
situation that the original value is restored as the
result of a factory reset.

1.0

Password

string(256)

Password used to authenticate the CPE when
making a connection to the ACS using the CPE
WAN Management Protocol.

This password is used only for HTTP-based
authentication of the CPE.

When read, this parameter returns an empty string,
regardless of the actual value.

Note that on a factory reset of the CPE, the value

of this parameter might be reset to its factory value.

If an ACS modifies the value of this parameter, it
SHOULD be prepared to accommodate the
situation that the original value is restored as the
result of a factory reset.

1.0

November 2008

© The Broadband Forum. All rights reserved.

24

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name®

Type

Write®

Description

Default”

Version®

PeriodicinformEnable

boolean

Whether or not the CPE MUST periodically send
CPE information to the ACS using the Inform
method call.

1.0

PeriodicinformInterval

unsignedint

(1]

The duration in seconds of the interval for which
the CPE MUST attempt to connect with the ACS
and call the Inform method if PeriodiclnformEnable
is True.

1.0

PeriodicInformTime

dateTime

An absolute time reference in UTC to determine
when the CPE will initiate the periodic Inform
method calls. Each Inform call MUST occur at this
reference time plus or minus an integer multiple of
the PeriodicInforminterval.

PeriodiclnformTime is used only to set the “phase”
of the periodic Informs. The actual value of
PeriodicInformTime can be arbitrarily far into the
past or future.

For example, if PeriodicInforminterval is 86400 (a
day) and if PeriodicInformTime is set to UTC
midnight on some day (in the past, present, or
future) then periodic Informs will occur every day at
UTC midnight. These MUST begin on the very
next midnight, even if PeriodiclnformTime refers to
a day in the future.

The Unknown Time value defined in section 3.2
indicates that no particular time reference is
specified. That is, the CPE MAY locally choose the
time reference, and needs only to adhere to the
specified PeriodicInformInterval.

If absolute time is not available to the CPE, its
periodic Inform behavior MUST be the same as if
the PeriodicinformTime parameter was set to the
Unknown Time value.

1.0

ParameterKey

string(32)

ParameterKey provides the ACS a reliable and
extensible means to track changes made by the
ACS. The value of ParameterKey MUST be equal
to the value of the ParameterKey argument from
the most recent successful SetParameterValues,
AddObiject, or DeleteObject method call from the
ACS.

The CPE MUST set ParameterKey to the value
specified in the corresponding method arguments if
and only if the method completes successfully and
no fault response is generated. If a method call
does not complete successfully (implying that the
changes requested in the method did not take
effect), the value of ParameterKey MUST NOT be
modified.

The CPE MUST only modify the value of
ParameterKey as a result of SetParameterValues,
AddObject, DeleteObject, or due to a factory reset.
On factory reset, the value of ParameterKey MUST
be set to empty.

1.0

ConnectionRequestURL

string(256)

HTTP URL, as defined in [8], for an ACS to make a
Connection Request notification to the CPE.

In the form:
http://host:port/path

The “host” portion of the URL MAY be the IP
address for the management interface of the CPE
in lieu of a host name.

1.0

ConnectionRequestUsername

string(256)

Username used to authenticate an ACS making a
Connection Request to the CPE.

1.0

November 2008

© The Broadband Forum. All rights reserved.

25

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name®

Type

Write®

Description

Default”

Version®

ConnectionRequestPassword

string(256)

Password used to authenticate an ACS making a
Connection Request to the CPE.

When read, this parameter returns an empty string,
regardless of the actual value.

1.0

UpgradesManaged

boolean

Indicates whether or not the ACS will manage
upgrades for the CPE. If True, the CPE SHOULD
NOT use other means other than the ACS to seek
out available upgrades. If False, the CPE MAY use
other means for this purpose.

Note that an autonomous upgrade (reported via an
"10 AUTONOMOUS TRANSFER COMPLETE"
Inform Event code) SHOULD be regarded as a
managed upgrade if it is performed according to
ACS-specified policy.

1.0

KickURL

string(256)

Present only for a CPE that supports the Kicked
RPC method.

LAN-accessible URL, as defined in [8], from which
the CPE can be “kicked” to initiate the Kicked RPC
method call. MUST be an absolute URL including
a host name or IP address as would be used on the
LAN side of the CPE.

1.0

DownloadProgressURL

string(256)

Present only for a CPE that provides a LAN-side
web page to show progress during a file download.

LAN-accessible URL, as defined in [8], to which a
web-server associated with the ACS MAY redirect
a user’s browser on initiation of a file download to
observer the status of the download.

1.0

UDPConnectionRequestAddress

string(256)

Address and port to which an ACS MAY send a
UDP Connection Request to the CPE (see Annex
G of [2]).

This parameter is represented in the form of an
Authority element as defined in [8]. The value
MUST be in one of the following two forms:

host:port
host

When STUNEnable is True, the “host” and “port”
portions of this parameter MUST represent the
public address and port corresponding to the NAT
binding through which the ACS can send UDP
Connection Request messages (once this
information is learned by the CPE through the use
of STUN).

When STUNEnable is False, the “host” and “port”
portions of the URL MUST represent the local IP
address and port on which the CPE is listening for
UDP Connection Request messages.

The second form of this parameter MAY be used
only if the port value is equal to “80”.

11

UDPConnectionRequestAddressNotification-
Limit

unsignedint

The minimum time, in seconds, between Active
Notifications resulting from changes to the UDP-
ConnectionRequestAddress (if Active Notification is
enabled).

11

STUNEnable

boolean

Enables or disables the use of STUN by the CPE.
This applies only to the use of STUN in association
with the ACS to allow UDP Connection Requests.

11

November 2008

© The Broadband Forum. All rights reserved.

26

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name®

Type

Write®

Description

Default

y:s

Version®

STUNServerAddress

string(256)

Host name or IP address of the STUN server for
the CPE to send Binding Requests if STUN is
enabled via STUNEnable.

If empty and STUNEnable is True, the CPE MUST
use the address of the ACS extracted from the host
portion of the ACS URL.

11

STUNServerPort

unsignedint
[0:65535]

Port number of the STUN server for the CPE to
send Binding Requests if STUN is enabled via
STUNEnable.

By default, this SHOULD be the equal to the default
STUN port, 3478.

11

STUNUsername

string(256)

If non-empty, the value of the STUN USERNAME
attribute to be used in Binding Requests (only if
message integrity has been requested by the
STUN server).

If empty, the CPE MUST NOT send STUN Binding
Requests with message integrity.

11

STUNPassword

string(256)

The value of the STUN Password to be used in
computing the MESSAGE-INTEGRITY attribute to
be used in Binding Requests (only if message
integrity has been requested by the STUN server).

When read, this parameter returns an empty string,
regardless of the actual value.

11

STUNMaximumKeepAlivePeriod

int[-1:]

If STUN Is enabled, the maximum period, in
seconds, that STUN Binding Requests MUST be
sent by the CPE for the purpose of maintaining the
binding in the Gateway. This applies specifically to
Binding Requests sent from the UDP Connection
Request address and port.

A value of -1 indicates that no maximum period is
specified.

11

STUNMinimumKeepAlivePeriod

unsignedIint

If STUN Is enabled, the minimum period, in
seconds, that STUN Binding Requests can be sent
by the CPE for the purpose of maintaining the
binding in the Gateway. This limit applies only to
Binding Requests sent from the UDP Connection
Request address and port, and only those that do
not contain the BINDING-CHANGE attribute. This
limit does not apply to retransmissions following the
procedures defined in [9].

11

NATDetected

boolean

When STUN is enabled, this parameter indicates
whether or not the CPE has detected address
and/or port mapping in use.

A True value indicates that the received MAPPED-
ADDRESS in the most recent Binding Response
differs from the CPE’s source address and port.

When STUNEnable is False, this value MUST be
False.

11

.GatewayInfo.

object

This object contains information associated with a
connected Internet Gateway Device.

1.0

ManufacturerOUI

string(6)

Organizationally unique identifier of the associated
Internet Gateway Device. An empty string
indicates that there is no associated Internet
Gateway Device that has been detected.

1.0

ProductClass

string(64)

Identifier of the product class of the associated
Internet Gateway Device. An empty string
indicates either that there is no associated Internet
Gateway Device that has been detected, or the
Internet Gateway Device does not support the use
of the product-class parameter.

1.0

November 2008

© The Broadband Forum. All rights reserved.

27

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name®

Type

Write®

Description

Default”

Version®

SerialNumber

string(64)

Serial number of the associated Internet Gateway
Device. An empty string indicates that there is no
associated Internet Gateway Device that has been
detected.

1.0

.Config.

object

This object contains general configuration
parameters.

1.0

PersistentData

string(256)

Arbitrary user data that MUST persist across CPE
reboots.

1.0

ConfigFile

string(32K)

A dump of the currently running configuration on
the CPE. This parameter enables the ability to
backup and restore the last known good state of
the CPE. It returns a vendor-specific document
that defines the state of the CPE. The document
MUST be capable of restoring the CPE’s state
when written back to the CPE using
SetParameterValues.

An alternative to this parameter, e.g. when the
configuration file is larger than the parameter size
limit, is to use the Upload and Download RPCs with
a FileType of “1 Vendor Configuration File”.

1.0

.Time.

object

This object contains parameters relating an NTP or
SNTP time client in the CPE.

1.0

NTPServerl

string(64)

First NTP timeserver. Either a host name or IP
address.

1.0

NTPServer2

string(64)

Second NTP timeserver. Either a host name or IP
address.

1.0

NTPServer3

string(64)

Third NTP timeserver. Either a host name or IP
address.

1.0

NTPServerd

string(64)

Fourth NTP timeserver. Either a host name or IP
address.

1.0

NTPServer5

string(64)

Fifth NTP timeserver. Either a host name or IP
address.

1.0

CurrentLocalTime

dateTime

The current date and time in the CPE’s local time
zone.

1.0

LocalTimeZone

string(256)

The local time zone definition, encoded according
to IEEE 1003.1 (POSIX). The following is an
example value:

“EST+5 EDT,M4.1.0/2,M10.5.0/2”

1.0

.UserlInterface.

object

This object contains parameters relating to the user
interface of the CPE.

1.0

PasswordRequired

boolean

Present only if the CPE provides a password-
protected LAN-side user interface.

Indicates whether or not the local user interface
MUST require a password to be chosen by the
user. If False, the choice of whether or not a
password is used is left to the user.

1.0

PasswordUserSelectable

boolean

Present only if the CPE provides a password-
protected LAN-side user interface and supports
LAN-side Auto-Configuration.

Indicates whether or not a password to protect the
local user interface of the CPE MAY be selected by
the user directly, or MUST be equal to the
password used by the LAN-side Auto-Configuration
protocol.

1.0

UpgradeAvailable

boolean

Indicates that a CPE upgrade is available, allowing
the CPE to display this information to the user.

1.0

WarrantyDate

dateTime

Indicates the date and time in UTC that the
warranty associated with the CPE is to expire.

1.0

November 2008

© The Broadband Forum. All rights reserved.

28

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name®

Type

Write®

Description

Default”

Version®

ISPName

string(64)

The name of the customer’s ISP.

1.0

ISPHelpDesk

string(32)

The help desk phone number of the ISP.

1.0

ISPHomePage

string(256)

The URL of the ISP’s home page.

1.0

ISPHelpPage

string(256)

The URL of the ISP’s on-line support page.

1.0

ISPLogo

base64
(5460)

2|22

Base64 encoded GIF or JPEG image. The binary
image is constrained to 4095 bytes or less.

1.0

ISPLogoSize

unsignedint
[0:4095]

=

Un-encoded binary image size in bytes.

If ISPLogoSize input value is 0 then the ISPLogo is
cleared.

ISPLogoSize can also be used as a check to verify
correct transfer and conversion of Base64 string to
image size.

1.0

ISPMailServer

string(256)

The URL of the ISP’s mail server.

1.0

ISPNewsServer

string(256)

=

The URL of the ISP’s news server.

1.0

TextColor

string(6)

The color of text on the GUI screens in RGB
hexidecimal notation (e.g., FF0088).

1.0

BackgroundColor

string(6)

The color of the GUI screen backgrounds in RGB
hexidecimal notation (e.g., FF0088).

1.0

ButtonColor

string(6)

The color of buttons on the GUI screens in RGB
hexidecimal notation (e.g., FF0088).

1.0

ButtonTextColor

string(6)

The color of text on buttons on the GUI screens in
RGB hexidecimal notation (e.g., FF0088).

1.0

AutoUpdateServer

string(256)

The server the CPE can check to see if an update
is available for direct download to it. This MUST
NOT be used by the CPE if the Device.-
ManagementServer.UpgradesManaged parameter
is True.

1.0

UserUpdateServer

string(256)

The server where a user can check via a web
browser if an update is available for download to a
PC. This MUST NOT be used by the CPE if the
Device.ManagementServer.UpgradesManaged
parameter is True.

1.0

AvailableLanguages

string(256)

Comma-separated list of user-interface languages
that are available, where each language is
specified according to RFC 3066 [6].

1.0

CurrentLanguage

string(16)

Current user-interface language, specified
according to RFC 3066 [6].

1.0

.LAN.

object

This object contains parameters relating to IP-
based LAN connectivity of a device.

This object relates only to IP-layer LAN capabilities.

Lower-layer aspects of LAN connectivity are not
considered part of the common data model defined
in this specification.

For a device that contains multiple IP interfaces,
the scope of this object is limited to the default IP
interface. Data that might be associated with other
interfaces is not considered part of the common
data model defined in this specification.

1.0

AddressingType

string

The method used to assign an address to this
interface. Enumeration of:

“DHCP”
“Static”
The ability to modify this parameter is OPTIONAL.

1.0

November 2008

© The Broadband Forum. All rights reserved.

29

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name®

Type

Write®

Description

Default”

Version®

IPAddress

string

The current IP address assigned to this interface.

The ability to modify this parameter is OPTIONAL,
and this parameter cannot be modified if the
AddressingType is “DHCP”.

1.0

SubnetMask

string

The current subnet mask.

The ability to modify this parameter is OPTIONAL,
and this parameter cannot be modified if the
AddressingType is “DHCP”.

1.0

DefaultGateway

string

The IP address of the current default gateway for
this interface.

The ability to modify this parameter is OPTIONAL,
and this parameter cannot be modified if the
AddressingType is “DHCP”.

1.0

DNSServers

string(256)

Comma-separated list of IP address of the DNS
servers for this interface.

The ability to modify this parameter is OPTIONAL,
and this parameter cannot be modified if the
AddressingType is “DHCP”.

If this parameter is modifiable, the device MAY
ignore any DNS servers beyond the first two in the
list.

1.0

MACAddress

string

The physical address of this interface. Writable
only if MACAddressOverride is present and equal
to True.

1.0

MACAddressOverride

boolean

Whether the value of MACAddress parameter can
be overridden.

When True, MACAddress is writable.

When False, MACAddress is not writable, and the
default MAC address assigned by the device
SHOULD be restored.

1.0

DHCPOptionNumberOfEntries

unsignedIint

Number of entries in the DHCP option table.

1.0

.LAN.DHCPOption.{i}.

object

This object is for configuration of DHCP options.
Each instance of this object represents a DHCP
option to be included by the DHCP client in client
requests. The DHCP client MAY include any other
options not specified in this table.

1.0

Request

boolean

Whether this entry represents a request to the
DHCP server, or a value to be sent by the DHCP
client.

When True, this entry represents arequest. In this
case, the DHCP client MUST include the specified
Tag in the Parameter Request List, as defined in
RFC 2132. The Value parameter is ignored in this
case.

When False, this entry represents a value to be
sent by the DHCP client. In this case, the DHCP
client MUST include a DHCP option formed from
the Tag and Value parameters (with the Length
derived from the length of the Value parameter).

1.0

Tag

unsignedint
[1:254]

Tag of the DHCP option as defined in RFC 2132.

1.0

Value

base64(340)

Base64 encoded octet string to be used as the
Value of the DHCP option if Request is False.

<Empty>

1.0

November 2008

© The Broadband Forum. All rights reserved.

30

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name®

Type

Write®

Description

Default”

Version®

.LAN.Stats.

object

This object contains statistics for the default IP
interface.

1.0

ConnectionUpTime

unsignedint

The time in seconds that this IP interface has been
connected.

If the IP interface is using DHCP, this is the time
that the DHCP client has been only in the Bound or
Renewing states and the lower-layer interface has
continuously maintained a link.

If the IP interface is using static addressing, this is
the time that the lower-layer interface has
continuously maintained a link.

1.0

TotalBytesSent

unsignedint

Total number of IP payload bytes sent over this
interface since the device was last restarted as
specified in Devicelnfo.UpTime.

1.0

TotalBytesReceived

unsignedint

Total number of IP payload bytes received over this
interface since the device was last restarted as
specified in Devicelnfo.UpTime.

1.0

TotalPacketsSent

unsignedint

Total number of IP packets sent over this interface
since the device was last restarted as specified in
Devicelnfo.UpTime.

1.0

TotalPacketsReceived

unsignedint

Total number of IP packets received over this
interface since the device was last restarted as
specified in Devicelnfo.UpTime.

1.0

CurrentDaylnterval

unsignedint

Number of seconds since the beginning of the
period used for collection of CurrentDay statistics.

The device MAY align the beginning of each
CurrentDay interval with days in the UTC time
zone, but does not need to do so.

1.0

CurrentDayBytesSent

unsignedInt

Total number of IP payload bytes sent over this
interface since the beginning of the current-day
interval as specified by CurrentDaylInterval.

1.0

CurrentDayBytesReceived

unsignedInt

Total number of IP payload bytes received over this
interface since the beginning of the current-day
interval as specified by CurrentDaylInterval.

1.0

CurrentDayPacketsSent

unsignedInt

Total number of IP packets sent over this interface
since the beginning of the current-day interval as
specified by CurrentDaylInterval.

1.0

CurrentDayPacketsReceived

unsignedInt

Total number of IP packets received over this
interface since the beginning of the current-day
interval as specified by CurrentDaylInterval.

1.0

QuarterHourInterval

unsignedInt

Number of seconds since the beginning of the
period used for collection of QuarterHour statistics.

The device MAY align the beginning of each
QuarterHour interval with real-time quarter-hour
intervals, but does not need to do so.

1.0

QuarterHourBytesSent

unsignedint

Total number of IP payload bytes sent over this
interface since the beginning of the quarter-hour
interval as specified by QuarterHourlInterval.

1.0

QuarterHourBytesReceived

unsignedint

Total number of IP payload bytes received over this
interface since the beginning of the quarter-hour
interval as specified by QuarterHourlInterval.

1.0

QuarterHourPacketsSent

unsignedint

Total number of IP packets sent over this interface
since the beginning of the quarter-hour interval as
specified by QuarterHourlnterval.

1.0

QuarterHourPacketsReceived

unsignedint

Total number of IP packets received over this
interface since the beginning of the quarter-hour
interval as specified by QuarterHourlInterval.

1.0

November 2008

© The Broadband Forum. All rights reserved.

31

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name®

Type

Write®

Description

Default”

Version®

.LAN.IPPingDiagnostics.

object

This object defines access to an IP-layer ping test
for the default IP interface.

1.0

DiagnosticsState

string

Indicates availability of diagnostic data. One of:
“None”
“Requested”
“Complete”
“Error_CannotResolveHostName”
“Error_Internal”
“Error_Other”

If the ACS sets the value of this parameter to
Requested, the CPE MUST initiate the
corresponding diagnostic test. When writing, the
only allowed value is Requested. To ensure the
use of the proper test parameters (the writable
parameters in this object), the test parameters
MUST be set either prior to or at the same time as
(in the same SetParameterValues) setting the
DiagnosticsState to Requested.

When requested, the CPE SHOULD wait until after
completion of the communication session with the
ACS before starting the diagnostic.

When the test is completed, the value of this
parameter MUST be either Complete (if the test
completed successfully), or one of the Error values
listed above.

If the value of this parameter is anything other than
Complete, the values of the results parameters for
this test are indeterminate.

When the diagnostic initiated by the ACS is
completed (successfully or not), the CPE MUST
establish a new connection to the ACS to allow the
ACS to view the results, indicating the Event code
"8 DIAGNOSTICS COMPLETE" in the Inform
message.

After the diagnostic is complete, the value of all
result parameters (all read-only parameters in this
object) MUST be retained by the CPE until either
this diagnostic is run again, or the CPE reboots.
After a reboot, if the CPE has not retained the
result parameters from the most recent test, it
MUST set the value of this parameter to “None”.

Modifying any of the writable parameters in this
object except for this one MUST result in the value
of this parameter being set to “None”.

While the test is in progress, modifying any of the
writable parameters in this object except for this
one MUST result in the test being terminated and
the value of this parameter being set to “None”.

While the test is in progress, setting this parameter
to Requested (and possibly modifying other
writable parameters in this object) MUST result in
the test being terminated and then restarted using
the current values of the test parameters.

1.0

Host

string(256)

Host name or address of the host to ping.

1.0

NumberOfRepetitions

unsignedint
(1]

Number of repetitions of the ping test to perform
before reporting the results.

1.0

Timeout

unsignedint

(1]

Timeout in milliseconds for the ping test.

1.0

November 2008

© The Broadband Forum. All rights reserved.

32

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name®

Type

Write®

Description

Default”

Version®

DataBlockSize

unsignedint
[1:65535]

Size of the data block in bytes to be sent for each
ping.

1.0

DSCP

unsignedint
[0:63]

DiffServ codepoint to be used for the test packets.
By default the CPE SHOULD set this value to zero.

1.0

SuccessCount

unsignedint

Result parameter indicating the number of
successful pings (those in which a successful
response was received prior to the timeout) in the
most recent ping test.

1.0

FailureCount

unsignedint

Result parameter indicating the number of failed
pings in the most recent ping test.

1.0

AverageResponseTime

unsignedint

Result parameter indicating the average response
time in milliseconds over all repetitions with
successful responses of the most recent ping test.
If there were no successful responses, this value
MUST be zero.

1.0

MinimumResponseTime

unsignedint

Result parameter indicating the minimum response
time in milliseconds over all repetitions with
successful responses of the most recent ping test.
If there were no successful responses, this value
MUST be zero.

1.0

MaximumResponseTime

unsignedint

Result parameter indicating the maximum response
time in milliseconds over all repetitions with
successful responses of the most recent ping test.
If there were no successful responses, this value
MUST be zero.

1.0

November 2008

© The Broadband Forum. All rights reserved.

33

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name®

Type

Write®

Description

Default”

Version®

.LAN.TraceRouteDiagnostics.

object

This object is defines access to an IP-layer trace-
route test for the default IP interface.

1.0

DiagnosticsState

string

Indicates availability of diagnostic data. One of:
“None”
“Requested”
“Complete”
“Error_CannotResolveHostName”
“Error_MaxHopCountExceeded”
“Error_Internal”
“Error_Other”

If the ACS sets the value of this parameter to
Requested, the CPE MUST initiate the
corresponding diagnostic test. When writing, the
only allowed value is Requested. To ensure the
use of the proper test parameters (the writable
parameters in this object), the test parameters
MUST be set either prior to or at the same time as
(in the same SetParameterValues) setting the
DiagnosticsState to Requested.

When requested, the CPE SHOULD wait until after
completion of the communication session with the
ACS before starting the diagnostic.

When the test is completed, the value of this
parameter MUST be either Complete (if the test
completed successfully), or one of the Error values
listed above.

If the value of this parameter is anything other than
Complete, the values of the results parameters for
this test are indeterminate.

When the diagnostic initiated by the ACS is
completed (successfully or not), the CPE MUST
establish a new connection to the ACS to allow the
ACS to view the results, indicating the Event code
"8 DIAGNOSTICS COMPLETE" in the Inform
message.

After the diagnostic is complete, the value of all
result parameters (all read-only parameters in this
object) MUST be retained by the CPE until either
this diagnostic is run again, or the CPE reboots.
After a reboot, if the CPE has not retained the
result parameters from the most recent test, it
MUST set the value of this parameter to “None”.

Modifying any of the writable parameters in this
object except for this one MUST result in the value
of this parameter being set to “None”.

While the test is in progress, modifying any of the
writable parameters in this object except for this
one MUST result in the test being terminated and
the value of this parameter being set to “None”.

While the test is in progress, setting this parameter
to Requested (and possibly modifying other
writable parameters in this object) MUST result in
the test being terminated and then restarted using
the current values of the test parameters.

1.0

Host

string(256) w

Host name or address of the host to find a route to.

1.0

Timeout

unsignedint w

(1]

Timeout in milliseconds for the trace route test.

1.0

DataBlockSize

unsignedint w

[1:65535]

Size of the data block in bytes to be sent for each
trace route.

1.0

November 2008

© The Broadband Forum. All rights reserved.

34

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name®

Type

Write®

Description

Default”

Version®

MaxHopCount

unsignedint
[1:64]

The maximum number of hop used in outgoing
probe packets (max TTL). The default is 30 hops.

1.0

DSCP

unsignedint
[0:63]

DiffServ codepoint to be used for the test packets.
By default the CPE SHOULD set this value to zero.

1.0

ResponseTime

unsignedint

Result parameter indicating the response time in
milliseconds the most recent trace route test. If a
route could not be determined, this value MUST be
zero.

1.0

NumberOfRouteHops

unsignedint

Result parameter indicating the number of hops
within the discovered route. If a route could not be
determined, this value MUST be zero.

1.0

.LAN.TraceRouteDiagnostics.RouteHops.{i}.

object

Result parameter indicating the components of the
discovered route. If a route could not be
determined, there will be no instances of this
object.

1.0

HopHost

string(256)

Result parameter indicating the Host Name or IP
Address of a hop along the discovered route.

1.0

.DownloadDiagnostics.

object

This object defines the diagnostics configuration for
a HTTP and FTP DownloadDiagnostics Test.

Files received in the DownloadDiagnostics do not
require file storage on the CPE device.

1.2

November 2008

© The Broadband Forum. All rights reserved.

35

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name®

Type

Write®

Description

Default”

Version®

DiagnosticsState

string

Indicate the availability of diagnostic data. One of:
“None”
“Requested”
“Completed”
“Error_InitConnectionFailed”
“Error_NoResponse ”
“Error_TransferFailed”
“Error_PasswordRequestFailed”
“Error_LoginFailed”
“Error_NoTransferMode”
“Error_NoPASV”
“Error_IncorrectSize”
“Error_Timeout”

If the ACS sets the value of this parameter to
Requested, the CPE MUST initiate the
corresponding diagnostic test. When writing, the
only allowed value is Requested. To ensure the
use of the proper test parameters (the writable
parameters in this object), the test parameters
MUST be set either prior to or at the same time as
(in the same SetParameterValues) setting the
DiagnosticsState to Requested.

When requested, the CPE SHOULD wait until after
completion of the communication session with the
ACS before starting the diagnostic.

When the test is completed, the value of this
parameter MUST be either Completed (if the test
completed successfully), or one of the Error values
listed above.

If the value of this parameter is anything other than
Completed, the values of the results parameters for
this test are indeterminate.

When the diagnostic initiated by the ACS is
completed (successfully or not), the CPE MUST
establish a new connection to the ACS to allow the
ACS to view the results, indicating the Event code
"8 DIAGNOSTICS COMPLETE" in the Inform
message.

After the diagnostic is complete, the value of all
result parameters (all read-only parameters in this
object) MUST be retained by the CPE until either
this diagnostic is run again, or the CPE reboots.
After a reboot, if the CPE has not retained the
result parameters from the most recent test, it
MUST set the value of this parameter to “None”.

Modifying any of the writable parameters in this
object except for this one MUST result in the value
of this parameter being set to “None”.

While the test is in progress, modifying any of the
writable parameters in this object except for this
one MUST result in the test being terminated and
the value of this parameter being set to “None”.

While the test is in progress, setting this parameter
to Requested (and possibly modifying other
writable parameters in this object) MUST result in
the test being terminated and then restarted using
the current values of the test parameters.

1.2

November 2008

© The Broadband Forum. All rights reserved.

36

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name®

Type

Write®

Description

Default”

Version®

Interface

string(256)

Specifies the IP-layer interface over which the test
is to be performed. The content is the full
hierarchical parameter name of the interface.

The value of this parameter MUST be either a valid
interface or an empty string. An attempt to set this
parameter to a different value MUST be rejected as
an invalid parameter value.

If an empty string is specified, the CPE MUST use
the default routing interface.

1.2

DownloadURL

string(256)

The URL, as defined in [8], for the CPE to perform
the download on. This parameter MUST be in the
form of a valid HTTP [13] or FTP [12] URL.

When using FTP transport, FTP binary transfer
MUST be used.

When using HTTP transport, persistent
connections MUST be used and pipelining MUST
NOT be used.

When using HTTP transport the HTTP
Authentication MUST NOT be used.

1.2

DSCP

unsignedint[
0:63]

The DiffServ code point for marking packets
transmitted in the test.

The default value SHOULD be zero.

1.2

EthernetPriority

unsignedint[
0:7]

Ethernet priority code for marking packets
transmitted in the test (if applicable).

The default value SHOULD be zero.

1.2

ROMTime

dateTime

Request time in UTC, which MUST be specified to
microsecond precision.

For example: 2008-04-09T15:01:05.123456

For HTTP this is the time at which the client sends
the GET command.

For FTP this is the time at which the client sends
the RTRV command.

1.2

BOMTime

dateTime

Begin of transmission time in UTC, which MUST be
specified to microsecond precision

For example: 2008-04-09T15:01:05.123456

For HTTP this is the time at which the first data
packet is received.

For FTP this is the time at which the client receives
the first data packet on the data connection.

1.2

EOMTime

dateTime

End of transmission in UTC, which MUST be
specified to microsecond precision.

For example: 2008-04-09T15:01:05.123456

For HTTP this is the time at which the last data
packet is received.

For FTP this is the time at which the client receives
the last packet on the data connection.

1.2

TestBytesReceived

unsignedint

The test traffic received in bytes during the
FTP/HTTP transaction including FTP/HTTP
headers, between BOMTime and EOMTime,

1.2

TotalBytesReceived

unsignedint

The total number of bytes received on the Interface
between BOMTime and EOMTime.

1.2

November 2008

© The Broadband Forum. All rights reserved.

37

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name®

Type

Write®

Description

Default”

Version®

TCPOpenRequestTime

dateTime -

Request time in UTC, which MUST be specified to
microsecond precision.

For example: 2008-04-09T15:01:05.123456

For HTTP this is the time at which the TCP socket
open (SYN) was sent for the HTTP connection.

For FTP this is the time at which the TCP socket
open (SYN) was sent for the data connection.

Note: Interval of 1 microsecond SHOULD be
supported.

1.2

TCPOpenResponseTime

dateTime -

Response time in UTC, which MUST be specified
to microsecond precision.

For example: 2008-04-09T15:01:05.123456

For HTTP this is the time at which the TCP ACK to
the socket opening the HTTP connection was
received.

For FTP this is the time at which the TCP ACK to
the socket opening the data connection was
received.

Note: Interval of 1 microsecond SHOULD be
supported.

1.2

.UploadDiagnostics.

object

This object defines the diagnostics configuration for
a HTTP or FTP UploadDiagnostics test.

Files sent by the UploadDiagnostics do not require
file storage on the CPE device, and MAY be an
arbitrary stream of bytes.

1.2

November 2008

© The Broadband Forum. All rights reserved.

38

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name®

Type

Write®

Description

Default”

Version®

DiagnosticsState

string

Indicate the availability of diagnostic data. One of:
“None”
“Requested”
“Completed”
“Error_InitConnectionFailed”
“Error_NoResponse”
“Error_PasswordRequestFailed”
“Error_LoginFailed”
“Error_NoTransferMode”
“Error_NoPASV”
“Error_NoCWD”
“Error_NoSTOR”
“Error_NoTransferComplete”

If the ACS sets the value of this parameter to
Requested, the CPE MUST initiate the
corresponding diagnostic test. When writing, the
only allowed value is Requested. To ensure the
use of the proper test parameters (the writable
parameters in this object), the test parameters
MUST be set either prior to or at the same time as
(in the same SetParameterValues) setting the
DiagnosticsState to Requested.

When requested, the CPE SHOULD wait until after
completion of the communication session with the
ACS before starting the diagnostic.

When the test is completed, the value of this
parameter MUST be either Completed (if the test
completed successfully), or one of the Error values
listed above.

If the value of this parameter is anything other than
Completed, the values of the results parameters for
this test are indeterminate.

When the diagnostic initiated by the ACS is
completed (successfully or not), the CPE MUST
establish a new connection to the ACS to allow the
ACS to view the results, indicating the Event code
"8 DIAGNOSTICS COMPLETE" in the Inform
message.

After the diagnostic is complete, the value of all
result parameters (all read-only parameters in this
object) MUST be retained by the CPE until either
this diagnostic is run again, or the CPE reboots.
After a reboot, if the CPE has not retained the
result parameters from the most recent test, it
MUST set the value of this parameter to “None”.

Modifying any of the writable parameters in this
object except for this one MUST result in the value
of this parameter being set to “None”.

While the test is in progress, modifying any of the
writable parameters in this object except for this
one MUST result in the test being terminated and
the value of this parameter being set to “None”.

While the test is in progress, setting this parameter
to Requested (and possibly modifying other
writable parameters in this object) MUST result in
the test being terminated and then restarted using
the current values of the test parameters.

1.2

November 2008

© The Broadband Forum. All rights reserved.

39

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name® Type Write® | Description Default® | Version®
Interface string(256) w IP-layer interface over which the test is to be - 1.2
performed. The content is the full hierarchical
parameter name of the interface.
The value of this parameter MUST be either a valid
interface or an empty string. An attempt to set this
parameter to a different value MUST be rejected as
an invalid parameter value.
If an empty string is specified, the CPE MUST use
the default routing interface.
UploadURL string(256) w The URL, as defined in [8], for the CPE to Upload - 1.2
to. This parameter MUST be in the form of a valid
HTTP [13] or FTP [12] URL.
When using FTP transport, FTP binary transfer
MUST be used.
When using HTTP transport, persistent
connections MUST be used and pipelining MUST
NOT be used.
When using HTTP transport the HTTP
Authentication MUST NOT be used.
DSCP unsignedInt[w DiffServ code point for marking packets transmitted - 1.2
0:63] in the test.
The default value SHOULD be zero.
EthernetPriority unsignedInt[w Ethernet priority code for marking packets - 1.2
0:7] transmitted in the test (if applicable).
The default value SHOULD be zero.
TestFileLength unsignedint w The size of the file (in bytes) to be uploaded to the - 1.2
server.
The CPE MUST insure the appropriate number of
bytes are sent.
ROMTime dateTime - Request time in UTC, which MUST be specified to - 1.2
microsecond precision.
For example: 2008-04-09T15:01:05.123456
For HTTP this is the time at which the client sends
the PUT command
For FTP this is the time at which the STOR
command is sent.
BOMTime dateTime - Begin of transmission time in UTC, which MUST be - 1.2
specified to microsecond precision.
For example: 2008-04-09T15:01:05.123456
For HTTP this is the time at which the first data
packet is sent.
For FTP this is the time at which the client receives
the ready for transfer notification.
EOMTime dateTime - End of transmission in UTC, which MUST be - 1.2
specified to microsecond precision.
For example: 2008-04-09T15:01:05.123456
For HTTP this is the time when the HTTP
successful response code is received.
For FTP this is the time when the client receives a
transfer complete.
TotalBytesSent unsignedint - The total number of bytes sent on the Interface - 1.2
between BOMTime and EOMTime.
November 2008 © The Broadband Forum. All rights reserved. 40

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name®

Type

Write®

Description

Default”

Version®

TCPOpenRequestTime

dateTime

Request time in UTC, which MUST be specified to
microsecond precision.

For example: 2008-04-09T15:01:05.123456

For HTTP this is the time at which the TCP socket
open (SYN) was sent for the HTTP connection.

For FTP this is the time at which the TCP socket
open (SYN) was sent for the data connection

Note: Interval of 1 microsecond SHOULD be
supported.

1.2

TCPOpenResponseTime

dateTime

Response time in UTC, which MUST be specified
to microsecond precision.

For example: 2008-04-09T15:01:05.123456

For HTTP this is the Time at which the TCP ACK to
the socket opening the HTTP connection was
received.

For FTP this is the Time at which the TCP ACK to
the socket opening the Data connection was
received.

Note: Interval of 1 microsecond SHOULD be
supported.

1.2

.UDPEchoConfig.

object

This object allows the CPE to be configured to
perform the UDP Echo Service defined in [11] and
UDP Echo Plus Service defined in Appendix A.1 of
[15].

1.2

Enable

boolean

MUST be enabled to receive UDP echo. When
enabled from a disabled state all related
timestamps, statistics and UDP Echo Plus counters
are cleared.

1.2

Interface

string(256)

IP-layer interface over which the CPE MUST listen
and receive UDP echo requests on. The content is
the full hierarchical parameter name of the
interface.

The value of this parameter MUST be either a valid
interface or an empty string. An attempt to set this
parameter to a different value MUST be rejected as
an invalid parameter value.

If an empty string is specified, the CPE MUST
listen and receive UDP echo requests on all
interfaces.

Note: Interfaces behind a NAT MAY require port
forwarding rules configured in the Gateway to
enable receiving the UDP packets.

1.2

SourcelPAddress

string

The Source IP address of the UDP echo packet.
The CPE MUST only respond to a UDP echo from
this source IP address.

1.2

UDPPort

unsignedint

The UDP port on which the UDP server MUST
listen and respond to UDP echo requests.

1.2

EchoPlusEnabled

boolean

If True the CPE will perform necessary packet
processing for UDP Echo Plus packets.

1.2

EchoPlusSupported

boolean

True if UDP Echo Plus is supported.

1.2

PacketsReceived

unsignedint

Incremented upon each valid UDP echo packet
received.

1.2

PacketsResponded

unsignedint

Incremented for each UDP echo response sent.

1.2

BytesReceived

unsignedint

The number of UDP received bytes including
payload and UDP header after the UDPEchoConfig
is enabled.

1.2

BytesResponded

unsignedint

The number of UDP responded bytes, including
payload and UDP header sent after the
UDPEchoConfig is enabled.

1.2

November 2008

© The Broadband Forum. All rights reserved.

41

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Name® Type Write® | Description Default® | Version®

TimeFirstPacketReceived dateTime - Time in UTC, which MUST be specified to - 1.2
microsecond precision.

For example: 2008-04-09T15:01:05.123456,

The time that the server receives the first UDP
echo packet after the UDPEchoConfig is enabled.

TimeLastPacketReceived dateTime - Time in UTC, which MUST be specified to - 1.2
microsecond precision.

For example: 2008-04-09T15:01:05.123456

The time that the server receives the most recent
UDP echo packet.

3.5 Inform Requirements

For CPE supporting the Device Root Object, the CPE MUST include in the ParameterList argument of the
Inform message all of the parameters listed in Table 4 that are present in the data model implementation
(any that are not present in the implementation need not be included in the Inform).

Table 4 — Forced Inform parameters

Parameter

Device.DeviceSummary

Device.Devicelnfo.HardwareVersion

Device.Devicelnfo.SoftwareVersion

Device.ManagementServer.ConnectionRequestURL

Device.ManagementServer.ParameterKey
Device.LAN.IPAddress

Note — the Forced Inform requirements do not apply to secondary instances of any of the above
parameters that might be contained within Service Objects.

3.6 Notification Requirements
CPE MUST support Active Notification (see [2]) for all parameters defined in the Common Object
definitions for the Device Root Object (section 3.4) with the exception of those parameters listed in Table
5. For only those parameters listed Table 5, the CPE MAY reject a request by an ACS to enable Active
Notification via the SetParameterAttributes RPC by responding with fault code 9009 as defined in [2]
(Notification request rejected).

CPE MUST support Passive Notification (see [2]) for all parameters defined in the Common Object
definitions for the Device Root Object, with no exceptions.

Table 5 — Parameters for which Active Notification MAY be denied by the CPE

Parameter®

.Devicelnfo.

ModelName

Description

UpTime

® The name of a Parameter referenced in this table is the concatenation of the base path (see section 2.1),
the object name shown in the yellow header, and the individual Parameter name.

November 2008 © The Broadband Forum. All rights reserved. 42

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Parameter®

FirstUseDate

DevicelLog

.ManagementServer.

ParameterKey

.Time.

CurrentLocalTime

.LAN.Stats.

ConnectionUpTime

TotalBytesSent

TotalBytesReceived

TotalPacketsSent

TotalPacketsReceived

CurrentDaylnterval

CurrentDayBytesSent

CurrentDayBytesReceived

CurrentDayPacketsSent

CurrentDayPacketsReceived

QuarterHourlnterval

QuarterHourBytesSent

QuarterHourBytesReceived

QuarterHourPacketsSent

QuarterHourPacketsReceived

.LAN.IPPingDiagnostics.

DiagnosticsState

SuccessCount

FailureCount

AverageResponseTime

MinimumResponseTime

MaximumResponseTime

.LAN.TraceRouteDiagnostics.

DiagnosticsState

ResponseTime

NumberOfRouteHops

.LAN.TraceRouteDiagnostics.RouteHops.{i}.

HopHost

.DownloadDiagnostics.

DiagnosticsState

ROMTime

BOMTime

EOMTime

TestBytesReceived

TotalBytesReceived

TCPOpenRequestTime

TCPOpenResponseTime

.UploadDiagnostics.

DiagnosticsState

November 2008 © The Broadband Forum. All rights reserved.

43

3.7

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Parameter®

ROMTime

BOMTime

EOMTime

TotalBytesSent

TCPOpenRequestTime

TCPOpenResponseTime

.UDPEchoConfig.

PacketsReceived

PacketsResponded

BytesReceived

BytesResponded

TimeFirstPacketReceived

TimeLastPacketReceived

DeviceSummary Definition

The DeviceSummary parameter is defined to provide an explicit summary of the top-level data model of
the device, including version and profile information. This parameter MAY be used by an ACS to discover
the nature of the device and the ACS’s compatibility with specific objects supported by the device.

The DeviceSummary is defined as a list that includes the Root Object followed by all Service Object
instances (or support for a Service Object type if no instances are currently present). For each of these
objects, the DeviceSummary specifies the version of the object, the associated instance number used to
identify the specific object instance, and a list of the supported profiles for that object.

The syntax of the DeviceSummary parameter is defined formally as follows:

DeviceSummary = RootObject [", " ServiceObject]*

RootObject = ObjectName ":" ObjectVersion "[] (" ProfileList ")"

ServiceObject = ObjectName ":" ObjectVersion "[" [Instance] "] (" ProfileList ")"
ObjectVersion = MajorVersion "." MinorVersion

Profilelist = [Profile [", " Profile]*]

Profile = ProfileName ":" ProfileVersion

MajorVersion = Integer
MinorVersion = Integer
ProfileVersion = Integer

Integer = DIGIT*

Instance = ["+"] NONZERODIGIT [DIGIT]*

For each object instance, the ObjectVersion element MUST indicate the major and minor versions of the
object supported by the device.

The ObjectVersion for all objects defined prior to this specification for which explicit major and minor
version numbers have not been defined is 1.0. Future updates to these objects will specify distinct version
numbers.

The version for the “Device” object as defined in this specification is “1.0”.

November 2008 © The Broadband Forum. All rights reserved. 44

3.7.1

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Instance is the instance number of the particular object instance. If the device supports an object type, but
no instances are currently present, a single entry for this object MUST be listed in the DeviceSummary, and
the instance number MUST be empty (" [1"). In this case, the device need not list support for specific
profiles since the profile list might be dependent on the specific instance when it is instantiated.

If the instance number for an object might change (for example, if the instances represent physically
separate devices, being managed by proxy, that can be connected or disconnected), the instance number
MUST be prefixed with a “+” character. Lack of a “+” character indicates that the instance number is
expected to remain unchanged.

For each object (Root Object and Service Objects), a device MUST list all profiles that it supports in the
ProfileList element. That is, it MUST list all profiles for which the device’s actual level of support is a
superset. Each entry in the ProfileList MUST include the ProfileName and the ProfileVersion. The
ProfileVersion is a single integer representing the minor version of the profile.

Vendor-specific objects and profiles MAY be included in this list, and if so MUST begin with
X_<VENDOR>_, where <VENDOR> MUST be as defined in section 3.3.

DeviceSummary Examples

Below are some examples of the DeviceSummary parameter. (The first examples correspond directly to
the examples given in section 2.1.2.)

Simple device supporting the ABCService Service Object:
“Device:1.0[1(Baseline:1), ABCService:1.0[1](Baseline:1)”

Device supporting both ABCService and XYZService Service Objects:
“Device:1.0[1(Baseline:1), ABCService:1.0[1](Baseline:1), XYZService:1.0[1](Baseline:1)”

Internet Gateway Device that also supports the ABCService and XYZService Service Objects:
“InternetGatewayDevice:1.0[](Baseline:1), ABCService:1.0[1](Baseline:1),
XYZService:1.0[1](Baseline:1)”

Device supporting the ABCService Service Object and proxying for two devices supporting the

functionality of the XYYZService Service Object:

“Device:1.0[](Baseline:1), ABCService:2.17[1](Baseline:1), XYZService:1.2[1](Baseline:2),
XYZService:1.2[2](Baseline:2, AnotherProfile:3)”

Internet Gateway Device also serving as a management proxy for three devices supporting the functionality

of the ABCService Service Object:

“InternetGatewayDevice:1.0[](Baseline:1), ABCService:1.0[1](Baseline:1),
ABCService:1.0[2](Baseline:1), ABCService:1.0[3](Baseline:1, AnotherProfile:1)”

Version 1.0 Internet Gateway Device with no additional service objects supported:
“InternetGatewayDevice:1.0[](Baseline:1)”

Device supporting the ability to proxy for devices supporting the functionality of the ABCService Service

Object, but with no current instances of that object:

“Device:1.0[](Baseline:1), ABCService:2.17[]()”

Device supporting the ABCService Service Object with the baseline and a vendor-specific profile:
“Device:1.0[](Baseline:1), ABCService:2.17[1](Baseline:1, X_EXAMPLE-COM_MyProfile:2)”

November 2008 © The Broadband Forum. All rights reserved. 45

4.1

4.2

Data Model Template for TR-069-Enabled Devices

Device supporting the ABCService Service Object, but with no profiles:
“Device:1.0[](Baseline:1), ABCService:2.17[1]()”

Profile Definitions

Notation

The following abbreviations are used to specify profile requirements:

TR-106 Amendment 2

Abbreviation | Description

R Read support is REQUIRED.

w Both Read and Write support is REQUIRED. This MUST NOT be specified for a parameter that is
defined as read-only.

The object is REQUIRED to be present.

Creation and deletion of instances of the object via AddObject and DeleteObject is REQUIRED.

Creation of instances of the object via AddObject is REQUIRED, but deletion is not REQUIRED.

O|>»|0O|T

Deletion of instances of the object via DeleteObject is REQUIRED, but creation is not REQUIRED.

Baseline Profile

Table 6 defines the Baseline:1 profile for the Device:1 object. The minimum REQUIRED version for this

profile is Device:1.0.

Table 6 — Baseline: 1 Profile definition for Device:1

Name Requirement
Device. P
DeviceSummary

Device.Devicelnfo.

Manufacturer

ManufacturerOUI

ModelName

Description

SerialNumber

HardwareVersion

SoftwareVersion

DeviceStatus

UpTime

Device.ManagementServer.

URL

Username

Password

PeriodicinformEnable

PeriodicinformInterval

PeriodicinformTime

ParameterKey

ConnectionRequestURL

ConnectionRequestUsername

ConnectionRequestPassword

UpgradesManaged

s|ls|s|n|n|s|ls|s|s|s|s|v|n|n|x|0|D|D|D|DW|D|OT|D

November 2008

© The Broadband Forum. All rights reserved.

46

4.3

4.4

4.5

Data Model Template for TR-069-Enabled Devices

GatewaylInfo Profile

TR-106 Amendment 2

Table 7 defines the Gatewaylnfo:1 profile for the Device:1 object. The minimum REQUIRED version for

this profile is Device:1.0.

Table 7 — GatewaylInfo:1 Profile definition for Device:1

Name Requirement
Device.Gatewaylnfo. P
ManufacturerOUI R
ProductClass R
SerialNumber R

Time Profile

Table 8 defines the Time:1 profile for the Device:1 object. The minimum REQUIRED version for this

profile is Device:1.0.

Table 8 — Time:1 Profile definition for Device:1

Name Requirement
Device.Time. P
NTPServerl W
NTPServer2 W
CurrentLocalTime R
LocalTimeZone w

LAN Profile

Table 9 defines the LAN:1 profile for the Device:1 object. The minimum REQUIRED version for this

profile is Device:1.0.

Table 9 — LAN:1 Profile definition for Device:1

Name

Requirement

Device.LAN.

P

AddressingType

IPAddress

SubnetMask

DefaultGateway

DNSServers

MACAddress

Device.LAN.Stats.

ConnectionUpTime

TotalBytesSent

TotalBytesReceived

TotalPacketsSent

TotalPacketsReceived

|0V |WV|OV|V|TV|(OVD|DW|OD|D|[O|D

November 2008 © The Broadband Forum. All rights reserved.

47

Data Model Template for TR-069-Enabled Devices

4.6 IPPing Profile

TR-106 Amendment 2

Table 10 defines the IPPing:1 profile for the Device:1 object. The minimum REQUIRED version for this

profile is Device:1.0.

Table 10 — IPPing:1 Profile definition for Device:1

Name

Requirement

Device.LAN.IPPingDiagnostics.

P

DiagnosticsState

Host

NumberOfRepetitions

Timeout

DataBlockSize

DSCP

SuccessCount

FailureCount

AverageResponseTime

MinimumResponseTime

MaximumResponseTime

Tjo|lo|m|m|s|s|s|s|s|s

4.7 TraceRoute Profile

Table 11 defines the TraceRoute:1 profile for the Device:1 object. The minimum REQUIRED version for

this profile is Device:1.0.

Table 11 — TraceRoute: 1 Profile definition for Device:1

Name

Requirement

Device.LAN.TraceRouteDiagnostics.

P

DiagnosticsState

Host

Timeout

DataBlockSize

MaxHopCount

DSCP

ResponseTime

NumberOfRouteHops

Device.LAN.TraceRouteDiagnostics.RouteHops.{i}.

HopHost

T|o|o|H|E|s|s|s|=|s

4.8 Download Profile

Table 12 defines the Download:1 profile for the Device:1 object. The minimum REQUIRED version for

this profile is Device:1.2.

Table 12 — Download:1 profile definition for Device:1

Name Requirement
Device.Capabilities.PerformanceDiagnostic. P
DownloadTransports R
Device.DownloadDiagnostics. P
DiagnosticsState w

November 2008 © The Broadband Forum. All rights reserved.

48

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Name Requirement

Interface w

DownloadURL

DSCP

EthernetPriority

ROMTime

BOMTime

EOMTime

TestBytesReceived

nlo|lo|ln|n|s|s|s

TotalBytesReceived

4.9 DownloadTCP Profile

Table 13 defines the DownloadTCP:1 profile for the Device:1 object. The minimum REQUIRED version
for this profile is Device:1.2.

Table 13 — DownloadTCP:1 profile definition for Device:1

Name Requirement
Device.DownloadDiagnostics. [?
TCPOpenRequestTime R
TCPOpenResponseTime R

4.10 Upload Profile

Table 14 defines the Upload:1 profile for the Device:1 object. The minimum REQUIRED version for this
profile is Device:1.2.

Table 14 — Upload:1 profile definition for Device:1

Name Requirement

Device.Capabilities.PerformanceDiagnostic. P

UploadTransports

Device.UploadDiagnostics.

DiagnosticsState

Interface

UploadURL

DSCP

EthernetPriority

ROMTime

BOMTime

EOMTime

TestFileLength

V|| D W B|E|2|2|2|2|T|=™

TotalBytesSent

November 2008 © The Broadband Forum. All rights reserved. 49

411

4.12

4.13

414

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

UploadTCP Profile

Table 15 defines the UploadTCP:1 profile for the Device:1 object. The minimum REQUIRED version for
this profile is Device:1.2.

Table 15 — UploadTCP:1 profile definition for Device:1

Name Requirement
Device.UploadDiagnostics. P
TCPOpenRequestTime R
TCPOpenResponseTime R

UDPEcho Profile

Table 16 defines the UDPEcho:1 profile for the Device:1 object. The minimum REQUIRED version for
this profile is Device:1.2.

Table 16 — UDPEcho:1 profile definition for Device:1

Name Requirement

Device.UDPEchoConfig. P

Enable

Interface

SourcelPAddress
UDPPort

PacketsReceived

PacketsResponded

BytesReceived

BytesResponded

TimeFirstPacketReceived

TimeLastPacketReceived

T|o|o|o|Wm|W|IW[S|S|S|S

EchoPlusSupported

UDPEchoPlus Profile

Table 17 defines the UDPEchoPlus:1 profile for the Device:1 object. The minimum REQUIRED version
for this profile is Device:1.2.

Table 17 — UDPEchoPlus:1 profile definition for Device:1

Name Requirement
Device.UDPEchoConfig. P
EchoPlusEnabled w

UDPConnReq Profile

The UDPConnReq:1 profile for a Device implies support for all of the CPE requirements defined in Annex
G of [2], including support for the data model parameters as shown in Table 18. The minimum
REQUIRED version for this profile is Device:1.1.

Table 18 — UDPConnReq:1 Profile definition for Device:1

Name Requirement

Device.ManagementServer.

UDPConnectionRequestAddress R

UDPConnectionRequestAddressNotificationLimit w
November 2008 © The Broadband Forum. All rights reserved. 50

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name

Requirement

STUNEnable

w

STUNServerAddress

STUNServerPort

STUNUsername

STUNPassword

STUNMaximumKeepAlivePeriod

STUNMinimumKeepAlivePeriod

NATDetected

T2 |g|2|E |

November 2008

© The Broadband Forum. All rights reserved.

51

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Normative References

A list of the currently valid Broadband Forum Technical Reports is published at http://www.broadband-
forum.org. The following documents are referenced by this specification.

[1] RFC 2119, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt

[2] TR-069 Amendment 2, CPE WAN Management Protocol, Broadband Forum Technical Report

[3] TR-098 Amendment 2, Internet Gateway Device Data Model for TR-069, Broadband Forum Technical
Report

[4] Organizationally Unique Identifiers (OUIs), http://standards.ieee.org/fags/OUl.html
[5] Simple Object Access Protocol (SOAP) 1.1, http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508
[6] RFC 3066, Tags for the Identification of Languages, http://www.ietf.org/rfc/rfc3066.txt

[7] RFC 3513, Internet Protocol Version 6 (IPv6) Addressing Architecture,
http://www.ietf.org/rfc/rfc3513.txt

[8] RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, http://www.ietf.org/rfc/rfc3986.txt

[9] RFC 3489, STUN - Simple Traversal of User Datagram Protocol (UDP) Through Network Address
Translators (NATS), http://www.ietf.org/rfc/rfc3489.txt

[10] Extensible Markup Language (XML) 1.0 (Fourth Edition), http://www.w3.org/TR/REC-xml
[11]RFC 862, Echo Protocol, http://www.ietf.org/rfc/rfc862.txt

[12] RFC 959, File Transfer Protocol, http://www.ietf.org/rfc/rfc959.txt

[13]RFC 2616, Hypertext Transfer Protocol — HTTP/1.1, http://www.ietf.org/rfc/rfc2616.txt
[14] RFC 2648, A URN Namespace for IETF Documents, http://www.ietf.org/rfc/rfc2648.txt

[15] TR-143. Enabling Network Throughput Performance Tests and Statistical Monitoring, Broadband
Forum Technical Report,

[16] XML Schema Part 0: Primer Second Edition, http://www.w3.0rg/TR/xmlschema-0

November 2008 © The Broadband Forum. All rights reserved. 52

http://www.broadband-forum.org/
http://www.broadband-forum.org/
http://www.ietf.org/rfc/rfc2119.txt
http://standards.ieee.org/faqs/OUI.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.ietf.org/rfc/rfc3066.txt
http://www.ietf.org/rfc/rfc3513.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3489.txt
http://www.w3.org/TR/REC-xml
http://www.ietf.org/rfc/rfc862.txt
http://www.ietf.org/rfc/rfc959.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2648.txt
http://www.w3.org/TR/xmlschema-0

Al

A.2

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Annex A. CWMP Data Model

Definition XML Schema

Introduction

The CWMP Data Model Definition XML Schema [16], or DM Schema, is used for defining TR-069 data
models, and is specified in A.3.

DM Schema instance documents can contain any or all of the following:

Data type definitions

Root Object definitions (including profiles)
Service Object definitions (including profiles)
Component definitions

Vendor extension definitions

Normative Information

It is possible to create instance documents that conform to the DM Schema but nevertheless are not valid
data model definitions. This is because it is not possible to specify all the normative data model definition
requirements using the XML Schema language. Therefore, the schema contains additional requirements
written using the usual normative language. Instance documents that conform to the DM Schema and meet
these additional requirements are referred to as DM Instances.

For example, the definition of the parameter element includes the following additional requirements on the
name and base attributes:

November 2008 © The Broadband Forum. All rights reserved. 53

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

<xs:complexType name="ModelParameter">
<xs:annotation>
<xs:documentation>Parameter definition and reference.</xs:documentation>
</xs:annotation>
<xs:attribute name="name" type="tns:ParameterName">
<xs:annotation>
<xs:documentation>MUST be unique within the parent object (this is checked by schema
validation) .
MUST be present if and only if defining a new parameter.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="base" type="tns:ParameterName">
<xs:annotation>
<xs:documentation>MUST be present if and only if modifying an existing
parameter.</xs:documentation>
</xs:annotation>
</xs:attribute>

</xs:complexType>

In some cases, a requirement that is in fact implied by the DM Schema is emphasized within the schema
via the xs:documentation element (the uniqueness requirement on the name is an example of this).

In other cases, a schema-implied requirement is not highlighted. For example, the name and base attributes
are of type tns:ParameterName:

<!DOCTYPE cwmp-datamodel [
zlENTITY name " ([\i-[:11[\c-[:\.]1]1%)">
]>...

<xs:simpleType name="ParameterName">
<xs:annotation>
<xs:documentation>Parameter name (maximum length 256); the same as xs:NCName except that
periods are not permitted. This name MUST in addition follow the vendor-specific parameter name
requirements of section 3.3.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:maxLength value="256"/>
<xs:pattern value="&name;"/>
</xs:restriction>
</xs:simpleType>

This states that the parameter name is a string that follows the following rules:

It is derived from xs:token, which has a whitespace facet of “collapse”, meaning that any leading
whitespace in the name will be ignored.

It has a maximum length of 256 characters.

Its first character matches the pattern “[\i-[:]]”, which means “any character permitted as the first
character of an XML name, except for a colon”, and any subsequent characters match the pattern “[\c-
[:\.]]”, which means “any character permitted in an XML name, except for a colon and a dot”.

It follows the vendor-specific parameter name requirements of section 3.3.

The question of the location of the definitive normative information therefore arises. The answer is as
follows:

November 2008 © The Broadband Forum. All rights reserved. 54

A21

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

All the normative information in the main part of the document remains normative.

The DM Schema, and the additional requirements therein, are normative. Some of these additional
requirements are duplicated (for emphasis) in this Annex.

The DM Schema references additional material in this Annex. Such material is normative.

If the DM Schema conflicts with a normative requirement in the main part of the document, this is an
error in the DM Schema, and the requirement in the main part of the document takes precedence.

URI Conventions

The top-level spec attribute contains the URI of the associated specification document, e.g. the BBF
Technical Report.

This URI SHOULD uniquely identify the specification. More than one DM Schema instance document
MAY reference the same specification.

The following rules apply to the value of the top-level spec attribute:

For a BBF Technical Report, it MUST be of the form “urn:broadband-forum-org:tr-nnn-i-a-c”, where
nnn is the specification number (including leading zeros), i is the issue number, a is the amendment
number, and c is the corrigendum number. The issue, amendment and corrigendum numbers do not
include leading zeros. For example, “urn:broadband-forum-org:tr-106-1-0" refers to TR-106 (Issue 1
Amendment 0), and “urn:broadband-forum-org:tr-106-1-2" refers to TR-106 (Issue 1) Amendment 2.
If the corrigendum number (including the preceding hyphen) is omitted, the most recent corrigendum
is assumed.

For specifications issued by other standards organizations, or by vendors, it SHOULD be of a standard
form if one is defined. For example, RFC 2648 [14] specifies a syntax for referencing RFCs.

Note that processing tools are likely to assume that all files that share a spec value are related to each
other. Therefore, use of meaningful spec values is RECOMMENDED.

Formally, the value of the spec attribute is defined as follows:

November 2008 © The Broadband Forum. All rights reserved. 55

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

SpecURI = BBFURI
| OtherURI

BBFURI = "urn:broadband-forum-org:" BBFDoc

BBFDoc = "tr-" BBENumber BBFIssue BBFAmendment BBFCorrigendum
BBFNumber = [DIGIT]{3,} // including leading zeros, e.g. 069
BBFIssue = "-" NoleadingZeroPositiveNumber

BBFAmendment = "-" NoLeadingZeroNumber

BBFCorrigendum = "-" NolLeadingZeroPositiveNumber
| // if omitted, most recent corrigendum is assumed

NoLeadingZeroNumber = [DIGIT]
| [NONZERODIGIT] ([DIGIT]*

NoLeadingZeroPositiveNumber = [NONZERODIGIT] [DIGIT]*

OtherURI = <of a standard form if one is defined>

Standard BBF DM Instances can be accessed at the following URL:

BBFURL = "http://www.broadband-forum.org/cwmp/" BBFDoc BBFSubDoc ".xml"
BBFDoc = <as before>

BBFSubDoc = "-" LABEL // distinguishing label (not beginning with a digit)
| " // not needed if only one DM Instance is associated with spec

For example, the DM Instance associated with TR-106 Amendment 2 can be accessed at
http://www.broadband-forum.org/cwmp/tr-106-1-2.xml. If two DM Instances had been associated with TR-
106 Amendment 2, they might perhaps have been accessible at http://www.broadband-forum.org/cwmp/tr-
106-1-2-types.xml and http://www.broadband-forum.org/cwmp/tr-106-1-2-objects.xml.

A.2.2 Descriptions

Many elements have descriptions, and the same rules apply to all description elements in the DM Schema.
A description is free text which can contain a limited amount of MediaWiki-like markup as specified in
A.2.2.3.

A.2.2.1 Character Set

For BBF standards, the character set MUST be restricted to printable characters in the Basic Latin Unicode
block, i.e. to characters whose decimal ASCII representations are in the (inclusive) ranges 9-10 and 32-126.

A.2.2.2 Pre-processing
All DM Instance processing tools MUST conceptually perform the following pre-processing before
interpreting the markup:
1) Remove any leading whitespace up to and including the first line break’.

2) Remove the longest common whitespace prefix (i.e. that occurs at the start of every line) from each
line. See the example below, where three lines start with four spaces and one line starts with five
spaces, so the longest whitespace prefix that occurs at start of each line is four spaces. In this

"It can be assumed that all line breaks are represented by a single line feed, i.e. ASCII 10. See [10] section
2.11.

November 2008 © The Broadband Forum. All rights reserved. 56

http://www.broadband-forum.org/cwmp/tr-106-1-2.xml
http://www.broadband-forum.org/cwmp/tr-106-1-2-types.xml
http://www.broadband-forum.org/cwmp/tr-106-1-2-types.xml
http://www.broadband-forum.org/cwmp/tr-106-1-2-objects.xml

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

calculation, a tab character counts as a single character. To avoid confusion, the description SHOULD

NOT contain tab characters.
3) Remove all trailing whitespace, including line breaks.

This pre-processing is designed to permit a reasonable variety of layout styles while still retaining

predictable behavior. For example, both the following:

<description>This is the first line.
This is the second line.

This is the indented third line.

This is the fourth line.</description>

<description>
This is the first line.
This is the second line.
This is the indented third line.
This is the fourth line.
</description>

...result in the following:

This is the first line.
This is the second line.
This is the indented third line.
This is the fourth line.

A.2.2.3 Markup

The pre-processed description can contain the following markup, which is inspired by, but is not identical
to, MediaWiki markup. All DM Instance processing tools SHOULD support this markup to the best of

their ability.

Table 19 — XML Description Markup

Name Markup Example Description

Italics "’italic text’’ Two apostrophes on each side of some text will result in the
contained text being emphasized in italics.

Bold "’’bold text’’’ Three apostrophes on each side of some text will result in the
contained text being emphasized in bold.

Bold italics rrrr i text! Five apostrophes on each side of some text will result in the

contained text being emphasized in bold italics.

Paragraph This paragraph just

ended.

A line break is interpreted as a paragraph break.

Bulleted lists * level one

** level two

* level one again

** level two again

*** level three

*: level one continued
outside of list

A line starting with one or more asterisks (*) denotes a bulleted list
entry, whose indent depth is proportional to the number of asterisks
specified.

If the asterisks are followed by a colon (:), the previous item at that
level is continued, as shown.

An empty line, or a line that starts with a character other than an
asterisk, indicates the end of the list.

Numbered # level one

lists ## level two

level one again

level two again

level three

#: level one continued
outside of list

A line starting with one or more number signs (#) denotes a
numbered list entry.

All other conventions defined for bulleted lists apply here (using #
rather than *), except that numbered list entries are prefixed with an
integer decoration rather than a bullet.

November 2008

© The Broadband Forum. All rights reserved. 57

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name

Markup Example

Description

Indented lists

: level one

i level two

: level one again
: level two again
:: level three

outside of list

A line starting with one or more colons (:) denotes an indented list
entry.

All other conventions defined for bulleted lists apply here (using :
rather than *), except that indented list entries have no prefix
decoration, and item continuation is not needed.

{{section|table}}
{{param|Enable}}
{{enum|Error}}

Verbatim code example: A block of lines each of which starts with a space is to be formatted
if (something) { exactly as typed, preferably in a fixed width font.
* hi *
/* do something */ This allows code fragments, simple tables etc. to be included in
boelse f descriptions
/* do other */ p '

} Note that the pre-processing rules of A.2.2.2 imply that it is not
possible to process an entire description as verbatim text (because
all the leading whitespace would be removed). This is not expected
to be a problem in practice.

Hyperlinks http://www.broadband- URL links are specified as plain old text (no special markup).
forum.org
Templates {{bibref|l|section 2}} Text enclosed in double curly braces ({}) is a template reference,

which is replaced by template-dependent text.
A.2.2.4 specifies the standard templates.

A.2.2.4 Templates

A template invocation is encoded as two curly braces on either side of the template name and arguments.
Arguments can follow the template name, separated by vertical pipe (|) characters. All whitespace is
significant. For example:

I {{someTemplate|argl |arg2|..|argN}}

The following standard templates are defined. Any vendor-specific template names MUST obey the rules

of section 3.3.

Table 20 — XML Description Templates

Name Markup Definition Description

Bibliographic {{bibref|id}} A bibliographic reference.

reference {{bibreflidfsection}} The id argument MUST match the id attribute of one of the
current file’s (or an imported file’s) top-level bibliography
element’s reference elements (A.2.4).
The OPTIONAL section argument specifies the section number,
including any leading “section”, “annex” or “appendix” text.
Typically, the processing tool will (a) validate the id, and (b)
replace the template reference with something like “[id] section”.
Markup examples:
{{bibref|1}}
{{bibref|l|section 3}}

November 2008 © The Broadband Forum. All rights reserved. 58

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name

Markup Definition

Description

Section separator

{{section|category}}
{{section}}

The beginning or end of a section or category. This is a way of
splitting the description into sections.

If the category argument is present, this marks the end of the
previous section (if any), and the beginning of a section of the

specified category. The “table”, “row” and “examples” categories
are reserved for the obvious purposes.

If the category argument is absent, this marks the end of the
previous section (if any).

Typically, the processing tool will (a) validate the category, and
(b) replace the template reference with a section marker.
Markup examples:

{{section|table}}
{{section|row}}
{{section|examples}}

Parameter and
object reference

{{param|ref}}
{{param}}
{{object|ref}}
{{object}}

A reference to the specified parameter or object.

The OPTIONAL ref argument references a parameter or object.
Parameter and object names SHOULD adhere to the rules of
A.2.3.4 with object scope.

Typically, the processing tool will (a) validate the reference, and
(b) replace the template reference with the ref argument or, if it
is omitted, the current parameter or object name, possibly
rendered in a distinctive font.

Markup examples:

{{param|Enable}}
{{object|Stats.}}

Enumeration
reference

{{enum|value}}
{{enum|value|param}}
{ {enum}}

A reference to the specified enumeration value.

The OPTIONAL value argument specifies one of the
enumeration values for the referenced parameter. If present, it
MUST be a valid enumeration value for that parameter.

The OPTIONAL param argument identifies the referenced
parameter. If present, it SHOULD adhere to the rules of A.2.3.4
with object scope. If omitted, the current parameter is assumed.

If the arguments are omitted, this is a hint to the processing tool
to replace the template reference with a list of the parameter’s
enumerations, possibly preceded by text such as “Enumeration
of:". This overrides the processing tool’s expected default
behavior of listing the parameter’s enumerations after the
description.

Otherwise, typically the processing tool will (a) validate that the
enumeration value is valid, and (b) replace the template
reference with the value and/or param arguments, appropriately
formatted and with the value possibly rendered in a distinctive
font.

Markup examples:

{{enum|None}}
{{enum|None|OtherParam}}

Pattern reference

{{pattern}}

This is a hint to the processing tool to replace the template
reference with a list of the parameter’s patterns, possibly
preceded by text such as “Possible patterns:”. This overrides
the processing tool’s expected default behavior of listing the
parameter’s patterns after the description.

Units reference

{{units}}

The parameter’s units string.

Typically, the processing tool will (a) check that the parameter
has a units string, and (b) substitute the value of its units string.

Boolean values

{{false}}
{{true}}

Boolean values.

Typically, the processing tool will substitute the value False or
True, possibly rendered in a distinctive font.

November 2008

© The Broadband Forum. All rights reserved. 59

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Name Markup Definition Description

Miscellaneous {{empty}} Typically, the processing tool will render such values in a
distinctive font, possibly using standard wording, such as
<Empty> or “an empty string”.

A.2.2.5 HTML Example

This includes examples of most of the markup and templates.

<model name="Goo:1.1" base="Goo:1.0">
<object name="GooTop." access="readOnly" minEntries="1" maxEntries="1">
<parameter name="ExampleParam" access="readOnly">

other parameters in the same object, such as {{param|OtherParameter}}, and indicate that the
parameter value is measured in {{units}}.
One can also include bulleted lists:
* level one
** level two
* level one again
** level two again
*** level three
*: level one continued
and numbered lists:
level one
level two
level one again
level two again
level three
#: level one continued
and indented lists
: level one
: level two
: level one again
: level two again
: level three
and hyperlinks such as http://www.google.com
and code examples:
if (something) {
/* do something */
} else {
/* do other */
}

If the parameter was Boolean, one could refer to its values {{false}} and {{true}}.

One can refer to its enumerations individually, e.g. {{enum|Disabled}}, or to other
parameters' enumerations, such as {{enum|Value|OtherParam}}, or can list them all. {{enum}}
Finally, if there were any patterns they could be listed too. {{pattern}}
</description>
<syntax>
<string>

<enumeration value="A"/>
<enumeration value="B"/>
<units value="packets"/>
</string>
</syntax>
</parameter>

<description>
{{section|Introduction}}This is an ''example'' parameter that illustrates many of the
'''formatting''' templates. For '''''example''''', this references {{bibref|TR-106al|section
3.2}}.

{{section|Usage}}This parameter is called {{object}}{{param}}. One can also reference

The resulting HTML would look something like this:

November 2008 © The Broadband Forum. All rights reserved.

60

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

This is an example parameter that illustrates many of the formatting templates. For example, this references [TR-106a1]
section 3.2.

This parameter is called ParentObject. ExampleFaram. One can also reference other parameters in the same object, such
as OtherParametfer, and indicate that the parameter value is measured in packets.

One can also include bulleted lists:

* |evel one
2 level two
* |evel one again
< level two again
B |evel three

level one continued
and numbered lists:

1. level one
1. level two
2. level one again
1. level two again
1. level three

level one continued
and indented lists

level one
level two
level one again
level two again
level three

and hyperlinks such as hitp2//www.google.com

and code examples:

if (=omething)

/% do something */
} else {

/% do other */
¥

If the parameter was Boolean, one could refer to its values false and frue.

Cne can refer to its enumerations indmwidually, e.g. A, or to other parameters’ enumerations. such as Value, or can list
them all. Possible values:

® [isabled
® Frabled
* Fror (OPTIONAL)

Finally, if there were any patterns they could be listed too.

A.2.3 Data Types

TR-069 data models support only the Table 1 primitive data types “on the wire”. However, the DM
Schema allows data types to be derived from the primitive types or from other named data types. Such
derived types can be named or anonymous.

A.2.3.1 Named Data Types

Named data types are defined using the top-level dataType element. A DM Instance can contain zero or
more top-level dataType elements.

November 2008 © The Broadband Forum. All rights reserved. 61

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

When defining a new named data type, the following attributes and elements are relevant (normative
requirements are specified in the schema).

Table 21 — XML Named Data Types

Name Description

name The data type name.

base The base type name, i.e. name of the data type from which this data type is derived. This is used
only where the base type is itself a named data type, not a primitive type.

status The data type’s {current, deprecated, obsoleted, deleted} status. This defaults to current, and so is
not likely to be specified for a new data type.

description The data type’s description (A.2.2).

size Data type facets (A.2.3.3). These are permitted only when the base type is a named data type, i.e.

pathRef when the base attribute is specified.

instanceRef

range

enumeration

enumerationRef

pattern

units

base64 Primitive data type definition. These are permitted only when the base type is primitive. There is an

boolean element for each primitive data type, and each element supports only the facets (A.2.3.3) that are

dateTime appropriate to that data type.

hexBinary

int

long

string

unsignedint

unsignedLong

For example:

<dataType name="String255">
<string>

<size maxLength="255"/>
</string>
</dataType>

<dataType name="Stringl27" base="String255">
<size maxLength="127"/>
</dataType>

A.2.3.2 Anonymous Data Types

Anonymous data types are defined within parameter syntax elements (A.2.7.1), and can apply only to the
parameters within which they are defined. For example:

<parameter name="Examplel" access="readOnly">
<syntax>
<string>
<size maxLength="127"/>
</string>
</syntax>
</parameter>

<parameter name="Example2" access="readOnly">
<syntax>
<dataType base="String255">
<size maxlLength="127"/>
</dataType>
</syntax>
</parameter>

If an anonymous data type is modified in a later version of a data model, the modified anonymous data type

November 2008 © The Broadband Forum. All rights reserved. 62

A.2.3.3

A.2.3.4

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

is regarded as being derived from the original anonymous data type. Therefore the base type restriction
rules of A.2.3.8 MUST be obeyed.

Data Type Facets
A facet specifies some aspect of a data type, e.g. its size, range or units.

Note that XML Schema [16] also associates facets with data types. The XML Schema and DM Schema
concepts are the same, but the set of facets is not identical.

The DM Schema defines the following facets (normative requirements are specified in the schema):

Table 22 — XML Data Type Facets

Name Description

size Size ranges for the data type (applies to string, base64, hexBinary and their derived types).

Note that the size facet always refers to the actual value, not to the base64- or hexBinary-encoded
value. Prior to the definition of the DM Schema, the maximum sizes of base64 parameters referred
to the base64-encoded values. Processing tools that generate reports from DM Instances SHOULD
include explicit clarification of whether the size ranges refer to the actual or encoded values.

pathRef Details of how to reference parameters and objects via their path names (applies to string and its
derived types: A.2.3.7).

instanceRef Details of how to reference object instances (table rows) via their instance numbers (applies to int,
unsignedint and their derived types; A.2.3.7).

range Value ranges for the data type (applies to numeric data types and their derived types).

enumeration Enumerations for the data type (applies to string and its derived types).

enumerationRef | Enumerations for the data type, obtained at run-time from the value of a specified parameter (applies
to string and its derived types; A.2.3.7).

pattern Patterns for the data type (applies to string and its derived types).

units Units for the data type (applies to numeric data types and their derived types).

It is important to note that the enumeration facet does not necessarily define all the valid values for a data
type. This is for the following reasons:

e As specified in section 3.3, vendors are allowed to add additional enumeration values.

o A future version of a data model may need to add additional enumerations values.

Reference Path Names

Some description templates (A.2.2.4), and all reference facets (A.2.3.7), need to specify parameter or object
names. It is always possible to specify a full path name, but it is frequently necessary or convenient to
specify a relative path name. For example, it might be necessary to reference another parameter in the
current object. Any instance numbers in the parameter’s full path name cannot be known at data model
definition time, so this can only be done using a relative path name.

The following rules apply to all path names that are used in data model definitions for referencing
parameters or objects:

e Path names MAY contain “{i}” placeholders, which MUST be interpreted as wild cards matching all
instance numbers, e.g. “InternetGatewayDevice. WANDevice. {i}.” references all WANDevice
instances.

e Path names MUST NOT contain instance numbers.

A path name is always associated with a path name scope, which defines the point in the naming hierarchy
relative to which the path name applies.

November 2008 © The Broadband Forum. All rights reserved. 63

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Table 23 — Path Name Scope Definition

Name Description

normal This is a hybrid scope which usually gives the desired behavior:

« If the path begins with a “Device” or “InternetGatewayDevice” component, it is relative to the top
of the naming hierarchy.

« If the path begins with a dot, it is relative to the Root or Service Object (c.f. scope=model).
e Otherwise, the path is relative to the current object (c.f. scope=object).

model The path is relative to the Root or Service Object.

object The path is relative to the current object.

Formally, if the path name scope is normal:
o If the path is empty, it MUST be regarded as referring to the top of the naming hierarchy.

e Otherwise, if the path begins with a “Device” or “InternetGatewayDevice” component, it MUST be
regarded as a full path name (these are the only two possible Root Device names).

e Otherwise, if the path begins with a dot, it MUST be regarded as a path relative to the Root or Service
Object. For example, in the Device Root Object “.Devicelnfo.” means “Device.Devicelnfo.”, and in
the Device.Services.ABCService.1 Service Object it means “Device.Services. ABCService.1.-
Devicelnfo.”.

e Otherwise, it MUST be regarded as a path relative to the current object. For example, if the current
object is “Device.LAN.”, “IPAddress” means “Device. LAN.IPAddress” and ““Stats.” means
“Device.LAN.Stats.”. Within a parameter definition, the current object is the parameter’s parent
object, so within the “Device. LAN.IPAddress” definition, “SubnetMask” means “Device. LAN.Subnet-
Mask”.

If the path name scope is model:
o If the path is empty, it MUST be regarded as referring to the Root or Service Object.

e Otherwise, it MUST be regarded as a path relative to the Root or Service Object. Any leading dot
MUST be ignored.

If the path name scope is object:
o If the path is empty, it MUST be regarded as referring to the current object.

e Otherwise, it MUST be regarded as a path relative to the current object. Any leading dot MUST be
ignored.

Note that the term “Root or Service Object”, which is used several times above, means “if within a Service
Object instance, the Service Object instance; otherwise, the Root Object”.

For example, the pathRef and instanceRef facets (A.2.3.7) have a targetParent attribute which specifies the
possible parent(s) of the referenced parameter or object, and a targetParentScope attribute (defaulted to
normal) which specifies targetParent’s scope. If the current object is within a Service Object instance,
setting targetParentScope to model forces the referenced parameter or object to be in the same Service
Object instance. Similarly, setting targetParentScope to object forces the referenced parameter or object to
be in the same object or in a sub-object.

String parameters whose values are path names are subject to the rules of section 3.2, so object names do
not include a trailing dot. The parameter value (or each list item if the parameter is list-valued) always
behaves as described above for normal path name scope, regardless of the path name scope in the data
model definition. For example, in the Device Root Object, a parameter value of “.Devicelnfo”always
means “Device.Devicelnfo”.

In order to be able to use reference parameters as unique keys (A.2.8.1), path names in parameter values
MUST conceptually be converted to full path names before being compared. For example, in the Device

November 2008 © The Broadband Forum. All rights reserved. 64

A.2.35

A.2.3.6

A.2.3.7

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Root Object, “.Devicelnfo.” and “Device.Devicelnfo.” would compare as equal. If a reference parameter is
list-valued, i.e. it is a list of path names or instance numbers, the parameter value MUST conceptually be
regarded as a set when being compared, i.e. the comparison has to ignore the item order and any repeated
items. For example, “1,2,1” and “2,1”” would compare as equal because both reference instances 1 and 2.

Null References

A null reference indicates that a reference parameter is not currently referencing anything. The value that
indicates a null reference depends on the reference parameter’s base data type:

e string: a null reference MUST be indicated by an empty string.
e unsignedInt: a null reference MUST be indicated by the value 0.

e int: anull reference MUST be indicated by the value -1.

Reference Types
A reference to another parameter or object can be weak or strong:

e weak: it doesn’t necessarily reference an existing parameter or object. For example, if the referenced
parameter or object is deleted, the value of the reference parameter might not get updated.

e strong: it always either references a valid parameter or object, or else is a null reference (A.2.3.5). If
the referenced parameter or object is deleted, the value of the reference parameter is always set to a
null reference.

The following requirements relate to reference types and the associated CPE behavior.
o All read-only reference parameters MUST be declared as strong references.

e A CPE MUST reject an attempt to set a strong reference parameter if the new value does not reference
an existing parameter or object.

e A CPE MUST NOT reject an attempt to set a weak reference parameter because the new value does
not reference an existing parameter or object.

e A CPE MUST change the value of a non-list-valued strong reference parameter to a null reference
when a referenced parameter or object is deleted.

e A CPE MUST remove the corresponding list item from a list-valued strong reference parameter when
a referenced parameter or object is deleted.

e A CPE MUST NOT change the value of a weak reference parameter when a referenced parameter or
object is deleted.

Reference Facets
A reference facet specifies how a parameter can reference another parameter or object. There are three
sorts of reference:

o Path reference: references another parameter or object via its path name. Details are specified via the
pathRef facet, which applies to string and its derived types.

o Instance reference: references an object instance (table row) via its instance number. Details are
specified via the instanceRef facet, which applies to int, unsignedint and their derived types.

e Enumeration reference: references a list-valued parameter via its path name. The current value of the
referenced parameter indicates the valid enumerations for this parameter. Details are specified via the
enumerationRef facet, which applies to string and its derived types.

When defining a path reference, the following attributes and elements are relevant (normative requirements
are specified in the schema).

November 2008 © The Broadband Forum. All rights reserved. 65

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Table 24 — PathRef Facet Definition

Name

Description

targetParent

An XML list of path names that can restrict the set of parameters and objects that can be
referenced. If the list is empty (the default), then anything can be referenced. Otherwise, only the
immediate children of one of the specified objects can be referenced,

A “{i}’ placeholder in a path name acts as a wild card, e.g. “InternetGatewayDevice.-
WANDevice.{i}. WANConnectionDevice.{i}. WANPPPConnection.”. Path names cannot contain
explicit instance numbers.

targetParentScope

Specifies the point in the naming hierarchy relative to which targetParent applies (A.2.3.4): normal
(default), model or object.

targetType

Specifies what types of item can be referenced:

e any: any parameter or object can be referenced (default)
e parameter: any parameter can be referenced

e object: any object can be referenced

* single: any single-instance object can be referenced

« table: any multi-instance object (table) can be referenced

e row: any multi-instance object (table) instance (row) can be referenced

targetDataType

Specifies the valid data types for the referenced parameter. Is relevant only when targetType is
any or parameter.

Possible values are as follows:

e any: a parameter of any data type can be referenced (default)

e base64: only a base64 parameter can be referenced

e boolean: only a boolean parameter can be referenced

e dateTime: only a dateTime parameter can be referenced

e hexBinary: only a hexBinary parameter can be referenced

e integer: only an integer (int, long, unsignedint or unsignedLong) parameter can be referenced
e int: only an int parameter can be referenced

e long: only along (or int) parameter can be referenced

e string: only a string parameter can be referenced

¢ unsignedInt: only an unsignedint parameter can be referenced

¢ unsignedLong: only an unsignedLong (or unsignedint) parameter can be referenced
¢ <named datatype>: only a parameter of the named data type can be referenced

In addition, a parameter whose data type is derived from the specified data type can be
referenced. The built-in type hierarchy (a simplified version of the XML Schema type hierarchy) is
as follows:

any
base64
boolean
dateTime
hexBinary
integer
long
int
unsignedLong
unsignedInt

string

Note that any and integer are not valid parameter data types. They are included in order to
support “can reference any data type” and “can reference any numeric data type”.

refType

Specifies the reference type (A.2.3.6): weak or strong.

When defining an instance reference, the following attributes and elements are relevant (normative
requirements are specified in the schema).

November 2008

© The Broadband Forum. All rights reserved. 66

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Table 25 — InstanceRef Facet Definition

Name Description
targetParent Specifies the path name of the multi-instance object (table) of which an instance (row) is being
referenced.

“{i}” placeholders and explicit instance numbers are not permitted in the path name.
targetParentScope can be used to specify path names relative to the Root or Service Object or the
current object.

targetParentScope | Specifies the point in the naming hierarchy relative to which targetParent applies (A.2.3.4): normal
(default), model or object.

refType Specifies the reference type (A.2.3.6): weak or strong.

When defining an enumeration reference, the following attributes and elements are relevant (normative
requirements are specified in the schema).

Table 26 — EnumerationRef Facet Definition

Name Description

targetParam Specifies the path name of the list-valued parameter whose current value indicates the valid
enumerations for this parameter.

targetParamScope | Specifies the point in the naming hierarchy relative to which targetParam applies (A.2.3.4): normal
(default), model or object.

nullValue Specifies the parameter value that indicates that none of the values of the referenced parameter
currently apply (if not specified, no such value is designated).

Note that if this parameter is list-valued then nullValue is not relevant, because this condition will
be indicated by an empty list.

The following examples illustrate the various possible types of reference.

<object name="PeriodicStatistics.SampleSet.{i}.Parameter.{i}." ..>

<parameter name="Reference" access="readWrite'">
<description>Reference to the parameter that is associated with this object instance.
This MUST be the parameter's full path name.</description>
<syntax>
<string>
<size maxLength="256"/>
<pathRef targetType="parameter" refType="weak"/>

</string>
<default type="object" value=""/>
</syntax>
</parameter>
<object name="StorageService. {i}.StorageArray.{i}." .>

<parameter name="PhysicalMediumReference" access="readWrite">
<description>A comma-separated list of Physical Medium references. Each Physical Medium
referenced by this parameter MUST exist within the same StorageService instance. A Physical
Medium MUST only be referenced by one Storage Array instance. Each reference can be either in
the form of ".PhysicalMedium.{i}" or a fully qualified object name..</description>
<syntax>
<list>
<size maxLength="1024"/>
</list>
<string>
<pathRef targetParent=".PhysicalMedium." targetParentScope="model" targetType="row"
refType="strong"/>
</string>
</syntax>
</parameter>

<object name="InternetGatewayDevice.QueueManagement.Classification.{i}." access="readWrite"
minEntries="0" maxEntries="unbounded" entriesParameter="ClassificationNumberOfEntries">

November 2008 © The Broadband Forum. All rights reserved. 67

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

<description>Classification table.</description>
<parameter name="ClassQueue" access="readWrite'">
<description>Classification result. Instance number..</description>
<syntax>
<int>
<instanceRef targetParent=".QueueManagement.Queue." refType="strong"/>
</int>
</syntax>
</parameter>

<object name="STBService.{i}.Components.FrontEnd. {i}.IP.Inbound.{i}." .>

<parameter name="StreamingControlProtocol" access="readOnly">
<description>Network protocol currently used for controlling streaming of the source
content, or an empty string if the content is not being streamed or is being streamed but is not
being controlled.
If non-empty, the string MUST be one of the .Capabilities.FrontEnd.IP.StreamingControlProtocols
values.</description>
<syntax>
<string>
<enumerationRef targetParam=".Capabilities.FrontEnd.IP.StreamingControlProtocols"
nullvalue=""/>
</string>
</syntax>
</parameter>

<parameter name="StreamingTransportProtocol" access="readOnly">
<description>Network protocol currently used for streaming the source content, or an
empty string if the content is not being streamed.
If non-empty, the string MUST be one of the
.Capabilities.FrontEnd.IP.StreamingTransportProtocols values.</description>
<syntax>
<string>
<enumerationRef targetParam=".Capabilities.FrontEnd.IP.StreamingTransportProtocols"
nullvValue=""/>
<string/>
</syntax>
</parameter>

<object name="InternetGatewayDevice.LANDevice.{i}.WLANConfiguration.{i}.WPS." .>

<parameter name="ConfigMethodsEnabled" access="readWrite'">
<description>Comma-separated list of the WPS configuration methods enabled on the
device. Each entry in the list MUST be a member of the list reported by the
ConfigMethodsSupported parameter..</description>
<syntax>
<list/>
<string>
<enumerationRef targetParam="ConfigMethodsSupported"/>
</string>
</syntax>
</parameter>

A.2.3.8 Base Type Restriction

A new data type MUST always be a restriction of its base type, meaning that a valid value of the new data
type will always be a valid value for its base type. This is the case for the examples of A.2.3.1, which
involve three different data types:

November 2008 © The Broadband Forum. All rights reserved. 68

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

e string of unlimited length
e string of maximum length 255
e string of maximum length 127

Clearly a string of length 100 is valid for all three data types, but a string of length 200 is only valid for the
first two data types.

The examples of A.2.3.1 considered only the size facet, but in general all facets that are applicable to the
data type have to be considered. The base type restriction requirements for each facet are as follows:

Table 27 — XML Facet Inheritance Rules

Facet Requirements

size The derived data type can define sizes in any way, provided that the new sizes do not permit any
values that are not valid for the base type.

pathRef The derived data type can modify the data type in the following ways:

¢ By “promoting” status to a “higher” value, where the lowest to highest ordering is: current,
deprecated, obsoleted, deleted. For example, current can be changed to deprecated, and
obsoleted can be changed to deleted, but deleted can’t be changed back to obsoleted. When
promoting status, the deprecation, obsoletion and deletion rules of section 2.4 MUST be obeyed.

e By changing targetParent to narrow the set of possible parent objects.
¢ By changing targetType to narrow the set of possible target types.
e By changing targetDataType to narrow the set of possible target data types.

instanceRef The derived data type can modify the data type in the following ways:
¢ By “promoting” status to a “higher” value, as described for pathRef.

e By changing targetParent to narrow the set of possible parent objects.

range The derived data type can define ranges in any way, provided that the new ranges do not permit any
values that are not valid for the base type.

enumeration The derived data type can modify existing enumeration values in the following ways:
¢ By “promoting” access from readOnly to readWrite.

¢ By “promoting” status to a “higher” value, as described for pathRef.

¢ By “promoting” optional from False to True.

¢ By adding a code, if none was previously specified.

¢ By using the action attribute to extend or replace the description (see below).
The derived data type can add new enumeration values.

enumerationRef | The derived data type can modify the data type in the following ways:

¢ By “promoting” status to a “higher” value, as described for pathRef.

pattern The derived data type can modify existing pattern values by changing access, status, optional and
description exactly as for enumerations.

The derived data type can add new patterns and/or replace existing patterns with new patterns,
provided that the new patterns do not permit any values that are not valid for the base type.

For example a single pattern “[AB]” could be replaced with “A” and “B”, but “C” could not be added.

units The derived data type can add units if the base type didn’t specify any.

Most of the above requirements are non-normative, because it has to be possible to correct errors. For
example, if the base type supports a range of [-1:4095] but the values 0 and 4095 were included in error, it
would be permissible for a derived type to support ranges of [-1:-1] and [1:4094]. Processing tools
SHOULD be able to detect and warn about such cases.

When defining a new data type, if a facet is omitted, the new data type will inherit that facet from its base
type. If afacet is present, it MUST be fully specified (except that special rules apply to descriptions; see
below). For example, this means that a derived type that adds additional enumeration values has also to re-
declare the enumeration values of the base type.

November 2008 © The Broadband Forum. All rights reserved. 69

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

For example, in the following, the derived type inherits the units facet from its parent but it does not inherit
the range facet, so the PacketCounter range is [10:] and the PacketCounter2 range is [15:20].

<dataType name="PacketCounter">
<unsignedLong>
<range minInclusive="10"/>
<units value="packets"/>
</unsignedLong>
</dataType>

<dataType name="PacketCounter2" base="PacketCounter">
<range minInclusive="15" maxInclusive="20"/>
</dataType>

Similarly, in the following, the enumeration values for ABCD are not A, B, C and D, but are just C and D.
This is an error (because the derived type cannot remove enumeration values), and processing tools
SHOULD detect and warn about such cases.

<dataType name="AB">
<string>
<enumeration value="A"/>
<enumeration value="B"/>
</string>
</dataType>

<dataType name="ABCD" base="AB">
<string>
<enumeration value="C"/>
<enumeration value="D"/>
</string>
</dataType>

A derived data type and any of its facets that support descriptions will inherit those descriptions from the
base type. Facet descriptions are inherited regardless of whether the facet is present in the derived type.
For any descriptions that are explicitly specified in the derived type, the action attribute controls whether
they will be extended or replaced.

For example, in the following, the description of Y (which is not changed) does not have to be repeated.

<dataType name="XY">
<description>This is XY.</description>
<string>
<enumeration value="X">
<description>This is X.</description>
</enumeration>
<enumeration value="Y">
<description>This is Y.</description>
</enumeration>
</string>
</dataType>

<dataType name="XY2" base="XY">
<description action="replace">This is all about XY.</description>
<enumeration value="X">
<description action="append">This is more about X.</description>
</enumeration>
<enumeration value="Y"/>
</dataType>

A.2.4 Bibliography

The bibliography is defined using the top-level bibliography element, which can contain zero or more
(bibliographic) reference elements.

When defining a new bibliographic reference, the following attributes and elements are relevant (normative
requirements are specified in the schema).

November 2008 © The Broadband Forum. All rights reserved. 70

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Table 28 — XML Bibliographic References

Name Description
id The bibliographic reference ID.
name The name by which the referenced document is usually known.

title

The document title.

organization

The organization that published the referenced document, e.g. BBF, IEEE, IETF.

category The document category, e.g. TR (BBF), RFC (IETF).
date The publication date.
hyperlink Hyperlink(s) to the document.

The bibliographic reference ID is intended to uniquely identify this reference across all instance documents.
Therefore, for instance documents that are published by the BBF, IDs MUST obey the following rules:

For a BBF Technical Report, it MUST be of the form “TR-nnnixaycz”, where TR is the literal “TR”,
nnn is the Technical Report number (including leading zeros), i, a and c are literal letters, and x, y, and
z are the issue, amendment and corrigendum numbers respectively. The issue number (ix) is omitted if
itis issue 1 and the amendment number (ay) is omitted if it is amendment 0. For example, “TR-
106a2” refers to TR-106 (Issue 1) Amendment 2. If the corrigendum number (cz) is omitted, the most
recent corrigendum is assumed.

For an IETF RFC, it MUST be of the form “RFCnnn”, where RFC is the literal “RFC” and nnn is the
RFC number (no leading zeros).

For an IEEE specification, it SHOULD be of the form “nnn.ml-dddd”, where nnn.m is the IEEE group,
1 is the spec letter(s), and dddd is the publication year. For example, “802.1D-2004".

For an ETSI specification (which includes DVB specifications), it SHOULD be of the form
“TTnnnnnnva.b.c” where TT is the specification type, usually “TS” (Technical Specification), nnnnnn
is the specification number, and a.b.c is the version number.

For specifications issued by other standards organizations, or by vendors, it SHOULD be of a standard
form if one is defined.

Processing tools SHOULD be lenient when comparing bibliographic reference 1Ds. Specifically, they
SHOULD ignore all whitespace, punctuation, leading zeros in numbers, and upper / lower case. So, for
example, “rfc 1234” and “RFC1234” would be regarded as the same 1D, as would “TR-069" and “TR69”.

Processing tools SHOULD detect and report inconsistent bibliographic references, e.g. a reference with the
same ID (i.e. an ID that compares as equal) as one that was encountered in a different file, but with a
different name or hyperlink.

Formally, bibliographic reference IDs in instance documents that are published by the BBF and the other
organizations mentioned above are defined as follows:

November 2008

© The Broadband Forum. All rights reserved. 71

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

BBFID
RECID

ReferencelD =
|
| IEEEID
|
|

ETSIID
OtherID

BBFID = "TR-" BBFNumber BBFIssue BBFAmendment BBFCorrigendum
BBFNumber = [DIGIT]{3,} // including leading zeros, e.g. 069

BBFIssue = "i" <number greater than one>
[// empty means Issue 1

BBFAmendment = "a" <number greater than zero>
| // empty means Amendment 0

BBFCorrigendum = "c" <number greater than zero>
[// empty means the most recent Corrigendum

RFCID = "RFC" REFCNumber

RFCNumber = NONZERODIGIT [DIGIT]*
// no leading zeros, e.g. 123

IEEEID = IEEEGroup IEEESpec IEEEDate
| <for other IEEE specifications, of a standard form if one is defined>

IEEEGroup = <group number> "." <group sub-number>
// e.g. 802.1

IEEESpec = <spec letter (s)> // e.g. D
IEEEDate = "-" <publication year>
// e.g. —2004
[// can be empty

ETSIID = ETSISpecType ETSINumber ETSIVersion
<for other ETSI specifications, of a standard form if one is defined>

ETSISpecType = "TR" // Technical Report

REESE // Technical Specification

| "ES" // ETSI Specification

| "EN" // European Standard
ETSINumber = [DIGIT] {6} // e.g. 102034
ETSIVersion = "v" <version number as specified by ETSI>

[// can be empty

OtherURI = <of a standard form if one is defined>

A.2.5 Components

A component is a way of defining a named set of parameters, objects and/or profiles to be used wherever
such a group is needed in more than one place (or just to structure the definitions). A DM Instance can
contain zero or more top-level component elements.

When defining a new component, the following attributes and elements are relevant (normative
requirements are specified in the schema).

Table 29 — XML Component Definition

Name Description

name The component name.

description The component’s description (A.2.2).

component The other components that are referenced (included) by this component.

November 2008 © The Broadband Forum. All rights reserved. 72

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Name Description

parameter The component’s top-level parameter definitions (A.2.7).
object The component’s object definitions (A.2.8).

profile The component’s profile definitions (A.2.9).

Referencing (including) a component can be thought of as textual substitution. A component has no
version number and isn’t tied to a particular Root or Service Object.

The following is a simple example of component definition and reference.

<component name="ByteStats">
<parameter name="BytesSent" access="readOnly">
<description>Number of bytes sent.</description>
<syntax><unsignedInt/></syntax>

</parameter>
<parameter name="BytesReceived" access="readOnly">
<description>Number of bytes received.</description>
<syntax><unsignedInt/></syntax>
</parameter>
</component>

<model name="InternetGatewayDevice:1.4">
<object name="InternetGatewayDevice." access="readOnly" minEntries="1" maxEntries="1">

<component ref="ByteStats"/>
</object>

</model>

A.2.6

Here the component is referenced from within an object definition. Components can be referenced from
within component, model and object definitions. Parameter, object and profile definitions within
components are relative to the point of inclusion unless overridden using the path attribute.

Root and Service Objects

Root and Service Objects are defined using the model element and an associated top-level object element.
A DM Instance can contain zero or more top-level model elements.

When defining a new model, the following attributes and elements are relevant (normative requirements are
specified in the schema).

Table 30 — XML Root and Service Objects

Name Description

name The model name, including its major and minor version numbers (3.7).

base The name of the previous version of the model (for use when the model version is greater than 1.0).
isService Whether it's a Service Object. This defaults to False and so can be omitted for Root Objects.
description The model’s description (A.2.2).

component The components that are referenced (included) by the model.

parameter The model’s top-level parameter definitions (A.2.7).

object The model’s top-level and other object definitions (A.2.8).

profile The model’s profile definitions (A.2.9).

Once a given version has been defined, it cannot be modified; instead, a new version of the object has to be
defined. For example, the following example defines v1.0 and v1.1 of a notional Service Object.

November 2008

© The Broadband Forum. All rights reserved. 73

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

<model name="DemoService:1.0" isService="true">
<parameter name="DemoServiceNumberOfEntries" access="readOnly"/>
<object name="DemoService.{i}." access="readOnly" minEntries="0" maxEntries="unbounded"
entriesParameter="DemoServiceNumberOfEntries" />
</model>

<model name="DemoService:1l.1" base="DemoService:1.0" isService="true">
<object base="DemoService.{i}." access="readOnly" minEntries="0" maxEntries="unbounded"/>
</model>

A.2.7 Parameters

Parameters are defined using the parameter element, which can occur within component, model and object
elements. When defining a new parameter, the following attributes and elements are relevant (normative
requirements are specified in the schema).

A27.1

Table 31 — XML Parameter Definition

Name Description

name The parameter name (3.1).

access Whether the parameter can be writable (readWrite) or not (readOnly).

status The parameter’s {current, deprecated, obsoleted, deleted} status. This defaults to current, and so is
not likely to be specified for a new parameter.

activeNotify The parameter’s {normal, forceEnabled, ForceDefault, canDeny} Active Notification status. This

defaults to normal, and so is not often specified for a new parameter.

forcedinform

The parameter’s Forced Inform status. This defaults to False, and so is not often specified for a new
parameter.

description

The parameter’s description (A.2.2).

syntax

The parameter’s syntax (A.2.7.1).

Parameter Syntax

Parameter syntax is defined using the syntax element, which can occur only within parameter elements.
When defining a new parameter, the following attributes and elements are relevant (normative
requirements are specified in the schema).

Table 32 — XML Parameter Syntax

Name Description

hidden Whether the value is hidden on readback. This defaults to False, and so is not often specified for a
new parameter.

list If the parameter is list-valued, details of the list value (3.2). This allows specification of the maximum
and minimum number of items in the list, and also supports a size facet for the list (A.2.3.3).
Note that a list-valued parameter is always a string as far as TR-069 is concerned. For a list, the rest
of the syntax specification refers to the individual list items, not to the parameter value.

base64 If the parameter is of a primitive data type, specifies a primitive data type reference, e.g. <int/>.

go;nf_gn If the parameter data type is derived from a primitive data type, specifies an anonymous primitive data

aeefime type definition (A.2.3.2), e.g. <int><range maxinclusive=*255"/></int>.

hexBinary

int

long

string

unsignedint

unsignedLong

dataType If the parameter is of a named data type, specifies a named data type (A.2.3.1) reference, e.g.
<dataType ref="IPAddress”/>.
If the parameter data type is derived from a named data type, specifies an anonymous named data
type (A.2.3.2) definition, e.g. <dataType base=“IPAddress”><size maxLength="15"/></dataType>.

November 2008 © The Broadband Forum. All rights reserved. 74

A.2.8

A.28.1

A.2.9

Data Model Template for TR-069-Enabled Devices

Objects

TR-106 Amendment 2

Objects are defined using the object element, which can occur within component and model elements.
When defining a new object, the following attributes and elements are relevant (normative requirements are
specified in the schema).

Table 33 — XML Object Definition

Name Description

name The object name, specified as a partial path (3.1).

access Whether object instances can be Added or Deleted (readWrite) or not (readOnly). Adding or deleting
instances is meaningful only for a multi-instance (table) object.

minEntries The minimum number of instances of this object (always less than or equal to maxEntries).

maxEntries The maximum number of instances of this object (can be “unbounded”). minEntries and maxEntries
allow the object to be placed into one of three categories:
¢ minEntries=0, maxEntries=1: single-instance object which might not be allowed to exist, e.g.

because only one of it and another object can exist at the same time.

¢ minEntries=1, maxEntries=1: single-instance object that is always allowed to exist.
e All other cases: multi-instance (table) object (A.2.8.1).

status The object’s {current, deprecated, obsoleted, deleted} status. This defaults to current, and so is not
likely to be specified for a new object.

description The object’s description (A.2.2).

component The components that are referenced (included) by the object.

parameter The object’s parameter definitions (A.2.7).

Tables

If an object is a table, several other attributes and elements are relevant (normative requirements are
specified in the schema).

Table 34 — XML Table Definition

Name

Description

name

For a table, the last part of the name has to be “{i}” (3.1).

entriesParameter

The name of the parameter (in the parent object) that contains the number of entries in the table.
Such a parameter is needed whenever there is a variable number of entries, i.e. whenever
maxEntries is unbounded or is greater than minEntries.

enableParameter

The name of the parameter (in each table entry) that enables and disables that table entry. Such a
parameter is needed whenever access is readWrite (so the ACS might be able to create entries)
and the uniqueKey element is present.

uniqueKey An element that specifies a unique key by referencing those parameters that constitute the unique
key. For atable in which there is an enableParameter, the uniqueness requirement applies only to
enabled table entries.
Profiles

Profiles are defined using the profile element, which can occur within component and model elements.
When defining a new profile, the following attributes and elements are always relevant (normative
requirements are specified in the schema).

Table 35 — XML Profile Definition

Name Description
name The profile name, including its version number (2.3.3).
base The name of the previous version of the profile (for use when the profile version is greater than 1).
extends A list of the names of the profiles that this profile extends.
November 2008 © The Broadband Forum. All rights reserved. 75

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

Name Description

description The profile’s description (A.2.2).

parameter The profile’s parameter requirements, which can include descriptions, references to the parameters in
guestion, and the parameter access requirement.

object The profile’s object requirements, which can include descriptions, references to the objects in question,
the object access requirements, and requirements for the object’'s parameters.

A.2.10 Modifications

New data types, components, models and profiles can be created based on existing items. This doesn’t
modify the existing item.

A.2.10.1

Parameters, objects and profiles can be modified “in place”, i.e. without creating a new item. This still uses
the parameter, object and profile elements, and is indicated by using the base, rather than the name,
attribute. The base attribute specifies the name of the existing item that is to be modified.

The syntax for modifying an item is the same as for creating an item, but there are rules. These rules are
not specified in the DM Schema.

Parameter Modifications
The following rules govern parameter modifications.

Table 36 — XML Parameter Modification

Name Description

access Can be “promoted” from readOnly to readWrite.

status Can be “promoted” to a “higher” value, where the lowest to highest ordering is: current, deprecated,
obsoleted, deleted. For example, current can be changed to deprecated, and obsoleted can be
changed to deleted, but deleted can’t be changed back to obsoleted. When promoting status, the
deprecation, obsoletion and deletion rules of section 2.4 MUST be obeyed.

activeNotify Can be changed from forceEnabled to forceDefaultEnabled. No other changes are permitted.

forcedInform

Cannot be changed.

description Can be extended or replaced via use of the action attribute. When changing the description,
behavioral backwards compatibility MUST be preserved.
syntax/hidden Cannot be changed.
syntax/list Can add or modify the list element in the following ways:
¢ Can convert a non-list string parameter to a list provided that an empty string was already a valid
value with the appropriate meaning.
¢ Can adjust limits on numbers of items, and on the list size, provided that the new rules do not
permit any values that were not valid for the previous version of the parameter.
syntax/int etc Can make any change that follows the base type restriction rules of A.2.3.8, e.g. can add
syntax/dataType | enumerations.
syntax/default A default can be added if the parameter didn’t already have one.

Most of the above requirements are non-normative, because it has to be possible to correct errors in a
previous version of a parameter. Processing tools SHOULD be able to detect and warn when a parameter
is modified in a way that contravenes the above rules.

A.2.10.2 Object Modifications
The following rules govern object modifications.

November 2008

© The Broadband Forum. All rights reserved. 76

A.2.10.3

A.3

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Table 37 — XML Object Modification

Name Description

access Can be “promoted” from readOnly to readWrite.
minEntries Cannot be changed.

maxEntries Cannot be changed.

entriesParameter

Cannot be changed, unless was previously missing, in which case can be added.

enableParameter

Cannot be changed, unless was previously missing, in which case can be added.

status Can be “promoted” to a “higher” value, where the lowest to highest ordering is: current, deprecated,
obsoleted, deleted. For example, current can be changed to deprecated, and obsoleted can be
changed to deleted, but deleted can’t be changed back to obsoleted. When promoting status, the
deprecation, obsoletion and deletion rules of section 2.4 MUST be obeyed.

description Can be extended or replaced via use of the action attribute. When changing the description,
behavioral backwards compatibility MUST be preserved.

uniqueKey Cannot be changed.

component Can reference (include) new components.

parameter Can add new parameters.

Most of the above requirements are non-normative, because it has to be possible to correct errors in a
previous version of an object. Processing tools SHOULD be able to detect and warn when an object is
modified in a way that contravenes the above rules.

Profile Modifications

The following rules govern profile modifications. They apply to the profile element, and to its nested
parameter and object elements.

Table 38 - XML Profile Modification

Name Description

Can be “promoted” to a “higher” value, where the lowest to highest ordering is: current,
deprecated, obsoleted, deleted. For example, current can be changed to deprecated, and
obsoleted can be changed to deleted, but deleted can’t be changed back to obsoleted. When
promoting status, the deprecation, obsoletion and deletion rules of section 2.4 MUST be obeyed.

status

Can be extended or replaced via use of the action attribute. When changing the description,
behavioral backwards compatibility MUST be preserved.

description

Most of the above requirements are non-normative, because it has to be possible to correct errors in a

profile. Indeed, since profiles are immutable, the only valid reason for changing a profile is to correct
errors. Processing tools SHOULD be able to detect and warn when a profile is modified in a way that
contravenes the above rules.

DM Schema

The DM Schema is specified below. The normative version can be found at http://www.broadband-
forum.org/cwmp/cwmp-datamodel-1-0.xsd. Any conflict MUST be resolved in favor of the normative
version.

77

November 2008 © The Broadband Forum. All rights reserved.

http://www.broadband-forum.org/cwmp/cwmp-datamodel-1-0.xsd
http://www.broadband-forum.org/cwmp/cwmp-datamodel-1-0.xsd

[y
QOOONOUTRWN -

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

<?xml version="1.0" encoding="UTF-8"?>
<l--
TR-069 Data Model Definition Schema (DM Schema) v1.0

Notice:

The Broadband Forum is a non-profit corporation organized to create
guidelines for broadband network system development and deployment. This
XML Schema has been approved by members of the Forum. This document is
not binding on the Broadband Forum, any of its members, or any developer
or service provider. This document is subject to change, but only with
approval of members of the Forum.

This document is provided "as is," with all faults. Any person holding a

copyright in this document, or any portion thereof, disclaims to the fullest

extent permitted by law any representation or warranty, express or implied,

including, but not limited to,

(a) any warranty of merchantability, fitness for a particular purpose,
non-infringement, or title;

(b) any warranty that the contents of the document are suitable for any
purpose, even if that purpose is known to the copyright holder;

(c) any warranty that the implementation of the contents of the documentation
will not infringe any third party patents, copyrights, trademarks or other
rights.

This publication may incorporate intellectual property. The Broadband Forum
encourages but does not require declaration of such intellectual property.

For a list of declarations made by Broadband Forum member companies, please see
http://www.broadband-forum.org.

Copyright The Broadband Forum. All Rights Reserved.

Broadband Forum XML Schemas may be copied, downloaded, stored on a server or
otherwise re-distributed in their entirety only. The text of this
notice must be included in all copies.

Summary:

TR-069 Data Model Definition Schema (DM Schema). DM Instances define TR-069
data models. Within the schema, elements are grouped by category (simple
types, complex types etc), and are in alphabetical order within each category.

Version History:

November 2008: cwmp-datamodel-1-0.xsd, corresponds to TR-106 Amendment 2
-—>
<!DOCTYPE cwmp-datamodel [

<!ENTITY colon ":">

<IENTITY dot "\.">

<!ENTITY inst " (\{i\})"
<!ENTITY name " ([\i-[:]][\c—[:\ 11%)">
<!ENTITY Name " ([\i- [z:]][\e=[:\.11%)">
<!ENTITY "(\d+) "

1>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:tns="urn:broadband-forum-
org:cwmp:datamodel-1-0" targetNamespace="urn:broadband-forum-
org:cwmp:datamodel-1-0" elementFormDefault="unqualified"
attributeFormDefault="unqualified">
<!-- Simple types -->
<xs:simpleType name="ActiveNotify">
<xs:annotation>
<xs:documentation>Parameter active notify support.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="normal"/>
<xs:enumeration value="forceEnabled"/>
<xs:enumeration value="forceDefaultEnabled"/>
<xs:enumeration value="canDeny"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="AnyTypeName">
<xs:annotation>
<xs:documentation>Built-in or derived type name.</xs:documentation>
</xs:annotation>

November 2008 © The Broadband Forum. All rights reserved.

78

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

<xs:union memberTypes="tns:BuiltinTypeName tns:DataTypeName"/>
</xs:simpleType>
<xs:simpleType name="BibrefId">
<xs:annotation>
<xs:documentation>Bibliographic reference ID; SHOULD uniquely identify this
reference across all instance documents.

For BBF DM Instances, the bibliographic reference ID rules specified in A.2.4 MUST be
used. For example, to reference TR-106 Issue 1 Amendment 2, the
value of this attribute would be TR-106a2.</xs:documentation>

</xs:annotation>
<xs:restriction base="xs:token"/>
</xs:simpleType>
<xs:simpleType name="BuiltinTypeName">
<xs:annotation>
<xs:documentation>Built-in type name.

The type hierarchy is as for XML Schema, with "any" and "base64" mapping to the
"anySimpleType" and "base64Binary" XML Schema types
respectively.</xs:documentation>

</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="any"/>
<xs:enumeration value="base64"/>
<xs:enumeration value="boolean"/>
<xs:enumeration value="dateTime"/>
<xs:enumeration value="hexBinary"/>
<xs:enumeration value="integer"/>
<xs:enumeration value="int"/>
<xs:enumeration value="long"/>
<xs:enumeration value="string"/>
<xs:enumeration value="unsignedInt"/>
<xs:enumeration value="unsignedLong"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ComponentName">
<xs:annotation>
<xs:documentation>Component name; the same as xs:NCName except that dots are not
permitted.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:pattern value="g&name;"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="DataTypeName">
<xs:annotation>
<xs:documentation>Data type name; the same as xs:NCName except that cannot start
with lower-case letter (to avoid conflict with built-in data type
names) and dots are not permitted.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:pattern value="&Name;"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="DefaultType">
<xs:annotation>
<xs:documentation>Type of default.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="factory">
<xs:annotation>
<xs:documentation>Default from standard, e.g. RFC. Also applies on object
creation.</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="object">
<xs:annotation>
<xs:documentation>Default on object creation.</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="DescriptionAction">

November 2008 © The Broadband Forum. All rights reserved. 79

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

143 <xs:annotation>

144 <xs:documentation>Description action.</xs:documentation>

145 </xs:annotation>

146 <xs:restriction base="xs:token">

147 <xs:enumeration value="create"/>

148 <xs:enumeration value="append"/>

149 <xs:enumeration value="replace"/>

150 </xs:restriction>

151 </xs:simpleType>

152 <xs:simpleType name="MaxEntries">

153 <xs:annotation>

154 <xs:documentation>Positive integer or "unbounded".</xs:documentation>

155 </xs:annotation>

156 <xs:union memberTypes="xs:positiveInteger">

157 <xs:simpleType>

158 <xs:restriction base="xs:token">

159 <xs:enumeration value="unbounded"/>

160 </xs:restriction>

161 </xs:simpleType>

162 </xs:union>

163 </xs:simpleType>

164 <xs:simpleType name="ModelName">

165 <xs:annotation>

166 <xs:documentation>Model name, including major and minor versions. The name part is
167 the same as xs:NCName except that dots are not

168 permitted.</xs:documentation>

169 </xs:annotation>

170 <xs:restriction base="xs:token">

171 <xs:pattern value="&name; : # ˙ # " />

172 </xs:restriction>

173 </xs:simpleType>

174 <xs:simpleType name="ObjectName">

175 <xs:annotation>

176 <xs:documentation>Object name (maximum length 256). Each component is the same as
177 xs:NCName except that dots are not permitted. This name MUST in
178 addition follow the vendor-specific object name requirements of
179 section 3.3.</xs:documentation>

180 </xs:annotation>

181 <xs:restriction base="xs:token">

182 <xs:maxLength value="256"/>

183 <xs:pattern value=" (&name; ˙ (&inst; ˙)?)+"/>

184 </xs:restriction>

185 </xs:simpleType>

186 <xs:simpleType name="ObjectReference">

187 <xs:annotation>

188 <xs:documentation>Object path that cannot contain "{i}" placeholders and that
189 therefore references a single object. The path MUST follow the
190 requirements of A.2.3.4 (its scope will typically be specified via
191 an attribute of type PathScope) .</xs:documentation>

192 </xs:annotation>

193 <xs:restriction base="xs:token">

194 <xs:pattern value="˙? (&name; ˙) *"/>

195 </xs:restriction>

196 </xs:simpleType>

197 <xs:simpleType name="ObjectReferencePattern">

198 <xs:annotation>

199 <xs:documentation>Object path that can contain "{i}" placeholders and that can
200 therefore references multiple objects. The path MUST follow the
201 requirements of A.2.3.4 (its scope will typically be specified via
202 an attribute of type PathScope) .</xs:documentation>

203 </xs:annotation>

204 <xs:restriction base="xs:token">

205 <xs:pattern value="˙? (&name; ˙ (&inst; ˙)?)*"/>

206 </xs:restriction>

207 </xs:simpleType>

208 <xs:simpleType name="ObjectReferencePatterns">

209 <xs:annotation>

210 <xs:documentation>List of object paths, each of which can contain "{i}"

211 placeholders.</xs:documentation>

212 </xs:annotation>

213 <xs:list itemType="tns:0ObjectReferencePattern"/>

November 2008 © The Broadband Forum. All rights reserved. 80

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

214 </xs:simpleType>

215 <xs:simpleType name="OpaqueID">

216 <xs:annotation>

217 <xs:documentation>Opaque ID.</xs:documentation>

218 </xs:annotation>

219 <xs:restriction base="xs:token">

220 <xs:maxLength value="256"/>

221 </xs:restriction>

222 </xs:simpleType>

223 <xs:simpleType name="ParameterName">

224 <xs:annotation>

225 <xs:documentation>Parameter name (maximum length 256); the same as xs:NCName except
226 that dots are not permitted. This name MUST in addition follow the
227 vendor-specific parameter name requirements of section

228 3.3.</xs:documentation>

229 </xs:annotation>

230 <xs:restriction base="xs:token">

231 <xs:maxLength value="256"/>

232 <xs:pattern value="&name;"/>

233 </xs:restriction>

234 </xs:simpleType>

235 <xs:simpleType name="ParameterReference">

236 <xs:annotation>

237 <xs:documentation>Parameter path that cannot contain "{i}" placeholders and that
238 therefore references a single parameter. The path MUST follow the
239 requirements of A.2.3.4 (its scope will typically be specified via
240 an attribute of type PathScope) .</xs:documentation>

241 </xs:annotation>

242 <xs:restriction base="xs:token">

243 <xs:pattern value="˙? (&name; ˙) *&name; ?"/>

244 </xs:restriction>

245 </xs:simpleType>

246 <xs:simpleType name="PathScope">

247 <xs:annotation>

248 <xs:documentation>Object / parameter path name scope (A.2.3.4).</xs:documentation>
249 </xs:annotation>

250 <xs:restriction base="xs:token">

251 <xs:enumeration value="normal"/>

252 <xs:enumeration value="model"/>

253 <xs:enumeration value="object"/>

254 </xs:restriction>

255 </xs:simpleType>

256 <xs:simpleType name="ProfileName">

257 <xs:annotation>

258 <xs:documentation>Profile name, including version. The name part is the same as
259 xs:NCName except that dots are not permitted.</xs:documentation>
260 </xs:annotation>

261 <xs:restriction base="xs:token">

262 <xs:pattern value="&name; : #"/>

263 </xs:restriction>

264 </xs:simpleType>

265 <xs:simpleType name="ProfileNames">

266 <xs:annotation>

267 <xs:documentation>List of profile names.</xs:documentation>

268 </xs:annotation>

269 <xs:list itemType="tns:ProfileName"/>

270 </xs:simpleType>

271 <xs:simpleType name="ProfileObjectAccess">

272 <xs:annotation>

273 <xs:documentation>Object access (within profile).</xs:documentation>

274 </xs:annotation>

275 <xs:restriction base="xs:token">

276 <xs:enumeration value="notSpecified"/>

277 <xs:enumeration value="present"/>

278 <xs:enumeration value="create"/>

279 <xs:enumeration value="delete"/>

280 <xs:enumeration value="createDelete"/>

281 </xs:restriction>

282 </xs:simpleType>

283 <xs:simpleType name="ReadWriteAccess">

284 <xs:annotation>

November 2008 © The Broadband Forum. All rights reserved. 81

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

Data Model Template for TR-069-Enabled Devices

<xs:documentation>Read-write access.</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:token">
<xs:enumeration value="readOnly"/>
<xs:enumeration value="readWrite"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="ReferenceType">

<xs:annotation>

<xs:documentation>Reference type (A.2.3.6).</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:token">
<xs:enumeration value="weak"/>
<xs:enumeration value="strong"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="Status">

<xs:annotation>

<xs:documentation>Item status

</xs:annotation>

<xs:restriction base="xs:token">
<xs:enumeration value="current"/>
<xs:enumeration value="deprecated"/>
<xs:enumeration value="obsoleted"/>
<xs:enumeration value="deleted"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="TargetType">

<xs:annotation>

<xs:documentation> (Reference) target type (used in path
references) .</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:token">
<xs:enumeration value="any"/>
<xs:enumeration value="parameter"/>
<xs:enumeration value="object"/>
<xs:enumeration value="single"/>
<xs:enumeration value="table"/>
<xs:enumeration value="row"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="UnitsString">

<xs:annotation>

<xs:documentation>Units string.</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:token">
<xs:maxLength value="32"/>

</xs:restriction>
</xs:simpleType>
<!-- Model groups -->

<xs:group name="AllBuiltinDataTypes">

<xs:annotation>

<xs:documentation>All built-in data types.</xs:documentation>

</xs:annotation>
<xs:choice>

<xs:element name="base64">

<xs:complexType>
<xs:sequence>

<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="size" type="tns:SizeFacet">
<xs:annotation>
<xs:documentation>Length is that of the actual string, not the base64-
encoded string. See A.2.3.3.</xs:documentation>
</xs:annotation>

</xs:element>
</xs:choice>

TR-106 Amendment 2

(applies to most types of item).</xs:documentation>

<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:anyAttribute namespace="##other"/>

</xs:complexType>
</xs:element>

November 2008

© The Broadband Forum. All rights reserved.

82

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

<xs:element name="boolean">
<xs:complexType>
<xs:sequence>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
<xs:element name="dateTime">
<xs:complexType>
<xs:sequence>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
<xs:element name="hexBinary">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="size" type="tns:SizeFacet">
<xs:annotation>
<xs:documentation>Length is that of the actual string, not the
hexBinary-encoded string. See A.2.3.3.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
<xs:element name="int">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="instanceRef" type="tns:InstanceRefFacet"/>
<xs:element name="range" type="tns:RangeFacet"/>
<xs:element name="units" type="tns:UnitsFacet"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
<xs:element name="long">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="range" type="tns:RangeFacet"/>
<xs:element name="units" type="tns:UnitsFacet"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
<xs:element name="string">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="size" type="tns:SizeFacet"/>
<xs:element name="pathRef" type="tns:PathRefFacet"/>
<xs:element name="enumeration" type="tns:EnumerationFacet"/>
<xs:element name="enumerationRef" type="tns:EnumerationRefFacet"/>
<xs:element name="pattern" type="tns:PatternFacet"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>

November 2008 © The Broadband Forum. All rights reserved. 83

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

<xs:unique name="stringEnumerationValue">
<xs:selector xpath="enumeration"/>
<xs:field xpath="@value"/>
</xs:unique>
<xs:unique name="stringPatternvValue">
<xs:selector xpath="pattern"/>
<xs:field xpath="@value"/>
</xs:unique>
</xs:element>
<xs:element name="unsignedInt">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="instanceRef" type="tns:InstanceRefFacet"/>
<xs:element name="range" type="tns:RangeFacet"/>
<xs:element name="units" type="tns:UnitsFacet"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
<xs:element name="unsignedLong">
<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="range" type="tns:RangeFacet"/>
<xs:element name="units" type="tns:UnitsFacet"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:group>
<xs:group name="AllFacets">
<xs:annotation>
<xs:documentation>All facets.</xs:documentation>
</xs:annotation>
<xs:choice>
<xs:element name="size" type="tns:SizeFacet">
<xs:annotation>
<xs:documentation>Size facets, taken together, define the valid size ranges,
e.g. (0:0) and (6:6) mean that the size has to be 0 or 6.
The size facet MUST NOT be specified for non-string data types, i.e. data types that are
not derived from base64, hexBinary or string.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="instanceRef" type="tns:InstanceRefFacet">
<xs:annotation>
<xs:documentation>InstanceRef facets specify how a parameter can reference an
object instance (table row) via its instance number.
The instanceRef facet MUST NOT be specified for data types that are not derived from int
or unsignedInt.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="pathRef" type="tns:PathRefFacet">
<xs:annotation>
<xs:documentation>PathRef facets specify how a parameter can reference a
parameter or object via its path name.
The pathRef facet MUST NOT be specified for data types that are not derived from
string.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="range" type="tns:RangeFacet">
<xs:annotation>
<xs:documentation>Range facets, taken together, define the valid value ranges,
e.g. [-1:-1] and [1:4094] mean that the value has to be -1 or 1:4094
(it cannot be 0).

November 2008 © The Broadband Forum. All rights reserved. 84

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

The range facet MUST NOT be specified for non-numeric data types, i.e. data types that are
not derived from one of the integer types.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="enumeration" type="tns:EnumerationFacet">
<xs:annotation>
<xs:documentation>Enumeration facets, taken together, define the valid wvalues,

e.g. "a" and "b" mean that the value has to be a or b.

The enumeration facet MUST NOT be specified for data types that are not derived from
string.

Derived types MAY add additional enumeration values. See A.2.5.</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="enumerationRef" type="tns:EnumerationRefFacet">
<xs:annotation>
<xs:documentation>EnumerationRef facets allow a parameter's valid values to be
obtained from another parameter.

The enumerationRef facet MUST NOT be specified for data types that are not derived from

string.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="pattern" type="tns:PatternFacet">
<xs:annotation>
<xs:documentation>Pattern attributes, taken together, define valid patterns,
e.g. "" and "[0-9A-Fa-f]{6}" means that the value has to be empty or
a 6 digit hex string.

The pattern facet MUST NOT be specified for data types that are not derived from string.

Pattern syntax is the same as for XML Schema regular expressions. See
http://www.w3.0org/TR/xmlschema-2/#regexs.</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="units" type="tns:UnitsFacet">
<xs:annotation>
<xs:documentation>Multiple units facets MUST NOT be specified.

The units facet MUST NOT be specified for data types that are not numeric, i.e. data types
that are not derived from one of the integer
types.</xs:documentation>

</xs:annotation>
</xs:element>
</xs:choice>
</xs:group>
<!-- Complex types -->
<xs:complexType name="BaseStatusFacet" abstract="true">
<xs:annotation>
<xs:documentation>Base facet (status attribute) .</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="description" type="tns:Description" minOccurs="0"/>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="BaseAccessFacet" abstract="true">
<xs:annotation>
<xs:documentation>Base facet (access, status and optional
attributes) .</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="access" type="tns:ReadWriteAccess" default="readWrite"/>
<xs:attribute name="optional" type="xs:boolean" default="false"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="Bibliography">
<xs:annotation>
<xs:documentation>Bibliography definition.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="description" type="tns:Description" minOccurs="0"/>

November 2008 © The Broadband Forum. All rights reserved. 85

568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

<xs:element name="reference" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="name" type="xs:token">
<xs:annotation>
<xs:documentation>Name by which the referenced document is usually known,
e.g. TR-069, RFC 2863.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="title" type="xs:token" minOccurs="0"/>
<xs:element name="organization" type="xs:token" minOccurs="0">
<xs:annotation>
<xs:documentation>Organization that published the referenced document,
e.g. BBF, IEEE, IETF.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="category" type="xs:token" minOccurs="0">
<xs:annotation>
<xs:documentation>Document category, e.g. TR (BBF), RFC
(IETF) .</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="date" type="xs:token" minOccurs="0">
<xs:annotation>
<xs:documentation>Publication date.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="hyperlink" type="xs:anyURI"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="tns:BibrefId" use="required">
<xs:annotation>
<xs:documentation>Uniquely identifies the reference (this is checked by
schema validation). Can be referenced from descriptions by using
the {{bibref}} template. See A.2.2.4.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="ComponentDefinition">
<xs:annotation>
<xs:documentation>Component definition.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="description" type="tns:Description" minOccurs="0"/>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="component" type="tns:ComponentReference"/>
<xs:element name="parameter" type="tns:ModelParameter"/>
<xs:element name="object" type="tns:ModelObject">
<xs:unique name="componentObjectParameterName">
<xs:selector xpath="parameter"/>
<xs:field xpath="@name"/>
</xs:unique>
<xs:keyref name="componentEnableParameterRef"
refer="tns:componentObjectParameterName">
<xs:selector xpath="."/>
<xs:field xpath="@enableParameter"/>
</xs:keyref>
<xs:keyref name="componentUniqueKeyRef"
refer="tns:componentObjectParameterName">
<xs:selector xpath="uniqueKey/parameter"/>
<xs:field xpath="@ref"/>
</xs:keyref>
</xs:element>
</xs:choice>
<xs:choice minOccurs="0" maxOccurs="unbounded">

November 2008 © The Broadband Forum. All rights reserved. 86

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709

Data Model Template for TR-069-Enabled Devices

<xs:element name="profile" type="tns:Profile"/>

</xs:choice>

<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="name" type="tns:ComponentName" use="required">

<xs:annotation>

<xs:documentation>MUST be unique within the document, including imported
components (this is checked by schema
validation) .</xs:documentation>

</xs:annotation>
</xs:attribute>

<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:attribute name="id" type="tns:OpaquelD"/>
<xs:anyAttribute namespace="##other"/>

</xs:complexType>

<xs:complexType name="ComponentReference">

<xs:annotation>

<xs:documentation>Component reference.</xs:documentation>

</xs:annotation>

<xs:attribute name="ref" type="tns:ComponentName" use="required">

<xs:annotation>

<xs:documentation>Name of component to be referenced
(included) .</xs:documentation>

</xs:annotation>
</xs:attribute>

<xs:attribute name="path" type="tns:0bjectName">

<xs:annotation>

<xs:documentation>If specified, is relative path between point of reference
(inclusion) and the component's items. If not specified, behavior
is as if an empty relative path was specified.</xs:documentation>

</xs:annotation>
</xs:attribute>

<xs:anyAttribute namespace="##other"/>

</xs:complexType>

<xs:complexType name="DataTypeDefinition">

<xs:annotation>

<xs:documentation>Parameter data type definition.</xs:documentation>

</xs:annotation>
<Xs:sequence>

<xs:element name="description" type="tns:Description" minOccurs="0"/>

<xs:choice>

<xs:group ref="tns:AllFacets" minOccurs="0" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>Facets MUST NOT be specified if the base attribute is
omitted.</xs:documentation>

</xs:annotation>
</xs:group>

<xs:group ref="tns:AllBuiltinDataTypes" minOccurs="0">

<xs:annotation>

<xs:documentation>A built-in data type element MUST NOT be specified if the
base attribute is present.
See tns:AllFacets for notes and requirements on individual facets.</xs:documentation>

</xs:annotation>
</xs:group>
</xs:choice>

<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="tns:DataTypeName" use="required">

<xs:annotation>

<xs:documentation>MUST be unique within the document, including imported data

types

(this is checked by schema validation).

Cannot begin with a lower-case letter, in order to avoid confusion with built-in data
types.</xs:documentation>

</xs:annotation>
</xs:attribute>

<xs:attribute name="base" type="tns:DataTypeName">

<xs:annotation>

TR-106 Amendment 2

<xs:documentation>MUST be present if and only if deriving from a non-built-in data

type.
</xs:annotation>
</xs:attribute>

November 2008

See A.2.3.1.</xs:documentation>

© The Broadband Forum. All rights reserved.

87

710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:attribute name="id" type="tns:OpaquelD"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="DataTypeReference">
<xs:annotation>
<xs:documentation>Parameter data type reference or anonymous restriction /
extension.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:group ref="tns:AllFacets" minOccurs="0" maxOccurs="unbounded"/>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="ref" type="tns:DataTypeName">
<xs:annotation>
<xs:documentation>If specified, content MUST be empty.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="base" type="tns:DataTypeName">
<xs:annotation>
<xs:documentation>If specified, content MUST NOT be empty.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="DefaultFacet">
<xs:annotation>
<xs:documentation>Default facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="type" type="tns:DefaultType" use="required"/>
<xs:attribute name="value" type="xs:string" use="required">
<xs:annotation>
<xs:documentation>Value MUST be valid for the data type.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="Description">
<xs:annotation>
<xs:documentation>Description: free text which MAY contain a limited amount of
mediawiki-like markup as specified in A.2.2. For example, use "*"
at the start of a line to indicate a bulleted list.
To avoid confusion, the description SHOULD NOT contain tab characters.
For BBF standards, the character set MUST be restricted to printable characters in the
Basic Latin Unicode block, i.e. to characters whose decimal ASCII
representations are in the (inclusive) ranges 9-10 and 32-
126.</xs:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="action" type="tns:DescriptionAction" default="create">
<xs:annotation>
<xs:documentation>This MUST be specified when the description modifies that of
a previously defined item.
Specify "append" to append to the previous description, or "replace" to replace the
previous description.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:anyAttribute namespace="##other"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="EnumerationFacet">
<xs:annotation>
<xs:documentation>Enumeration facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseAccessFacet">

November 2008 © The Broadband Forum. All rights reserved. 88

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

<xs:attribute name="value" type="xs:string" use="required"/>
<xs:attribute name="code" type="xs:integer"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="EnumerationRefFacet">
<xs:annotation>
<xs:documentation>Enumeration reference facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="targetParam" type="tns:ParameterReference" use="required">
<xs:annotation>
<xs:documentation>MUST reference a list-valued parameter.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="targetParamScope" type="tns:PathScope" default="normal">
<xs:annotation>
<xs:documentation>Specifies the point in the naming hierarchy relative to
which targetParam applies (A.2.3.4).</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="nullValue" type="xs:token">
<xs:annotation>
<xs:documentation>Specifies the value that indicates that none of the values
of the referenced parameter currently apply.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="Import">
<xs:annotation>
<xs:documentation>Import data types, components and models (Root and Service
Objects) from external documents. All such items MUST be imported
(this is checked by schema validation).
The optional ref attribute MAY be used in order to avoid name conflicts between imported
and locally-defined items.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="dataType">
<xs:complexType>
<xs:attribute name="name" type="tns:DataTypeName" use="required"/>
<xs:attribute name="ref" type="tns:DataTypeName">
<xs:annotation>
<xs:documentation>If omitted, data type is known by the same name in both
this and the referenced document.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element name="component">
<xs:complexType>
<xs:attribute name="name" type="tns:ComponentName" use="required"/>
<xs:attribute name="ref" type="tns:ComponentName">
<xs:annotation>
<xs:documentation>If omitted, component is known by the same name in both
this and the referenced document.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element name="model">
<xs:complexType>
<xs:attribute name="name" type="tns:ModelName" use="required"/>
<xs:attribute name="ref" type="tns:ModelName">
<xs:annotation>
<xs:documentation>If omitted, model is known by the same name in both this
and the referenced document.</xs:documentation>
</xs:annotation>

November 2008 © The Broadband Forum. All rights reserved. 89

852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

</xs:attribute>
</xs:complexType>
</xs:element>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="file" type="xs:string" use="required">
<xs:annotation>
<xs:documentation>Only the file name part SHOULD be specified (the processing tool
is assumed to support a search path).</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="spec" type="xs:anyURI">
<xs:annotation>
<xs:documentation>If specified, the processing tool MUST regard a mismatch between
this and the external document's spec attribute as an
error.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="InstanceRefFacet">
<xs:annotation>
<xs:documentation>Instance number reference facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="refType" type="tns:ReferenceType" use="required">
<xs:annotation>
<xs:documentation>Specifies the type of reference
(A.2.3.6) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="targetParent" type="tns:0bjectReference" use="required">
<xs:annotation>
<xs:documentation>MUST reference a multi-instance object (table)
(A.2.3.4) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="targetParentScope" type="tns:PathScope" default="normal">
<xs:annotation>
<xs:documentation>Specifies the point in the naming hierarchy relative to
which targetParent applies (A.2.3.4).</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="ListFacet">
<xs:annotation>
<xs:documentation>List facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="size" type="tns:SizeFacet">
<xs:annotation>
<xs:documentation>This specifies the size of the TR-069 list-valued
parameter, not of the individual list items.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:choice>
</xs:sequence>
<xs:attribute name="minItems" type="xs:nonNegativelnteger" default="0"/>
<xs:attribute name="maxItems" type="tns:MaxEntries" default="unbounded"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="Model">
<xs:annotation>

November 2008 © The Broadband Forum. All rights reserved. 90

923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

<xs:documentation>Model (Root or Service Object) definition and
reference.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="description" type="tns:Description" minOccurs="0"/>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="component" type="tns:ComponentReference"/>
<xs:element name="parameter" type="tns:ModelParameter"/>
<xs:element name="object" type="tns:ModelObject">
<xs:unique name="objectParameterName">
<xs:selector xpath="parameter"/>
<xs:field xpath="@name"/>
</xs:unique>
<xs:keyref name="objectEnableParameterRef" refer="tns:objectParameterName">
<xs:selector xpath="."/>
<xs:field xpath="@enableParameter"/>
</xs:keyref>
<xs:keyref name="objectUniqueKeyRef" refer="tns:objectParameterName">
<xs:selector xpath="uniqueKey/parameter"/>
<xs:field xpath="@ref"/>
</xs:keyref>
</xs:element>
</xs:choice>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="profile" type="tns:Profile"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="name" type="tns:ModelName" use="required">
<xs:annotation>
<xs:documentation>MUST be unique within the document, including imported models
(this is checked by schema validation) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="base" type="tns:ModelName">
<xs:annotation>
<xs:documentation>MUST be present if and only if extending an existing model. See
A.2.10.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="isService" type="xs:boolean" default="false"/>
<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:attribute name="id" type="tns:0OpaquelD"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="ModelObject">
<xs:annotation>
<xs:documentation>Object definition and reference. See A.2.8.1 for details of how
tables are represented.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="description" type="tns:Description" minOccurs="0"/>
<xs:element name="uniqueKey" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>MUST NOT be present if the object is not a table (see
maxEntries) .
The parameters referenced by each unique key element MUST constitute a unique key.
For a table in which there is an enableParameter, the uniqueness requirement applies only
to enabled table entries.</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="parameter" maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="ref" type="tns:ParameterName" use="required"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:unique name="uniqueKeyParameterRef">
<xs:selector xpath="parameter"/>

November 2008 © The Broadband Forum. All rights reserved. 91

994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

<xs:field xpath="@ref"/>
</xs:unique>
</xs:element>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="component" type="tns:ComponentReference"/>
<xs:element name="parameter" type="tns:ModelParameter"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="name" type="tns:0ObjectName">
<xs:annotation>
<xs:documentation>MUST be unique within the component or model (this is checked by
schema validation) .
MUST be present if and only if defining a new object.
If the object is a table (see maxEntries), the final part of the name MUST be
"{i}.".</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="base" type="tns:0bjectName">
<xs:annotation>
<xs:documentation>MUST be present if and only if modifying an existing
object.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="access" type="tns:ReadWriteAccess" use="required"/>
<xs:attribute name="minEntries" type="xs:nonNegativelnteger" use="required">
<xs:annotation>
<xs:documentation>minEntries MUST be less than or equal to maxEntries (all values
are regarded as being less than "unbounded") .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="maxEntries" type="tns:MaxEntries" use="required">
<xs:annotation>
<xs:documentation>minEntries and maxEntries indicate whether the object is a

table:

* minEntries=0, maxEntries=1 : single-instance object which might not be allowed to exist,
e.g. because only one of it and another object can exist at the same
time

* minEntries=1, maxEntries=1 : single-instance object that is always allowed to exist

* all other cases : object is a table</xs:documentation>

</xs:annotation>
</xs:attribute>
<xs:attribute name="numEntriesParameter" type="tns:ParameterName">
<xs:annotation>
<xs:documentation>MUST be specified for a table with a variable number of entries,
i.e. for which maxEntries is greater than minEntries ("unbounded" is
regarded as being greater than all values) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="enableParameter" type="tns:ParameterName">
<xs:annotation>
<xs:documentation>MUST be specified for a table in which the ACS can create
entries and which has one or more uniqueKey
elements.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:attribute name="id" type="tns:0OpaquelD"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="ModelParameter">
<xs:annotation>
<xs:documentation>Parameter definition and reference.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="description" type="tns:Description" minOccurs="0"/>
<xs:element name="syntax" type="tns:Syntax" minOccurs="0"/>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="name" type="tns:ParameterName">
<xs:annotation>

November 2008 © The Broadband Forum. All rights reserved. 92

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

<xs:documentation>MUST be unique within the parent object (this is checked by
schema validation) .
MUST be present if and only if defining a new parameter.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="base" type="tns:ParameterName">
<xs:annotation>
<xs:documentation>MUST be present if and only if modifying an existing
parameter.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="access" type="tns:ReadWriteAccess" use="required"/>
<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:attribute name="activeNotify" type="tns:ActiveNotify" default="normal"/>
<xs:attribute name="forcedInform" type="xs:boolean" default="false"/>
<xs:attribute name="id" type="tns:OpaquelID"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="PathRefFacet">
<xs:annotation>
<xs:documentation>Path name reference facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="refType" type="tns:ReferenceType" use="required">
<xs:annotation>
<xs:documentation>Specifies the type of reference
(A.2.3.6) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="targetParent" type="tns:0ObjectReferencePatterns" default="">
<xs:annotation>
<xs:documentation>If the list is non-empty, this parameter MUST only reference
immediate children of matching objects (A.2.3.4) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="targetParentScope" type="tns:PathScope" default="normal">
<xs:annotation>
<xs:documentation>Specifies the point in the naming hierarchy relative to
which targetParent applies (A.2.3.4).</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="targetType" type="tns:TargetType" default="any">
<xs:annotation>
<xs:documentation>Specifies the type of item that can be
referenced.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="targetDataType" type="tns:AnyTypeName" default="any">
<xs:annotation>
<xs:documentation>Specifies the valid data types for a referenced
parameter.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="PatternFacet">
<xs:annotation>
<xs:documentation>Pattern facet (pattern syntax is as in XML
Schema) .</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseAccessFacet">
<xs:attribute name="value" type="xs:string" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="Profile">
<xs:annotation>
<xs:documentation>Profile definition and reference.</xs:documentation>

November 2008 © The Broadband Forum. All rights reserved. 93

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

</xs:annotation>
<xs:sequence>
<xs:element name="description" type="tns:Description" minOccurs="0">
<xs:annotation>
<xs:documentation>If the extends attribute is insufficient to express general
profile requirements, any additional requirements MUST be specified
here.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="parameter" type="tns:ProfileParameter"/>
<xs:element name="object" type="tns:ProfileObject"/>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="name" type="tns:ProfileName">
<xs:annotation>
<xs:documentation>MUST be unique within the model (this is checked by schema
validation).
MUST be present if and only if defining a new profile.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="base" type="tns:ProfileName">
<xs:annotation>
<xs:documentation>MUST specify base if modifying an existing profile or if the
profile version is greater than 1.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="extends" type="tns:ProfileNames">
<xs:annotation>
<xs:documentation>MUST specify extends if the profile extends other
profile(s) .</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:attribute name="id" type="tns:OpaquelID"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="ProfileObject">
<xs:annotation>
<xs:documentation>Profile object definition.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="description" type="tns:Description”" minOccurs="0">
<xs:annotation>
<xs:documentation>If the requirement attribute is insufficient to express the
requirement, any additional requirements MUST be specified here and
MAY override the attribute.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="parameter" type="tns:ProfileParameter" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="ref" type="tns:0bjectName" use="required"/>
<xs:attribute name="requirement" type="tns:ProfileObjectAccess" use="required"/>
<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="ProfileParameter">
<xs:annotation>
<xs:documentation>Profile parameter definition.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="description" type="tns:Description”" minOccurs="0">
<xs:annotation>
<xs:documentation>If the requirement attribute is insufficient to express the
requirement, any additional requirements MUST be specified here and
MAY override the attribute.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>

November 2008 © The Broadband Forum. All rights reserved. 94

1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

<xs:attribute name="ref" type="tns:ParameterName" use="required"/>
<xs:attribute name="requirement" type="tns:ReadWriteAccess" use="required"/>
<xs:attribute name="status" type="tns:Status" default="current"/>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:complexType name="RangeFacet">
<xs:annotation>
<xs:documentation>Range facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseAccessFacet">
<xs:attribute name="minInclusive" type="xs:integer"/>
<xs:attribute name="maxInclusive" type="xs:integer"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="SizeFacet">
<xs:annotation>
<xs:documentation>Size facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseAccessFacet">
<xs:attribute name="minLength" type="xs:nonNegativelnteger" default="0"/>
<xs:attribute name="maxLength" type="xs:nonNegativelnteger" default="16"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="UnitsFacet">
<xs:annotation>
<xs:documentation>Units facet.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="tns:BaseStatusFacet">
<xs:attribute name="value" type="tns:UnitsString" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="Syntax">
<xs:annotation>
<xs:documentation>Parameter syntax specification.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="1list" type="tns:ListFacet" minOccurs="0">
<xs:annotation>
<xs:documentation>For lists, the TR-069 parameter is always a string and the
data type specification applies to individual list items, not to the
parameter value.
See section 3.2 for comma-separated list formatting rules.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:choice>
<xs:group ref="tns:AllBuiltinDataTypes">
<xs:annotation>
<xs:documentation>Direct use of built-in data type, possibly modified wvia use
of facets.</xs:documentation>
</xs:annotation>
</xs:group>
<xs:element name="dataType" type="tns:DataTypeReference">
<xs:annotation>
<xs:documentation>Use of named data type, possibly modified via use of
facets.</xs:documentation>
</xs:annotation>
<xs:unique name="dtRefEnumerationValue">
<xs:selector xpath="enumeration"/>
<xs:field xpath="@value"/>
</xs:unique>
<xs:unique name="dtRefPatternvValue">
<xs:selector xpath="pattern"/>
<xs:field xpath="@value"/>
</xs:unique>
</xs:element>

November 2008 © The Broadband Forum. All rights reserved. 95

1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

* ok ok o oF

</xs:choice>
<xs:element name="default" type="tns:DefaultFacet" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="hidden" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>If true, readback is always false, 0 or empty
string.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<!-- Elements -->
<xs:element name="document">
<xs:annotation>
<xs:documentation>CWMP Data Model Definition XML Schema (DM Schema) instance
documents can contain any or all of the following:
Data type definitions
Root Object definitions (including profiles)
Service Object definitions (including profiles)
Component definitions
Vendor extension definitions</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="description" type="tns:Description" minOccurs="0">
<xs:annotation>
<xs:documentation>Top-level description.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="import" type="tns:Import" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Imported data types, components and models (Root and Service
Objects) .</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="dataType" type="tns:DataTypeDefinition" minOccurs="0"
maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Top-level data type definitions.</xs:documentation>
</xs:annotation>
<xs:unique name="dtDefEnumerationValue">
<xs:selector xpath="enumeration"/>
<xs:field xpath="@value"/>
</xs:unique>
<xs:unique name="dtDefPatternValue">
<xs:selector xpath="pattern"/>
<xs:field xpath="@value"/>
</xs:unique>
</xs:element>
<xs:element name="bibliography" type="tns:Bibliography" minOccurs="0">
<xs:annotation>
<xs:documentation>Bibliographic references.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="component" type="tns:ComponentDefinition">
<xs:annotation>
<xs:documentation>Component definitions.</xs:documentation>
</xs:annotation>
<xs:unique name="componentParameterName">
<xs:selector xpath="parameter"/>
<xs:field xpath="@name"/>
</xs:unique>
<xs:unique name="componentObjectName">
<xs:selector xpath="object"/>
<xs:field xpath="@name"/>
</xs:unique>
<xs:unique name="componentProfileName">
<xs:selector xpath="profile"/>
<xs:field xpath="@name"/>
</xs:unique>

November 2008 © The Broadband Forum. All rights reserved. 96

1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 2

</xs:element>
<xs:element name="model" type="tns:Model">
<xs:annotation>
<xs:documentation>Model (Root and Service Object)
definitions.</xs:documentation>
</xs:annotation>
<xs:unique name="modelParameterName">
<xs:selector xpath="parameter"/>
<xs:field xpath="@name"/>
</xs:unique>
<xs:unique name="modelObjectName">
<xs:selector xpath="object"/>
<xs:field xpath="@name"/>
</xs:unique>
<xs:unique name="modelProfileName">
<xs:selector xpath="profile"/>
<xs:field xpath="@name"/>
</xs:unique>
</xs:element>
</xs:choice>
<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="spec" use="required">
<xs:annotation>
<xs:documentation>URI of the associated specification document, e.g. the BBF
Technical Report. This URI SHOULD unigquely identify the
specification. More than one DM Schema instance document MAY
reference the same specification.

Where the specification is a BBF document, the URI naming rules specified in A.2.1 MUST be
used. For example, to reference TR-106 Issue 1 Amendment 2, the
value of this attribute would be urn:broadband-forum-org:tr-106-1-
2.</xs:documentation>

</xs:annotation>
<xs:simpleType>
<xs:restriction base="xs:anyURI">
<xs:pattern value=".+"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:anyAttribute namespace="##other"/>
</xs:complexType>
<xs:unique name="dataTypeName">
<xs:selector xpath="dataType|import/dataType"/>
<xs:field xpath="@name"/>
</xs:unique>
<xs:unique name="componentName">
<xs:selector xpath="component|import/component"/>
<xs:field xpath="@name"/>
</xs:unique>
<xs:unique name="modelName">
<xs:selector xpath="model|import/model"/>
<xs:field xpath="@name"/>
</xs:unique>
<xs:unique name="bibId">
<xs:selector xpath="bibliography/reference"/>
<xs:field xpath="@id"/>
</xs:unique>
<xs:keyref name="dataTypeBase" refer="tns:dataTypeName">
<xs:selector xpath="dataType|.//parameter/syntax/dataType"/>
<xs:field xpath="@base"/>
</xs:keyref>
<xs:keyref name="dataTypeRef" refer="tns:dataTypeName">
<xs:selector xpath=".//parameter/syntax/dataType"/>
<xs:field xpath="@ref"/>
</xs:keyref>
<xs:keyref name="componentRef" refer="tns:componentName">
<xs:selector xpath=".//component"/>
<xs:field xpath="@ref"/>
</xs:keyref>
<xs:keyref name="modelBase" refer="tns:modelName">
<xs:selector xpath="model"/>

November 2008 © The Broadband Forum. All rights reserved. 97

1420
1421
1422
1423

Data Model Template for TR-069-Enabled Devices

<xs:field xpath="@base"/>

</xs:keyref>
</xs:element>
</xs:schema>

November 2008

© The Broadband Forum. All rights reserved.

TR-106 Amendment 2

98

Data Model Template for TR-069-Enabled Devices

TR-106 Amendment 2

Appendix I.

“Device” Root Object,

Common Objects and
Components

The “Device” Root Object, Common Objects and Components are defined in several DM Instance
documents, which include the following information:

e Data type definitions, the IP address and MAC address conventions of section 3.2.

e Bibliography, containing those items from the Normative References section that are referenced by
data model definitions.

J “Device” Root Object definition, including the Common Objects and Components of Table 3 through
Table 5 and the profiles of Table 6 through Table 18. The Root Object definition has a model element
for each version of the Root Object; each such model element consists of the changes relative to the
previous version, if any.

The DM Instance documents are as follows, and can be found at http://www.broadband-
forum.org/cwmp/<File>.

Date Document File Description
tr-106-1-0-types.xml TR-069 Data Model Data Types.
September 2005 TR-106 - - —
tr-106-1-0.xml TR-069 Device:1.0 Root Object definition.
December 2006 TR-106 Amendment 1 | tr-106-1-1.xml TR-069 Device:1.1 Root Object definition.
) 1421 TR-069 Device:1.2 (and InternetGatewayDev-
May 2008 TR-143 tr-143-1-0.xml ice:1.3) Root Object definition.
TR-069 Device:1.2 Root Object errata and
November 2008 TR-106 Amendment 2 | tr-106-1-2.xml clarifications; only minor changes, hence not a

new version of the Root Object.

November 2008

© The Broadband Forum. All rights reserved. 99

http://www.broadband-forum.org/cwmp/tr-106-1-0-types.xml
http://www.broadband-forum.org/cwmp/tr-106-1-0.xml
http://www.broadband-forum.org/cwmp/tr-106-1-1.xml
http://www.broadband-forum.org/cwmp/tr-143-1-0.xml
http://www.broadband-forum.org/cwmp/tr-106-1-2.xml

	Introduction
	Terminology
	Document Conventions

	Architecture
	Data Hierarchy
	Data Hierarchy Requirements
	Data Hierarchy Examples

	Object Versioning
	Requirements for Compatible Versions
	Version Notation

	Profiles
	Scope of Profiles
	Multiple Profile Support
	Profile Versions
	Baseline Profiles
	Types of Requirements in a Profile

	DEPRECATED and OBSOLETED Items
	Requirements for DEPRECATED Items
	Requirements for OBSOLETED Items

	Object Definitions
	General Notation
	Data Types
	Vendor-Specific Parameters
	Common Object Definitions
	Inform Requirements
	Notification Requirements
	DeviceSummary Definition
	DeviceSummary Examples

	Profile Definitions
	Notation
	Baseline Profile
	GatewayInfo Profile
	Time Profile
	LAN Profile
	IPPing Profile
	TraceRoute Profile
	Download Profile
	DownloadTCP Profile
	Upload Profile
	UploadTCP Profile
	UDPEcho Profile
	UDPEchoPlus Profile
	UDPConnReq Profile

	Normative References
	CWMP Data Model Definition XML Schema
	Introduction
	Normative Information
	URI Conventions
	Descriptions
	Character Set
	Pre-processing
	Markup
	Templates
	HTML Example
	Data Types
	Named Data Types
	Anonymous Data Types
	Data Type Facets
	Reference Path Names
	Null References
	Reference Types
	Reference Facets
	Base Type Restriction
	Bibliography
	Components
	Root and Service Objects
	Parameters
	Parameter Syntax
	Objects
	Tables
	Profiles
	Modifications
	Parameter Modifications
	Object Modifications
	Profile Modifications

	DM Schema
	“Device” Root Object, Common Objects and Components

